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Abstract

Tevio, Mirja
Quark Mass Renormalization in Perturbative Quantum Chromodynamics in Light-
Cone Gauge
Master’s thesis
Department of Physics, University of Jyväskylä, 2020, 65 pages.

Perturbative Quantum Chromodynamics includes virtual particle perturbations
which generate divergences. The divergences arise from the integration over the
virtual momentum, and they are eliminated by a procedure called renormalization.
In this thesis, the renormalization of a gluon loop corrected quark propagator, in
the light-cone gauge, is studied. The light-cone gauge is known to be advantageous
because it does not include Faddeev–Popov ghosts, and when deriving the DGLAP
evolution equations. However, the calculations including light-cone gauge gluon
propagator are challenging due to the unphysical pole in the gluon propagator. It
appears that the light-cone gauge results for the pole mass of the one-loop corrected
quark propagator and the complete self energy with the finite parts have not been
explicitly listed in the literature.

In this thesis the unphysical pole in the gluon propagator is regulated with the
Mandelstam–Leibbrandt prescription. The quark self energy is solved, including the
finite terms, which is used to derive the effective quark propagator. The pole mass
of the effective quark propagator is defined up to the order g2

s , and it is found to
be equal to the covariant gauge result. The quark field and mass renormalization
counterterms in the MS scheme are determined and they are found to agree with the
results in the literature.

Keywords: Quantum Chromodynamics, renormalization, ligh-cone gauge, pole mass
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Tiivistelmä

Tevio, Mirja
Kvarkin massarenormalisaatio kvanttiväridynamiikan häiriöteoriassa valokartiomi-
tassa
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2020, 65 sivua

Kvanttiväridynamiikan häiriöteoriassa esiintyvät virtuaaliset häiriöt tuottavat
äärettömyyksiä, jotka ilmenevät integroidessa virtuaalisen hiukkasen liikemäärän
suhteen. Äärettömyydet poistetaan renormalisaatioksi kutsutulla menetelmällä.
Tässä tutkielmassa renormalisoidaan valokartiomitassa kvarkkipropagaattoria, joka
sisältää häiriön gluonisilmukan muodossa. Valokartiomitta on todettu hyödylliseksi
käsiteltäessä DGLAP evoluutioyhtälöitä sekä sen vuoksi, että se ei sisällä Faddeev-
Popov-aaveita. Kuitenkin laskut, joissa esiintyy valokartiomitan gluonipropagaattori,
ovat haastavia gluonipropagaatorissa esiintyvän ylimääräisen navan vuoksi. Vaikuttaa
siltä, että valokartiomitassa ratkaistuja kvarkin napamassaa sekä itseisenergiaa ei
ole esitetty eksplisiittisesti kirjallisuudessa.

Tässä tutkielmassa n ⋅ q napaa käsitellään Mandelstam–Leibbrandt-menetelmällä.
Kvarkin itseisenergia lasketaan äärelliset termit mukaanlukien, ja sen avulla muo-
dostetaan efektiivinen kvarkkipropagaattori. Efektiivisen propagaattorin napamassa
lasketaan kertaluokassa g2

s . Tulokseksi saatu napamassa vastaa kovariantin mitan
tulosta. Kvarkin kenttä- ja massarenormalisaatio suoritetaan myös MS-skeemassa, ja
saadut renormalisaatiotermit vastaavat kirjallisuudessa esiintyviä tuloksia.

Avainsanat: kvanttiväridynamiikka, renormalisaatio, valokartiomitta, napamassa
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1 Introduction

Quantum Chromodynamics (QCD) is a nonabelian SU(3)-symmetric field theory
describing the strong interaction of quarks and gluons, caused by the colour charge
they carry. Hadrons and mesons are particles composed of the quarks, antiquarks,
and gluons bound together by the colour confinement that prevents the existence of
free quarks or gluons. To understand the internal structure of hadrons and mesons,
one has to make experimental observations of high-energy scattering processes.

In perturbation theory physical observables have virtual and real corrections in
high energies. When a real particle is emitted from a physical observable, one refers
to a real correction. Whereas a virtual correction is understood as an emitted particle
that couples back to the observable later in time, and hence cannot be detected. To
have more precise predictions for experimental results, theorists have to consider
more orders in the perturbation theory. In QCD, the gluon self-interactions generate
complex perturbation structures which quickly make the analytical treatment quite
difficult. Perturbations generate singularities in calculations, which are eliminated
by renormalization.

In this thesis the virtual one-loop gluon correction to a quark propagator is
discussed. The singularities of perturbative QCD are discussed in section 2. The
gauge is chosen to be the light-cone gauge which general properties are considered
in section 3.1. In the light-cone gauge, the unphysical pole in the gluon propagator
produces difficulties in calculations. In this work the unphysical pole is regulated
with a so-called Mandelstam–Leibbrandt prescription which is discussed in section
3.2. In section 4, the quark self energy is calculated. In section ?? the effective
quark propagator is obtained and the pole mass is defined. The singularities from
the effective propagator are renormalised in section 5.2.

The standard choice for the natural units is used: h̷ = c = 1. Calculations are done
in both Minkowski and Euclidean space. Their connection, regarding the four-vectors
and the Dirac matrices, is discussed in appendix B.
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2 Perturbative QCD

2.1 Virtual corrections

The effective coupling constant in QCD decreases at high interacion scales i.e. small
distances, and increases at low interacion scales i.e. large distances. At high interacion
scales the so-called asymptotic freedom ensures the perturbation theory to work well.
After some small scale point the quarks and gluons are bound by color confinement
and the perturbation theory cannot be used. [1]

The corrections are divided into virtual and real corrections. The real correction
stands for the emission of a real particle. A virtual correction is understood as an
emitted particle that is later in time coupled back to the system, forming a loop in the
Feynman diagram of the system, hence it is called a loop correction. Next-to-leading
order (NLO) corrections are the first non-zero terms of the order higher than gs,
the next-to-next-to-leading order (NNLO) terms are the next non-zero terms in the
higher order than (NLO), and so on. To get more precise results one has to count in
higher order terms, and to sum together all the possible corrections of the wanted
order.

The evaluation of the Feynman graphs containing virtual corrections will give
divergences which arise from the integration over the momentum of the virtual particle.
Those divergences are either infrared (IR) or ultraviolet (UV), corresponding to the
square of the virtual momentum being zero or infinite respectively. The special
case of the IR divergences are the so-called collinear divergences. The collinear
divergences arise when dealing with massless quarks and four-momenta cancel each
other in a denominator of propagator. The divergences can be regulated multiple
ways, depending on the type of the divergence. Regulation does not eliminate the
singularities but gives a way to handle them.

If the divergences end up in any physical quantity, such as the pole mass, the
quantity has to be renormalised. The renormalization stands for redefining the bare
quantities, appearing in the bare Lagrangian, by absorbing the divergences in them.
Then one expresses the theory with the renormalised quantities and the counterterms
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Figure 1. The one-loop corrections to the quark propagator and quark gluon
vertex.

in which the divergences are located.

The LO correction to a propagator studied in this thesis is a virtual gluon loop as
on the left side of Figure 1. If one would consider NLO corrections in an interaction,
also the vertex corrections would have to be calculated. The NLO gluon loop vertices
are seen on the right side of Figure 1.

2.2 Dimensional regularization

One method to handle the divergences arising from evaluation of Feynman diagrams
is the so-called dimensional regularisation. Dimensional regularisation is based on
understanding the number of spacetime dimensions D as a continuous, instead of a
discrete variable and then increasing or decreasing the number of dimensions. The
number of dimensions is increased when dealing with IR-divergences and decreased
in the case of UV-divergences. The divergences are then identified as poles when
dimension is analytically continuous near D = 4.

In dimension D, the indices of Dirac matrices γµ and space-time vectors p run
from 0 to D − 1

p = (p0,p1,p2,...,pD−1) and γ0, γ1,...,γD−1. (1)

The metric tensor in D dimensional Minkowski space is gµν = Diag(1, − 1,..., − 1),
which yields

gµνgµν =D. (2)

The Clifford algebra for gamma-matrices and the trace of the identity matrix remain
intact in dimension D, but due to Eq. (2) some of the gamma-matrix identities are



13

changed
Tr(1D) = 4

{γµ,γν} = 2gµν1D

γµγνγµ = −(D − 2)γν

γµγνγλγµ = 4gνλ1D + (D − 4)γνγλ.

(3)

The QCD action in D dimensions reads

SQCD =∫ dDxLQCD = ∫ dDx[ −
1
4F

µν,aF a
µν

+∑
q

[i (ψq0)
i
γµ ((∂µ)ij + igsA

a
0µ(t

a)ij) (ψq)j −mq0 (ψq0)
i
(ψq)j

]],
(4)

where F µν,a denotes the gluon field strength tensor defined as F a
µν = ∂µAa

0ν − ∂νAa
0µ −

gsfabcAb
0µA

c
0ν , the indices a,b,c denote color of gluons, i and j are color indices for

quarks, and µ and ν are Lorentz indices, Aa
0µ is the bare gluon field, ψq0 is the

bare quark field, mq0 is a corresponding bare quark mass, fabc is a SU(3) structure
constant, gs is the strong coupling constant, ta is is a SU(3) generator, and the sum ∑q

denotes a sum over quark flavors. The action is dimensionless i.e. [SQCD] = [m]0 = 1.
The spacetime integral has dimension [L]D, where L denotes length. In natural units
[L] = [m]−1, which gives the dimension of the Lagrangian is [m]D and thus every
term in QCD Lagrangian has dimension of [m]D. From the quark mass term it can
be seen the dimension of the wave function has to be [ψ] = [m](D−1)/2. And from
the kinetic term of the gluon field one gets [Aa

µ] = [m]
(D−2)/2. Examining the quark

and gluon interaction term results in

[gs][A
a
µ][ψ]

2 = [m]D Ð→ [gs] = [m]
2−D/2, (5)

which could also be derived from the gluon self-interaction terms. The dimension
of the coupling constant can be expressed with an arbitrary mass parameter µ.
Replacing the coupling constant in the Lagrangian with

gs Ð→ gsµ
2−D/2, where [µ] = [m] and [gs] = [m]

0, (6)

allows utilizing the same dimensionless coupling constant as in 4 dimensional theory.

The QCD-theory is renormalizable in four dimensions. In this thesis the dimension
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is chosen as
D ≡ 2ω, where ω ≡ 2 − ε. (7)

Regulating UV-divergences requires ε > 0 whereas regulating IR-divergences ε < 0.
Evaluating Feynman diagrams in 2ω dimensions will give ε−1 divergences, which can
be eliminated with the renormalization counterterms. However, the dimensionally
regulated IR and UV divergences are not always distinguishable in the final result.
In QCD calculations the renormalization is used to remove UV-divergences, and
IR-divergences are expected to cancel between different loop corrections of physical
observables.

The renormalization counterterms can also contain finite terms. The choice
of which finite terms are included defines the renormalization scheme. In the so-
called minimal subtraction (MS) scheme only the divergent parts ε−1 are included to
the counterterms. In the modified minimal subtraction (MS) scheme counterterms
include the terms

1
ε
− γE + log(4π), (8)

which arise from the dimensional regularization, and where γE denotes the Euler’s
constant. There are infinitely many ways to add finite terms to the counterterms,
however the terms cannot have momentum dependence since they appear in the
renormalised Lagrangian.
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3 Light-Cone gauge

3.1 Properties of a light-cone gauge

In this thesis the one-loop correction of quark propagator is studied in the light-cone
gauge. The light-cone gauge is an axial gauge where the gluon field satisfies the
constraint

n ⋅Aa = 0, (9)

where n is a fixed four-vector. The gauge fixing term restricting the degrees of
freedom in the QCD-Lagrangian defined in Eq. (141) is

Lfix =
−1
2α(n ⋅A

a)2, (10)

where α is an arbitrary parameter, usually taken to zero in the resulting Feynman
rules. The light-cone gauge is characterised by the vector n being light-like i.e.

n2 = 0. (11)

The Euler-Lagrange equation for the non-interacting gluon field is

∂LYM

∂Abν
− ∂µ ∂LYM

∂(∂µAbν)
= (
−1
α
nαnν + ∂

2gαν − ∂α∂ν) δ
abAbα = 0, (12)

where LYM is the free Yang-Mills Lagrangian defined in appendix A. A gluon
propagator is defined as a Green’s function for the gluon field. The Green’s function
Gαβ(q) for the gluon field satisfies

(
−1
α
nαnν + ∂

2gαν − ∂α∂ν) δ
abGαβ(x − y) = iδβ

ν δ
abδ4(x − y)

∫
d4q

(2π)4G
αβ(q)δab (

−1
α
nαnν − q

2gαν + qαqν) e
iq(x−y) = ∫

d4q

(2π)4 iδ
β
ν δ

abeiq(x−y).
(13)

Noting the Green’s function has to be symmetric with respect to the α and β
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interchange, one can make an ansatz

Gαβ(q) = Agαβ +Bqαqβ +Cnαnβ +Dnαqβ +Eqαnβ. (14)

Then matching the left and right sides of Eq. (13) one arrives at a solution

δabGαβ(q) =
−iδab

q2 (g
αβ −

nαqβ + qαnβ

n ⋅ q
−
αq2qαqβ

(n ⋅ q)2
) . (15)

Finally, taking a limit α → 0 and adding the Feynman iε-prescription, the Green’s
function (15) can be defined as the gluon propagator

δabDµν(q) =
−iδab

q2 + iε
(gµν −

nµqν + nνqµ

n ⋅ q
) . (16)

It can be seen that for the gluon propagator applies

nµDµν(q) = n
νDµν(q) = 0. (17)

External gluons have only two physical polarization states since they are transver-
sally polarized. However when taking a square of the invariant matrix element one
essentially has gluon loops formed by the external gluons. In covariant gauges these
”gluon loops” are summed over also by the two unphysical polarization states and
therefore the squared matrix element will have unphysical terms. To eliminate the
unphysical terms one has to add so-called Faddeev-Popov ghosts to the Lagrangian.
The ghosts are merely a mathematical tool to retain the wanted outcome for the
squared matrix element.

