
Aleksi Lokka

CONTINUOUS DELIVERY ADOPTION CHALLENGES
FOR SMALL AND MEDIUM SIZED ERP SYSTEM

VENDORS

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY
2020

ABSTRACT

Lokka, Aleksi
Continuous Delivery adoption challenges for small and medium sized ERP sys-
tem vendors
Jyväskylä: University of Jyväskylä, 2020, 69 pp.

Information systems, Master’s Thesis
Supervisor: Seppänen, Ville

As the business environments and the requirements of enterprise software us-
ers are evolving increasingly faster, enterprise system vendor organizations
have to develop their products increasingly faster, while maintaining a high

level of software quality. To address these demands, software companies have
in the recent decade adopted a software engineering practice known as Contin-
uous Delivery (CD), in which the software is maintained in a releasable state,
but not deployed necessarily automatically. However, there are certain applica-
tion domains that do not facilitate the adoption of Continuous Delivery, such as
Enterprise Resource Planning (ERP) systems, as they are mission-critical, large,
and complex software systems designed to manage all central business func-
tions of an organization, yet the ERP system vendors are facing the same de-
mands as other software vendors and are therefore seeking to adopt the Con-
tinuous Delivery practice in their development activities.

The objective of this study is to identify and analyze the challenges related
to adoption of Continuous Delivery practice in small to medium sized Enter-
prise Resource Planning (ERP) system vendors. The study is divided into two
sections: a literature review of previous research, and an empirical qualitative
study, in which five industry professionals representing four organizations
were interviewed. As a result, a framework consisting of 12 identified Continu-
ous Delivery adoption challenges classified into five separate, but interconnect-
ed challenge themes is presented.

Keywords: software engineering, continuous delivery, enterprise resource
planning

TIIVISTELMÄ

Lokka, Aleksi
Jatkuvan toimittamisen käyttöönoton haasteet pienille ja keskisuurille toimin-
nanohjausjärjestelmien toimittajille
Jyväskylä: University of Jyväskylä, 2020, 69 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja: Seppänen, Ville

Liiketoiminnan ympäristöjen ja yritysjärjestelmien käyttäjien vaatimusten kehit-
tyessä jatkuvasti kiihtyvällä tahdilla yritysjärjestelmien toimittajien on kehitet-
tävä tuotteitaan yhä nopeammin, samalla säilyttäen ohjelmistojen korkean laa-
dun. Vastatakseen näihin vaatimuksiin, ohjelmistoyritykset ovat viimeisen vuo-
sikymmenen aikana ottaneet käyttöön jatkuvana toimittamisena tunnetun oh-
jelmistotuotannon menetelmän, jossa ohjelmisto pidetään jatkuvasti julkai-
sukelpoisena. Tietyt ohjelmistotyypit, kuten toiminnanohjausjärjestelmät, joilla
yritykset hallinnoivat kaikkia keskeisiä liiketoiminnan osa-alueitaan, eivät kui-
tenkaan erityisesti sovellu jatkuvasti toimitettaviksi niiden toiminnan kriitti-
syyden, laajuuden, tai monimutkaisuuden vuoksi. Samat vaatimukset kosket-
tavat kuitenkin toiminnanohjausjärjestelmien toimittajia kuin muitakin ohjel-
mistotoimittajia, minkä vuoksi myös toiminnanohjausjärjestelmien toimittajat
pyrkivät liittämään jatkuvan toimittamisen menetelmiä osaksi ohjelmistokehi-
tystään.

Tämän tutkimuksen tavoitteena on tunnistaa ja analysoida pienten ja kes-
kisuurien toiminnanohjausjärjestelmien toimittajien haasteita jatkuvan toimit-
tamisen käyttöönottoon liittyen. Tutkimus on jaettu kahteen osaan: kirjallisuus-
katsaukseen ja empiiriseen laadulliseen tutkimukseen, jossa haastateltiin viittä
alan asiantuntijaa, jotka edustivat neljää eri järjestelmätoimittajaa. Tutkimuksen
tuloksena esitellään viitekehys, joka sisältää yhteensä 12 jatkuvan toimittamisen
käyttöönoton haastetta luokiteltuna viiteen erilliseen, mutta toisiinsa liittyvään
teemaan.

Asiasanat: ohjelmistotuotanto, jatkuva toimitus, toiminnanohjausjärjestelmä

FIGURES

FIGURE 1 Waterfall development model (Royce, 1970) 12
FIGURE 2 Outline of the deployment pipeline stages (Humble & Farley, 2010) 15
FIGURE 3 The relationship between Continuous Integration, Continuous
Delivery, and Continuous Deployment (Shahin et al., 2019) 17
FIGURE 4 Qualitative directed content analysis process of the study 33
FIGURE 5 Conceptual framework of Continuous Delivery adoption challenges
 ... 55

TABLES

TABLE 1 Traditional vs. agile software development (Nerur et al., 2005, p. 75) 14
TABLE 2 Continuous Delivery benefits ... 17
TABLE 3 Continuous Delivery adoption challenges, adapted from Shahin et al.
(2017) ... 20

TABLE 4 ERP system trends (Clegg & Wan, 2013, p. 1461) 23
TABLE 5 Interviewees and their roles .. 30
TABLE 6 Companies and their key figures ... 37

TABLE OF CONTENTS

ABSTRACT .. 2

TIIVISTELMÄ .. 3

FIGURES .. 4

TABLES .. 5

TABLE OF CONTENTS .. 6

1 INTRODUCTION .. 8

2 CONTINUOUS SOFTWARE DELIVERY 11

2.1 Software engineering ... 11
2.2 Agile methods... 12
2.3 Continuous Integration .. 14
2.4 Deployment pipeline ... 15
2.5 Continuous Delivery .. 16

2.5.1 Benefits... 17

2.5.2 Challenges and problems ... 18
2.6 Related concepts ... 20

2.6.1 Continuous Deployment .. 20
2.6.2 DevOps .. 21

3 ENTERPRISE RESOURCE PLANNING SYSTEMS 22

3.1 Definition .. 22
3.2 History and evolution .. 22
3.3 Contemporary ERP systems .. 24
3.4 Benefits of ERP system ... 26

4 RESEARCH METHODOLOGY .. 27

4.1 Research method .. 27
4.2 Data collection .. 28

4.2.1 Selection of interviewees .. 28
4.2.2 Semi-structured theme interviews .. 30

4.3 Data analysis ... 33

5 RESULTS OF THE EMPIRICAL STUDY 35

5.1 Organizations and interviewees ... 35
5.1.1 Organizations .. 35
5.1.2 Interviewees .. 37

5.2 System design and architecture challenges.. 38

5.2.1 Unsuitable architecture .. 38
5.2.2 System scale and complexity ... 39

5.3 Integration and deployment pipeline challenges 40
5.3.1 Revision control .. 40
5.3.2 Code stabilization ... 41

5.4 Testing challenges .. 42
5.4.1 Time-consuming testing ... 42
5.4.2 Disparity of testing ... 43

5.5 Release challenges .. 44
5.5.1 Customer requirements and preferences 44
5.5.2 Domain restrictions .. 44
5.5.3 Release planning and prioritization .. 45

5.6 Organizational challenges ... 45
5.6.1 Coordination and collaboration... 46
5.6.2 Communication .. 46

5.6.3 Resources ... 47

6 ANALYSIS OF THE RESULTS ... 48

6.1 Continous Delivery capabilities of the organizations 48

6.2 System design and architecture .. 49
6.3 Integration and deployment pipeline ... 50
6.4 Testing ... 52
6.5 Release ... 52
6.6 Organizational .. 53
6.7 Conceptual framework of Continuous Delivery adoption challenges

for ERP system vendors .. 55

7 DISCUSSION .. 56

7.1 Addressing the research question ... 56
7.2 Theoretical implications... 56

7.3 Practical implications ... 57
7.4 Limitations of the study ... 58
7.5 Topics for further research .. 59

8 CONCLUSION ... 60

REFERENCES .. 61

APPENDIX 1 INTERVIEW GUIDE ... 66

APPENDIX 2 INTERVIEW QUOTATION TRANSLATIONS 67

1 INTRODUCTION

The modern cizilization is increasingly dependent on digital technologies,
products, and services. This is true for not only individuals, but also for busi-
ness organizations, which will have to adapt to the constantly evolving business
environment, which has changed increasingly faster since the introduction of
Information Technology and different types of software systems that are used
to enhance the performance of business organizations. A prominent class of
enterprise software systems referred to as Enterprise Resource Planning (ERP)
systems have been used for decades to manage most of the central business
functions of businesses. As the systems have evolved over time, so have the re-
quirements for the systems set by their users. Increasingly changing business
environments require increasingly evolving software solutions, and ERP sys-
tems are no exception. As a result, the ERP system vendors have to be able to
deliver their systems more efficiently, flexibly, and rapidly in order to accom-
modate the differing and changing needs of their customers.

One possible solution to address the problem for system vendors is to
adopt a software engineering method known as Continuous Delivery, in which
the software is constantly kept in a releasable state, and upgrades such as addi-
tional system features can be delivered to the users at any time. The proposed
benefits of Continuous Delivery include shorter time-to-market and improved
software quality, customer satisfaction, and reliability of software releases.
Adopting the Continuous Delivery practice, however, is remarkably difficult
due to the critical characteristics of ERP systems, and other software develop-
ment challenges in the ERP system vendor organizations.

The objective of this study is to identify the challenges related to adoption
of Continuous Delivery practice in small to medium sized ERP system vendors.
In order to identify and analyze the challenges, the following research question
was formulated:

 What are the Continuous Delivery adoption challenges for small and medium

sized ERP system vendors?

9

In order to address the research problem, the study was divided into two sec-
tions: a literature review and empirical research. The objective of the literature
review was to obtain understanding of the phenomenon of interest, including
essential terminology and central concepts. The literature review was conduct-
ed by searching for research articles published in scientific publications, such as
journals and conference papers, with prioritization of research articles to be in-
cluded in the literature review as the following, in order: relevancy of the re-
search article, quality of the publication, and time of the publication. The rele-
vancy of the research article refers to the level of similarity between the topic of

the article and the research problem. The quality of the publication was deter-
mined by the amount of references of the article and the overall recognizability
of the publication, which was partly evaluated by utilizing a publication classi-
fication system Julkaisufoorumi. Finally, the time of publication was considered
as more recent research articles were estimated to produce more relevant data
to address the research problem.

The research articles for the literature review were initially searched from
the eight leading Information Systems journals, known as Senior Scholars’ Bas-
ket of Journals (Association for Information Systems, 2011), which are the fol-
lowing, in alphabetical order: European Journal of Information Systems (EJIS),
Information Systems Journal (ISJ), Information Systems Research (ISR), Journal
of AIS (JAIS), Journal of Information Technology (JIT), Journal of MIS (JMIS),
Journal of Strategic Information Systems, and MIS Quarterly (MISQ). In addi-
tion, relevant research databases such as AIS eLibrary, ACM Digital Library,
and IEEE Xplore were employed in order to find relevant research for the litera-
ture review. Finally, Google Scholar search engine was also used to obtain fur-
ther coverage of relevant research articles. As the existing research on some of
the key concepts proved to be extremely limited, if not nonexistent, practitioner
white papers, articles, and blog entries were used as substitutes for research
articles, but only when absolutely necessary or otherwise unavoidable. The
keywords that were used to obtain relevant research articles were the following:
“enterprise resource planning”, “erp”, “erp ii”, “erp iii”, “continuous delivery”,
“cd”, “continuous integration”, “ci”, “continuous software delivery”, “release
management”, “deployment pipeline”, and combinations of the previous key-
words, e.g. “erp continuous delivery”, “continuous delivery release manage-
ment”, and “continuous delivery deployment pipeline”. Furthermore, as the
research problem suggests, words “problem” and “challenge” were also com-
bined with previous keywords, e.g. “continuous delivery challenge”.

The main objective of the empirical study was to examine what challenges
ERP system vendors face when adopting and practicing continuous software

delivery methods. As the objective of this study is to describe and analyze a
phenomenon instead of explaining it or making predictions related to it, the
manifesting body of knowledge, or theory, can be considered analytic in nature
(Gregor, 2006). As the Continuous Delivery of software has been a subject of
extensive research for over a decade, it is no surprise that there are multiple
extensive systematic literature reviews regarding the challenges of adopting

10

them published recently, such as research articles by Laukkanen et al. (2017a)
and Shahin et al. (2017). The research on how Continuous Delivery practices are
adopted and applied in the explicit domain of ERP systems development, how-
ever, appears to be extremely limited, if not nonexistent, especially from the
viewpoint of ERP system vendors instead of the user organizations. Because of
that, a clear research gap exists and thus this study provides a scientific contri-
bution to the academic discipline of Information Systems.

The rest of this thesis is structured as follows: in the chapters two and
three, the essential concepts of Continuous software delivery and Enterprise

Resource planning, respectively, are discussed on the foundation of the con-
ducted literature review. In chapter four, the research methodology of the em-
pirical research is discussed, including the research, data collection and analysis
methods. In chapter five, the results of the empirical research are presented. In
chapter six, the results are analyzed and discussed, and a novel theory in a form
of conceptual framework is proposed. In chapter seven, the theoretical and
practical implications and limitations are discussed, and topics for further re-
search are considered. Last, in chapter eight, a conclusion of the study is pre-
sented.

11

2 CONTINUOUS SOFTWARE DELIVERY

Continuous delivery of software is increasingly more prominent practice
among the software industry. It can be seen as an extension of agile methods,
which in turn were developed to overcome challenges and issues caused by
traditional, life-cycle based software development and engineering methods,
such as the waterfall method. In this chapter, the history of software engineer-
ing and agile development methods are summarized, and the practices of Con-
tinuous Integration, deployment pipeline, and Continuous Delivery are dis-
cussed in detail with their proposed benefits and challenges also summarized.
In addition, related concepts of Continuous Deployment and DevOps, are dis-
cussed.

2.1 Software engineering

The term software engineering, first introduced in 1968 (Wirth, 2008), means
“the application of a systematic, disciplined, quantifiable approach to the de-
velopment, operation, and maintenance of software; that is, the application of
engineering to software” (IEEE, 1990, p. 67). One of the fundamental elements
of traditional software engineering is the concept of software development life
cycle, which is essentially a tool to model how software is designed, created,
and maintained (Davis, Bersoff & Comer, 1988). Arguably the most well-known
life cycle model is a sequential model first depicted by Royce (1970), later
named the waterfall model, in which several phases of development activity
have to be completed in strict order for software to be deliverable. The original
waterfall model consisting of six sequential phases is depicted in the Figure 1
(Royce, 1970).

12

FIGURE 1 Waterfall development model (Royce, 1970)

The sequential software development process models, including the waterfall
model, have received criticism for a variety of reasons. For example, such mod-
els do not provide feedback between the phases, and because of the sequential
nature problems with specification, design, and implementation are discovered
only when the system has been integrated. Furthermore, once a specification
has been locked, it is difficult to change in response to changing user needs,
even though both organizational and end-user requirements are known to
change during the development process, thus causing a constant pressure for
respecification. As a result, the delivered software may not meet the actual re-
quirements of the customer. (Sommerville, 1996.)

