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Abstract

Parkkinen, Harri
Neutrino density matrix formalism derived from Kadanoff-Baym equations
Master’s thesis
Department of Physics, University of Jyväskylä, 2020, 69 pages.

When neutrinos propagate in matter they encounter two kinds of interactions with
the medium: coherent and incoherent collisions. Due to the coherent collisions
a background potential arises which modifies the energy eigenstates of neutrinos.
Incoherent collisions, however, lead to quantum damping which affects the dynamical
evolution of neutrinos.

In this thesis it is studied how a formalism, which describes mixing of relativistic
neutrino fields, can be derived from the grounds of thermal quantum field theory.
We begin by deriving the general Kadanoff-Baym (KB) equations in the Wigner
space starting from the contour Schwinger-Keldysh euqation. Next the KB equations
are solved using the coherent quasiparticle approximation (cQPA). From the cQPA
scheme it follows that the phase space of the system contains completely novel shell
solutions which can be recognized to carry information about non-local quantum
coherence.

Thus, in this thesis we focus on discussing how a closed set of equations of motion,
which take into account quantum coherence without any additional approximations,
can be derived for propagating neutrinos. With these equations of motion it is
possible to calculate scattering processes between coherent neutrino states to which
no other existing model is capable of. In addition, they can be used to derive the
neutrino density matrix formalism from more fundamental grounds than what has
been done before.

Keywords: neutrino physics, thermal field theory, quantum field theory, kinetic
transport theory, cQPA
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Tiivistelmä

Parkkinen, Harri
Neutriinojen tiheysmatriisiformalismi johdettuna Kadanoff-Baym yhtälöistä
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2020, 69 sivua

Edetessään väliaineessa neutriinojen ja materian välillä tapahtuu kahdenlaisia tör-
mäyksiä: koherentteja ja epäkoherentteja törmäyksiä. Koherentit törmäykset aiheut-
tavat taustapotentiaalin, joka muuttaa neutriinojen ominaisenergioita. Epäkoheren-
tit törmäykset aiheuttavat puolestaan kvanttivaimennustekijöitä, jotka vaikuttavat
neutriinotilojen dynaamiseen kehitykseen.

Tässä tutkielmassa tarkastellaan relativististen neutriinojen sekoittumista kuvaa-
van formalismin johtamista kvanttikenttäteoriaan pohjautuvista lähtökohdista. Tut-
kielmassa lähdetään liikkeelle Schwinger-Keldysh yhtälöstä, josta johdetaan yleiset
Kadanoff-Baym (KB) yhtälöt Wigner-avaruudessa. KB-yhtälöt ratkaistaan käyttäen
koherenttia kvasihiukkasapproksimaatiota (cQPA). cQPA-mallista seuraa, että sys-
teemin faasiavaruudessa esiintyy täysin uudenlaisia koherenssikuoria, jotka voidaan
tunnistaa sisältävän informaatiota ei-lokaalista kvanttikoherenssista.

Tutkielmassa siis tarkastellaan kuinka neutriinoille voidaan johtaa liikeyhtälöt,
jotka huomioivat kvanttikoherenssin ilman lisäoletuksia. Johdettujen liikeyhtälöiden
avulla voidaan laskea koherenttien neutriinotilojen välistä sirontaa, johon tämänhet-
kiset mallit eivät kykene. Lisäksi näiden liikeyhtälöiden avulla voidaan johtaa neutrii-
nojen tiheysmatriisiformalismi yleisemmistä lähtökohdista kuin mitä on aikaisemmin
tehty.

Avainsanat: neutriinofysiikka, äärellisen lämpötilan kenttäteoria, kvanttikenttäteoria,
kineettinen kuljetusteoria, cQPA
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1 Introduction

In modern physics quantum field theory (QFT) is understood as a collection of
mathematical and conceptual tools used to describe elementary particles. There
are lots of different formulations of QFT developed to describe various kinds of
phenomena. For instance, in vacuum quantum field theory (in the zero temperature
limit) one studies transition probabilities, while in thermal field theory it is more
convenient to study expectation values of operators using imaginary or real time
variables. The applications of quantum field theory are not restricted only to particle
physics, but also includes e.g. effects studied in condensed matter physics. In a way,
one could say that the quantum field theory gives us the most fundamental picture
of the physics describing the surrounding world, as far as we know.

In the full generality, equations arising from the principles of QFT, which describe
the dynamics of interacting quantum fields, are impossible to solve. Therefore,
simplifying approximation schemes are needed. If one considers slowly varying
background fields, weak interactions and assumes translational invariant correlators,
the standard methods of quantum kinetic theory reduces the problem to the famous
Boltzmann transport equations. These transport equations provide relatively good
approximations for many situations. However, when considering out-of-equilibrium
quantum systems there is no reason to assume translational invariance, i.e. thermal
equilibrium, for the correlation functions. Due to the loss of the correlator’s transla-
tional invariance, the Boltzmann transport equations can not be used and a more
general approximation scheme is needed to study these situations.

In this thesis we consider the coherent quasiparticle approximation (cQPA) which
holds also in many non-equilibrium systems. The key point of the cQPA is that
one relinquishes the assumption of correlator’s translational invariance. From this it
follows that there exist completely new solutions in addition to the usual mass shell
solutions. These novel shells are recognized to carry information about non-local
quantum coherence which, in turn, means that using cQPA we can study phenomena
where quantum coherence plays important role. Examples of situations where
quantum coherence can not be neglected include inflation, preheating, electroweak
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baryogenesis and neutrino flavor oscillations, just to mention a few.
The main goal of this thesis is to derive an equation in the cQPA limit in which

incoherent collisions and neutrino flavor mixing are considered. From this equation
it is possible to solve the equations of motion for neutrinos which take into account
quantum coherence and matter effects from more fundamental grounds than what
has been done before, and in principle they allow us to study situations beyond the
capability of the ordinary density matrix formalism.

Since we are studying neutrino oscillations, we begin this thesis by reviewing
the mixing of neutrino masses and the vacuum theory of neutrino oscillations in
chapter (2). Matter can have a huge effect to neutrino propagation and in many
situations these effects can not be neglected. In chapter (3) we therefore discuss
the matter effects of neutrinos and derive the matter Hamiltonian for interacting
neutrinos. One of the main conclusions made in chapter (3) is that due to incoherent
neutrino scatterings the usual Hamiltonian formalism can not be used, and a different
formalism is needed. However, we are interested in non-equilibrium systems where
quantum coherence effects are significant, so simple Boltzmann transport equations
are not sufficient. In chapter (4) we start to build a more general theory which
is capable of describing many non-equilibrium systems while taking into account
quantum coherence. We derive a superior form of the general Kadanoff-Baym
equations in the viewpoint of gradient expansions starting from the contour Schwinger-
Keldysh equation. These KB equations are, however, impossible to solve in full
generality as such since they contain infinite order gradient terms. For this reason
we need an approximation scheme which simplifies the KB equations, but takes
the quantum coherence effects into account. In chapter (5) we introduce such
approximation scheme called the coherent quasiparticle approximation (cQPA) and
derive the cQPA equations for neutrinos starting from the KB equations. Especially,
we show how a closed set of equations of motion, which include terms arising from
quantum coherence, can be derived for neutrinos. Lastly, chapter (6) is devoted to
summary, conclusions and discussion.
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2 Neutrino oscillation

Neutrino oscillation is a quantum mechanical phenomenon, in which neutrinos can
evolve to a state with different lepton number L without interacting with any other
particle. It was proposed by Pontecorvo in the late 1950’s [1, 2]. Neutrino oscillations
are a consequence of nonzero neutrino masses, and mixing between the neutrino
weak interaction (flavor) eigenstates and the (propagating) neutrino states of definite
mass.

Since the 1960’s neutrino oscillation phenomenon has been of a great theoretical
and experimental importance, because it can shed light into the properties of neutrinos.
For instance, in order to neutrino oscillation to be possible neutrinos must have
nonzero masses. This in turn can help us to understand physics beyond the Standard
Model and get us towards a more general theory of physics.

In this chapter we review the mixing of neutrino masses and the derivation
of the standard neutrino oscillation probability in vacuum using the plane-wave
approximation. These subjects have been discussed and reviewed in multiple papers,
e.g in [3–10].

2.1 Neutrino mixing

Although for some leptons, like electron and muon, the flavor eigenstates have definite
masses, there is no reason to assume that this would hold for neutrinos. In fact, it
turns out that in theories beyond the SM where neutrinos are massive particles, the
fields participating in the weak interaction processes do not in general diagonalize
the mass matrix. For this reason it might not be clear what kind of mass terms there
can be for neutrinos. Luckily, Hermicity and Lorentz-invariance give constraints
for the possible mass terms, and we can get relations between the flavor and mass
eigenstates. This section follows the outlines of ref. [11].

Assume that a right-handed neutrino field νR exist which is allowed by the
symmetries of the SM. Then, we can write a Dirac mass term for N neutrino flavors
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as
−LDm = ν̄RmDνL + ν̄Lm

†
DνR, (2.1)

where we have introduced the chiral fields

νL = 1
2(1− γ5)ν =


νeL

νµL

...

 (2.2)

and

νR = 1
2(1 + γ5)ν =


νeR

νµR

...

 , (2.3)

see Sec.(3.1) for more discussion about the chiral fields. Notice that we have not
restricted the number of neutrino flavors, so this holds for arbitrary number of fields.
From this it follows that in eq. (2.1) mD is a complex N ×N matrix and it can be
diagonalized by a bi-unitary transformation:

MD = UmDV
†, (2.4)

i.e.
mD = U †MDV. (2.5)

Here MD is diagonal matrix. Using these we can write the Dirac mass term as

LDM = −ν̄mRMDνmL − ν̄mLM †
DνmR, (2.6)

where
νmL ≡ U †νL and νmR ≡ V †νR (2.7)

are the mass eigenfields. Now it easy to see that the νR/L fields correspond to neutrinos
with definite mass since MD is diagonal. The matrix U which relates the left-handed
neutrino fields is the leptonic mixing matrix, or the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix [12]. It is equivalent to the Cabibbo-Kobyashi-Maskawa
matrix which is the mixing matrix for quarks [13, 14].

Consider next the left- and right-handed Majorana mass termsML andMR in
the case of N neutrino flavors. The corresponding part of the Lagrangian density
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function reads
−LMM = 1

2ν
c
LMMLνL + νcRMMRνR + h.c., (2.8)

where we have used the charge conjugated fields, for example

ν c
L ≡ (νL)c = CνL

T = C(ν†Lγ0)T

= CγT0
1 + γT5

2 ν∗ = 1− γ5

2 CνT = (νc)R ≡ νcR.
(2.9)

Here C is the charge conjugation matrix and in chiral representation it can be written
as C = C† = CT = C−1 = iγ0γ2. Using properties of the Majorana neutrino fields
one can show that the Majorana mass matrix is symmetric:

ν c
LMMLνL = ν c

LMT
MLνL, (2.10)

and similarly for the right-handed field, see ref. [4] for details. Thus, the mass
matrices ML and MR can be diagonalized by unitary transformations U and V ,
respectively:

UTMMLU = MML, (2.11)

where MML is the diagonal left-handed Majorana mass. Similar relation holds for
the right-handed mass matrix. Now we can write the Majorana mass term as

LMM = −1
2N

c
LMMNL + h.c., (2.12)

where
NL ≡ (νmL, (νmR)c) = (U †νL, V †ν c

R) (2.13)

and

MM =
MML 0

0 MMR

 . (2.14)

As in the case of Dirac mass, we can identify that νmL are the left-handed components
and νmR are the right-handed components of the massive Majorana fields. We also
notice that the mixing matrix U relates again the left-handed neutrino fields and
thus it is the PMNS-matrix.

An interesting property of Majorana mass terms, described by eq. (2.12), is
that they are not invariant under constant phase shifts, for instance under the
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transformation
ν → eiφν and νc → e−iφνc. (2.15)

This kind of mass terms are not allowed for charged leptons since the conservation
of charge would be broken. However, neutrinos do not carry any charge and the
Majorana masses in eq. (2.12) are possible. Another interesting property of eq.
(2.15) is that it implies that Majorana masses break global symmetries, especially
the lepton number conservation is lost. This symmetry break makes new processes
like neutrinoless double-beta-decay possible to occur.

After we have derived the useful forms (2.6) and (2.12) for the Dirac and Majorana
mass terms, we can immediately write down the most general neutrino mass term:

LM = −1
2N

c
LMNL + h.c., (2.16)

where NL is as defined in eq. (2.13), but now the mass matrix M contains both the
Dirac and Majorana mass terms:

M =
MML MT

D

MD MMR

 . (2.17)

Thus, we have shown that there exists mixing between the neutrino flavor and the
mass eigenstates regardless of the form of the mass matrix M .

In this section the main point of discussion was the mixing of neutrinos. For a
more detailed discussion about neutrino masses and their origins see refs. [4, 15].

Number of parameters in the leptonic matrix

Before moving to examine neutrino oscillations in vacuum, lets take a closer look to
the mixing matrix U. The discussion follows closely ref. [16]. In general, a unitary
N × N matrix can be parametrized by N2 independent real parametrers. These
parameters can be divided into

N(N − 1)
2 mixing angles (2.18)

and
N(N + 1)

2 phases. (2.19)
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However, not all of these parameters are physical because some of them can be
eliminated by rephasing the neutrino and charged lepton fields. This can be done
since the Lagrangian, excluding the weak charged current (CC) part, does not change
under transformations defined by eq. (2.15). In general, for Dirac neutrinos we
can absorb N complex phases into the redefinitions of the charged lepton fields.
This leaves us with N(N − 1) mixing parameters in which N(N − 1)/2 are complex
phases. One could expect that we can also eliminate N complex phases by redefining
the neutrino fields. Nonetheless, this is not the case since one of these phases
corresponds to an overall phase factor which leaves the neutrino CC part invariant.
Using Noether’s theorem this kind of invariance can be related to the conservation
of lepton number (in the SM neutrino oscillations can not happen, since neutrinos
are massless, and thus the lepton number is conserved). In other words, the overall
phase factor corresponds to a physical observable and we cannot eliminate it. In the
case of Majorana neutrinos there is a crucial difference with respect to the Dirac
neutrinos: the Majorana mass term in eq. (2.8) is not invariant under global phase
transformations defined by eq. (2.15). From this it follows that we can not eliminate
any phases of the mixing matrix by redefining the neutrino fields.

