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Abstract: As skin cancer types are a growing concern worldwide, a new screening tool com-

bined with automation may help the clinicians in clinical examinations of lesions. A novel

hyperspectral imager prototype has been noted to be a promising non-invasive tool in screen-

ing of lesions. Deep learning, especially semantic segmentation models, have brought suc-

cessful results in other biomedical imaging tasks. Therefore, semantic segmentation could

be used to automate the results from the hyperspectral images of lesions. In this thesis we

used a novel hyperspectral image dataset of lesions that contained 61 images. The dataset

contained 120 different wavebands from the spectral range of 450− 850 nm with dimen-

sions of 1920× 1200 pixels. We implemented two different semantic segmentation models

and compared their performance with the novel hyperspectral image data. The models were

compared by their ability to segmentate the images and by their ability to classify lesion

types from the images. From the implemented models, the combination of ResNet and Unet

model architecture (ResNet-Unet) was able to segmentate the images more accurately with

f1-score of 92.38 %, whereas the implemented Unet model gained f1-score of 92.17 %. In

addition, the ResNet-Unet model classified the lesion types more accurately, and contained

only one false negative result in melanoma classification, when the Unet model contained

two false negatives in melanoma classification. This study was able to repeat the results of

a previous study, where the segmentation model using hyperspectral image data was able to

classify melanoma slightly more accurately than the clinicians in a previous study were.
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Suomenkielinen tiivistelmä:

Ihosyöpä on maailmanlaajuisesti kasvava ongelma. Sen vuoksi ihosyöpien tunnistamisen

avuksi olisi tarpeellista saada uudenlainen diagnostiikkatyökalu terveydenhuollon ammatti-

laisille. Uusi hyperspektrikuvantamisen prototyyppi on aiemmissa tutkimuksissa osoittau-

tunut lupaavaksi menetelmäksi etenkin ihosyöpätyyppien tunnistamisen tuloksissa. Syvä-

oppiminen, varsinkin semanttinen segmentointi on tuottanut hyviä tuloksia muissa lääke-

tieteellisen kuvantamisen tapauksissa. Segmentointi voisi auttaa myös automatisoimaan

luomityyppien tunnistusta hyperspektrikuvista. Tässä työssä käytettiin uutta hyperspekt-

rikuvadataa, joka koostui 61 leesiokuvasta. Data sisälsi yhteensä 120 eri aallonpituutta,

alueilta 450−850 nm ja kuvien dimensiot olivat 1920×1200 pikseliä. Tässä työssä imple-

mentoitiin ja vertailtiin kahta eri semanttisen segmentoinnin mallia, käyttäen malleissa

uutta hyperspektridataa. Vertailussa tarkasteltiin mallien kykyä segmentoida luomikuvia

sekä niiden kykyä tunnistaa luomityypit hyperspektrikuvadatasta. Näistä implementoiduista

malleista toinen, kombinaatio ResNet ja Unet arkkitehtuureista (ResNet-Unet), oli parempi

molemmissa tehtävissä. Se tuotti kokonaissegmentoinnista f1-metriikalla 92.38 % tarkkuu-

den, kun implementoitu Unet malli tuotti f1-metriikalla 92.17 % tarkkuuden. ResNet-Unet

malli myös tunnisti luomityypit paremmin ja tuotti melanooman tunnistuksessa vain yh-

den väärän negatiivisen tuloksen, kun Unet malli ennusti kaksi väärää negatiivista tulosta

melanoomalle. Kaiken kaikkiaan tässä tutkimuksessa saavutettiin sama tulos kuin aiem-

massa tutkimuksessa, eli segmentointimallit pystyivät tunnistamaan melanoomaa hieman

tarkemmin kuin mitä aiempi kliininen tutkimus pystyi.

Avainsanat: lääketieteellisten kuvien segmentointi, syväoppiminen, hyperspektrikuvan-

taminen, ihosyöpä, melanooma.
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Notations and abbreviations

a Activation of artificial neuron

â Normalized activations

b Neuron bias

B Input batch

B̄ Mean of batch

C Cost function

δ Training error

f Activation function

η Learning rate

G Residual connection

h Batch normalization

θ Models parameters

I Radiance data

Io White reference data

K Filter of convolution

L Loss function

R Reflectance

s Weighted input

S Feature map of convolution

VB Variance of batch

w Neuron weights

W Nonlinear mapping of a layer

x Input data

X Input feature map

y Ground truth

ŷ Output predictions

z Linear activations
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AI Artificial Intelligence

ANN Artificial Neural Network

BCC Basal Cell Carcinoma

BN Benign Nevi

CART Classification of Regression Tree

CCD Charged-Coupled Device

CMOS Complementary Metal Oxide Semiconductor

CNN Convolutional Neural Network

DN Dysplastic Nevi

DNN Deep Neural Network

EM Electron Microscopy

FCN Fully Convolutional Network

FPI Fabry-Pérot interferometer

FWHM Full Width at Half Maximum

GPU Graphics Processing Unit

HSI Hyperspectral Imaging

LM Lentigo Maligna

LMM Lentigo Maligna Melanoma

MIS Melanoma In Situ

MM Malignant Melanoma

MSI Multispectral imaging

PPV Positive Predictive Value

RAM Random Access Memory

ReLU Rectified Linear Unit

RGB Red Green and Blue

RNN Recurrent Neural Network

ROI Region of Interest

SCC Squamous Cell Carcinoma

SGD Stochastic Gradient Descent

SVM Support Vector Machine
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1 Introduction

There is evidence that skin cancer diagnoses have increased worldwide (Jerant et al. 2000).

Especially melanoma incidences have been shown to increase rapidly in several countries

(Hall et al. 1999; Jerant et al. 2000; Lasithiotakis et al. 2006; Stang et al. 2006). Melanoma is

the most dangerous skin cancer type as it has the highest mortality rate (Cummins et al. 2006;

Jerant et al. 2000). Early detection is crucial for skin cancer and melanoma detection (Cum-

mins et al. 2006). Unfortunately, the determination of skin cancer with current tools available

is challenging, as lesion types can visually resemble each other. Therefore, there is a need

for a noninvasive diagnostic tool in clinical usage to help with skin cancer detection. A new

tool would help to gain more accurate diagnosis already in clinical examination, and help

diagnosing tumour in the early stage. In addition, it is possible that this would also help to

decrease the societal costs of skin cancer treatments (Eriksson and Tinghög 2015).

A novel hyperspectral imager combined with deep learning have been reported to be a use-

ful tool in skin cancer detection (Neittaanmäki-Perttu et al. 2013; Pölönen et al. 2019). As

a regular camera uses only three wavebands in imaging, a hyperspectral imager can use

tens or hundreds of wavebands when capturing an image. Therefore, hyperspectral images

can bring more information from lesions and the surrounding tissues. As concluded by

Neittaanmäki-Perttu et al. (2015) and Salmivuori et al. (2019) this imaging tool can help to

prevent unneeded lesion removals when tumours can be delineated more accurately. Hyper-

spectral imaging have also been noted to help in detecting skin cancer in the earlier stage.

(Neittaanmäki et al. 2017).

Deep learning could be used to automate the lesion segmentation and the lesion classification

process from the novel hyperspectral image data. Deep learning models have been adopted

to automate several different tasks such as scene understanding (Badrinarayanan et al. 2015),

autonomous driving (Sallab et al. 2017), and biomedics (Ronneberger et al. 2015). Convolu-

tional neural networks (CNNs) in deep learning have been able to succeed with remarkable

results in several tasks (Badrinarayanan et al. 2015; He et al. 2015a; Krizhevsky et al. 2012).

Especially the semantic segmentation of biomedical images with CNNs have brought great

results (Ciresan et al. 2012; Ronneberger et al. 2015). Therefore, automating the data pro-
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cessing of hyperspectral images could enable to gain faster and more accurate diagnosis,

perhaps already in the clinical examination.

Several deep learning methods have been used to segmentate skin cancer but most of the

studies were conducted by using RGB or multispectral images, or their combinations (Gor-

riz et al. 2017; Yu et al. 2017; Alom et al. 2018). There are less studies that use convolu-

tional neural networks to segmentate malignant melanoma from hyperspectral data (Pölönen

et al. 2019). Therefore, motivated by the promising results of using convolutional neural

networks in semantic segmentation of lesions, we attempt to find benefits by using two dif-

ferent deep learning architectures to segmentate lesions and to classify lesions from novel

hyperspectral image data.

1.1 Problem statement

This study focuses on implementing and comparing two architecturally different semantic

segmentation models – the Unet model (Ronneberger et al. 2015) and the ResNet model

(He et al. 2015a) combined with the Unet architecture (ResNet-Unet). We evaluate the two

models ability to segmentate lesions and classify lesions from the novel hyperspectral image

data. A recent study by Pölönen et al. (2019) was able to gain successful results on classify-

ing malignant melanoma from a novel hyperspectral image dataset they collected. However,

the models used in the study had some difficulties to accurately segmentate the borders of

the lesion images. (Pölönen et al. 2019). Therefore, this study aims to test two different deep

learning models and compare the overall semantic segmentation and the classification capa-

bility of different lesion types. In addition, we compare the lesion classification accuracy of

our implemented models with the results of the study by Pölönen et al. (2019).

The following research questions are answered in this research:

1. Which deep learning architecture gained best results on semantic segmentation from

hyperspectral images of lesions?

2. Which deep learning architecture gained best results on classifying different lesion

types from hyperspectral images of lesions?

3. Can either of the implemented models improve the classification of different lesion

2



types from hyperspectral images when compared to the study by Pölönen et al. (2019)?

1.2 Structure of the thesis

The structure of this thesis has been organised in the following way. First, in Chapter 2 the

theoretical background of this thesis is introduced. Then, in Chapter 3 the materials and the

methods of the research are described. Next, in Chapter 4 the results of the research are

explained. In Chapter 5, the findings of the study are discussed in detail and we present the

potential future work. Finally, in Chapter 6 we give conclusions for this study.
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2 Theoretical background

In this chapter, the theoretical background for the thesis is introduced. This chapter is com-

posed of four main elements: skin cancer, hyperspectral imaging, deep learning and se-

mantic segmentation, which present the main concepts of this study. First, in Section 2.1 a

brief overview of skin cancer and its current treatment is covered. Then, the novel imaging

method, hyperspectral imaging is presented in Section 2.2. Next, the key aspects of deep

learning and artificial neural networks are discussed in detail in Section 2.3. Finally, seman-

tic segmentation, the method used to automate the skin cancer predictions from hyperspectral

image data, is introduced in Section 2.4.

2.1 Skin cancer

In this section we will focus on introducing skin cancer. In Section 2.1.1 we will go trough

the risks of skin cancer and how it is developed. Finally, in Section 2.1.2 we will introduce

the current screening methods of skin lesions.

Incidents of skin cancer have increased during several years (Jerant et al. 2000). Especially

incidences of melanoma, the deadliest form of skin cancers, have increased rapidly (Hall

et al. 1999; Jerant et al. 2000). The death rate of melanoma has increased, even though the

survival rate has improved during the years (Rigel and Carucci 2000). The trend of growing

amount of melanoma diagnoses are estimated to continue in future (Siegel et al. 2019).

Skin cancer types are usually presented as melanoma or non-melanoma. Non-melanoma

types of skin cancer are usually divided into two groups – basal cell carcinoma (BCC) and

squamous cell carcinoma (SCC). Non-melanoma types of skin cancer have higher incident

rate than melanoma. (Guy and Ekwueme 2011; Jerant et al. 2000). Non-melanoma tumours

do not tend to metastasize, in other words spread to other parts of the body. In fact, they can

be treated quite well and they have a low mortality rate. (Guy and Ekwueme 2011; Jerant

et al. 2000). Melanoma, on the other hand, has a high mortality rate. Infact, it is the deadliest

skin cancer type. (Cummins et al. 2006; Jerant et al. 2000). Melanomas tend to metastasize

and become more aggressive over time, and treatment of metastatic melanoma is hard. Due
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to this reason, melanoma should be detected in its early stage, when the treatment is easier

and mortality and treatment costs are lower. (Eriksson and Tinghög 2015; Marghoob et

al. 2003; Weinstock 2006).

The four lesion types we focused on this study, vary from melanoma to benign. A sample

of each lesion type is visualized in Figure 1. Next we will introduce the four lesion types in

more detail.

• Benign nevi (BN) is a normal and non-malignant mole, which is a very common lesion

type. Few benign lesions may resemble malignant melanoma (Jerant et al. 2000).

• Dysplastic nevi (DN) is also a non-malignant but atypical mole. DN have a risk to

develop into melanoma which is why their screening is important (Rigel et al. 1989).