2.2 Agile methods

First instances of agile methods, or development methods that can be consid-
ered as such in retrospect, were developed in the 1970s, or even before. One of
these methods that influenced the emergence of agile software development
methods is the “iterative enhancement” technique that was introduced in 1975
(Basili & Turner, 1975). These methods, however, did not succeed to achieve
popularity. It was not until the mid to late 1990s, when new development
methods, such as Extreme Programming (XP), were developed, that agile meth-
ods finally started to reach mainstream success in the software industry (Cohen,
Lindvall & Costa, 2003). A defining moment in the history of software engineer-
ing occurred in 2001, when a group of software professionals published the
“Agile Software Development Manifesto” (Fowler & Highsmith, 2001). The four
foundational values of the Agile Manifesto are as follows:

13

 Individuals and interactions over processes and tools

 Working software over compehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

Individuals and interactions over processes means that the relationships and com-
munality of the software developers and their roles are emphasized instead of
institutionalized processes and development tools. This is manifested in form of
procedures improving team spirit, such as close team relationships, and work-

ing environment arrangements. (Abrahamsson, Salo, Ronkainen & Warsta,
2002.) Working software over comprehensive documentation implies that the most
important objective of a software development team is to continuously produce
tested and working software. This is achieved by producing new releases fre-
quently, in intervals from hourly to daily releases to monthly or bi-monthly.
The developers should keep the code simple and technically superb in order to
avoid unnecessary and burdening documentation. (Abrahamsson et al., 2002.)

Customer collaboration over contract negotiation means that the relationship
and collaboration between the developers and the customers is preferred over
rigid contracts. However, the larger a software project is, the more important it
is to have a well-drafted and negotiated contract. The objective of negotiations
is to be able to form a lasting relationship. Agile development emphasizes the
delivery of business value as soon as the project begins, reducing the risks of
contract breach in form of a non-fulfillment. (Abrahamsson et al., 2002.) Re-
sponding to change over following a plan refers to the endorsed practice of both

software developers and customer representatives to be well informed, compe-
tent, and authorized to address the needs that may emerge during the devel-
opment process. Each of the participants should be able to make changes, and
the contracts should be made in a way to make that possible. (Abrahamsson et
al., 2002.)

While each of the values discussed above is meaningful, arguably the most
important precedent for latter developments in the software engineering disci-
pline is the second one, delivering working software over comprehensive doc-
umentation. According to Abrahamsson et al. (2002), the “working software
over comprehensive documentation” implies that the software development
teams should continuously deliver tested and working software, with releases
occurring frequently, even hourly or daily. Agile methods contrast the tradi-
tional software development approaches that are guided by a SDLC model, in-
cluding the waterfall model, which emphasize process-centricity, specified
tasks and their desired outcomes, specialized roles, extensive documentation,

and formalized communication through that documentation (Nerur, Mahapatra
& Mangalaraj, 2005). The main differences between traditional and agile soft-
ware development are summarized in Table 1.

14

TABLE 1 Traditional vs. agile software development (Nerur et al., 2005, p. 75)

 Traditional Agile

Fundamental
Assumptions

Systems are fully
specifiable, predictable, and
can be built through
meticulous and
extensive planning.

High-quality, adaptive software can be
developed by small teams using the
principles of continuous design
improvement and testing based on
rapid feedback and change.

Control Process centric People centric

Management
Style

Command-and-control Leadership-and-collaboration

Knowledge
Management

Explicit Tacit

Role
Assignment

Individual—favors
specialization

Self-organizing teams—encourages role
interchangeability

Communication Formal Informal

Customer’s Role Important Critical

Project Cycle
Guided by tasks or
activities

Guided by product features

Development
Model

Life cycle model (Waterfall,
Spiral, or some variation)

The evolutionary-delivery model

Desired
Oganizational
Form/Structure

Mechanistic
(bureaucratic with high for-
malization)

Organic (flexible and
participative encouraging
cooperative social action)

Technology No restriction
Favors object-oriented
technology

2.3 Continuous Integration

Continuous integration (CI) is a software development and engineering practice
where the software code created by a development team is integrated frequent-
ly, usually multiple times per day. Each integration is built and tested automat-
ically with a purpose to detect mistakes and other errors in the integration as
early as possible. (Fowler, 2006.) This contrasts the formerly common practice of
integrating the work of individual software developers and development teams
only after longer passages of development work, ranging from multiple days to
even months, which can lead to increase to possibility and severity of integra-
tion conflicts between lines of work to increase (Laukkanen, Itkonen & Lasseni-
us, 2017). Thus, one of the main rationales behind Continuous Integration prac-
tice is the fact that the sooner errors and conflicts are detected, the easier and
quicker they are to correct. At the same time, difficulties with long-running
code branches and merge conflicts related to them are avoided (Meyer, 2014).

15

New code changes from a version control are usually tracked by a dedicated CI
server, which also builds and tests the system automatically after each code
change (Meyer, 2014). In summary, efficient Continuous Integration practices
and tools automate the compilation, building, and testing phases of software
development (Hilton, Nelson, Tunnell, Marinov & Dig, 2017).

Although similar practices have probably been used earlier, the term and
concept of Continuous Integration first appeared in the late 1990s as one of the
twelve basic practices in the Extreme Programming (XP) software development
methodology (Ståhl & Bosch, 2014). In the XP, the practice of Continuous Inte-

gration proposes that new code should be integrated with the current system
within only a few hours, and each time the integration takes place, the entire
system should be built from scratch. If the build does not pass each and all of
the tests, all changes are discarded (Beck, 1999). For the most part, the current
practice of Continuous Integration as a part of Continuous Delivery is quite
similar. However, the exact definition of Continuous Integration is still some-
what unclear, as there “is currently no consensus on Continuous Integration as
a single, homogenous practice” (Ståhl & Bosch, 2014, p. 57.) The following bene-
fits of Continuous Integration practice have been reported (Fowler, 2006;
Lehtonen, Suonsyrjä, Kilamo & Mikkonen, 2015; Ståhl & Bosch, 2014):

 Reduced risk
 Faults are detected earlier and are easier to track
 Improved code quality
 More frequent deployments
 Increased developer productivity

2.4 Deployment pipeline

Deployment pipeline, also known as Continuous Integration pipeline (Humble
& Farley, 2010; Hilton et al., 2017), consists of several subsequent stages with
predetermined requirements that software build must fulfill to pass through in
the pipeline in order to be releasable for the end users, or into the production
environment (Humble & Farley, 2010; Steffens, Lichter & Döring, 2018). The
deployment pipeline is different for each software application with possible
additional stages included, but in general, it consists, at least of the following
four stages: commit stage, automated acceptance test stage, manual test stage,
and release stage, which are depicted in the Figure 2 (Humble and Farley, 2010).

FIGURE 2 Outline of the deployment pipeline stages (Humble & Farley, 2010)

16

The commit stage affirms that the system functions at the technical level. The

code is compiled and it will pass a sequence of primarily unit-level automated
tests, after which a code analysis is performed (Humble & Farley, 2010). The
automated acceptance test stages affirm that the system works not only at the func-
tional level, but also at the nonfunctional level. In addition, it is assured that the
system meets the behavioural requirements of its users and the specifications of
the client. (Humble & Farley, 2010.) The objective of the manual test stages is to
affirm that the system is working as intended and fulfills its requirements, to
expose defects not detected by automated tests, and to verify that the system

provides value to its users. The manual test stages can usually include envi-
ronments of exploratory testing and integration, and user acceptance testing as
well. (Humble & Farley, 2010.) Finally, in the release stage, the system is deliv-
ered to its users, either as packaged software or as a deployment into a produc-
tion environment or similar, namely a testing environment that is identical to
the production environment. (Humble & Farley, 2010.)

Fundamentally, the deployment pipeline is an automated process of de-
livering software, that is most often manifested in a form of integrated software
system, which utilizes changes in source code retrieved from the version control
system as an input, and functional software releases as an output, which can
then be deployed into the production environment. Furthermore, the deploy-
ment pipeline provides immediate feedback to each of stakeholders involved at
every stage of the software delivery process. (Lehtonen et al., 2015.) Similarly as
the deployment pipeline is an extension of the practice of Continuous Integra-
tion, a functional deployment pipeline is a prerequisite for practice of Continu-
ous Delivery (Lehtonen et al., 2015; Olsson et al., 2012).

The terminology of the deployment pipeline has faced criticism, as the de-
ployment pipeline can be seen either as a model, software system, or process.
Some researches, such as Steffens et al. (2018), have criticized this multidimen-
sional definition of deployment pipeline for its ambiguity, and have proposed
more consistent terminology instead: a deployment pipeline should be dis-
closed as a software delivery model, software delivery system, or software de-
livery process, depending on which one of the previously mentioned dimen-
sions is in question. However, as this classification has not reached any signifi-
cant status in the research, it is discarded in context of this thesis and the more
customary term deployment pipeline is used when referring to any of the three
previously mentioned dimensions.

2.5 Continuous Delivery

Continuous Delivery (CD) is “a software engineering approach in which teams
keep producing valuable software in short cycles and ensure that the software
can be reliably released at any time” (Chen, 2015; p. 50). By another definition,
Continuous Delivery is a set of principles, patterns, and practices that enable
software deployments to become routine tasks that can be performed on de-

17

mand at any time (Humble, 2018). Indeed, while there is no formal definition
for Continuous Delivery, “there appears to be some level of agreement amongst
authors that Continuous Delivery refers to the ability of an organization to re-
lease software functionality directly to customers on demand and at will (de-
ployment), faster and more frequently than traditional software development”
(Rodríguez et al., 2017, p. 274). The main rationale for adopting the Continuous
Delivery practice is to be able to get all changes in software, regardless of their
size and scope, available to the end users in a safe, sustainable, and quick man-
ner (Humble, 2018).

The concept of Continuous Delivery and its relationship between Contin-
uous Integration and Continuous Deployment is illustrated in the Figure 3
(Shahin, Zahedi, Babar Zhu, 2019).

FIGURE 3 The relationship between Continuous Integration, Continuous Delivery, and
Continuous Deployment (Shahin et al., 2019)

2.5.1 Benefits

Adopting and practicing Continuous Delivery will provide a software devel-
opment organization with multiple benefits, some of which are connected to
each other. The benefits reported in the research literature include shortened
time-to-market and continuous feedback, improved productivity, quality, cus-
tomer satisfaction, and release reliability. The benefits are presented in Table 2.

TABLE 2 Continuous Delivery benefits

Benefit Literature

18

Shorter time-to-market, more
frequent releases

Olsson et al., 2012; Neely & Stolt, 2013; Chen,
2015; Leppänen et al., 2015

Improved productivity
and software quality

Humble et al. 2006; Chen, 2015; Leppänen et
al., 2015; Itkonen et al., 2016

Improved customer
satisfaction

Neely & Stolt, 2013; Chen, 2015; Leppänen et
al., 2015;

Improved release reliability,
decreased risk of release
failures

Humble et al., 2006; Neely & Stolt, 2013;

Chen, 2015; Itkonen et al., 2016

Faster, continuous
feedback

Olsson et al., 2012; Neely & Stolt, 2013; Lep-
pänen et al., 2015

In addition to benefits presented above, authors have also identified benefits
such as “building the right product”, (Chen, 2015) “effort savings” and “a closer
connection between development and operations” (Leppänen et al., 2015). Fur-

thermore, in their case study of a Finnish digital service provider, Itkonen et al.
(2016) reported also the following additional benefits of adopting Continuous
Delivery:

 Improved collaboration
 Organisational independence
 Infrastructural agnosticism
 Improved developer morale

In summary, a number of benefits are reported and their significance to overall
performance of an organisation is remarkable. The benefits are not limited only
to improvements in the development processes itself, but also factor in organi-
zational aspects as well.

2.5.2 Challenges and problems

Researchers have pursued to gain understanding and to summarize the chal-
lenges and problems related to the adoption and practice of Continuous Deliv-

19

ery in the form of extensive systematic literature reviews and mapping studies.
(Laukkanen, Itkonen & Lassenius, 2017; Rodríguez et al., 2017; Shahin, Ali Ba-
bar & Zhu, 2017) In their systematic literature review, Laukkanen et al. (2017a)
identified a total of 40 different Continuous Delivery problems classified into
seven themes, which are the following:

 Build design
 System design
 Integration

 Testing
 Release
 Human and organizational
 Resource

Build design problems are caused by build design decisions, such as having a

complicated build system, leading to complex builds, or having a build system
that cannot be adjusted, leading to inflexible builds. Complex and inflexible
builds are difficult to modify and maintain, and may break more often. (Lauk-
kanen et al., 2017a.) System design problems are caused by system design deci-
sions, such as having a system that consists of multiple modules or services, or
having an unsuitable architecture for continuous delivery. Neither of them are
problems on their own, but the effects they have, as they can lead to increased
development effort, testing complexity, and problematic deployment. (Lauk-
kanen et al., 2017a.) Integration problems occur when the source code is integrat-

ed into the mainline, e.g. commits containing large amounts of changes, merge
conflicts, broken builds, blockages of work, long-running branches, and slow
approval of integration (Laukkanen et al., 2017a). Testing problems are related to

software testing. They include problems such as ambiguous test results, ran-
domly failing tests, time-consuming testing, untestable code, problematic de-
ployment, and complex testing. (Laukkanen et al., 2017a.) Release problems cause
issues when the software is released, such as customer data preservation, fea-
ture discovery, user dissatisfaction with frequent updates, and deployment
downtime (Claps et al., 2014; Laukkanen et al., 2017a). While human and organi-
zational problems do not relate to any specific development activity, they are
general issues regarding Continuous Delivery adoption, including problems
such as lack of discipline, motivation, and experience (Laukkanen et al., 2017a).
Last, resource problems are related to the availability of resources for the adop-
tion, e.g. required effort, sufficient hardware resources, and network latencies
(Laukkanen et al., 2017a).

In turn, Shahin et al. (2017) grouped the Continuous Delivery adoption
challenges into six categories, of which two are exclusively for Continuous De-
livery adoption, while other four categories of challenges are mutual for Con-
tinuous Integration and Continuous Deployment also, with a total of 13 chal-
lenges identified. The categories and corresponding challenges are presented in
Table 3 (Shahin et al., 2017).

20

TABLE 3 Continuous Delivery adoption challenges, adapted from Shahin et al. (2017)

 Category Challenges

Continuous
practices
adoption challenges

Team Awareness and
Communication

Lack of awareness and
transparency

Coordination and collaboration
challenges

Lack of investment Cost

Lack of experience and skill

More pressure and workload for
team members

Lack of suitable tools and
technologies

Change resistance General resistance to change

Scepticism and distrust
on continuous practices

Organizational processes,
structure and policies

Difficulty to change
established organizational
policies and cultures

Distributed organization

Challenges
exclusive to
Continuous Delivery

practice

Lack of suitable

architecture

Dependencies in
design and code

Database schema changes

Team dependencies

2.6 Related concepts

In this chapter a few concepts that are related to the continuous software deliv-
ery, but not necessarily integral to the research problem, are discussed. These
concepts include Continuous Deployment, DevOps, and release planning.

2.6.1 Continuous Deployment

The lack of established software engineering terminology has led to a situation
where certain terms are being used in multiple ways, which can cause disorien-
tation among researchers and practitioners. For example, Continuous Delivery
and Continuous Deployment are sometimes used interchangeably, even though

21

they are two distinct, yet related, concepts, and should be treated as such. Es-
sentially, Continuous Deployment is a further stage of Continuous Delivery, as
in it software is automatically deployed as it is built and tested. In a most ex-
treme situation software would be automatically deployed and released to the
end users multiple times a day. In a sense, the main difference between Contin-
uous Delivery and Deployment is whether the software is released to the end
users automatically or not (Lehtonen, Suonsyrjä, Kilamo & Mikkonen, 2015). In
the former, software is kept releasable but not necessarily released, while in the
latter it is made available in the production environment as soon as software

has successfully cleared each of the deployment pipeline stages.

2.6.2 DevOps

As the name suggests, DevOps integrates Development (Dev) and Operations
(Ops) by utilizing automation of development, deployment, and infrastructure
monitoring (Ebert, Gallardo, Hernantes & Serrano, 2016). It is, however, more
than a mere toolset or bundle of practices and standards for software develop-
ment, as it requires genuine organizational change and culture shift from dis-
tributed and separate teams into collaboration between everyone involved in
delivering software in an organization (Rajkumar, Pole, Adige & Mahanta,
2016). Humble and Molesky (2011) define the four main principles for DevOps
as following: culture, automation, measurement, and sharing.