Summarizing, for the mixing matrix in the case of Dirac neutrinos we have

N(N − 1)
2 mixing angles (2.20)

and
(N − 1)(N − 2)

2 phases. (2.21)

For the Majorana neutrinos we have

N(N − 1)
2 mixing angles (2.22)

N(N − 1)
2 phases. (2.23)

The total number of mixing parameters rises very quickly since it is proportional
to N2. For this reason, the analysis of neutrino mixing becomes hard and technical
when considering multiple neutrino flavors.
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2.2 Derivation of the neutrino oscillation probability

We can assume neutrinos to be ultra-relativistic particles since masses of neutrinos
are under 1 eV [17], while only neutrinos with energy of keV scale can be detected. In
the standard plane-wave theory of neutrino oscillation it is assumed that neutrinos
are detected or created as a flavor eigenstate given by [3]

|να〉 =
∑
k

U∗αk |νk〉 , (2.24)

where U is the leptonic mixing matrix (PMNS matrix), |να〉 is a flavor eigenstate
and |νk〉 is a mass eigenstate. Greek indices (α, β, γ... = e, µ, τ...) denote the flavor
eigenstates and Latin indices (i, j, k... = 1,2,3... ) refer to the mass eigenstates.
Corresponding relation for antineutrinos reads

|ν̄α〉 =
∑
k

Uαk |ν̄k〉 . (2.25)

The only difference between mixing of neutrinos and antineutrinos is the complex
conjugation of the leptonic mixing matrix.

Using the fact that the massive neutrino states |νk〉 have definite masses mk and
energies Ek, we can write the time evolution of the massive neutrino states as

i
d

dt
|νk(t)〉 = H |νk(t)〉 = Ek |νk(t)〉 (2.26)

with energy eigenvalues
Ek =

√
p2 +m2

k. (2.27)

The Schrödinger equation (2.26) implies that the massive neutrino states evolve in
time as plane waves:

|νk(t)〉 = e−iEkt |νk〉 . (2.28)

It follows then that the time evolution of the neutrino flavor states is given by

|να(t)〉 =
∑
k

U∗αke
−iEkt |νk〉 =

∑
β=e,µ,τ

(∑
k

U∗αke
−iEktUβk

)
|νβ〉 . (2.29)

According to eq. (2.29) a state which is at time t = 0 a pure flavor state |να〉 will
evolve in time to a superposition of different flavor states (if the mixing matrix is
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different from unity). The quantity in the brackets in eq. (2.29) is the amplitude
(Aνα(t)→νβ) for the να(t) → νβ transition as a function of time. Therefore, the
probability of the transition να → νβ is

Pνα→νβ(t) =
∣∣∣Aνβ→να(t)

∣∣∣2 =
∑
k,j

U∗αkUβkUαjU
∗
βje
−i(Ek−Ej)t. (2.30)

For ultra-relativistic neutrinos we can approximate the dispersion relation (2.27) as

Ek =
√

p2 +m2
k ≈ E + m2

k

2E , (2.31)

where E = |p| is the energy of the neutrinos when we neglect the mass. Thus, we
get for the energy difference between two massive states relation

Ek − Ej '
m2
k −m2

j

2E =
∆m2

kj

2E . (2.32)

In the oscillation probability (2.30) there occurs the oscillation time t. In most of
the oscillation experiments it is not even possible to measure the oscillation time, so
we must convert it to a quantity that is known or can be measured. Often the most
convenient choice is the source-detector distance L. For ultra-relativistic neutrinos a
reasonable approximation is to assume t ≈ L. In addition, it is convenient to define

∆kj =
∆m2

kjL

2E (2.33)

and
W kj
αβ = U∗αkUβkUαjU

∗
βj. (2.34)

Using these notations we can approximate the oscillation probability as

Pνα→νβ(E,L) =
∑
k,j

W jk
αβ exp{−i∆kj}. (2.35)

There are multiple different ways to express the neutrino oscillation probability
(2.35), e.g.

Pνα→νβ(E,L) = δαβ −
∑
k,j
k>j

(
4 sin2(∆kj/2) Re

{
W kj
αβ

}
− 2 sin2(∆kj/2) Im

{
W kj
αβ

})
,

(2.36)
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which can easily be obtained by using definitions and properties of the trigonometric
functions. An interested reader can check ref. [16] for more discussion about the
subject.

It is worth noting that even if neutrino oscillations imply massive neutrinos, it is
not possible to get any information about the absolute masses of neutrinos (except
that mk or mj must be greater than

∣∣∣∆2
kj

∣∣∣). One can only measure the squared-mass
differences ∆kj between the massive states.

Majorana phases and neutrino oscillations

As we discussed in Sec.(2.1) there may be extra complex phases in the leptonic
mixing matrix if neutrinos are Majorana particles. However, we will show that these
phases do not affect the oscillation probabilities (2.30).

In the case of Majorana neutrinos the leptonic mixing matrix can be written as
a product of a unitary matrix UD, which is similar to the neutrino mixing matrix
for Dirac neutrinos, and a diagonal unitary matrix UM whose elements are complex
phases. We can therefore write the components of the neutrino mixing matrix for
Majorana neutrinos as

UM
αk = UD

αke
iφk = Uαke

iφk , (2.37)

where the upstairs index M indicates that we are talking about Majorana neutrinos.
Since the oscillation probability in eq. (2.30) depends on the mixing matrix only
through W kj

αβ, we can easily find out the effects of the Majorana phases.

W kj,M
αβ = U∗Mαk U

M
βkU

M
αjU

∗M
βj = U∗αkUβkUαjU

∗
βj = W kj

αβ. (2.38)

From here it follows that the Majorana phases do not affect the oscillation probability
at all. On the other hand, we can not get any information about the Majorana
phases by studying neutrino oscillations. These statements hold generally for N
neutrino flavors and also for oscillations in matter, which will be discussed in chapter
(3).

Antineutrino case

Flavor neutrinos are produced in the weak interaction processes through the charged
current. Antineutrinos (ν̄e, ν̄µ, ν̄τ ) are produced similarly in the CC weak interaction
processes, but from antileptons `+

α in transitions `+
α → ν̄α or in pair creation processes
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together with lepton `−α (i.e. in creation of `−α ν̄α pair). Kinematics of massive
antineutrinos are equivalent to neutrinos and the mixing of antineutrinos is described
by eq. (2.25), so the derivation of the oscillation probability for antineutrinos proceeds
identically as in the case of neutrinos. The only difference comes from the mixing
relation, that is the complex conjugation of the mixing matrix. We can therefore
immediately write down the oscillation probability for the antineutrinos:

Pν̄α→ν̄β(E,L) =
∑
k,j

(W jk
αβ)∗ exp{−i∆kj}. (2.39)

It is instructive to express the oscillation probability in a similar form as in eq. (2.36):

Pν̄α→ν̄β(E,L) = δαβ −
∑
k,j
k>j

(
4 sin2(∆kj/2) Re

{
W kj
αβ

}
+ 2 sin2(∆kj/2) Im

{
W kj
αβ

})
.

(2.40)
We can now see that the oscillation probability for antineutrinos in eq. (2.40) differs
from the neutrino oscillation probability (2.36) only by the sign of the imaginary
part.

2.3 Two neutrino mixing and oscillations

Lets consider as an example the simplest possible neutrino oscillation scenario:
assume that there exist only two flavor neutrinos να and νβ, where α 6= β. Here the
flavor states can be pure flavor states (α, β = e, µ or τ) or a linear combination of
them, for instance να = ceνe + cµνµ. When N = 2, we see from eqs. (2.21) and (2.20)
that the mixing matrix can be parametrized by one mixing angle, say θ. Since the
flavor states are linear superpositions of the two massive states ν1 and ν2, there exist
just one squared mass difference:

∆m2 ≡ ∆m2
21 = m2

2 −m2
1. (2.41)

Here we defined ν2 to be the heavier one of the two mass states in order to have
∆m2 > 0.
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We can choose the mixing matrix to be

U =
Uα1 Uα2

Uβ1 Uβ2

 =
 cos θ sin θ
− sin θ cos θ

 , (2.42)

where 0 ≤ θ ≤ π/2. Now it is straightforward to calculate the oscillation probability
from eq. ((2.36):

Pνα→νβ(E,L) = sin2(2θ) sin2
(∆m2L

4E

)
. (2.43)

One can define the oscillation length Losc
kj to be

Losc
kj = 4πE

∆m2
kj

, (2.44)

which is the distance at which the phase generated by ∆mkj becomes equal to 2π.
Using this definition we can write the oscillation probability as

Pνα→νβ(E,L) = sin2(2θ) sin2
(
πL

Losc

)
. (2.45)

From here it is obvious that sin2(2θ) is the amplitude of the oscillation and πL/Losc

is the oscillation phase.
Once we know the transition probability it is easy to find out the survival

probability Pνα→να(E,L), i.e. the probability that neutrino does not change it’s
flavor during propagation from a source to a detector. One can use the unitarity of
the transition probability and immediately get

Pνα→να(E,L) = 1− Pνα→νβ(E,L) = 1− sin2(2θ) sin2
(
πL

Losc

)
. (2.46)

The above treatment of neutrino oscillations using two neutrino flavors is just an
approximation. However, many detectors are not sensitive to three-neutrino mixing
and therefore the data can be analyzed by using effective model with two-neutrino
mixing, i.e using the results which were derived in this section. On the other hand, if
the experiment is sensitive to three-neutrino mixing, one needs to take into account
all three neutrino flavors. This makes the analysis much more complicated, since
as we have shown in eqs. (2.20) and (2.21) the number of mixing parameters grows
quickly when more neutrino flavors are added.
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3 Neutrinos in medium

Until now, we have considered neutrinos in a vacuum, i.e. there are no particles
which could interact with neutrinos and therefore affect their propagation. This is a
good approximation when neutrinos propagate for example in air, since neutrinos
interact with matter very weakly. However, when the medium in which neutrinos
propagate is dense, like neutron stars, the situation is different and matter can affect
significantly the propagation of neutrinos, especially to neutrino oscillations.

In 1978 L. Wolfstein discovered that neutrinos propagating in (constant density)
matter are subject to a potential which is caused by coherent forward scattering of
neutrinos from the medium [18]. This potential is equivalent to an index of refraction
and it affects the neutrino mixing: the vacuum mixing angles are replaced by effective
matter mixing angles [19, 20]. In the mid 1980’s S.P. Mikheyev and A.Yu. Smirnov
discovered that when neutrinos propagate in matter with varying density there exist
resonance at which the effective mixing angle can have it’s maximal value π/4, no
matter whatever the vacuum mixing angle is. This effect is called the MSW-effect
and it can not be ignored in situations where matter density varies widely. The
solar neutrino problem is perhaps the most famous example which can be explained
by the MSW-effect, for the details see refs. [21–23]. In addition to the coherent
forward elastic scattering, neutrino propagation is affected by quantum damping
which arises due to incoherent neutrino scatterings. The quantum damping can
reduce the oscillation probability between neutrino flavors significantly.

This chapter consists of two parts. In the first part we study the refractive
properties of neutrinos propagating in matter. We go through the solution of the
relativistic Dirac equation very quickly and derive the matter Hamiltonian for mixing
neutrinos. In addition, we discuss some of the most important matter effects of
neutrino oscillation. The second part concerns about damping and how it affects
neutrino oscillations. We review the density matrix formalism, which is capable of
taking into account damping effects, for oscillating neutrinos in the early Universe.
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3.1 Refractive properties

The following discussion summarizes ref. [24] and thus follows it closely. Let us begin
by stating some notations. For a study of relativistic particles such as neutrinos, it
is convenient to use the chiral representation in which the 4× 4 Dirac matrices read

γµ =
 0 σµ

σµ 0

 (3.1)

with the 2× 2 block matrices

σµ = (1,σ) and σµ = (1,−σ). (3.2)

Here σi’s are the usual Pauli spin matrices. Using eqs. (3.1) and (3.2), we can write
the chirality matrix,

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3, (3.3)

as

γ5 =
−1 0

0 1

 . (3.4)

Since (γ5)2 = 1, the eigenvalues of the chirality matrix are ±1.
We denote the eigenfunctions of the chirality matrix with eigenvalues 1 and −1

by ψR and ψL, respectively:

γ5ψR = ψR, (3.5)

γ5ψL = −ψL. (3.6)

The chiral field ψR is called the right-handed field and ψL the left-handed field.
It is always possible to split a generic spinor ψ into it’s right-handed and left-

handed components:
ψ = ψR + ψL, (3.7)

where

ψR = 1 + γ5

2 ψ, (3.8)

ψL = 1− γ5

2 ψ. (3.9)
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Often it is also useful to define the chirality projection operators

PR ≡
1 + γ5

2 , (3.10)

PL ≡
1− γ5

2 . (3.11)

We are now ready to derive the Hamiltonian for oscillating neutrinos which
propagate in medium. Consider neutrino scattering on electrons. Neutrinos interact
with matter only through weak interaction (if we neglect gravity), that is through
charged-current (CC) or neutral current (NC) reactions. The corresponding Dirac
equation in momentum space reads [25]

((/p−mi)δij + Σij)ψj = 0, (3.12)

where p is the neutrino four-momentum, i and j are flavor indices, and Σij is the
self-energy function. The lowest order thermal contributions to neutrino propagators
can be obtained by calculating the one-loop self-energy diagrams shown in fig.(1).
All active neutrinos are refracted in the thermal background due to the NC processes,
fig.(1) parts b and c. However, in normal matter, which consist of quarks and
electrons, there are no neutrinos present and we can neglect the Z-loop correction.
What is more, the tadpole-correction is the same for all active neutrino flavors so it
produces just an overall phase factor, and it does not affect neutrino mixing. We can
conclude that the NC thermal corrections do not affect active neutrino mixing and
therefore they do not affect the neutrino oscillation probabilities in normal matter. It
is worth to notice that this is not the case in the early universe where neutrinos are
part of the heat bath. Consider, for instance, a situation in which the asymmetries
of νe and νµ are different. Then corrections arising from the Z-loops, fig.(1b), are
different for νe and νµ which affect νe ↔ νµ mixing and this can further affect the
oscillation probabilities, see ref. [26] for details.

In the case of the CC interactions it is a whole new story. Only electron neutrinos
can interact with ordinary matter by coherent CC interactions. This follows simply
from the conservation of the lepton number and from the fact that in normal
matter there are no other charged leptons than electrons. Due to this and the above
discussion about the NC interactions, we need to consider only the W-loop correction.