• Lentigo Maligna (LM), also known as melanoma in situ (MIS), is a malignant tu-

mour that has not yet spread to other parts of body. LM might develop into malignant

melanoma, therefore LM should be excised (Tannous et al. 2000). The treatment costs

of LM have shown to be lower than malignant melanomas (Alexandrescu 2009).

• Malignant melanoma (MM) is the most aggressive type of skin cancer. MM can de-

velop metastases, which is the reason of the high mortality rate of MM when compared

to the other skin cancer types. (Jerant et al. 2000).

Figure 1. Examples of the four lesion types we focused on this study: Dysplastic nevi (DN),

Lentigo Maligna (LM), Malignant melanoma (MM), and Benign nevi (BN). Images are from

the dataset that was used in this study.
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2.1.1 The development of skin cancer

As most cancers, skin cancer starts with small changes in the body, also called as precan-

cerous stages. Skin cancer may develop into atypical, non-normal moles or unusual skin

growths (Jerant et al. 2000; Tsao et al. 2004). These atypical lesions and dysplasias should

be followed carefully, as malignant lesions tend to change during time (Tsao et al. 2004).

Early detection of melanoma lowers the mortality rate significantly (Rigel and Carucci 2000).

However, the detection might be hard, as malignant lesions can visually resemble typical

moles in their early-stage (Jerant et al. 2000; Rigel and Carucci 2000). To improve early

detection of melanoma, novel and enhanced imaging tools for clinical observations could

help to delineate skin cancer from healthy tissues.

There are several risk factors how skin cancer may develop. Typical risks are age (Siegel

et al. 2019), a large amount of nevi (Gandini et al. 2005a), and previous history of sun

exposure (Gandini et al. 2005b). People with lighter skin tone usually have been reported

with most of the skin cancer incidents. Nevertheless, people with color have been noted to

have a very high mortality rate with skin cancer when compared to people with lighter skin

color. (Gloster Jr and Neal 2006). Furthermore, men are more likely to develop aggressive

skin tumours (Jerant et al. 2000). If skin cancer has been diagnosed in a family, it has been

noted to increase the risk that a family member may develop inherited melanoma (Greene

et al. 1985). In conclusion, skin cancer can develop during time treacherously to anyone. It

seems that the best methods to detect skin tumours in early-stage are screening of lesions and

raising public awareness of the dangers with exposure to the sun. (Jerant et al. 2000; Rigel

and Carucci 2000).

2.1.2 The screening of skin cancer

A key aspect of detecting skin cancer is the screening process. Screening is a systematical

process where the patient’s lesions are reviewed by a healthcare expert. (Jerant et al. 2000).

The most common screening method for recognising melanoma is to follow the ABCD

guideline, which stands for asymmetry, border irregularity, color variegation, and diame-

ter. (Friedman et al. 1985). The detection of early-stage melanoma can be very difficult, as
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the lesion types may resemble each other (Jerant et al. 2000; Rigel and Carucci 2000; Tsao

et al. 2004) For example, a study by Heal et al. (2008) inspected the diagnoses of differ-

ent skin cancers by skin specialists and general practitioners, and compared their diagnoses

to histopathologically verified diagnoses. They reported recall of 33.8 %, and precision of

33.3 % in melanoma detection, whereas non-melanoma diagnoses were more likely to be

classified correctly. It seems that accuracy of melanoma diagnosis in clinical examinations

relies strongly on the observer’s expertise, thus education and diagnostic tools can improve

the detection accuracy (Argenziano et al. 2012; Heal et al. 2008; Offidani et al. 2002).

The diagnoses of lesions are verified with histopathological examination. If a clinician de-

tects an atypical lesion in the patient’s skin, then a biopsy is taken from the lesion. The

histopathological analysis, also known as microscopic examination of the tissue is performed

to study the biopsy. This analysis returns the most dangerous lesion type diagnosis of the

lesion. Histopathological analysis is currently the best method to gain reliable disease clas-

sification information from a biopsy of a lesion (Rigel and Carucci 2000; Tsao et al. 2004).

Sometimes re-excisions of skin tumours are needed after verified results from histopatho-

logical examination (Tsao et al. 2004). Although, the current method has some downsides.

For example, if a person has multiple atypical lesions the excision of all lesions cannot

be performed (Rigel and Carucci 2000). Unnecessary excisions should be avoided as they

might develop infections for patients. Moreover, the method also depends on the patholo-

gists expertise, results need time to be conducted, and it is quite expensive. (Liu et al. 2011).

Certainly, a new non-invasive clinical tool is desired to improve and speed up the clinical de-

tection of skin cancer, as the incidences of skin cancer continue to increase (Liu et al. 2011;

Rigel and Carucci 2000).

Currently, there are a few imaging tools on the market to help healthcare experts to detect skin

cancer in clinical examinations. Today, one of the most common imaging tool used in clini-

cal examinations is dermoscopy (Braun et al. 2005). As Vestergaard et al. (2008) reviewed,

the usage of dermoscopy in clinical examinations can improve the diagnostic accuracy of

melanoma, when compared to clinical examinations without any diagnostic tools. Accord-

ing to Braun et al. (2005), the accuracy of dermoscopy diagnosis is lower with inexperienced

practitioners, therefore an automated diagnosis tool could be helpful in clinical observations.
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Fink and Haenssle (2017) point out that even though dermoscopy can improve the diagnos-

tic accuracy, the diagnoses are always verified histopathologically. Therefore, it has not de-

creased excisions of lesions or replaced histopathological examinations (Fink and Haenssle

2017). Moreover, dermoscope combined with deep learning automation, has not been able

to outperform experienced dermatologists (Esteva et al. 2017). Johansen et al. (2020) argued

that the dermoscopic systems performance may not be possible to improve. Therefore, new

imaging methods and tools could be the key to improve diagnostic accuracy, for example by

using hyperspectral imaging combined with deep learning (Johansen et al. 2020). Therefore,

in this study we use novel hyperspectral image data of lesions. In conclusion, hyperspectral

imaging combined with automated prediction could be a useful tool in clinical examinations

of lesions (Neittaanmäki-Perttu et al. 2013; Salmivuori et al. 2019).

2.2 Hyperspectral imaging

The previous section introduced the types of skin cancer, especially melanoma type of skin

cancer. We also presented the challenges in the current skin cancer screening tools. There-

fore, we will now discuss about a novel imaging method that could improve current lesion

screening. Hyperspectral imaging has been developed in order to gain more information of

the surroundings by using more spectral bands in imaging. This section describes the fun-

damentals of hyperspectral imaging. First, the electromagnetic spectrum and the methods to

separate the spectral bands are presented. Then, the spectral imaging is introduced in more

detail. Lastly, we will focus on biomedical hyperspectral imaging.

2.2.1 Radiation

The imaging process is based on capturing the electromagnetic radiation that has been re-

flected of the objects being imaged. In regular cameras the visible spectrum has been the

most used portion of spectra, whereas the sensors of hyperspectral imagers and multispectral

imagers can acquire other portions of the electromagnetic spectrum in addition to visible

light. This way non-visible wavelengths and visible wavelength ranges can be observed and

more information can be gained from the imaged object. (Chang 2007, Chapter 2). The basic

principle of capturing an image from an object and its surroundings is presented in Figure 2.
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Figure 2. A simplified example of image acquisition. The detector in imaging devices cap-

ture the radiation from the imaged objects and its surroundings. Some of the radiation is

usually scattered and absorbed by different materials and matter. A portion of the radiance

is reflected of the objects, which the detector records.

The electromagnetic spectrum represents radiation and it can be divided into the following

main regions: gamma rays, x-rays, ultraviolet, visible spectrum, infrared, microwaves, and

radio waves. A human can only see the visible spectrum, approximately from 400 – 700

nanometers. Therefore, the other wavelengths are referred as non-visible ranges, and they

can be observed with detectors of imagers. The electromagnetic spectrum is divided into

aforementioned separate ranges by the length of the wavelengths and by the difference of in-

teraction with matter. (Stuart 2004). The electromagnetic spectrum is visualized in Figure 3.
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Figure 3. The electromagnetic spectrum and its wavelengths. On the left side of the image

the spectral regions with shorter wavelengths and higher energy levels are presented. On the

right side the regions with longer wavelengths and lower energy levels are shown.

Using visible light and non-visible wavelengths in imaging process can help to identify and

gain more information from the imaged objects and the surroundings. This allows to observe

spectral signatures of objects in a larger range of wavelengths. Spectral signatures describe

the amount of radiation reflected from an object over a spectral range. (Jones and Vaughan

2010). Each material has somewhat unique spectral characteristics but these spectral signa-

tures may have some variation, for example over time and over space (Chang 2007; Jones

and Vaughan 2010, Chapter 2). These structures and characteristics of matter, and their

interaction with electromagnetic spectrum are studied in the field of spectroscopy (Wolfe

1997).

The separate wavelengths of electromagnetic spectrum can be measured with, for example an

interferometer or a triangular prism. A triangular prism is a method to disperse light, but the

measurements can be acquired only by one line at a time. (Garini et al. 2006). The detectors

of interferometers allow the whole spectrum of wavelengths to be used concurrently (Harvey

2011, Chapter 10). Optical interferometry uses interference patterns that are processed to

acquire the specific spectrum, for example by using inverse Fourier transform (Hariharan

2010; Chang 2007, Chapter 2).
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2.2.2 Spectral imaging

Having introduced the basics of electromagnetic spectrum and radiation, we will now discuss

the spectral imaging in more detail. Spectral imaging combines spectroscopy, the study

of material and radiation interaction, with imaging. Spectral imaging provides spatial and

spectral information from the imaged object. The spectral range that is most commonly

recorded in spectral imaging combines one or more wavelengths from the following regions:

ultraviolet, visible light, near-infrared, and mid-infrared. (Garini et al. 2006; Chang 2007,

Chapter 2).

There are several methods to record spectral information in spectral imaging. One method is

to use previously introduced interferometers, such as Fabry-Pérot interferometer, which can

be seen in Figure 4. Fabry-Pérot interferometer has two partly reflecting mirrors separated

by an air gap, and followed by a lens before the detector. (Vaughan 1989). The air gap in the

Fabry-Pérot interferometers allow to tune the observed wavelengths. This allows to change

the observed wavelengths easily by only adjusting the parameters. (Saari et al. 2010).

Figure 4. A simple example of Fabry-Pérot interferometer. The two partly reflective mirrors

have a tunable air gap in between, followed by a lens. The last element in the interferometer

is a detector. Radiation into the interferometer is provided by using an external light source.

The image acquisition in spectral imaging is performed by using a detector. Detectors trans-

fer the radiation into digital numbers. (Chang 2007, Chapter 2). The sensors of digital cam-

eras change the radiation into electrons (Garini et al. 2006). There are several sensors avail-

able, but few of the most common sensors are the complementary metal–oxide–semiconductor

(CMOS) and the charged-coupled device (CCD). (Lu and Fei 2014). The quality of spectral
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images are commonly presented with spectral resolution, which implicates the imagers ca-

pability to measure and distinguish spectral features. Full width at half maximum (FWHM)

presents the width of the spectrum being observed. (Sun 2010, Chapter 1). Together these

metrics provide information of the accuracy and quality of the spectral images. (Lu and Fei

2014).

Both multispectral imaging and hyperspectral imaging are subcategories of spectral imag-

ing. The difference between these imaging methods are that multispectral imaging (MSI)

usually acquires the images by using less than ten separate wavebands. The pixels of mul-

tispectral images do not form a continuous spectrum from the object being imaged. (Chang

2007, Chapter 2). In contrast to MSI, Hyperspectral imaging (HSI) can capture tens and even

hundreds of narrow and contiguous wavebands. (Chang 2007, Chapter 2). Therefore, hy-

perspectral images are often referred to contain a continuous spectral curve from the imaged

object in each pixel of the image (Johansen et al. 2020). The continuous spectrum from the

imaged target enables HSI system to record more information, whereas MSI may lack some

important information (Lu and Fei 2014).

Hyperspectral images are usually presented as a data cube, which is demonstrated on the

left side of Figure 5. In the data cube the height and the length of the cube represent the

dimensions of an image, and the width shows the number of wavelength channels used.

Each pixel on the data cube represents the spectrum of the pixel, whereas, each image layer

shows the image in a specific wavelength. Another method to present the spectral data is to

plot the pixel-wise spectral curve, which is seen on the right side of the figure.
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Figure 5. On the left side we can see the hyperspectral image as a data cube presentation.

(Reproduced from Boggs (2014)). On top of the image is the RGB presentation of a lesion,

and the channels of the hyperspectral image are shown as depth in the image. On the right

side a spectrum of a HSI image single pixel is visualized.

