
Billy Braithwaite

JYU DISSERTATIONS 340

Neurocomputing and Probabilistic
Propagation in Computer Vision

JYU DISSERTATIONS 340

Billy Braithwaite

Neurocomputing and Probabilistic
Propagation in Computer Vision

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi joulukuun 16. päivänä 2020 kello 11.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

on December 16, 2020 at 11 o’clock am.

JYVÄSKYLÄ 2020

Editors
Timo Männikkö
Faculty of Information Technology, University of Jyväskylä
Ville Korkiakangas
Open Science Centre, University of Jyväskylä

ISBN 978-951-39-8467-0 (PDF)
URN:ISBN:978-951-39-8467-0
ISSN 2489-9003

Copyright © 2020, by University of Jyväskylä

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-8467-0

ABSTRACT

Braithwaite, Billy
Neurocomputing and probabilistic propagation in computer vision
Jyväskylä: University of Jyväskylä, 2020, 132 p.
(JYU Dissertations
ISSN 2489-9003; 340)
ISBN 978-951-39-8467-0 (PDF)

One of the earliest (also well-studied) research areas in artificial intelligence is the
study of visual perception, and the study of neurons of the brain using connec-
tivist models or neurocomputing. Where cognitive and mathematical psychol-
ogy, and neuroscience studied how the brain and perception works in their own
paradigms, artificial intelligence provided tools from theoretical and applied com-
puter science to study the aforementioned areas using digital computers.

This study focuses on examining two sides of neurocomputing, namely
probabilistic graphical models and artificial neural networks in solving early percep-
tion, or early vision and inference tasks. More specifically, the study examines
probabilistic propagation such as denoising tasks under similarity measures and
parallelization schemes. And finally, combining probabilistic graphical models
and artificial neural networks into a pipeline model for solving inference tasks
from a set of imaging measurements.

Keywords: Algorithms, Artificial intelligence, Inverse problems, scientific com-
puting.

TIIVISTELMÄ (ABSTRACT IN FINNISH)

Braithwaite, Billy
Neurolaskenta ja todennäköisyyspropagaatio konenäössä
Jyväskylä: University of Jyväskylä, 2020, 132 s.
(JYU Dissertations
ISSN 2489-9003; 340)
ISBN 978-951-39-8467-0 (PDF)

Yksi tekoälyn ensimmäisistä, ja vanhimmista, tutkimusalueista ovat näköaisti ja
aivojen neuronien mallintaminen neurolaskenta menetelmillä. Kognitiivisessa ja
matemaattisessa psykologiassa, ja neurotieteessä tutkittiin näköaistia sekä neuro-
nien toimintaa tutkimusalueiden kehittämillä malleilla, tekoäly tarjoaa työkaluja
teoreettisesta ja sovelletusta tietojenkäsittelytieteestä edellämainnittujen alueiden
tutkimiseen hyödyntämällä tietokoneita.

Tässä työssä käsitellään neurolaskennan kahta osapuolta: todennänöisyys-
verkkoja ja neuroverkkoja. Työn tavoitteena on kehittää menetelmiä todennäköisyys-
propagaatioon konenäkösovelluksiin kuten kohinanpoistoon ja päättelytehtäviin, so-
veltamalla samankaltaisuusmittoja ja rinnakkaislaskentaa. Työssä käsitellään myös,
kuinka yhdistelemällä todennäköisyysverkkoja ja neuroverkkoja voidaan ratkais-
ta päättelytehtäviä kuvaantamissovelluksissa.

Avainsanat: Tekoäly, Neurolaskenta, Inversio-ongelma, tieteellinen laskenta

Author Billy Braithwaite
Faculty of Information Technology
University of Jyväskylä
Finland

Supervisors Professor Pekka Neittaanmäki
Faculty of Information Technology
University of Jyväskylä
Finland

Docent Ilkka Pölönen
Faculty of Information Technology
University of Jyväskylä
Finland

Reviewers Associate professor Tuomas Eerola
LUT University
Finland

Associate professor Janne Kujala
University of Turku
Finland

Opponent Tuomo Kauranne
Docent, University of Eastern Finland
President, CEO, Arbonaut Ltd.
Finland

ACKNOWLEDGEMENTS

Like biological evolution, this work progressed in small, random, and discrete
jumps. To start with, I wish to thank my previous peers who had initiated me
into the world of computational research: Kimmo Fredriksson, Tomi Kinnunen,
Ville Hautamäki, Pasi Fränti, Pekka Toivanen and Zaid Al-Ars. However the
biggest (academic) thanks goes to my supervisors Pekka Neittaanmäki and Ilkka
Pölönen, for their anecdotes, tips, giving me the space and freedom in pursuing
my "scholarly interests". And more importantly, thank you for pointing me to ad-
ditional resources (when needed), giving me the opportunity to further develop
myself through various miscellaneous projects, and providing funding for visit-
ing essential workshops related my work. I appreciate my peer-reviewers Tuo-
mas Eerola and Janne Kujala for taking the time to point out the short-comings
and memory-lapses of my research work. Thank you also to Valery Zheludev and
Luke Decker for discussions on seismic signal processing, and Kalevi Mursula for
various discussions on other technicalities regarding my work.

I would like also thank my colleagues in the spectral imaging lab, who kept
me company and giving interesting discussions on various, esoteric topics during
my visits to Jyväskylä: Matti Eskellinen, Leevi Annala, Sampsa Kiiskinen, Kimmo
Riihinaho, Anna-Mari Hakola, Anna-Leena Erkkilä and Samuli Rahkonen. Ad-
ditional thank yous: Milena Veneva for helping me with various LaTex issues;
Juha Kekäläinen for being my personal linux admin; Alessandro Foi, Sergei Re-
pin, Blair Rajamaki, Radu Mariescu-Istodor, Matti Mononen and Waleed Akhtar
for additional comments of my work.

A special thanks goes to Jaana Nevalainen. Thank you for housing me dur-
ing my "few" visits to Helsinki. And another special thanks goes to Ville Soikkeli
for also housing me at Casa de Villeneuve during my visits to Jyväskylä.

Überthanks goes to Heli, Mom, Dad, Brother, my band Shadow’s Mortuary,
my Canadian side of the family, and many other friends who put up with my
weirdness, foul-moods, harshness and over all being human, all too human. I
regret nothing.

This research work was funded by The Faculty of Information Technology
JYU (doctoral programme funding), Jenny & Antti Wihuri Foundation, and Jane
and Aatos Erkko Foundation (grant 170015),

LIST OF ACRONYMS

A.I Artificial intelligence
P.G.M Probabilistic Graphical Models
S.S.A Seismic Signal Analysis
H.P.C High-Performance Computing
B.P Belief Propagation
C.M.G Cascadic Multigrid
r.v Random variable
P.D.F Probabilistic Density Function
M.G Multigrid
n.i Network-isomorph
D.A.G Directed Acyclical Graph
D.E Differential Equations
M.R.F Markov Random Fields
A.N.N Artificial Neural Networks
C.N.N Convolutional Networks
N.M.O Normal Moveout
S.N.R Signal-to-Noise Ratio
M.A.P Maximum a Posteriori
P.S.N.R Peak Signal-to-Noise Ratio
S.S.I Structural Similarity Index
G.B.N Gaussian Bayesian Network
K.M Kubelka-Munk
C.P.D Conditional Probability Distribution
M.L.E Maximum Likelihood Estimation
K.D.E Kernel Density Estimation
M.M Mathematical Morphology
P.D.E Partial Differential Equations
L.P Linear Programming
B.L.P Basic Linear Programming

LIST OF FIGURES

FIGURE 1 (a) 4−neighbourhood system.; (b) 8−neighbourhood system.
(Jähne (2005)).. 26

FIGURE 2 A simple Markov network with four propositions (Pearl (2014)). . 36
FIGURE 3 A simple Bayesian network with three propositions (Pearl (2014)). 37
FIGURE 4 Difference between patterns of conditional independence in

directed and undirected networks (Prince (2012))..................... 40
FIGURE 5 (a) The perceptron model. The model is trained with inputs

~x and "correct" output ~y. (b) Pattern classification done by
the perceptron model: searching a separating hyperplane, ac-
cording to learned weights ~w, between the data points (Hecht-
Nielsen (1990)). ... 43

FIGURE 6 A prototypical A.N.N architecture. Each input neuron is con-
nected to a hidden layer. The final hidden layer is then con-
nected to the output neurons (Hecht-Nielsen (1990)). 44

FIGURE 7 Example of three different P.G.Ms (Jordan et al. (2001)). The
structure and connection of the nodes represents the constraints
(structure) and the qualitative aspects of the joint distribu-
tion induced by the node connections. a) A singly connected
Bayesian Network. b) A singly connected Markov Network,
where nodes A and F are observed. c) A Markov Network
with a loop. .. 51

FIGURE 8 Computing beliefs on a grid. (a) Gauss-Seidel relaxation on a
red-black ordering. (b) Analogous bipartite network structure. . 54

FIGURE 9 Scaling between grid block levels. From a finer grid (a) to a
coarser grid (b). .. 55

FIGURE 10 Computing semblance with a Kz(r) kernel with r = 1, yield-
ing a (2s + 1)× (2s + 1) = 3× 3 kernel. Computing in four
directions, semblance gives the center grid point’s similarity
information with respect to its neighboring points given span
s by selecting the maximum direction αi, i = 0, 1, 2, 3. 57

FIGURE 11 Intuitive idea of the semblance measure. Given a point and
desired span r, the computed similarity measure can be re-
garded as how regular the point is with respect to a computed
direction... 57

FIGURE 12 Computing lower envelopes of belief messages using infimal
convolution (Felzenszwalb and Huttenlocher (2006)). 58

FIGURE 13 Transformation from the object plane to the image plane by
an image formation system. The object f (ψ, ν) is transformed
from the (ψ, ν) coordinate system to the image coordinate sys-
tem (x, y) into an image g(x, y) by some formation system. 63

FIGURE 14 Original, uncorrupted test images: (a) Barbara; (b) Lena 67

FIGURE 15 (a) Image with additive Gaussian noise σ = 10. (b) Denoising
using Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed
method with span r = 1, 3 respectively. 68

FIGURE 16 (a) Image with additive Gaussian noise σ = 12. (b) Denoising
using Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed
method with span r = 1, 3 respectively. 69

FIGURE 17 (a) Image with additive Gaussian noise σ = 15. (b) Denoising
using Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed
method with span r = 1, 3 respectively. 70

FIGURE 18 (a) Image with additive Gaussian noise σ = 10. (b) Denoising
using Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed
method with span r = 1, 3 respectively. 71

FIGURE 19 (a) Image with additive Gaussian noise σ = 15. (b) Denoising
using Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed
method with span r = 1, 3 respectively. 72

FIGURE 20 (a) Image with additive Gaussian noise σ = 15. (b) Denois-
ing Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed
method with span r = 1, 3 respectively. 73

FIGURE 21 Reconstruction using 130 states. (a) Regular Lena. (b) Sam-
pling using Felzenszwalb and Huttenlocher (2006). (c)-(d) Pro-
posed method with span r = 1, 2 respectively. 76

FIGURE 22 Reconstruction using 190 states (a) Regular Lena. (b) Sam-
pling using Felzenszwalb and Huttenlocher (2006). (c)-(d) Pro-
posed method with span r = 1, 2 respectively. 77

FIGURE 23 Resulting restoration with (a) B.P, iteration 1. (b) B.Pr, r = 1,
iteration 1. (c) B.P, iteration 2.(d)B.Pr, r = 1, iteration 2, respec-
tively.. 78

FIGURE 24 Memory optimization approaches. (a) No memory optimiza-
tion. The whole grid is processed in a brute-force manner with
no consideration of data locality. (b) Memory optimization
using inner-loop approach: the grid is processed in a particu-
lar sized slab, defined by the user. Now grid points in mem-
ory are more localized and can be retrieved faster, minimizing
cache misses. (c) Memory optimization using double-loop ap-
proach: the grid is processed within k× k blocks. Same prin-
ciple applies as in (b). .. 79

FIGURE 25 Computation statistics of belief message computations in C.M.G
structure. (a) Measuring Wall-clock time (s) vs Threads. (b)
Measuring cache-miss vs Threads... 80

FIGURE 26 Image restoration using B.P with and without semblance mea-
sure using H.P.C approaches. (a) B.P with brute-force paralel-
lization (P.S.N.R: 24.30). (b) B.Pr=1, brute-force paralleliza-
tion (P.S.N.R: 26.05). (c) B.P with inner-block optimization
(P.S.N.R: 23.43). (d) B.Pr=1, with inner-block optimization (P.S.N.R:
24.18). .. 82

FIGURE 27 Image restoration using B.P with and without semblance mea-
sure using H.P.C approaches. (a) B.P with double-loop opti-
mization (P.S.N.R: 23.04). (b) B.Pr=1, with double-loop opti-
mization (P.S.N.R: 24.01). ... 83

FIGURE 28 Biopsy samples from H&E stained tissues. Images provided
by Noora Neittaanmäki and used with permission................... 86

FIGURE 29 Light reflectance of rays in between different skin tissue layers
(Pölönen (2013)). ... 87

FIGURE 30 Resulting simulated spectra using the K.M light propagation
model (Section 3.3.2). .. 90

FIGURE 31 Physical parameters retrieved by the C.N.N model from the
simulated spectra. ... 91

FIGURE 32 The complete G.B.N structure, with all physical parameters,
used for solving the example probability queries in Table 6. 93

FIGURE 33 K.D.E plots between retrieved parameters epidermis layer thick-
ness and melanosome volume fraction from the C.N.N model,
used on the simulated spectra. ... 94