It is straightforward to calculate the W-loop self-energy correction starting from



16

W

νl νll

(a)

νl νlνl

Z

(b)

νl νl

Z

f

(c)
Figure (1) One-loop thermal neutrino self-energy corrections to neutrino
propagators: a) W-loop, b) Z-loop, and c) Tadpole.

the low-energy CC weak interaction Lagrangian, but in this thesis we omit the exact
derivation and give just the result:

Σij = Veij
1
2γ

0(1− γ5), (3.13)

with
Veij = UeiU

∗
ejVe = UeiU

∗
ej

√
2GFne, (3.14)

where ne is the electron number density. Using the exact form of the self-energy
function (3.13), the Dirac equation (3.12) can be written as

[
(/p−mi)δij + Veij

1
2γ

0(1− γ5)
]
ψj = 0, (3.15)

⇔
[
(γ0p0 + γlpl −mi)δij + Veij

1
2γ

0(1− γ5)
]ψLk

ψRk

 = 0, (3.16)
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We can write eq. (3.16) alternatively as a pair of equations:


(p012 + σ · p)ψLj + VeijψLj −mj12ψRj = 0

(p012 − σ · p)ψRj −mj12ψLj = 0.
(3.17)

Let φλ be the helicity eigenstates satisfying the eigenvalue equation

p · σφλ = λ|p|φλ, (3.18)

where λ labels the spin state of the spinor. One can always decompose a generic
four-component spinor as a tensor product of two-component spinors:

ψλ =
aλR
aλL

⊗ φλ, (3.19)

where aλR/L are complex numbers. Using the eigenvalue equation (3.18) and decom-
position (3.19), we can write the Dirac equation (3.17) as


(p0 + λ|p|)aλLj + Veija

λ
Lj = mja

λ
Rj

(p0 − λ|p|)aλRj = mja
λ
Lj,

(3.20)

and with little effort further as

[
(p2

0 − |p|2 −m2
i )δij + (p0 − λ|p|)Veij

]
aλLj = 0, (3.21)

when we assume that the components of a are real.
The dispersion relation, i.e. the energy eigenstates of the propagating neutrinos,

is given by the determinant of eq. (3.21):

det
(
p2

0 − ω2
i + (p0 − λ|p|)Veij

)
= 0 (3.22)

with ω2
i = |p|2 +m2

i .
To avoid unnecessary mathematical complexity consider mixing between two

neutrino flavors. We choose the mixing matrix to be

U =
 cos(θ) sin(θ)
− sin(θ) cos(θ)

 , (3.23)
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where θ is the vacuum mixing angle. From the definition of Veij (3.14) it follows that

Ve11 = cos2(θ)Ve, Ve22 = − sin2(θ)Ve,

Ve12 = Ve21 = sin(θ) cos(θ)Ve = 1
2 sin(2θ)Ve.

(3.24)

Since neutrinos are ultra-relativistic particles we can approximate p0 ≈ |p|, and
because there are only left-handed neutrinos in the SM we can set λ = −1. Using
these we obtain from eq. (3.22) that

det
(
p2

0 − |p|2 −m2
j + (p0 + |p|)Veij

)
= 0, (3.25)

⇔ (p0 − |p|)2 − (p0 − |p|)
(−m2

1 −m2
2

2|p| + Ve11 + Ve22

)

+
(
Ve11 −

m2
1

2|p|

)(
Ve22 −

m2
2

2|p|

)
− V11V22 = 0,

(3.26)

of which solutions are

p0 − |p| =
m2

1 +m2
2

4|p| − Ve11 + Ve22

2 ±

(δm2

2|p| + Ve22 − Ve11

)2
+ 4Ve12Ve21

1/2

. (3.27)

Here we used a shorthand notation for the squared mass differences: δm2 = m2
1−m2

2.
From eq. (3.27) we can immediately read off the energy eigenvalues in matter:

Em
1,2 = |p|+ m2

1 +m2
2

4|p| − Ve11 + Ve22

2 ±

(δm2

2|p| +Ve22−Ve11

)2
+4Ve12Ve21

1/2

. (3.28)

Especially, we notice that

Em
2 − Em

1 =
(δm2

2|p| + Ve22 − Ve11

)2
+ 4Ve12Ve21

1/2

=
(Ve −∆ cos(2θ))2 + ∆2 sin2(2θ)

1/2

≡ ∆m

(3.29)

with ∆ = δm2/2|p|. Now we can express the matter eigenenergies in a compact form:

Em
1,2 = |p|+ m2

1 +m2
2

4|p| − Ve11 + Ve22

2 ±∆m, (3.30)
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and what is more, we can write eq. (3.21) as

Em
j a

λ
Lj ≈

[(
|p|+ m2

i

2|p|
)
δij − Veij

]
aλLj, (3.31)

where Em
j is given by eq. (3.28). It is possible to write eq. (3.31) also in a matrix

form:
Hm |νi〉 = Em |νi〉 , (3.32)

where

Em =
Em

1 0
0 Em

2

 and Hm =
E1 0

0 E2

− U
Ve 0

0 0

U † (3.33)

with U as the mixing matrix. From here it is easy to recognize that eq. (3.32) is
just the usual Schrödinger equation and we can directly read off the Hamiltonian for
neutrinos propagating in matter.

Even if we considered only two flavor mixing, the derivation of the Schrödinger
equation in the case of N neutrino flavors proceeds exactly as above. The only
difference is that the energy eigenstates have to be computed numerically. We also
ignored terms originating from the NC processes, but we could have easily taken
those terms into account. They would just add one more term to the Hamiltonian:

−U

V NC
i 0
0 V NC

j

U †. (3.34)

When neutrinos propagate in medium there exist important damping effects
which we have omitted so far, for example the coherence damping. These damping
effects cause inter alia that massive neutrino states, which have the same momentum,
can have a continuous distribution of possible energy eigenvalues instead of just a
few discrete eigenstates, as one could expect. However, in practice one has to assume
that there exists only discrete energy eigenstates or the problem would become
remarkably more complicated. States corresponding to the discrete eigenenergies
are known as quasistates, and in the spirit the approximation scheme is know as the
quasiparticle approximation. In sec.(5) we will discuss more about the quasiparticle
approximation. Furthermore, the coherence damping, which arises due to incoherent
neutrino collisions, can have significant impact on neutrino oscillation and it is



20

discussed in sec.(3.2).
Before moving to investigate quantum damping, lets let us analyze in more

detail the dispersive matter effects on neutrino propagation. One of the main points
of analyzing the time evolution of neutrinos is the choice of basis in which one
works. Equation (3.32) is expressed in the flavor basis, but when investigating
neutrinos in matter it is more convenient to go to a new basis called by the matter
(eigenstate) basis

{
|ν̃I〉

}
, i.e. the (effective) mass eigenbasis in matter. It is defined

by demanding that it diagonalizes the full matter Hamiltonian in eq. (3.32). These
matter eigenstates are related to the flavor states by a unitary matrix in a similar
way as in vacuum:

|νi〉 =
∑
K

Ũ∗iK |ν̃K〉 , (3.35)

where the capital letters denote the matter eigenstates, and the unitary matrix Ũ is
called the effective leptonic mixing matrix and it can be parameterized in a similar
manner as in vacuum. The only difference between U and Ũ is that in the effective
leptonic mixing matrix the mixing parameters are replaced by effective parameters
which are denoted by tildes, e.g. θ̃. 1 The matter Hamiltonian in the new basis can
be obtained by transformation

H̃m = Ũ †HmŨ , (3.36)

where

Ũ =
 cos θ̃ sin θ̃
− sin θ̃ cos θ̃

 , (3.37)

since we are considering two neutrino mixing. From the diagonalization of the matter
Hamiltonian, i.e. from eq. (3.36), one obtains relation for the effective mixing angle:

sin2(2θ̃) = ∆2 sin2(2θ)
(∆ cos(2θ)− Ve)2 + ∆2 sin2(2θ)

=
( ∆

∆m

)2
sin2(2θ).

(3.38)

1We switched our notation for the flavor eigenstates and the effective mass eigenstates. We are
studying neutrino propagation in matter also in the following chapters, but we are using Greek
letters to denote the Dirac indices. Therefore, we changed our notation already in this chapter in
order to make it less confusing.
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An interesting consequence of eq. (3.38) is that the effective mixing angle can have
any value regardless of the vacuum mixing angle. Especially at resonance the effective
mixing angle becomes π/4 leading to resonant condition:

∆ cos2(2θ) = Ve ⇐⇒ δm2

2E cos(2θ) =
√

2GFne. (3.39)

This means that at resonance mixing between neutrino flavors is maximal and if
the resonance region is wide enough, there can be total transitions between the two
flavors considered here. This effect was discovered by Mikheev and Smirnov based
on earlier work on matter effects by Wolfstein, and it is called the MSW-effect as
discussed in the introduction of this section. Resonance can exist only if θ < π/4
because Ve is positive in normal matter, we have chosen δm2 to be positive and
cos(2θ) < 0 if θ > π/4.

On the contrary, for suitable matter densities (outside of the resonance region)
there can be strong suppression of the oscillation probability caused by the matter
potential. This strong suppression of the mixing is the analog of the "Turing paradox"
in neutrino physics. According to the Turing paradox (or the "quantum zeno effect")
quantum mechanical time evolution of a particle can be stopped by measuring the
system frequently enough with respect to some chosen observable. This means that
one can freeze out the system in it’s initial state by measuring it frequently enough.

Similar phenomenon can happen when neutrinos propagate in medium. Every
time when neutrino interacts with matter the time evolution of a neutrino state
is disturbed. 2 Thus, if the average time between collisions is order of or shorter
than the oscillation time (time that it takes on average from a neutrino to oscillate,
e.g. change its flavor), the neutrino state can not evolve and the neutrino is frozen
to some state. In other words, if coherence is slow process when compared to the
interaction processes, neutrino states can not evolve but neutrinos may decay to
other particles due to the interactions. It is not hard to see that this kind of process
can have a huge effect on neutrino oscillation probabilities if the matter is dense
enough. However, since neutrinos interact with matter very weakly, the existence of
strong matter suppression requires enormous densities which can be reached only in
extreme conditions, like in neutron stars or in the early universe.

2These interaction processes can be thought as measurements which stop the time evolution of
the neutrino states.
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3.2 Hard collisions and damping

When the matter Hamiltonian for oscillating neutrinos was derived in sec.(3.1), no
damping effects were considered. We can not, however, neglect these phenomena
in general, and they can have a huge impact on neutrino oscillations. In general
damping effects can be divided into two categories: decoherence-like damping and
decay-like damping. Here we will concentrate on the former one but the latter one
can be added to the developed formalism. An example of the decay-like damping is
the Landau damping.

In addition to the coherent forward scattering of neutrinos with the medium,
there can be incoherent scatterings. In these collisions neutrinos interact with the
medium in such a way that the coherent evolution of a neutrino state is interrupted,
and the neutrino state collapses into some state νi with some specific probability. In
a way one could describe these scattering events as measurements since they have
similar effect on neutrino states as measurement has. If the time between these
collisions is the order of or less than the oscillation time, coherent evolution of the
neutrino states may be completely lost and the neutrino states are frozen to their
initial values. This kind of damping is called the coherence damping.

Due to these damping effects the usual Hamiltonian formalism is not the optimal
way to describe the dynamical evolution of neutrino states. Before moving to discuss
the more general cQPA formalism, we consider the derivation of the density matrix
formalism. It is simpler than the cQPA formalism but it is capable of taking into
account finite temperature matter effects, including the damping terms. The density
matrix formalism works also as an introduction to the cQPA formalism. The following
discussion summarizes ref. [26] and all of the presented results are taken from there.
We will also follow the notation of ref. [26] even if it differs from the notation used
elsewhere in this thesis.

Density operator which describes the neutrino state (2.24) with a fixed momentum
k is defined to be

ρk(t) =
∑
a,b

pa,b |k; a〉 〈k; b| , (3.40)

where a and b label the neutrino flavors and pab = cac
∗
b . In general, density matrix is

not diagonal, and for example the matrix elements of a fully coherent density matrix
describing a pure state |ψ〉 = ca |νa〉+cb |νb〉 is ρ = |ψ〉 〈ψ| which has components ρaa =
|ca|2 and ρab = cac

∗
b . According to the standard quantum mechanical interpretation
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the diagonal elements give the probability for the neutrino system to be found from a
specific pure state. On the other hand, the off-diagonal elements describe the degree
of coherence in the system, that is they give information about the pureness of the
neutrino state.

The time evolution of the density matrix can be written in terms of the time
evolution operator and the density matrix at time t = 0:

ρk(t) = e−iHtρk(0)eiHt. (3.41)

Here H is the vacuum Hamiltonian, i.e. the first matrix in eq. (3.33) which consists
of the energy eigenstates. From equation (3.41) it follows that if we know the density
matrix at some instant of time, we can figure it out at any later time t.