Even though hyperspectral imaging has many advantages, there are also some downsides

with the imaging method. For example, the HSI system can be quite expensive (Saari et

al. 2010). Also, the size of hyperspectral image can be quite large, as every pixel can contain

hundreds of spectral bands of information. This affects to the processing time of the image

(Garini et al. 2006). Moreover, the HSI system needs to be calibrated before capturing

images from a specific target. This ensures that the spectral quality of the image meets the

case specific requirements. (Sun 2010, Chapter 1). The produced HSI data also needs to be

processed and analysed in order to interpret the images. (Lu and Fei 2014).

The preprocessing of HSI data include several steps, such as normalizing the data, calibrat-

ing the observed wavelengths and reducing the noise effects. (Sun 2010, Chapter 2). For

example, the hyperspectral imager can present the image in raw data format as digital num-

bers that can be converted to radiance. In addition, the data can be converted from radiance

to reflectance. This operation corrects the spectrum of the pixels in an image to present only

the spectrum of the imaged surface material, and it can minimize the noise effects from ex-

ternal light source. (Sun 2010, Chapter 2). The mathematical equation to gain reflectance
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from radiance data cubes and from the white reference diffuse reflectance data cubes is the

following:

R =
I
Io

(2.1)

where R denotes the reflectance, I denotes the radiance data cube, and Io denotes the white

reference data cube (Pölönen et al. 2019). The preprocessed HSI data can then be further

analyzed, for example by using feature extraction methods to downsample the image dimen-

sions. Reducing the image size can help to reduce nonrelevant information from the data,

but also it helps to process the data faster. (Lu and Fei 2014).

2.2.3 Biomedical hyperspectral imaging

Hyperspectral imaging has been successfully used in several fields, such as in remote sens-

ing (Adam et al. 2010; Govender et al. 2007), in food safety (Feng and Sun 2012), in crime

scene detection (Schuler et al. 2012), and in biomedical imaging (Carrasco et al. 2003; Neit-

taanmäki et al. 2017; Salmivuori et al. 2019). Especially, in biomedical imaging the HSI has

shown to be a promising imaging tool, as it enables to diagnose several illnesses beyond the

visible sight and without the need of excisions (Johansen et al. 2020). In biomedical imag-

ing HSI systems are usually calibrated to record specific wavelengths, such as ultraviolet,

visible light, and near-infrared regions, which can be selected case specifically according

to the optical properties of the imaged biological tissue (Lu and Fei 2014). The usage of

non-visible wavelengths enables to identify tissues by their spectral signatures. In addition,

the non-visible wavelengths can penetrate slightly further from the surface of the skin, and

therefore bring more information from the tissues. (Lu and Fei 2014; Salzer et al. 2000).

Recently, there have been several studies focusing on improving skin cancer detection and

delineating the tumour borders by using a novel hyperspectral imaging system. (Neittaanmäki-

Perttu et al. 2013; Neittaanmäki-Perttu et al. 2015; Zheludev et al. 2015). A study by

Neittaanmäki-Perttu et al. (2013) reported that by using a novel HSI system they were able

to detect skin field cancerisation more specifically than with regular clinical observation

methods. In another study, Neittaanmäki-Perttu et al. (2015) studied skin cancer types of
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LM and lentigo maligna melanoma (LMM) by using a novel HSI system in order to de-

tect these tumour borders more accurately. The study found that the novel HSI was able

to delineate the lesions more specifically when compared to regular clinical observations.

In addition they hypothesised that the novel HSI system could spare the amount of excised

tissue, avoid re-excisions of lesions, and help clinicians in the skin cancer diagnosis process

(Neittaanmäki-Perttu et al. 2015). Zheludev et al. (2015) demonstrated the usage of super-

vised machine learning method, classification and regression tree (CART), in order to detect

skin cancer borders from hyperspectral images of lesions. Zheludev et al. (2015) found that

the supervised machine learning method was able to detect areas of skin tumours efficiently

from the novel hyperspectral lesion data, but further development is needed.

Hyperspectral imaging system seems to be a potential tool in biomedical imaging, especially

in skin cancer detection and tumour delineation. Moreover, hyperspectral images of skin

cancer interpretation and results could be further improved and automated by using unsu-

pervised methods, such as deep learning. The interpretation capabilities of deep learning

methods with novel HSI data of skin lesions have not yet been studied in great detail. (Jo-

hansen et al. 2020).

2.3 Deep learning

In the previous section we focused on hyperspectral imaging, and especially its usage in

biomedical imaging tasks. This section describes the basics of deep learning. First, the struc-

ture of artificial neural networks (ANNs) is described. Next, the training process of ANNs

is presented. Finally, the state of the art in deep learning, convolutional neural networks are

introduced.

Deep learning methods can be used to automate tasks and they can be used in very complex

problems. Deep learning methods learn by themselves from the data they are provided.

(Goodfellow et al. 2016). For example, deep learning has been used to beat the professional

players in the game of Go (Silver et al. 2016). Furthermore, deep learning has been widely

adopted in different fields, for instance it has been used in image classification (Krizhevsky

et al. 2012), in road area segmentation (Meyer et al. 2018; Oliveira et al. 2016), in text
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recognition (Jaderberg et al. 2014; Kai Wang et al. 2011), and in biomedical image analysis

(Ciresan et al. 2012; Ronneberger et al. 2015).

2.3.1 Artificial Neural Networks

Artificial neural networks (ANNs) are the foundation of deep learning. ANNs have been

inspired by the neuron and the brain study conducted by McCulloch and Pitts (1943), but

also by the perceptron model developed by Rosenblatt (1957). These findings and presenta-

tions are used today in the building blocks of ANNs. From these studies the mathematical

presentation of artificial neurons in deep learning have been adopted from. Although, one

must bear in mind that these presentations do not present the biological neurons, which are

more complex structures. (Goodfellow et al. 2016).

Figure 6. Presentation of an artificial neuron. The input data x1,x2, and x3 are first multiplied

with weights w1,w2, and w3. The weighted inputs are then added together with a bias term

b. Finally, the linear activations are passed to an activation function f that present the output

a.

Artificial neural networks contain several layers. Each layer in the network consists of sev-

eral artificial neurons. A single artificial neuron is presented in Figure 6. Artificial neurons

are connected to each other in a layer-wise manner, and these connections are also known as
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weights. The mathematical equation for an artificial neuron is the following:

a = f
(

∑
i

wixi +b
)
= f (wT x+b) (2.2)

where a is the output of the neuron, x are the inputs, w denotes the weights, b is the bias,

and f is the activation function. The sum of inputs xi and weights wi shows the importance

of a connection. The learnable bias parameter is used to shift the prediction of the network.

(Bishop 2006, pp. 227-229).

To nonlinearize the neural networks we use activation functions. Some of the most traditional

activation functions are tanh, sigmoid, softmax, and rectified linear unit (ReLu). Few of the

activation functions are visualized in Figure 7. The sigmoid activation function transfers the

output probabilities between zero and one by:

f (z) =
1

1+ e−z , (2.3)

where z = wT x+ b. Here x is the input feature vector, w denotes the weights, and b de-

notes the bias. The sigmoid is usually used with binary classification tasks. Another binary

classification activation function is the tanh activation function:

f (z) = tanh(z), (2.4)

where z presents the linear activation. Tanh transfers the output values of a model between

values [−1,1]. While tanh and sigmoid activation functions have been traditionally used

widely, it was noted that they lack of improving the weights over time. This problem is

known as saturation and vanishing gradient problem. (Goodfellow et al. 2016, pp. 191-192).

To meet the challenges, ReLu was introduced, which does not have the problem of vanishing

gradients (Goodfellow et al. 2016, pp. 187-191). This activation function has the following

form:

f (z) = max(0,z). (2.5)

The advantages of the ReLU activation function is the speed of calculation and the fast

convergence. (Goodfellow et al. 2016, pp. 187-191). Although, at times the neurons of a

network may stop learning, a problem that is known as the dying ReLU. There has been
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progress in order to fix this problem by having functions differentiable at all points, such as

the leaky ReLU. (Goodfellow et al. 2016, pp. 187-191). Finally, we introduce the activa-

tion function which is widely adopted in multi-class predictions, the softmax function. The

softmax has the following form:

f (z)i =
exp(zi)

∑
k
j=1 exp(z j)

for i = 1, . . . ,k, (2.6)

where z ∈ Rk presents the linear activation, i denotes each element of the linear activation,

and k refers to the amount of output classes. The softmax is applied to produce outputs

between values zero and one, which all together sum up to one. (Bishop 2006).

Figure 7. The presentations of tanh, sigmoid, and ReLu activation functions.

The artificial neural network consists of several neurons that are connected to each other, an

example can be seen in Figure 8. Together these neurons build up a neural network with

multiple layers. These layers consist of an input layer, hidden layers, and an output layer.

(Bishop 2006, pp. 227-229). The information in the ANN can go from layer to another in

several ways, for example in feedforward or in recurrent manner. The feedforward networks

operate and forward information from layer to another only in one direction. (Goodfellow

et al. 2016, pp. 164-167). Recurrent neural networks (RNNs), on the other hand, can have

cycles or loops in their network structure. The information of loops can be saved, which

may help in future predictions. (Goodfellow et al. 2016, pp. 372-376). In addition, the

information in the networks can flow straight forward or by using skip connections in a

network, which allows to pass information from upper level to lower level by skipping some

amount of layers in between. (He et al. 2015a).
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Figure 8. Artificial neural network with one hidden layer

There are several ways that the artificial neural networks can be trained. The usual way

of the ANNs training is called supervised learning. In supervised learning the network is

trained by using training data together with labelled data. The ANNs can also be trained

in unsupervised manner. In unsupervised learning the model learns to predict from training

data without the labelled data. When a model is trained the network prediction performance

is usually tested with new unseen data, called the test data. (Goodfellow et al. 2016).

Deep learning models are usually deeper presentations of ANNs, also known as deep neural

networks (DNNs). The usual idea in deep learning is that the deeper the model, the better

the performance (Simonyan and Zisserman 2014). Although, when the depth of a network is

increased the more they suffer from the curse of dimensionality. This is straight forward, as

the more parameters a network contains the more configurations there are, which increases

the difficulty of optimizing a network. (Goodfellow et al. 2016, pp. 152-154). Next we will

discuss the training of deep learning models and their optimization in more detail.

2.3.2 Training and optimizing deep learning models

Training deep learning models is a challenging task, as there are many learnable and ad-

justable parameters in the network that need to be optimized to gain reliable results. We will

now focus on the building blocks of training deep learning models – parameter initialization,
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cost function, backpropagation, and optimization methods.

The training of a model begins by initializing the parameters of a network in a random man-

ner. This enables to distinguish the parameters by eliminating the symmetry between the

parameters. Initialization of parameters is essential, as they affect on the networks conver-

gence. Moreover, a bad choice of parameters can lead into exploding gradient problem or

into vanishing gradient problem. (Goodfellow et al. 2016, pp. 296-302). There are several

methods to initialize the parameters, for example by using the Glorot uniform initialization

(Glorot and Bengio 2010), or by using the HE normal initialization (He et al. 2015b).

An important aspect in training a deep learning model is optimization. As we have discussed

earlier, the supervised models are trained by using training data and ground truth data. As

the model makes predictions from the training data, the output of the model is then compared

with the desired output. From here the cost function of a model can be calculated. The model

then tries to minimize this cost function C(θ) by adjusting the parameters θ of the network.

(Goodfellow et al. 2016, Chapter 8). A usual choice in optimization is to have a gradient

based method that minimizes the cost function in an iterative manner. A visualization of

minimization with gradient based method can be seen in Figure 9.

Figure 9. A contour plot of cost function and finding optima by using gradient descent.
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The cost function C can be presented in many ways, but a basic form is the following:

C(y, ŷ) =
1
m

m

∑
i

L(yi, ŷi), (2.7)

where m presents the amount of training samples, L presents the loss function, y presents the

desired output, and ŷ presents the output predictions of the model. (Goodfellow et al. 2016,

Chapter 8). The loss function should be carefully selected for a specific problem, as it has

a tremendous affect on the learning of a network. One popular loss function is the cross-

entropy loss Le, where negative logarithm is calculated for the predicted output ŷ and for the

desired output y by:

Le(y, ŷ) =−
N

∑
i

yilog(ŷi), (2.8)

where N denotes the amount of class labels. (Bishop 2006). The cross entropy loss Le defines

how large the error between the predicted output ŷ and desired output y is, and outputs this

as a value for each class N between zero and one. It was noted by Simard et al. (2003) that

cross-entropy loss can train a model faster and improve the performance of a model when

compared to the mean squared error.