FIGURE 34 K.D.E plots between retrieved parameters dermis layer thick-
ness and melanosome volume fraction from the C.N.N model
used on the simulated spectra. ... 95

FIGURE 35 K.D.E plot between parameter combinations (epidermis layer
thickness, melanosome volume fraction) and (dermis layer thick-
ness, melanosome volume fraction), retrieved with the C.N.N
model, used on the simulated spectra. 96

FIGURE 36 Examples of M.G structure cycles, where filled circles are smoothed
points, hollow circles exact solutions, \ fine-to-coarse propa-
gation, / coarse-to-fine propagation (Trottenberg et al. (2000)).
... 132

LIST OF TABLES

TABLE 1 Comparing P.S.N.R values between Felzenszwalb and Hut-
tenlocher (2006) and B.P with semblance measure (B.Pr). The
highlighted quantities denotes the best result column-wise. 67

TABLE 2 Comparing S.S.I values between Felzenszwalb and Hutten-
locher (2006) and B.P with semblance measure (B.Pr). The
highlighted quantities denotes the best result column-wise. 67

TABLE 3 Comparing P.S.N.R values between Felzenszwalb and Hut-
tenlocher (2006) and B.P with semblance measure (B.Pr). The
highlighted quantities denotes the best result column-wise. 68

TABLE 4 Comparing S.S.I values between Felzenszwalb and Hutten-
locher (2006) and B.P with semblance measure (B.Pr). The
highlighted quantities denotes the best result column-wise. 69

TABLE 5 The seven parameters and their operating range based on lit-
erature (Jolivot et al. (2013)). .. 87

TABLE 6 Probabilistic queries results on the parameters using the G.B.N
structure in Figure 32... 93

CONTENTS

ABSTRACT
TIIVISTELMÄ (ABSTRACT IN FINNISH)
ACKNOWLEDGEMENTS
LIST OF ACRONYMS
LIST OF FIGURES
LIST OF TABLES
CONTENTS

0 INTRODUCTION .. 17
0.1 Research motivation ... 17
0.2 Aim of research work.. 20

0.2.1 Main results of research work ... 20

1 THEORETICAL & TECHNICAL BACKGROUND 22
1.1 Processing visual information .. 22

1.1.1 Theories for perception .. 22
1.1.2 A computational approach to vision 23

1.2 Principles of image processing ... 24
1.2.1 Image representation ... 25
1.2.2 Random variables .. 28
1.2.3 Operating on pixels ... 29
1.2.4 Multiscale data structures... 29

1.3 Probabilistic graphical models ... 30
1.3.1 Set of axioms for graphical representation 30
1.3.2 Markov networks .. 35
1.3.3 Bayesian networks ... 36

1.4 Probabilistic graphical models in vision 38
1.4.1 P.G.Ms applied in vision tasks... 39
1.4.2 A note on differences between directed and undirected

networks in vision ... 39
1.4.3 Markov Random Fields .. 40

1.5 Artificial Neural Networks .. 42
1.5.1 Fundamentals ... 42
1.5.2 Convolutional Networks .. 44
1.5.3 Connection to P.G.Ms ... 45

1.6 Similarity measures from seismic signal analysis 46
1.6.1 Coherence measure.. 46

1.7 High-performance computing ... 48
1.7.1 Limiting factors in H.P.C .. 48

2 PROBABILISTIC PROPAGATION ... 50
2.1 Propagation in networks ... 50

2.1.1 Solving M.A.P estimation with message-passing in the
presence of loops ... 52

2.1.2 Speeding up max-product on arbitrary network structures 53
2.2 Belief revision improvement by coherence 56

2.2.1 Inducing new combinatorial structure with semblance mea-
sure .. 58

2.2.2 Modification strategy for M.A.P estimation in vision......... 59
2.3 H.P.C approaches ... 60

3 EXPERIMENTAL RESULTS .. 62
3.1 Image denoising: problem definition .. 62

3.1.1 Image denoising: program.. 63
3.1.2 Image denoising: results... 66
3.1.3 Strengths and limitations.. 74

3.2 High-Performance B.P .. 75
3.2.1 Better belief corrections or speeding up computation?....... 75
3.2.2 H.P.C: problem formulation .. 79
3.2.3 H.P.C: results... 79
3.2.4 Strength and limitations ... 84

3.3 Retrieving physical parameters from simulated image spectra 85
3.3.1 Skin cancer – motivation .. 85
3.3.2 Light propagation modelling .. 86
3.3.3 Physical parameter retrieval with C.N.Ns 89
3.3.4 Parameter dependency estimation with Bayesian Networks 90
3.3.5 Strengths and limitations.. 97

4 DISCUSSION & CONCLUSION .. 99
4.1 Further considerations .. 100

YHTEENVETO (SUMMARY IN FINNISH) .. 101

REFERENCES.. 102

APPENDIX 1 IMAGE MODELS ... 112
1.1 Mathematical Morphology .. 112
1.2 Fourier methods ... 113
1.3 Wavelet and Space-Scale methods .. 113
1.4 Stochastic modelling ... 114
1.5 Variational methods.. 115
1.6 Partial Differential Equations ... 115
1.7 Intrinsic connection between different methods........................... 116
1.8 M.A.P estimation in P.G.Ms ... 117

APPENDIX 2 MATHEMATICAL TOOLS .. 120
2.1 Probability theory... 120
2.2 Measure theory .. 122

2.3 Ensemble definition of probability ... 123
2.4 Properties of numerical functions... 124
2.5 Structure scores in Bayesian networks .. 125

APPENDIX 3 THEORY OF COMPUTATION & DATA STRUCTURES 127
3.1 Languages ... 127
3.2 Asymptotic complexity classes .. 128
3.3 Linear programming relaxation for M.A.P inference 129

3.3.1 P-complete problems ... 131
3.4 Multigrids ... 131

0 INTRODUCTION

"Science and pseudo-science are the same thing."

Paul Feyerabend – Against method

High-dimensional structured or (raw) unstructured data poses great challenges
in terms how they are processed and utilized. As technology advances, not only
does our ability to collect more data, also the size of the data is increasing. For
example in digital media, the contents are not only bulky but also rich in con-
tent. This creates challenges, for example, in content retrieval which (at scale)
should be simple, fast and relevant. Another challenge arises with the increase in
information is our ability to detect the true, underlying signal from the data.

One of the key challenges in high-dimensional image analysis and process-
ing is how to do efficient processing and analysis operations. For time-critical ap-
plications, such as surveillance and (bio)medical applications, it is important to
have methods which processes images fast while preserving an acceptable level
of quality. Currently, there is a trend to approach image analysis and process-
ing using machine intelligence. That is, to use methods which combines statistical
learning theory (Vapnik (1998)) and mathematical optimization (Luenberger (1973)).

0.1 Research motivation

The field of artificial intelligence (A.I) can be characterized as a subfield of com-
puter science1, which aims at studying basic cognitive problem solving skills, or
intelligence, of living organisms using machines. One of A.Is earliest field of study
is the study of human perception in terms of the neuronal mechanisms of the eye
(Anderson et al. (1988); Pitts and McCulloch (1947)) using computer programs.
Today, this field is known as computer vision2. William James (1984) was the first

1 Or computational neuroscience. Computer science is the educational background of this
study’s author so that’s why the bias.

2 Through out the study, we will refer to computer vision as vision for short.

18

to foreshadow some of the main ideas of neural networks, and Alan Turing was
perhaps the first to consider building machines to emulate neuronal activities of
the brain (Teuscher and Sanchez (2001)). However, it was the publications of
McCulloch and Pitts (1943) and Rosenblatt (1958) which sparked the interest3 in
neurocomputing, which is a technological discipline on how to process information
autonomously and adaptively given the information environment.

In essence, the goal of vision is to study spatial, structural aspects of image
formation, transformations and recognition in order to explain the visual system
of organisms (Johnson-Laird (1988)), by applying methods which transforms the
image. The methods derived from vision research are applied in analyzing com-
plex objects in digital images, where two difficult questions are confronted: the
problem of object description and the problem of quantifying the description (Serra
(1983)). For example, natural images can contain a combination of complex ob-
jects4 which may or may not give a neutral descriptions. In order to answer these
difficult questions on descriptions, images are transformed using digital image
processing techniques (Jähne (2005)), which are derived from digital signal process-
ing (Oppenheim (1978)). From these methods, we are able to study the spatial
and structural properties occurring in images and then give descriptions of the
occurring objects.

In this study, we examine ways to process and analyze spatial, structural
aspects of images by applying Probabilistic Graphical Models (P.G.Ms). The use of
P.G.Ms in vision were popularized by the brothers Geman and Geman (1984),
where they experimented with how to define a priori solutions to vision tasks us-
ing stochastic modelling (Brémaud (2013)). There is also the case of researching
suitable transformation steps of the inputs before feeding them to a neurocom-
puting model5 (Anderson et al. (1988)). Structurally, P.G.Ms are a unified frame-
work combining network6 theory (Erdös (1959)) and probability theory (Kolmogorov
(1983)), which offers interpretations from both statistical mechanics (Chalmond
(2003)), A.I (Pearl (2014)), neurocomputing (Jordan et al. (2001); Hertz (2018)) and
statistics (Jordan (2004); Lauritzen (1996)).

The interest in P.G.Ms in vision research lies in their generality: instead of
applying ad-hoc approaches, P.G.Ms offers probabilistic approaches from both
Bayesian and Markov formalisms for various tasks in dealing with images, such as
denoising, edge detection and texture discrimination (Li (2009); Winkler (2012)).
From this generality, there is a heavy price to pay, namely in computation. To pro-
cess and analyze images with P.G.Ms, one requires to solve a potentially large
collection of possible discrete states (Winkler (2012)). (With discrete states it is
meant that of pixel values or objects in an image.) Certain types of P.G.Ms are

3 Minus the two "A.I. winters" and a possible third one incoming.
4 Forests, trees, mountains in scenery images; or in histology images (Figure 28, Section 3.3),

the arrangements of cell nuclei and the texture of tissues.
5 This was based on biological and/or physiological arguments (Anderson et al. (1988)). This

is known as feature extraction, which is a common procedure in pattern analysis (Fukunaga
(2013)).

6 In many literature, graphs are commonly used instead of networks. In this work, the term
network is used for not to be confused with graph of a function.

19

computationally intractable7, while for P.G.Ms with binary states there exists meth-
ods which are computationally tractable.

The representation of a P.G.M depends on the application at hand. A Markov
formalism is the prominent representation when dealing with vision tasks: the
image is represented as an undirected network, where each node in the network
represents some type of statistical dependency between nodes. To derive descrip-
tive quantities of objects from and image, the description task is posed as an en-
ergy minimization problem: given a P.G.M as a hypergraph H = (V , C,L), where V
is a set of vertices, C are the cliques in H, and L is a set of labels. The optimiza-
tion problem in a Markov formalism is formulated as a combinatorial optimiza-
tion, where the aim is to find a global solution to the following energy function8

E9 : Q10 ← L|V|, which is defined as

E(X) = ∑
i∈V

fi(xi) + ∑
c∈C

fc(xc), fi, f≥0, (1)

where fi denotes the unary potential energy of the ith variable and fc denotes
the interactions between unary potentials in a set defined by C. (This optimiza-
tion problem will be elaborated in Section 2.1. Or the impatient reader may refer
to Appendix 1.8.) The clique size |C| determines the level of interaction between
nodes in C, and has direct consequences on how easily we can solve the opti-
mization problem. When |C| = 2, we obtain a special case of first-order Markov
network. And for |L| = 2 we obtain a binary labelling case. For solving the
special case, we can use for example Graph-Cuts, which are known to be com-
putationally tractable (Boykov and Zabih (1999); Hadlock (1975)). For |C| > 2,
finding a global optimum becomes computationally NP-Hard (Boykov and Zabih
(1999); Freedman and Drineas (2005)). Appendix 3.3 illustrates the severity of
optimization problem.

To use a Bayesian representation of a P.G.M, a directed network is used, where
the dependencies between nodes are explicitly assigned, given some background
information of the application at hand. In this case, nodes represents propositions
(Pearl (2014)), where we can do probabilistic queries. The nodes can have either
discrete or continues states. A P.G.M with a Bayesian representation allows one
to construct a different computational representation for Markov networks (such
as Belief propagation (Pearl (2014); Felzenszwalb and Huttenlocher (2006))). An-
other way to use the Bayesian formalism is to use the network as an expert system
(Jones and Graham (1988); Sotos (1990)), where instead of using symbolic logic to
represent propositions we use conditional probabilistic propositions.

7 Or not solvable in polynomial "time" (Appendix 3.1)
8 The term energy function comes from statistical mechanics, which the P.G.M literature has

adopted.
9 The normal notation for function mappings is f : A → B, however here a "programming

friendly" notation f : A ← B is adopted. Our adopted notation reads: a function f is of
(output) type A with B as its (input) source (Bird and De Moor (1996)).

10 Instead of using the domain of real numbers R, we use the domain of rational numbers Q.
The reason being the inability of computers to model infinite precision numbers.

20

0.2 Aim of research work

This research work has two objectives:

1. To study how similarity measures used in seismic signal analysis (S.S.A) affect
the energy minimization problem (1) on networks with arbitrary structures.

2. To describe image objects quantitatively using Bayes network in image anal-
ysis.

The first objective poses an algorithmic question:

Question 0.1. The key algorithmic questions are
– How to approximate the energy minimization problem (1) without resorting to
high-order representations in the energy term (that is, with |C| > 2).