Above the density matrix describes only neutrino states. However, we are
considering situation in which neutrinos propagate in medium. This means that we
have to define a more general density matrix which takes into account the thermal
background:

ρtot =
∫ d3k

(2π)3Ek
nν(k, T )ρk ⊗ ρbg, (3.42)

where ρk is given by eq. (3.40), nν(k, T ) is the thermal distribution function of
neutrinos and ρbg is the density matrix which describes the rest of the system. In
eq. (3.42) we assumed that the background is in thermal equilibrium, and there is
neither coherence between different k states nor in the background nor between the
neutrino states and the background. The background density matrix is defined as

ρbg =
∫

dα |α〉 〈α| , (3.43)

where the integral contains both the discrete quantum numbers, like spins, and
the continuous quantum numbers, for example the momentums of the background
particles. In other words, ρbg contains all the rest of the degrees of freedom which
are not included in the neutrino density matrix ρk. It is convenient to normalize the
full density matrix as

Tr[ρtot] = Nν(T )
∑
i

Ni(T ), (3.44)

where Nν(T ) is the number of the neutrino states and Ni(T ) is the particle number
of species i.
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Our goal is to figure out the evolution of the average neutrino flavor content
which can be obtained from relation

〈pab〉 = 1
Nν(T )

∫ d3k
(2π)3Ek

nν(k, T )pab(k). (3.45)

The first step towards the solution of eq. (3.45) is to define the full density matrix
for a fixed momentum:

ρtot(k) = ρk ⊗ ρbg. (3.46)

Next we notice that since the neutrino flavor is conserved in elastic collisions, the
full density matrix can be written after an elastic collision as

ρ′tot(k) =
∑
a,b

pab(k)
∫

dαSa |a; k, α〉 〈α,k; b|S†b , (3.47)

where Sa/b is the usual scattering matrix acting on subspaces a/b with unitarity
relation SaS†a = 1, and the neutrino states were combined with the background states.
However, one can write these states separately whenever it is needed. The flavour
oscillations are described by the reduced density matrix ρ′(k) which is obtained by
taking projections of eq. (3.47) with respect to the neutrino momentum and the
background degrees of freedom. The resulting equation is

ρ′(k) =
∑
a,b

pab(k)
[ ∫

dα 〈k, α|S†bSa |k, α〉
]
|a〉 〈b| . (3.48)

Lets consider now a special case in the early Universe and assume that there
exist just two neutrino flavors. One of these flavors is active and the other one is
sterile. This specific situation is a really interesting one since active-sterile neutrino
mixing could in principle generate lepton asymmetries, which would in turn affect, for
instance, the primordial nucleosynthesis. We assume now that the active neutrino is
electron neutrino and it is denoted by index e while sterile neutrinos are labelled with
index x. In this case Se = 1 + iTe and Sx = 1, where the T -matrix contains all the
interactions. Noting that ρab(k) = 2Ek

∑
iNi(T )pab(k), one obtains the background

corrections to the equation of motion for pex:

dpex(k)
dt |bg = −Λkpex(k), (3.49)
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where
Λk ≡

1
Ek

∫
dα 〈k, α| iTe |k, α〉 . (3.50)

Since the early Universe can be considered as a dilute gas, we can approximate
that the background consists of one particle states. This means that the T-matrix
describes 2-2 forward elastic scattering processes. When one remembers that the
integral in eq. (3.50) sums over the spins and momenta of the one particle states, it
follows then from the optical theorem that

Λk =
∑
i

Ni(T )
(1

2〈vrelσ
i(k)〉+ i〈Re

{
T ie(k)

}
〉
)
. (3.51)

Here σi is the elastic cross section, vrel is the relative speed between the neutrinos
and the background particles, the sum is taken over all of the particle species present
in the background, and the angle brackets denote thermal averaging.

It can be shown that the imaginary part of Λ corresponds to the background
correction of the self-energy function. This self-energy function can be absorbed
complete into the Hamiltonian when considering the equation of motion for the
density matrix. This is in complete analogy to a situation from which we have already
seen an example of in this thesis: the neutrino vacuum Hamiltonian transforms into
the matter Hamiltonian when we absorb the self-energy function into it. The real
part of Λ, however, can not be absorbed into the Hamiltonian. This part corresponds
to the inelastic scattering of neutrinos and, as discussed earlier in this section, it is
responsible for the damping of the oscillations.

In the derivation of eq. (3.49) it was assumed that all of the neutrino collisions
were elastic. It turns out that this approximation is not, after all, necessary: since
the system is in thermal equilibrium, it follows that after each inelastic collision there
must be another inelastic collision to maintain the equilibrium. The combination of
these two collisions is then effectively equal to one elastic collision.

At this point we have derived most of the results which are needed to obtain the
time evolution of the density matrix describing neutrinos propagating in medium.
Our next task would be to specify the interactions and then find out the average
flavor of a neutrino state by using eq. (3.45). However, let us consider a simpler
situation by making the replacement

〈pab(k)〉 → pab(〈k〉), (3.52)
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i.e. we assume that the ensemble average evolves and is well represented by the
evolution of the mean value. In the early Universe this turns out to be a sufficient
approximation for our purposes. From this approximation it follows that in eq. (3.51)
we have to also make the replacement

〈vrelσ(k)〉 → vrelσ(〈s〉 = 2〈ωk〉2) = σ, (3.53)

where 〈ωk〉 is the neutrino energy eigenstate in matter.
It is more convenient to parametrize the density matrix in terms of the polarization

vector P. The matrix pab can be written in terms of P as

pab(t) = 1
2(1 + P(t) · σ)ab. (3.54)

The polarization vector can be related to the flavor content of a neutrino state:
Pz = 1 corresponds to a situation in which the state consists only of νe while Pz = −1
implies that the state is pure νx state. In other words, Pz gives the excess of electron
neutrinos over sterile neutrinos in the sate. For this reason (in the flavor basis) the
vector P is called the polarization vector. The dynamical evolution of the polarization
vector is described by equation 3

dP(t)
dt = V×P−DPT , (3.55)

where the last term in the right hand side arises due to quantum damping. It is
possible to get a relation between the matter Hamiltonian and the vector V:

H = 1
2V · σ. (3.56)

Moreover, V can be divided into vacuum and medium parts:

Vvac = ∆0 sin 2θ0êx −∆0 cos 2θ0êz,

Vmed = Veê,
(3.57)

where Ve is the effective energy of the electron neutrino in the early Universe, see eq.
(2.23) in ref. [26]. Lastly, the damping factor can be straightforwardly read out from

3The damping term is proportional to the transverse component of the polarization vector since
neutrino interactions with the background particles are in practice flavor diagonal.
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eq. (3.51):
D =

∑
i

1
2Ni(T )σi(T ). (3.58)

What is left to do is to determine the exact form of the damping factor D.
Nowadays there exist machine-readable numerical data files where the damping
factor has been calculated at a wide range of temperatures, see ref. [27] and
references therein. Alternatively, one can reasonably approximate the scale of the
damping factor in small temperature scales, for example in [26] it is approximated
as

D ≈ 0.25G2
FT

5 (3.59)

for me . T . mµ.
Now we have everything that is needed to figure out the density matrix describing

oscillating neutrinos in medium. We do not perform the exact calculation here, but
the process is simple: First, one solves the dynamical evolution of the polarization
vector using eq. (3.55). Then, the evolution of the average neutrino flavor is figured
out by using eqs. (3.45) and (3.52) - (3.54). Numerical results of this problem can
be found for example from ref. [26].

In the last couple of pages we have introduced a general formalism which describes
neutrino oscillations in matter while including quantum damping effects. In ref.
[26][p.771-773] an instructive example is presented which explains in terms of P and
V vectors how the neutrino states evolve, how the MSW-resonance arises, and the
effects of damping. We do not go through this example here, but we present the
main conclusions shortly. Recall that Pz = 1 corresponds to a situation in which the
state is pure νe state and similarly Pz = −1 implies that the state is pure νx state.
In this case the polarization vector P precesses around V as time passes and the
MSW-resonance occurs when V is perpendicular to the z-axis.

The consequence of damping is that the transverse part of the polarization vector
PT shrinks. A situation in which the damping parameter D is large or the system is
under it’s influence long time, the coherent evolution of the system is lost and the
oscillation is disturbed. This corresponds to a situation in which the polarization
vector is parallel to the z-axis, i.e. Pz = ±1, and the fractions of the νe and νx states
are frozen to some fixed values which are given by Pz. This is exactly the same
situation about which we discussed in the beginning of this section, but now it is
expressed in terms of the vectors P and V.
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4 The Quantum transport theory approach

Quantum field theory (QFT) is a combination of quantum mechanics, classical field
theory and special relativity. When one talks about QFT, one is often referring to the
standard QFT in vacuum. If the energy scales of the particles under investigation are
much larger than the temperature of the system and the density of the medium is low
(that is µ� k and T � k, where µ is the chemical potential, T is the temperature
of the heat bath and k is the momentum of the particles), interactions between the
particles and their surroundings can be neglected and the system is treated in zero
temperature limit. This is the heart of the vacuum QFT and makes it convenient to
study transition amplitudes which describe the system completely. However, there
are many situations in which thermal or finite density effects cannot be neglected,
for instance in cosmology and in the theory of heavy ion collisions. This means that
new kinds of methods are needed to handle these cases.

Finite temperature field theory or thermal field theory (FTFT) composes of
methods which take into account effects resulting from finite temperature. In
FTFT one is interested in thermal expectation values of observables rather than the
transition probabilities. There are two formulations of FTFT which are widely used:
the imaginary time and the real time formalism.

The imaginary time formalism, also known as the Matsubara formalism, is the
oldest and the most used formulation of the field theory at finite temperature. It is
based on the notion that a statistical ensemble in equilibrium at finite temperature
can be described by a partition function, which is fully determined by the known
density functional ρ̂ = exp{−βĤ}, and expressed in terms of path integrals. In the
end real-time observables are obtained by analytic continuation. A more detailed
discussion about the Matsubara formalism can be found e.g. from refs. [28, 29].

In this thesis we are mainly interested in systems out-of-equilibrium. However,
the imaginary time formalism can not be used to study non-equilibrium situations.
This follows from the fact that in general it is not possible to form a partition
function at finite temperature describing out-of-equilibrium systems, because then
the underlying density functional ρ̂ is not known. On the contrary, the real time
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Re(t)

Im(t)

Figure (2) The Keldysh path in complex time.

formalism can be made to apply also to systems out-of-equilibrium. In addition,
one benefit of the real time formalism is that there is no need to perform analytic
continuations to obtain physical (real time) observables. There are a few different
ways to formulate the real time theory, but here we will consider only the closed
time path (CTP) formalism based on the Keldysh time path shown in fig.(2). An
interested reader can check for instance refs. [28–30] for more thorough treatment of
the subject.

In this chapter we firstly introduce the CTP formalism in terms of two-point
functions and investigate some useful properties of these correlators. After this, we
introduce the contour Schwinger-Dyson equation and derive the Kadanof-Baym (KB)
equations from it. Lastly, we express the KB equations in Wigner space and rewrite
them in an instructive form from the viewpoint of gradient expansion. This chapter
will mainly follow the outlines and notations of refs. [31–33].

4.1 CTP formalism and Schwinger-Dyson equation

The CTP (or Schwinger-Keldysh) formalism was developed by Schwinger [34] and
Keldysh [35]. The main point of the CTP formalism is that the real time variable
is extended to a closed time path from some initial time tin (often taken to be at
−∞) to final time tf (often taken to be at ∞) and then back to tin. This defines
the so called Schwinger-Keldysh path in complex time which is shown in fig.(2), and
makes it possible to study expectation values instead of the transition probabilities.
In other words, in the CTP formalism we are studying ”in-in” correlators instead of
the standard QFT ”in-out” correlators.4

In this thesis, and in QFT generally, the 2-point functions (Green’s functions)

4By the ”in-in” correlators we mean that the expectation values are 〈in|A |in〉 instead of the
standard QFT ”in-out” transition amplitudes 〈in|A |out〉.
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are of special interest. We define a path ordered 2-point function (propagator) along
the closed time path C:

iSij,αβ(u, v) = 〈TC [ψi,α(u)ψ̄j,β(v)]〉 ≡ Tr
{
ρ̂TC [ψi,α(u)ψ̄j,β(v)]

}
, (4.1)

where ψ is the fermionic field, u and v are complex variables along the Schwinger-
Keldys path, ρ̂ is some unknown density operator which describes properties of the
system and TC defines time ordering along the contour C. Time ordering in the
contour C is such that the upper branch C+ in fig.(2) is earlier in time than the
lower branch C−. When we express the 2-point correlator (4.1) in terms of real time
variables, which run from tin to tf, it splits into four different parts (we will suppress
the flavor indices (i, j) and the Dirac indices (α, β) when there is no risk of confusion):

iS<(u, v) ≡ −iS+−(u, v) ≡ 〈ψ̄(v)ψ(u)〉,

iS>(u, v) ≡ −iS−+(u, v) ≡ 〈ψ(u)ψ̄(v)〉,

iSF (u, v) ≡ iS++(u, v) ≡ 〈T [ψ(u)ψ̄(v)]〉,

iSF̄ (u, v) ≡ iS−−(u, v) ≡ 〈T̄ [ψ(u)ψ̄(v)]〉.

(4.2)

Here T (T̄ ) is the ordinary (reversed) time ordering operator, u0 and v0 are real
time components, and plus and minus signs indicate how the time coordinates of u
and v are oriented on the contour C. Plus sign corresponds to the upper (positive)
branch and minus sign to the lower (negative) branch, for example iS+− corresponds
to a situation in which u0 is on the positive branch and v0 is on the negative brach,
i.e. u0 is earlier in time than v0. We can recognize that SF and SF̄ are the Feynman
(chronological) and the anti-Feynman (anti-chronological) propagators which can be
written as

S++(u, v) = θ(u0 − v0)S>(u, v)− θ(v0 − u0)S<(u, v),

S−−(u, v) = θ(v0 − u0)S>(u, v)− θ(u0 − v0)S<(u, v).
(4.3)

In addition, S<,> are called the (2-point) Wightman functions and they are related
to the self-correlation of ψ between the space time points u and v. These Wightman
functions are in a key role in this thesis since we can figure out the dynamical
evolution of the system by investigating them.
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In the following sections it turns out to be convenient to define a few more
propagators (Green’s functions), which we shall introduce now and list some of their
useful properties. First, we define the retarded and advanced propagators:

Sr(u, v) ≡ θ(u0 − v0)(S> + S<) = SF + S<,

Sa(u, v) ≡ −θ(v0 − u0)(S> + S<) = SF − S>.
(4.4)

From eqs. (4.3) and (4.4) it follows then immediately that the propagators obey
hermicity relations:

[iSs(u, v)γ0]† = iSs(v, u)γ0, (4.5)

and
[iSr(u, v)γ0]† = −iSa(v, u)γ0, (4.6)

where s =<,>. The Hermicity properties of the retarded and advanced propagators
suggest us to divide the 2-point function into Hermitian and Antihermitian parts as

SH ≡ 1
2(Sa + Sr) and A ≡ 1

2i(S
a − Sr) = i

2(S> + S<), (4.7)

where A is called the spectral function. Using the definition of the propagators (4.4),
it easy to show that SH and A obey the spectral relation:

SH(u, v) = −isgn(u0 − v0)A(u, v). (4.8)

The path ordered 2-point Green’s function SC(u, v) obeys the contour Schwinger-
Dyson equation [30, 36]:

∫
C

d4z S−1
0 (u, z)SC(z, v) = δ

(4)
C (u− v) +

∫
C

d4zΣC(u, z)SC(z, v), (4.9)

where S−1
0 is the inverse free fermion propagator, S is the full fermion propagator

(4.1), Σ is the self-energy function and the contour time delta function is defined as

δ
(4)
C (u− v) = δC(u0

C − v0
C)δ3(u− v). (4.10)

The self-energy function is not specified, but in general it couples the 2-point functions
to higher n-point functions. It can be derived perturbatively for example using the
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2-particle irreducible effective action. The exact form of the self-energy is [37, 38]

Σab ≡ −iab δΓ2[S]
δSba(v, u) , (4.11)

where Γ(2) is the 2PI effective action and indices a, b = + or − refer to the position
of the arguments of u and v, respectively. However, the exact form of the self-energy
function is not relevant for us right now and we will discuss about it later on.
Currently it is enough to know that similar decomposition as (4.2) holds for ΣC .