Backpropagation is usually described as the most important part of training modern neu-

ral networks. The backpropagation algorithm is used to calculate the gradients of the cost

function (Nielsen 2015). Rumelhart et al. (1986) was the first who introduced the backpropa-

gation algorithm to be applied in training of neural networks, which enhanced the calculation

of gradients drastically. The algorithm for backpropagation can be found from many sources

(Rumelhart et al. 1986; Goodfellow et al. 2016), but the algorithm principle, motivated by the

work of Nielsen (2015), is performed in the following way. First, the inputs x, the weights

w, and the biases b of the network are initialized. Then, the network is forward propagated

through each layer l = 2,3, ...,O by computing s = wlal−1 +bl , where a denotes the activa-

tions that are calculated by using the activation function f , as seen in the Equation 2.2. When

the network has been forward propagated the network outputs the predictions. Next, the pre-

dicted outputs and the desired outputs are compared by computing the error δ of the output

layer O for each neuron j, by calculating the gradient of the cost function ∇C in the following

way: δ O
j = ∇aC� f ′(sO). The error δ is then calculated for the whole network, starting from
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the last layer O− 1 and continuing all the way back to the first layer. The layers from the

last layer to the first layer are denoted by l = O−1,O−2, ...,2 and the error of the layers is

propagated back by computing: δ l = ((wl+1)T δ l+1)� f ′(sl), where the weights w are trans-

posed. The error values show how much the parameters of the network should be adjusted in

order to gain more optimized output. Finally, when the error of the network is calculated we

can use the chain rule to calculate more optimal values for the networks weights w and the

biases b. First, this is calculated with respect to all of the weights w of the neurons j in the

network layers l by computing ∂C/∂wl
j = al−1δ l

j . Then, the rate of change in regard to all

of the biases b of the network layers l is calculated by: ∂C/∂bl
j = δ l

j . (Nielsen 2015). An

optimization method, such as stochastic gradient descent (SGD) or Adam can then use the

calculated gradients in order to adjust the parameters of the model. This enables to minimize

the difference between the predicted output and the desired output by iteratively adjusting

the parameters of the network. (Goodfellow et al. 2016, pp. 200-217).

Stochastic gradient descent (SGD) is a faster and more computationally efficient optimiza-

tion method when compared to the original gradient descent method. (Bottou 2010; Good-

fellow et al. 2016, pp. 149-150). The SGD attempts to iteratively update the cost function

into the steepest descending direction trying to reach a local or a global minimum. The up-

date of a step size can be modified with a learning rate parameter of the SGD. (Goodfellow

et al. 2016, pp. 290-296). The SGD optimization method for updating the parameters θ of

the network is calculated in the following way:

θ = θ −η∇θC(θ ;x,y), (2.9)

where η denotes the learning rate, ∇θC denotes the gradient of the cost function, x is the

training sample, and y is the ground truth. The update of SGD is done by using subsamples

from the dataset. (Goodfellow et al. 2016, pp. 149-150). As the learning rate can have a great

impact on the learning, more automated methods have been developed. One example is the

Adam method (Kingma and Ba 2014), which uses the adaptive learning rate for stochastic

optimization. The learning rate in Adam is adjusted by the method itself during the network

training. This method can help the optimizer to gain faster convergence as the method is less

likely to get stuck in nonoptimal valleys. (Goodfellow et al. 2016; Kingma and Ba 2014).

The optimization problem of deep learning models is quite complex, as the cost function is
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nonlinear and nonconvex, which means that there are multiple local optima and a global op-

timum. Minimizing the cost function is conducted by searching a global or a local minimum

of the cost function. The global minimum is the point where some function g obtains its

absolute lowest value, whereas the local minimum is a point where a function g is lower than

any other points nearby (Goodfellow et al. 2016, pp. 80-84). Usually the global minimum

can be hard or expensive to solve, thus, in these types of problems the approach is to find

the local minimum with a low error rate. The optimization is continued iteratively until the

loss changes of the model are very small or the changes stop, meaning that the model has

converged (Goodfellow et al. 2016). Furthermore, the global minimum might also lead to

overfitting of the model as Choromanska et al. (2014) proved. In addition, Choromanska

et al. (2014) also noticed that the local minimum in large networks seem to lie close to the

global minimum. Therefore, finding the local minimum seems to produce reasonable results

in optimization of deep learning models. (Goodfellow et al. 2016, pp. 279-290).

Regularization of deep learning models

The idea with deep learning is to train a model such that it performs well with unseen data.

When a model learns training data well, but is not able to perform well with new data,

the model suffers from overfitting. (Goodfellow et al. 2016, Chapter 5). There are few

regularization and normalization methods to help with training a model such that it would

not suffer from overfitting, such as dropout, regularization terms, data augmentation, and

batch normalization.

A dropout layer regularizes a model by randomly dropping out some amount of units (Srivas-

tava et al. 2014). A dropout can help with overfitting but also it is computationally efficient

regularization method (Srivastava et al. 2014; Goodfellow et al. 2016, pp. 255-265). Other

common types of regularization in deep learning models are the L1 and the L2 regularisation

that add penalties to the weights of the network (Goodfellow et al. 2016, pp. 225-233).

As mentioned before, deep learning models require a large amount of data in order to gen-

eralize. A common problem especially in biomedical imaging is that the amount of data is

limited. Data augmentation is a method to synthetically create more training data (Simard
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et al. 2003; Goodfellow et al. 2016, p. 236-238). Specifically data augmentations can in-

crease the models capability to learn with more variance and to reduce overfitting (Simard

et al. 2003; Goodfellow et al. 2016, pp. 236-238). Although, real data have been proven to

perform better than augmented data, augmentations can still help the model to learn better

(Wong et al. 2016; Xu et al. 2016). Data augmentation also have undesired effects when used

carelessly, bad augmentations may actually decrease the performance of a model (Wong et

al. 2016). Therefore, data augmentations can be useful to create variance into model learn-

ing, but the results with different models may vary.

Another method to help with training deeper models to generalize better is a method called

batch normalization (Goodfellow et al. 2016, pp. 313-317). As the parameters of the network

change iteratively during training, these changes can have a huge impact on the learning

of a model. To avoid the impact of imbalanced parameters, the batch normalization can

be applied to the layers of a model. The basic principle of a batch normalization layer

is to normalize the activations of a model in a specified layer. (Ioffe and Szegedy 2015).

Batch normalization was first introduced by Ioffe and Szegedy (2015), and it consists of the

following steps. First, the mean of a batch B̄ is calculated with the batch size c and the

activations a by: B̄ = 1
c ∑

c
i=1 ai. Next, the variance V of a batch B is computed with respect to

the activations a and the mean of batch B̄ by V 2
B = 1

c ∑
c
i=1(ai− B̄)2. Then, the activations a are

normalized as âi by using: âi =
ai−B̄√
V 2

B+ε
, where ε denotes a constant. Finally, the normalized

data âi is shifted and scaled by using learnable parameters γ and β , and the output of batch

normalization hi is conducted by: hi = γ âi +β . (Ioffe and Szegedy 2015).

Cross-validation of deep learning models

As we have presented the training and the regularizing methods of a deep learning model,

we will now continue on discussing how to validate the results of a model. In order to verify

the models prediction capabilities the dataset is divided into separate sets. Dataset needs

to be divided into training and test set, so that the model can be tested with unseen data

that have not been used in the training phase of the model. For hyperparameter tuning a

validation test set is also needed. (Goodfellow et al. 2016, pp. 118-120). A usual procedure

is to split the data into training, validation, and test sets. With a small dataset this can be
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problematic, as the model has fewer examples to learn from. To address this issue, cross-

validation can be applied. Cross-validation divides the data into subsets that are used to train

and test the model, from which the network performance can be evaluated. (Goodfellow

et al. 2016, pp. 118-120). Another problem when working with unbalanced dataset is to split

the classes of the data evenly into separate subsets, such that all of the subsets would contain

elements from all of the classes. The stratified cross-validation is able to handle this problem

of dividing unbalanced dataset. It splits the dataset in a way that all of the folds contain all

class labels quite evenly.

Most common cross-validation method is the k-fold cross-validation (Goodfellow et al. 2016,

pp. 118-120). In the k-fold cross-validation the data is split into k amount of subsets, where

k− 1 of folds are selected as the training set and the remaining fold is selected as the test

set. The model is repeatedly trained k amount of times with the different folds. Finally, the

performance of the model is reported as the average result from all of the k amount of trials.

(Goodfellow et al. 2016, pp. 118-120).

2.3.3 Convolutional neural networks

Having defined the basics of deep learning and ANN’s, we will now move on to discussing a

specialization of deep neural networks, called convolutional neural networks. CNN is a mod-

ern type of deep learning model that enables an efficient way of training models with a large

amount of data, and the models can even handle unprocessed data quite well. (Krizhevsky

et al. 2012).

The idea of convolutional neural networks evolves from a study of the visual system of the

brain by Hubel and Wiesel (1962), where they measured the response of neurons with visual

stimuli from a cat’s brain. They found that the neurons of receptive fields had specialized

layers that were able to detect different features. They also found that these layers have

hierarchy - lower level layers detected simple features, whereas higher levels layers had

more complex feature detection. (Hubel and Wiesel 1962). The idea of building an artificial

neural network with similar hierarchical layers was first introduced by Fukushima (1980).

He developed the neocognitron model, and this network architecture idea was the core of
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convolutional neural networks (Fukushima 1980). Later this model was modified by LeCun

et al. (1989) when they introduced a CNN trained with a gradient-based learning algorithm,

backpropagation, to recognize handwritten digits. But it was only in 2012 when CNNs

achieved their breakthrough in deep learning, when Krizhevsky et al. (2012) introduced their

version of CNN, the AlexNet. This model had outstanding results in image classification on

ImageNet competition in 2012 (Russakovsky et al. 2015). Their network was deeper and

larger than the earlier models and it was able to make use of large amount of data. The

training of the model was fast, as the model was trained by using GPUs. (Krizhevsky et

al. 2012). They also generated new training data examples by using data augmentations

and used the dropout regularization method. This network architecture helped to reduce the

model from overfitting. (Krizhevsky et al. 2012).

After the work of Krizhevsky et al. (2012) CNNs became widely used in deep learning.

(Goodfellow et al. 2016, pp. 365-366). A study by Simonyan and Zisserman (2014) eval-

uated deeper CNN models with a mission to improve the accuracy of the CNN models.

They came to the conclusion that the deeper the CNN model is the better the accuracy. By

increasing the depth of the CNN model they were able to gain state-of-the-art results in clas-

sification problems and localization problems. (Simonyan and Zisserman 2014). Next, the

main features of CNNs are introduced - the convolutions and the pooling operations.

Convolution

The usage of convolutions allow the models to learn separate spatial information from the

data. Convolutions create feature maps that represent different features from the training

data. The convolution operation used in CNNs is the convolution operation that does not use

the kernel flip, and its two dimensional form can be calculated by:

S(o, p) = (K∗X)(o, p) = ∑
r

∑
v

X(o+ r, p+ v)K(r,v), (2.10)

where S denotes an output feature map with dimensions of o and p, X denotes a two-

dimensional input data, and K denotes a two-dimensional kernel of weights with dimensions

of r and v. (Goodfellow et al. 2016, pp. 327-329). The basic convolution operation is visu-

alized in Figure 10. In convolution we have a kernel K that is slid across the input, as seen
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in the figure. After the kernel has been slid in each location of an input data X, we get a

feature map S as an output of the convolution operation. Each feature map is different, as the

weights of a kernel are unique. Therefore, each feature map is able to learn different features

from the data. (Dumoulin and Visin 2016). The amount of elements the kernel is slid can

be modified. Also, the boundaries of the input array can be padded, otherwise the feature

maps are downsampled with each convolution operation when compared to the input data.

(Goodfellow et al. 2016).

Figure 10. Convolution operation with padding (reproduced from Dumoulin and Visin

(2016)). The input feature map is presented as blue, and the kernel is presented as the grey

shadow. The output feature map is presented by the green color. The convolution operation

is applied with a stride of 1 and a kernel size of 3×3.

Up-convolution

Up-convolution is also known as the transposed convolution. In up-convolution the feature

maps are upsampled with learnable parameters (Dumoulin and Visin 2016; Long et al. 2015).

This operation allows the network to upscale the feature maps, for instance to gain the same

dimensions as the input data (Dumoulin and Visin 2016). This method was noted to be

efficient in segmentation tasks, as the upsampling is based on learning from the training

process of a network (Long et al. 2015). In up-convolution the forward and the backward

passes are the opposite when compared to the normal convolutions, as the operation is per-

formed by transposing the convolutions. (Dumoulin and Visin 2016). A visualisation of the

up-convolution method can be seen in Figure 11.
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Figure 11. Up-convolution operation with a 3× 3 kernel, a padding of 1, and a stride of 2

(reproduced from Dumoulin and Visin (2016)). The input feature map is presented as blue,

and the kernel is presented as a grey shadow. The output feature map presents the increased

spatial dimensions, that is presented by the green color.