In the light-cone gauge, the gluon propagator has a form that gives the relation
in Eq. (17) which causes the ghosts to decouple from the gluons [2]. The crucial
advantage of choosing a light-cone gauge is the feature of not having ghosts. Also the
calculation of the so-called Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
evolution equations in the light-cone gauge is less complicated than in a covariant
gauge. [1, 3, 4]
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3.2 Mandelstam-Leibbrandt prescription

The Feynman integrals containing the gluon propagator defined in Eq. (16) include
the pole (n ⋅ q)−1 which may yield additional divergences. These divergences can
be regulated in multiple ways. In this thesis the regulation is carried out by using
the so-called Mandelstam-Leibbrandt (ML) prescription [2]. The idea of the ML-
prescription is to chance the denominator by adding a small imaginary shift which is
later taken to zero after the Wick rotation.

Another light-cone feature n2 = 0 yields ambiguity considering the values of the
components of the vector n

(n0)2 = n2 Ð→ n0 = ±∣n∣. (18)

The constraint n2 = 0 does not fix the n vector and therefore the value of the pole
(n ⋅ q)−1 is not unique. The ML-prescription addresses this ambiguity by fixing the
four-vector n as

n ≡ (∣n∣,n), (19)

and then defining a new four-vector n∗ as

n∗ ≡ (∣n∣, − n). (20)

For both these vectors the time component is positive which gives n∗ ⋅ n > 0.

The ML-prescription is constructed with the vectors n and n∗ in Leibbrandt’s
way [2, 5] as

1
n ⋅ q
= lim

θ→0

n∗ ⋅ q

(n∗ ⋅ q)(n ⋅ q) + iθ
θ > 0. (21)

This is equal to a form which was discovered by Mandelstam [6]

1
n ⋅ q
= lim

θ→0

1
n ⋅ q + iθ

n∗⋅q

θ > 0, (22)

from which it is easier to see the idea of ML-prescription being an imaginary shift in
the denominator. In the literature the term iθ/(n∗ ⋅q) is often written as iθsign(n∗ ⋅q),
where the absolute value of the inner product is absorbed to θ. In this thesis the
Leibbrandt’s version (21) of ML-prescription is used.
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The integral with the ML-prescription defined in Eq. (21) reads

∫ dDq
n∗ ⋅ q

(n∗ ⋅ q)(n ⋅ q) + iθ
= ∫ dDq

n∗ ⋅ q

n2
0(q

2
0 −

(n⋅q)2
n2

0
+ iθ

n2
0
)
, (23)

from where one can see the poles are placed in the second and fourth quadrants of
the complex plane i.e. q0 = ±∣n ⋅ q∣ /∣n0∣ ∓ iθ/(2∣n0∣∣n ⋅ q∣) as in Figure 2. Performing
the Wick rotation as in appendix C.2, with the path Γ defined in Figure 2, one
changes the time-like component of the gluon vector q as q0 = iq4 and then defines
the Euclidean vector q2

E=−q2. With transformations n0 = in4 and n∗00 = in
∗

4 = in4 it
is possible to transfer all the vectors in Eq. (23) to Euclidean space. The identities
regarding this transformation are derived in appendix B. After the Wick rotation
and the transformation to Euclidean space the integral in Eq. (23) reads

i∫
E
dDq

−(n∗ ⋅ q)E

−n2
4 (−q

2
4 −

(n⋅q)2
−n2

4
)

= i∫
E
dDq

−(n∗ ⋅ q)E
(n∗ ⋅ q)E(n ⋅ q)E

= −i∫
E
dDq (

1
n ⋅ q
)

E

. (24)

The advantage of transforming to Euclidean space is that one does not have to
explicitly perform the Wick rotation when evaluating integrals with the pole (n ⋅ q)−1,

Figure 2. Path Γ in the complex plane with poles of the ML-prescription in
the second and fourth quadrants.
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but one can use the relation

(
1
n ⋅ q
) = −(

1
n ⋅ q
)

E

, (25)

where the Euclidean ML-prescription is defined as [5]

(
1
n ⋅ q
)

E

= lim
θ2→0

(n∗ ⋅ q)E
(n∗ ⋅ q)E(n ⋅ q)E + θ2 θ2 > 0. (26)

If light-cone gauge gluon and quark propagators appear in the same Feynman
diagram, the corresponding integral contains three types of poles p2 +m2

0 + iε, q2 + iε

and n ⋅ q, where q and p are gluon and quark momenta respectively and m0 is the
quark mass. Since all the poles are located in the second and fourth quadrants on a
complex plane, the Wick rotation is achievable. This is the crucial advantage of the
ML-prescription compared to the conventional Principal Value (PV) [7] prescription
which sets the poles of (n ⋅ q)−1 either first and fourth or second and third quadrants,
and therefore prevents taking the Wick rotation.
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4 One-loop quark self energy (Σ)

µ,a ν,b

p

i

p − k

j

p

k

q

Figure 3. The leading order gluon loop correction to the quark propagator.

With the Feynman rules, from appendix A, the perturbed gluon propagator in
Figure 3 reads

∫
d4q

(2π)4
i

/p −m0 + iε
(igγµtaji)δ

abDµν(q)
i

/p − /q −m0 + iε
(igγνtbik)

i

/p −m0 + iε

=
i

/p −m0 + iε
Σ i

/p −m0 + iε
,

(27)

where Σ is the self energy of the quark. For the SU(3) generator matrices one can
use

(ta)ji(t
a)ik = (t

ata)ik = CF δik =
4
3δik, (28)

where CF is the so-called Casimir operator. With Eq. (28) the self energy is

Σ = −ig2
sCF ∫

d4q

(2π)4γ
µDµν(q)

/p − /q +m0

(p − q)2 −m2
0 + iε

γν

= −g2
sCF ∫

d4q

(2π)4γ
µ /p − /q +m0

(p − q)2 −m2
0 + iε

γν 1
q2 + iε

[gµν −
nµqν + qµnν

n ⋅ q
] .

(29)

The UV-divergences are regulated with the dimensional regularization by changing
to 2ω dimensions defined in section 2.2. Using the identities in Eq. (3) the self
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energy reads

Σ = − g2
sµ

4−2ωCF ∫
d2ωq

(2π)2ω
[
−2(ω − 1)(/p − /q) + 2(ω − 1)m0

((p − q)2 −m2
0 + iε)(q

2 + iθ)

−
/n/p/q + /q/p/n − 2q2 /n

((p − q)2 −m2
0 + iε)(q

2 + iθ)n ⋅ q
],

(30)

where the pole n ⋅ q is regulated via the ML-prescription.
To get rid of the imaginary parts in the denominator of Eq. (30) one has to

perform the Wick rotation with a pole q0 = ±∣q∣∓ iε from the gluon propagator and a
pole q0 = ±

√
(p − q)2 +m2

0 ∓ iε from the quark propagator. The Wick rotation for
the pole n ⋅ q goes as in section 3.2. With transforms p0 = ip4, q0 = iq4, n0 = in4 and
γ0 = iγ4 one can transfer from Minkowski space to Euclidean space. The relations
for four-vectors, gamma-matrices and trace identities in Euclidean space are derived
in appendix B.

The self energy in Euclidean space is

ΣE = −ig
2
sµ

4−2ωCF ∫
E

d2ωqE

(2π)2ω
[

2(ω − 1)(/pE
− /qE
) + 2(ω − 1)m0

((pE − qE)
2 +m2

0)q
2
E

−
/nE/pE/qE

+ /qE/pE
/nE + 2q2

E /nE

((pE − qE)
2 +m2

0)q
2
E(n ⋅ q)E

],

(31)

where qE = (q4,q), pE = (p4,p), nE = (n4,n) are Euclidean vectors in 2ω dimensions
and the Euclidean integral is over q4,q1,q2 and q3. The Euclidean ML-prescription
for the pole (n ⋅ q)−1

E is defined in Eq. (26). To simplify evaluation of Eq. (31) the
vectors n and n∗ can be fixed as

n = (n0,0,n3) and n∗ = (n0,0, − n3). (32)

The relation n2
E = 0 gives

n2
4 = −n

2
3. (33)

The components, of the vectors q and p, perpendicular to n are denoted by q⊥ and
p⊥.
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4.1 Ansatz for the self energy

The straightforward integration of Eq. (31) is made challenging by the gamma-
matrices in the numerator. This can be avoided by making an ansatz. When
integrating with respect to qE in Eq. (31) the result is proportional to the identity
matrix 12ω. When integrating with /qE

in Eq. (31) the result is going to be propor-
tional to one of the matrices /pE

, /nE or /n∗E. If the integral, with /qE
, is free of the

variables nE and n∗E, the result is proportional to only /pE
, otherwise it could be

proportional to any of those matrices.
The challenging part in Eq. (31) is the integral

∫
E

d2ωqE

(2π)2ω
[/nE/pE

/qE

((pE − qE)
2 +m2

0)q
2
E(n ⋅ q)E

+
/qE

((pE − qE)
2 +m2

0)q
2
E(n ⋅ q)E

/pE
/nE]

(34)

which result can be proportional to the matrices /p, /n and /n∗. Examining what
happens to the term /nE/pE/qE

+ /qE/pE
/nE when evaluating the integral (34) gives

/nE/pE/qE
+ /qE/pE

/nE

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

/nE/pE/pE
+ /pE/pE

/nE = −2p2
E /nE, when ∫E d2ωdqf(/qE

)∝ /pE

/nE/pE
/nE + /nE/pE

/nE = −4(n ⋅ p)E /nE, when ∫E d2ωdqf(/qE
)∝ /nE

/nE/pE
/n∗E + /n

∗

E/pE
/nE = −4(n∗ ⋅ p)E /nE + /nE

/n∗E/pE
+ /pE

/n∗E /nE, when ∫E d2ωdqf(/qE
)∝ /n∗E,

(35)

where it can be seen the integral value of Eq. (31) can be written in a way that
depends on the sum /nE

/n∗E/pE
+ /pE

/n∗E /nE and the matrices 12ω, /p, and /n, but not on
the matrix /n∗.

Using these results the ansatz can be constructed as

ΣE = A +B/pE
+C (/n /n∗/p + /p /n

∗ /n)
E
+D/nE. (36)

With the Euclidean trace identities, derived in appendix B, the constants in Eq. (36)
can be solved

A =
1
4Tr(ΣE), (37)

B = −
Tr(/nEΣE)

4(n ⋅ p)E
, (38)



24

C =
Tr( /n∗EΣE) + 4(n∗ ⋅ p)EB + 4(n∗ ⋅ n)ED

16(n∗ ⋅ n)E(n∗ ⋅ p)E
, (39)

and
D =
−4p2

EB + 8p2
E(n

∗ ⋅ n)EC −Tr(/pE
ΣE)

4(n ⋅ p)E
. (40)

Plugging these in Eq. (36) the self energy results in

ΣE =
1
4Tr(ΣE) −

Tr(/nEΣE)

4(n ⋅ p)E
/pE

+

⎡
⎢
⎢
⎢
⎢
⎣

Tr( /n∗EΣE) −
(n∗⋅p)E
(n⋅p)E

Tr(/nEΣE)

16(n∗ ⋅ n)E(n∗ ⋅ p)E

+
p2

ETr( /n∗EΣE) +
p2

E(n
∗
⋅p)E

(n⋅p)E
Tr(/nEΣE) − 2(n∗ ⋅ p)ETr(/pE

ΣE)

4(n∗ ⋅ p)E (8(n∗ ⋅ p)E(n ⋅ p)E − 4p2
E(n

∗ ⋅ n)E)

⎤
⎥
⎥
⎥
⎥
⎦

(/n /n∗/p + /p /n
∗ /n)

E

+
p2

ETr( /n∗EΣE) +
p2

E(n
∗
⋅p)E

(n⋅p)E
Tr(/nEΣE) − 2(n∗ ⋅ p)ETr(/pE

ΣE)

8(n∗ ⋅ p)E(n ⋅ p)E − 4p2
E(n

∗ ⋅ n)E
/nE.