4.2 Kadanoff-Baym equations

We want to write the Schwinger-Dyson equation (4.9) in a different form to separate
the dynamical and spectral properties of the system. This decomposition makes the
analysis of the system more transparent and easier. To begin with, we list some
useful identities for the contour integral and contour time delta function which follow
when we express the complex Keldysh time in terms of real time variables:

∫
C

d4z → Σaa
∫ ∞
tint

dz0
∫
V

d3z , (4.12)

δC(u0
C − v0

C)→ aδabδ(u0 − v0), (4.13)

and
(/k +m)S0(u, v) ≡ δC(u0 − v0) = σ3δ(u0 − v0). (4.14)

Here σ3 is the usual Pauli matrix and a = ±1 denotes on which branch the time
argument lies. The additional a factors in the integral and in the delta function
appear since the lower branch C− runs backward in time. Using eqs. (4.10) and
(4.12)-(4.14), we can immediately write the Schwinger-Dyson equation (4.9) in a
matrix form:

S̃−1
0 (u, z) ∗ S(z, v) = σ3δ

(4)(u− v) + Σ(u, z) ∗ σ3S(z, v), (4.15)

where

S̃−1
0 =

S−1
0 0
0 S−1

0

 , S =
SF −S<

S> SF̄

 and Σ =
ΣF −Σ<

Σ> ΣF̄

 . (4.16)
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We defined a shorthand notation ∗ for the convolution integral

f ∗ g = (f ∗ g)(u, v) = f(u, z) ∗ g(z, v) ≡
∫ ∞
tint

dz0
∫
V

d3z f(u, z)g(z,v), (4.17)

and we also suppressed the arguments of the propagators to simplify the notation.
Writing down the matrices in eq. (4.15) explicitly, we get a set of equations

S−1
0 ∗ SF = ΣF ∗ SF + Σ< ∗ S> + δ(4), (4.18)

S−1
0 ∗ S< = ΣF ∗ S< − Σ< ∗ SF̄ , (4.19)

S−1
0 ∗ S> = Σ> ∗ SF − ΣF̄ ∗ S>, (4.20)

S−1
0 ∗ SF̄ = −Σ> ∗ S< − ΣF̄ ∗ SF̄ − δ(4). (4.21)

It is handy to notice that we can derive alternative forms for the retarded and
advanced propagators using definitions (4.4):

Sr = −SF̄ + S> and Sa = −SF̄ − S<, (4.22)

which also hold for Σ. Using these definitions, we can write eq. (4.19) as

S−1
0 ∗ S< = ΣF ∗ S< − Σ< ∗ SF̄ , (4.23)

⇔ S−1
0 ∗ S< = [Σr − Σ<] ∗ S< + Σ< ∗ [Sa + S<], (4.24)

⇔ [S−1
0 − Σr] ∗ S< = Σ< ∗ Sa. (4.25)

For eq. (4.21) we get

S−1
0 ∗ SF̄ =− Σ> ∗ S< − ΣF̄ ∗ SF̄ − δ(4), (4.26)

⇔ −S−1
0 ∗ [S< + Sa] =− [Σa + Σ<] ∗ [Sa + S<]− Σ> ∗ S< − δ(4), (4.27)

⇔ [S−1
0 − Σa] ∗ Sa =− S−1

0 ∗ S< + S−1
0 ∗ S< − [Σr − Σa] ∗ S< (4.28)

+ [Σ< + Σ>] ∗ S< + δ(4), (4.29)

⇔ [S−1
0 − Σa] ∗ Sa = δ(4), (4.30)

where we used eq. (4.24). Proceeding similarly for eqs. (4.18) and (4.20), we can
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write the set of equations (4.18) - (4.21) compactly as

(
[S−1

0 − Σp] ∗ Sp
)
(u, v) = δ(4)(u− v) (4.31)

and

(
[S−1

0 − Σs] ∗ Sa
)
(u, v) =

(
Σs ∗ Sa

)
(u− v), (4.32)

where p = r, a and as earlier s =<,>. Equations (4.31) and (4.32) are called the pole
and the KB equations, respectively. In general, the pole equations will determine the
phase space properties of the system and the KB equations describe the dynamical
evolution of the system. In the classical limit the KB equations will reduce to the
familiar Boltzmann equation for the phase space number density [39].

4.3 KB equations in the Wigner space

It turns out to be useful to separate the internal (microscopic) and the external
(macroscopic) degrees of freedom of the system from each other. This can be done
by introducing the Wigner transformation of an arbitrary 2-point function 5:

F (k, x) ≡
∫

d4r eik·rF (x+ r/2, x− r/2), (4.33)

where x ≡ (u + v)/2 is the average coordinate and k is the internal momentum
conjugate to the relative coordinate r ≡ u− v which measures the non-locality of the
coherence. In other words, r corresponds to microscopic scales and x to macroscopic
scales.

At this point it is convenient to define explicitly the inverse free particle’s Green
function S−1

0 . We consider the following CP-violating Lagrangian:

L = iψ̄ /∂ψ + ψ̄LmψR + ψ̄Rm
∗ψL + Lint, (4.34)

where m(x) = mR(x) + imI(x) is a complex, possibly spacetime dependent, mass
matrix and Lint is the interaction part of the Lagrangian (the exact form of Lint is

5At this point we take tin → −∞. In addition, the Wigner transformation is actually just the
usual Fourier transformation with respect to the average coordinate x.
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not relevant yet and it will be discussed later on). From eq. (4.34) it follows that

S−1
0 (u, v) = δ(4)(u− v)i/∂, (4.35)

since the mass is included in the retarded/advanced self-energy functions. What we
mean by this can be seen by dividing the self-energy function into real and imaginary
parts:

Σr,a(k, x) = ΣH(k, x)∓ iΣA(k, x), (4.36)

where ΣH is the Hermitian part and ΣA is the Antihermitian part of the self-energy
function. Next we separate the singular (k−independent) parts of the Hermitian
self-energy function from the non-singular (k−dependent) parts:

ΣH(k, x) = ΣH
sg(x) + ΣH

nsg(k, x). (4.37)

As noted above, the singular part of the self-energy function,

ΣH
sg(x) = m(x) + Σ̃H

sg(x), (4.38)

contains the mass term m(x) appearing in the Lagrangian (4.34). Σ̃H
sg(x) denotes

other, either exactly or approximately, local corrections. For example, at one loop
level Σ̃H

sg consists only of the tadpole diagram (1c).

Now we can go back to discuss about the Wigner transformations. By using
eq. (4.33), we can transform the pole equations (4.31) into the mixed (Wigner)
representation:

(
[S−1

0 − Σp] ∗ Sp
)
(u, v) = δ(4)(u− v), (4.39)

⇔
∫

d4r eik·r
[
S−1

0 (u, z) ∗ Sp(z, v)− Σp(u, z) ∗ Sp(z, v)
]

=
∫

d4r eik·rδ(4)(u− v),

(4.40)

⇔ e−i♦
{
S−1

0 (k, x)}{Sp(k, x)} − e−i♦{Σp(k, x)}{Sp(k, x)} = 1. (4.41)

The Moyal product, that is the ♦-operator, is a generalization of the ordinary Poisson
brackets and it is defined as

♦{f}{g} = 1
2[∂xf · ∂kg − ∂kf · ∂xg]. (4.42)
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In the derivation of eq. (4.41) we used a useful relation for the Wightman functions
[37]:

∫
d4(u− v) eik·(u−v)

∫
d4z f(u, z)g(z, v) = e−i♦{f(k, x)}{g(k, x)}. (4.43)

However, Moyal products are not practical for obtaining gradient expansions and for
this reason we need to find an another way to write eq. (4.42).

To begin with, we calculate the Wigner transformation of S−1
0 . It can be obtained

easily by using the explicit form of the inverse free fermionic propagator (4.35):

S−1
0 (k, x) =

∫
d4r eik·rS−1

0

(
x+ r

2 , x−
r

2

)
=
∫

d4r eik·rS−1
0 (u, v)

=
∫

d4r δ(4)(u− v)i/∂veik·r =
∫

d4r δ(4)(r)/keik·r = /k.
(4.44)

Next we examine the Moyal products more closely.

e−i♦{f(k, x)}{g(k, x)} =
∞∑
n=0

−i
2nn!

(
∂fx · ∂

g
k − ∂

f
k · ∂gx

)n
f · g

=
∞∑
n=0

−i
2nn!

n∑
l=0

(
n

l

)(
∂fx · ∂

g
k

)l(
− ∂fk · ∂gx

)n−l
f · g

=
∞∑
n=0

−i
2nn!

n∑
l=0

n!(−1)n−l
l!(n− l)!

(
∂fx · ∂

g
k

)l(
∂fk · ∂gx

)n−l
f · g

=
∞∑
l=0

∞∑
n=l

( i2)n−l(−i2 )l

l!(n− l)!
(
∂fx · ∂

g
k

)l(
∂fk · ∂gx

)n−l
f · g

=
∞∑
l=0

∞∑
m=0

(−i2 )l

l!
(
∂fx · ∂

g
k

)l ( i2)m

m!
(
∂fk · ∂gx

)m
f · g

= e
i
2∂
f
k
·∂gxe

−i
2 ∂

f
x ·∂gkf · g.

(4.45)

From eq. (4.45) it can be seen that the Moyal products can also be rearranged as

e−i♦{f(k, x)}{g(k, x)} =
[
e
i
2∂
f
k
·∂gx + e

−i
2 ∂

f
x ·∂gk − 1 + {mixed terms}

]
f · g, (4.46)

where e.g. (∂fk · ∂gx)(∂fx · ∂
g
k) ∈ {mixed terms}.

Now we know how to handle the Moyal products, so we can write the pole
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equation in the mixed representation (4.41) as
[
e
i
2∂

Σ
k ·∂

S
x e
−i
2 ∂

Σ
x ·∂Sk − 1 + {mixed terms}

]
{/k}{Sp(k, x)}

− e
i
2∂

Σ
k ·∂

S
x e
−i
2 ∂

Σ
x ·∂Sk [Σp(k, x)Sp(k, x)] = 1.

(4.47)

From here we notice that the mixed terms do not give any contribution in eq. (4.47).
This follows from the fact that the mixed terms differentiate the objects inside the
curly brackets with respect to k and x, and the object inside the first curly brackets
is just linear in k. Due to this linearity we can also drop all terms involving (∂k∂x)n

whenever n ≥ 2. Therefore, the pole equation (4.47) reads

[
/k + i

2
/∂x
]
Sp(k, x)− e i2∂Σ

k ·∂
S
x e
−i
2 ∂

Σ
x ·∂Sk [Σp(k, x)Sp(k, x)] = 1. (4.48)

Proceeding similarly as in the case of the pole equations, we can write the KB
equations (4.32) in the mixed space as

e−i♦
{
S−1

0 (k, x)}{Ss(k, x)} − e−i♦{Σr(k, x)}{Ss(k, x)} = e−i♦{Σs(k, x)}{Sa(k, x)},

(4.49)

⇔
[
/k + i

2
/∂x
]
Ss(k, x)− e i2∂Σ

k ·∂
S
x e
−i
2 ∂

Σ
x ·∂Sk [Σr(k, x)Ss(k, x)]

= e
i
2∂

Σ
k ·∂

S
x e
−i
2 ∂

Σ
x ·∂Sk [Σs(k, x)Sa(k, x)].

(4.50)

Combining the results, we have shown that equations (4.31) and (4.32) read in the
Wigner space as

/̂KSp(k, x)− e i2∂Σ
k ·∂

S
x e
−i
2 ∂

Σ
x ·∂Sk [Σp(k, x)Sp(k, x)] = 1, (4.51)

/̂KSs(k, x)− e i2∂Σ
k ·∂

S
x e
−i
2 ∂

Σ
x ·∂Sk [Σr(k, x)Ss(k, x)]

= e
i
2∂

Σ
k ·∂

S
x e
−i
2 ∂

Σ
x ·∂Sk [Σs(k, x)Sa(k, x)],

(4.52)

where K̂ = k + i
2∂x.
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It turns out to be useful to introduce yet another self-energy function:

Σout(k, x) ≡
∫

d4z eik·(x−z)Σ(k, z) = e
i
2∂

Σ
x ·∂Σ

k Σ(k, x), (4.53)

where the last equality can be seen as follows: First we notice that

∫ d4k

(2π)4 e
−ik·(x−z)Σout(k, x)

=
∫ d4k d4z′

(2π)4 e−ik·(x−z)e−ik·(x−z
′)Σ(x, z)

=
∫

d4z′Σ(x, z′)
∫ d4k

(2π)4 e
−ik·(z′−z)

= Σ(x, z).

(4.54)

Then by using the Wigner transformation defined in eq. (4.33), where now r = x− z,
we get

∫ d4k

(2π)4 e
−ik·rΣWig

(
k,
x+ z′

2

)

=
∫ d4k

(2π)4 e
−ik·r

∫
d4r′ eik·r

′Σ
(
x+ z′

2 + r′

2 ,
x+ z′

2 − r′

2

)

=
∫

d4r′Σ(x, z′)
∫ d4k

(2π)4 e
−ik·(r−r′) = Σ(x, z),

(4.55)

where ΣWig(k, x) denotes the Wigner transformed self-energy function. For now we use
the downstairs index Wig for clarity even if it is easy to see from the arguments which
function is expressed in the Wigner space and which is not. Expanding the self-energy
function Σ(x, z) as a Taylor series around point (k, (x+ z)/2) = (k, x− (x− z)/2)
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and integrating by parts we obtain

Σ(x, z) =
∫ d4k

(2π)4 e
−ik·rΣWig

(
k,
x+ z

2

)

=
∫ d4k

(2π)4 e
−ik·(x−z)

∞∑
n=0

(−1)n
n!