Pooling

In CNNs it is typical that convolution is followed by a pooling layer. The pooling layer

reduces the dimensions of the feature map, which in addition reduces the amount of com-

putation. (Dumoulin and Visin 2016). The pooling also makes the model more invariant to

spatial translations of the input data. (Goodfellow et al. 2016, pp. 335-339). The pooling is

applied by sliding a kernel across the feature map. The step size, also known as the stride,

of a pooling operation can be modified. The output of the pooling is a downsampled feature

map. (Dumoulin and Visin 2016).

There are several methods to compute the pooling, such as the max pooling and the average

pooling, which are visualized in Figure 12. In max pooling the kernel is slid across the input

feature map, and within each step a maximum value is selected inside from the neighborhood

of the kernel. The average-pooling, on the other hand, calculates the average of the items in

the neighborhood within each step of the kernel sliding across the feature map. (Goodfellow

et al. 2016, pp. 335-339).
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Figure 12. Pooling methods visualized (reproduced from Dumoulin and Visin (2016). On

the left side the max pooling operation is visualised and on the right side the average pooling

operation is presented. Both pooling methods have a kernel of size 3× 3 and a stride of 1.

The blue presents the input feature map, the dark blue is the kernel to be slid accross the

input feature map, and the green presents the output of the pooling operation.

2.4 Semantic segmentation

Having introduced the basics of deep learning, we will now continue on discussing the pre-

dictive methods of deep learning models, having the main focus on semantic segmentation.

We will introduce the state-of-the-art deep learning models, together with different architec-

tures and building blocks. Finally, we will focus on semantic segmentation in biomedical

problems, especially focusing on skin cancer segmentation.

Deep learning models that are trained with images have several methods to output predic-

tions, such as by image classification, by object detection, or by semantic segmentation.

These methods are visualized in Figure 13. Image classification refers to the model out-

putting a predefined class for the whole image. The model can also output multiple classes

for an image, which is referred as multi-label classifier. Object detection models, on the

other hand, produce output labels by locating the classes from the input images. Whereas, in

semantic segmentation a neural network outputs a pixel level segmentation map from an in-

put image. Each pixel of the output segmentation map is labeled into predefined categories.

In this study we will focus on semantic segmentation in deep learning.
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Figure 13. Example outputs of image classification, object detection, and semantic segmen-

tation.

Semantic segmentation models are trained by using a training image and a ground truth

image. Ground truth represents the correct classes for each pixel in the original image. The

output of the semantic segmentation model is a pixel-wise classification. An example of the

semantic segmentation model input image, ground truth labels, and an output image are seen

in Figure 14.

Figure 14. An example of semantic segmentation data: an input image, ground truth data,

and an output prediction. The input image is segmented by the model in pixel-wise to differ-

ent categories, such as normal skin, marker, and lesion types. The output prediction map of

a segmentation model produces classification labels for each pixel.

Semantic segmentation has been applied in several fields, such as in scene understanding

(Badrinarayanan et al. 2015), in remote sensing (Henry et al. 2018), and in segmentation

of biomedical images (Ronneberger et al. 2015). Semantic segmentation is a highly active
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research field and the development of models is rapid (Alom et al. 2018). For example,

Long et al. (2015) developed fully convolutional networks (FCNs) for segmentation, where

all the layers of the CNN are convolutional layers. With this architecture they were able

to improve the results of the previous state-of-the-art models. (Long et al. 2015). Another

framework in semantic segmentation that brought superior results was the Segnet model by

Badrinarayanan et al. (2015). They presented an encoder-decoder architecture in segmen-

tation and were not only able to improve the road scene understanding results but also they

improved the speed and memory usage of the model (Badrinarayanan et al. 2015).

An important feature in the encoder-decoder architecture is its capability to maintain local-

ization information from input images into output segmentation (Ronneberger et al. 2015;

Badrinarayanan et al. 2015). The encoding phase of the architecture downsamples the di-

mensions of the data. This enables faster computing time and decreases the memory usage.

Whereas, the decoding phase upsamples the image data dimensions. (Badrinarayanan et

al. 2015). Upsampling of the data can be performed, for instance by using up-convolutions

(Ronneberger et al. 2015). The architecture of encoder-decoder can be modified to use any

CNN model, for example AlexNet (Krizhevsky et al. 2012), VGGNet (Simonyan and Zis-

serman 2014), or ResNet (He et al. 2015a). (Siam et al. 2018; Badrinarayanan et al. 2015).

In biomedical segmentation an encoder-decoder architecture, called the Unet by Ron-

neberger et al. (2015), became popular after it won the EM segmentation challenge (Arganda-

Carreras et al. 2015) in 2015. In biomedical problems it is usual to have a small dataset. The

Unet model was built to tackle this problem and succeeded to gain good results even with a

small dataset. The Unet model uses convolutional blocks in both downsampling and upsam-

pling the feature maps. The feature map dimensions are increased after each convolution

block. The architecture uses skip connections to pass cropped feature maps after each con-

volution block from encoding side to decoding side. The Unet has been used in semantic

segmentation with a wide range of tasks, such as in biomedical image problems (Gorriz

et al. 2017; Alom et al. 2018), in remote sensing (Zhang et al. 2018) as well as in scene

understanding (Siam et al. 2018). The encoder-decoder network, combined with skip con-

nections between layers, is able to maintain details between the layers that otherwise are

lost. (Ronneberger et al. 2015).
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The deeper the models get the harder the training becomes. To address this problem, He

et al. (2015a) introduced the ResNet architecture. They used residual connections, which

are a type of skip connections between every few weight layers to pass trough information

between the layers. The mathematical form of the residual connection G is the following:

G(x) =W (x)+x, (2.11)

where W (x) presents the nonlinear mapping learned in a layer, and x denotes the input fea-

tures (He et al. 2015a). The ResNet contain several weight layers that consist of convolution

operations, batch normalization, and ReLu operation. The feature map dimensions of weight

layers are increased after a few weight layers. The ResNet architecture won several compe-

titions in classification, in object detection, and in segmentation. It was shown that residual

functions boost the models optimization but also they improve the accuracy of a model. (He

et al. 2015a). The ResNet model and especially its residual connections have been success-

fully adopted in segmentation tasks, for instance by combining them with building blocks of

the Unet architecture (Drozdzal et al. 2016; Milletari et al. 2016; Siam et al. 2018; Zhang

et al. 2018).

2.4.1 Semantic segmentation in skin cancer detection from hyperspectral images

In this thesis we focus on a specific medical imaging problem – the semantic segmentation

of four different lesion types BN, DN, LM, and MM. The detection of skin cancer can be

problematic, therefore a novel tool is needed to help in clinical examinations, as discussed

in Section 2.1.2. Several deep learning methods have been used to detect skin cancer but

most of the studies were conducted by using RGB images, multispectral images, or their

combinations (Alom et al. 2018; Esteva et al. 2017; Gorriz et al. 2017; Tomatis et al. 2005;

Yu et al. 2017). There are less studies from skin cancer detection by using hyperspectral

images (Johansen et al. 2020). A novel hyperspectral imaging system is potential tool to help

in skin cancer examinations, but further development is needed, for example to automate the

imaging results (Neittaanmäki-Perttu et al. 2013; Neittaanmäki-Perttu et al. 2015; Salmivuori

et al. 2019).

Hosking et al. (2019) used a hyperspectral dermoscopy that was able to image lesions with
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21 different wavelengths, from the range of 350 – 950 nm. The HSI images were analyzed by

using Monte Carlo simulation method, with successful results of 100 % recall (also known

as sensitivity), and of 36 % specificity in melanoma detection (Hosking et al. 2019). Fur-

thermore, Gu et al. (2018) released a hyperspectral dermoscopy dataset of 330 lesions. The

images of the dataset have dimensions of 256× 512 pixels and contain 16 spectral bands

from the range of 465 – 630 nm. The study of Gu et al. (2018) used support vector machine

(SVM) to classify different lesions from melanoma, and gained 84 % recall and 72.10 %

specificity in melanoma detection. Another study by Fabelo et al. (2019) used a dataset of

49 hyperspectral images with a size of 50× 50× 125 pixels. The imaged wavelength re-

gions were from the range of 450 – 950 nm. They used SVM classifier and obtained results

with a mean of recall of 75.33 % including all lesion types, but only one melanoma lesion

was correctly classified. (Fabelo et al. 2019). These recent studies suggest that hyperspec-

tral imaging combined with automated classification is a promising method in skin cancer

detection, but further investigation is needed. Compared to the previous studies, this study

used a novel HSI dataset that contained 120 different contiguous wavelengths with image

dimensions of 1920×1200 pixels with 61 images of lesions.

There are not many studies that have used hyperspectral imaging combined with deep learn-

ing and semantic segmentation of lesions. A recent study by Pölönen et al. (2019) collected

novel HSI data and compared different architecture structures of CNNs – using 1D, 2D, and

3D convolutions. The results showed that the performance of a CNN can be increased with

the usage of spectral and spatial data. The results were promising and varied between dif-

ferent models. Recall varied from 93 % to 100 %, whereas specificity varied from 12 % to

21 %. Finally, precision metric that is also known as positive predictive value, varied from

32 % to 34 %. Pölönen et al. (2019) conclude that the results of some models were able to

outperform clinicians, whereas some models maintained the same accuracy in diagnostics

when compared to the study by Heal et al. (2008). However, the models used in the study

had some difficulties with segmentation accuracy, especially in the border areas. (Pölönen

et al. 2019).

In this study we continue to work with the novel hyperspectral image data in order to improve

the semantic segmentation of lesions and lesion classification. The aim is to compare two
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deep semantic segmentation models: a slightly modified original Unet model (Ronneberger

et al. 2015), and a modified ResNet model (He et al. 2015a) combined with building blocks

of the Unet model (ResNet-Unet). As the encoder-decoder architecture has produced good

results in previous biomedical semantic segmentation tasks with RGB and multispectral data

(Alom et al. 2018; Drozdzal et al. 2016; Zhang et al. 2018), we are encouraged to test the

performance of this architecture with the novel hyperspectral data.
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3 Materials and methods

In the previous chapter the background and the main concepts of this research were briefly

introduced. In this chapter we present the materials and methods used in the study. First,

in Section 3.1 the materials of the study are introduced. Then, the methods and experimen-

tal setup is presented in Section 3.2. Finally, the evaluation of the results are viewed in

Section 3.3.

3.1 Materials

Next, we will present the data that was used in this study. Then, we describe the preprocess-

ing techniques we used for the data. Finally, we see the annotation process for the training

data, which create the ground truth class labels for each pixel in the lesion image data.

This study used a novel dataset of hyperspectral images. The dataset used was small and

contained only 61 images of lesions. The dataset contained four different lesion types –

benign nevus, dysplastic nevus, lentigo maligna, and malignant melanoma. The dataset

did not contain an even amount of different lesion types. The amount of each lesion type

examples the dataset contained are presented in Table 1. An example from each lesion type

can be seen in Figure 15. The dataset also contained a histopathologically verified result,

one lesion type diagnosis for each image of a lesion. This gave a verified lesion type for

each image, that was used as the true label when comparing the prediction results of the

implemented models.

Lesion type Amount of examples in the dataset

Benign Nevus 14

Dysplastic Nevus 26

Lentigo Maligna 6

Malignant Melanoma 15

Table 1. The amount of lesion type examples the used dataset contained.
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Figure 15. Examples of lesion types used in the study: Dysplastic nevi (DN), Lentigo Ma-

ligna (LM), Malignant melanoma (MM), and Benign nevi (BN). The images are from the

dataset that was used in this study.

The novel HSI data used in this study had been collected by Pölönen et al. (2019) in 2016–

2017 from volunteer patients. The data were gathered from two hospitals: from the Depart-

ment of Dermatology and Allergology of Helsinki University Hospital, Helsinki, Finland,

and from the Päijät-Häme Central Hospital, Lahti, Finland. This study had selected only pa-

tients whose lesions were to be excised and examined histopathologically. The more detailed

description of the data collection can be found from a study by Pölönen et al. (2019).

The study by Pölönen et al. (2019) gathered the novel dataset of hyperspectral images of le-

sions, by using two novel and identical hyperspectral imaging system prototypes (Prototype

2016 by Revenio Group, Finland). These novel HSI prototypes used Fabry-Pérot interferom-

eter (FPI) to separate the wavebands. In addition, external illumination was blocked by using

a covering tube on the imagers, which was seen in some of the image borders in the novel

dataset. To create diffuse illumination to imaging of the lesions, the novel HSI imagers had

been integrated with a diffuse lighting. The specifications of the novel hyperspectral imaging

system prototypes are available in Table 2. (Pölönen et al. 2019). All in all, the total image

dimensions that the prototypes were able to capture were 1920× 1200× 120 pixels. The

more detailed description of the novel HSI prototypes and the data can be found from the

study by Pölönen et al. (2019).