– For time-critical applications, the energy minimization problem (1) may be compu-
tationally slow. If one does not re-formulate the optimization problem, approaches
from high-performance computing (H.P.C) should be used (Section 1.7). If one
has a suitable energy function form, what speed-ups can we get from the method
with H.P.C methods?

The above algorithmic questions will be experimented on image denoising,
an elementary vision problem. The approach taken here is to analyze and ex-
periment how similarity measures affect the energy minimization problem using
probabilistic propagation or belief propagation (B.P) using a cascadic multigrid (C.M.G)
data structure (chapter 2). Particularly, we apply similarity measures from S.S.A
(Yilmaz (2001)), which aims to locate signals from noisy seismic measurements,
to augment the basic optimization methods for solving the energy minimization
problem. To speed-up the B.P computation, we experiment with basic concepts
from H.P.C on the C.M.G structure to evaluate computational bottle-necks and
approaches.

The second objective poses an application oriented question. application ori-
ented question, we experiment with the case of modelling physical parameters
of skin layers, which are derived from a simulated light propagation model. The
goal is to describe and probabilistically evaluate parameter dependencies in the
form of probabilistic queries.

Question 0.2. The key application questions are:

– How to effectively model the physical parameters which are obtained by using
spectral imaging?

– What types of dependencies can we find from the obtained spectra using a Bayesian
network model?

0.2.1 Main results of research work

The main results of this research work are the following.

21

1. Additional insights on the effect of unary potential optimization fi, specifi-
cally in B.P inference using C.M.G structure.

2. A proposal to evaluate probabilistically the modification effects of unary
potential functions fi.

3. H.P.C approaches to do computational speed-ups on the B.P inference ap-
proach with C.M.G structure. Existing H.P.C speed-ups are known in M.G
literature, however not yet reported in the context of B.P inference.

4. Combining the dual nature of neurocomputing to probabilistically evaluate
variable (or parameter) dependencies of imaging measurements.

While this research work focuses on P.G.M approaches in vision, it is important
to note that the efficiency and advantage of a method has several dependencies11:
the (concrete) task at hand, data structures and image models are some examples
of such dependencies. Appendix 1 gives a short description of different image
models and methods applied to image processing and analysis.

The Chapters are organized as follows. Chapter 1 gives a introduction to
the necessary theoretical and technical aspects of this research work. Chapter 2
describes the B.P inference model and its S.S.A and H.P.C extensions. Chapter 3
covers the experimental section of this study, and finally conclusions and discus-
sions are covered in Chapter 4.

11 Also stated by the No Free Lunch theorem (Wolpert and Macready (1997)).

1 THEORETICAL & TECHNICAL BACKGROUND

“I would like to understand things better, but I don’t want to understand them per-
fectly.”

Douglas R. Hofstadter – Metamagical Themas: Questing for the Essence of Mind and Pat-
tern

This chapter covers the necessary theoretical and technical backgrounds needed
for chapters 3 and 4. The reader may skip Sections 1.1 and 1.2 if he or she has
previous knowledge on the basics of vision research.

1.1 Processing visual information

A good practice when talking about vision is to give a crash course on theories of
the human visual system, from which perception research in A.I is motivated.

1.1.1 Theories for perception

In psychological research, there are many theories on how organisms, particu-
larly humans, visual perception is formulated1, for example the Gestalt school
of perception theory (Ehrenfels (1890)), or the mathematical psychology approach
of visual perception (Leeuwenberg and Buffart (1978)). However, from a com-
putational standpoint, David Marr’s theory of perception (Marr (1982, 1980))
is more appropriate given the current computational capabilities of machines2.
Note here, that there is a distinction between those which are biologically plau-
sible mechanisms of perception and those mechanism which are more plausible

1 More historical theories of perceptions are due to Newton, Hemholtz and Wertheimer, to
name a few.

2 To be fair and to point out, some say that Marr’s vision model has failed due to inability
to include natural constraints and therefore is not robust. See Warren (2012) for a related
discussion. Also there is the limitation of the encoding paradigm used in current A.I and
cognitive sciences in solving various intelligence problems (as intelligence is defined in this
research) (Bickhard and Terveen (1996); Müller and Bostrom (2016))

23

for perceiving "artificially" generated images, such as magnetic resonance imaging,
positron emission tomography, or spectral modalities.

Marr’s computational model of vision. Marr theorized, that the stimulus, or
input, to the visual system is given by the information in the optic array of the
eyes. Processing the stimulus requires several, complicated stages by the visual
system in order to detect the incoming information. After detecting the informa-
tion received from the stimulus, the information is organized in such a way, that
feature representations of the surroundings of the visual system will occur.

To explain the model of vision, Marr proposed three levels of explanations
in terms of computation:

Computational theory : what kind of computational procedures are necessary
for computing intensity changes in the visual system into output represen-
tations.

Algorithmic : how to define i) the input-output relation, ii) the transformation of
the input to the required output, and iii) the encoding of the input.

Hardware : what is the physical realization of the algorithmic process.

From a computational view, the vision model processes the input in a sequence
of processes with various sensory modules, where the visual information is first
extracted from one representation, then organize the representations, and then
making the organized representations explicit to be further used by other mod-
ules to compute other representations. This sequence is done until the "final"
representation is reached.

A complementary theory of perception is given by Gibson (2002), stating
that perception is based on the "correspondence" between some invariant compo-
nents and the multiplicity of the visual system’s stimulus. However, this theory
will not be pursued any further in this study.

1.1.2 A computational approach to vision

For most living organisms, the eye functions as an "apparatus" to navigate in a sur-
rounding, consisting of light sensitive elements (retina), converting the incoming
light quanta into internal symbolic code. As the eye scans over the environment,
the representation becomes explicit where the eye is in relation to its environment.

To make sense of how this representation if formed, Marr proposes a se-
quence of computational processes to reach the final output representation: the
primal sketch, the 2D 1

2 sketch, and the 3D object model.

The primal sketch. This early stage vision process seeks for a representation
which describes light intensity changes all over the retina. Different changes in
intensities facilitates in identifying, for example, edge points, edge segments or
small blobs. Detecting intensity changes do not determine what precisely causes
the intensity change, so additional information is needed to solve this ambigu-
ity problem. The additional information is given by the grouping rule: similar

24

structures are grouped together using Gestalt principles of proximity, continuity,
closure, etc3.

The primal sketch stage has no notion of "things". Despite the grouping
rule, it is misguided to say that intensity changes are inferred by correlated object
structures. If this were the case, then computing the early stage representation
would mean that the computed correlated structures are built-in features, ensur-
ing said correlation. Additionally, the same correlation is inferred by the visual
system. The notion of "things" is computed in the second sequential stage.

2D 1
2 sketch. This sketch provides information on surface layouts, implicitly

solving an "image segmentation" problem, that is, making discontinuities be-
tween surfaces and objects more explicit. Various computational models com-
bines the results from the primal sketch, and are combined into a 2D 1

2 sketch.
This step acts as a short-term memory for other computational steps of stereopsis,
that is depth perception.

3D object model. A 3D object model is then constructed from the shape and
relative distance representations of the 2D 1

2 sketch. This object model constructs
a representation of object which then can be identified and recognize as shapes of
particular objects. The construction is done in a formal or grammar system, where
rules for constructing computed representations from the 2D 1

2 sketch. The iden-
tification of object is assumed to be done using top-down procedures and infor-
mation.

1.2 Principles of image processing

Image processing is a field of converting an image, which is captured using a suit-
able acquisition system (for example a camera), into a new image (Jähne (2005);
Horn (1977)). After an image has been captured, suitable processing techniques
are implemented for further usage of the image. For example, correcting image
quality by reducing noise, adjusting brightness and/or contrast, and restoring
geometrical distortions. Vision research depends heavily on the methods and
theories developed in image processing, because where image processing offers
elementary processing tasks, vision offers methods how to combine these basic
elementary processing tasks to perform mechanized perception with machines.
For example, object recognition from a variety of image scenes, do image inter-
pretation and help self-driving cars to navigate through its environment.

3 For example, combining edge points which object boundaries are assumed to be continu-
ous.

25

1.2.1 Image representation

How information is represented in an image can be done in different ways. How-
ever, the most important way of representing information is using spatial or wave
number representation. These two representations are equivalent and complete,
meaning that we can convert a spatial representation into a wave number repre-
sentation, and vice versa. For example, Fourier transform can be used to convert
spatial representation into a wave representation. We will limit our discussion
to spatial representation and omit the discussion of wave number representation
because it is not relevant in this study. See Jähne (2005) for discussions on wave
number representations of digital images.

Spatial representation is a way of representing image information using a spa-
tial distribution of pixels, which are spatial elements of an image. This spatial
distribution constitutes the irradiance4 at a plane. Mathematically, the spatial dis-
tribution can be described as a continuous function of two spatial variables x0, x1:

u(x0, x1) = u(~x). (2)

Computers cannot intrinsically handle continuous representations of im-
ages. A "natural" way to represent images in a computer is to use a rectangu-
lar array of digital numbers (pixels), which is a convenient way of manipulating
and notating an array of images and its elements, using matrix notation. Each
element in an image represents a rectangular region with an associated value,
giving the average irradiance of the corresponding spatial location. Image arrays
can be represented in 2D or 3D spaces, depending on the application.

To analyze the properties of an image, neighbourhood relations is an impor-
tant property. This is because, by analyzing neighborhood relations, we can de-
fine connected regions. When dealing with 2D rectangular images, there are two
elementary ways to analyze neighborhood relations: a 4-neighbourhood, where
pixels have a joint edge; or 8-neighbourhood, where additional to a joint edge, the
pixel also has a joint corner neighbour (see Figure 1). For 3D rectangular im-
ages, neighborhood relations become more complex: additionally to joint edges
(18-neighbors) and joint corners (26-neighbors), we also need to define joint faces
(6-neighbors).

Discrete geometry

Because of the discrete nature of digital images, basic elementary geometrical
properties (for example, distance, slope of a line) and coordinate transforms (for
example, translation, rotation and scaling) need to be redefined to accommodate
object definitions and geometric parameter estimations. We will use a grid vector
definition for representing a position of a pixel in a digital image.

A grid vector in a 2D or 3D spatio-temporal image can be defined as

4 The radiant flux received by a surface per unit area.

26

~rm,n = [n∆x, m∆y]T (3a)

~rm,n,k = [n∆x, m∆y, k∆z]T , m, n, k ∈ Z+, (3b)

where Z+ is an integer lattice and ∆x, y > 0 is a positive step in the grid. In
order to measure distances in digital images, we redefine the distance metric into
a discrete setting using the grid vector definition. For example, the Minkowsky
distance metric in a discrete setting becomes

dl(~r,~r′) =‖~r−~r′ ‖l=
[
(n− n′)l∆xl + (m−m′)l∆yl

]1/l
, l ≥ 1. (4)

Setting l = 1, l = 2, l = ∞, we get the well known City block, Euclidean and
Chessboard distances respectively. For (most) practical applications in digital im-
ages, the Euclidian distance is the most relevant, because the Euclidian distance
preserves the isotropy of the continuous space.

Scaling digital images can be done, for example, with integer multiples of
the chosen scaling factor. That is, taking every ith pixel on every jth line. This
discrete scaling operation acts as a subsampling approach on an image grid.

In general, there is no clear and correct representation, even for the simplest
geometric objects, in digital images. For example, lines can be represented only
for values with multiples of 45◦. In any other directions, the lines will appear as
jagged, staircase-like sequences of pixels.

Quantization

The process of mapping the measured irradiance at the image plane into a rect-
angular image is called quantization. Usually quantization is limited to a number
of Q discrete gray values. Greater the quantization number, finer the image will
become. If the quantization level is too low, this will produce, for example, false
edges and it will be difficult to recognize spatial variations between objects. How-
ever, quantization will always produce errors when mapping a continuous image
into a discrete form.

(a) (b)

(m,n−1)

(m,n) (m+1,n)

(m,n+1)

(m−1,n)

(m,n−1)

(m−1,n) (m,n) (m+1,n)

(m,n+1)(m+1,n−1)

(m−1,n−1) (m+1,n−1)

(m+1,n+1)

FIGURE 1 (a) 4 − neighbourhood system.; (b) 8 − neighbourhood system. (Jähne
(2005)).

27

The level of quantization is dependent on the application domain. Usually
the image is quantized into 256 gray values, making each pixel occupying 8bits
(or one byte). This quantization approach is well suited for processing images
with modern computer architectures. For some computer vision applications, a
two level quantization (a binary image) could be sufficient if dealing with ho-
mogeneously illuminated objects. Applications in, for example, imaging spec-
troscopy or medical diagnosis with X-ray images, the standard 8-bit quantization
could be too coarse, because of the faint changes in intensity values of objects.

Digitization

When a suitable level of quantization has been chosen, the discrete set of pixel
points are sampled. This process is called digitization, which may occur when an
imaging sensor collects photons into an electric signal or afterwards, as in video
signal processing.

There are several crucial questions regarding the validity of sampled points
when a continuous image is digitized into a discrete digital image (no loss of in-
formation), and what are the limitations and methods on doing the sampling. For
example, digitization of fine structures may suffer from distortions due to differ-
ent periodicity and direction of sampled grid points (Moiré effect) or sinusoidal
oscillation (aliasing) when dealing with 1D signals. From these observed phe-
nomenons, we can formulate conditions under we can do correct sampling and
construct a complete representation of a continuous image in discrete form. This
formulation is known in image (and signal) processing as the sampling theorem.

Image formation.