DevOps is a relatively new phenomenon and therefore related research
remains limited, which results in lack of established terminology. This, in part,
has an effect on research on the subject and could also inhibit the adoption of
DevOps, as organizations do not have a clear perception of what practices
should be implemented and how. (Riungu-Kalliosaari, Mäkinen, Lwakatare,
Tiihonen & Männistö, 2016)

The practices of Continuous Integration and Continuous Delivery are
tightly connected to DevOps, as they are both incorporated into the very core of
one of the main objectives of DevOps, which is to automate the software devel-
opment process and to deliver software more frequently and with higher quali-

ty (Steffens, Lichter & Döring, 2018). In that sense, Continuous Integration and
Continuous Delivery can be seen not only as components of DevOps, but also
as important prerequisites for successful adoption of DevOps. In that sense, as
Continuous Integration and Continuous Delivery are practices that enable
DevOps (Waller, Ehmke & Hasselbring, 2015), it is reasonable to suggest that
successful adoption of DevOps methodology requires also successful imple-
mentation of both practices.

22

3 ENTERPRISE RESOURCE PLANNING SYSTEMS

In this chapter the definition, history, and current state of Enterprise Resource
Planning (ERP) systems are discussed, and the common benefits associated
with ERP systems are presented.

3.1 Definition

While there is no explicit and universally accepted definition for ERP (Enter-
prise Resource Planning) system, it is most commonly defined as a suite of
software or software system which is used to manage all essential business
functions and processes of an organization, e.g. production, finance, supply
chain, and customer relationship management, in real-time through integrated
data transactions and shared databases between different business processes
and departments. What separates ERP systems from other enterprise systems is
that it is designed to cover most, if not all business functions, supports real-time
information processing, and utilizes shared data transactions within the whole
system. (Umble, Haft & Umble, 2003.)

3.2 History and evolution

The origins of the modern ERP systems can be traced back to the early account-
ing and inventory management systems first developed in the 1960s. By the be-
ginning of the 1970s, these early software systems had evolved into MRP (Mate-
rial Requirements Planning) systems. (Elragal & Haddara, 2012.) The main ra-
tionale for developing and adopting these systems was to be able to estimate
the material requirements for production in a more efficient manner, leading to
decreased inventory management costs. Starting from the end of the decade,
and especially during the 1980s, MRP systems evolved further into systems re-
ferred to as MRP II (Manufacturing Resource Planning) systems, which in addi-

23

tion to production planning functionalities included also support for activities
related to finance, order management, distribution, and procurement (Elragal &
Haddara, 2012).

In the early 1990s, ERP systems were introduced as an extension to pre-
ceding MRP and MRP II systems, providing enhanced functionality that covers
not only the whole organization and its departments, but also all key business
processes, as opposed to MRP and MRP II systems, which covered only the
processes related directly to production and manufacturing activities. The first
ERP systems, later identified as ERP I systems, were locally installed and mono-

lithic in their architecture, and being generalized software products, provided
little to no support for specific business domains or industries apart from man-
ufacturing, unless heavily customized by the user organization, an activity that
is considered both expensive and time-consuming, rendering ERP systems al-
most impossible to be adopted by small and medium enterprises. For this rea-
son, ERP I systems were used almost exclusively by the largest, multinational
companies.

By the end of the decade, vendors had begun to produce their ERP soft-
ware in a more flexible manner, as the ERP system was reconstructed into a col-
lection or suite of software modules that accessed a shared database, with each
module corresponding to a certain business function. This way business organ-
izations could choose to have different combinations of modules and function-
alities to be implemented according to their needs. Nevertheless, these systems
were considered rather inflexible regardless of the modularization and there-
fore unsuitable for many smaller companies.

From the beginning of the 2000s, vendors started to include new function-
al modules for supporting additional business processes, such as Supply Chain
Management (SCM) and Customer Relationship Management (CRM) in order
to address the evolving requirements of their client organizations. These sys-
tems are commonly referred to as ERP II systems, and as of the early 2010s,
were the still the most dominant type of ERP system in industrial settings
(Clegg & Wann, 2013). During the 2000s also another major advancement to-
wards increased flexibility was achieved, as vendors began to offer solutions
enabled by cloud computing, namely remote hosting and access. Still, systems
were still principally delivered with a licencing fee model with separate pay-
ments for possible additional services such as hosting, support, and mainte-
nance (Clegg & Wan, 2013). The distinctive evolutionary trends of the ERP sys-
tem are summarized in Table 4 (Clegg & Wan, 2013, p. 1461).

TABLE 4 ERP system trends (Clegg & Wan, 2013, p. 1461)

Key element ERP ERP II ERP III

24

Role of sys-
tem

Single organization
optimization and
integration

Multi-organisation
participation
with some
collaborative
commerce potential

Multi-organisation, internet
based, with full
collaborative
commerce functionality

Business
scope

Manufacturing and
distribution focus,
automatic business
transactions

Often sector-wide
offering upstream and
downstream integra-
tion

Facilitating cross sectors
strategic alliances

Functions
addressed

Manufacturing,
product data, sales
and distribution,
finance

Most internal organisa-
tional functions sup-
ported with some lim-
ited supplier and cus-
tomer integration

All internal functions sup-
ported plus core inter-
company processes

Processes
supported

Internal,
hidden, with an
intra-company
boundary

Externally connected
with intra-enterprise
(i.e. intercompany)
focus

Externally connected, open
network to create
borderless
inter-enterprise/industry-
wide focus

Information
system
architecture

Web-aware

Closed and
monolithic

Web-based,
componentized,
non-proprietary

Internally and exter-
nally available, often
subscribed to by joint
ventures

Web-based communication,
service-oriented
architecture

External exchange via open
source and cloud compu-
ting

3.3 Contemporary ERP systems

In addition to the established functionalities for managing core business activi-
ties, the contemporary ERP systems, also referred to as “ERP III” systems
(Clegg & Wan, 2013), support functionalities for processes such as EAM (Enter-
prise Asset Management), PLM (Product Lifecycle Management), PDM (Prod-
uct Data Management), and QA (Quality Assurance), among other industry-
specific functionalities. The additional functionalities can be either embedded in,
or integrated with the core ERP system (Panorama Consulting, 2019), and can
be supplied either by the same vendor as the core ERP system, or by external
organizations via integration. Indeed, the modern ERP systems are far from the
closed, complete software solutions they once were, but more like platforms
that, in addition to basic business functionalities, enable high connectivity to

25

other systems, and support for external networks with business partner organi-
zations and their software systems.

The modern ERP systems can span between the user organization and its
partner organizations and networks by sharing system functionalities in order
to facilitate value co-creation (Clegg & Wan, 2013). ERP systems are no longer
considered massive, monolithic and closed software entities that are supposed
to provide all necessary functionalities for any organization, as the modern ERP
systems are highly flexible and connected, with support for a number of inte-
grations to other systems. Nonetheless, the core ERP systems have maintained

their critical role in business organizations.
Reflecting the transformation of the functional purpose and business

scope of ERP systems, their delivery model has evolved also. ERP systems are
increasingly commonly supplied as a service instead of the more traditional,
license-fee based delivery model, in which the system was most often installed
on-premises.

While delivering enterprise software systems with SaaS model has been
commonplace for almost two decades, it has not been the case with ERP sys-
tems until the recent decade, mainly because of enduring concerns with infor-
mation security and system availability (Lenart, 2011). Although delivering an
ERP system as a service is becoming more and more common, especially in the
small and medium sized enterprises (Johansson & Ruivo, 2013), as of 2019, the
on-premises installed solution remained a popular deployment model, as it
provides a level of control for the user organizations that SaaS does not. Fur-
thermore, the benefit of lowered operation costs of cloud solution is realized
only in smaller user organizations, causing the on-premises deployment to re-
main a favorable option for large organizations. (Panorama Consulting, 2019.)

Because of the changed purpose and scope of the contemporary ERP sys-
tems, some practitioners have debated if the term ERP should be replaced. Fur-
thermore, during the last decade some practitioners have already declared both
the ERP systems technologically outdated, and also the underlying concept and
value proposition of ERP as legacy, if not obsolete (Forrester, 2019). Indeed, the
contemporary ERP systems and their purpose have both become very distant
from the systems that were originally labelled as them. This is why some practi-
tioners have proposed new terminology for similar modern system solutions,
such as “Digital Operations Platform” (DOP) in order to make distinction be-
tween the modern solutions and more traditional ERP systems (Forrester, 2019).
Nevertheless, the majority of the enterprise software vendor companies are still
currently providing systems that are referred to as ERP to manage their users’
core activities. In this understanding, ERP remains a relevant concept and thus

replacing the term or updating the terminology otherwise is not necessary.

26

3.4 Benefits of ERP system

An operational and functional ERP system will provide benefits for business
organization in multiple ways and on multiple levels of business operations.
Maditinos, Chatzoudes and Tsairidis (2011) reported the following benefits:

 Improved collaboration across functional departments
 Increased business efficiency
 Reduced operating costs
 Facilitation of day-to-day management
 Rapid access to information
 Support of strategic planning

In turn, Shang and Seddon (2000) presented a framework in which the business
benefits of an ERP system are classified into five different dimensions, with ex-
amples included:

 Operational benefits; such as lower cost of operation and improvements
in productivity, quality, and customer service

 Managerial benefits; such as improvements in resource management, de-
cision making, and planning and performance

 Strategic benefits; such as support for growth and product differentiation
 IT infrastructure benefits; such as lower cost of IT services and increased

performance of IT infrastructure
 Organizational benefits; such as support for change, empowerment, and

creating common visions.

27

4 RESEARCH METHODOLOGY

In this section, the research methodology of the empirical study is presented,
including a detailed description of the research method. Additionally, the data
collection is discussed, including the selection of the interviewees, and the pro-
cess of selecting and conducting semi-structured theme interviews as the main
data collection method. Finally, the process of data analysis is discussed in de-
tail.

4.1 Research method

A qualitative research approach enables the researcher to study social and cul-
tural phenomena by combining multiple data collection methods such as obser-
vation, interviews, and documents (Myers, 1997). As the phenomenon of inter-
est in this study can be considered both social and cultural, has not been re-
searched extensively, and is relatively recent, selecting a qualitative research
method for this study is appropriate. Additionally, as suggested by Cavaye
(1996), among others, a qualitative research method was chosen over quantita-
tive, because the main objective of the study is to distill meaning and to gain
understanding of a phenomenon instead of primarily concerning measurement
and quantification of the phenomenon.

Per Gregor (2006), a theory can be seen as an abstract entity that aims to
describe, explain, and provide understanding of the world. For this reason, the-
ories are valuable in generating knowledge for academia. The meaning of theo-
ry in the discipline of Information Systems has been perceived in different ways,
i.e. theory can be viewed as “a statement how something should be done in
practice”, as “a statement providing a lens for viewing or explaining the world”,
and as “a statement of relationships among constructs that can be tested”. A
theory that is considered analytic is the most basic type of theory and analyzes
“what is” as opposed to explaining causality or attempting prediction. Analytic
theories can manifest in the form of frameworks, taxonomies, and classification

28

schemas. (Gregor, 2006.) As the objective of this study is to describe and analyze
a phenomenon, the resulting body of knowledge can be described as an analyti-
cal theory. Analytical theories have been also referred to as descriptive theories,
but that term is not completely appropriate, as analytical theories go “beyond
basic description in analyzing or summarizing salient attributes of phenomena
and relationships among phenomena” (Gregor, 2006; p. 623). The relationships
specified are not explicitly causal, but classificatory, compositional, or associa-
tive instead (Gregor, 2006).

However, in order to gain additional understanding of the phenomenon,

some components of explanatory theory, namely causal explanations between
theory constructs, were also included, which will produce a novel theory in
form of a conceptual framework of the Continuous Delivery adoption chal-
lengees.

4.2 Data collection

Semi-structured theme interviews were selected as the primary method of data
collection, as they facilitate interaction between the particitipants, potentially
leading to more in-depth information collection when compared to other inter-
view methods. When used correctly, the qualitative interview is a very power-
ful technique for data collection (Myers & Newman, 2007). The interview data
was obtained from persons representing companies that fulfill certain criteria,
namely Finnish ERP system vendors, with those persons preferably holding a
position of product development manager or similar. In addition to the semi-
structured theme interviews, archival data, both public and private in form of
marketing materials, public financial data, and internal training documents of
the organizations, were used as a secondary data source.

4.2.1 Selection of interviewees

While selecting potential interviewees for the study, the organizations they rep-
resented were considered first in order to obtain suitable interviewees with nec-
essary experience and knowledge of the phenomenon of interest. The following
criteria were set for the organizations to be contacted in order to obtain inter-
viewees:

1. the company practiced, or was in the process of adopting continuous
software development and delivery methods

2. the company operated in the ERP system market as a vendor
3. the company was classified as small or medium sized enterprise (<250

personnel; ≤50M€ turnover; ≤43M€ balance sheet total)
4. the ERP system the company supplied was developed exclusively by

them

29

5. the company operated predominantly in the Finnish ERP market

The first two requirements were set in order to obtain applicable and relevant
information to address the research problem, while the third one was set in or-
der to exclude organizations that provide system products developed by other
organizations, thereby functioning more as an intermediate agent providing
additional support rather than as the initial developing organization of the sys-
tem that faces the challenges and problems related with the adoption of Con-
tinuous Delivery practice. The last requirement was set in order to control ex-

traneous variation, to enhance external validity, and to help in defining the lim-
itations for generalization of the findings, as suggested by Eisenhardt (1989).

Following the requirements above, the organizations that potentially
could provide interviews were selected among Finnish ERP software vendor
companies. As the phenomenon of interest is the challenges related with Con-
tinuous Delivery practice adoption, only companies with their own product
and product development were considered, excluding vendors that supply and
maintain ERP system products developed by other organizations. As obtaining
interviews from companies can be difficult (Myers & Newman, 2007), the com-
bination of limited range of potential companies and the general difficulty in
obtaining interviews resulted in limited amount of potential companies to pro-
vide the interviewees. A total of 15 companies were contacted by email, of
which nine did not respond. Two companies declined briefly, and finally, four
companies approved their employees or an employee to be interviewed. This
was not completely unexpected, as it can be difficult to obtain interviewees, es-
pecially if there is no prior connection with the contacted organization. Moreo-
ver, there are certain other factors that can affect the outcome of the interview
request, such as inappropriate level of entry (Myers & Newman, 2007).

Persons holding the title of head of product development, product devel-
opment manager, or other comparable role were initially targeted, as persons
holding those positions presumably have expert knowledge of all the develop-
ment activities in their organization, including the status of Continuous Integra-
tion and Continuous Delivery practices, while also having a clear understand-
ing of their core business operations and practices, including their product port-
folio, market position, and strategic outlook. Eventually five persons represent-
ing four different organizations were selected to be interviewed, with each in-
terview to be conducted individually with no information shared between the
interviewees in order to maintain rigor and trustworthiness of the research, and
the confidentiality of the interviewees. In order to further increase trust and
level of confidentiality, the interviewees and the companies they represented

were decided to be left anonymous and each company and interviewee given a
simple alias in form of a code instead. The interviewees and their roles in their
organizations are summarized in the Table 5.