Having introduced the novel dataset used in the study, we will now continue to observe the

preprocessing of the data. The image data were in the format of radiance. In order to use

the spectral information and inspect the spectral signatures of the objects the data contained,

36



Imaging specifications Details

Amount of wavebands in images 120

Full width at half maximum (FWHM) 5–15 nm

Sensor CMOS

Spatial resolution of the images 15 µm/pixel

Spectral separator Fabry-Perot interferometer (FPI)

Spectral range of wavebands 450–850 nm

Resolution of the machine vision camera 1920×1200 pixels

Table 2. Hyperspectral imaging systems specifications used for the image capturing. The

more detailed description of the imaging system can be found from Pölönen et al. (2019).

the data were converted from radiance to reflectance by using Equation 2.1 introduced in

Section 2.2.2. For this operation, the dataset also contained a white reference data cube for

each image.

Unfortunately, the data contained some imaging artefacts in the last 20 wavelengths, there-

fore these wavelengths were removed from the image data (Pölönen et al. 2019). After

the operation, the image data contained 100 different wavelengths. The study by Johansen

et al. (2020) suggests that dimensionality reduction with HSI data can improve the perfor-

mance, remove data redundancy, and remove noise the data contains. Therefore, we removed

every other wavelength from the 100 wavelengths, as the data contained spectral overlap. All

in all, the dimensions of the downsampled hyperspectral data cube were 128×128×50 pix-

els.

As we have now discussed about the data and the preprocessing of the data, we will move on

to describe the annotation process. Annotation was a significant aspect in training the exper-

imental models, as they present the ground truth labels for the images of lesions. The hyper-

spectral data cubes were annotated by using the MATLAB R2018a Image Labeler toolbox.

We used full images in annotation and in training of the deep learning models. According

to Johansen et al. (2020) the usage of full images that utilize also spatial information, is a

realistic method as it is the method of how clinicians view the lesions. In addition, this may
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bring more information of the surroundings and improve the performance of the models (Jo-

hansen et al. 2020). The images were labeled with seven class labels: malignant melanoma,

lentigo maligna, dysplastic nevus, bening nevus, none, marker, and normal skin. Each data

cube contained an image of a lesion, which was annotated to a one lesion type. The ground

truth diagnosis for the lesion an image contained, was obtained from the histopathologically

verified result. Some of the images contained borders from the imagers covering tube, as

mentioned earlier. These pixels we annotated to the label none. In addition, some of the

images contained marker drawings in the skin, and these pixels were labeled to the marker

class. Finally, the skin area pixels were annotated as the normal skin class, and to this class

we also included the hair on the skin. An example of ground truth labeling can be seen in

Figure 16. The annotations were labeled by a non-specialist.

Figure 16. A false color hyperspectral image and an annotated ground truth image of a lesion

that has been histopathologically verified as DN. Other classes that the region of interest

(ROI) contained are marker, normal skin, and none for the covering tube visible in the corners

of the image.

3.2 Methods

Having discussed about the materials of the study, we will now move on to introduce the

methods used in the study. The experiments were performed by implementing two different

deep learning models. The models were trained with the hyperspectral image data together

with the annotated image data, which were introduced in Section 3.1. In this section we will

first present the architectures of the implemented semantic segmentation models, and finally
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we will report the experimental setup used in the study.

The two semantic segmentation architectures that we implemented in this study made use

of the encoder-decoder structure. In addition, the other architecture also used the residual

connections. This was due to that many studies have used the encoder-decoder structure

with promising results in semantic segmentation tasks (Ciresan et al. 2012; Badrinarayanan

et al. 2015; Ronneberger et al. 2015). A major advantage of using the Unet model, is its

ability to generalize well even with small datasets (Ronneberger et al. 2015). Also, the

residual connections in the ResNet model (He et al. 2015a) have allowed to build even deeper

models with successful results (He et al. 2015a). Recent studies have also combined the Unet

model and the ResNet model with good results (Zhang et al. 2018; Siam et al. 2018; Alom

et al. 2018). Therefore, in this study we implemented a slightly modified Unet model as

the first model. As the second model, we implemented a modified ResNet model combined

with the Unet model (ResNet-Unet). Next, we will introduce the two implemented semantic

segmentation models.

1. Unet

The first semantic segmentation model we implemented in this study was a modifi-

cation of the Unet model (Ronneberger et al. 2015). The original Unet model (Ron-

neberger et al. 2015) was modified to work with hyperspectral data, such that the input

layer accepted the input data cubes in the size of 128×128×50 pixels. In addition, we

used padded convolutions, in order for the feature maps to preserve the same dimen-

sions as the input features. As a result, cropping was removed from the architecture.

Also, the batch normalisation layers were added to the network on the input layer

and after each convolution block. Finally, the output predictions of the model were

modified to output multi-class segmentations. All in all, the implemented Unet model

contained only a few modifications and the basic structure was kept in similar form as

it was presented in the original paper by Ronneberger et al. (2015). Figure 17 presents

the architecture of the implemented Unet model.

2. ResNet and Unet model combination (ResNet-Unet)

The second architecture used in this study was a modified ResNet model (He et
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al. 2015a) combined with the Unet model (Ronneberger et al. 2015), which we re-

fer to as the ResNet-Unet model. First, the input layer of the original ResNet-34

model (He et al. 2015a) was modified to be able to have the input data in the size

of 128× 128× 50 pixels. Next, we modified the original ResNet-34 model to out-

put semantic segmentation masks. We also combined the ResNet model with the

Unet (Ronneberger et al. 2015) model. We adapted from the Unet model its u-shaped

encoder-decoder structure and also its skip connections between the encoding and de-

coding phases. We implemented the skip connections after each of the four different

dimensional convolution blocks of the ResNet. A presentation of the implemented

model can be seen in Figure 18. In addition, the convolution blocks were modified

such that all of the four blocks contained six convolutional layers. After each 3× 3

convolution operation a batch normalization and ReLU activation was applied. A

presentation of the convolutional layers are seen in the bottom of Figure 18. Also,

the fully convolutional layer and the pooling layer were removed from the end of the

ResNet-34 model. Otherwise, on the encoding phase the ResNet-34 model was not

modified compared to the original model. After the encoding phase, the decoding

phase was implemented by using the ResNet-34 model similarly as in the encoding

phase. On the contrary, the implemented decoding ResNet-34 network upsampled the

features by using a 3× 3 up-convolution. The final layer of the model had a 2× 2

up-convolution with a stride of 1. This was followed by a 3× 3 padded convolution

layer. Finally, the features were passed to the softmax activation function to produce

the output segmentation maps.
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Figure 17. The architecture of the implemented Unet model. The left side presents the

encoding phase and the right side shows the decoding phase of the model. The model takes

as an input the image data cube and outputs the segmentation map prediction. The encoding

and decoding phases were connected with skip connections. In addition, the figure presents

a detailed description of each convolution operation.
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Figure 18. The architecture of the implemented ResNet and Unet model combination

(ResNet-Unet). The left side of the graph presents the encoding phase, and the right side

of the figure presents the decoding phase of the model. The encoding phase and the decod-

ing phase are connected with skip connections. At the bottom of the figure, the convolution

blocks and their residual connections are presented in more detail. Each convolution was

followed by the batch normalization and the ReLU activation.
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3.2.1 Experiments

As we have introduced the architectures of the models we implemented in this study, we

will move on to describe how the experiments were performed. First, we will introduce the

environment of the experiments, and then we continue to discuss the workflow of the study.

The environment that the two implemented models used in training were the NVIDIA

GeForce GTX 960 with 16 GB RAM and CUDA Version 10.0.130. The hyperspectral

data were preprocessed by using Spectral Python (Boggs 2014). The models were imple-

mented by using Python 3.6.5 (Van Rossum and Drake 2009) programming language and

by using Keras 2.2.5 (Chollet et al. 2015) deep learning framework with Tensorflow 1.14

(Martín Abadi et al. 2015) back-end.

As we discussed earlier, this study implemented two deep learning models for semantic

segmentation, in order to segmentate and classify lesions from the novel hyperspectral image

data. The data were preprocessed and the data were annotated with the methods described

in Section 3.1. The size of the data after the preprocessing were 128×128×50 pixels. The

predictive performance of the models in this study were estimated by performing a 5-fold

stratified cross-validation. This method was necessary to obtain all lesion types to appear in

all of the folds, as the dataset contained an unbalanced amount of different lesion types (see

Table 1).

The novel HSI dataset was small but deep learning models need a lot of data in order to

perform well. Therefore, data augmentations were used to create synthetic data from the

original data. The augmentation methods used in the study were: rotation, horizontal flip,

vertical flip, cropping, and shifting. The augmented synthetic image data were created by

randomly selecting two out of the five augmentation methods described above. Furthermore,

the amount of applying variation for an augmentation method was selected randomly. The

variation for rotation was applied randomly from the range of [0.1,179.0] degrees. The

images were randomly flipped either horizontally or vertically. The amount of pixels cropped

from an image varied from the range of [0.0,40.0] pixels. The shift of an image was selected

randomly from the range of [0.0,20.0] pixels. Both the image data cube and the annotated

mask were augmented together with the same methods and the same variation amounts.
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The data augmentations were performed from the original data during training, and individ-

ually for each fold in the 5-fold stratified cross-validation process. In the 5-fold stratified

cross-validation process the original data had been divided into training set, validation set,

and test set with a quite balanced presentation of each lesion type classes in each fold. After

this division, we applied the data augmentation methods to create synthetic data to expand

the training data set. We only expanded the training data by using data augmentation, but the

validation set and the test set contained only the original data. Therefore, the final amount of

data within each fold were approximately 50 000 images in the training set, 4 images in the

validation set, and 12 images in the test set.

Finally, from Table 3 we can see the amount of parameters the implemented models con-

tained. The parameters of the implemented models were initialized by using He normal (He

et al. 2015b) initialization. Furthermore, the models were trained by using the Adam opti-

mizer with a learning rate of 0.001. The models used the categorical cross-entropy as the

loss function. In addition, the softmax activation function was used in the final layer with

both of the models. All in all, the networks were trained by using 1000 epochs with a batch

size of 10.

Model Trainable parameters Non-trainable parameters Total parameters

Unet 31,109,483 12,004 31,121,487

ResNet-Unet 10,984,999 28,672 11,013,671

Table 3. The summary of the amount of parameters the models contained.

3.3 Evaluation

Previously in this chapter we introduced the used dataset, presented the implemented models,

and reported the experimental setup of this study. The following part of this chapter moves

on to describe the evaluation methods of the models. We will first go through the evaluation

of the segmentation and the used evaluation metrics. Finally, we will focus on the evaluation

of the lesion classification.
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3.3.1 Evaluation of semantic segmentation

The first method of evaluating the implemented models, was the evaluation of the semantic

segmentation results. We included all of the seven class labels (BN, DN, LM, marker, MM,

none, and normal skin) into evaluating the segmentation results. All in all, we evaluated

the overall quality of the segmentation within all of the classes by using the following met-

rics: precision, recall, f1-score, and specificity. In addition, the segmentation predictions

were evaluated visually with respect to the ground truth annotations, to inspect the overall

segmentation results. The metrics of precision, recall, and specificity were used in the evalu-

ation of the models, as these metrics are regularly used in biomedical diagnosis tasks (Parikh

et al. 2008).

First, precision metric, also known as the positive predictive value (PPV), was calculated in

the following way:

Precision =
true positives

true positives+ false positives
. (3.1)

As we can see from the equation, precision evaluates the correct positive cases with respect

to all of the predicted positive cases.

Next, we used recall metric, also known as sensitivity in the following way:

Recall =
true positives

false negatives+ true positives
. (3.2)

Recall measures the difference between all of the correct positive cases with respect to the

all actual positive cases, including the positive cases which have been predicted falsely as

negative.

F1-score evaluation metric was calculated in the following way:

F1-score = 2∗ precision * recall
precision + recall

. (3.3)

As we can see, the f1-score takes the harmonic mean from precision and recall. It presents

an equally weighted comparison of these metrics. The f1-score, or more commonly the

dice coefficient metric, is one of the many methods to evaluate the overall segmentation

accuracy, and it has been widely used especially in medical volumetric segmentation. (Taha

and Hanbury 2015).
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Finally, specificity metric, which is also known as the true negative rate, was calculated by:

Specificity =
true negatives

false positives+ true negatives
. (3.4)

Specificity evaluates the correctly predicted negatives cases with respect to all actual negative

cases.