Let u(~x) be an infinite, continuous image and g(~x) be a resulting image from
mapping u(~x) into a discrete space. (We consider now only 2D representations
but the principle applies to 3D representations too.) In the process of digitization,
the image g(~x) is sampled at certain points from the grid vector~rm,n.

Instead of collecting the illumination intensity exactly from the grid points,
the intensity values are collected in a certain area around the grid points. For an
idealized charge-coupled device camera, which collects the photons with a matrix
of photodiodes without light-sensitive strips in between, the signal at the grid
points~rm,n is the integral over the area of the individual photodiodes:

g(~rm,n) =
∫ (m+1/2)∆x1

(m−1/2)∆x1

∫ (n+1/2)∆x2

(n−1/2)∆x2

u(~x)d(x1, x2), (5)

assuming that the photodiodes are equally sensitive over the whole area.
Operation (5) includes convolving with a rectangular box function and sam-

pling the grid points. By first applying continuous convolution and then perform-
ing sampling, the image formation can be generalized and perform the sampling
step separately. In general, the process of image formation results in blurring the
fine details, causing the gray intensity values to be band-limited.

28

Sampling

When an image is sampled, the grid points are the locations where the informa-
tion is stored during image formation. The sampling theorem tells us how we can
avoid distortions in the signal: by restricting the image spectrum around the area
that extends around the grid point up to the lines parting between all other grid
points. By doing so, we can separate the spectral amplitudes that originate from
the original spectrum at the central grid point or one of its copies. In practice, this
means that sampling restricts the number of wave numbers and thus the spatial
resolution of the image, because we can only work with finite image matrices.

1.2.2 Random variables

After an image is captured, we want to analyze the objects it contains (positions,
shapes, etc.). This can be done by measuring, for example, the position of the ob-
ject or its reflectance properties. However, the obtained measurements are useful
if we can also measure its uncertainty. There are two important statistical classes
used in digital image processing. Statistical error describes how scattered the mea-
surement is when the same measurement is repeated over and over again. From
this, we obtain a distribution, from which the width of the distribution tells us the
statistical error of the measurement, whilst the centroid of the distribution gives
us the mean value of the measurements. The second class is the called system-
atic error, which tells us how much the true value deviates from the mean value.
Systematic errors are much harder to control compared to statistical errors. The
reason is that they are often caused by the lack of knowledge and understand-
ing of the measuring setup and procedure. If the parameters are unknown or
uncontrolled during the measurement, this could easily lead to systematic errors.

To treat image data statistically, we treat the data as a random variable (r.v). In
the simplest case, digital image processing operations operate on a single point,
that is using point operations (These will be covered more in the next Section be-
low.) A more elaborate operations are done a group of points in order to produce
new quantities, for example, a time series of random variables or a spatial array
of random variables.

As previously mentioned, when imaging objects with an imaging device,
the imaging device measures quantity called irradiance at a certain point in the
image plane. This observed process is statistical in nature, so that each irradiance
measurement will give a different value. Instead of measuring each single value
from the object, a probabilistic density function (P.D.F) is used to measure and quan-
tify the observed irradiance. Each measurable quantity in this stochastic process
is a r.v, and is discretized with respect to the chosen quantization level.

In general, we do not know the probability distribution before hand, and
we cannot represent individual r.vs with individual P.D.Fs. To study the ran-
dom properties of r.vs, a joint probability density function is required. For cases
where r.vs are independent, we can study the resulting independent P.D.Fs by
estimating their marginal P.D.Fs (see Appendix 2.1 for formal definitions). Devel-

29

oping statistics of an image considering both spatial and temporal relationships
between points, random fields are used. In vision literature, random fields are
known as P.G.Ms and they will be presented in Section 1.4.

1.2.3 Operating on pixels

Recognition of objects in images is done by analyzing spatial relationships of
pixel values in a (small) neighborhood. By examining pixel values inside a neigh-
borhood, we can determine does a particular set of values belong to an object or
to an edge. However, when processing images with these neighborhood opera-
tions, information is generally lost because the neighborhood operations "create
a new image" inside the neighborhood (Jähne (2005)). The shape of the neigh-
borhood can be of any form, but a common starting point is to choose a (2k +
1) × (2k + 1), k > 0 neighborhood size and operate on the center pixel of the
chosen neighborhood. Even-sized neighborhoods are discouraged because they
do not have a center pixel, causing a shift in pixel distances between the original
pixels and the pixels in the neighborhood. If these results would be added to the
original pixel values, considerable errors in pixel values will occur.

In contrast, point operations are used for analyzing single pixels in an image,
and are useful as a first step procedure, in order to correct heterogeneous and
nonlinear responses from the imaging device. Some examples of point opera-
tions are contrast enhancement and computing average values. Complementary
operation to point operations is geometric operations, where a pixel is located into
a new position. Point operations can be divided into two types of operations:

1. Homogeneous point operations, where a point operation is independent with
respect to pixel location. This operation is non-invertible, because two dif-
ferent pixel values may be mapped onto one value (for example, threshold
operations).

2. Heterogeneous point operations, where a point operation also depends on the
location of the pixel. These operations are computationally more time con-
suming and are used, for example, doing calibration operations. Image av-
eraging is an example of the simplest heterogenous point operation.

1.2.4 Multiscale data structures

Neighborhood operations are the main starting point in image analysis. By defi-
nition, neighborhood operations operate on a local level or local scale, allowing to
extract pixel features from a small set of distances. To go beyond local scale and
to obtain feature information from greater distances, we need to extract these fea-
tures from a larger scale. A naïve approach would be to use a larger neighborhood,
but this results in an increase in computational cost5.

The challenge posed by different image resolutions, consider the task of de-
tecting lines. For high resolution images, local distances between pixels will be
5 For example, using a neighborhood size NW , W ∈ Z+, the number of operations needed

in N is proportional to NW .

30

dominated by the noisy background of the image. Detecting lines, in this case,
will be a challenge because of the contrast between objects and background is
inaccurate and erroneous. That is, we are dealing with scale mismatch. Larger
scales should be used to capture the varying pixel values properly. In the low
resolution case, lines would be blurred such that the contrast between lines will
decrease proportionally to the used image resolution. With these observations in
mind, it would be reasonable to consider detecting objects using suitable scale
representations.

To this end, multiscale data structures (or multiscale representations) are de-
signed to capture object features from different scales. An efficient data structure
for processing images in multiple scales is the multigrid6 (M.G) representation.
The idea is to represent the image, such that, the fine scale (level) in the M.G
structure is the full resolution of the image, while the lower resolution of the im-
age is represented in the coarsest level. With a M.G representation, speed ups can
be obtained for many image processing methods.

In Section 2.1 will demonstrate how a cascadic M.G (Appendix 3.4) represen-
tations can be used for solving optimization problems with B.P.

1.3 Probabilistic graphical models

P.G.Ms are useful probabilistic models, which enable the capturing of dependen-
cies of r.vs in a graphical way, where the nodes of the network are treated as
propositions of variables (Pearl (2014)). Given a certain set of initial indepen-
dence relationships and certain axioms (discussed below), new independencies
can be inferred using non-numeric, logical manipulations. From these certain ax-
ioms we can identify different structural properties that can be captured using
a graphical representation. There are two main graphical representations: undi-
rected representations, known as Markov networks (Section 1.3.2), and directed
representations, known as Bayesian networks (Section 1.3.3). We will first discuss
axioms used to identify structural properties of P.G.Ms, and then discuss more
about the two network representations, which can be used for probabilistic infer-
ence. This Section follows Pearl (2014) unless otherwise stated.

1.3.1 Set of axioms for graphical representation

Motivation. In order to do probabilistic reasoning, basic textbooks on probabil-
ity theory gives the impression that one must literally construct a joint distribution
function P(x0, . . . , xn−1) over all propositions and their combinations. The prob-
lem of this approach is that even for moderate size n, we would have to store an
arbitrary P(. . .) into a table with 2n entries. This leads to storage requirements
which are unreasonable and uneconomical. Additionally, computing this table
would be cumbersome. (The same pitfalls occurs when computing conditional

6 Multigrids are also efficient numerical solvers for partial differential equations.

31

probabilities, which means dividing two marginal distributions.)
How then does one solve the computation of the joint distribution function

P(. . .) over all propositions and its combinations? This can be done by how the
notion of independence is defined in P.G.Ms. Numerically speaking, the notion
of independence uses the equality P(x, y) = P(x)P(y) given propositions x and
y. That is, we should test are the joint distributions X and Y independent, from
which propositions x and y are drawn. Things become even more complicated
when we are introduced additional propositions from additional joint distribu-
tion(s). Explicitly encoding the dependencies would be unreasonable because the
number of evaluated combinations will explode extremely fast, especially when
encountering new evidence or data. Conditional independence could provide in-
formational relevance qualitatively by intuitively capturing how dependencies
between propositions should change when presented with new evidence. This
however, still requires checking equalities numerically.

To avoid numerically verifying equality between propositions, a structure
in the form of a dependency network helps facilitating simple and local operations,
which can be applied to propositions. Networks are a common metaphor for
conceptual dependencies. The type of information relevance and probabilistic
dependencies is determined by the network topology7.

The axioms. Let U be a finite universe of discrete random variables, where each
r.v may take values from a finite domain W. We will denote a r.v in boldfaced,
uppercase (X) when we mean a partition8 of variables in U, and a boldfaced,
lowercase (x) with a configuration of variables taking values from a partition. For
any given X ∈ U, we will denote WX as the domain of values X may take.

In order to express dependency relationships between partitions and their
configuration, we need the following definition on conditionally independency.

Definition 1.1. Given a finite and discrete universe of U and a joint probability function
P(·) over the variables of U. Let X,Y and Z be partitions of U. X and Y are said to be
conditionally independent given Z, if

P(x | y, z) = P(x | z), (6)

when P(y, z) > 0.

The above independence relation between X and Y, given Z will be denoted
as I(X, Z, Y).

Now without referencing to numerical forms, are there conditions that should
constrain the relation I(X, Z, Y) for some distribution P? Let us first state the fol-
lowing axiom.

Axiom 1.1. Given disjoint partitions X, Y, Z ⊂ U and I(X, Z, Y) for a distribution P.
Then I(·) must satisfy the following independent conditions:

7 When discussing networks, topology and structure are used interchangeably.
8 Here partitions are referred as subsets.

32

– Symmetry: I(X, Z, Y) ⇐⇒ I(Y, Z, X)
– Decomposition: I(X, Z, Y ∪W) =⇒ I(X, Z, Y) ∧ I(X, Z, W)

– Weak union: I(X, Z, Y ∪W) =⇒ I(X, Z ∪W, Y)
– Contraction: I(X, Z, Y) ∧ I(X, Z ∪ Y, W) =⇒ I(X, Z, Y ∪W).

If P > 0, then we have the additional condition:

– Intersection: I(X, Z ∪W, Y) ∧ I(X, Z ∪ Y, W) =⇒ I(X, Z, Y ∪W).

The above axiom states the following: by symmetry, the knowledge of Z at
any state, if the knowledge of Y does not give anything new about X, then know-
ing X does not give us anything new about Y. Decomposition asserts that if com-
bining two propositions Y ∪W are irrelevant to proposition X, then the propo-
sitions Y and W are irrelevant separately to X. Weak union tells us that learning
an irrelevant proposition W will not make an irrelevant proposition Y to become
relevant to proposition X. Contraction states that if proposition W is irrelevant
to X after learning about irrelevant proposition Y, then W is irrelevant before
learning about proposition Y. Taking the weak union and contraction axioms to-
gether, they mean that irrelevant propositions should not alter the relevance of
other propositions. The intersection condition tells us, that if Y affects X when W
is constant, or W affects X when Y is constant, then neither propositions W or Y
(or their combination) has an affect on X.

When we want probabilistic formulations of dependencies between propo-
sitions, Axiom 1.1 will be enough. However for qualitative formulations of de-
pendencies between propositions we need the following extra properties from
the following conjecture from Pearl and Paz (1985).

Conjecture 1.1. The symmetry – contraction properties from Axiom 1.1 are said to be
complete if I(·) is interpreted as a conditional independence relation. That is, for a
distribution P

∃P such thatP(x|y, z) = P(x|z) ⇐⇒ I(X, Z, Y).

If the intersection property is also satisfied in Axiom 1.1, then ∃P ≥ 0 satisfying the
above relation.

By doing the above axiomatizaion of probabilistic dependencies offers the
following benefits.

1. Powerful theorems can be derived and conjectured, which may or may not
be obvious when using numerical representation of probabilities, for exam-
ple, the chaining rule for I(·) (Lauritzen (2002)) (direct consequence of the
properties of symmetry – contraction in Axiom 1.1).

2. We can derive new independencies from the initial set of propositions as
a rule for qualitative inference. For example, initially given a set of quali-
tative independence propositions A, we can test wether a new set of inde-
pendence propositions A′ are a "consequence" of the initial set of proposi-
tions. In principle, this type of query may be computationally undecidable9

9 See Languages (Appendix 3.1)

33

(Beeri (1980)), because in order to check this consequence, we would have to
check from an infinite number of possible distributions. However, if we use
proper axioms, we can deriveA′ straight fromAwithout resorting to search
from an infinitely large space. This is to say, that we can decide ifA′ follows
from A by finding a complete set of axioms for conditional independence.

3. The axioms provide a convenient way to comparing features of several de-
pendency formalisms.

How to represent then the dependencies or independencies of propositions in
a graphical way? Nodes in the network can be linked either in an undirected or
directed manner. To capture the interactions between propositions in a network, a
natural way to illustrate interactions would be to add an edge between interacting
propositions. The lack of interaction between propositions would be the absence
of an edge. This way of capturing interactions between propositions deprives the
expressive power given by the graphical representation.