(
∂nxΣWig(k, x)

)(x− z
2

)n
=
∫ d4k

(2π)4

∞∑
n=0

(−1)n
n!

(
∂nxΣWig(k, x)

)( i
2∂k

)n
e−ik·(x−z)

=
∫ d4k

(2π)4

(
e
i
2∂x∂kΣWig(k, x)

)
e−ik·(x−z)

≡
∫ d4k

(2π)4 e
−ik·(x−z)Σout(k, x)

(4.56)

from which eq. (4.53) follows directly.

We can now return to eq. (4.50) and express it in terms of Σout(k, x). To begin
with, we notice that

e−i♦{ΣWig(k, x)}{SWig(k, x)} = e
i
2∂

Σ
x ·∂Sk e

i
2∂

Σ
k ·∂

S
x [Σ(k, x)S(k, x)]

= e
i
2∂

Σ
x ·∂Sk e

i
2∂

Σ
k ·∂

S
x

(
e
−i
2 ∂

Σ
x ·∂Σ

k Σout(k, x)
)
S(k, x)

= e
−i
2 ∂

Σ
x ·(∂Σ

k +∂Sk )e
i
2∂

Σ
k ·∂

S
x Σout(k, x)S(k, x)

= e
−i
2 ∂

Σ
x ·∂kΣout(k + i

2∂
s
x, x)S(k, x),

(4.57)

where we used that

e
i
2∂

Σ
k ·∂

S
x Σout(k, x) = Σout(k + i

2∂
s
x, x). (4.58)

In other words, we just shifted (or resummed) the self-energy function. It should
also be noted that the derivatives are partial derivatives, for example ∂Σ

x acts only
on the x coordinate of Σ. In addition, ∂k is ”total” derivative, since it acts both on
the self-energy function Σ and the propagator S.

Finally, we can write the pole equations and the KB equations (4.51) as

/̂KSp(k, x)− e
−i
2 ∂

Σ
x ·∂k

[
Σp

out(K̂, x)Sp(k, x)
]

= 1,

/̂KSs(k, x)− e
−i
2 ∂

Σ
x ·∂k

[
Σr

out(K̂, x)Ss(k, x)
]

= e
−i
2 ∂

Σ
x ·∂k

[
Σs

out(K̂, x)Sa(k, x)
]
.

(4.59)

This form of the KB equations is extremely useful for obtaining finite order gradient
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expansions. The utility of eq. (4.59) arises from reorganization of the gradients
into total derivatives which are fully controlled by the conjugate momentum, i.e.
the external variation scale, of Σ. It is also worth to point out that all spacetime
gradients acting on the correlation function S are included in the shifted (resummed)
k argument of the self-energy function. In chapter 5 the troublesome derivation of
eq. (4.59) turns out to be useful and will save us from huge amount of work. This
form of the KB equations was first derived in ref. [31].
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5 The cQPA equations and the spectral limit

We are finally at a point where we can start solving the KB equations (4.59) while
taking into account quantum coherence effects. However, this still is not easy since
eq. (4.59) contains infinite order gradients. Thus, in order to be able to solve the
set of eqs. (4.59), we need to find out some approximation scheme to truncate the
gradient expansion without losing information about the quantum coherence. Before
moving to discuss the actual approximation scheme that we use in this thesis, let us
briefly clarify some concepts.

Quasiparticle approximation is usually understood as a series of approximations
leading to discrete set of energy eigenvalues, as discussed in sec.(3.1). Otherwise
stated, in the QPA scheme the energy momentum relations are definite and the phase
space of the propagators Ss consists of sharp shell structures. Necessary conditions for
the QPA to be valid are weak interactions, slowly (adiabatically) varying background
field and translational invariant correlators, i.e. that the correlators are close to
thermal equilibrium. The QPA is one of the few known approximations which
simplifies quantum mechanical many-body problems, so it is extremely useful e.g. in
condensed matter physics.

The coherent quasiparticle approximation (cQPA) is an extension of the standard
QPA scheme, since in the cQPA one relaxes the assumption of translational invariant
correlators. From this it follows that in addition to the usual mass shell solutions
new kind of singular shell solutions appear which are absent in the usual QPA.
These new solutions are recognized to carry information about non-local quantum
coherence, for instance between particles and antiparticles. Therefore, when out-
of-equilibrium systems, where quantum coherence plays a role, are studied the
cQPA can be very useful tool. Examples of this kind of situations include inflation,
preheating, electroweak baryogenesis, leptogenesis, and neutrino flavor oscillations.
The coherent quasiparticle approximation was introduced in ref. [40] and has been
further developed in refs. [31, 33, 41–45].

In this chapter we firstly examine the necessary conditions for the coherent
quasiparticle approximation to hold. Secondly, we derive another form of the KB
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equations using the spectral function A and the Antihermitian part of the self-energy
function ΣA. Thirdly, we solve the pole equations, that is the spectral structure of
the phase space, in the cQPA limit while assuming adiabatic background. Lastly, we
use the spectral solution as an ansatz and substitute it to the full KB equations.

5.1 Weak interactions and the mean field limit

In the context of the quasiparticle approximation the limit of weak interactions means
that the interaction width is negligible and we may take the limit ΣA → 0 when
solving the phase space structure of the propagators. In this thesis we are interested
in neutrinos which do interact with matter very weakly, so this approximation is
well justified. On the contrary, when one studies the dynamical evolution of the
correlators, it is necessary to include ΣA. The reason for this is that ΣA describes how
the interactions affect the thermalization of an out-of-equilibrium system, and thus
it can not be resummed into the propagators, but the corresponding non-equilibrium
distribution has to be solved from the dynamical equations.

In general, for obtaining a spectral phase space structure for the 2-point correlators,
it is not enough to neglect terms proportional to ΣA [32]. It is also necessary to neglect
all derivatives of the background fields, except those included in the resummation,
to actually get singular shell solutions. This approximation of neglecting all but
the lowest (zeroth) order derivatives of the background field and the derivatives
included in the resummation is called the mean field (or the adiabatic) limit. The
adiabatic limit together with the assumption of the weak interactions simplify the
KB equations (4.59) extremely much and they will be the key approximations in
sec.(5.2).

5.2 The KB equations in the cQPA limit

When we solve the spectral properties of the correlators S<,> in the cQPA limit, we
write the KB equations in a slightly different form than we did in sec.(4.3). To begin
with, we recall equations for SH and A from eq. (4.7), and similar relations for the
self-energy function Σ read explicitly

ΣH ≡ 1
2(Σa + Σr) and ΣA ≡ 1

2i(Σ
a − Σr) = i

2(Σ> + Σ<). (5.1)
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Using these definitions we obtain from eq. (4.31) that

(
[S−1

0 − ΣH + iΣA] ∗ [SH − iA]
)
(u, v) = δ(4)(u− v) (5.2)

and (
[S−1

0 − ΣH − iΣA] ∗ [SH + iA]
)
(u, v) = δ(4)(u− v). (5.3)

Sum of eqs. (5.2) and (5.3) yields
(

[S−1
0 − ΣH ] ∗ SH

)
(u, v) +

(
ΣA ∗ A

)
(u, v) = δ(4)(u− v), (5.4)

while subtraction of these equations gives

(
[S−1

0 − ΣH ] ∗ A
)
(u, v)−

(
ΣA ∗ SH

)
(u, v) = 0. (5.5)

In addition, from eqs. (4.7), (4.32) and (5.1) we get that

(
[S−1

0 − ΣH + iΣA] ∗ S<
)
(u, v) =

(
Σs ∗ [SH + iA]

)
(u, v), (5.6)

⇔
(
[S−1

0 − ΣH ] ∗ S<
)
(u, v)−

(
Σ< ∗ SH

)
(u, v) =

(
Σ< ∗ iA− iΣA ∗ S<

)
(u, v),

(5.7)

⇔
(
[S−1

0 − ΣH ] ∗ S<
)
(u, v)−

(
Σ< ∗ SH

)
(u, v) = 1

2
(
Σ> ∗ S< − Σ< ∗ S>

)
(u, v).

(5.8)

Thus, we have shown that the KB equations can we written alternatively as
(
[S−1

0 − ΣH ] ∗ A
)
(u, v)−

(
ΣA ∗ SH

)
(u, v) = 0,(

[S−1
0 − ΣH ] ∗ SH

)
(u, v) +

(
ΣA ∗ A

)
(u, v) = δ(4)(u− v),

(5.9)

and

(
[S−1

0 − ΣH ] ∗ S<
)
(u, v)−

(
Σ< ∗ SH

)
(u, v) = 1

2
(
Σ> ∗ S< − Σ< ∗ S>

)
(u, v). (5.10)

Here equations (5.9) are the pole equations which fix the phase space structure of
the Wightman functions, and (5.10) is one of the two KB equations which give the
dynamical evolution of the propagators. We do not need to consider the KB equation
for the other Wightman function S> since we get it from eq. (4.3) after we have
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figured out the spectral function A.

In the mixed representation, while assuming slowly varying background fields,
the pole equations (5.9) and the KB equation (5.10) can be written as (proceeding
similarly as in section (4.3))

/̂KA(k, x)− [ΣH(K̂, x)A(k, x) + ΣA(K̂, x)SH(k, x)] = 0,
/̂KSH(k, x)−

[
ΣH(K̂, x)SH(k, x) + ΣA(K̂, x)A(k, x)] = 1,

(5.11)

and

/̂KS<(k, x)− [ΣH(K̂, x)S<(k, x) + Σ<(K̂, x)SH(k, x)] = Ccoll, (5.12)

where

Ccoll ≡ e−i♦{Σ>(k, t)}{S<(k, t)} − e−i♦{Σ<(k, x)}{S>(k, x)}

= e
−i
2 ∂

Σ
x ·∂k [Σ>

out(K̂, x)S<(k, x)]− e
−i
2 ∂

Σ
x ·∂k [Σ<

out(K̂, x)S>(k, x)]

≈ Σ>(K̂, x)S<(k, x)− Σ<(K̂, x)S>(k, x).

(5.13)

Here we dropped all gradient terms except those where ∂x is acting on S<, like
/̂KSp(k, x) term, and those self-energy terms which are obtained when Σ(K̂, x) is
acting on the Wightman function.

Before moving on let us verify the approximation of dropping the gradient terms
in eqs. (5.11) - (5.13). We recall the full KB equations (4.59), and the fact that
we are assuming adiabatic background fields. When ∂x is acting on the coherence
solution, we can estimate to a leading order that ∂xS ∼ kS with k ∼ 1/λ. Here
λ is the de Broglie wavelenght of the neutrinos and thus k ∼ 105 1/m at the very
least. It is now obvious that ∂xS can lead to a large linear shift in the k argument
of the self-energy function, and therefore we have to include these gradient terms
at least to lowest order. On the contrary, to a leading order we can approximate
(∂xΣ)(∂kS) ∼ 1/(kL)ΣS, where L is the external variation scale of the self-energy
function. Typically L is order of kilometers, e.g. in extreme dense neutron stars it
is a few kilometers and in the Earth it is dozens or hundreds of kilometers. Thus,
in most situations kL � 1 and consequently (∂xΣ)(∂kS) terms are negligible and
we can drop them out. Lastly, from the adiabatic background field it follows that
(∂xΣ)(∂kΣ)� Σ and we can also neglect these gradient terms.
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The strategy for solving equations (5.11) and (5.12) involves two steps. First,
we derive the collisionless solutions in the mean field limit. Secondly, we use this
spectral quasiparticle form as an ansatz to the full KB equation. By solving the full
KB equation we get the dynamical evolution of the shell functions. The second step
will be discussed in sections (5.3) and (5.4).

5.2.1 The spectral solution

As discussed above, we start by studying the phase space properties of the correlators.
Assume now weak interactions and the mean field limit. In general Σs ∼ ΣA and
since we are considering the limit ΣA → 0 , we have to neglect terms proportional to
ΣA also in the collision term, i.e. in the RHS of eq. (5.12). In other words, we neglect
all interaction terms and consider the collisionless situation. The pole equations
(5.11) can be written in the collisionless limit as

/̂KA(k, x)− ΣH(k, x)A(k, x) = 0,
/̂KSH(k, x)− ΣH(k, x)SH(k, x) = 1,

(5.14)

while the equation for the Wightman function, that is eq. (5.12), in the collisionless
situation is

/̂KS<(k, x)− ΣH(K̂, x)S<(k, x)− Σ<(k, x)SH(k, x) = 0. (5.15)

The Σ<SH term in eq. (5.15) only affects the phase space properties of the correlators,
and it has to be dropped consistently with the collisionless pole equations [41]. The
pole and the KB equations can hence be expressed as

[ /̂K − ΣH(k, x)]A(k, x) = 0,

[ /̂K − ΣH(k, x)]SH(k, x) = 1,
(5.16)

and
[ /̂K − ΣH(K̂, x)]S<(k, x) = 0. (5.17)

Note that in general one has K̂ in the ΣH term in equation (5.17). We are anticipating
the fact that the pole functions do not have rapidly oscillating pieces, so that in them
K̂ → k. However, in S< such solutions exist. In the end we avoid this complication
due to the fact that we only need to consider singular ΣH functions, which do not
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Figure (3) In a system where T �MZ/W the W-loop and the tadpole diagram
become effectively equal to a tadpole-like diagram where the intermediate vector
bosons are absent. Similar approximation holds for the Z-loop diagram.

have any k-dependence. Thus, the self-energy function and the propagator S< obey
exactly the same kind of relations, and since equations (5.16) - (5.17) are decoupled
it is then enough to solve either the self-energy function or the Wightman function
and we can immediately write the solution for the other one too.

The reason why we need to consider only singular parts of the self-energy function
is simple: In practice temperature of a system is usually much less than the mass
of the Z and W bosons, that is T � MZ/W

6. For this reason the non-singular
(k-dependent) part of the self-energy function becomes effectively equal to the
singular (k-independent) part of the self-energy function. Thus, we effectively have
ΣH

nsg,ij ≈ ΣH
sg,ij where the self-energies are of the same form than in eq. (3.13). This

is demonstrated at one-loop level in fig. (3).
Our goal is to find out the spectral shell solutions of the propagator and to figure

out how to parametrize the Wightman function using these solutions. In practice this
means that we have to solve eq. (5.17) using suitable basis matrices. The following
subsections follow the outlines of ref. [46].