(41)

4.2 Trace of the self energy

To solve the constant A in the self energy ansatz (36)) one has to evaluate the trace
of the self energy (31). With Feynman parametrization from appendix C.1 one has

Tr(ΣE) = −ig
2
sµ

4−2ωCF ∫
E

d2ωq

(2π)ω (
8(ω − 1)m0

((p − q)2 +m2
0)q

2)
E

= −ig2
sµ

4−2ωCF ∫
E

d2ωq

(2π)ω ∫
1

0
dx(

8(ω − 1)m0

[((p − q)2 +m2
0)x + (1 − x)q2]2

)
E

.

(42)

Utilizing the basic integral in Eq. (177) calculated in appendix C.3 and expanding
in powers of ε, the trace becomes

Tr(ΣE) = −iα̃sCF 8m + ig
2
sCF

(4π)2 8m(1 + ∫
1

0
dx log

x(1 − x)p2
E + xm

2
0

µ2 ) , (43)

where
α̃s ≡

g2
sΓ(2 − ω)
(4π)ω =

g2
s

(4π)2 (
1
ε
− γE + log(4π) +O(ε)) . (44)
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4.3 Trace of /nEΣE

The constants B,C and D in the self energy ansatz (36) depend on the trace

Tr(/nEΣE) = ig
2
sµ

4−2ωCF ∫
E

d2ωq

(2π)ω (
8(ω − 1)(p − q) ⋅ n
((p − q)2 +m2

0)q
2 )

E

= ig2
sµ

4−2ωCF ∫

1

0
dx∫

E

d2ωq

(2π)ω (
8(ω − 1)(p − q) ⋅ n

[((p − q)2 +m2
0)x + (1 − x)q2]2

)
E

.

(45)

Using the basic integral in Eq. (177) calculated in appendix C.3 and expanding in
powers of ε, the trace becomes

Tr(/nEΣE) = iα̃sCF 4(n ⋅ p)E

−
ig2

sCF

(4π)2 4(n ⋅ p)E (1 + 2∫
1

0
dx(1 − x) log

x(1 − x)p2
E + xm

2
0

µ2 ) .
(46)

4.4 Trace of /pE
ΣE

The constants B,C and D in the self energy ansatz (36) depend on the trace

Tr(/pE
ΣE) = −ig

2
sµ

4−2ωCF ∫
E

d2ωq

(2π)ω
⎡
⎢
⎢
⎢
⎢
⎣

8(ω − 1)p ⋅ q + 8(2 − ω)p2

((p − q)2 +m2
0)q

2

+
8n ⋅ p

((p − q)2 +m2
0)n ⋅ q

−
16(n ⋅ p)(p ⋅ q)

((p − q)2 +m2
0)q

2n ⋅ q

⎤
⎥
⎥
⎥
⎥
⎦E

≡ Tr(/pE
ΣE)A +Tr(/pE

ΣE)B +Tr(/pE
ΣE)C .

(47)

The two last integrals contain the pole (n ⋅ q)−1
E which complicates the integration.

With the Feynman parametrization, the first term in Eq. (47) is

Tr(/pE
ΣE)A = −ig

2
sµ

4−2ωCF ∫
E

d2ωq

(2π)ω (
8(ω − 1)p ⋅ q + 8(2 − ω)p2

((p − q)2 +m2
0)q

2 )
E

= −8ig2
sµ

4−2ωCF ∫

1

0
dx∫

E

d2ωq

(2π)ω (
(ω − 1)p ⋅ q + 8(2 − ω)p2

[x((p − q)2 +m2
0) + (1 − x)q2]2

)
E

.

(48)
Using the basic integral in Eq. (177) and expanding in powers of ε one gets

Tr(/pE
ΣE)A = −iα̃sCF 4p2

E +
ig2

sCF

(4π)2 4p2
E (−1 + 2∫

1

0
dxx log

x(1 − x)p2
E + xm

2
0

µ2 ) . (49)
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The second term in Eq. (47), with the ML-prescription and Feynman parametriza-
tion, reads

Tr(/pE
ΣE)B =

− ig2
sµ

4−2ωCF 8(n ⋅ p)E ∫
E

d2ωq

(2π)ω (
n4q4 − n3q3

((p − q)2 +m2
0)((n4q4)2 − (n3q3)2 + θ2)

)
E

= −ig2
sµ

4−2ωCF
8(n ⋅ p)E

n4
∫

E

d2ωq

(2π)ω
⎛
⎜
⎝

q4 − aq3

((p − q)2 +m2
0)(q

2
4 + q

2
3 +

θ2

n2
4
)

⎞
⎟
⎠

E

= −ig2
sµ

4−2ωCF
8(n ⋅ p)E

n4
∫

1

0
dx∫

E

d2ωq

(2π)ω

⎛
⎜
⎝

q4 − aq3

[x((p − q)2 +m2
0) + (1 − x)(q2

4 + q
2
3 +

θ2

n2
4
)]2

⎞
⎟
⎠

E

, (50)

where
a ≡

n3

n4
. (51)

The denominator can be expressed as

(q4 − xp4
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
≡l

)2 + (q3 − xp3
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
≡A

)2 + x(q⊥ − p⊥
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
≡B

)2 + x(1 − x)(p2
3 + p

2
4) + xm

2
0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡C

+(1 − x) θ
2

n2
4

≡ l2 +A2 + xB2 +C + (1 − x) θ
2

n2
4
,

(52)

where now θ2 can be taken to zero. Changing the integration variable from q4 to the
l gives

Tr(/pE
ΣE)B =

− ig2
sµ

4−2ωCF
8(n ⋅ p)E

n4
∫

1

0
dx∫

E

d2ω−1q

(2π)ω ∫
∞

−∞

dl
l + xp4 − aq3

[l2 +A2 + xB2 +C]2

= −ig2
sµ

4−2ωCF
8(n ⋅ p)E

n4
∫

1

0
dx∫

E

d2ω−1q

(2π)ω ∫
∞

0
dl2 xp4 − aq3

[l2 +A2 + xB2 +C]2
.

(53)

Using Eq. (163) from appendix C.1 to integrate over l gives

∫

∞

0
dl2 xp4 − aq3

[t2 +A2 + xB2 +C]2
=
π

2
xp4 − aq3

[A2 + xB2 +C]3/2
. (54)
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With this, the trace in Eq. (53) becomes

Tr(/pE
ΣE)B = −ig

2
sµ

4−2ωCF
8(n ⋅ p)E

n4

π

2 ∫
1

0
dx∫

E

d2ω−1q

(2π)ω
xp4 − aq3

[A2 + xB2 +C]3/2
. (55)

Repeating the same steps when integrating with respect to q3 gives

Tr(/pE
ΣE)B = −ig

2
sµ

4−2ωCF
8(n ⋅ p)E

n4
π∫

1

0
dx∫

E

d2ω−2q⊥
(2π)ω

x(p4 − ap3)

xB2 +C
. (56)

With the basic integral in Eq. (177) from appendix C.3 and the indentity

p4 − ap3

2n4
=
n∗ ⋅ p

n∗ ⋅ n
, (57)

the trace is

Tr(/pE
ΣE)B = −iα̃sCF

16(n ⋅ p)E(n∗ ⋅ p)E
(n∗ ⋅ n)E

+
ig2

sCF

(4π)2
16(n ⋅ p)E(n∗ ⋅ p)E

(n∗ ⋅ n)E
∫

1

0
dx log(

x(1 − x)p2
E + xm

2
0

µ2 ) ,

(58)

where α̃s is defined in Eq. (44).

The third trace in Eq. (47), with the ML-prescription and Feynman parametriza-
tion, is

Tr(/pE
ΣE)C = ig

2
sµ

4−2ωCF ∫
E

d2ωq

(2π)ω (
16(n ⋅ p)(p ⋅ q)

((p − q)2 +m2
0)q

2n ⋅ q
)

E

= ig2
sµ

4−2ωCF
16(n ⋅ p)E

n4
∫

E

d2ωq

(2π)ω
⎛
⎜
⎝

p ⋅ q(q4 − aq3)

((p − q)2 +m2
0)q

2(q2
4 + q

2
3 +

θ2

n2
4
)

⎞
⎟
⎠

E

= ig2
sµ

4−2ωCF
16(n ⋅ p)E

n4
∫

1

0
dx∫

1−x

0
dy∫

E

d2ωq

(2π)ω

⎛
⎜
⎝

2p ⋅ q(q4 − aq3)

[x((p − q)2 +m2
0) + yq

2 + (1 − x − y)(q2
4 + q

2
3 +

θ2

n2
4
)]3

⎞
⎟
⎠

E

(59)

where a = n3/n4. One can use the relation

pµ
E

∂

∂pµ
E

1
[x((p − q)2E +A]

2 =
−4x(p2

E − (p ⋅ q)E)

[x((p − q)2E +A]
3 (60)
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and get

Tr(/pE
ΣE)C = ig

2
sµ

4−2ωCF
16(n ⋅ p)E

n4
∫

1

0
dx∫

1−x

0
dy∫

E

d2ωq

(2π)ω

{pµ ∂

∂pµ
[

(q4 − aq3)/(2x)
[x((p − q)2 +m2

0) + yq
2 + (1 − x − y)(q2

4 + q
2
3 +

θ2

n2
4
)]2
]

+
2p2(q4 − aq3)

[x((p − q)2 +m2
0) + yq

2 + (1 − x − y)(q2
4 + q

2
3 +

θ2

n2
4
)]3
}

E

.

(61)

The denominators can be expressed as

(q4 − xp4
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
≡l

)2 + (q3 − xp3
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
≡A

)2 + (x + y)( q⊥ −
xp⊥
x + y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡B

)
2

+ x(1 − x

x + y
)p2
⊥
+ x(1 − x)(p2

3 + p
2
4) + xm

2
0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡C

+(1 − x − y) θ
2

n2
4

≡ l2 +A2 + (x + y)B2 +C + (1 − x − y) θ
2

n2
4
.

(62)

Taking θ2 to zero and changing the integration variable from q4 to the l the trace
becomes

Tr(/pE
ΣE)C = ig

2
sµ

4−2ωCF
16(n ⋅ p)E

n4
∫

1

0
dx∫

1−x

0
dy∫

E

d2ω−1q

(2π)ω ∫
∞

−∞

dl

⎧⎪⎪
⎨
⎪⎪⎩

pµ ∂

∂pµ
[

1/(2x)(l + xp4 − aq3)

[l2 +A2 + (x + y)B2 +C]2
] +

2p2(l + xp4 − aq3)

[l2 +A2 + (x + y)B2 +C]3

⎫⎪⎪
⎬
⎪⎪⎭E

.

(63)

Using Eq. (163) from appendix C.1 to integrate over l one gets

Tr(/pE
ΣE)C =

iπ

4 g
2
sµ

4−2ωCF
16(n ⋅ p)E

n4
∫

1

0
dx∫

1−x

0
dy∫

E

d2ω−1q

(2π)ω
⎧⎪⎪
⎨
⎪⎪⎩

pµ ∂

∂pµ
[

(xp4 − aq3)/x

[A2 + (x + y)B2 +C]3/2
] +

3p2(xp4 − aq3)

[A2 + (x + y)B2 +C]5/2

⎫⎪⎪
⎬
⎪⎪⎭E

.

(64)
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Repeating the same steps when integrating with respect to q3 gives

Tr(/pE
ΣE)C = iπg

2
sµ

4−2ωCF
16(n ⋅ p)E

2n4
∫

1

0
dx∫

1−x

0
dy∫

E

d2ω−2q⊥
(2π)ω

⎧⎪⎪
⎨
⎪⎪⎩

pµ ∂

∂pµ
[

p4 − ap3

(x + y)B2 +C
] +

2p2(xp4 − xap3)

[(x + y)B2 +C]2

⎫⎪⎪
⎬
⎪⎪⎭E

.