The reasoning being, that illustrating the interaction of propositions in such
a rigid requirement, all connected propositions in the network are treated as equal,
robbing any special meaning to the structure of each connected proposition. In
order to properly exploit the expressive power of presenting proposition inter-
actions in a graphical way, a semantic distinction should be made between direct
(propositions directly interacting through an edge) and indirect (proposition in-
teraction through a mediator proposition). By this semantic distinction of the net-
work topology, the edges between propositions reflects a conditional interaction.
In this way, the interactions may become stronger, weaker, or non-existent.

Before reviewing different types of graphical representation of propositions,
we will touch on dependency models and dependency maps. A dependency model
determines the truth value of a partition I(X, Z, Y). Using equation (6) to verify
the validity of I(X, Z, Y), then any joint probability distribution P is a dependency
model. That is, equation (6) tests does a partition of propositions Z intervenes in
a relation between propositions X and Y. Our goal is then to characterize the
connection between propositions in a network which is used to encode these in-
terventions.

To relate a graphical representation of a dependency model M, what we
are looking for is a correspondence between elements of U of M, and a set of
propositions in a network. This correspondence should reflect some properties
ofM from the topology of the used network. To discuss more about this corre-

spondence, let G def
= (V, E) be an undirected10 network, where V is a set of nodes

in the network and E is the set of edges connecting the nodes in G.

Definition 1.2. If there is an injective correspondence between the elements U and the
set of nodes V in G, we say G is a dependency map (D-map) of a dependency model
M. That is, we have

I(X, Z, Y)M =⇒ < X|Z|Y >G . (7)

10 Unless stated otherwise, when talking about G, we mean an undirected network.

34

G is an independency map (I-map) of a dependency modelM if

I(X, Z, Y)M ⇐= < X|Z|Y >G . (8)

< X|Z|Y >G is read as, a partition of propositions Z intercepts all paths
between propositions X and Y. The correspondence given by Definition 1.2 pro-
vides a graphical representation of X not affected by Y (directly), with Z being in
between them.

Equation (7) says that all the nodes which are connected in G are dependent
inM11. Equation (8) then says that nodes to be separated correspond to indepen-
dent propositions. However, this does not guarantee that all those nodes which
are shown to be connected are dependent.

The weakness of undirected representation of propositions is that the ability
to represent informational dependencies is limited. An example of this would be
that a modelM could make unrelated propositions in G become relevant to each
other when we obtain new information. This is to say (in technical terms) that G
would have a graphical representation with both a D-map and an I-map, which is
a contradiction. In order to overcome this problem, we need classes ofM that are
able to characterize a family of graphical representations which are isomorphic to
node separation in G. This characterization is given by the following definition.

Definition 1.3. Let G = (V, E), M a dependency model of G, X, Y, Z ⊂ U disjoint
partitions. If for every X, Y, Z we have

I(X, Z, Y)M ⇐⇒ < X|Z|Y >G, (9)

thenM is said to be a network-isomorph (n.i) of G.

A necessary and sufficient condition for n.i is given by Pearl and Paz (1985):

Axiom 1.2. In order a dependency modelM to be a n.i of G, a necessary and sufficient
condition is that the relation I(X, Z, Y)M satisfies the following independent axioms

– Symmetry: I(X, Z, Y)M ⇐⇒ I(Y, Z, X)M.
– Decomposition: I(X, Z, Y)M ∪W) =⇒ I(X, Z, Y)M ∧ I(X, Z, W)M.
– Intersection: I(X, Z ∪W, Y) ∧ I(X, Z ∪ Y, W) =⇒ I(X, Z, Y ∪W).
– Strong union: I(X, Z, Y)M =⇒ I(X, Z ∪W, Y)
– Transitivity: I(X, Z, Y)M =⇒ I(X, Z, γ)M ∨ I(γ, Z, Y)M, γ ∈ U.

With Definition 1.3 and Axiom 1.2, we can test is a modelM a valid graphi-
cal representation. For convenience for using probabilistic models, I-maps (equa-
tion (8)) are considered when using P.G.Ms (Pearl (2014)) because probabilistic
models may fail both Strong union and Transitivity axioms in Axiom 1.212.

11 It is possible for a pair of dependent propositions to be displayed as a pair of separate
nodes.

12 For example, using an unfair coin would violate the Transitivity axioms.

35

1.3.2 Markov networks

From the dependency axioms stated in Section 1.3.1, given a joint probability dis-
tribution P and a network G, how do we test is G an I-map of P? Markov networks
provides tools for this question. The solution to this question is to find a unique
and minimum set of edges in G for strictly positive P. This is done by searching
how each proposition in a network influences each other, given a dependency
model. That is, we are searching for a set of propositions that form a Markov
boundary, which in turn induces a strictly positive distribution of neighborhood
systems:

Definition 1.4. Given an element u ∈ U, a Markov blanket is a partition S of U, such
that

I(u, S, U \ S \ {u}), u 6∈ S. (10)

If a Markov blanket is minimal of an element u, that is, none of the proper partitions of a
Markov blanket satisfies equation (10), then it is called a Markov boundary B∂.

If every element u ∈ U and the I-map of a dependency model satisfies
Axiom 1.1., then each u has a unique B∂ and the I-map is minimal (Pearl and Paz
(1985)). The elements of B∂ are adjacent to a minimal I-map. This property allows
two identical interpretations of direct neighborhoods.

1. The neighborhood shields the element u from the influence of other ele-
ments.

2. The neighborhood binds the elements in the neighborhood, such that the
connection between the elements cannot be weakened by other elements in
the system.

The Definition 1.4 helps making a Markov network into a probability distribution
with following definitions:

Definition 1.5. Given a probability distribution P > 0, the Markov blankets creates
neighborhood systems of the elements of P. That is, given a collection of Markov

blankets B∗∂
def
= {B∂(u) : u ∈ U} ∈ U, for a pair of elements (u, w) ∈ U, we have

1. u 6∈ B∂(u), and
2. u ∈ B∂(w) ≡ w ∈ B∂(u).

Definition 1.6. A network which is I-minimal, has a strictly positive distribution, and
can be constructed by connecting all elements u to all elements of its Markov boundary
B∂(u), is called a Markov network.

To test does a Markov network have an I-map, it suffices to check for the
Markov boundary condition.

Markov networks captures the essential qualities of Axiom 1.1 regarding
conditional independence, and is essential for constructing undirected networks.
The properties of symmetry, decomposition and intersection allows to construct
a minimal Markov network, which then offers an inference mechanism for de-
ducing propositions. Figure 2 shows a simple Markov network with four propo-
sitions.

36

X

Y Z

W

FIGURE 2 A simple Markov network with four propositions (Pearl (2014)).

1.3.3 Bayesian networks

Markov networks are capable of modelling the conditional independence be-
tween propositions, but fail to represent induced and non-transitive dependen-
cies between propositions. Bayesian networks allows to make explicit and direc-
tional dependencies between propositions.

Bayesian networks tries to answer similar questions what Markov networks
tries to address, by adding a directed acyclical network (D.A.G)13 constraint into the
question:

1. Given a joint probability distribution P, how can we construct an edge-
minimal D.A.G, which is an I-map of P?

2. Given P and D.A.G D, how can we test that D is a (minimal) I-map of P?
3. Given a D.A.G D, can we construct a P, such that D is a perfect map of P?

Similar to Markov networks, the notion of conditional independence (Axiom 1.1),
is used to construct I-maps. However, because of the directional dependencies
between propositions, the intersection axiom in Axiom 1.1 is no longer a strict
requirement to derive local dependencies in a network.

D.A.Gs allows us to inspect which set of propositions are considered to be
independent. Directional edges are used to illustrate direct causal influences be-
tween propositions, and the strength of these edges are expressed by a forward
conditional probability.

Bayesian networks have a more complicated separability criteria compared
to Markov networks. As a reminder, if the removal of a proposition Z makes
the propositions X and Y no longer connected to each other, then X and Y are
independent of each other given Z. In Bayes networks, the separation criteria is
called a d-separation criteria:

Definition 1.7. Given partitions X, Y and Z which are disjoint in a D.A.G D, then Z
d-separates X from Y. Conditions for d-separation are:

1. Every proposition has a descendent in Z.

13 For this acronym, the "traditional" version is used.

37

2. Every other proposition is outside of Z.

If the d-separation condition holds for a path, then that path is called active.
The path of arrows represents predicted events and are considered blocked acti-
vated by evidental information. Figure 3 shows a simple Bayesian network with
three proposition.

X

Y Z

FIGURE 3 A simple Bayesian network with three propositions (Pearl (2014)).

Definition 1.8. A D.A.G D is an I-map of a dependency modelM, if every d-separation
condition in D correspond to a valid conditional independence relationship inM. That
is, if for disjoint propositions X, Y and Z we have

< X, Z, Y >D =⇒ I(X, Z, Y)M, (11)

where < X, Z, Y >D is the d-separation of given propositions.

Definition 1.9. Let P be a joint probability distribution of U. The the D.A.G D =
(U, E) is a Bayesian network of P, if and only if D is a minimal I-map of P.

We can construct a Bayesian network in the following way:

Definition 1.10. LetM be a dependency model defined over elements of U. The bound-
ary strata of M is a relative ordering of d partitions Markov boundaries B∂i , i =
0, . . . , d− 1 ∈ U. Each Markov boundary is a minimal set, satisfying B∂i ⊆ Ui, and
I(Xi, B∂i , Ui \ B∂i), Xi ∈ U, ∀i = 0, . . . , d − 1. The D.A.G D is then created by as-
signing each Markov boundary (as a parent) to each Xi, and is called a boundary D.A.G
ofM relative to the ordering d.

The key for constructing a Bayesian network is that the resulting D.A.G
should satisfy Conjecture 1.1. That is, if a D.A.G D is a boundary D.A.G, then
D is a minimal I-map of a dependency modelM (Verma and Pearl (1990)).

Definition 1.11. Let P be a joint probability distribution with d ordering of its vari-
ables. A D.A.G is constructed by assigning any minimal set ΠXi as parents with Xi as
descendants, with the criteria

P(xi |ΠXi) = P(xi | xi, . . . , xi−1), ΠXi ⊆ {X0, . . . , Xi−1}. (12)

The D.A.G satisfying the equation above is a Bayesian network of P. If P > 0, then the
parents in the D.A.G are unique.

38

Constructing a Bayesian network by boundary strata, with ordering d, en-
sures that the ordering is consistent with the direction of the edges assigned in
the network. That is, any new ordering of ΠXi will satisfy equation (12), as long
as the new set of predecessors of Xi do not contain any old descendants of Xi.

In principle, any given joint distribution with ordering d over U can con-
structed into a Bayesian network. In practice however, a numerical representa-
tion of the joint distribution is rarely available, but an intuitive understanding of
the (major) constraints in the problem domain. The important feature of network
representation is to express directly qualitative relationships of direct influence
between propositions. The network augments these direct influences by deriving
indirect influences between propositions and preserves them between.

Quantifying links is easier in Bayesian networks, compared to Markov net-
works. In Bayesian networks, specifying the strength of links between proposi-
tions, one needs only assess the conditional probability between parent partitions
and its descendants by some function. For the model builder, the conditional
probabilities quantifies many conceptual relationships that can be obtained by
direct measurement14.

It is worthy to note, that the topology of Bayesian networks are sensitive
to the ordering numbering d of the propositions. Ordering d1 could result into
a tree-like structure while another ordering d2 could result into a complete net-
work. This is because the standard ordering imposes an indirect induces identical
network topologies. which is caused by the direction of causation given by the
model builder.

1.4 Probabilistic graphical models in vision

Before elaborating the usage of P.G.Ms in vision tasks, a brief motivation of P.G.Ms
is given from statistical mechanics from where most theoretical and technical
ideas are derived from.

Statistical mechanics is an approach of studying the behaviour and properties
of macroscopic bodies, which are composed of a very large number of individual
particles using statistical laws (Landau and Lifshitz (1969)). When describing,
for example, motion of a mechanical system, one constructs and integrates equa-
tions of motion of the system. If the concerned system obeys the laws of classical
mechanics, one must construct and solve a set of differential equations (D.Es)
which are equal to the number of degrees of freedom that are present in the given
system. Solving such a large number of D.Es becomes tedious and impractical.
An additional problem is that even if we could solve these large number of D.Es
by integration, substituting a general solution to the initial conditions becomes
impossible due to the size of the problem. For this reason, statistical and proba-
bilistic approaches should be used.

When there is a large number of degrees of freedom, solving the mechanical

14 Also psychologically convenient.

39

system with statistical means that we can find new types of regularities. These
regularities can be found by treating the macroscopic body as a closed system
and study its properties and behaviour with respect to the phase space of its sub-
systems. (That is, study the coordinate points and momenta of the subsystems,
which determines the total energy of the system.) These subsystems are also
treated as macroscopic bodies but these are not closed anymore, because of their
complex interaction with each other, and their varying states over time. By solv-
ing the mechanical problem of these subsystems we can obtain a solution to the
whole macroscopic body. The fundamental feature of using a statistical approach
to solving the mechanical problem of the macroscopic body, is that given long
enough time, the complex interactions between subsystems will visit all possible
states.

Here the macroscopic body is analogous to a digital image, and the different
subsystems of the macroscopic body are analogous to for example the interaction
between foreground and background (or objects of the digital image), and the
phase space of each subsystem are analogous to pixel (values) or objects states.