30

TABLE 5 Interviewees and their roles

Interviewee
ID

Company ID Role
Interview
duration (minutes)

A1 A head of product development 76

B1 B head of product development 41

C1 C head of product development 48

D1 D technical lead 34

D2 D test engineer 36

4.2.2 Semi-structured theme interviews

Semi-structured theme interviews were selected as the primary data collection
method, as they can provide deeper knowledge about the phenomenon of in-
terest as opposed to more rigid interview methods, including structured inter-
views with a set pattern of questions. A highly structured interview method can
guide the interview into a certain direction as opposed to a more natural setting,
which can lead to a situation where data relevant to the research problem re-
mains uncovered during the interviews. Furthermore, as a deductive approach
for theory building was selected for this study, the semi-structured interviews
allow the units of analysis, i.e. codes, patterns, and themes, to be compared and
mirrored with existing theoretical knowledge, which is favoured for the deduc-
tive approach to be successful. Finally, as opposed to unstructured, or “free-
form” interviews, semi-structured theme interviews facilitate retaining research
focus to a defined area of interest. The initial interview themes representing the
possible Continuous Delivery adoption challenge areas were drawn from the
existing software engineering literature, and were the following:

 Release management (e.g. Barqawi et al., 2016)
 Strategic release planning (e.g. Svahnberg et al. 2010)
 Testing, deployment & support (e.g. Claps, Svensson & Aurum, 2015)
 Release scheduling (e.g. Greer & Ruhe, 2004)
 Release content (e.g. Fricker & Schumacher, 2012)

After the first interview was conducted, it appeared that the preselected themes
to guide the data collection were not ideal for addressing the research problem
and therefore had to be revised in order to enable more focused interviews. Af-
ter the initial analysis of interview data, it was also noted that certain themes

31

were overlapping with each other or were otherwise unnecessary for address-
ing the research problem or answering the research question. After considera-
tion, the new interview themes [to direct the data collection] were adopted from
Continuous Integration and Continuous Delivery problem themes presented by
Laukkanen et al. (2017a), which are the following:

 Build design
 System design
 Integration

 Testing
 Release
 Human and organizational
 Resources

The theme Release simultaneously included and replaced the previous themes
Release management, Release scheduling, and Release content. As Strategic release

planning can be recognized more as an organizational than purely developmen-
tal activity, it was included into the Human and organizational theme. For the rest
of the interviews, the themes presented above were then discussed with the in-
terviewees. Although it was the initial object of the interviews, themes were not
necessarily discussed in any particular order. This was because at times, the
natural flow of the conversation led to themes being discussed in different or-
der. As the semi-structured method was chosen for the interviews, no defined
questions were formulated, but a rough outline for items related to each theme
instead, with some discussion and topic prompts also included in order to facil-
itate conversation, if necessary. The outline of the interview guide is presented
in the Appendix 1.

The interview data was collected over an eight-month period between
June 2019 and March 2020. Each of the interviews were conducted remotely
with telecommunications software such as Microsoft Teams and Skype and the
interviews were recorded in order to allow further data analysis. Remote con-
nections were preferred for additional convenience in scheduling and to avoid
unnecessary and time-consuming travelling, as the case companies and inter-
viewees were located in different parts of Finland. The interviews were con-
ducted individually with no information shared between the interviewees in
order to maintain rigor and trustworthiness of the study, and also to maintain
confidentiality of the interviewees and their organizations.

For practical reasons, the interviews were conducted in Finnish. Because
both the interviewer and each of the interviewees were native Finnish speakers,

it was deemed more natural to use Finnish rather than English. The interviews
were planned and scheduled to have duration of approximately one hour. The
longest of the interviews exceeded this, with the final duration being 1 hour and
16 minutes. In contrast, two shortest interviews lasted 34 and 36 minutes, re-
sulting in a median duration of 41 minutes. The average duration of the inter-

32

views ended up being 47 minutes, which was considerably less than planned,
but after review, still sufficient time to gather a satisfactory amount of data.

33

4.3 Data analysis

There are numerous methods for analyzing text data, such as ethnography,
grounded theory, phenomenology, historical research, and qualitative content
analysis. Qualitative content analysis was selected as the method of data analy-
sis, as it provides knowledge and understanding of the phenomenon of interest.
(Hsieh & Shannon, 2005.) According to Hsieh and Shannon (2005), the qualita-
tive content analysis can be classified into conventional, directed, or summative
approach depending on how the initial codes in the analysis are developed. For
this study, a directed content analysis approach was selected. In the directed
content analysis either an existing theory or relevant research findings act as
guidance on how the initial codes are defined (Hsieh & Shannon, 2005). The
process of complete data analysis is presented in Figure 4.

FIGURE 4 Qualitative directed content analysis process of the study

After the interviews were conducted, the recordings of them were transcribed
in their entirety, as in addition to facilitating the data analysis it also increases

34

the credibility and auditability of a study (Sarker, Xiao & Beaulieu, 2013). In
addition to the interview themes guiding the data collection, they did also
guide the data analysis, as the initial data analysis was conducted by deductive
approach, in which research data is analyzed against existing theoretical
knowledge, with the objective of finding meaningful patterns and codes reflect-
ing and matching the themes found in the existing literature. When applying a
directed content analysis approach, an existing theory or prior research can be
used to develop the initial coding scheme before initiating data analysis
(Kyngäs & Vanhanen 1999, as cited in Hsieh & Shannon, 2005). In the directed

content analysis, the coding of results can start immediately with predeter-
mined codes drawn from existing previous research. If there is data that cannot
be coded initially, it is identified and analyzed later to determine if they repre-
sent a subcategory of an existing code or a new, separate category (Hsieh &
Shannon, 2005).

After the initial data analysis, an additional literature review of related ex-
isting research was conducted, after which the transcribed interview data was
analyzed again. As data analysis progresses, additional codes can be developed,
and the initial coding schema can be reviewed and refined accordingly (Hsieh
& Shannon, 2005). After the second round of data analysis, it became apparent
that additional codes, categories, and themes emerged, and as a result the
themes were revised and refined again. After this cycle of iterative textual anal-
ysis, the final five themes, in which the results in form of Continuous Delivery
adoption challenges are categorized, were identified.

35

5 RESULTS OF THE EMPIRICAL STUDY

In this chapter, the results of the empirical study are presented, including a de-
scription of the interviewees and the organizations they represented. As the use
of quotations conveys level of “richness” that is not usually achievable with
quantitative methods, and thus appear to be valued by the audience of qualita-
tive research (Sarker, Xiao & Beaulieu, 2013), quotations by the interviewees are
included in the presentation of the results. Because the quotations were trans-
lated from Finnish transcriptions of the interview data, the original Finnish
quotations are presented in the Appendix 2. A total of 12 Continuous Delivery
adoption challenges for ERP system vendors were identified and classified into
five themes: system design and architecture, integration and deployment pipe-
line, testing, release, and organizational challenges.

5.1 Organizations and interviewees

The interview data was collected from five persons representing four Finnish
small to medium sized ERP vendors. The key characteristics of the companies
are summarized in Table 6. As frequency of releases is one possible way to
measure success and state of the Continuous Delivery adoption, the reported
frequency of ERP system releases is included in Table 6.

5.1.1 Organizations

Each of the four organizations were Finnish ERP vendors with their annual rev-
enue ranging from 2 to 10 million euros and number of personnel ranging from
20 to 100, classifying them as small and medium sized enterprises (Eurostat,
2020). Every participating company in this study was in a different situation
and stage with their Continuous Delivery adoption. As expected, the smallest
organization, Company C had taken only the initial steps towards Continuous

Delivery, as their release activities were still conducted mostly manually. Com-

36

pany A had developed their Continuous Delivery capabilities furthest, but had
still selected to hinder their release process intentionally. Companies B and D
had already applied deployment pipelines in their product development, but
they were only partly functional, as testing activities were still conducted most-
ly manually, albeit for different reasons. B1 explained their situation:

”There are processes for how we do testing, but we haven’t had much time to create
reasonable automated tests. We have them for some specific purposes, but not to any
greater extent.” (B1; 1)

All of the companies used agile software development methods, which is an
important precedent for adopting continuous practices (Olsson et al., 2012).
Each of the companies reportedly used some variation of the Scrum framework,
but none of the interviewees reported to use it in its standard form, but custom-
ized to the most suitable form, that was discovered through practice instead.
Companies A, B, and C used scheduled, fixed-length sprints with duration of
approximately two to three weeks, or 10 to 15 business days, while Company D
had transferred from scheduled sprints into feature-defined sprints, in which
completion of a releasable feature determines the duration of a sprint. D1 elabo-
rated on their solution:

”At present we don’t plan what we are going to do in a period of time, but instead
we plan a feature and how we are going to do it, how long it is going to take, and
when we are going to begin, so we don’t have sprints of a week or two. In a way,
sprints happen within the development of a feature. --- They can last week or two or
whatever, but, in a sense, we plan them from the viewpoint of the planned outcome.”
(D1; 2)

In that sense, it was not easy to define the status of Continuous Delivery prac-
tice adoption in the companies, other than by gaining information from the in-
terviewees. This succeeded in differentiating ways, as for example, the meaning
of Continuous Delivery had to be initially explained to one interviewee. Even-
tually, they appeared to be already familiar with the concept, but not with the
established terminology. This reflects the issues with non-standard terminology
and vocabulary discussed previously in the chapter 2.6. Each of the companies
clearly understood the importance of Continuous Delivery for their develop-
ment and release activities, and overall organizational performance and compe-
tence. However, C1, representing the smallest company interviewed, empha-
sized the aspect of the company size regarding the usefulness of the practice. C1
said:

”If we have a team of 10 people here, they can move them even manually. You can
ask everyone individually, at what point a certain ticket is, and they can move it
manually. But if you consider that there were 100 developers, for example, it would
be a lot more challenging to keep that system up to date.” (C1; 3)

37

All of the companies reportedly offered their ERP system as an on-demand so-
lution, or service, with companies A and B offering their product also in other
ways, including more traditional on-premises or cloud-hosted installation, or a
combination of the two. Both companies reported to also provide their systems
as license-based installations instead of a service, with on-premises installations
remaining a prevailing option alongside cloud hosted installation, even though
the cloud hosted solution had become an increasingly popular option for clients
of both companies. Unlike other companies, Company B did not actually exter-
nally market their system as an ERP, but as a core part of their ‘business soft-

ware platform’ consisting of seven different software products, one of which
covered the traditional ERP functionalities and was internally regarded as their
core software system product.

TABLE 6 Companies and their key figures

Company ID A B C D

Revenue (2019, M€) 10 10 2 5

Number of
employees

+70 +100 +20 +50

Frequency of releases
(ERP)

Monthly Trimonthly Monthly Biweekly (target)

5.1.2 Interviewees

Interviewees A1, B1, and C1 held the position of head of product devel-
opment in their companies, with A1 and B1 of them having similar roles and
areas of responsibility. C1 had a differing role because of the smaller size of the
company they represented, with their area of responsibility also covering the
project management activities of the development team, which was responsible
for development of their system product. As the head of product development
of Company D was unavailable for an interview, two persons with the roles of
technical lead (D1) and test engineer (D2) were interviewed instead. Instead, a
person holding the position of technical lead was deemed to have sufficient in-
formation and knowledge regarding the status of the Continuous Delivery
practices of the organization for the scope of this study. A person holding the
position of test engineer of the same company, D2, also provided more in-depth
information about the testing activities and challenges related to them.

38

5.2 System design and architecture challenges

As Continuous Delivery relies heavily on automated build, testing, and de-
ployment, adopting the practice is considered challenging. This is especially the
case with an existing software product as it often also requires changes both in
the system design, and the development organization, which can be not only
difficult, but also very expensive (Laukkanen et al., 2017a.) This was a rather
familiar situation for three of the four companies (A, B, C), as their core ERP
product, or at least some components and functionalities of it, preceded the
Continuous Delivery paradigm, or at least the adoption of it in those organiza-
tions. Additionally, Company D had two core system products of which only
another was developed recently and thus with requirements of Continuous De-
livery in mind. The following two system design and architecture challenges
were identified: unsuitable architecture, and system scale and complexity.

5.2.1 Unsuitable architecture

Architecture that is considered unsuitable for Continuous Delivery is often de-
scribed as monolithic, coupled, unnecessarily capsulated, or consisting of mul-

tiple branches of code. (Laukkanen et al., 2017a) These characteristics are also
generally associated with the terms ‘legacy software’ and ‘legacy architecture’.
By one definition, legacy software means “programs which have been devel-
oped with an outdated technology”. (Sneed, 2006; p. 1) By the same definition,
most of the current software is considered outdated, because the prevailing in-
novation cycle of software technology is less than five years (Sneed, 2006),
while the life cycle of software is generally longer, especially in the case of criti-
cal enterprise systems such as ERP. Furthermore, legacy systems are considered
mission critical, expensive to maintain, inflexible to changes, run on obsolete
hardware, and are difficult to enhance and integrate with other systems.
(Gholami, Daneshgar, Beydoun, & Rabhi, 2017) In addition, even modern sys-
tems based on web-enabled architecture, which have been developed with lat-
est technologies available, can be considered legacy systems if they do not satis-
fy new and emergent business requirements. However, systems considered
‘legacy’ could still provide positive return for an organization, as they support
business processes and maintain organizational knowledge (Gholami et al.,
2017.)

Most of the companies had developed their current ERP system software
product, or at least some parts of it, on a foundation of an already existing soft-
ware, that could be described as ‘legacy’, namely software that is installed on-
premises and accessed primarily by desktop PCs. For example, B1 regarded
their ERP system, even though considered ‘legacy’, as their core system product
on which their other software functionalities, products and services were built
upon. B1 elaborated on their situation:

39

“Our oldest system, maybe a bit of a legacy system already, functions as our ERP sys-
tem, and in a way, is the focal point of our all activity. --- And then, over the years,
we have introduced all kinds of add-on products around this ERP system.” (B1; 4)

Maintaining a large and complex enterprise system such as ERP to conform ful-
ly to modern specifications and requirements is not only difficult, but can also
most often prove to be impossible, as the whole system cannot be updated con-
currently, leading to older system components becoming legacy software. C1
discussed how a large system cannot be ever fully up to date, as the older sys-
tem components and functionalities become technologically outdated at the
same rate new ones are planned and developed:

”If you finish some larger new part, the system starts to become outdated from the
other end, technologically. --- But it’s just a fact that has to be accepted when the sys-
tem is the same that has been developed for over 10 years, and is still developed, that
it’s [legacy software] in multiple ways, the use of obsolete methods can be seen

there.” (C1; 5)

5.2.2 System scale and complexity

The more massive and complex a software system is, the more difficult it is to
implement, upgrade, and maintain. This is especially true in the case of a sys-
tem that is delivered continuously, as frequent changes in form of fixes, up-
grades, and new functionalities have the potential to cause unintentional sys-
tem behaviour in form of glitches and other failures, unless they are reviewed
and tested extensively. Furthermore, the changes can affect the business aspects
of the user organizations, which can cause further organizational issues experi-
enced by the users. A1 talked about the general challenges that are caused by
the scale and complexity of an continuously evolving ERP system:

“We are producing an ERP system, which are really multifaceted and extensive sys-
tems, and there are changes made constantly --- So those combinations which have to
be tested, different languages, different platforms – especially now as we have this

online version – there are gigantic amounts of ways and routes of use.” (A1; 6)

Due to the large scale and increased complexity of ERP systems delivering them
continuously is different and considerably more challenging than of less critical
software applications and systems, e.g. consumer software products. According
to B1, the users of consumer software, such as relatively simple mobile applica-
tions, are usually only delighted and eager to receive new features frequently,
but updating an ERP system is a substantially more difficult process. B1 dis-
cussed the additional effort that is required by both them and their customers
when updating their core system:

“The update process [of ERP system] differs ‘a little’ from, let’s say, that of some con-
sumer product. --- In our case the update often requires training and a visit from our
project manager, so they can explain how the upgrade affects the business activities

40

of the client. --- Those usually come with an additional price, because they usually af-

fect the business operations of the client organization in multiple ways.” (B1; 7)

5.3 Integration and deployment pipeline challenges

As practicing Continuous Integration and utilizing a deployment pipeline are
critical preceding steps for successful Continuous Delivery adoption (Olsson et
al., 2012), it is important to to achieve sufficient capabilities with both of them in
order to succeed with Continuous Delivery adoption. Companies A, B, and D
practiced Continuous Integration in their development process and utilized an
operational deployment pipeline, or multiple of them for different system func-
tionalities. While company B reported to utilize multiple deployment pipelines,
none of them were fully automated, as there were still some aspects, such as
testing automation, under development. In total, two integration and deploy-
ment pipeline challenges were identified: revision control and code freezing
practice.