(65)

Using the basic integral in Eq. (177) from appendix C.1 and expanding in ε one gets

Tr(/pE
ΣE)C =

iα̃sµ
4−2ωCF

16(n ⋅ p)E(n∗ ⋅ p)E
(n∗ ⋅ n)E

−
ig2

sCF

(4π)2
16(n ⋅ p)E

2n4
∫

1

0
dx∫

1−x

0
dy

⎧⎪⎪
⎨
⎪⎪⎩

pµ ∂

∂pµ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p4 − ap3

x + y
log
⎛
⎜
⎝

x

x + y

⎛

⎝
(1 − x

x + y
)p2
⊥
+ (1 − x)(p2

3 + p
2
4) +m

2
0
⎞

⎠

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−
2p2(p4 − ap3)

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 + p
2
4) +m

2
0

⎫⎪⎪
⎬
⎪⎪⎭E

,

(66)

where α̃s is defined in Eq. (44). By performing the derivative pµ ∂
∂pµ , and using the

relation
2(n ⋅ p)(n∗ ⋅ p)

n∗ ⋅ n
= p2

0 − p
2
3, (67)

the trace results in

Tr(/pE
ΣE)C = iα̃sµ

4−2ωCF
16(n ⋅ p)E(n∗ ⋅ p)E

(n∗ ⋅ n)E
−
ig2

sCF

(4π)2
16(n ⋅ p)E(n∗ ⋅ p)E

(n∗ ⋅ n)E

× ∫

1

0
dx∫

1−x

0
dy

1
(x + y)

⎧⎪⎪
⎨
⎪⎪⎩

2 −
2(p2

E +m
2
0)

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 + p
2
4) +m

2
0

+ log( x

x + y
)

+ log
⎛
⎜
⎜
⎝

(1 − x
x+y)p

2
⊥
+ (1 − x)(p2

3 + p
2
4) +m

2
0

µ2

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬
⎪⎪⎭

.

(68)
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With the results in Eqs. (49), (58), and (68) the trace Eq. (47) is

Tr(/pE
ΣE) = iα̃sCF 4p2

E +
ig2

sCF

(4π)2 4p2
E (−1 + 2∫

1

0
dxx log

x(1 − x)p2
E + xm

2
0

µ2 )

+
ig2

sCF

(4π)2
16(n ⋅ p)E(n∗ ⋅ p)E

(n∗ ⋅ n)E

⎧⎪⎪
⎨
⎪⎪⎩
∫

1

0
dx log((1 − x)(p

2
3 + p

2
4) +m

2
0

µ2 )

∫

1

0
dx∫

1−x

0
dy

1
(x + y)

⎡
⎢
⎢
⎢
⎢
⎣

2 + log( x

x + y
) −

2(p2
E +m

2
0)

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 + p
2
4) +m

2
0

+ log
⎛
⎜
⎜
⎝

(1 − x
x+y)p

2
⊥
+ (1 − x)(p2

3 + p
2
4) +m

2
0

µ2

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

≡ −iα̃sCF 4p2
E +

ig2
sCF

(4π)2
⎡
⎢
⎢
⎢
⎢
⎣

4p2
E (−1 + 2∫

1

0
dxx log

x(1 − x)p2
E + xm

2
0

µ2 )

+
16(n ⋅ p)E(n∗ ⋅ p)E

(n∗ ⋅ n)E
(I1 − I2)E

⎤
⎥
⎥
⎥
⎥
⎦

(69)

Where I1E and I2E expressed in Minkowski space read

I1 = ∫
1

0
dx log((1 − x)(p

2
3 − p

2
0) +m

2
0

µ2 ) = −1 + (1 + m2
0

p2
3 − p

2
0
) log(p

2
3 − p

2
0 +m

2
0

µ2 )

−
m2

0
p2

3 − p
2
0

log(m
2
0

µ2 )

(70)

and

I2 = ∫
1

0
dx∫

1−x

0

dy

(x + y)

⎡
⎢
⎢
⎢
⎢
⎣

2 + 2(p2 −m2
0)

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 − p
2
0) +m

2
0

+ log( x

x + y
) + log

⎛
⎜
⎜
⎝

(1 − x
x+y)p

2
⊥
+ (1 − x)(p2

3 − p
2
0) +m

2
0

µ2

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

(71)
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The value of the integral I2 is calculated in appendix D resulting

I1 − I2 =
p2 −m2

0
p2

0 − p
2
3

⎡
⎢
⎢
⎢
⎢
⎣

log(−p2) log(m
2
0 − p

2

m2
0
) + log(m2

0 − p
2) log( m2

0
m2

0 + p
2
3 − p

2
0
)

+ log(p2
⊥
) log(m

2
0 + p

2
3 − p

2
0

m2
0 − p

2 ) + Li2 (
p2

3 − p
2
0

m2
0 − p

2) + Li2 (
m2

0
−p2
⊥

)

− Li2 (
p2

3 − p
2
0 +m

2
0

−p2
⊥

) − Li2 (
m2

0(p
2
3 − p

2
0)

p2
⊥(p2 −m2

0)
) + Li2 (

p2
3 − p

2
0

−p2
⊥

)

⎤
⎥
⎥
⎥
⎥
⎦

≡
(p2 −m2

0)(n
∗ ⋅ n)

2(n ⋅ p)(n∗ ⋅ p) I,

(72)

where the relation
1

p2
3 − p

2
0
=

n∗ ⋅ n

2(n ⋅ p)(n∗ ⋅ p) (73)

has been used and I denotes the terms inside of the square brackets.

4.5 Trace of /n∗EΣE

The constants C and D in the self energy ansatz (36) depend on the trace

Tr( /n∗EΣE) = −ig
2
sµ

4−2ωCF ∫
E

d2ωq

(2π)ω [
8(ω − 1)n∗ ⋅ q + 8(2 − ω)n∗ ⋅ p

((p − q)2 +m2
0)q

2

+
8n∗ ⋅ n

((p − q)2 +m2
0)n ⋅ q

−
8(n∗ ⋅ n)(p ⋅ q) + 8(n∗ ⋅ q)(n ⋅ p)

((p − q)2 +m2
0)q

2n ⋅ q
]

E

≡ Tr( /n∗EΣE)A +Tr( /n∗EΣE)B +Tr( /n∗EΣE)C +Tr( /n∗EΣE)D,

(74)

where the first three integrals are analogous to Tr(/pE
ΣE)A, Tr(/pE

ΣE)B and Tr(/pE
ΣE)C

calculated in section 4.4. Utilizing the earlier results one gets

Tr( /n∗EΣE)A = −iα̃sCF 4(n∗ ⋅ p)E

+
ig2

sCF

(4π)2 4(n∗ ⋅ p)E
⎛

⎝
−1 + 2∫

1

0
dxx log(

x(1 − x)p2
E + xm

2
0

µ2 )
⎞

⎠
,

(75)

Tr( /n∗EΣE)B = −iα̃sCF 16(n∗ ⋅ p)E +
ig2

sCF

(4π)2 16(n∗ ⋅ p)EI1E, (76)

and
Tr( /n∗EΣE)C = iα̃sCF 8(n∗ ⋅ p)E −

ig2
sCF

(4π)2 8(n∗ ⋅ p)EI2E. (77)
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Now only Tr( /n∗EΣE)D needs to be calculated

Tr( /n∗EΣE)D = ig
2
sµ

4−2ωCF ∫
E

d2ωq

(2π)ω (
8(n∗ ⋅ q)(n ⋅ p)

((p − q)2 +m2
0)q

2n ⋅ q
)

E

. (78)

Applying the ML-prescription and Feynman parametrization gives

Tr( /n∗EΣE)D = ig
2
sµ

4−2ωCF 8(n ⋅ p)E ∫
1

0
dx∫

1−x

0
dy

∫
E

d2ωq

(2π)ω

⎛
⎜
⎜
⎜
⎜
⎝

2(q4 − aq3)2

[x((p − q)2 +m2
0) + yq

2 + (1 − x − y)(q2
4 + q

2
3 +

θ2

n2
4
)]

3

⎞
⎟
⎟
⎟
⎟
⎠

E

,
(79)

where the denominator can be expressed as

(q4 − xp4
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
≡l

)2 + (q3 − xp3
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

A

)2 + (x + y)( q⊥ −
xp⊥
x + y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡B

)
2

+ x(1 − x

x + y
)p2
⊥
+ x(1 − x)(p2

3 + p
2
4) + xm

2
0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡C

+(1 − x − y) θ
2

n2
4

≡ l2 +A2 + (x + y)B2 +C + (1 − x − y) θ
2

n2
4
.

(80)

Changing the integration variable from q4 to l gives

Tr( /n∗EΣE)D =

ig2
sµ

4−2ωCF 8(n ⋅ p)E ∫
1

0
dx∫

1−x

0
dy∫

E

d2ωq

(2π)ω
⎛
⎜
⎝

2(l + xp4 − aq3)2

[l2 +A2 + (x + y)B2 +C]
3

⎞
⎟
⎠

E

= ig2
sµ

4−2ωCF 32(n ⋅ p)E ∫
1

0
dx∫

1−x

0
dy∫

E

d2ω−1q

(2π)ω

∫

∞

0
dl
⎛
⎜
⎝

l2 + (xp4 − aq3)2

[l2 +A2 + (x + y)B2 +C]
3

⎞
⎟
⎠

E

.

(81)
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Utilising the integral in Eq. (163) in appendix C.1 gives

Tr( /n∗EΣE)D = ig
2
sµ

4−2ωCF 8(n ⋅ p)E ∫
1

0
dx∫

1−x

0
dy

∫
E

d2ω−1q

(2π)ω
π

4
⎛
⎜
⎝

1
[A2 + (x + y)B2 +C]

3/2 + 3 (xp4 − aq3)2

[A2 + (x + y)B2 +C]
5/2

⎞
⎟
⎠

E

.
(82)

Following the same steps when integrating with respect to q3 one gets

Tr( /n∗EΣE)D = ig
2
sµ

4−2ωCF 8(n ⋅ p)E ∫
1

0
dx∫

1−x

0
dy

∫
E

d2ω−2q

(2π)ω π
⎛
⎜
⎝

x2(p4 − ap3)2

[(x + y)B2 +C]
2

⎞
⎟
⎠

E

.
(83)

Using the basic integral in Eq. (177) from section C.3 and expanding in powers of ε,
the trace becomes

Tr( /n∗EΣE)D =
ig2

sCF

(4π)2 8(n ⋅ p)E(p4 − ap3)
2
∫

1

0
dx

∫

1−x

0
dy

⎛
⎜
⎜
⎝

x

x + y

1
(1 − x

x+y)p
2
⊥ + (1 − x)(p2

3 + p
2
4) +m

2
0

⎞
⎟
⎟
⎠

E

.

(84)

The relations Eq. (57) and Eq. (67) give

Tr( /n∗EΣE)D =

ig2
sCF

(4π)2 8(n∗ ⋅ p)E ∫
1

0
dx∫

1−x

0
dy

⎛
⎜
⎜
⎝

x

x + y

p2
4 + p

2
3

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 + p
2
4) +m

2
0

⎞
⎟
⎟
⎠

E

≡
ig2

sCF

(4π)2 8(n∗ ⋅ p)EI3E,

(85)

where I3, expressed in Minkowski space, reads

I3 ≡ ∫
1

0
dx∫

1−x

0
dy

⎛
⎜
⎜
⎝

x

x + y

p2
3 − p

2
0

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 − p
2
0) +m

2
0

⎞
⎟
⎟
⎠

. (86)
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By combining the results in Eqs. (75), (76), (77), and (85), the final result for
Tr( /n∗EΣE) is

Tr( /n∗EΣE) = −iα̃sCF 12(n∗ ⋅ p)E

+
ig2

sCF

(4π)2 8(n∗ ⋅ p)E
⎛

⎝
∫

1

0
dxx log(

x(1 − x)p2
E + xm

2
0

µ2 ) + 2I1E − I2E + I3E

⎞

⎠
.