1.4.1 P.G.Ms applied in vision tasks

For processing and analyzing complex and “natural” images, stochastic image
modellings offers powerful tools for various low-level and high-level vision tasks
(Chan and Shen (2005)). The visual perception of humans is able to separate and
identify similar objects with varying sizes and shapes from different background
by computing various statistical properties. By quickly computing these statisti-
cal properties, the human visual perception system can utilize robust features for
visual detection. By approaching image modelling from a stochastic viewpoint,
each image sample is viewed as a statistical ensemble of different ques or features
from the image. In other words, these statistical ensemble encode the probability
distribution from the perceived images which enables the detection of smoothly
varying features (for an ensemble interpretation of probability, see Appendix 2.3).

With this stochastic image modelling in mind, P.G.Ms are popular and effec-
tive methods for modelling the aforementioned (statistical) feature distributions,
and spatial relationships between neighboring pixels in digital images. P.G.Ms
have been used for stereo matching (Geiger et al. (2010); Sun et al. (2003)), im-
age segmentation (Won and Derin (1992); Boykov and Funka-Lea (2006); Zhang
and Ji (2009)), image classification (Jordan (2004); Torralba et al. (2004)), image
denoising (Geman and Geman (1984); Xie et al. (2012); Malfait and Roose (1997))
and object-matching (Murphy et al. (2003); Caetano et al. (2006)), to name a few.

1.4.2 A note on differences between directed and undirected networks in vi-
sion

The structure of a network represents a particular, unique factorization of the
joint distribution induced by the edges and nodes. That is, the patterns of condi-
tional independence are expressed differently in directed networks compared to

40

A

C

(a)

A

C

(b)

C

(c)

A

BBB

FIGURE 4 Difference between patterns of conditional independence in directed and
undirected networks (Prince (2012)).

undirected ones (Figure 4).
In Figure 4 (a), node C is the Markov blanket of node B (dashed area). That

is, B is shielded from the influence of node A, making B independent from A. In
notation: C ⊥ A|B. The same independence relation is present in Figure 4 (b).
However in Figure 4 c) A and C are independent, but we cannot write A ⊥ C
unless we condition both A and C on B. That is, we cannot have an undirected
network structure with three nodes with the type of independence pattern in
Figure 4 (c).

The most common P.G.M types used in vision are the following:

– Hidden Markov Models: Measurements are observed in a chain-like fashion,
where a discrete state of a chain is determined only by its previous state.

– Markov tree: Measurements and their states are in a tree-like structure.
– Markov Random Fields (M.R.Fs): Measurements and their states are formed

into a undirected network structure, where each node correspond to a pixel
in the digital image.

– Kalman filter: Same structure as the hidden markov models but the states are
continuous.

1.4.3 Markov Random Fields

Pixels in a digital image can be seen to form a lattice15 of nodes. To evaluate the
relations of the pixels and their states, each state of a pixel has a direct, proba-
bilistic connection to its neighboring pixels. Each pixel, in itself, gives ambiguous
information about its associated state in the digital image. However, it is known

15 That is, an abstract structure which is a partially ordered set: given a homogeneous binary
relation ≤, a set P and x, y, z ∈ P, then

– reflexivity: x ≤ x,
– antisymmetry: if x ≤ y and y ≤ x, then if x = y,
– transitivity: if x ≤ y and y ≤ z, then x ≤ z,

and where every two given nodes have a unique supremum or infimum.

41

that a certain spatial configuration of states are more common than others. To ex-
ploit these spatial configurations, we now describe the M.R.F model, which will
be used to do inference on the states of pixels.

Neighborhoods and Local specification. Next we state the M.R.F model in terms
of neighborhoods (or Markov Blankets) and configurations16. We will first restate the
Markov blanket property into a more conventional form used in vision literature.

Definition 1.12. A neighborhood system of U is a family of N
def
= {Nu}u∈U partitions

of U, such that

– u 6∈ Nu, ∀u ∈ U,
– v ∈ Nu =⇒ u ∈ Nv, ∀u, v ∈ U.

The tuple (U, N) defines a network. A boundary of a set A ⊂ U is defined by the

partition ∂A
def
= (∪u∈AN \ A).

Here U are the nodes of the network and N defines the edges connecting
the nodes. v ∈ Nu is called a neighborhood site, connecting sites u and v with an
edge. Next we give a definition of a M.R.F.

Definition 1.13. An undirected network is called a Markov Random Field with respect
to its neighborhood system N , if for all neighborhood sites in U, r.vs X(u) and X(U \
Nu ∪ {u}) are independent given X(Nu). That is,

I(X(u),Nu, X(U \ Nu ∪ {u})), ∀u ∈ U. (13)

Or equivalently in traditional, probabilistic notation:

P(X(u) = x(u) | X(U \ u) = x(U \ u)) = P(X(u) = x(u) | X(Nu) = x(Nu)),
(14)

for all u ∈ U, x ∈WU.

Definition 1.13 states, that the distribution of W is directly influenced only
by the neighboring sites. The probability distribution is characterized by the local
specification of the neighboring sites:

Definition 1.14. Let πu : [0, 1]←WU be the local characteristic of site u in a M.R.F.
Define πu as

πu(x) = P(X(u) = x(u) | X(Nu) = x(Nu)). (15)

Now {πu}u∈U defines a local specification of the M.R.F.

16 Recall these definitions from Section 1.2.1.

42

Clique potentials and Gibbs Distribution. The notion of clique potentials comes
from physics, introduced by Gibbs (1902). The probability distribution of the state
space WU is given by

πT(x) =
1

ZT
exp{− 1

T
E(x)}, πT(x) ∈ [0, 1], E(x) ∈ [−∞, ∞] (16)

where Z is the Zustandssumme17, T > 0 is the temperature, E(x) is the energy
of the configuration x, with E(x) < ∞ ⇐⇒ πT(x) > 0. These clique potential
energies describe the local interactions of configurations. Any singleton {u} is a
clique on its own. A partition C ⊂ U having more than one element is a clique in
the network (U, N) if and only if two distinct sites of C are neighbors. C is called
a maximal clique if for any site u makes C ∪ {u} not a clique.

Sampling in undirected networks in vision. The difficulty of sampling the
M.R.F comes from the fact, that there is no way know which of the variables
are parents to another variables. This makes it difficult to make decisions to do
ordered sampling on the variables of the network. Another difficult poses the
factorization of the cliques, which are not probability distributions. One way to
sample the M.R.F is to use Markov Chain Monte Carlo method (Carlo (2004)), which
generates a series of samples from the distribution where the sampling depends
only on the previous sample in the chain. This can be done, for example, using
Gibb’s sampling (Brémaud (2013)).

1.5 Artificial Neural Networks

Recently there has been an explosion of published research18 on the subject of ar-
tificial neural networks (A.N.Ns). Only the fundamental aspects of A.N.Ns will be
covered here. The treatment of Convolutional Networks will be more explicit, since
it more relevant to this study (Section 3.4). Readers familiar with A.N.Ns may
skip this Section. We mainly follow Hecht-Nielsen (1990) on the fundamental as-
pects of A.N.Ns, and Goodfellow et al. (2016) on C.N.Ns in this Section unless
otherwise stated.

1.5.1 Fundamentals

The general structure of a A.N.N is of a set of neurons (processing elements) and
connections (an instantaneous unidirectional signal-conduction path) in a form of
a directed network19. The structure itself can be considered as a parallel dis-
tributed information processing structure. Each neuron has

– any number of incoming or outgoing connections20.
17 The partition function, for you German illiterates.
18 Also commercial use.
19 Not to be confused with Bayesian Networks from Section 1.3.3
20 The output signal must be of identical sign because of multiple (possible) outputs.

43

– local memory21 to store values.
– a transfer function which uses and alters local memory, and input signals

producing output signals. Transfer functions operate either episodically: an
input is "active”, causing the transfer function operating on the current in-
put signals and local memory, producing and updated output signal (may
also alter values in local memory); or continuously: neurons are always active
and information is passed in the network by scheduling.

Further more, the A.N.Ns have connection coming outside the network from the
real world, and finally the connection out from the network. A classical example
of an A.N.N is the perceptron model by Frank Rosenblatt (1958) (Figure 5).

In neurocomputing, by an A.N.N architecture it is meant as a mathematical
description. Likewise a computer program22 has nothing to do how it is run in a
computer, here an A.N.N architecture has no implementational meaning (how it is
implemented in a computer or software).

(a)

Class 0

(b)

Class 1

1

0~w

y’ =
{

1 : ∑n−1
i=0 wixi + b ≥ 0

0 : ∑n−1
i=0 wixi + b < 0

~y ~x

FIGURE 5 (a) The perceptron model. The model is trained with inputs ~x and "correct"
output ~y. (b) Pattern classification done by the perceptron model: searching
a separating hyperplane, according to learned weights ~w, between the data
points (Hecht-Nielsen (1990)).

The perceptron model illustrates a single-layered A.N.N architecture, which
aims at searching for a linear separating hyperplane between data points. The
first A.I winter was caused by the analysis of Minsky and Papert (1969), on how
the perceptron model cannot solve the XOR-problem. Their point was, that the
perceptron model cannot cope with nonlinear problems. In order the perceptron
model to cope with searching for nonlinear hyperplanes, the solution is to add
hidden neural layers between the input and output neurons (Figure 6). These hid-
den layers are disjoint partitions of neurons, still possessing transfer functions.

21 May have.
22 As an actual computer program there is of course implementation differences to specific

computer architectures. Usually computer programs are referred as algorithms. Because
the notion of an algorithm has no rigorous definition in current literature, algorithms are
referred here as computer programs or routines.

44

This is basically a universal definition for all A.N.Ns. Adding additional hidden
layers to the network adds additional nonlinearities into the architecture23.

Conceptually, each neuron is an "isolated island". In order for the neurons to
adapt into its local environment, statistical learning theory (Vapnik (1998)) comes
into play, so that the transfer functions can be used in various A.N.N architec-
tures. Most A.N.Ns learning is done by modifying the weights of the neurons,
where the weights determines the set of all possible connection configurations in
the network. There are three distinct learning approaches in modern statistical
learning theory:

– Supervised learning: A parametric sampling approach, where the A.N.N model
is shown a tuple of an input-output relation (~X,~Y), from which the under-
lying probability distribution P(X, Y) is modeled.

– Unsupervised learning: A nonparametric sampling approach, where the prob-
ability distribution of P(X) is modeled w.r.t. some, for example, proximity
criteria.

– Reinforcement learning (Mine and Osaki (1970)): A (Semi-)Markovian Decision
Process, which aims at maximizing some utility function.

...

...

...

...

x0

x1

h0

~y’

hn−1

x2

xn−1

FIGURE 6 A prototypical A.N.N architecture. Each input neuron is connected to a hid-
den layer. The final hidden layer is then connected to the output neurons
(Hecht-Nielsen (1990)).

1.5.2 Convolutional Networks

Convolutional networks (C.N.N) is a network architecture specialized in signal pro-
cessing tasks24. A C.N.N can be specified by defining at least one (hidden) layer
which utilized the convolution operation: given a time t dependent output x(t), x, t ∈

23 With the perceptron the hyperplane is a straight line. Adding one hidden layer the separat-
ing hyperplane becomes a polygon. Adding a second hidden layer the hyperplane becomes
a polyhedra, etc.

24 Also other tasks which are suited for grid-like computational models, such as time-series.

45

R, the convolution operation computes a weighted average w with a given dis-
placement h. Or formally,

(x ∗ w)(t) def
=
∫

x(h)w(t− h) dh, w > 0, (17)

where weighted function, or kernel, w must be a valid P.D.F. The only re-
quirement for the operation 17 is that the integral exists, for the operation can
we used for other purposes than computing weighted averages. What (x ∗ w)(t)
produces is a feature map. For a discrete convolution, the operation (17) is defined
as

(x ∗ w)(t) def
=

∞

∑
h=−∞

x(h)w(t− h), x, t ∈ Z. (18)

The appeal of using convolution layers are the following.

– sparse connectivity: The layer can store the detected features into a smaller
number of parameters. This results in smaller memory requirements25 and
improves statistical efficiency.

– parameter sharing: Instead of learning separate parameters for each point loca-
tion, the convolution operation shares the learned parameters by the kernel
w. This also reduces memory requirements.

– equivariant representation: The parameter sharing has the property of equiv-
ariance to translation: if the input changes by some amount, the output
changes by the same amount26.

An additional feature of the C.N.N architecture is the pooling function, which is
performed after the convolution and transfer function operations in the network.
The pooling function replaces certain locations of the output in the network with
a summerized statistics of these certain locations. This pooling function helps
making feature representation approximately invariant to small translations in the
data.

1.5.3 Connection to P.G.Ms

We will illustrate the connection between P.G.Ms and A.N.Ns using an analogy
from statistical mechanics, and an example using a modified version of the Ising
model which is used to understand the phase transitions in ferromagnetic mate-

rials. Given a network (U, N), where U
def
= Z2

m, m > 0 and N is a family of N
neighborhood systems of W

def
= {0, 1} sites. In statistical mechanics terms, we

are solving the phase spaces (states) of the different subsystems defined by the
configurations of x ∈WU.

25 That is, given m inputs and n outputs, a "standard" hidden layer requires O(mn) matrix
multiplication operations, whilst limiting the inputs into k requires O(kn) operations. See
Definition 3.5, Appendix 3.2 for the definition of O(·).

26 f (g(x)) ≡ g(f (x)) for you techincally minded readers.

46

Now the site u ∈ U is being interpreted as a neuron and is excited when
x(u) = 1 and inhibited when x(u) = 0. If we have v ∈ Nu, then u is connected to
v and has the weight wuv. Now the energy function becomes

E(x) = ∑
u∈U

∑
v∈Nu

wvux(v)x(u)− ∑
u∈U

hux(u), (19)

where hu is the activation threshold of the transfer function of neuron u.