5.3.1 Revision control

In the context of this study, revision control refers to the activities related to the
management of changes in the software source code, including Continuous In-
tegration practices. As ERP systems are large scale, high complexity software,
their revision control requires remarkable efforts.

A1 discussed how in the past, prior to implementing a CI server, code
changes and new features could be unnoticed for everyone except the develop-
er responsible for it and the customer who requested it, leading to a situation,
where unidentified and untraceable code changes could be noticed only years
later. However, more recently with a CI server in operation, changes could be
traced successfully even if there were thousands of them. D2 noted that a large
workload for QA personnel occurred when the development and master branch
were attempted to be merged. Companies that applied Continuous Integration
reported to apply a specific branching process, for example, Company A had
chosen the ‘no branches’ discipline as their branching strategy, as A1 mentioned:

“We actually retired our master branch, now we have only this integration branch,
into which we merge commit our code changes.” (A1; 8)

Moreover, Company B reportedly applied a specified branching method, but
had to deviate from it occasionally, especially in situations where the customer
was in the process of implementing their ERP system. B1 explained the situa-
tion:

“We also have those kinds of cases, it’s the nature of our product, as it is an ERP sys-
tem and the customer implementations are really long, they can last a year. So as the

41

product [is] implemented, it’s not reasonable to go with a certain version tag with

that customer.” (B1; 9)

Instead, as B1 reported, they wanted to deploy their newest, or daily develop-
ment version for those customers in the process of implementing the ERP sys-
tem by having a dedicated development branch. Still, the principal option for
them was to use the specified branching method, which was the procedure of
using version labels. However, deviating from the specified branching method
can potentially cause issues with revision control.

5.3.2 Code stabilization

In some situations, the software code requires an additional stage of stabiliza-
tion before release. One of the code stabilization methods is known as freezing.
The practice of code freezing means that the code mainline is “freezed”, as in
that no additional code changes are permitted before the release (Laukkanen,
Paasivaara, Itkonen & Lassenius, 2017). Code freeze is a useful method to miti-
gate challenges and risks related to frequent releases, but as it contradicts the
basic principles of Continuous Delivery, namely the principle of always releas-
able code, it can be seen as a challenge, or even a barrier, for adopting and prac-
ticing Continuous Delivery. Therefore, reducing the duration of code freeze pe-
riods, or eliminating them entirely, will effectively facilitate the adoption and
practice of Continuous Delivery.

Companies C and D applied the practice of code freezing in their devel-
opment cycle in order to increase stability of the software builds before releas-
ing. C1 talked about applying the freeze in order to achieve a fixed release
schedule that is known to their customers beforehand. D2 also explained their

practice of code freezing, to which they referred to as version freezing:

“One week before it [release] we set a content freeze, so new code is not allowed, we
revise what is already in there in case something is found during testing, so we can

maintain the release schedule to be always on a certain date.” (C1; 10)

“We [QA personnel] freeze the version at some point before it’s set to be released. So
during the freeze programmers have a ‘block’ regarding whatever they do, their pull
requests are not merged, at least not into the master branch.” (D2; 11)

However, even companies with fully operational deployment pipelines,
including Company A, were still stalling the delivery process on purpose,
mainly for precautionary reasons and increased release stability, A1 discussed
and explained their decision:

“In a way, we have all that automation, and everything is ready for us to release
without anyone having to go manually through any stages so the packages would be
released to users of our platforms. But we have decided to set up certain stops that
include small checkups, to give us time to catch breath and make sure that every-
thing is alright, before we proceed to release.” (A1; 12)

42

5.4 Testing challenges

Testing challenges refer to the challenges that are related to the testing of the
software and other activities conducted mainly by the Quality Assurance per-
sonnel. Each interviewee discussed testing activities and the challenges related
to them in great detail. The testing challenges reported by the interviewees
were mostly related to test automation and the excessive amount of time re-
quired for testing, but not exclusively, as there were also challenges caused by
the considerable variations required to be addressed in the testing activities.
The following two testing challenges were identified: time-consuming testing
and disparity of testing.

5.4.1 Time-consuming testing

In the context of this study, time-consuming testing refers to the excessive
amount of time that is required to conclude all the necessary test activities for
software to be in a releasable state, or in other words, the duration of necessary
testing activities can be considered unsustainably long. This is caused by a vari-
ety of reasons, such as unsuitable system architecture, lack of resources, and

insufficient testing strategy. Moreover, time-consuming testing is highly associ-
ated with the lack of test automation. However, pursuing complete test automa-
tion is not sufficient by itself to solve the problem, as testing could still take im-
practical amounts of resources such as time or testing staff. D2 confirmed the
fact and discussed how the challenge of obtaining sufficient test coverage af-
fects their testing activities, as everything cannot be tested:

“We can’t test everything our software does, as even if we had made automated tests
for everything, executing them would take a month.” (D2; 13)

“The [testing] coverage is achieved by finding so-called ‘blockers’. So if – if we identi-
fy features that have to be functional, e.g. storing data or adding a new customer – if
those features are not functional, that version is not releasable.” (D2; 14)

Moreover, not all testing activity can be automated, especially when developing
a mission critical enterprise system such as ERP instead of relatively less com-
plex commercial software. D1 described the situation with the requirements of
testing for an ERP system:

“Even if we got our end-to-end tests or acceptance tests to any form, we probably
can’t or won’t ever dare to deliver without manual testing, so well, some kind of
manual testing will remain in any case. It would be different if we developed some
simple phone app or something else, the testing could be done more or less exclu-
sively with automated tests.” (D1; 15)

43

5.4.2 Disparity of testing

Disparity of testing refers to the wide array of different types of test cases and
testing activities that are required during the development of an ERP system,
which are caused partially by their large scale and high system complexity. A1
discussed the major challenge caused by the disparity. Furthermore, as noted
by B1, different types of software functionalities and components of the system
require different types of testing. They said:

“In a sense, those variations in the testing that we are supposed to take into account,
that seems to be an almost overwhelmingly big issue, in a way.” (A1; 16)

“The challenge is that the systems in our business software platform are different not
only technologically, but also in their nature; so there is more legacy-like Windows
desktop user interface, which is considerably different to test in an automated way
than, let’s say, some interface functionality using APIs. So from a testing viewpoint,
those are complete opposites. That is the challenge, there are so many, and so differ-

ent types of use cases.” (B1; 17)

B1 also discussed how the large amount of different parametrization and con-
figuration options in the system affects the testing activities, as according to
them there are as many ways to use the system as there are its users:

“This is what causes atrocious challenges for testing, especially if we are talking
about automated testing, because it would take automated testing staff of like 200
people, who would maintain those tests and keep them synchronized with projects
to make it work, so in a way that makes absolutely no sense.” (B1; 18)

Not unexpectedly, they also confirmed the fact that not all testing cannot be
automated, and discussed how automated testing can still be applied to some
aspects of the system development: B1 said:

“My policy has been that certain basic functionalities, that remain roughly un-
changed from version to version, should be automatically testable. --- Each one of our
parameterization options – or what other use cases comes to my mind – we simply

can’t test, or above all, automate their testing. So this is the challenge.” (B1; 19)

It should be noted that the system changes constantly, especially in the case of
Continuous Delivery practice taking place. As the system evolves further, con-
stantly differing test cases, activities, and strategies are required, and why test
automation is difficult to implement and maintain. D2 explained:

“When the system develops further, the test cases have to change too. So each test
case – this is the problem, why automated tests are really heavy, and difficult to cre-
ate too. They will surprisingly quickly cause a sort of ‘maintenance hell’. And if they
are not maintained, they will not test the right things, after which it doesn’t matter if

the test is valid or not.” (D2; 20)

44

5.5 Release challenges

While in the practice of Continuous Delivery frequent releases are emphasized,
it is not straightforward how, and when they should be carried out, and what
their contents and scope should be. There are multiple factors that affect those
decisions, including varying requirements of the users, available development
resources, strategic factors, and legislation. The following three release chal-
lenges were identified: customer requirements and preferences, domain re-
strictions, and release planning.

5.5.1 Customer requirements and preferences

Customer requirements and preferences refer to the requirements set by the
user organizations that system vendors have to address when practicing Con-
tinuous Delivery. Customer requirements and preferences appeared to affect
the release activities of the case companies in multiple ways. Each of the inter-
viewees emphasized that the development activities, including releases, are
planned and performed with the customers’ requirements and preferences in
mind. In other words, the impact of the customers is considered vital in the

overall development process. A1 summarized what they thought to be one of
their largest challenges regarding the customer requirements and preferences:

“Maybe it is exactly how much the customer demands have increased and how the
technology keeps advancing constantly.” (A1; 21)

The case companies had actually encouraged the customers to actively take part
in the development process. This was exhibited in a few different ways. For ex-
ample, Company A had created a portal in their system for users to suggest and
vote for upcoming features, while Company D had organized specialized work-
shops for customers in order to receive more accurate, and even notably, almost
immediate feedback on the features and functionalities under development.

5.5.2 Domain restrictions

Domain restrictions refer to limitations caused by certain characteristics of the
user organizations’ area of business, i.e. regulations, legislation, and other in-
dustry requirements. Some application domains are less suitable for Continu-
ous Delivery than others. For example, safety-critical systems, including a
number of ERP systems, do not facilitate Continuous Delivery (Laukkanen et al.,
2017a), yet upgrades can be planned and delivered in a quick and reliable man-
ner, even in strictly regulated and controlled environments (Ebert et al., 2016)
by adopting continuous practices. In fact, Continuous Deployment and Deliv-
ery might be prohibited by a service-level agreement (SLA) or other contract,
which is notably common in strictly regulated industries, such as defense and

45

healthcare. As Company D developed their ERP system for the healthcare in-
dustry, D1 confirmed that practicing Continuous Delivery might not be even
possible for them, even if they had the necessary capabilities for it. They dis-
cussed the fact that they cannot always release without additional acceptance
testing conducted by the user organization, effectively obstructing the practice
of releasing frequently. D1 said:

“Often our contracts disallow Continuous Delivery with certain clients, and releases
have to go through their own acceptance testing first.” (D1; 22)

5.5.3 Release planning and prioritization

Size, scope, and purpose of a release can vary, ranging from small software
patches to completely new features and functionalities, or even larger system
revisions and updates that can have effects even at the architecture level. For
that reason the releases have to be managed with activity referred to as release
planning. Prioritization, in turn, is an aspect of release planning, which is con-
cerned with the decisions on what and when to release, and especially in which
order. While larger system revisions require more careful planning than small
patches, it is important to plan all releases in some way, regardless of the type
of release. Each of the companies reportedly planned their releases beforehand,
also on the strategic level, with most interviewees referring to that activity as
‘road-mapping’, which is an alternative term for strategic release planning
(Svahnberg et al., 2010). A1 said:

“From the viewpoint of development it’s rather simple, we release packages all the
time, but in the case of some larger or more important items, we constantly consider
when we should release them, we actually have a road-map, in which larger devel-

opmental activities are scheduled and prioritized.” (A1; 23)

As the intention of software releases is to answer a stream of requirements that
are presented to the development organization (Fricker & Schumacher, 2012),
both externally by the users, and internally by the product development team,
and product department in general, these requirements need to be carefully
evaluated and selected in order to plan the development of future releases. As
not each requirement can be addressed at once, an issue of prioritization arises.

5.6 Organizational challenges

While Continuous Delivery can be seen essentially as a technology-focused
method, organizational factors can also affect its adoption, with certain organi-
zational characteristics and practices potentially preventing its successful adop-
tion. On the contrary, other organizational practices can greatly facilitate the
adoption of Continuous Delivery practice. According to the interviewees, or-

46

ganizational challenges were considered to be more straightforward to solve
than other challenges, but they were not regarded as trivial by any means, as
the interviewees discussed serious efforts that were required to achieve satisfac-
tory results within this aspect of Continuous Delivery adoption. Although the
interviewees reported organizational and resource-related challenges to be al-
ready mainly resolved in their companies, the following three organizational
challenges were identified: coordination and collaboration, communication, and
resources.

5.6.1 Coordination and collaboration

Continuous Delivery requires different kind of approach, and ways of working
from the development team, including the developers, QA personnel, and pro-
ject management. Restructuring development processes and teams is not
straightforward, as there are multiple factors affecting the restructuring deci-
sions. A1 elaborated on the impact that restructuring the development and re-
lease processes had initially on the development team members, and the rela-
tionship between them and the management:

“In the beginning, the developers felt somewhat negative. They felt that they were
being stalked, and doubted if they were relied upon, even though they felt that they

worked hard.” (A1; 24)

According to A1, however, the situation improved and soon everyone realized
the improvements the restructuring had caused, as having a clearly defined de-
velopment process with distinctive stages had received acknowledgement from
everyone in the organization. Still, they discussed the remaining challenges
caused by the organizational structure, as they had separate departments in
their organization that operate from their own viewpoint, and sometimes it is
difficult to get everyone from different departments involved.

Indeed, the organizational structure can affect the coordination and col-
laboration within the development teams and between other departments and
stakeholders in a negative manner. B1 discussed the importance of having a
functional organizational structure and coordinated development schedule in
order to facilitate collaboration within the organization and development teams.
They said:

“From my viewpoint, the most crucial challenges related to personnel and organiz-
ing have already been somewhat resolved in our company, as we have finally man-
aged to get all of our teams to work within the same sprint cycle and everyone has in

a way adopted the sprint paradigm into their daily activities.” (B1; 25)

5.6.2 Communication

Communication is an important factor attributing to performance of develop-
ment teams, and overall success of the organization. D2 discussed the challeng-

47

es of communication between different people involved in the development
process and the issue of everyone having their own, distinct viewpoint to the
overall software development process. He emphasized the importance of the
ability to perceive and consider issues from different perspectives, especially
from the viewpoint of other stakeholders involved. D2 talked from the view-
point of QA personnel and how they have to approach their testing activities
from different perspectives:

“Our job, in a way, is to remain sceptical about what the client wants and if they un-
derstand what it [the system] should do. And that mirrors back to us; first we have to
test it in a way a developer would, after which we test it in a way we want to. And

after that, we try to break, in the same way how the client would use it.” (D2; 26)

B1 mentioned how varying amounts of work experience between the develop-
ment team members affects the communication between them. It had taken se-
rious efforts in order to achieve a sufficient level of communication between the
team members. Indeed, while the lack of “common language” is an almost uni-
versal problem in the business world, the software industry can be affected
proportionally even more as new programming languages, frameworks, and
libraries, and development tools, practices, and methodologies as well, are in-
troduced relatively frequently. B1 summarized the challenge:

“It has been a surprisingly major challenge to get this kind of a large development
staff to speak the same language.” (B1; 27)

5.6.3 Resources

The interviewees discussed the considerable efforts they had been putting to-
wards the development and adoption of the Continuous Delivery practice. In
addition to financial resources and personnel, correct software development
tools are important resources not only intrinsically, but it also requires remark-
able resources from the organization to obtain or internally develop sufficient
development tools to facilitate the adoption of Continuous Delivery (Shahin et
al., 2017). D1 also emphasized the significance of correct development tooling
for the overall development and release processes, and how the practices act as
prerequisites to other subsequent practices:

“In a sense, it’s the tools that make it Continuous Integration and Delivery, or it is the
[Continuous] Integration that makes, or at least is supposed to make, Continuous De-
livery safe. It doesn’t always go that way, but essentially Continuous Integration is

required to be able to release frequently, or at all.” (D1; 28)

48

6 ANALYSIS OF THE RESULTS

In this chapter, the results of the empirical study are analyzed and dis-
cussed. Additionally, the results are compared to previous research in order to
discuss similarities, differences, and conflicts between them. Finally, the chal-
lenges of Continuous Delivery adoption are summarized in the form of a con-
ceptual framework.