3.3.2 Evaluation of lesion classification

The second evaluation method for the models was the evaluation of lesion classification,

which predicted one lesion type class for each image. The whole image was classified re-

garding to the most severe tumour or lesion type that was found from the prediction. Table 4

presents the risk classes for each lesion type, from the most severe skin cancer type to be-

nign lesion type. Therefore, if a prediction of a lesion contained all lesion types: BN, DN,

LM, and MM, the image was classified as MM, as it has the highest risk class as seen from

Table 4. This was due to the fact that malignant melanoma has a high mortality rate, and

detecting even a small amount of melanoma in images is crucial for the early-stage detec-

tion of melanoma. In addition, this way the predicted lesion diagnosis were comparable

with the verified histopathological diagnosis, as well as, with the earlier study by Pölönen

et al. (2019). The histopathological diagnosis contained only one diagnosis per image, there-

fore it was used as the ground truth class in the evaluation of the lesion classification. To

conclude, the evaluation of the lesion classification used the same metrics that we introduced

earlier – precision, recall, f1-score, and specificity. As mentioned previously, the metrics of

precision, recall, and specificity have been widely used in medical diagnosis tasks, but also

they are the most used metrics in the HSI studies, especially in melanoma classification, and

enabled the comparison of these studies (Johansen et al. 2020; Pölönen et al. 2019).
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Risk class Lesion type Type

1 Malignant Melanoma Very dangerous

2 Lentigo Maligna Not very dangerous

3 Dysplastic Nevus Increased risk

4 Benign Nevus Not dangerous

Table 4. The risk classes for the lesion types used in this study. Risk class one presents the

most severe lesion type and risk class four presents not dangerous lesion type.
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4 Results

In the previous chapter, the materials and methods of this thesis were introduced. In this

chapter, the results of the implemented Unet model and the implemented ResNet-Unet model

are summarized. First, we will begin by examining the results of the semantic segmentation,

which are presented in Section 4.1. Then, in Section 4.2 we will continue by reporting the

lesion classification results.

4.1 Semantic segmentation results

In this section the results of the models performance on semantic segmentation are reported.

The models have been evaluated by using the four metrics – precision, recall, specificity, and

f1-score that were introduced in Section 3.3. Next, the results are first compared between

the two implemented models, and then the segmentation results of each model are presented

individually in Section 4.1.1 and in Section 4.1.2.

Table 5 presents the mean and standard deviation results of the semantic segmentation with

the two implemented models – Unet, and ResNet-Unet. The mean of the results was calcu-

lated from the test set results over the 5-fold cross-validation. As can be seen from Table 5,

the implemented ResNet-Unet architecture performed better on semantic segmentation with

respect to several metrics. With precision metric, the implemented ResNet-Unet performed

slightly better, with a difference of 0.11 percentage points to the implemented Unet model’s

performance. In addition, the implemented ResNet-Unet performed best with recall met-

ric, where the difference between the models was 0.33 percentage points. F1-score for the

implemented ResNet-Unet was 0.21 percentage points better than the performance of the

implemented Unet model. On the other hand, the specificity evaluation metric did not show

any difference in the performance between the two model types.

4.1.1 Semantic segmentation results of the implemented U-net model

Next, we will inspect visually the semantic segmentation results of the implemented Unet

model. First, we will inspect the segmentation predictions with least misclassified pixels,
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Model Precision (%) Recall (%) Specificity (%) F1-score (%)

Mean Std Mean Std Mean Std Mean Std

Unet 92.61 1.65 91.73 1.80 98.79 0.26 92.17 1.72

ResNet-Unet 92.72 1.28 92.06 1.48 98.79 0.21 92.38 1.37

Table 5. The summary of the segmentation results between the two implemented models.

The table shows the mean and standard deviation of the experimental results on both models

over the 5-fold cross-validation.

and then we will inspect the segmentation predictions with most misclassified pixels. Fig-

ure 19 shows four images of lesions with only few misclassified pixels in segmentation re-

sults obtained from the implemented Unet model. Unfortunately, the model only obtained a

few high-quality segmentations. Therefore, in Figure 19 we have presented only two differ-

ent types of lesions: malignant melanoma, and dysplastic nevus, as the model was not able

to obtain good segmentation results with benign nevus or lentigo maligna.

Figure 20 presents the low-quality segmentation results of the implemented Unet model.

This figure contains five lesion types, one lesion type per row. Similarly to Figure 19, first

image in a row shows the hyperspectral false color image in RGB, next the annotated image,

and finally the predicted segmentation of the model. In Figure 20 all of the lesion types

are presented: benign nevus, dysplastic nevus, lentigo maligna, and malignant melanoma.

In Figure 20 the rows one, two, and four contain segmentation predictions with multiple

different lesion types in an image, whereas the annotated image always contained one lesion

type – the verified histopathological result. In addition, the prediction of the normal skin

area and imaging artefact areas (referred as none class) were widely misclassified by the

implemented Unet model, as can be seen in Figure 20 on rows three and four. Therefore,

the segmentation of borders were not specific in all predictions. In many cases the lesions,

especially malignant melanomas, were falsely segmented to contain marker or none classes.

Few of such examples are seen in the figure on rows two, three, and five.
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Figure 19. High-quality semantic segmentation results of lesions by the implemented Unet

model. Each row presents one lesion: first image per row is the hyperspectral false color

image in RGB, the second image presents the annotated image, and the last image presents

the segmentation results of the implemented Unet model. The class labels for the segmen-

tations were: bening nevus (BN), dysplastic nevus (DN), lentigo maligna (LM), malignant

melanoma (MM), marker, none, and normal skin.
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Figure 20. Examples of low-quality semantic segmentation results of lesions by the im-

plemented Unet model. The class labels for the segmentations were: BN, DN, LM, MM,

marker, none, and normal skin.
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4.1.2 Semantic segmentation results of the implemented ResNet-Unet model

Next, we will visually inspect the segmentation prediction results of the implemented

ResNet-Unet model. First, in Figure 21 we present the high-quality segmentation predic-

tions with least falsely predicted pixels, and then in Figure 22 we present the segmentation

predictions that contained the most misclassified pixels.

Figure 21 shows the high-quality segmentation predictions for three of the lesion types:

malignant melanoma, lentigo maligna, and dysplatic nevus. Similarly to Figure 19 and Fig-

ure 20, each row has one lesion type that contains three images – the hyperspectral false

color image in RGB, the annotated classes, and the segmentation prediction result. The seg-

mentation predictions of benign nevus typically had some falsely segmented pixels, thus, we

excluded those from the well segmented cases. As can be seen from Figure 21, the model

had almost no falsely segmented pixels in these predictions. Interestingly, the misclassified

pixels seem to show higher quality segmentations of the lesions than the provided annotation

images present.

On the contrary to the implemented Unet model, the implemented ResNet-Unet model had

only few low-quality segmentations of lesions. Figure 22 shows five examples of these low-

quality segmentation predictions, from the lesion types of benign nevus, dysplastic nevus,

and malignant melanoma. The predictions of lentigo maligna did not have great misclassi-

fications, therefore we excluded it from the low-quality segmentation presentation. We can

see in Figure 22 that with rows one, three, and four the image border predictions were mis-

classified, especially with pixels of normal skin and imaging artefact (referred as the none

class). In addition, some images contained more than one lesion type per prediction, whereas

the annotated image always contained one histopathologically verified lesion type, as can be

seen in figure rows one, two, and five. Furthermore, the figure rows one, two, three, and five

shows the misclassifications of the marker class. To conclude, the model had fewer false seg-

mented predictions, but still the lesion areas and borders in the predictions were not always

segmented correctly.
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Figure 21. Examples of high-quality semantic segmentation results of lesions by the imple-

mented ResNet-Unet model. Each row of the figure presents one lesion type in three forms:

first as a HSI false color RGB image, then as an annotated image, and lastly as a segmenta-

tion prediction. The class labels for the segmentations were: bening nevus (BN), dysplastic

nevus (DN), lentigo maligna (LM), malignant melanoma (MM), marker, none, and normal

skin.
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Figure 22. Examples of the implemented ResNet-Unet model results with low-quality se-

mantic segmentations of lesions. The class labels for the segmentations were: BN, DN, LM,

MM, marker, none, and normal skin.
54



4.2 Lesion classification

The previous section presented the segmentation results for the whole image. We will now

continue to examine the lesion classification results. First, we will present the overall clas-

sification results of both models concerning all the lesion types. Then, we will compare the

results of the models by examining each lesion type classification result individually.

Figure 23 shows two confusion matrices, one for the implemented Unet model and the other

for the implemented Resnet-Unet model. These matrices report all the predictions of lesion

types BN, DN, LM, and MM over the 5-fold cross-validation. The matrices on the figure

contain the predicted label on the x-axis and the true label on the y-axis. The diagonal axis

presents all of the true positive predictions for each lesion type, and the off-diagonal items

report the falsely classified lesion types. The true positives were the correct predictions for

a specific lesion type, when the histopathological analysis ground truth labels and the pre-

dicted labels contained the same class. From Figure 23 we can see that the implemented Unet

model had two images of lesions where it was not able to predict any lesion type, whereas the

implemented ResNet-Unet model was able to predict for all of the images. Therefore, there

is a none class label only in the confusion matrix of the implemented Unet model. From

the confusion matrices it can be seen that the implemented Unet model had two false nega-

tives for malignant melanoma, where as the implemented ResNet-Unet model had only one

false negative in MM classification. On the contrary, the lesion type LM had similar results

with both of the models, three false negatives. Furthermore, the DN with the implemented

Unet model predictions contained 19 false negatives, when the implemented ResNet-Unet

model predicted 15 false negatives for DN. On the other hand, the implemented Unet model

predicted all the 14 BN cases as false negatives, and the implemented ResNet-Unet model

predicted 10 false negatives for BN. From Figure 23 it can be concluded that the implemented

ResNet-Unet had better results with overall lesion type prediction as well as in melanoma

classification.
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Figure 23. The confusion matrix shows the predicted label and the true label for both of the

implemented models with all the lesion types over the 5-fold cross-validation. The diagonal

axis presents all the true positive predictions for each lesion type, and the off-diagonal items

report the falsely classified lesion types. The class labels for the lesion types are: lentigo

maligna (LM), dysplastic nevus (DN), malignant melanoma (MM), and bening nevus (BN).

The implemented Unet model was not able to classify all lesion types, therefore a none label

is only included in its confusion matrix.

As we have now seen the overall lesion classification results with all the lesion types, we will

now continue to report the classification results individually for each lesion type. First we

will inspect the results for malignant melanoma, next for lentigo maligna, then for dysplastic

nevus, and finally for benign nevus. Table 6 presents the malignant melanoma results for

both of the implemented models. As can be seen from the table, the implemented ResNet-

Unet model was able to predict malignant melanoma better in all of the metrics – precision

by 13.55 percentage points better, recall by 6.66 percentage points better, specificity by 7.75

percentage points better, and f1-score by 8.73 percentage points better. However, the varia-

tion of the results computed over the 5-fold cross-validation were somewhat large with both

models, as seen in the standard deviation results.

In Table 7 we can see the classification results of lentigo maligna for both of the models. The

dataset contained only a few examples of LM, which affected the prediction results. Both of

the models had the same results on recall metric, but the implemented ResNet-Unet model
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Malignant Melanoma

Model Precision (%) Recall (%) Specificity (%) F1-score (%)

Mean Std Mean Std Mean Std Mean Std

Unet 40.95 10.76 86.67 16.33 55.10 19.21 55.00 11.83

ResNet-Unet 54.50 23.36 93.33 13.33 62.85 23.04 63.73 11.36

Table 6. The summary of the malignant melanoma classification on both models. The table

shows the malignant melanoma classification mean and standard deviation results of the 5-

fold cross-validation.

was capable to perform better on metrics: precision (10.00 percentage points), specificity

(5.30 percentage points), and f1-score (3.34 percentage points). As seen in the table, the

standard deviation was quite large on both of the models.

Lentigo Maligna

Model Precision (%) Recall (%) Specificity (%) F1-score (%)

Mean Std Mean Std Mean Std Mean Std

Unet 40.00 37.42 50.00 44.72 90.88 5.77 43.33 38.87

ResNet-Unet 50.00 44.72 50.00 44.72 96.18 4.69 46.67 40.00

Table 7. The summary of the lentigo maligna classification on both models. The table shows

the lentigo maligna classification mean and standard deviation results of the 5-fold cross-

validation.

We can see the results of dysplastic nevus classification by both of the implemented models

from Table 8. The table shows the mean and standard deviation results computed over the

5-fold cross-validation. The implemented ResNet-Unet model performed better when in-

specting all the evaluation metrics, but the overall predictions of dysplastic nevus were quite

inaccurate as we can see from the table.
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Dysplastic Nevus

Model Precision (%) Recall (%) Specificity (%) F1-score (%)

Mean Std Mean Std Mean Std Mean Std

Unet 50.00 27.39 26.00 12.00 72.50 17.34 31.27 10.26

ResNet-Unet 57.43 33.69 44.00 32.00 80.36 14.73 44.89 27.77

Table 8. The summary of dysplastic nevus classification on both models. The table shows

the dysplastic nevus classification mean and standard deviation results of the 5-fold cross-

validation.