1.6 Similarity measures from seismic signal analysis

Here we adopt similarity measures which are utilized in seismic signal analy-
sis (S.S.A), where the goal is to analyze the reflection of wave propagation in
some medium (Yilmaz (2001)). There are three principle applications for apply-
ing S.S.A:

1. Engineering seismology, where tools from S.S.A are applied to near-surface
studies, such as delineation of near-surface geology for engineering studies.

2. Exploration seismology, for exploring and developing hydrocarbon for oil and
gas fields.

3. Earthquake seismology, where the crustal structure of the earth is investigated.

Seismic data contains reflections of wave propagation in a medium, recorded and
stored as a temporal image. These temporal images are processed either consid-
ering each image channel separately or as a multichannel image as a whole. The
tools for processing and analyzing seismic data almost always consists of these
three techniques: deconvolution, common-midpoint stacking and migration.

1.6.1 Coherence measure

The relevant parts and theories of S.S.A for our purposes is to use the concepts
known as coherency measures. What seismic data actually captures is the indirect
measurement of the velocity of the seismic wave travelling in the earth. With the
addition of sonic logs, which are direct measurements of the seismic waves travel-
ling in the earth, different types of velocities can be derived. Coherency measures
are applied to do signal corrections from noisy seismic data measurements and is
one of the main tools for analyzing temporal images obtained from seismograms
(Quincy and Tomich (1985); Bahorich and Farmer (1995)).

To estimate seismic velocities, the seismic data is required to be measured
from nonzero offsets, provided by a measuring device. This is to say, that the
seismic data is captured by a recording device and multiple wave reflections. The
difference in traveltime at a given offset and zero offset is called a normal moveout
(N.M.O) type velocity.

The object of using coherency measures in S.S.A is to find similar data among
multidimensional signals. Thus coherency provides a similarity measure and is

47

used for enhancing, extracting or estimating shapes of common signals. Even if
the data is weak or noisy the coherency measure provides a measure of similar-
ity between similar data signals. How the adopted coherency measure depends
upon the application in question.

Let’s give an elementary S.S.A example. For analyzing seismic data, assume
there is k signal traces (or channels) which are assumed to be independent. From
each k trace, s + 1 samples are obtained and a coherent signal is assumed to cross
the k traces with linear N.M.O trajectory. Let this trajectory be denoted as mj.
The coherency of a signal is evaluated pairwise across the channels using the
following window function

Rj,l(0) =
s

∑
i=0

tj
i+mj

tl
i+mk

, (20)

which measures the zeroth-lag correlations between channels j and l. Here tj
i is

the amplitude of the data sample i at trace j. Using the previous window function,
the unnormalized crosscorrelations between pairwise channels is given by the
sum

∑
l>j

k−1

∑
j=1

1
s + 1

Rj,l(0). (21)

The Simpson’s dissimilarity measure (Simpson Jr (1967)) is used to measure
the crosscorrelation between pairwise channels. This dissimilarity measure is
based on the energy ratio’s output/input where the channels within the window
Rj,l(0) are linearly combined. The dissimilarity measure is expressed as

λ′ =

k−1
2 ∑k

j=1 Rj,j(0)−∑l>j ∑k−1
j=1 Rj,l(0)

k−1
2 ∑k

j=1 Rj,j(0) + ∑l>j ∑k−1
j=1 Rj,l(0)

, (22)

where λ′ ∈ [0, k
k−2]. Within the window Rj,l(0), λ′ will give an estimate for

the Signal-to-Noise Ratio (S.N.R), defined by the samples of k traces. As Rj,l(0)
traverses the k traces, it may overlap in both space and time which gives better
estimation of the data samples. This better estimation comes with an increase
in data storage requirements. The window Rj,l(0) may also be rotated, giving
estimations within the given range of moveouts. For seismograms, this gives a
S.N.R estimate of coherent line-ups, the moveout line-ups and their space-time
location within the seismogram (Quincy and Tomich (1985)).

The information provided by λ′ is used to assign weights to a 2D enhance-
ment mask, where there exists a bijection between the location of the weights in
the enhancement mask and the sample of the regions scanned by Rj,l(0). The
weights designate the maximum S.N.R at the particular weight location passed
by the window estimators at the corresponding data sample. For extracting the
weights, the user inputs two threshold parameters α, β ∈ [0, 1], α > β. All weights
w which satisfy w > α are replaced by α, and all weights which satisfy w < β are
set to zero. After the weights are extracted, the weights are multiplied with the
corresponding data sample in the image.

48

1.7 High-performance computing

High-performance computing (H.P.C) deals with program implementations and hard-
ware aspects for a given computing task (Hager and Wellein (2010)). That is,
when a desired method is chosen for solving a computing task, efficient imple-
mentations of the method is desired on the given hardware. This can be done
either efficient use of the underlying hardware architecture (for example, field-
programmable gate array hardware, cache-based architectures, . . .) or formulat-
ing the chosen method into parallel program, such that the method can be imple-
mented using multicore architectures or graphical processing units.

Choosing an appropriate computing model helps abstracting and encapsu-
lating the main features of a computing architecture. This also helps clarifying
the program description and design for a given problem and evaluating program
performance. A naïve approach to evaluating performance of a parallel program
is to assume having access to an unlimited number of processors with instanta-
neous data transfer capabilities. With this naïve assumption, the theoretical or
maximum expected benefits of the program can be evaluated, and also helps in
search for a more feasible method for a given computational task.

From a computational stand point, method feasibility for a given computa-
tional task depends on context and is not particularly transferable between differ-
ent tasks and situations (Greenlaw et al. (1995)). However, it is desirable that for
large computation problems that the selected method does not have an exponen-
tial (or factorial) growth rate in terms of computing time and space requirements.
This is not only desirable for sequential computing, but also for parallel com-
puting. In practical terms, a parallel method is feasible if we can solutions to a
n-sized problem in polynomial time nO(1), using nO(1) processors. This is not a
universally accepted definition for parallel method feasibility. The use of this def-
inition is justified, when considering that we are attempting to trade the number
of processors for speed. The goal for parallel computing comes then to develop
methods that use a reasonable number of processors27 and are computationally
tractable.

1.7.1 Limiting factors in H.P.C

When discussing limiting factors in H.P.C, it comes down to two factors: techno-
logical and computational 28. Concerning technological limitations, Ahmdal’s law
(Amdahl (1967)) is one of the widely used propositions when evaluating parallel
performance of a program, which governs the amount of parallelism a method
may obtain.

Proposition 1.1. Let fp ∈ (0, 1) be the fraction of number of arithmetic operations which
are inherently sequential, where p is the number of available processors. The speed up Sp

27 What is a "reasonable" number of processors is up to debate.
28 These two limitations often are intertwined. That is, even though a method is formulated

into a parallel program, technological limitations (may) still apply.

49

of a parallel program is bounded by

Sp <
1
fp

. (23)

Ahmdal’s law assumes a fixed sized computation, which then gives a speed
up and efficiency fraction that is actually achievable by the parallel program.
Even for a full parallel program, there is a loss of efficiency caused by the com-
munication time cost, memory references and parallel management between pro-
cessors. With these overhead costs, Ahmdal’s law usually implies Sp < p. For
Sp > p cases, the available data for the computation is too large for the local
memory of one processor. For such cases, then distributing the data across p
processors becomes possible and desirable.

However, it is worthy to note that Ahmdal’s law mainly addresses so called
Single instruction, multiple data systems (Hager and Wellein (2010)). That is, run-
ning a single user-mode on a parallel computer and does not address the effects
of other computational processes handled by the system, nor heterogeneous sys-
tems are addressed.

2 PROBABILISTIC PROPAGATION

"Algorithm (noun) is a word used by programmers they do not want explain what they
did."

Qwertee Tee print

In this chapter, the Belief Propagation (B.P) method will be reviewed. First in
Section 2.1 the B.P scheme by Pearl (Pearl (2014); Jordan et al. (2001)) will be de-
scribed. That is a probabilistic propagation for doing inference in networks, with
a particular emphasis on M.A.P estimation (to be explained later). In Section
2.1.2 we describe a hierarchical propagation approach by Felzenszwalb and Hut-
tenlocher (2006), on the emphasis in image denoising. In Section 2.2, we present a
modification of the B.P procedure by applying the coherence measure to solve the
M.A.P estimation. Accelerating the B.P method is done by utilizing elementary
H.P.C approaches, which is then presented in Section 2.3.

2.1 Propagation in networks

B.P methods are for solving probabilistic inferences using local message-passing
schemes on a set of unobserved variables given a set of observed variables. The
probability distribution is induced by the network’s structure and connection of
the variable nodes in the network. Network structures which are singly con-
nected, that is there exists only one path between any nodes1, there exists tractable
message-passing schemes for computing the posterior probability (or beliefs) of
the set of unobserved node variables given observed ones (Pearl (2014)). We will
focus on network structures where multiple paths are present, that is, multiple
loops. For various message-passing schemes for singly connected networks, see
Smyth et al. (1997) for a review.

1 For example, tree structures (Aho and Hopcroft (1974)).

51

A

B C

D
E

(a)

A B C

D

E
(b)

F

A

C D

B

(c)

FIGURE 7 Example of three different P.G.Ms (Jordan et al. (2001)). The structure and
connection of the nodes represents the constraints (structure) and the qual-
itative aspects of the joint distribution induced by the node connections. a)
A singly connected Bayesian Network. b) A singly connected Markov Net-
work, where nodes A and F are observed. c) A Markov Network with a
loop.

Belief propagation formulation. As just mentioned, the structure of the net-
work implies a product form of the node variables of the induced probability
distribution. Using the chain rule of probability, the complete probability distri-
bution over the node variables can be expressed as a product of conditional and
prior probabilities. For example, for the Bayesian Network in Figure 7 a), we can
express the complete probability distribution in the following product form:

P(ABCDEF) = P(A)P(B|A)P(C)P(D|B, C)P(E|C). (24)

In the case of Markov Networks, the Hammersley-Clifford theorem (Besag
(1974)) guarantees, that the probability distribution can be factorized into a prod-
uct of functions in terms of the maximal cliques in the network. For example, the
Markov Network with a loop in Figure 7 c), we can write the probability distri-
bution into the following product form:

P(ABCD) =
1
Z

P(AB)P(AC)P(CD)P(DB). (25)

There are three inferences tasks what probabilistic propagation can be used
as a solver:

– Marginalization: Computing the marginal probabilities of a variable given
an observed variable(s).

– Maximum a Posteriori (M.A.P): Finding the most probable assignments to
unobserved variables given the observed variables.

– Maximum Marginal: Finding value assignments to the unobserved variables
that maximizes the marginal probability assignments.

In this work only the M.A.P estimation problem is considered. See Appendix 1.8
the M.A.P formulation for vision in P.G.Ms.

Here we give a message-passing scheme for pairwise Markov networks,
which we will be experimenting in image denoising. In the case of where there

52

are many paths between a set of nodes, computing correct beliefs is no longer pos-
sible, because the messages will be passed around the network indefinitely and
the messages will not converge to a stable answer. Empirically, B.Ps are shown
to have good performance on approximate inference when multiple loops are
present in the network (Murphy et al. (2013); Jordan et al. (2001)). However, the-
oretically there is no definite answer yet why these empirical results hold. Ihler
and Willsky (2005) presents some theoretical bounds on the performance of B.Ps
on arbitrary network structures.

2.1.1 Solving M.A.P estimation with message-passing in the presence of loops

In this work, we solve the M.A.P estimation on a grid, which consists of points
in the image. This makes each point on a grid independently, identically distributed,
which acts as a relaxation technique to solve the M.A.P estimation. We use a
variational formulation of the problem (Appendix 1.5), in order to take advantage
of the M.R.F theory presented in Section 1.4.3.

The M.A.P estimation on a grid of points translates to finding the most prob-
able pixel label assignment. The most probable assignment is done by solving the
following energy function:

arg min
X

E(X) = ∑
i∈VL

fi(xi) + ∑
c∈C

fc(xc), (26)

where V is a set of points on the image grid G , C is a set of cliques, and L the
label set. In statistical physics terms, the goal is to minimized the total energy of
the grid points by finding the most probable pixel label assignments. Since we
are restricting our model where |C| = 2, the M.A.P problem (26) is rewritten as

arg min
X

E(X) = ∑
i∈V

fi(xi) + ∑
j∈Ni

fij(xi, xj), (27)

where Nj is the 4−neighborhood of the variable i. Here, fi(xi) denotes the unary
potential of xi, and fij(xi, xj) denotes the clique energy potential.

Energy minimization via max-product B.P translates the clique potentials as
messages mji(xj). Here the message is to the jth variable from variable i, giving
information about the state the variable j should be. The message is encoded as
a vector of dimension |L|with vector components proportional to the likelihood,
or the belief, of the state that xi thinks xj should be.

Minimizing the energy function (27) with B.P is done using a max-product
approach, where the posterior probability distribution for each pixel label is com-
puted iteratively in an approximate fashion. A sum-product approach could also
be used but we use the max-product formulation, because it is computationally
equivalent to minimizing the sum of log probabilities, which corresponds directly
to the M.A.P estimation (27). Computing the messages and passing the messages
in a network is defined by the selected neighborhood structure N . Using the

53

max-product approach, denote mt
i→j as the message passed from i to j at iteration

t. Then the messages are computed as

mt
i→j(f j(xj)) = min

fi(xi)
{ fi(xi) + fij(xi, xj) + ∑

s∈Ni\j
mt−1

s→j(xi))}. (28)

After computing T iterations, for each node we have

bj(f j(xj)) = f j(xj) + ∑
i∈Nj

mT
i→j(f j(xj)), (29)

where the value of bj(f j(xj)) is the most probable labelling for the node xj.