The identified challenges that were classified into five themes are not dis-
connected from each other. Additionally, the themes are interconnected in
many ways, and could be classified differently depending on the interpretation
of the research data. As the chosen method of analysis was directed content
analysis, the final result themes are similar, but not identical as those presented
by Laukkanen et al. (2017a). The differences in the themes can be explained by
at least two reasons. Firstly, the Continuous Delivery problems and challenges
identified in the previous literature were related to general software, but the
phenomenon of interest in this study was strictly a certain type of software,
ERP systems. Characteristic differences between ERP systems and other soft-
ware, such as its critical role for users, can expectedly lead to differing Continu-
ous Delivery adoption challenges. Secondly, as the directed content analysis can
potentially refine, extend, and enrich a theory or prior knowledge (Hsieh &
Shannon, 2005), the themes identified in this study can be viewed as a refined
classification of the Continuous Delivery adoption challenges.

6.1 Continous Delivery capabilities of the organizations

Perhaps the most straightforward way to assess the status of Continuous De-
ployment adoption would be using a binary scale of “yes” or “no” to denote
whether a fully automatic deployment chain exists, or if there is one or more
manual steps. (Leppänen et al., 2015) From this viewpoint, Continuous Delivery
adoption could be measured in the same way, by answering “yes” or “no” to
whether the organization has the capability to maintain the software in a con-

49

stantly releasable state, or not. Such an absolute scale, however, wouldn’t accu-
rately illustrate situations where organizations have taken steps toward auto-
mated deployment or Continuous Delivery without yet utilizing a fully func-
tional deployment pipeline (Leppänen et al., 2015) or other sections of the com-
plete infrastructure required for adoption of Continuous Delivery practice.

In order to evaluate the status of Continuous Delivery adoption in a more
accurate way compared to the binary scale, Leppänen et al. (2015) used multiple
factors to assess the Continuous Delivery capabilities of companies they inter-
viewed in their case study, including “fastest time for a code change to propa-

gate to production”, “cycle time to potentially deployable software”, and
whether there is an “automatic chain to potentially deployable software”, or not.
In the scope of this study, access to such information was limited, as the inter-
viewees either did not disclose the details, or preferred not to give rough esti-
mates. Each interviewee did, however, discuss the frequency of their customer
releases, which ranged from two weeks to four months. While release frequency
can imply the status of Continuous Delivery adoption, it is not sufficient meas-
urement on its own for assessing Continuous Delivery capabilities, as the or-
ganizations may simply choose to release less frequently for varying reasons,
despite their actual capabilities. The frequency of releases is not the deciding
factor, but the ability to deploy at will (Neely & Stolt, 2013).

6.2 System design and architecture

The following two Continuous Delivery challenges related to system design
and architecture were identified in the study: unsuitable architecture, and sys-
tem scale and complexity. The identified challenges are also highly intercon-
nected, as the former can be seen as a factor accounting for the latter, and vice
versa.

Consistent with the findings of extensive literature review conducted by
Laukkanen et al. (2017a), Continuous Delivery adoption challenges related to
the system design and architecture emerged as one of the most prevalent chal-
lenges reported in the interviews. This was not unexpected, as the companies
had begun to apply Continuous Delivery practices to their development activi-
ties only relatively recently, while at the same time retained the same core soft-
ware product, or parts of it, that had been developed prior the introduction of
Continuous Delivery practices. The only exception to this was Company D, as
they had a more recently developed product in addition to a system solution

that could be regarded as legacy software.
The challenges related to system design and architecture are relatively dif-

ficult to solve, as they may require large-scale revisions to the entire software
system, including the core architecture level. Reconstructing the system archi-
tecture of an existing software system is considerably more difficult compared
to designing, defining and revising architecture for a system that is in the initial
stages of its life cycle, such as planning or development stages. One way to mit-

50

igate challenges caused by both unsuitable architecture and system scale and
complexity is to divide the system into smaller modules or other functional
components, as the modularized system units can be tested and deployed inde-
pendently. (Laukkanen et al., 2017a) However, unnecessary coupled component
architecture can actually lead to increasingly unsuitable system architecture, as
it limits the practice of Continuous Integration (Bellomo, Ernst, Nord & Kazman,
2014), and thus also the practice of Continuous Delivery, as the former is re-
quired for the latter (Olsson et al., 2012). This means that there is no universal
standard regarding the most advantageous level of modularization and encap-

sulation of the system architecture, but it depends on a large number of factors,
including functionality requirements of the system and resources of the devel-
oper organization.

It is important to understand that, as noted by Laukkanen et al. (2017a),
unsuitable architecture is not a problem on its own, but it causes different types
of problems and challenges with testing, development, and deployment. There-
fore, addressing challenges in system design and architecture does not only en-
hance system performance, but also facilitates the resolution of the challenges
related to the testing, development, and deployment activities. Similar to the
unsuitable architecture, the system scale and complexity are not problems on
their own, but a contributing factor to other challenge themes, such as testing,
as the large scale of an ERP system requires additional testing time, and the sys-
tem complexity attributes to the challenge of testing disparity.

6.3 Integration and deployment pipeline

The following integration and deployment pipeline challenges were identified:
revision control and code stabilization. One challenge reported in the previous
research related to establishing a functional deployment pipeline system is the
low level of tooling support for Continuous Delivery, because as of yet, no
standardized software solutions or products exist. This is why major global
companies, such as Facebook and Google, have adopted deployment pipelines
successfully by developing their own pipelines and related software tooling.
(Steffens et al., 2018.) Smaller companies, however, may not have sufficient re-
sources to achieve similar success in constructing their own pipelines from the
beginning, or by integrating different development tools internally. Interesting-
ly, the interview data seemed to contradict the fact, as there were no challenges
reported with the tooling options for deployment pipelines in the interviews.

It should be noted that extremely frequent releases may not produce any
additional benefits for either user organizations or the developer organization,
at least not for the ERP system vendors, which means there might not be any
incentive for developer organizations to aim to shorten release cycles beyond a
certain point. However, there are no negative aspects in having the capability to
release frequently, even if the releases actually occur scarcely. Indeed, various
Continuous Integration tools or deployment pipelines would benefit even the

51

smallest development organizations consisting of only one or few teams. Nev-
ertheless, it might not be worth the additional effort and resources required for
the smaller development teams and organizations to adopt the practices.

Integration and deployment pipeline challenges are interconnected to test-
ing challenges at least in two ways. Firstly, most of the testing activity is actual-
ly conducted within the deployment pipeline environment and its different
stages. Because of that, advanced testing activities can be seen as a precedent
for more a developed deployment pipeline, meaning that subpar testing capa-
bilities greatly hinder the development of functional deployment pipelines,

eventually interfering with the adoption of Continuous Delivery. Secondly, ad-
vanced Continuous Integration processes and functional deployment pipelines
might facilitate more efficient testing procedures and practices. Additionally,
lack of test automation can cause a need for prolonged or additional code stabi-
lization periods, which also hinders the capability of Continuous Delivery.

Test automation is a potential solution in order to reduce code freeze peri-
ods (Laukkanen et al., 2017b), but it might not be possible in certain situations,
such as lack of resources or customer requirements, as it was the situation with
Company D. Even if discontinuing freezing practices is not possible, the poten-
tial risks and challenges generated by it can be monitored and mitigated with
various means, such as feature toggles, that allow uncomplete features to exist
within the code while they are inactive when the software is in use (Laukkanen
et al., 2017b). This was validated by the interviews also, as Company C report-
edly applied feature toggles in their development in addition to the freezing
practice.

An important remark regarding freezing practices is that the developers
may experience increased pressure before the feature freeze periods, as they
have to finish their work in time, while QA personnel experience the greatest
workload during the feature freeze period, to a point that an “us and them”
atmosphere between the developers and the QA personnel is established
(Laukkanen et al., 2017b), affecting organizational collaboration and communi-
cation. The aforementioned situation can potentially have some implications for
the division of labour, utilization of personnel, and even management of human
resources, namely the developers and QA personnel. It would be reasonable to
expect that while underutilization of development and QA personnel is ineffi-
cient, overburdening them is progressively more harmful, as it may lead to de-
creased quality of code and system failures, which will affect the overall quality
of the software product negatively, effectively hindering the ability to deliver
software continuously even further. However, as Laukkanen et al. (2017b) not-
ed, sometimes freezing practice with coupled deployment and release is an es-

sential complexity factor, and cannot be avoided. This is the case with systems
that are difficult or impossible to update or upgrade undetected while they are
being used, or without downtime, including mission critical enterprise systems
such as ERP.

52

6.4 Testing

Problems and issues in testing are among the most prevalent and most critical
challenges for Continuous Delivery adoption, as reported in the research litera-
ture (Laukkanen et al., 2017a; Shahin et al., 2017). Consequently, this was re-
portedly the situation with the companies in this study. The following two test-
ing challenges were identified: time-consuming testing and disparity of testing.

While test automation is regarded as one of the most important factors in
Continuous Delivery adoption success, not all software development organiza-
tions are able to automate all types of tests for reasons such as insufficient infra-
structure for test automation, difficult process of automating manual tests, and
dependencies between software and hardware (Shahin et al., 2017). This was
the situation with the companies in this study also. The aforementioned reasons
are at least partially caused by system design and architecture, such as unsuita-
ble architecture for test automation, and high scale and complexity of the sys-
tem, reflecting the other challenge theme of system design and architecture.

6.5 Release

The following three release challenges were identified: customer requirements
and preferences, domain restrictions, and release planning. In the previous re-
search literature, customers have been featured as a social challenge regarding
continuous practices (Claps et al., 2015; Leppänen et al., 2015). Consequently,
according to the interviews, the challenges caused by varying customer prefer-

ences and policies were solved by various means. Company A provided multi-
ple options regarding the delivery method of their system. Customers can not
only choose different system modules and functionalities according to their lim-
itations, needs and preferences, but they can also choose how often the system
will be updated and where it is hosted, e.g. cloud or on-premises. In addition to
that, customers can select fully supported, on-demand (Software-as-a-Service,
SaaS) solution with a monthly fee. This way, different customer preferences can
be addressed. On the other hand, offering multiple options can increase com-
plexity and generate additional challenges with testing and release manage-
ment. It should be noted, however, that forcing a uniform and inflexible ERP
solution for customers can be highly impractical and can lead to lowered cus-
tomer satisfaction and retention.

Frequent releases are one of the key principles of Continuous Delivery
practice. Some customers may, however, find the frequent updates undesirable
for different reasons. On the other hand, other customers may welcome them or
even require them in order to develop their own business operations further.
This creates a situation where the system vendor has to conform to simultane-
ously varying, or even conflicting preferences and requirements, which is a
clear challenge for any software development organization, even more so for

53

system vendors producing mission critical and complex enterprise systems
such as ERP. In fact, customer preferences and their organizational policies may
interfere with Continuous Delivery (Shahin et al., 2017), which can even lead to
a situation where it is impossible for an organization to adopt Continuous De-
livery practices to a full extent, especially if those customers are considered vital
for business operations.

However, it is important to note that release decisions are not only about
preferences of the customers. Software companies are known to settle for less
continuous development processes because they are more appropriate for their

product and business (Leppänen et al., 2015). There are also certain other con-
siderations, such as different legislations regarding information security man-
agement or handling of financial data, and changes in them. Some restrictions
in the form of regulations and customer policies and processes can effectively
prevent practicing Continuous Delivery entirely. However, as pointed out by
Humble (2018), this does not mean that implementing Continuous Delivery
practices even in those kind of situations would not be highly beneficial, as
those policies and processes can be handled in a more efficient way by adopting
Continuous Delivery practices, even if the ultimate criteria for Continuous De-
livery, releasing at will, cannot be achieved.

An additional factor contributing to the release-related challenges is that
not even a state-of-the-art deployment pipeline can ensure latency-free releases
from deployment to production (Lehtonen et al., 2017). For example, even with
a fully functional deployment pipeline in operation, some aspects of the release
process, such as written user manuals, remain tedious and time-consuming, as
they are difficult or even impossible to automate, at least with contemporary
technologies and practices, as evidenced also by this study.

In previous research, Continuous Deployment has been regarded as a sub-
sequent evolutionary stage of Continuous Delivery which organizations are
seeking to adopt. (Olsson et al., 2012) However, none of the interviewees re-
ported any intentions to adopt Continuous Deployment practice. As expected,
it seems to be uncommon for ERP vendors to aim for practicing Continuous
Deployment, even if it was technologically possible. This is first and foremost
because of the critical role and large scope of an ERP system. Aside from minor
changes, such as software patches, updating the system, regardless of size and
scope of the update, will likely require changes in the business operations of the
user organization, which in turn is most often less than ideal for the user organ-
ization, even more so if it occurs frequently.

6.6 Organizational

The following three organizational challenges were identified: coordination and
collaboration, communication, and insufficient resources. Organizational chal-
lenges are not directly connected to any other challenge themes, but they en-
compass the entire development process of an organization, meaning that or-

54

ganizational challenges can impact the overall Continuous Delivery adoption of
an organization.

Previous research highlights the influence of change resistance and change
management (Claps et al., 2015; Leppänen et al., 2015) for Continuous Delivery
adoption. Interestingly, change resistance or change management challenges
were not directly reported in any of the interviews, and only in two interviews
the topic was mentioned at all. However, change resistance is closely related to
the coordination and collaboration, and communication challenges.

Finally, according to Olsson et al. (2012), constant changes in development

tools, and the following need of learning new tools among the most critical
challenges in adjusting to the practice of Continuous Integration. The inter-
viewees in this study did discuss the tooling changes, but did not perceive them
as a major challenge for adopting or practicing Continuous Integration or Con-
tinuous Delivery.

55

6.7 Conceptual framework of Continuous Delivery adoption
challenges for ERP system vendors

The challenges of Continuous Delivery adoption can be summarized in the
form of a conceptual framework as shown in Figure 5. The framework consists
of the five previously discussed Continuous Delivery challenge themes includ-
ing the previously identified 12 Continuous Delivery challenges. Furthermore,
the declared relationships between the challenge themes are denoted with con-
necting arrows, with the direction of the arrow implying the direction of in-
cluence in the relationship.

FIGURE 5 Conceptual framework of Continuous Delivery adoption challenges

System design and architecture challenges are related to testing challenges, as
they are an accounting factor for testing challenges, as discussed previously.
Testing challenges are related to integration and deployment pipeline challeng-
es bidirectionally, as the testing activities are, at least partly, performed within
the integration and deployment pipeline phases of the development, and the
challenges in integration and deployment pipeline may account to the testing
challenges. Release challenges are connected to system design and architecture
challenges, as different challenges, such as domain restrictions, can affect the
system architecture and complexity. Finally, while the organizational challeng-
es are not directly connected to any other challenge theme, they encompass all
other challenge themes, as organizational factors affect the entire process of

software development and delivery.

56

7 DISCUSSION

In this chapter, the research question is addressed and practical and theoretical
implications, and limitations of the study are discussed. Finally, topics for fur-
ther research are considered.

7.1 Addressing the research question

The objective of this study was to identify and analyze the challenges related to
adoption of Continuous Delivery practice in small to medium sized ERP system
vendors. In order to identify and analyze the challenges, the following research
question was presented in the introduction chapter:

 What are the Continuous Delivery adoption challenges for small and
medium sized ERP system vendors?

In order to address the research question, a qualitative study was conducted, in
which semi-structured theme interviews from industry experts were used as a
main data collection method. The data was analyzed using a qualitative di-

rected content analysis method, which resulted in a conceptual framework con-
sisting of five interconnected Continuous Delivery adoption challenge themes,
which include a total of 12 Continuous Delivery adoption challenges.