(87)

4.6 Self energy result

Placing the trace results from sections 4.2, 4.3, 4.4, and 4.5 into the ansatz of the
self energy, Eq. (41), gives the result for the self energy in Euclidean space

ΣE = −iα̃sCF

⎡
⎢
⎢
⎢
⎢
⎣

2m0 + /pE
+
⎛

⎝

/n /n∗/p + /p /n∗ /n

n∗ ⋅ n

⎞

⎠
E

⎤
⎥
⎥
⎥
⎥
⎦

+
ig2

sCF

(4π)2
⎡
⎢
⎢
⎢
⎢
⎣

2m0 (1 + ∫
1

0
dx log

x(1 − x)p2
E + xm

2
0

µ2 )

+ (1 + 2∫
1

0
dx(1 − x) log

x(1 − x)p2
E + xm

2
0

µ2 ) /pE
+
⎛
⎜
⎝

2∫
1

0
dx log

x(1 − x)p2
E + xm

2
0

µ2

+

2(n∗ ⋅ p)E(n ⋅ p)E (I2E + I3E − ∫
1

0 dx log x(1−x)p2
E+xm2

0
µ2 )

2(n∗ ⋅ p)E(n ⋅ p)E − p2
E(n

∗ ⋅ n)E

⎞
⎟
⎠

⎛

⎝

/n /n∗/p + /p /n∗ /n

2(n∗ ⋅ n)
⎞

⎠
E

+

⎛
⎜
⎜
⎜
⎝

2(I2E − I1E) +

p2
E(n

∗ ⋅ n)E (I2E + I3E − ∫
1

0 dx log x(1−x)p2
E+xm2

0
µ2 )

2(n∗ ⋅ p)E(n ⋅ p)E − p2
E(n

∗ ⋅ n)E

⎞
⎟
⎟
⎟
⎠

2(n∗ ⋅ p)E
(n∗ ⋅ n)E

/nE

⎤
⎥
⎥
⎥
⎥
⎦

,

(88)



35

where α̃s is defined in Eq. (44). Using the identities from appendix B one can
transform back to Minkowski space

Σ = −iα̃sCF

⎡
⎢
⎢
⎢
⎢
⎣

2m0 − /p +
/n /n∗/p + /p /n∗ /n

n∗ ⋅ n

⎤
⎥
⎥
⎥
⎥
⎦

+
ig2

sCF

(4π)2 [2m0 (1 + ∫
1

0
dx log x(x − 1)p2 + xm2

0
µ2 )

− (1 + 2∫
1

0
dx(1 − x) log x(x − 1)p2 + xm2

0
µ2 ) /p +

⎛
⎜
⎝

2∫
1

0
dx log x(x − 1)p2 + xm2

0
µ2

+

2(n∗ ⋅ p)(n ⋅ p) (I2 + I3 − ∫
1

0 dx log x(x−1)p2
+xm2

0
µ2 )

2(n∗ ⋅ p)(n ⋅ p) − p2(n∗ ⋅ n)

⎞
⎟
⎠

⎛

⎝

/n /n∗/p + /p /n∗ /n

2(n∗ ⋅ n)
⎞

⎠

−

⎛
⎜
⎜
⎜
⎝

2I2 − 2I1 +

p2(n∗ ⋅ n) (I2 + I3 − ∫
1

0 dx log x(x−1)p2
+xm2

0
µ2 )

2(n∗ ⋅ p)(n ⋅ p) − p2(n∗ ⋅ n)

⎞
⎟
⎟
⎟
⎠

2(n∗ ⋅ p)
(n∗ ⋅ n)

/n].

(89)
Since

/n /n∗/p + /p /n
∗ /n = 2(n∗ ⋅ p)/n − 2(n ⋅ p) /n∗ + 2(n∗ ⋅ n)/p, (90)

the self energy becomes

Σ = −iα̃sCF [2m0 + /p + 2(n
∗ ⋅ p)/n − (n ⋅ p) /n∗

n∗ ⋅ n
] +

ig2
sCF

(4π)2
⎡
⎢
⎢
⎢
⎢
⎣

2(1 + ∫
1

0
dx log ∆

µ2)m0

+ (−1 + 2∫
1

0
dxx log ∆

µ2 + 2(n∗ ⋅ p)(n ⋅ p)N) /p

− (2∫
1

0
dx log ∆

µ2 + 2(n∗ ⋅ p)(n ⋅ p)N) (n ⋅ p)
/n∗

n∗ ⋅ n

+ (2∫
1

0
dx log ∆

µ2 + 4I1 − 4I2 + 2 ((n∗ ⋅ p)(n ⋅ p) − p2(n∗ ⋅ n))N)
(n∗ ⋅ p)/n

n∗ ⋅ n

⎤
⎥
⎥
⎥
⎥
⎦

,

(91)

where
α̃s ≡

g2
sΓ(2 − ω)
(4π)ω =

g2
s

(4π)2 (
1
ε
− γE + log(4π) +O(ε)) , (92)

∆ ≡ x(x − 1)p2 + xm2
0, (93)

and

N ≡
I2 + I3 − ∫

1
0 dx log ∆

µ2

2(n∗ ⋅ p)(n ⋅ p) − p2(n∗ ⋅ n)
. (94)
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The integrals I1, I2, and I3 are defined as

I1 = ∫
1

0
dx log((1 − x)(p

2
3 − p

2
0) +m

2
0

µ2 ) ,

I2 = ∫
1

0
dx∫

1−x

0

dy

(x + y)

⎡
⎢
⎢
⎢
⎢
⎣

2 + 2(p2 −m2
0)

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 − p
2
0) +m

2
0

+ log( x

x + y
) + log

⎛
⎜
⎜
⎝

(1 − x
x+y)p

2
⊥
+ (1 − x)(p2

3 − p
2
0) +m

2
0

µ2

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

, and

I3 = ∫
1

0
dx∫

1−x

0
dy

⎛
⎜
⎜
⎝

x

x + y

p2
3 − p

2
0

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 − p
2
0) +m

2
0

⎞
⎟
⎟
⎠

.

(95)

Using Eq. (67) shows that the denominator of Eq. (94) is 2n2
0p

2
⊥
, which suggests

that N has a pole when p2
⊥
= 0. However, it is shown in appendix D that also the

numerator gives zero when p2
⊥
= 0, thus Eq. (94) is finite in this limit. In appendix

D it is also shown that the term I1 − I2 does not include poles.
The result for the one-loop corrected quark self energy, Eq. (91), contains UV-

divergences in the form α̃s. The self energy is used to obtain results for physical
quantities, such as the quark mass. This requires that the UV-divergences from the
self energy have to be eliminated by the renormalization. Contrary to the free quark
propagator, which has gamma-matrices only in the form /p, the self energy in Eq.
(91) includes also the matrices /n and /n∗. This predicts that the renormalization in
the light-cone gauge will be more complicated than in a covariant gauge, where the
quark self energy has the same gamma-matrix structure as the free propagator. The
renormalization of the quark mass and field are covered in the next chapter.
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5 Renormalization

5.1 Pole mass of the quark in a light-cone gauge

The effective quark propagator is a sum of the unperturbed propagator and all the
possible corrections. In this thesis only the one-loop correction is considered and
the effective propagator is diagrammatically a geometric series of insertions of the
one-loop self energy, as in Figure 4. The pole mass is the physical, measurable mass
of the quark. Thus it is found out by finding the pole of the effective propagator.

The effective propagator, as in Figure 4, reads

iSeff =
i

/p −m0
+

i

/p −m0
Σ i

/p −m0
+

i

/p −m0
Σ i

/p −m0
Σ i

/p −m0
+ ...

=
i

/p −m0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 +Σ i

/p −m0
+
⎛

⎝
Σ i

/p −m0

⎞

⎠

2

+ ...

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(96)

where the self energy Σ is defined in Eq. (91). Since Σ has a gamma-matrix structure,
other than /p, the multiplication order has to be unchanged. Summing as a geometric
series Eq. (96) results in

iSeff =
i

/p −m0

1
1 − iΣ 1

/p−m0

= i(/p +m0)
1

p2 −m2
0 − iΣ(/p +m0)

, (97)

where one has used the relation

1
/p −m0

=
/p +m0

p2 −m2
0
. (98)

Seff = + + +...

Figure 4. An effective quark propagator.
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The denominator of Eq. (97) contains the term

− iΣ(/p +m0) =

−
⎡
⎢
⎢
⎢
⎣
α̃sCF −

g2
sCF

(4π)2 (−1 + 2∫
1

0
dxx log ∆

µ2 + 2(n∗ ⋅ p)(n ⋅ p)N)
⎤
⎥
⎥
⎥
⎦
p2

−
⎡
⎢
⎢
⎢
⎣
2α̃sCF − 2 g

2
sCF

(4π)2 (1 + ∫
1

0
dx log ∆

µ2)
⎤
⎥
⎥
⎥
⎦
m2

0

−
⎡
⎢
⎢
⎢
⎣
3α̃sCF −

g2
sCF

(4π)2 (1 + 2∫
1

0
dx(1 + x) log ∆

µ2 + 2(n∗ ⋅ p)(n ⋅ p)N)
⎤
⎥
⎥
⎥
⎦
m0/p

−

⎡
⎢
⎢
⎢
⎢
⎣

α̃sCF −
g2

sCF

(4π)2
⎛
⎜
⎝
∫

1

0
dx log ∆

µ2 + 2I1 − 2I2 + ((n
∗ ⋅ p)(n ⋅ p) − p2(n∗ ⋅ n))N

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

×
2(n∗ ⋅ p)/n
n∗ ⋅ n

(/p +m0)

−

⎡
⎢
⎢
⎢
⎢
⎣

− α̃sCF +
g2

sCF

(4π)2
⎛
⎜
⎝
∫

1

0
dx log ∆

µ2 + (n
∗ ⋅ p)(n ⋅ p)N

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

2(n ⋅ p) /n∗
n∗ ⋅ n

(/p +m0)

≡ −Ap2 − Bm2
0 − Cm0/p −D/n(/p +m0) − E /n

∗(/p +m0).

(99)

In terms of the coefficients A,B,C,D, and E , the effective propagator in Eq. (97)
reads

iSeff =
i(/p +m0)

(p2(1 −A) −m2
0(1 + B)) − Cm0/p −D/n(/p +m0) − E /n∗(/p +m0)

, (100)

where the term (/p +m0) in the numerator is understood to be multiplied from the
left side. To determine the pole mass one must find the poles of this expression.
When one multiplies the numerator and the denominator of the effective propagator
in Eq. (100) from the right side with the term

− (p2(1 −A) −m2
0(1 + B)) − Cm0/p + (/p −m0)D/n + (/p −m0)E /n

∗, (101)

the propagator becomes

iSeff =

i(/p +m0) [− (p2(1 −A) −m2
0(1 + B)) − Cm0/p + (/p −m0)D/n + (/p −m0)E /n∗]

− (p2(1 −A) −m2
0(1 + B))

2
+ C2m2

0p
2 + 2 ((n ⋅ p)D + (n∗ ⋅ p)E)) (p2(1 −A) −m2

0(1 + B) −m2
0C) − (p

2 −m2
0)DE

.
(102)

The denominator of the propagator does not include gamma-matrix structures of
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any order in g2
s . Thus, the propagator is now in a form from which it is possible to

identify the physical mass of the quark. Since A + B = C the denominator is

(p2 −m2
0) [(p

2 −m2
0)(−1 + 2A) +m2

02C + 2 ((n ⋅ p)D + (n∗ ⋅ p)E)) +O(g4
s)] . (103)

Opening the expression (n ⋅ p)D + (n∗ ⋅ p)E and using the identity (72) for I1 − I2

gives

(p2 −m2
0)

⎡
⎢
⎢
⎢
⎢
⎣

(p2 −m2
0)(−1 + 2A) +m2

02C

+
g2

sCF

(4π)2
(p24(n∗ ⋅ p)(n ⋅ p)N − (p2 −m2

0)4I) +O(g4
s)

⎤
⎥
⎥
⎥
⎥
⎦

= (p2 −m2
0)(−1 + 2A + g

2
sCF

(4π)2
((n∗ ⋅ p)(n ⋅ p)N − 4I))

×
⎡
⎢
⎢
⎢
⎣
p2 −m2

0 (1 + 2C + g
2
sCF

(4π)2 (n
∗ ⋅ p)(n ⋅ p)N) +O(g4

s)
⎤
⎥
⎥
⎥
⎦

= (p2 −m2
0)(−1 + 2A + g

2
sCF

(4π)2
((n∗ ⋅ p)(n ⋅ p)N − 4I))

×

⎡
⎢
⎢
⎢
⎢
⎣

p2 −m2
0
⎛

⎝
1 + α̃sCF 6 − g

2
sCF

(4π)2 2(1 + 2∫
1

0
dx(1 + x) log ∆

µ2)
⎞

⎠
+O(g4

s)

⎤
⎥
⎥
⎥
⎥
⎦

.