Multiplying eq. (5.17) from both sides by γ0 and neglecting the non-singular
parts of the self-energy function, we get

[k0 + i

2∂t −
i

2α · ∇−α · k− γ0m(x)− γ0Σ̃H
sg(x)− γ0ΣH

nsg(k, x)]S<(k, x) = 0,

(5.18)

⇔ [k0 + i

2(∂t −α · ∇)−Hk(x)]S<(k, x) = 0, (5.19)

6Example of a situation when this approximation might not be valid is the early universe, but
e.g. in the sun relation T �MZ/W still holds.
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where we used eq. (4.37) and defined the matter Hamiltonian: 7

Hk,ij = (α · k)iδij − γ0miδij − γ0Σ̃H
sg,ij − γ0ΣH

nsg,ij. (5.20)

Here i and j label fermion flavors, α ≡ γ0γ and S< ≡ iS<γ0. In addition, Σ̃H
sg is the

singular part and ΣH
nsg is the non-singular part of the Hermitian self-energy function,

as defined earlier in sec.(4.3). The ultimate goal of this thesis is to show how to
derive the density matrix formalism for neutrinos propagating in matter. This means
that we can not ignore any matter effects (at the level of classical limit) in order to
get correct dispersion relations for the propagating neutrinos.

To carry the analysis further it is most convenient to go to a basis in which
the matter Hamiltonian is diagonal, i.e. the mass eigenbasis in matter. Since the
Hamiltonian is Hermitian, we can diagonalize it by a unitary transformation U .
However, we are considering an adiabatic process, so the mixing matrix U depends
on the spacetime points of the neutrinos. This means that we are actually working
in the instantaneous mass eigenbasis in matter, or in other words in a basis which is
rotating when time passes. Performing the diagonalization of the Hamiltonian leads
to equation 8

[k0 + i

2D −Hk(x)]S<(k, x) + i

2U
†(x)[DU(x)]S<(k, x)

+ i

2S
<(k, x)[DU †(x)]U(x) = 0

(5.21)

with
D = ∂t −α · ∇, (5.22)

Hk,L(x) ≡ Hk,L(x)δLN = U †Li(x)Hk,ij(x)UjN(x), (5.23)

and
S
<
LN(k, x) = U †Li(x)S<ij(k, x)UjN(x). (5.24)

The capital letters, e.g. L and N , denote the mass eigenstates in matter. We can

7Equation (5.19) is expressed in the flavor basis so due to the mass matrix the Hamiltonian is
not diagonal.

8We do not specify the rotation matrix U explicitly, since it is a deep issue and beyond the
scope of this thesis. Here it is enough to know that such matrix exists and it diagonalizes the
Hamiltonian function. This topic will be discussed in ref. [47].
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decompose eq. (5.21) in to two parts by using Hermicity, and the Hermitian part
(H) is

2k0S
<(k, x) = {Hk(x), S<(k, x)}. (5.25)

The (H)-equation (5.25) does not contain any derivatives, and thus it gives algebraic
constraint equation for the propagator S<.

In what follows we suppress the arguments k and x. It can be shown that an
arbitrary complex 4× 4 matrix in a spatially homogeneous and isotropic system can
be expressed in terms of the set

{1, γ0,γ · k̂,α · k̂, γ5, γ0γ5,γ · k̂γ5,α · k̂γ5}. (5.26)

That is, the above set forms a basis which spans the homogeneous and isotropic
subalgebra of the full Dirac algebra. Moreover, the above basis consists of elements
which are helicity-diagonal, and the last basis matrix is actually the helicity operator,
ĥk ≡ α · k̂γ5. One could wonder why we are investigating homogeneous and isotropic
system but it turns out to be extremely useful: Since we are assuming slowly varying
background field, we can effectively treat the system at each point as if it were
homogeneous and isotropic. The validity of this approximation is easy to see: In this
thesis we are especially interested in the quantum effects, like quantum coherence,
and the scale at which these effects show up is of the order of the neutrino’s de
Borglie wavelenght or less. In turn, importance of the matter effects can be estimated
by the mean free path of the particles under investigation. The de Broglie wavelenght
of neutrinos is order of 10−5 m while the neutrino mean free path is kilometers even
in extreme dense neutron stars. Difference between these two scales is huge even
if we considered extreme situation (neutron star). Thus, neutrinos propagate as
free particles between infrequent collisions and we can assume the Hamiltonian
to be locally helicity-diagonal. This means that the system is effectively locally
homogeneous and isotropic.

It is convenient to introduce the energy and helicity projection operators:

P e
k,I ≡

1
2
(
1 + e

Hk,I

ωk,I

)
and P h

k ≡
1
2
(
1 + hĥk

)
. (5.27)

Here h = ±1 is the helicity, e = ±1 is the energy sign index, and ωk,I gives the energy
eigenstates when the energy sign e (+ or −) in the projection matrix is defined.
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It is not hard to show that the projection operators P e
k,I and P e

k obey relations

Hk,IP
e
k,I = P e

k,IHk,I = eωk,IP
e
k,I , (5.28)

P e
k,IP

e
k,I = P e

k,I , (5.29)

P e
k,IP

−e
k,I = 0, (5.30)

and

ĥkP
h
k = P h

k ĥk = hP h
k , (5.31)

P h
kP

h′

k = δhh′P
h
k . (5.32)

The reason behind defining the projection operators is that for mass indices I and J
we can equally well parametrize the homogeneous and isotropic subalgebra as

P h
kP

e
k,Iγ

0P e′

k,J . (5.33)

Necessity of the γ0 matrix between the energy projection matrices is clear if one sets
I = J : in this case the base matrices would not span the homogeneous and isotropic
subspace completely if there were not the γ0 matrix.

From the above discussion it follows that we can parametrize the correlator S<

without loss of generality as

S
<
IJ =

∑
h,e,e′

P h
kP

e
k,Iγ

0P e′

k,JD
h,e,e′

k,IJ , (5.34)

where Dh,e,e′

k,IJ are unknown spacetime and energy dependent coefficients 9. Using this
parametrization of the propagator together with the energy and helicity projection

9Even if we are considering homogeneous and isotropic system, the coefficients D depend on the
spatial coordinates. This is a consequence of the fact that (globally) the background depends on the
spatial coordinates since it changes adiabatically, and thus the coefficients D can have dependence
of the spatial coordinates (e.g. momentum can be spatially dependent). However, the background
changes so slowly that at each point (locally) the system can be treated as homogeneous and
isotropic.
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operators and their properties, the constraint equation (5.25) can be written as

∑
h,e,e′

2k0P
h
kP

e
k,Iγ

0P e′

k,JD
h,e,e′

k,IJ

=
∑
h,e,e′

[
Hk,IP

h
kP

e
k,Iγ

0P e′

k,JD
h,e,e′

k,IJ + P h
kP

e
k,Iγ

0P e′

k,JD
h,e,e′

k,IJ Hk,J
]
,

(5.35)

⇔


∑
h,e[k0 − eωk,IJ ]P h

kP
e
k,Iγ

0P e
k,JD

h,e,e
k,IJ = 0∑

h,e[k0 − e∆ωk,IJ ]P h
kP

e
k,Iγ

0P e
k,JD

h,e,−e
k,IJ = 0

(5.36)

with ωk,IJ ≡ (ωk,I + ωk,J)/2 and ∆ωk,IJ ≡ (ωk,I − ωk,J)/2. When we use the
orthogonality of the projection operators, and take the helicity and energy projections
of eq. (5.35) explicitly, we finally get


[k0 − eωk,IJ ]Dh,e,e

k,IJ = 0

[k0 − e∆ωk,IJ ]Dh,e,−e
k,IJ = 0

(5.37)

for any h and e. These equations show that D’s are generalized functions, and they
have normalized spectral solutions:

Dh,e,e
k,IJ = Fm,h,e

k,IJ δ(k0 − eωk,IJ),

Dh,e,−e
k,IJ = F c,h,e

k,IJ δ(k0 − e∆ωk,IJ),
(5.38)

where Fm/c,h,e
k,IJ are unknown spacetime-dependent complex functions. The function

Fm,h,e
k,IJ parametrizes the on-shell solutions while F c,h,e

k,IJ corresponds to the coherence
shell solutions. Later on it turns out to be useful to define the particle distribution
functions as

fm,h,ek,IJ ≡ Nm,h,e
k,IJ F

m,h,e
k,IJ ,

f c,h,ek,IJ ≡ N c,h,e
k,IJ F

c,h,e
k,IJ ,

(5.39)

where Nm/c,h,e
k,IJ are normalization factors, which we choose to be

Nm,h,e
k,IJ = Tr

[
P h

kP
e
k,Iγ

0P e
k,Jγ

0
]−1/2

,

N c,h,e
k,IJ = Tr

[
P h

kP
e
k,Iγ

0P−ek,Jγ
0
]−1/2

.
(5.40)
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This choice of the normalization factors will show to be useful when the dynamical
evolution of the distribution functions is solved.

It follows from eqs. (5.34), (5.38), (5.39) and (5.40) that the Wightman function
can be parametrized as

S
<
IJ(k, x) =

∑
h,e

Nm
k,IJP

m,h,e
k,IJ fm,h,ek,IJ δ(k0 − eωk,IJ) +N c,h,e

k,IJ P
c,h,e
k,IJ f

c,h,e
k,IJ δ(k0 − e∆ωk,IJ),

(5.41)
where we defined a shorthand notation:

Pm,h,e
k,IJ = P h

kP
e
k,Iγ

0P e
k,J , (5.42)

and similarly for the other projection operators. Remarkable property of eq. (5.41)
is that all k0 dependece of the correlator S< is in the delta functions. Later on when
different momentum states are considered this fact will be of key importance. What
is more, k0 = ωk,II corresponds to the usual mass shell solution while k0 = ±∆ωk,II ,
k0 = ±ωk,IJ and k0 = ±∆ωk,IJ (I 6= J) correspond to completely novel solutions.
The latter ones are identified as the coherence shell solutions which carry information
about the flavor coherence in the particle or the antiparticle sectors separately (ωk,IJ

term), or flavor coherence between the particle and the antiparticle sectors (∆ωk,IJ

terms). In other words, for instance the on-shell function Fm,h,e
k,IJ (I 6= J) parametrizes

flavor coherence between the mass eigenstates with energies ±ωI and ±ωJ . These new
coherence solutions were first found in ref. [41] and have been further investigated in
several papers, for example [31, 33, 40–45].

5.2.2 Spectral function

In the cQPA limit the free spectral function A satisfies similar equation as the
propagator S<, see eqs. (5.16) and (5.17). We can thus parametrize the spectral
function exactly in the same way as the Wightman function (5.41):

A<IJ(k, x) =
∑
h,e

Pm,h,e
k,IJ Fm,h,e

A,k,IJδ(k0 − eωk,IJ) + P c,h,e
k,IJ F

c,h,e
A,k,IJδ(k0 − e∆ωk,IJ). (5.43)

However, the spectral function must in addition obey the spectral sum rule
∫

dk0AIJ(k, x) = πδIJ . (5.44)
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Derivation of this sum rule is simple: we know that all physical field configurations
must satisfy the canonical equal time anticommutation relation of the field operators:

{ψ(t, u), ψ†(t, v)} = −iδ(3)(u− v). (5.45)

Using equations (4.2) and (4.7) it follows then directly from the anticommutation
relation that

2A(t,u; t,v)γ0 = δ(3)(u− v). (5.46)

When one Wigner transforms this relation, the spectral sum rule (5.44) is obtained.
The spectral sum rule is enough to completely fix the on-shell functions and the

result is [46]:

Fm,h,e
A,k,IJ = eπδIJωk,I/mI and F c,h,e

A,k,IJ = 0. (5.47)

With these solutions the free spectral function becomes

A(k, x) = πsgn(k0)(/k +mI)γ0δ(k2 −m2
I)δIJ , (5.48)

where m denotes the effective mass. This is the well-known form of the spectral
function in the thermal quasiparticle limit, see [40] and references therein. From
equation (5.48) it is evident that the spectral function does not have any dependence
on the k0 = ∆ωk,IJ coherence shell solutions. In fact, this is exactly as it should
be: coherence is a dynamical phenomenon while the spectral function describes the
properties of the one-particle phase space and hence it should not contain dynamics
at all.

The point why we bothered to solve the spectral function from the pole equations
is that now we do not need to consider the KB equation for the other Wightman
function S>. We can solve it easily using eq. (4.7):

S
> = S

< + 2iA. (5.49)
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5.3 General KB equations including thermal effects

Our goal is to find out the dynamical evolution of neutrinos propagating in medium.
This means that we need to find out a closed set of equations of motion for the
on-shell functions f . The next step towards these equations is to use the spectral
solution (5.41) as an ansatz in the general KB equation (5.12). As discussed in sec.
(5.1) when solving the dynamical evolution of the system the limit ΣA → 0 is not
taken.

Before moving on to the actual calculation, let us discuss about a few important
things. Firstly, the SH-terms couple equations (5.11) and (5.12). This would make
it remarkably more difficult to obtain a closed solution for the on-shell functions.
However, it turns out that we can neglect terms proportional to SH also when we are
considering the general KB equation in the mean field limit. This term is associated
with the width of the equilibrium part of the KB equation’s solution and does not
affect perturbations. In the limit ΣA → 0 it vanishes from the KB equation. This
is non-trivial result which we shall take here for granted, see ref. [42] for some
discussion. On the other hand, we neglected these terms during the derivation of the
spectral solution and to be systematic in our calculations it is convenient to drop
these terms also now.

Secondly, difficulties arise from the infinite gradient terms appearing in eq. (5.12).
As discussed in sec.(5.2), we can not neglect terms in which Σ(K̂, x) is acting on
the coherence solutions. An another way to see this is as follows: The coherence
shell solutions are oscillating rapidly even if the background field is nearly constant.
From this it follows that the higher order gradients, e.g. in the collision term, do not
necessarily correspond to higher order derivatives of the background field and we
can not drop them out. In sec. (4.3) we developed a formalism in order to write the
general KB equations in such way that the infinite order derivatives are resummed.
Thus, we already know how to handle these gradient terms conveniently.