7.2 Theoretical implications

This study expands the body of theoretical knowledge in form of a proposed
conceptual framework consisting of 12 identified Continuous Delivery adoption
challenges divided into five interconnected themes in a context of ERP system
development and delivery. The results of the study appear to support and con-
firm the existing body of knowledge rather than contradict it, which was not

57

unexpected, as prior research literature appears to be relatively consistent with
findings, partly because many research articles seem to cite only a limited
amount of prior certain research articles, which are often the same. The chal-
lenge themes identified in the study were similar to those identified in previous
research literature, partly because of the selected data analysis method, the
qualitative directed content analysis, in which the analysis of research data is
guided by existing theory or knowledge. The objective of this study, however,
was not to validate or test an existing theory or knowledge, but to generate ad-
ditional knowledge of the phenomenon of interest in a more limited context, the

ERP system domain.
The results indicate that the challenges of Continuous Delivery adoption

are similar for small and medium sized ERP system vendors compared to the
general challenges presented in the literature reviews. In other words, the chal-
lenges in the ERP system domain do not appear to contradict the challenges
identified in other software domains. This was somewhat unexpected, as the
ERP systems are considered to be a distinct type of systems differing in multi-
ple ways when compared to other software.

Of the challenges identified in this study, the system design and architec-
ture challenges appeared to be the most connected to other challenges. In this
sense, addressing challenges related to system architecture and design could
facilitate the adoption of Continuous Delivery the most. The results of the study
also indicate that while organizational Continuous Delivery adoption challeng-
es had existed, they were already mostly solved in the companies, implying that
organizational challenges are easiest to overcome. This contradicts prior re-
search, where organizational challenges are considered critical, including
change resistance (Shahin et al., 2017), which was not reported at all in the
companies in this study. This contradiction may be caused by the fact that com-
panies in this study were exclusively small or medium sized enterprises, which
can potentially solve their organizational challenges more efficiently, while the
organizations included in the prior research were usually large, global organi-
zations, in which organizational changes are considerably more difficult to im-
plement and establish.

7.3 Practical implications

Continuous Delivery practices are highly recommended even in the ERP system
vendor domain, even though there are difficulties and challenges to overcome.

No two organizations are completely identical, and for that reason the adoption
challenges can vary depending on the organizational aspects. System vendors
should identify the most critical challenges for Continuous Delivery adoption in
their organization, and plan and act accordingly.

It is possible to obtain some benefits of Continuous Delivery by adopting
the practice only partially, which means that vendors can select the most suita-
ble or only the necessary methods to their software development process. For

58

example, not all releases have to be delivered continuously. This means that
certain smaller releases, such as smaller patches, can be delivered frequently
and automatically, while larger system revisions and upgrades can be delivered
less frequently and manually.

However, according to some industry experts, the on-premises installation
delivery method should remain a prevalent delivery option for ERP systems, at
least in the near future. As the on-premises installation delivery model is less
suitable for Continuous Delivery than other delivery models, such as SaaS, it is
not completely straightforward to decide if ERP system vendors should spend

extreme resources into adopting state-of-the-art Continuous Delivery capabili-
ties. Nevertheless, developing Continuous Delivery capabilities further will
most likely affect other organizational capabilities in a positive way.

7.4 Limitations of the study

There are several major limitations in this study. Firstly, there are limitations
caused by the selected data collection method. The most apparent limitation is
the size of the data set, as the volume of interview data is noticeably limited, as
there were only five persons representing four organizations interviewed. This
was, however, somewhat expected, as it can be difficult to obtain interviewees
for a thesis work. An additional limitation with the data collection method is
that the interviews could not be conducted strictly according to the research
guide, and furthermore, the interview guide itself was inadequately designed.
Therefore, a more defined interview guide could have yielded more compre-
hensive and balanced data collection. As the interviews were conducted in a
relatively open form, the interview themes were not covered completely pro-
portionally between each interview, thus affecting the data collected. In addi-
tion, due to the inexperience of the researcher, the interview situations could
not be controlled in a most efficient way to enable adequate data collection.
Secondly, there are limitations with the selected data analysis method, the qual-
itative directed content analysis. The use of a theory or prior knowledge as a
guidance for analysis can lead to bias, as it is more likely to find supportive ev-
idence rather than unsupportive of a theory or prior knowledge (Hsieh & Shan-
non, 2005). Finally, qualitative methods in general are susceptible to research
bias. In other words, the characteristics of the researcher, such as personal be-
liefs and views, can affect the interpretation of the data, which eventually can
affect the results of the study.

59

7.5 Topics for further research

In order to extend the knowledge of the phenomenon of interest, and to address
the aforementioned limitations of this study, further research is required. Some
possible topics for further research are listed below:

 In-depth single or multiple case study of Continuous Delivery adoption
challenges in ERP vendor organizations

 Large-scale survey research on Continuous Delivery adoption in ERP

system vendors

 Study of critical success factors for Continuous Delivery adoption

60

8 CONCLUSION

The objective of this study was to identify and analyze what challenges ERP
system vendors face when adopting the practice of Continuous Delivery. A to-
tal of 12 Continuous Delivery challenges were identified and classified into five
separate, yet interconnected challenge themes, which were the following: sys-
tem design and architecture, integration and pipeline, testing, release, and or-
ganizational. The challenges, challenge themes, and the implied relationships
between challenge themes were summarized in the form of a conceptual
framework

To address the research problem, the study was divided into two separate
sections: a literature review of previous research, and an empirical research sec-
tion. The purpose of the literature review was to obtain knowledge and under-
standing of the phenomenon of interest, including preceding and related soft-
ware engineering practices. As the topic of research was specified to ERP sys-
tem vendors, research literature related to the ERP systems was included in the
literature review. The empirical research section was conducted with a qualita-
tive research method, including semi-structured theme interviews as the main
data collection method, and a data analysis method known as qualitative di-
rected content analysis was selected as the method of data analysis. The com-
plete research methodology was presented and discussed in chapter four.

The results of the empirical research were first presented in chapter five,
and then analyzed in chapter six. The analysis of the results included compari-
son to prior research, with the objective of identifying contradicting or support-
ing evidence in relation to the identified results. Finally, in chapter seven, the
research question was addressed, theoretical and practical implications were
discussed, and limitations of the study and topics for further research were con-
sidered.

61

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software
development methods: Review and analysis.

Barqawi, N., Syed, K., & Mathiassen, L. (2016). Applying service-dominant logic
to recurrent release of software: an action research study. Journal of

Business & Industrial Marketing.

Basil, V. R., & Turner, A. J. (1975). Iterative enhancement: A practical technique
for software development. IEEE Transactions on Software Engineering, (4),
390-396.

Beck, K. (1999). Embracing change with extreme programming. Computer,
32(10), 70-77.

Cavaye, A. L. (1996). Case study research: a multi‐faceted research approach for

IS. Information systems journal, 6(3), 227-242.

Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE
Software, 32(2), 50-54.

Claps, G. G., Svensson, R. B., & Aurum, A. (2015). On the journey to continuous
deployment: Technical and social challenges along the way. Information
and Software technology, 57, 21-31.

Clegg, B., & Wan, Y. (2013). Managing enterprises and ERP systems: a
contingency model for the enterprization of operations. International
Journal of Operations and Production Management, 33(11-12), 1458-1489.

Cohen, D., Lindvall, M., & Costa, P. (2003). Agile software development. DACS
SOAR Report, 11, 2003.

Davis, A. M., Bersoff, E. H., & Comer, E. R. (1988). A strategy for comparing
alternative software development life cycle models. IEEE Transactions on
Software Engineering, 14(10), 1453-1461.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. IEEE
Software, 33(3), 94-100.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of
management review, 14(4), 532-550.

Elragal, A., & Haddara, M. (2012). The Future of ERP Systems: look backward
before moving forward. Procedia Technology, 5, 21-30.

62

Eurostat (2020). Structural business statistics overview. Retrieved on 29.9.2020
from https://ec.europa.eu/eurostat/statistics-
explained/index.php/Structural_business_statistics_overview

Fowler, M. (2006). Continuous integration. Retrieved on 12.2.2020 from
https://martinfowler.com/articles/continuousIntegration.html

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development,
9(8), 28-35.

Forrester (2019). Look Beyond ERP: Introducing The DOP. Retrieved on
28.10.2020 from
https://www.forrester.com/report/Look+Beyond+ERP+Introducing+Th
e+DOP/-/E-RES152335?objectid=RES152335

Fricker, S., & Schumacher, S. (2012, March). Release planning with feature trees:
Industrial case. In International Working Conference on Requirements
Engineering: Foundation for Software Quality (pp. 288-305). Springer, Berlin,
Heidelberg.

Gartner (2020). Market Share Analysis: ERP Software, Worldwide, 2019.
Retrieved on 13.1.2020 from
https://www.gartner.com/en/documents/3985627/market-share-
analysis-erp-software-worldwide-2019

Gholami, M. F., Daneshgar, F., Beydoun, G., & Rabhi, F. (2017). Challenges in
migrating legacy software systems to the cloud—an empirical study.
Information Systems, 67, 100-113.

Greer, D., & Ruhe, G. (2004). Software release planning: an evolutionary and
iterative approach. Information and software technology, 46(4), 243-253.

Gregor, S. (2006). The nature of theory in information systems. MIS quarterly,
611-642.

Hilton, M., Nelson, N., Tunnell, T., Marinov, D., & Dig, D. (2017, August).
Trade-offs in continuous integration: assurance, security, and flexibility. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (pp. 197-207).

Humble, J. (2018). Continuous delivery sounds great, but will it work here?.
Communications of the ACM, 61(4), 34-39.

Humble, J., & Farley, D. (2010). Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education.

Humble, J., & Molesky, J. (2011). Why enterprises must adopt devops to enable
continuous delivery. Cutter IT Journal, 24(8), 6.

https://ec.europa.eu/eurostat/statistics-explained/index.php/Structural_business_statistics_overview
https://ec.europa.eu/eurostat/statistics-explained/index.php/Structural_business_statistics_overview
https://martinfowler.com/articles/continuousIntegration.html
https://www.forrester.com/report/Look+Beyond+ERP+Introducing+The+DOP/-/E-RES152335?objectid=RES152335
https://www.forrester.com/report/Look+Beyond+ERP+Introducing+The+DOP/-/E-RES152335?objectid=RES152335
https://www.gartner.com/en/documents/3985627/market-share-analysis-erp-software-worldwide-2019
https://www.gartner.com/en/documents/3985627/market-share-analysis-erp-software-worldwide-2019

63

Humble, J., Read, C., & North, D. (2006, July). The deployment production line.
In AGILE 2006 (AGILE'06) (pp. 6-pp). IEEE.

Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content
analysis. Qualitative health research, 15(9), 1277-1288.

IEEE (1990). Standard Glossary of Software Engineering Terminology. IEEE
Standard 610.12-1990.

Itkonen, J., Udd, R., Lassenius, C., & Lehtonen, T. (2016, September). Perceived
Benefits of Adopting Continuous Delivery Practices. In ESEM (pp. 42-1).

Johansson, B., & Ruivo, P. (2013). Exploring factors for adopting ERP as SaaS.
Procedia Technology, 9, 94-99.

Lahtela, A., & Jäntti, M. (2011, July). Challenges and problems in release
management process: A case study. In 2011 IEEE 2nd International
Conference on Software Engineering and Service Science (pp. 10-13). IEEE.

Laukkanen, E., Itkonen, J., & Lassenius, C. (2017). Problems, causes and
solutions when adopting continuous delivery—A systematic literature
review. Information and Software Technology, 82, 55-79.

Laukkanen, E., Paasivaara, M., Itkonen, J., Lassenius, C., & Arvonen, T. (2017,
May). Towards continuous delivery by reducing the feature freeze period:
a case study. In 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP) (pp. 23-32).
IEEE.

Lehtola, L., & Kauppinen, M. (2006). Suitability of requirements prioritization

methods for market‐driven software product development. Software

Process: Improvement and Practice, 11(1), 7-19.

Lehtonen, T., Suonsyrjä, S., Kilamo, T., & Mikkonen, T. (2015, October).
Defining metrics for continuous delivery and deployment pipeline. In
SPLST (pp. 16-30).

Lenart, A. (2011, September). ERP in the Cloud–Benefits and Challenges. In
EuroSymposium on systems analysis and design (pp. 39-50). Springer, Berlin,
Heidelberg.

Leppanen, M., Makinen, S., Pagels, M., Eloranta, V. P., Itkonen, J., Mantyla, M.
V., & Mannisto, T. (2015). The Highways and Country Roads to
Continuous Deployment. IEEE Software, 2(32), 64-72.

Maditinos, D., Chatzoudes, D., Tsairidis, C., & Theriou, G. (2011). The impact of
intellectual capital on firms' market value and financial performance.
Journal of intellectual capital.

64

Meyer, M. (2014). Continuous integration and its tools. IEEE software, 31(3), 14-

16.

Myers, M. D. (1997). Qualitative research in information systems. MIS Quarterly,
21(2), 241-242.

Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research:
Examining the craft. Information and organization, 17(1), 2-26.

Neely, S., & Stolt, S. (2013, August). Continuous delivery? easy! just change
everything (well, maybe it is not that easy). In 2013 Agile Conference (pp.
121-128). IEEE.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to
agile methodologies. Communications of the ACM, 48(5), 72-78.

Olsson, H. H., Alahyari, H., & Bosch, J. (2012, September). Climbing the"
Stairway to Heaven"--A Mulitiple-Case Study Exploring Barriers in the
Transition from Agile Development towards Continuous Deployment of
Software. In 2012 38th euromicro conference on software engineering and
advanced applications (pp. 392-399). IEEE.

Panorama Consulting Group (2019). 2019 ERP Report. Retrieved on 14.1.2020
from https://www.panorama-consulting.com/resource-center/erp-
software-research-and-reports/panorama-consulting-solutions-2019-erp-
report/

Rajkumar, M., Pole, A. K., Adige, V. S., & Mahanta, P. (2016, April). DevOps
culture and its impact on cloud delivery and software development. In
2016 International Conference on Advances in Computing, Communication, &

Automation (ICACCA)(Spring) (pp. 1-6). IEEE.

Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J., & Männistö,
T. (2016, November). DevOps adoption benefits and challenges in practice:
a case study. In International Conference on Product-Focused Software Process
Improvement (pp. 590-597). Springer, Cham.

Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola, S., Suomalainen,
T., Eskeli, J., ... & Oivo, M. (2017). Continuous deployment of software
intensive products and services: A systematic mapping study. Journal of
Systems and Software, 123, 263-291.

Royce, W.W., (1970). Managing the development of large software systems:
concepts and techniques. 1970 WESCON technical papers. Vol. 14. 723.

Sarker, S., Xiao, X., & Beaulieu, T. (2013). Guest editorial: qualitative studies in
information systems: a critical review and some guiding principles. MIS
Quarterly, 37(4), iii-xviii.

https://www.panorama-consulting.com/resource-center/erp-software-research-and-reports/panorama-consulting-solutions-2019-erp-report/
https://www.panorama-consulting.com/resource-center/erp-software-research-and-reports/panorama-consulting-solutions-2019-erp-report/
https://www.panorama-consulting.com/resource-center/erp-software-research-and-reports/panorama-consulting-solutions-2019-erp-report/

65

Shang, S., & Seddon, P. B. (2000). A comprehensive framework for classifying
the benefits of ERP systems. AMCIS 2000 proceedings, 39.

Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous integration, delivery and
deployment: a systematic review on approaches, tools, challenges and
practices. IEEE Access, 5, 3909-3943.

Shahin, M., Zahedi, M., Babar, M. A., & Zhu, L. (2019). An empirical study of
architecting for continuous delivery and deployment. Empirical Software
Engineering, 24(3), 1061-1108.

Sneed, H. M. (2006, March). Integrating legacy software into a service oriented
architecture. In Conference on Software Maintenance and Reengineering
(CSMR'06) (pp. 11-pp). IEEE.