(104)

The numerator of Eq. (102) is

i(p2 −m2
0) [/p (−1 +A) −m0 (1 + B) +D/n + E /n∗]

= i(p2 −m2
0) (−1 +A) [/p +m0 (1 + C) −D/n − E /n∗ +O(g4

s)] .
(105)

Using Eqs. (104) and (105) the effective propagator (102) becomes

iSeff =
i (−1 +A) [/p +m0 (1 + C) −D/n − E /n∗] [−1 + 2A + g2

sCF

(4π)2 (4(n∗ ⋅ p)(n ⋅ p)N − 4I)]
−1

p2 −m2
0 (1 + α̃sCF 6 − g2

sCF

(4π)2 2 (1 + 2 ∫
1

0 dx(1 + x) log ∆
µ2)) +O(g4

s)

=
i [/p +m0 (1 + C) −D/n − E /n∗] [1 +A + g2

sCF

(4π)2 (4(n∗ ⋅ p)(n ⋅ p)N − 4I) +O(g4
s)]

p2 −m2
0 (1 + α̃sCF 6 − g2

sCF

(4π)2 2 (1 + 2 ∫
1

0 dx(1 + x) log ∆
µ2)) +O(g4

s)

=

i [/p +m0 (1 + C) −D/n − E /n∗] [1 + α̃sCF −
g2

sCF

(4π)2 (2 ∫
1

0 dxx log ∆
µ2 − 1 + 4I − 2(n∗ ⋅ p)(n ⋅ p)N) +O(g4

s)]

p2 −m2
0 (1 + α̃sCF 6 − g2

sCF

(4π)2 2 (1 + 2 ∫
1

0 dx(1 + x) log ∆
µ2)) +O(g4

s)

.

(106)

The effective propagator now has a single pole which is the squared pole mass of
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the quark

m2
pole ≡m

2
0
⎛

⎝
1 + 6α̃sCF −

g2
sCF

(4π)2 2(1 + 2∫
1

0
dx(1 + x) log ∆

µ2)
⎞

⎠
. (107)

Near the pole one can approximate log ∆
µ2 = log x2m2

0
µ2 , and the pole mass is found to

be

m2
pole =m

2
0
⎛

⎝
1 + 6α̃sCF − 2 g

2
sCF

(4π)2 (3 log m
2
0

µ2 − 4)
⎞

⎠
. (108)

The pole mass now contains a divergence when ω → 2, which is located in α̃s defined
in Eq. (92). It can be seen from Eq. (108) that the divergence is eliminated at order
g2

s in the MS-scheme if the bare mass term is set to be

m0 =m −m3α̃sCF , (109)

where m is the renormalised mass in the MS-scheme.

The effective propagator, Eq. (106), clearly does not satisfy the general propagator
form since the numerator contains /n and /n∗ matrices with finite and divergent factors.
The terms C, D, and E depend on the vectors n and n∗. The next step would be
to attempt to absorb the problematic terms in the quark field and quark mass
renormalization terms. However, the terms n ⋅ p and n∗ ⋅ p cannot be included to
the renormalization counterterms since they cannot depend on momenta. Since the
Lorentz noninvariant inner products n ⋅ p and n∗ ⋅ p have different dependence of
the components of the four-vector p, one cannot take the mass-shell limit without
fixing specific values for the components of the momentum p. The divergent parts
are fortunately free from the Lorentz noninvariant terms, which makes it possible to
eliminate divergences by the renormalization.

5.2 Renormalization of the quark wave function

The mass renormalization is already possible to do from Eq. (106) by redefining
the bare mass term as in Eq. (109). However, in this section the mass and field
renormalization are carried out proceeding as in Ref. [8].

The effective quark propagator in Eq. (106) can be expressed as the sum of the
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bare propagator and the one-loop correction terms as

iSeff = iS0 + iS0

⎡
⎢
⎢
⎢
⎢
⎣

α̃sCF −
g2

sCF

(4π)2 (2∫
1

0
dxx log ∆

µ2 − 1 + 4I − 2(n∗ ⋅ p)(n ⋅ p)N)

+
m2

0
p2 −m2

0
(6α̃sCF − 4 g

2
sCF

(4π)2 ∫
1

0
dx(1 + x) log ∆

µ2)

⎤
⎥
⎥
⎥
⎥
⎦

+ i
m0C

p2 −m2
0
− i
D/n + E /n∗

p2 −m2
0
+O(g4

s),

(110)

where S0 = (/p −m0)−1 is the bare propagator. This form could also be derived from
Eq. (96). The renormalised effective propagator is obtained by adding a counterterm
to the quark propagator in Eq. (110), as in Figure 5.

The renormalization counterterms are found by defining quark mass and wave
function, with renormalised quantities m and ψ, as

m0 =m − δm ψ0 = ψ +Mψ, (111)

where δm is a number and M is a matrix, and both are proportional to g2
s . It is

shown in Ref. [8] that M contains gamma-matrices which is a light-cone gauge
property. Therefore the renormalization cannot be done with the general conventions
as in a covariant gauge where M would be a number.

When the redefined quantities in Eq. (111) are placed in the Lagrangian the
Dirac part is written as

ψ0(i /∂ −m0)ψ0 =(ψ +Mψ) (i /∂ −m + δm) (1 +M)ψ

= ψ(1 + γ0M †γ0) (i /∂ −m + δm) (1 +M)ψ,
(112)

which is a sum of the renormalised Dirac Lagrangian and the counterterm. Deriving

Sr,eff = + + +...

Figure 5. A renormalised effective quark propagator including counterterms.
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the propagator form the right side of Eq. (112) gives

i

(1 + γ0M †γ0) (/p −m + δm) (1 +M)
=

iS

1 + δmS + γ0M †γ0 + (/p −m)MS +O(g4
s)

=iS − iS2δm − iSγ0M †γ0 − iMS +O(g4
s),

(113)
where S = (/p − m)−1. This can be identified as a sum of the renormalised free
propagator and the counterterms, or as the renormalised effective propagator from
where the one-loop corrections have been subtracted.

The one-loop correction part in Eq. (110) is renormalised by expressing it
in terms of the renormalised mass, Eq. (111), and renormalised bare propagator
S = (/p −m)−1 +O(g2

s). Then replacing the free propagator in Eq. (110) with the
sum of the renormalised free propagator and the counterterms in Eq.(113) gives the
result for the renormalised effective propagator

Sr,eff = S − S
2δm − Sγ0M †γ0 −MS

+ S

⎡
⎢
⎢
⎢
⎢
⎣

α̃sCF −
g2

sCF

(4π)2 (2∫
1

0
dxx log ∆

µ2 − 1 + 4I − 2(n∗ ⋅ p)(n ⋅ p)N)

+
m2

p2 −m2 (6α̃sCF − 4 g
2
sCF

(4π)2 ∫
1

0
dx(1 + x) log ∆

µ2)

⎤
⎥
⎥
⎥
⎥
⎦

+
mC

p2 −m2 −
D/n + E /n∗

p2 −m2 +O(g
4
s).

(114)

Requiring that the divergent parts are cancelled by M and δm, the term

− S2δm − Sγ0M †γ0 −MS + S

⎡
⎢
⎢
⎢
⎢
⎣

α̃sCF +
m2

p2 −m2 6α̃sCF

⎤
⎥
⎥
⎥
⎥
⎦

+
m

p2 −m2 3α̃sCF

−
α̃sCF

p2 −m2
2(n∗ ⋅ p)/n − 2(n ⋅ p) /n∗

(n∗ ⋅ n)

(115)

should be finite. After noting that S2m(p2−m2)−1+(p2−m2)−1 = S2, the coefficients
of S2 in Eq. (115) can be matched, which gives

δm = 3α̃sCFm =
g2

sCF

(4π)2m(
1
ε
− γE + log(4π)) (116)

in the MS scheme, as predicted from the pole of the effective propagator in Eq. (109).
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Cancelling these within Eq. (115) and matching the coefficients of m gives

γ0M †γ0 +M = α̃sCF . (117)

With the relation
2(n∗ ⋅ p)/n − 2(n ⋅ p) /n∗

(n∗ ⋅ n)
=
/p /n∗ /n − /n∗ /n/p

(n∗ ⋅ n)
(118)

the coefficients of /p in Eq. (115) can be matched by taking

/pγ
0M †γ0 +M /p = /pα̃sCF − α̃sCF

/p /n∗ /n − /n∗ /n/p

2n∗ ⋅ n . (119)

Using Eq. (117) in Eq. (119) gives

−/pM +M /p = −α̃sCF
/p /n∗ /n − /n∗ /n/p

2n∗ ⋅ n , (120)

where it can be seen that M must be constructed as

M = α̃sCF (
/n∗ /n

n∗ ⋅ n
+ x) , (121)

where x is a number, and the Hermitian conjugate multiplied with γ0s is

γ0M †γ0 = α̃sCF (
/n /n∗

n∗ ⋅ n
+ x) = α̃sCF (−

/n∗ /n

n∗ ⋅ n
+ 2 + x) . (122)

Placing Eq. (122) in Eq. (117) one gets

γ0M †γ0 +M = α̃sCF (2 + 2x) = α̃sCF , (123)

which gives
x =
−1
2 . (124)

Finally the wave function renormalization term is

M = α̃sCF (
/n∗ /n

n∗ ⋅ n
−

1
2) =

g2
sCF

(4π)2 (
1
ε
− γE + log(4π))(

/n∗ /n

n∗ ⋅ n
−

1
2) (125)

Inserting Eqs. (116) and (125) in Eq. (114) the renormalised effective quark
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propagator reads

iSr,eff =

i [/p +m (1 + Cfin) −Dfin /n − Efin /n∗] [1 − g2
sCF

(4π)2 (2 ∫
1

0 dxx log ∆
µ2 − 1 + 4I − 2(n∗ ⋅ p)(n ⋅ p)N) +O(g4

s)]

p2 −m2 (1 − g2
sCF

(4π)2 4 ∫
1

0 dx(1 + x) log ∆
µ2) +O(g4

s)
,

(126)

where the subindex ”fin” denotes the finite part of the constants defined as

Cfin ≡
−g2

sCF

(4π)2 (1 + 2∫
1

0
dx(1 + x) log ∆

µ2 + 2(n∗ ⋅ p)(n ⋅ p)N) ,

Dfin ≡
−g2

sCF

(4π)2
⎛
⎜
⎝
∫

1

0
dx log ∆

µ2 + 2I1 − 2I2 + ((n
∗ ⋅ p)(n ⋅ p) − p2(n∗ ⋅ n))N

⎞
⎟
⎠

2(n∗ ⋅ p)
n∗ ⋅ n

,

Efin ≡
g2

sCF

(4π)2
⎛
⎜
⎝
∫

1

0
dx log ∆

µ2 + (n
∗ ⋅ p)(n ⋅ p)N

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

2(n ⋅ p)
n∗ ⋅ n

,

(127)
where the parameters ∆, N, and I1 −I2 are defined in section 4.6, and the parameter
I is denined in Eq. (72). The effective quark propagator is now free of the divergent
parts but there are still the n∗ ⋅ p and n ⋅ p dependent terms in Cfin,Dfin, and Efin. The
mass-shell limit is not unique but depends on how the vector p is constructed, since
the terms n∗ ⋅ p and n ⋅ p have different dependency on the different components
of the momentum p. It seems that the renormalization of the quark propagator
involving all the finite terms is not sufficient by itself to determine gauge invariant
physical observables. This requires considering the one-loop correction to the quark
self-energy with vertex corrections as in Figure 1.

The parameters δm and M , defined in Eqs. (116) and (125) respectively, agree
with the results in Refs. [8, 9]. The gamma-matrix structure of M causes the
renormalization to be different for the different spinor components of the quark field
ψ, as stated in Ref. [8].

The relation of the counterterm and the so-called renormalization constant Z in
the Lehmann–Symanzik–Zimmermann (LSZ) reduction [10] is not as obvious as in
the covariant gauge since the counterterm includes matrices. It is shown in Ref. [11]
that the quark mass and field renormalization can be expressed as

m0 =m − δm and ψ0 =
√
Z2Z̃2 (1 − (1 − Z̃2

−1
)
/n∗ /n

2(n∗ ⋅ n))ψ. (128)
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Using these the bare Dirac Lagrangian becomes

ψ0(i /∂ −m0)ψ0 =

Z2Z̃2ψ (1 − (1 − Z̃2
−1
)
/n/n
∗

2(n∗ ⋅ n)) (i
/∂ −m + δm)(1 − (1 − Z̃2

−1
)
/n∗ /n

2(n∗ ⋅ n))ψ.
(129)

By keeping δm as Eq. (116) and defining

Z2 ≡ 1 + α̃sCF and Z̃2 ≡ 1 − 2α̃sCF , (130)

and placing them in Eq. (129) the result is equivalent to Eq. (112). The definitions
in Eq. (130) agree with the MS-scheme definitions in Ref. [9]. It is stated in Ref. [8]
that terms containing the /n and /n∗ matrices can be absorbed to the normalization
of ψ to obtain covariant counterterms. One could speculate that by absorbing the
factor (1 − (1 − Z̃2

−1
) /n∗ /n(2n∗ ⋅ n)−1) to the normalization of ψ, the renormalization

constant in the LSZ reduction would be Z = Z2Z̃2 = 1 − α̃, and Z would be a number
as in a covariant gauge.