Based on the above considerations, in the mean field limit the pole equations
(5.11) and the KB equation (5.12) decouple, and by proceeding similarly as in
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sec.(5.2), we obtain

[k0 + i

2D −Hk(x)]S<(k, x) + i

2U
†(x)[DU(x)]S<(k, x)

+ i

2S
<(k, x)[DU †(x)]U(x) = U †(x)γ0iCcollγ

0U(x),

(5.50)

where the collision term is given by eq. (5.13). At this point it is useful to divide the
collision term into real and imaginary part:

Ccoll = CHcoll + iCAcoll, (5.51)

where CHcoll is the Hermitian part and CAcoll is the Antihermitian part of the self-energy.
Now the Antihermitian part of eq.(5.50) reads

iDS<(k, x) =[Hk(x), S<(k, x)] + i[U †(x)(DU(x)), S<(k, x)]

+ 2iU †(x)γ0CHcollγ
0U(x),

(5.52)

where the Hamiltonian Hk(x) is given by eq. (5.20). The (AH)-equation (5.52)
contains time and spatial derivatives of the distribution functions and thus it gives
the dynamical evolution of the neutrino states.

5.4 The final task: Density matrix equations for fm,h,e
IJ

When the phase space of the correlators was studied in sec.(5.2.1), we observed
that there exist coherence shell solutions which carry information about various
different coherence effects. In addition, we derived parametrization (5.41) for the
Wightman function S< in collisionless situation using the mass and the coherence
shell solutions. Since this spectral solution encodes information about several different
coherence effects and our strategy is to use the spectral solution as an ansatz in the
(AH)-equation (5.52), also the (AH)-equation contains the information about these
coherence effects. However, we are only interested in flavor coherence in the particle
or the antiparticle sector and thus we can neglect terms which describe any other
coherence effect.

The dynamical evolution of the system should be described by the (AH)-equation,
but the singular shell structure of the Wightman function S< makes things more
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Figure (4) The cQPA shell structure in the case of two neutrino mixing is
shown. The blue and the red line denotes the heavy (m1 = 5 in arbitrary units)
and the light (m2 = 3 ) neutrino state, respectively. The curves are labelled
by their eigenenergies and all particle-antiparticle flavor coherence solutions are
shown with dashed green lines. The number in the paranthesis next to each
eigenvalue gives the degeneracy of the corresponding solution. The figure is taken
from ref. [45] with the Author’s permission.

complicated. This singular structure suggests us to integrate the (AH)-equation
over the momentum, and actually it is essential since distributions are well defined
only inside an integral. To quantify the reasoning behind the integration let us
consider an example. Assume that we are studying solar neutrinos. This means
that we know that there are neutrinos instead of antineutrinos, the direction from
which the neutrinos hit the detector, and we have information about the energy
and momentum of the solar neutrinos (at some level). In figure (4) the cQPA shell
structure in the case of two neutrino mixing is shown. The purple blobs correspond to
flavor coherence in the particle (the upper blob) and the antiparticle (the lower blob)
sectors, while the green blob in the middle corresponds to flavor coherence between
the particle and the antiparticle sectors. The mass shells are denoted by the blue
and red lines, and the coherence shells are denoted by the purple line and the green
dashed lines. Due to the information about the solar neutrinos that we have, we
know that there can be only flavor coherence in the particle sector which corresponds
to the upper half of the fig. (4). However, the inaccuracy of the neutrino momentum
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measurements is significantly larger than the energy differences between the different
shell solutions. Therefore, we can not determine on which shell the neutrino is
and we have to integrate over a part of the momentum phase space determined by
the measurement accuracy. Nevertheless, the range of the momentum phase space
over which we integrate is huge when compared to the differences between the shell
solutions, and it makes no difference to integrate over the whole phase space. On
the other hand, if we had perfect measurements with no inaccuracy (that is all the
possible information about the system), there would be no need for the integration
since we could tell on which shell the neutrino is. Motivated by this example, it
is convenient to define a weight function that encodes the amount of information
avaible, and which can be used to define the physical density matrix which takes the
above discussion into account. We do not treat this subject more closely here, but
see ref. [41] for some discussion.

It turns out that for fermions it is enough to integrate over the zeroth component
of the momentum to find out a closed set of equations of motion for the on-shell
functions [32]. According to this and the above discussion, we substitute the spectral
solution (5.41) into eq. (5.52), integrate over the zeroth component of the momentum,
and in addition take the helicity and energy projections of the resulting equation 10:

[iDNm,h,e
k,IJ ]fm,h,ek,IJ Pm,h,e

k,JI P
m,h,e
k,IJ Pm,h,e

k,JI +Nm,h,e
k,IJ f

m,h,e
k,IJ Pm,h,e

k,JI [iDPm,h,e
k,IJ ]Pm,h,e

k,JI

+Nm,h,e
k,IJ [iDfm,h,ek,IJ ]Pm,h,e

k,IJ Pm,h,e
k,JI P

m,h,e
k,JI

=e(ωI − ωJ)Nm,h,e
k,IJ f

m,h,e
k,IJ Pm,h,e

k,JI P
m,h,e
k,IJ Pm,h,e

k,JI

+
∑
L,N

(
Nm,h,e

k,NJ f
m,h,e
k,NJ P

m,h,e
k,JI U

†
IL[iDULN ]Pm,h,e

k,NJ P
m,h,e
k,JI

−Nm,h,e
k,IL f

m,h,e
k,IL Pm,h,e

k,JI P
m,h,e
k,IL U †LN [iDUNJ ]Pm,h,e

k,JI

+ 2iPm,h,e
k,JI U

†
ILγ

0CHcoll,LNγ
0UNJP

m,h,e
k,JI

)
.

(5.53)

This equation contains also sums over the Dirac indices even if these are not explicitly
denoted. The simplest way to proceed and to get rid of the Dirac structure is to take
trace over them. When one uses the properties of the energy and helicity projections
operators (5.28)-(5.30) and (5.31) - (5.32), and basic properties of traces, eq. (5.53)

10Due to the singular structure of the Wightman function, the integration over the zeroth
component of the momentum effectively projects neutrinos to the mass shells. In other words, even
if the coherence shells exist we do not perform the calculations on them.
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can be written as(
[iDNm,h,e

k,IJ ]fm,h,ek,IJ +Nm,h,e
k,IJ [iDfm,h,ek,IJ ]

)
Tr
[
Pm,h,e

k,JI P
m,h,e
k,IJ

]
+Nm,h,e

k,IJ f
m,h,e
k,IJ Tr

[
Pm,h,e

k,JI (iDPm,h,e
k,IJ )

]
=2e∆ωIJNm,h,e

k,IJ f
m,h,e
k,IJ Tr

[
Pm,h,e

k,JI P
m,h,e
k,IJ

]
+
∑
L,N

2i
(

Tr
[
U †ILγ

0CHcoll,LNγ
0UNJP

m,h,e
k,JI

]
+Nm,h,e

k,NJ f
m,h,e
k,NJ Tr

[
Pm,h,e

k,NJ P
m,h,e
k,JI U

†
IL(iDULN)

]
−Nm,h,e

k,IL f
m,h,e
k,IL Tr

[
Pm,h,e

k,JI P
m,h,e
k,IL U †LN(iDUNJ)

])
.

(5.54)

Next we note that

Tr
[
Pm,h,e

k,JI P
m,h,e
k,IJ

]
= mImJ

ωIωJ
(Nm,h,e

k,IJ )−1, (5.55)

and by using eq. (5.55) we can write the (AH)-equation (5.54) as

∂tf
m,h,e
k,IJ −α · ∇fm,h,ek,IJ =− 2ie∆ωIJfm,h,ek,IJ

+ 2ωIωJ
mImJ

Nm,h,e
k,IJ

∑
L,N

(
Tr
[
U †ILγ

0CHcoll,LNγ
0UNJP

m,h,e
k,JI

])
− (Nm,h,e

k,IJ )−1(DNm,h,e
k,IJ )fm,h,ek,IJ

− ωIωJ
mImJ

Nm,h,e
k,IJ

∑
L,N

(
Nm,h,e

k,IJ f
m,h,e
k,IJ Tr

[
Pm,h,e

k,JI (iDPm,h,e
k,IJ )

]
−Nm,h,e

k,NJ f
m,h,e
k,NJ Tr

[
Pm,h,e

k,NJ P
m,h,e
k,JI U

†
IL(DULN)

]
+Nm,h,e

k,IL f
m,h,e
k,IL Tr

[
Pm,h,e

k,JI P
m,h,e
k,IL U †LN(DUNJ)

])
.

(5.56)

Now the (AH)-equation (5.56) has a typical structure for a density matrix equation:
the derivatives of the on-shell functions fm,h,ek,IJ are separated from collision terms,
source terms and Liouville terms. The right hand side of the first line of eq. (5.56),
i.e. terms which come from the commutator of the Hamiltonian and the Wightman
function, corresponds to the V× P term in eq. (3.55). The collision term in the
second line of the (AH)-equation corresponds to the DPT term in the density matrix
equation (3.55) and also collisions between the other particles in the system. The
third and the fourth lines of eq. (5.56) are the source terms and they contain
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Figure (5) Shown is the two-loop Z-diagram contributing to the self-energy
function Σ.

derivatives of the projection operators. The Liouville terms, which cause rotation of
the basis, are on the fifth and the sixth line of the (AH)-equation.

All traces appearing in the (AH)-equation (5.56) depend on the self-energy
function. At this point it is therefore necessary to specify the interactions and
calculate the self-energies. Detailed analysis of this topic is beyond the scope of this
thesis. However, we discuss shortly how the self-energies are calculated. Complete
derivation of a closed set of equations of motions for propagating neutrinos will be
presented in ref. [47].

As discussed in sec.(5.1), ΣA is relevant for solving the dynamical evolution of
the distribution functions. In the case of neutrinos it turns out that ΣA actually
needs to be expanded up to second order, i.e. at the fourth order in the electroweak
coupling constant, in order to include the 2-2 scattering processes. This means
that two-loop graphs must be calculated of which an example is given in figure (5).
The precise determination of what diagrams to include is nontrivial: one has to
deal with the issue related to double counting graphs, and to handle this problem
conveniently it requires theoretical tool that is not developed in this thesis. Also,
reducing the Liouville terms in the evolution equation (5.56) still requires some
detailed calculations which we need to postpone to further work.

Even if there are a few topics which need further investigation, we can still see
that when the source and the Liouville terms are neglected in the (AH)-equation
(5.56), we get the usual density matrix equation (3.55). After all, this was our goal
all the time, i.e. to show that the density matrix formalism can be derived from
more fundamedal grounds than what has been done before.
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6 Conclusions

In this thesis the main goal was to study how a closed set of equations of motion,
which take into account quantum coherence and neutrino mixing, can be derived for
neutrinos. We started out by reviewing neutrino physics and investigating neutrino
propagation in medium when only elastic forward scatterings were considered. In
this way, we were able to derive the matter Hamiltonian which defines the energy
eigenvalues of neutrinos in medium. However, when neutrinos propagate in matter
there exist also incoherent scatterings which affect the dynamical evolution of the
system. Due to these incoherent scatterings the usual Hamiltonian formalism can
not be used to describe propagation of neutrinos.

In sec.(4) we examined the quantum transport theory and how more general
formalism, which is capable of describing neutrinos in medium, can be constructed.
We discussed closely how a general Kadanoff-Baym (KB) equations can be obtained
from the contour Schwinger-Dyson equation. Especially, we derived a superior form
(4.59) of the KB equations in the viewpoint of gradient expansion: The KB equations
(4.59) contain infinite order derivatives and are impossible to solve as such. We
need therefore an approximation scheme which tells us how to handle the infinite
order gradients. When applying such approximation scheme to the KB equations,
advantages of eq. (4.59) are revealed.

The approximation scheme used in this thesis to simplify the general KB equations
is called the coherent quasiparticle approximation (cQPA). In section (5) we studied
the basic assumptions and properties of the cQPA. The most important feature of
the cQPA is that it relinquishes approximation of translational invariance (this is
assumed e.g. in the usual quasiparticle approximation). From this it follows that
in the phase space there exist completely novel coherence shell solutions which are
recognized to carry information about non-local quantum coherence. The cQPA
scheme then gives us a way to solve the dynamical evolution of non-equilibrium
systems while taking into account quantum coherence effects.

After the approximation scheme was defined in sec.(5), we expressed the KB
equations in the cPQA limit. From these equations we solved the spectral properties
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of the phase space and wrote down an equation from which the equations of motion
for neutrinos can be solved. The process of solving the dynamical equation is outside
the scope of this thesis, but we discussed shortly what is left to do and how the
actual solution can be obtained. The complete derivation of the equations of motion
for neutrinos will be presented in ref. [47].

These equations of motion are remarkable in two ways. Firstly, they take into
account neutrino flavor mixing, quantum coherence and matter effects completely.
This means that one can use them to describe scattering processes between coherent
neutrino states which no other existing model is capable of doing. One application
target for the derived equations are supernovae: When a supernova is born neutrinos
are trapped for a few seconds in the supernova. Regardless of multiple research on the
subject, it remains unclear what happens to the coherent evolution of the neutrino
states in this extreme process. The equations of motion discussed in this thesis may
help to solve this problem. There are also several other phenomena concerning about
supernovae, for instance how neutrinos and neutrino oscillation affect energetics of
supernova explosions, which can be studied using these equations. Secondly, we have
shown that the density matrix formalism can be derived from more fundamental
grounds than what has been done before.

In this thesis we used the so called spectral limit when solving the phase space
properties of the system. There exists, however, a more general approximation
(the mean field limit) which is consistent with the cQPA scheme. In this limit the
reasoning behind some phenomena, like the necessity of considering 2-loop diagrams,
becomes evident and can be understood properly. There are also other interesting
topics that need to be studied more carefully. Firstly, the explicit form of the
rotation matrix, i.e. matrix that diagonalizes the Hamiltonian function in the mass
eigenbasis, is a deep issue since it can actually be energy and spacetime dependent,
and contain chirality structures. In this thesis we diagonalized the Hamiltonian
without specifying the exact form of the rotation matrix and just assumed that
there exists such a matrix, but in general this is a nontrivial problem. Secondly,
the Liouville terms depend on the derivatives of these rotation matrices. Thus, it
is not obvious whether or not the Liouville terms give significant corrections to the
equations of motion. Lastly, since the coherence solutions are oscillating rapidly even
if adiabatic background fields are assumed, it needs further research to determine
how significant the spatial derivatives of the distribution functions are, and how these
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terms depend on the circumstances. In ref. [47] the above topics will be discussed,
the derivation of the equations of motion will be finished using the local limit and
numerical examples will be given.
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