Finally, we will inspect the classification results for benign nevus, which are presented in

Table 9. It can be seen from the table that the implemented Unet was not able to predict

benign nevus specifically, therefore precision, recall, and f1-score metrics have values zero.

On the other hand, the specificity for the implemented Unet model is higher than for the

implemented ResNet-Unet model (3.69 percentage points), which is quite misleading as the

implemented Unet model had difficulties to predict bening nevus, which was also seen in

Figure 23. All in all, the implemented ResNet-Unet model was better in predicting benign

nevus, nevertheless, the prediction for benign nevus were poor with both of the models.

Benign Nevus

Model Precision (%) Recall (%) Specificity (%) F1-score (%)

Mean Std Mean Std Mean Std Mean Std

Unet 0.00 0.00 0.00 0.00 98.18 3.64 0.00 0.00

ResNet-Unet 65.00 43.59 30.00 16.33 94.55 10.91 15.71 20.40

Table 9. The summary of bening nevus classification on both models. The table shows

the bening nevus classification mean and standard deviation results of the 5-fold cross-

validation.

In conclusion, Figure 24 and Figure 25 summarizes the amount of lesion type predictions

that were made for each actual lesion type by the implemented models. First, the Figure 24

58



shows the predictions of the implemented Unet model. As we can see from the figure, ma-

lignant melanoma was mostly predicted correctly, but few misclassifications also occurred.

Malignant melanoma was falsely predicted once as lentigo maligna and once as dysplas-

tic nevus. Lentigo maligna was predicted three times correctly, but three times it was also

predicted falsely. Lentigo maligna was mostly misclassified as malignant melanoma. Dys-

plastic nevus and benign nevus were almost always misclassified instead of being correctly

classified. Dysplastic nevus was mostly falsely predicted as malignant melanoma, whereas

bening nevus was mostly falsely classified as dysplastic nevus.

Figure 24. The overall results for predicting each lesion type by the implemented Unet

model. The figure shows the graph for each actual lesion type in the x-axis, and the predic-

tions the model predicted for the specific lesion type in the y-axis.

Finally, the lesion predictions of the implemented ResNet-Unet model are seen in Figure 25.

We can see from the figure that malignant melanoma was nearly always classified correctly.

Only one time the actual malignant melanoma was falsely predicted as dysplastic nevus.

On the other hand, the rest of the lesion types were not classified with great success as we

can see from the figure. Lentigo maligna had same amount of misclassifications as it had

correct classifications. Lentigo maligna was mostly misclassified as malignant melanoma.

Dysplastic nevus was mostly misclassified as malignant melanoma. Lastly, bening nevus

was mostly misclassified as malignant melanoma but also as dysplastic nevus.
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Figure 25. The overall results for predicting each lesion type by the implemented ResNet-

Unet model. The figure shows the graph for each actual lesion type in the x-axis, and the

predictions the models predicted for the specific lesion type in the y-axis.

60



5 Discussion

In the previous chapter the results of this study were described. In this chapter we will

discuss the results and the limitations of the study in more detail. Finally, the suggestions for

future research are presented in Section 5.1.

With respect to the first research question, it was found that the implemented ResNet-Unet

model was able to segmentate the hyperspectral images slightly better than the implemented

Unet model, as we saw in Table 5 in Section 4.1. However, when the segmentation predic-

tions were visually inspected in Section 4.1.1 and in Section 4.1.2, the difference between

the predictions of the models was quite significant. A source of uncertainty in the segmenta-

tion results arise from leaving the imaging covering tube in the corners of the images, as they

contained some noise in some of the images. On the other hand, the covering tube was also

annotated, and we had no unlabelled pixels in the images. This may have helped the models

to segmentate more accurately, when visually inspecting the segmentation results with the

segmentation results of the earlier study by Pölönen et al. (2019). Another issue was that

some of the lesion area predictions contained multiple lesion types. Further investigation is

needed to verify this finding histopathologically. In addition, a major limitation of this study

was that the annotations were not performed by a professional. In conclusion, further inves-

tigation together with domain experts is needed to delineate lesion borders more specifically,

and to gain verified ground truth annotations for semantic segmentation.

To our knowledge, the overall segmentation results containing all the annotated labels with

novel hyperspectral data of several lesions have not been previously reported by using sim-

ilar metrics. As the study area of combining HSI with deep learning in lesion segmentation

is quite novel, there are less studies in the field (Johansen et al. 2020). It seems that most

of the previous semantic segmentation studies have reported their contribution with classifi-

cation results of specific lesions, which we will compare later in this section. Nevertheless,

there have been studies using RGB images in lesion segmentation, but these studies are not

entirely comparable with the novel HSI data segmentation results where we used multiple

lesion types. It seems that the studies segmenting the RGB image areas were reported by

segmenting the whole image area in binary form, for instance to melanoma and to non-
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melanoma pixels (Alom et al. 2018). As Johansen et al. (2020) observed in their study, the

lack of publications of combining HSI lesion data with deep learning may be explained by

the lack of a large and publicly available HSI lesion dataset.

With respect to the second research question, this study found that the implemented ResNet-

Unet model was notably better in the lesion classification task when compared to the im-

plemented Unet model, as seen in Section 4.2. When inspecting the two figures: Figure 24

and Figure 25 it can be seen that both models were especially good in predicting malignant

melanoma, but the predictions of other lesion types were not as successful. This result may

be due to the fact that in the lesion classification we used the method of classifying an image

by the most dangerous lesion type, as explained in Section 3.3.2. Furthermore, this may

be due to the fact that the threshold value of the classifier was not modified in either of the

models. Thus, modifying the threshold value of the classifier could improve the overall clas-

sification of the model, but it could also increase the false negatives of malignant melanoma.

This finding may also support the fact that the lesion types may visually resemble each other

(Jerant et al. 2000; Rigel and Carucci 2000), but also the finding that the spectral presenta-

tion of these lesions may contain somewhat overlapping distributions (Pölönen et al. 2019).

Therefore, the lesion types can be difficult to tell apart. In addition, it seems possible that

these results would benefit from a larger and more balanced dataset.

This study has shown that of the two architecture types we implemented, the implemented

ResNet-Unet model performed better than the implemented Unet model. These results are

likely to be related to the implemented ResNet-Unet being a deeper model and using residual

connections between the fully convolutional layers. This further supports the idea that deeper

models enhance the predictions (Krizhevsky et al. 2012; Simonyan and Zisserman 2014), but

also the fact that fully convolutional neural networks can improve segmentation results (Long

et al. 2015). It is also possible that the usage of residual connections improved the results, as

previous study has shown (He et al. 2015a). In accordance with the present results, previous

studies have demonstrated that combining the structure of the Unet model with residual

connections help the model to converge faster and improve the results (Milletari et al. 2016;

Zhang et al. 2018).

The third question in this research was to determine whether we can improve the lesion
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classification when compared to the study by Pölönen et al. (2019). We compared the imple-

mented ResNet-Unet model with the results of the CNN 2D model by Pölönen et al. (2019),

as our models only used the 2D convolution operations. From Table 10 we can see the results

between the models with respect to all of the lesion types. One interesting finding was that

we were able to improve the classification of LM significantly as we can see from Table 10.

Regarding to DN and MM classification we were able to improve them according to two of

our metrics, but one of our metrics was worse than in the previous study. In BN classification

we were only able to improve one metric, but two metrics remained better in the previous

study. These differences may be explained by using less synthetic data in the training phase,

and by using smaller dimensional images in our models. Moreover, the possible interference

of using whole image augmentations instead of using pixel-wise augmentations cannot be

ruled out.

Lesion type Model Precision Recall Specificity F1-score

Malignant Melanoma 2D CNN 35.00 100.00 12.00 -

ResNet-Unet 54.50 99.33 62.85 63.73

Lentigo Maligna 2D CNN 9.00 17.00 64.00 -

ResNet-Unet 50.00 50.00 96.18 46.67

Dysplastic Nevus 2D CNN 33.00 8.00 81.00 -

ResNet-Unet 57.43 44.00 80.36 44.89

Bening Nevus 2D CNN 100.00 7.00 100.00 -

ResNet-Unet 65.00 30.00 94.55 15.71

Table 10. Comparison of the implemented ResNet-Unet model and the 2D CNN model

(Pölönen et al. 2019) results with all of the lesion types. The dashes in the table indicate that

the results were not reported with such metric.

In addition, we compared the results of the implemented ResNet-Unet model in melanoma

classification with other studies, which had used different HSI lesion data. Compared to

a study by Hosking et al. (2019), they had better result on metric recall (6.67 percentage

points), however our result in specificity (26.85 pp.) was significantly better. When com-
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pared to a study by Gu et al. (2018) we were able to get better result with recall (9.33 pp.),

but their result in specificity (9.25 pp.) was better. The comparison between these studies

indicated that our results had a few improvements. The generalisability of the results are

limited with the facts that the studies by Hosking et al. (2019) and Gu et al. (2018) used

different datasets, different amounts of data, different lesion types, and different methods as

discussed in Section 2.4.1. Therefore, the comparison offers only general trends.

Although the current study is based on a small dataset, the findings are promising. The find-

ings of our study with melanoma classification contained a few improvements. As indicated

by Johansen et al. (2020) it is important to gain high results with recall in melanoma detec-

tion, but gaining reasonable specificity together with high recall has previously been hard.

This we were able to improve. In addition, our results support the earlier finding by Pölönen

et al. (2019) that the usage of deep learning with HSI lesion data can outperform the clas-

sification of MM when compared to clinical diagnoses by Heal et al. (2008). Moreover, we

succeeded to improve, according to few of the metrics, the classification of other lesion types

as well. As Johansen et al. (2020) implicated, the classification of non-melanoma lesions is

also important, as these lesions are hard to distinguish by general practitioners. Our find-

ings are a small step towards improving the delineation and classification of several different

lesion types, nevertheless further work is required.

These findings should be interpreted with caution due to some limitations as indicated ear-

lier. Notable is also the fact that the models were trained only once with the 5-fold cross-

validation. Further repetitions are needed to minimize variation in the results. Moreover,

it is worth noticing that the data was not diverse, as it contained patients from two cities

in Finland. In spite of the limitations, this study certainly adds value to use deep semantic

segmentation models with novel hyperspectral image data, to ensure we can improve the

early detection of skin cancer and improve to delineate the tumour borders more accurately

in clinical examinations in the future.
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5.1 Suggestions for further research

Despite the promising results, future investigations are needed to improve the lesion classi-

fication and the overall segmentation results. A natural progression of this work could be to

annotate the images with professional help. Comparison by using HSI data and RGB data

with deep learning models could be investigated in the future. As there have been less stud-

ies about pixel level approaches in lesion segmentation according to Johansen et al. (2020),

this method could be compared with the whole image segmentation. Future work could also

experiment with different types of augmentation methods. However, if a larger dataset would

be available it should be used, as more data should help to improve both the segmentation

results and the lesion classification results.

Moreover, we suggest experiments with several different architectures and state-of-the-art

networks. For example, future experiments could be done by expanding the Unet model

with both residual connections, and with recurrent convolution neural network architecture,

which was found to improve the network results in the study by Alom et al. (2018). Further-

more, different convolutions, such as 3D convolutions, could be tested with these models.

The study by Çiçek et al. (2016) have evidence that 3D convolutions in Unet model can im-

prove the results of the network. The usage of 3D convolutions and combination of different

convolutions was also found useful in the study by Pölönen et al. (2019).
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6 Conclusions

The main goals of this study were to compare the two different deep learning architectures

for semantic segmentation, and to try to improve the lesion classification results compared

to the previous study by Pölönen et al. (2019). We implemented two deep learning models,

the U-net model and the ResNet-Unet model. We compared these models by their ability

to segmentate lesions and to classify lesions. The data used in this study was novel hyper-

spectral image dataset of lesions. The major limitation of the dataset was its small size of

61 images, nevertheless the hyperspectral images were quite large – 1920×1200×120 pix-

els. The dataset was expanded by using data augmentations while training the deep learning

models.

We found that the implemented ResNet-Unet model obtained better results in both of the

tasks – in semantic segmentation and in lesion classification. To our knowledge the seman-

tic segmentation results of multiple lesion types and labels have not been presented with the

novel HSI data in previous studies, and it seems that this study lays groundwork for future re-

search. Our attempt to improve melanoma classification results were minor, nevertheless we

were able to improve drastically the classification of lentigo maligna. In addition, this work

was able to slightly improve the classification of dysplastic nevus. The results of our study

are consistent with the findings of Pölönen et al. (2019), which found that using deep learn-

ing with semantic segmentation to predict melanoma from the novel HSI data can slightly

outperform clinical diagnoses of melanoma classification. Overall, this study strengthens

the idea that deep neural networks are able to learn highly complicated features, and when

combined with HSI data they might have potential to help to improve melanoma detection

and help to delineate lesion borders.
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