5.3 Pole mass of the quark propagator in a covariant gauge

It is interesting to see whether the quark pole mass in the light-cone gauge equals
the pole mass in a covariant gauge. The covariant calculation follows the same lines
as in sections 4 and 5, however it is much more straightforward. In this section the
calculation of the covariant pole mass is outlined. The gluon propagator in a Lorenz
gauge reads

Dµν(q) =
−iδab

q2 + iε
(gµν − (1 − ξ)q

µqν

q2 ) . (131)

Choosing a Feynman gauge i.e. fixing ξ = 1, and using Eq. (131) in Eq. (27) gives

Σcov = −g
2
sµ

4−2ωCF ∫
d2ωq

(2π)2ω
γµ gµν

q2 + iε

/p − /q +m0

(p − q)2 −m2
0 + iε

γν . (132)

With the same the Wick rotation as in section 4 the Euclidean self energy is

Σcov,E = −ig
2
sµ

4−2ωCF ∫
E

d2ωq

(2π)2ω

2ωm0 + 2(ω − 1)(/pE
− /qE
)

q2
E ((p − q)

2
E +m

2
0)

. (133)
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Utilizing the integrals calculated in sections 4.2 and 4.4, and then changing back to
Minkowski space one gets

Σcov = −iα̃sCF (4m0 − /p) +
ig2

sCF

(4π)2 (2m0 (1 + 2∫
1

0
dx log ∆

µ2)

+ /p(−1 + 2∫
1

0
dx(x − 1) log ∆

µ2)).

(134)

Inserting Eq. (134) into Eq. (97) the covariant effective propagator reads

iScov
eff ≡

i(/p +m0)

p2(1 −Acov) −m2
0(1 + Bcov) −m0/p(Acov + Bcov)

, (135)

where
Acov ≡ α̃sCF −

g2
sCF

(4π)2 (−1 + 2∫
1

0
dx(x − 1) log ∆

µ2)

and Bcov ≡ 2α̃sCF −
g2

sCF

(4π)2 2(1 + 2∫
1

0
dx log ∆

µ2) .

(136)

Expanding the effective propagator so that the denominator does not contain Dirac
matrices gives the form

iScov
eff =

i(/p −m0) (p2(1 −Acov) −m2
0(1 + Bcov) +m0/p(Acov + Bcov))

(p2(1 −Acov) −m2
0(1 + Bcov))

2
−m2

0p
2(Acov + Bcov)2

= i
/p +m0(1 +Acov + Bcov)

p2 −m2
0(1 + 2Acov + 2Bcov) +O(g4

s)
(1 +Acov) +O(g

4
s),

(137)

It can be seen that the covariant gauge quark pole mass is

m2
cov =m

2
0 (1 + 2Acov + 2Bcov)

=m2
0
⎛

⎝
1 + 6α̃sCF −

g2
sCF

(4π)2 2(2∫
1

0
dx(1 + x) log ∆

µ2 + 1)
⎞

⎠
,

(138)

which is identical to the pole mass in light-cone gauge in Eq. (107). Clearly, also the
mass renormalization in the MS-scheme is identical.

The renormalised covariant effective propagator reads

iScov
r,eff =

i(/p +m)

p2 −m2 +O(g4
s)
(1 +Acov) +O(g

4
s), (139)
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where the term 1 +Acov is identified as the renormalization constant Z in the (LSZ)
reduction [10]. In the covariant gauge the renormalization constant is related to the
wave function and mass renormalization as

ψcov
0 =

√
Zψcov and Zm0 =m − δm. (140)
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6 Conclusions

The aim of this thesis was to renormalize the quark propagator to one gluon loop, in
the light-cone gauge, and to solve the pole mass of the propagator. The corresponding
renormalization in the MS-scheme has been done before in Refs. [8, 9], of which the
first one was used as reference in this thesis. In section 4 the one-loop quark self
energy was derived using the ML-prescription to regulate the n ⋅ q pole. The finite
parts of the quark self energy in Eq. (91) have been calculated before in Ref. [12]
but, as it appears, have not been explicitly listed previously.

In section 5.1 the effective quark propagator was derived to the form in Eq. (106)
from where the pole mass was defined. However, the numerator of Eq. (106) and the
pole mass contain divergences which require cancellation by the quark field and mass
renormalization, which were carried out in section 5.2. The field renormalization,
Eq. (125), and mass renormalization, Eq. (109), are in the MS-scheme the same as
obtained in Ref. [8], and in the MS-scheme they are equivalent to the results in Ref.
[9]. The quark pole mass in the covariant Feynman gauge, derived in section 5.3, is
equal to the light-cone gauge pole mass, Eq. (108). Also the mass renormalization
in MS-scheme is the same in both gauges. These results agree with the expectation
that the pole mass should be gauge invariant.

The final renormalised quark propagator, Eq. (126), includes finite gauge de-
pendent and Lorentz noninvariant terms arising from the ML-prescription for the
light-cone gauge. These terms make the mass-shell limit to depend on how one
fixes the quark momentum p. Without taking the mass-shell limit they cannot
be eliminated with the renormalization without having a momentum dependent
counterterm. It remains as a question whether the finite leftover problematic terms
cancel with the one-loop vertex corrections.

In this thesis it was seen that the method of defining the renormalization coun-
terterms in light-cone gauge differs form the usual procedure. This is caused by
the axial vector n which generates the /n and /n∗ matrices to the renormalization
counterpart Mψ of the quark wave function. The the terms, including /n and /n∗

matrices, can be absorbed to the normalization of the quark field so the counterterm
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in the renormalised Lagrangian would be free from noncovariant terms, as stated
in Ref. [8]. The relation between the countertem and the renormalization constant
in the LSZ reduction is more complicated than in the covariant gauge, due to the
matrix feature of the counterterm.
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A QCD Lagrangian and Feynman rules

The QCD Lagrangian is

LQCD = LYM +∑
q

[i (ψq0)
i
γµ ((∂µ)ij + igsA

a
0µ(t

a)ij) (ψq)j −mq0 (ψq0)
i
(ψq)j

]

+Lfix,

(141)

where LYM is the Yang-Mills Lagrangian, Aa
0µ is the bare gluon field, ψq0 is the bare

quark field and mq0 is a corresponding bare quark mass, gs is the strong coupling
constant, Lfix denotes the gauge fixing term, ta is a SU(3) generator matrix, the sum
∑q denotes a sum over quark flavors, index a denotes a gluon color, i and j are color
indices for quarks, and µ and ν are Lorentz indices. The Yang-Mills Lagrangian
reads

LYM = −
1
4F

µν,aF a
µν , (142)

where the gluon field strength tensor is

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gsf

abcAb
µA

c
ν , (143)

where fabc is a SU(3) structure constant and the indices a,b,c denote color of gluons.
The Feynman quark propagator is

δijSF = iδij
/p +m0

p2 −m2
0
. (144)

The quark-gluon vertex reads
−ig(ta)jiγ

µ, (145)

where the index j denotes color of the quark going out of the vertex.
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B Rules for the Dirac matrices in Euclidean space

The Euclidean metric is
gµν

E = {1,1,1,1}, (146)

the inner product of two Euclidean four-vectors is

(a ⋅ b)E = a1b1 + a2b2 + a3b3 + a4b4 (147)

and the slash notation is

/aE = a1γ1 + a2γ2 + a3γ3 + a4γ4. (148)

In Minkowski space the metric, the inner product and the slash notation are respec-
tively

gµν = {1, − 1, − 1, − 1}, (149)

(a ⋅ b) = a0b0 − a1b1 − a2b2 − a3b3 (150)

and
/a = a0γ0 − a1γ1 − a2γ2 − a3γ3. (151)

The transformation from Minkowski to Euclidean space can be performed in
multiple ways. In this thesis it is carried out by redefining the time-like components
of every four-vector and also the time-like Dirac matrix as

a0 = ia4 and γ0 = iγ4. (152)

For the spatial parts the relation is

(ai)M = (ai)E = (a
i)E, (a

i)M = −(ai)E = −(a
i)E,

(γi)M = (γi)E = (γ
i)E, and (γi)M = −(γi)E = −(γ

i)E.
(153)
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The transformation in Eq. (152) yields

a ⋅ b = −a4b4 − a1b1 − a2b2 − a3b3 = −(a ⋅ b)E (154)

for a dot product, and

/a = −a4γ4 − a1γ1 − a2γ2 − a3γ3 = −/aE (155)

for the slash notation. Identities for the γ4 matrix are

γ0γ0 = iγ
4iγ4 = 1

Ð→ γ4γ4 = −1
(156)

and
γ0γi = iγ4γi = −γiiγ4

Ð→ γ4γi = −γiγ4.
(157)

The Clifford algebra for Dirac matrices in Minkowski space is defined as

{γµ,γν} = 2gµν , (158)

which yields, together with Eq. (156) and Eq. (157), the Euclidean Clifford algebra
to be

{γµ,γν}E = −2δµν . (159)

The most common trace identities for Minkowski space are

Tr (/a/b) = 4(a ⋅ b)

Tr (/a/b/c/d) = 4((a ⋅ b)(c ⋅ d) − (a ⋅ c)(b ⋅ d) + (a ⋅ d)(c ⋅ d)),
(160)

which yields, together with Eq. (155) and Eq. (154), the Euclidean trace identities

Tr (/aE
/bE) = Tr (/a/b) = 4(a ⋅ b) = −4(a ⋅ b)E

Tr (/aE
/bE/cE

/dE) = Tr (/a/b/c/d) = 4((a ⋅ b)(c ⋅ d) − (a ⋅ c)(b ⋅ d) + (a ⋅ d)(c ⋅ d))

= 4((a ⋅ b)E(c ⋅ d)E − (a ⋅ c)E(b ⋅ d)E + (a ⋅ d)E(c ⋅ d)E).

(161)
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C Integration methods

C.1 Feynman parametrization

The Feynman parametrization is a typical trick to evaluate loop integrals [10]

1
A1A2...An

= ∫

1

0
dx1...∫

1

0
dxn
(n − 1)!δ(1 −∑n

i=1 xi)

[x1A1 + ...xnAn]
n . (162)

Another convenient integral to evaluate loop integrals is [13]

∫

∞

0
dz

zµ−1

(p + qzν)α
=

1
νpα
(
p

q
)

µ/ν Γ(µ/ν)Γ(α − µ/ν)
Γ(α) 0 < µ

ν
< α. (163)

C.2 Wick rotation

Wick rotation is a complex analysis trick of removing imaginary parts of the de-
nominators from integrals. An example integral in Minkowski space is of the form

∫ dDq
f(q)

[q2 −∆ + iθ]m , ∆ > 0, θ > 0. (164)

The time-like integral is

∫

∞

−∞

dq0 f(q)

[q2
0 − q2 −∆ + iθ]m

, (165)

which has poles in the second and fourth quadrants in the complex plane

q0 = ±
√

q2 +∆ − iθ = ±
√

q2 +∆ ∓ iθ. (166)

The Cauchy theorem states if the integrand is analytic within a simply connected
region in a complex plane, then the integral over a piecewise smooth simple closed
curve in this region gives zero. Regarding the integrand in Eq. (165) choosing an
integration path that rules out the poles in the second and fourth quadrants as in
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Figure 6, would yield the complex plane integration to be zero

∳
Γ
dq0 f(q)

[q2
0 − q2 −∆ + iθ]m

= 0. (167)

Expressing Γ as a sum of its parts ∳Γ = ∫
R

−R + ∫Arc1 + ∫
−iR

iR + ∫Arc2 and then proving
that the arc integrals vanish in the limit R →∞ [10], one gets a relation

lim
R→∞
∫

R

−R
dq0 f(q)

[q2
0 − q2 −∆ + iθ]m

= −∫

−iR

iR
dq0 f(q)

[q2
0 − q2 −∆]m

. (168)

In Eq. (168) the iθ term is taken to zero in the latter integral since an infinitesimal
imaginary shift does not matter in the imaginary axis. Transferring to Euclidean
space by setting q0 = il0 i.e. q2 = −l2E in the latter integral in Eq. (168) one gets