Sommerville, I. (1996). Software process models. ACM computing surveys
(CSUR), 28(1), 269-271.

Steffens, A., Lichter, H., & Döring, J. S. (2018, May). Designing a next-generation
continuous software delivery system: Concepts and architecture. In 2018
IEEE/ACM 4th International Workshop on Rapid Continuous Software

Engineering (RCoSE) (pp. 1-7). IEEE.

Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B., & Shafique, M.
U. (2010). A systematic review on strategic release planning models.
Information and software technology, 52(3), 237-248.

Ståhl, D., & Bosch, J. (2014). Modeling continuous integration practice
differences in industry software development. Journal of Systems and
Software, 87, 48-59.

Umble, E. J., Haft, R. R., & Umble, M. M. (2003). Enterprise resource planning:
Implementation procedures and critical success factors. European journal of
operational research, 146(2), 241-257.

Waller, J., Ehmke, N. C., & Hasselbring, W. (2015). Including performance
benchmarks into continuous integration to enable DevOps. ACM SIGSOFT
Software Engineering Notes, 40(2), 1-4.

Wirth, N. (2008). A brief history of software engineering. IEEE Annals of the

History of Computing, 30(3), 32-39.

66

APPENDIX 1 INTERVIEW GUIDE

Initial version

Theme Examples of discussion prompts

Background information Description of the company, role in the
company

Release management Challenges

Strategic release planning Challenges

Testing, deployment & support Testing activities, types of testing,
challenges

Release scheduling How releases are scheduled, chal-
lenges

Release content Challenges

Revised version

Theme

Build design

System design

Integration

Testing

Release

Human and organizational

Resources

67

APPENDIX 2 INTERVIEW QUOTATION TRANSLATIONS

1 ”Siihen on prosesseja, miten me sitä testausta tehdään, mutta me ei oo vielä
ehditty ihan hirveesti tehdä niinkun järkeviä automaattitestejä. Joihinkin tiet-
tyihin juttuihin niitä löytyy, mutta ei sillain isossa laajuudessa.” (B1)

2 “Nyt ei suunnitella niinkun, että mitä tehdään tällä tietyllä aikavälillä, vaan
suunnitellaan – puhutaan niinkun featuresta, että jos kehitetään jotain uutta
featurea, niin suunnitellaan tavallaan sen tekeminen, että – ja se on pätkitty
semmoisiin pienempiin kokonaisuuksiin ja tavallaan niinkun suunnitellaan,
mietitään että paljonko sen featuren tekeminen vie aikaa ja milloin se aloitetaan,
että meillä ei silleen niinkun mitään viikon tai kahden sprinttejä oo vaan ne
sprintit tapahtuu tavallaan niiden featureiden sisällä --- Ne voi olla niinkun
viikkoa tai kahta, tai mitä onkaan, mutta tavallaan suunnitellaan sieltä niinkun
lopputuloksen näkökulmasta se.” (D1)

3 ”Täällä jos on kymmenen hengen tiimi niin nehän siirtelee vaikka käsin ne,
käyt jokaiselta erikseen kysymään, että missä vaiheessa tuo ticket on ja, et käsin
siirtää sen. Mutta jos aattelee että olis vaikka 100 koodaria, niin siinä onkin vä-
hän enemmän haastetta pitää niinkun ajan tasalla se systeemi.” (C1)

4 “Tää meidän vanhin tää tämmönen, aletaan jo puhua ehkä vähän legacystakin
järjestelmästä mikä sitten toimittaa tätä meidän ERPin virkaa siellä ja on tämä
tavallaan niinku kaiken meidän tekemisen keskiö. --- Ja sitten tän toiminnanoh-
jauksen ympärille meillä on alkanut tässä vuosien varrella alkanut tulla kaiken-
laisia liitännäistuotteita.” (B1)

5 “Jos sä saat jonkun isomman kokonaisuuden tehtyä, niin se järjestelmä alkaa
toisesta päästä vanhenee, se tekniikka --- Mutta se on vaan semmonen asia mikä
pitää hyväksyä ja kun tämä on sama järjestelmä, mitä on alettu kehittämään yli
10 vuotta sitten, että kehitetään sitä samaa järjestelmää edelleen, niin se on mo-
nelta osin [legacya], siellä on vanhaa tapaa tehdä asioita.” (C1)

6 “Tekee tämmöstä ERP-järjestelmää, mikä on niinkun hirveen monipuolinen ja
laaja ja se, että tänne tehdään jatkuvasti muutoksia niin se että niitä virheitä ei
syntyisi ollenkaan. Että niitä yhdistelmiä, mitä pitää testata eri kieliä, eri alusto-

ja varsinkin nyt kun meillä on tää onlineversio niin niitä on niinkun niin tuho-
ton määrä, niitä käyttötapoja ja reittejä on tuhoton määrä.” (A1)

7 “Se päivitys on pikkusen erilainen kun johonkin vaikka kuluttajatuotteeseen -
-- Meillä se päivitys tarkoittaa monesti sitä, että se vaatii koulutuksen, se vaatii
meillä projektipäällikön niinkun käymisen siellä, et miten tää vaikuttaa teidän
liiketoimintaan --- Ne on yleensä ihan maksullisia juttuja, koska ne vaikuttaa

68

monella tapaa yleensä siihen niinku asiakasyrityksen liiketoimintaan myös.”
(B1)

8 “Me oikeestaan luovuttiin tästä master-haarasta, meillä on nykyään tää integ-
ration-haara pelkästään olemassa mihinkä me koodaillaan muutoksia.” (A1)

9 “Meillä on sitten semmosia keissejä, tää meidän tavallaan tuotteen luonne,
kun se on toiminnanohjausjärjestelmä ja käyttöönotot on tosi pitkiä monesti
asiakkailla, ne voi kestää vuodenkin. Kun tuotteen käyttöönotto siellä ei vält-

tämättä oo järkevää mennä sillä asiakkaalla aina tietyn versiotägin mukaan” (B1)

10 “Viikkoa ennen tehdään content freeze siitä, eli silloin ei saa enää laittaa uu-
sia, tai uutta koodia ei saa, että korjataan sitä niinkun mikä siellä on jo sisällä,
että jos siihen liittyen testauksessa löytyy jotakin, että saadaan pidettyä se jul-
kaisuaikataulu, että se on aina tiettynä päivänä.” (C1)

11 “Me jäädytetään se versio jossain vaiheessa ennen kuin sitä ruvetaan tota,
tekemään sitä versiota ulos. Eli jäädytyksen aikana koodareilla on ns. blokki
siihen, että mitään mitä ne tekee, niin niiden PR:t, niin niitä ei liitetä ainakaan
masterhaaraan.” (D2)

12 “Et meillä on tavallaan se automatiikka ja kaikki on ihan valmista, ettei mei-
dän olisi pakko kenenkään koskee tonne mihinkään vaiheeseen että nää paketit
lähtis asiakkaille julkaisuun asti esim. meidän omilla alustoilla. Mutta me ollaan
haluttu sinne rakentaa semmoset stopit että siellä on pieniä semmosia tsek-
kauksia, että kaikki tavallaan on semmonen hengähdystauko, että voi vielä
varmistaa ennen kuin paketti lähtee eteenpäin jaeltavaksi.” (A1)

13 ” Ei me voida kaikkia tota, tai kaikkea mitä se meidän softa tekee niin testata
mitenkään, ihan sama vaikka me oltais automaatio- tai tehty kaikkiin asioihin
automaatiotestit, niiden ajamisessahan menis kuukausi.” (D2)

14 “Kattavuus haetaan sillä, että etitään ne ns. blockerit, eli jos- tai saadaan sel-
laiset featuret, mitkä on pakko toimia, eli joku tiedon tallennus, asiakkaan li-
sääminen, tällaiset niinkun et jos nää ei toimi, niin sitä versiota ei voi julkaista.”
(D2)

15 “Vaikka saatais meidän end-to-end tai acceptance testit mimmoiseen kun-
toon tahansa, niin varmaan ilman manuaalista testausta ei pystytä tai ei uskalle-

ta koskaan lähteä niinkuin tekemään deliveryjä, että tuota varmaan siinä jon-
kinlainen manuaalinen testaus tulee joka tapauksessa pysymään kuvioissa mu-
kana, että silleen se ehkä siihen kuvioon vaikuttaa, että jos tekis jotain simppeliä
puhelinappia tai jotain muuta, niin siinä ei varmaan ois kauheesti se testaus,
olis ratkaistavissa ihan kokonaan automaatiolla suurin piirtein.” (D1)

69

16 “Tavallaan ne variaatiot mitä siinä testauksessa pitäis huomioida niin se
niinku tuntuu olevan vähän sellainen melkein ylitsepääsemättömän iso juttu.”
(A1)

17 “Haasteena on se, että on niin erilaisia järjestelmiä, mitä tohon meidän liike-
toiminta-alustaan liittyy, ihan teknologisesti, mutta myös tavallaan luonteeltaan
erilaisia, että tota on niinkun legacympaa Windows-työpöytä niinkun käyttöliit-
tymää, minkä testaaminen on taas niinkun automatisoidusti huomattavasti eri-
laista kuin vaikka jonkun oikeesti APIen läpi menevän niinkun rajapintatoi-

minnallisuuden testaaminen, että nää on niinkun aivan täysin ääripäitä tes-
tausmielessä. Niin tota se on ehkä se haaste, että niitä niinkun käyttötapauksia
on niin paljon erilaisia ja eri tyyppisiä.” (B1)

18 “Tää niinku tää aiheuttaa sille testaukselle hirveet haasteet, varsinkin jos pu-
hutaan automaatiotestauksesta, koska se vaatis meille varmaan tänne semmo-
sen 200 henkilön automaatiotestausporukan, joka niitä testejä ylläpitää ja koko
ajan niinkun synkkaa projektien kanssa, että sen sais niinkun toimimaan, niin
siinä ei oo mitään järkeä tavallaan.” (B1)

19 “Mun linjaus on nyt ollut se, että niinkun tietyt semmoset perustoiminnalli-
suudet, mitkä pysyy suurin piirtein muuttumattomana versiosta toiseen, niin
saatais sen automaatiotestin piiriin --- Näitä kaikkia meidän parametrisointi-
vaihtoehtoja ja mitä kaikkea nyt tuleekaan mieleen käyttötapausta, niin ei mil-
lään pystytä testaamaan eikä millään pystytä niinkun varsinkaan automatisoi-
maan. Että tää on se haaste.” (B1)

20 “Kun järjestelmä kehittyy eteenpäin, niin testicasejen pitää myös elää. Eli
jokainen testicase- tää on se ongelma, niinkun minkä takia automaattitestit on
tosi raskaita ja niitä on tota vähän hankala tehdäkin, kun siitä tulee sellainen,
yllättävän nopeesti tulee sellainen ylläpitohelvetti. Ja jos niitä ei ylläpidetä,
niinkun sanoit, ne testaa väärää asiaa. Jonka jälkeen se on ihan sama, että onko
se testi validi vai ei.” (D2)

21 “Ehkä se on justiin se miten paljon nämä vaatimukset on niinku asiakkailta
nousseet ja miten tää teknologia kehittyy koko aika.” (A1)

22 “Monesti ihan niinkun meidän kontrakti- tai niinkun mikä se on suomeksi-
sopimukset niinkun kieltää tiettyjen tahojen kanssa, että heille ei saa toimittaa
jatkuvasti vaan pitää mennä niinkun oman asiakastestauksen kautta ensin.” (D1)

23 “Yksinkertasta jos ajattelee devauksen näkökulmasta, että me julkaistaan
paketteja koko ajan, mut sit kun taas tulee jotakin tämmösiä isompia tai merkit-
tävämpiä asioita niin kyllä sitä niinkun pohditaan koko aika että millon niitä
olis tarpeen saada pihalle, että kyllä meiltä löytyy ihan niinkun roadmappi mi-

70

hin on aikataulutettu näitä isompia kehitysasioita ja sinne on mietitty sitten
niinku priorisoitu.” (A1)

24 “Alunperinhän se oli ohjelmoijille semmonen että vähän niinkuin negatiivi-
sen tuntuinen olo, että hirveesti kytätään tekemistä, että eikö täs niinku luoteta
meihin, että me tehdään kunnolla hommia.” (A1)

25 “Omasta näkövinkkelistä niinkun suurimmat tämmöset henkilöstöön ja or-
ganisoitumiseen liittyvät haasteet on vähäsen jo selätetty, kun on saatu nyt vih-

doin ja viimein kaikki nää meidän tiimit toimimaan saman sprinttisyklin mu-
kaisesti ja kaikille on saatu tavallaan se sprinttiajatusmaailma tonne niinkun
päivittäiseen tekemiseen mukaan” (B1)

26 “Tää on niinkun se meidän homma, että tarvii koko ajan olla hirveen skepti-
nen siihen, että asiakas tietää ja ymmärtää, mitä sen pitää tehdä. Ja se heijastuu
meille sitten siihen, että pitää ensin testaa se silleen kuin koodari haluaa, sen
jälkeen testata se silleen miten me halutaan, ja sen jälkeen koitetaan rikkoa se
silleen, miten asiakas sitä käyttäis.” (D2)

27 “Tää on ollut yllättävän iso haaste saada tämmönen niinkun iso tuotekehi-
tysporukka puhumaan samaa kieltä.” (B1)

28 “Nehän on niinkuin tavallaan työkaluja, jotka tekee siitä Continuous Integra-
tionin ja Deliveryn, tai Integration on tavallaan se, että mikä tekee siitä jatku-
vasta, tai pitäis tehdä siitä jatkuvasta julkaisemisesta turvallista, että tuota eihän
se ihan aina niin mene, mutta se on niinkun välttämättömyys siihen, että voi-
daan julkaista ylipäätään tai voidaan julkaista nopeasti.” (D1)

	1 INTRODUCTION
	2 CONTINUOUS SOFTWARE DELIVERY
	2.1 Software engineering
	2.2 Agile methods
	2.3 Continuous Integration
	2.4 Deployment pipeline
	2.5 Continuous Delivery
	2.5.1 Benefits
	2.5.2 Challenges and problems

	2.6 Related concepts
	2.6.1 Continuous Deployment
	2.6.2 DevOps

	3 ENTERPRISE RESOURCE PLANNING SYSTEMS
	3.1 Definition
	3.2 History and evolution
	3.3 Contemporary ERP systems
	3.4 Benefits of ERP system

	4 RESEARCH METHODOLOGY
	4.1 Research method
	4.2 Data collection
	4.2.1 Selection of interviewees
	4.2.2 Semi-structured theme interviews

	4.3 Data analysis

	5 RESULTS OF THE EMPIRICAL STUDY
	5.1 Organizations and interviewees
	5.1.1 Organizations
	5.1.2 Interviewees

	5.2 System design and architecture challenges
	5.2.1 Unsuitable architecture
	5.2.2 System scale and complexity

	5.3 Integration and deployment pipeline challenges
	5.3.1 Revision control
	5.3.2 Code stabilization

	5.4 Testing challenges
	5.4.1 Time-consuming testing
	5.4.2 Disparity of testing

	5.5 Release challenges
	5.5.1 Customer requirements and preferences
	5.5.2 Domain restrictions
	5.5.3 Release planning and prioritization

	5.6 Organizational challenges
	5.6.1 Coordination and collaboration
	5.6.2 Communication
	5.6.3 Resources

	6 ANALYSIS OF THE RESULTS
	6.1 Continous Delivery capabilities of the organizations
	6.2 System design and architecture
	6.3 Integration and deployment pipeline
	6.4 Testing
	6.5 Release
	6.6 Organizational
	6.7 Conceptual framework of Continuous Delivery adoption challenges for ERP system vendors

	7 DISCUSSION
	7.1 Addressing the research question
	7.2 Theoretical implications
	7.3 Practical implications
	7.4 Limitations of the study
	7.5 Topics for further research

	8 CONCLUSION