∫

∞

−∞

dq0 f(q)

[q2
0 − q2 −∆ + iθ]m

= i(−1)m∫
∞

−∞

dl0
f(l)

[l2E +∆]m
. (169)

Figure 6. Path Γ in the complex plane with poles in the second and fourth
quadrants.
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C.3 Basic integral

The dimensional regulation and the Wick rotation often gives an integral of the form

I = ∫ ddl
ln

[l2 +∆]m , (170)

where l is Euclidean. The integral can be transformed to spherical coordinates as

∫
E
ddl = ∫ dΩd∫

∞

0
dlld−1, (171)

where dΩd is differential solid angle of the d-dimensional unit sphere. It is shown in
Ref. [10] that the angular integral gives

∫ dΩd =
2πd/2

Γ(d/2) . (172)

Thus the basic integral is

I =
2πd/2

Γ(d/2) ∫
∞

0
dl

ld+n−1

[l2 +∆]m . (173)

First changing the integration variable to dl = dl2(2l)−1 and then defining a new
variable z =∆(l2 +∆)−1 gives

∫

∞

0
dl2 = ∫

1

0

dz∆
z2 . (174)

With this the basic integral becomes

I =
πd/2

Γ(d/2) ∫
1

0
dz

∆
z2
zm

∆m
(

∆
z
−∆)

(d+n)/2−1

=
πd/2

Γ(d/2)∆
(d+n)/2−m

∫

1

0
dzzm−(d+n)/2−1 (1 − z)(d+n)/2−1

,

(175)

from where one can recognize the Beta-function

B(α,β) = ∫
1

0
dzzα−1 (1 − z)β−1

=
Γ(α)Γ(β)
Γ(α + β) . (176)
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Using the Beta-function definition in Eq. (175) yields

I =
πd/2

Γ(d/2)∆
(d+n)/2−m Γ(m − (d + n)/2)Γ((d + n)/2)

Γ(m) . (177)
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D Calculations of I1, I2 and I3

The integral I1 can be evaluated straightforwardly

I1 = ∫
1

0
dx log((1 − x)(p

2
3 − p

2
0) +m

2
0

µ2 ) = −1 + (1 + m2
0

p2
3 − p

2
0
) log(p

2
3 − p

2
0 +m

2
0

µ2 )

−
m2

0
p2

3 − p
2
0

log(m
2
0

µ2 ) .

(178)
More effort has to put in solving I2 which is defined as

I2 = ∫
1

0
dx∫

1−x

0

dy

x + y

⎡
⎢
⎢
⎢
⎢
⎣

2 + 2(p2 −m2
0)

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 − p
2
0) +m

2
0

+ log( x

x + y
)

+ log
⎛
⎜
⎜
⎝

(1 − x
x+y)p

2
⊥
+ (1 − x)(p2

3 − p
2
0) +m

2
0

µ2

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

= ∫

1

0
dx∫

1−x

0
dy

⎡
⎢
⎢
⎢
⎢
⎣

2 + log(x) − 2 log(x + y)
x + y

+
2(p2 −m2

0)

y (m2
0 − p

2 − x(p2
3 − p

2
0)) + x(1 − x)(p2

3 − p
2
0) + xm

2
0

+
1

x + y
log
⎛

⎝

y (m2
0 − p

2 − x(p2
3 − p

2
0)) + x(1 − x)(p2

3 − p
2
0) + xm

2
0

µ2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

(179)

where

∫

1

0
dx∫

1−x

0
dy

2 + log(x) − 2 log(x + y)
x + y

= 2 (180)

and

∫

1

0
dx∫

1−x

0
dy

2(p2 −m2
0)

y (m2
0 − p

2 − x(p2
3 − p

2
0)) + x(1 − x)(p2

3 − p
2
0) + xm

2
0

=∫

1

0
dx

2(p2 −m2
0)

m2
0 − p

2 − x(p2
3 − p

2
0)

log
⎛

⎝

m2
0 − (1 − x)p2

x (m2
0 + (1 − x)(p2

3 − p
2
0))

⎞

⎠
.

(181)



62

The last term in Eq. (179) gives dilogarithms

∫

1

0
dx∫

1−x

0
dy

1
x + y

log
⎛

⎝

y (m2
0 − p

2 − x(p2
3 − p

2
0)) + x(1 − x)(p2

3 − p
2
0) + xm

2
0

µ2

⎞

⎠

=∫

1

0
dx[ − log(x) log(−p

2
⊥
x

µ2 ) + Li2 (
m2

0 − p
2 − x(p2

3 − p
2
0)

p2
⊥

) − Li2 (
m2

0 − p
2 − x(p2

3 − p
2
0)

p2
⊥x

)]

= − 2 + log(−p
2
⊥

µ2 ) + ∫
1

0
dx[Li2 (

m2
0 − p

2 − x(p2
3 − p

2
0)

p2
⊥

) − Li2 (
m2

0 − p
2 − x(p2

3 − p
2
0)

p2
⊥x

)],

(182)
where partial integration for dilogarithms gives

∫

1

0
dx

⎡
⎢
⎢
⎢
⎢
⎣

Li2 (
m2

0 − p
2 − x(p2

3 − p
2
0)

p2
⊥

) − Li2 (
m2

0 − p
2 − x(p2

3 − p
2
0)

p2
⊥x

)

⎤
⎥
⎥
⎥
⎥
⎦

=x

⎡
⎢
⎢
⎢
⎢
⎣

Li2 (
m2

0 − p
2 − x(p2

3 − p
2
0)

p2
⊥

) − Li2 (
m2

0 − p
2 − x(p2

3 − p
2
0)

p2
⊥x

)

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRR

1

0

− ∫

1

0
dx

⎡
⎢
⎢
⎢
⎢
⎣

log (−p2
⊥
) +

x(p2
3 − p

2
0)

m2
0 − p

2 − x(p2
3 − p

2
0)

log (m2
0 + (1 − x)(p2

3 − p
2
0))

−
m2

0 − p
2

m2
0 − p

2 − x(p2
3 − p

2
0)

log(m
2
0 − (1 − x)p2

x
))

⎤
⎥
⎥
⎥
⎥
⎦

= − log (−p2
⊥
) + ∫

1

0
dx

⎡
⎢
⎢
⎢
⎢
⎣

−
x(p2

3 − p
2
0)

m2
0 − p

2 − x(p2
3 − p

2
0)

log (m2
0 + (1 − x)(p2

3 − p
2
0))

+
m2

0 − p
2

m2
0 − p

2 − x(p2
3 − p

2
0)

log(m
2
0 − (1 − x)p2

x
))

⎤
⎥
⎥
⎥
⎥
⎦

.

(183)

Combining the integrals Eqs. (180), (181), (182), and (183) gives the solution
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for I2

I2 = ∫
1

0
dx log(m

2
0 + (1 − x)(p2

3 − p
2
0)

µ2 ) + ∫

1

0
dx

m2
0 − p

2

m2
0 − p

2 − x(p2
3 − p

2
0)

⎡
⎢
⎢
⎢
⎢
⎣

log(x)

+ log (m2
0 + (1 − x)(p2

3 − p
2
0)) − log (m2

0 − (1 − x)p2)

⎤
⎥
⎥
⎥
⎥
⎦

= ∫

1

0
dx log(m

2
0 + (1 − x)(p2

3 − p
2
0)

µ2 ) −
m2

0 − p
2

p2
3 − p

2
0

⎡
⎢
⎢
⎢
⎢
⎣

log(−p2) log(m
2
0 − p

2

m2
0
)

+ log(m2
0 − p

2) log( m2
0

m2
0 + p

2
3 − p

2
0
) + log(p2

⊥
) log(m

2
0 + p

2
3 − p

2
0

m2
0 − p

2 ) + Li2 (
p2

3 − p
2
0

m2
0 − p

2)

+ Li2 (
m2

0
−p2
⊥

) − Li2 (
p2

3 − p
2
0 +m

2
0

−p2
⊥

) − Li2 (
m2

0(p
2
3 − p

2
0)

p2
⊥(p2 −m2

0)
) + Li2 (

p2
3 − p

2
0

−p2
⊥

)

⎤
⎥
⎥
⎥
⎥
⎦

,

(184)
where the first term equals I1.

The integrals I1 and I2 appear in the quark self energy, Eq. (91), together in a
term I1 − I2. Its value when p2

⊥
= 0 is

I1 − I2
p2
⊥=0
= ∫

1

0
dx

p2 −m2
0

m2
0 − (1 − x)p2 log(x) = p

2 −m2
0

p2 Li2 (
p2

p2 −m2
0
) , (185)

which is finite when p2 = 0 and when p2 =m2
0. The value of I1−I2 is finite also, when

p2 = 0 without fixing the value of p2
⊥
.

The I3 is defined as

I3 = ∫
1

0
dx∫

1−x

0
dy

⎛
⎜
⎜
⎝

x

x + y

p2
3 − p

2
0

(1 − x
x+y)p

2
⊥ + (1 − x)(p2

3 − p
2
0) +m

2
0

⎞
⎟
⎟
⎠

= ∫

1

0
dx∫

1−x

0
dy
⎛

⎝

x(p2
3 − p

2
0)

y (m2
0 − p

2 − x(p2
3 − p

2
0)) + x(1 − x)(p2

3 − p
2
0) + xm

2
0

⎞

⎠

=∫

1

0
dx

x(p2
3 − p

2
0)

m2
0 − p

2 − x(p2
3 − p

2
0)

log
⎛

⎝

m2
0 − (1 − x)p2

x (m2
0 + (1 − x)(p2

3 − p
2
0))

⎞

⎠
.

(186)

The integral I3 appears in the quark self energy, Eq. (91), only as a sum with I2. It
is easier to handle those two integrals as a sum than individually, and the simplest
way is to use the form where the integration is executed with respect to the Feynman
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parameter y only

I2 + I3 = ∫
1

0
dx log(m

2
0 + (1 − x)(p2

3 − p
2
0)

µ2 )

+ ∫

1

0
dx

m2
0 − p

2

m2
0 − p

2 − x(p2
3 − p

2
0)

log(x(m
2
0 + (1 − x)(p2

3 − p
2
0))

m2
0 − (1 − x)p2 )

+ ∫

1

0
dx

x(p2
3 − p

2
0)

m2
0 − p

2 − x(p2
3 − p

2
0)

log
⎛

⎝

m2
0 − (1 − x)p2

x (m2
0 + (1 − x)(p2

3 − p
2
0))

⎞

⎠

= I1 + ∫
1

0
dx [log(x) + log (m2

0 + (1 − x)(p2
3 − p

2
0)) − log (m2

0 − (1 − x)p2)]

= 2I1 − 1 − ∫
1

0
dx log(m

2
0 − (1 − x)p2

µ2 )

= 2I1 − 2 − ∫
1

0
dx log(x(x − 1)p2 + xm2

0
µ2 ) .

(187)

The quark self energy, Eq. (91), contains a parameter N defined as

N =
I2 + I3 − ∫

1
0 dx log ( ∆

µ2)

2(n∗ ⋅ p)(n ⋅ p) − p2(n∗ ⋅ n)
, (188)

where
log(∆

µ2) = log(x(x − 1)p2 + xm2
0

µ2 ) . (189)

The fraction in Eq. (188) seemingly has a pole when p2(n∗ ⋅ n) = 2(n∗ ⋅ p)(n ⋅ p) i.e.
p2
⊥
= 0, which however is not the case since also the numerator gives zero when p2

⊥
= 0.

The numerator reads

I2 + I3 − ∫
1

0
dx log(∆

µ2)

= 2∫
1

0
dx
⎡
⎢
⎢
⎢
⎣
log(m

2
0 + (1 − x)(p2

3 − p
2
0)

µ2 ) − log(m
2
0 − (1 − x)p2

µ2 )
⎤
⎥
⎥
⎥
⎦
,

(190)

which equals zero when p2
⊥
= 0 i.e. p2

0 − p
2
3 = p

2. The value of N when p2
⊥
= 0 is

achieved using the L’Hôpital’s rule

N
p2
⊥=0
=

2
(n∗ ⋅ n)p2

⎛

⎝
1 + m

2
0

p2 log(m
2
0 − p

2

m2
0
)
⎞

⎠
, (191)

which has a pole in the p2 = 0 limit. However, N is multiplied in the self energy,
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Eq. (4.6), always with (n∗ ⋅ p)(n ⋅ p) or with p2(n∗ ⋅ n), and thus the pole, when
p2 = p3

0 − p
2
3 = 0, is canceled.
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