2.1.2 Speeding up max-product on arbitrary network structures

The challenges with B.P methods with multiple loops is that messages are ob-
served, or counted, multiple times, and the difficulty of converging to a correct
posterior estimate2. Counting messages multiple times causes high computa-
tional costs for doing inferences. The basic implementation of message passing
via max-product on a network would requireO(|V||L|2T) operations to converge
to a correct M.A.P estimate (that is, if a correct estimate is to be found), where T
is the number of iterations . Furthermore, each message Θ3(|L|2) operations is
required for computing each message vector and there are |V| messages to be
computed per iteration. To minimize the computational cost of the max-product
scheme, Felzenszwalb and Huttenlocher (2006) applied the following three tech-
niques.

Reducing number of computed messages. To reduce the number of computed
messages, instead of computing the messages explicitly over fi(xi), the message
update (28) is rewritten into a infimal convolution (Maragos (2001)) form:

mt
i→j(f j(xj)) = min

fi(xi)
{ fij(xi, xj) + g(fi(xi))}, (30)

where g(fi(xi))
def
= fi(xi) + ∑ mt−1

s→j(xi), which enables message minimiza-
tion over fi(xi). When the term fi(xi) is computed first, the result can be used to
compute the corresponding message value for f j(xj) in constant time.

To evaluate the difference magnitude between labels, that is fij(xi, xj), dif-
ferent cost functions can be applied. For example, the Potts model (Boykov and
Funka-Lea (2006)) which enforces the label difference to be piecewise constant:

fij(xi, xj) =

{
0 , if xi − xj = 0
d , else,

2 That is, not only restricted to M.A.P estimations.
3 Definition 3.7, Appendix 3.2.

54

where d is some positive constant. When the minimization over fi(xi) is
done independently from f j(xj), the minimization can be done in Θ(|L|) oper-
ations. That is, if we first compute the minimization min

fi(xi)
, we can use this to

compute the message for each fi(xi):

mt
i→j(f j(xj)) = min{g(f j(xj), min

fi(xi)
g(fi(xi)) + fij(xi, xj)}. (31)

Instead of enforcing fij(xi, xj) to do "paranoid" label cost selections, we can
use the form of the Potts model but measure the label difference differently. For
example, a linear model, where the absolute difference between the labeling cost
is evaluated; or quadratic cost, where the quadratic difference is taken between
the labeling cost. In both cases the constant d acts as a ceiling factor which stops
the labeling cost when the difference becomes large. Both linear and quadratic
costs can be seen as computing a collection of lower envelopes (l.e.) of |L| cones
or parabolas with slope c, rooted at (fi(xi), g(xi)). The computation of these en-
velopes is similar to computing a binary distance transform (Borgefors (1986)),
where the l.es are sorted into a combinatorial structure that minimizes (31).

Computing beliefs on a grid. To reduce the number of message computation,
a bipartite network4 structure is utilized, which is an analogous to a red-black or-
dering used for Gauss-Seidel relaxations in M.G solvers (Trottenberg et al. (2000))
(Figure 8). Computing messages in a bipartite network with the max-product
(28), the computed messages are only dependent on their respective partitions
at each iteration t. That is, if we have a set of nodes partitioned into partitions
R, B, at iteration t we can compute the messages from R and then computing the
messages from B will be done at iteration t + 1, and so on. With this alternating
ordering, half of messages on the network are updated and sent at each iteration.

(a) (b)

FIGURE 8 Computing beliefs on a grid. (a) Gauss-Seidel relaxation on a red-black or-
dering. (b) Analogous bipartite network structure.

Cascadic multigrid data structure. The principal operation of M.Gs is that, so-
lutions are computed, sent and refined through multiple levels. That is, the so-
lutions navigate from a fine set of grid points to a coarser set of grid points, and

4 A network where nodes are divided into two disjoint and independent partitions.

55

(a) (b)

FIGURE 9 Scaling between grid block levels. From a finer grid (a) to a coarser grid (b).

the finally moving back up5. For early vision task, the challenge of using a bi-
partite network structure is that messages has to travel "long" distances in the
grid. To minimize the distance between grid points, a cascadic multigrid (C.M.G)
(Bornemann and Deuflhard (1997)) is applied6. The difference between M.Gs and
C.M.Gs, is that in C.M.Gs the computing starts from the coarsest level of the grid,
and then moves up between levels. With the C.M.G structure, the energy mini-
mization is solved level by level, where each level consists of blocks of n× n grid
points, where n = 2l and l = [0..k], k > 0 is the number of levels used in the struc-
ture. With n = 20, the B.P inference is done only on the fine grid points, that is,
the "original" image grid. Figure 9 illustrates a set of grid points in two different
levels.

In energy function form, let Gl be a hierarchy of blocks of V , and f l
i , f l

ij be
the the unary potential and clique potential energy respectively. Then the energy
function (27) is expressed as

arg min
Xl

E(Xl) = ∑
i∈Gl

f l
i (xl

i) + ∑
j∈Ni∈Gl=k×(k−1)

f l
ij(xl

i , xl
j) + ∑

j∈Ni∈Gl=(k−1)×k

f l
ij(xl

i , xl
j)

(32)
In terms of messages, the belief of the messages are initialized with the mes-

sage values from the previous level, moving from the coarsest level to the finer
level.

Next we consider computational speed-ups and improving the quality of
belief messages in B.P computations are presented. Specifically:

Belief improvements: Adding a small additional computational cost to evaluate
the point energies fi on the grid.

5 In imaging terms, this analogous to adjusting the subsampling level of an image (Section
1, discrete geometry).

6 This type of multi-leveled vision processing was pioneered by Marr (1982) using Gaus-
sian convolutions. Other important related scale-space developments were developed by
Witkin (1987) and Koenderink (1984).

56

Speed-ups: Using H.P.C strategies for the overall C.M.G structure to speed up
the overall computation on the grid.

2.2 Belief revision improvement by coherence

First we elaborate improving the unary potential evaluations, following an anal-
ysis on the effects. Here we utilize the concepts presented in Section 1.6.

Recall that fi term evaluates the unary potential on the image grid, and fij
evaluates the level of interaction between adjacent points. We apply the sem-
blance measure directly on the fi term. The benefit of doing this is that it is com-
putationally feasible and has a direct effect on fij. That is, we rewrite the energy
function (27) into

arg min
X

E(X) = ∑
i∈V
Kz(r)(xi) · fi(xi) + ∑

j∈Ni

fij(xi, xj), (33)

where Kz(r), z(r) = (2r + 1× 2r + 1), r > 0, is a similarity measure kernel
(which acts as a probabilistic relaxation of the ith variable). We experiment with
the following coherence measure from S.S.A, called semblance (Neidell and Taner
(1971)), which will be used in Kz(s)

i to improve belief revisions done by the B.P:

1
m

∑t ∑i fi,t(i)

∑t ∑i f 2
i,t(i)

, with range [0, 1]. (34)

See Neidell and Taner (1971) for various other types of coherency measures.

As a reminder from Section 1.6, in the context in velocity analysis, coherence
is used to minimize the difference between the observed data and the prior of
the data while the velocity changes. In the context of M.A.P estimation and B.P,
we are minimizing the observed data and the prior of the data while preserving
context. The context here is the computed semblance measure (34) of the variable
i within a neighborhood defined by the kernel K.

We have to modify K to work on single-channel images, since we will ex-
periment on gray-scale images. The semblance measure on the grid points is
evaluated as follows: given the ith grid point, we construct a K kernel around
the point. Within K, we evaluate all xm,n ∈ K to evaluate the ith grid point sim-
ilarity (or context) within the kernel. The semblance measure (34) computes a
similarity measure in four directions: horizontal α0, 45 degree slope α1, vertical
α2 and 135 degree slope α3. That is,

57

α0 =
(∑|r|k=−|r| xm+k,n)

2

(2|r|+ 1)∑|r|k=−|r| x
2
m+k,n

α1 =
(∑|r|k=−|r| xm+k,n+k)

2

(2|r|+ 1)∑|r|k=−|r| x
2
i+k,j+k

, (35a)

α2 =
(∑|r|k=−|r| xm,n+k)

2

(2|r|+ 1)∑|r|k=−|r| x
2
m,j+n

, α3 =
(∑|r|k=−|r| xm−k,n+k)

2

(2|r|+ 1)∑|r|k=−|r| x
2
m−k,n+k

(35b)

Now we can rewrite equation (33) into its full form:

arg min
X

E(X) = ∑
i∈V
Kz(r)

i (xi, β) · fi(xi) + ∑
j∈Ni

fij(xi, xj), (36a)

Kz(r)(xi, β) =←
{

αi , if max{α0(xi), α1(xi), α2(xi), α3(xi)} > β

0 , else.
(36b)

where r and β ∈ [0, 1] are user-defined parameters for the kernel respec-
tively, and returning the maximum similarity αi ∈ [0, 1] of the ith variable within
the kernel. Obtaining the measure of similarity at the ith variable, we apply the
measure if αi > β, otherwise we set αi = 0.

Figure 10 illustrates the computing of the semblance measure. Here r de-
notes the ”range” or ”span” of the evaluated kernel K.

α0 α1 α2 α3

FIGURE 10 Computing semblance with a Kz(r) kernel with r = 1, yielding a (2s + 1)×
(2s + 1) = 3× 3 kernel. Computing in four directions, semblance gives the
center grid point’s similarity information with respect to its neighboring
points given span s by selecting the maximum direction αi, i = 0, 1, 2, 3.

FIGURE 11 Intuitive idea of the semblance measure. Given a point and desired span r,
the computed similarity measure can be regarded as how regular the point
is with respect to a computed direction.

Figure 11 illustrates a simplified, intuitive idea of the coherency measure:
given a point the signal and the span of the coherency computation, the points

58

0 2 k−11 ...

g(1)

g(2)

g(k−1)

A(x)

FIGURE 12 Computing lower envelopes of belief messages using infimal convolution
(Felzenszwalb and Huttenlocher (2006)).

regularity is measured from the signal profile (Figure 11 (a)) along the given di-
rection. If the span of the evaluation in Figure 11 (a) would exceed beyond the
peak, this would indicate irregularity at the evaluated point. After evaluation,
the measured point’s value is adjusted to a more "true" signal value with respect
to its evaluated neighborhood (Figure 11 (b)).

Remember, the idea of the coherency measures in S.S.A is to reveal the true
signals from a multi-channelled seismic recording device. (In more complicated
cases, the coherency would be computed in multiple directions. In Figure 11, an
example only in one direction is given.) The benefit of evaluating the signal with
the semblance approach, is that we do not need to interpolate for a more suitable
value. The semblance equations (35) is easy to implement and will be addressed
Section 3.1.1.

Next the effects of the semblance measure to probabilistic propagation is
discussed. The effect is discussed from two different viewpoints:

Section 2.2.1 Topologically, the semblance measure induces a new combinatorial
ordering on the propagating messages. With a certain threshold, the sem-
blance measure gives a more minimal energy configuration compared to the
"hard choice" done by the Pott’s computation model.

Section 2.2.2 The semblance measure acts as a modification strategy to solve the
M.A.P estimation in vision tasks. The computable justification is given in
terms of probabilistic combinatorial optimization.

2.2.1 Inducing new combinatorial structure with semblance measure

Recall the message update rule from Section 2.1.2:

mt
xi→xj

(xj)← min
xi
{ fij(xi, xj) + g(xi)}.

This can be seen as solving a sampling problem on a grid of labels (not to
be confused to the image grid itself). Also recall that computing fij can be seen

59

as a collection of l.es of k upward facing parabolas (Figure 12.), when using a
quadratic cost model. Here the parabolas have a slope of c, rooted at (xi, g(xi))
and bounded by xi. The minimization then becomes on solving the combina-
torial structure over these parabolas using the infimal convolution computation
via reordering the parabolas. The new reordering of the parabolas provides the
solution to the minimization problem.

We will use the l.e properties (Appendix 2.4) to justify the new minimal
ordering induced by the semblance measure.

Corollary 2.1. The set of k parabolas defines a family of (xi)i∈[0..k] constraints, where
xi constraints the parabola from above. This family of functions defines a set of points
A(x) which is a closed space. By Weierstrass theorem, this space obtains a minimum
and maximum value. Denoting these constraints as λ, we have g(xi) ≤ λ based on how
g(xi) is defined. If we denote g as the belief messages without the semblance measure,
and

∼
g the computed belief messages with the semblance measure, by the properties of l.e

and Lipschitz functions we have

λ ≥ g(xi) ≥
∼
g(xi). (37)

That is, the messages
∼
g provides a lower energy estimation.

2.2.2 Modification strategy for M.A.P estimation in vision

When considering the M.A.P estimation problem formulation, it is posed as a
deterministic combinatorial optimization problem. This deterministic approach
does not capture the underlying randomness or uncertainty of the underlying
optimization problem of P.G.Ms at the level of the grid points. Only when solving
the energy minimization with associated labelling costs, which are treated as r.vs,
there is an association of uncertainty.

Probabilistic combinatorial optimization attempts to address the limitations of
the deterministic approach to combinatorial optimization (Murat and Paschos
(2006)). Here, for each node in G there is an associated probability p, that the
particular node belongs to some subnetwork of G ′ ⊂ G. So for solving the energy
minimization problem, introduce a probability weight p into the formulation:

E(X) = ∑
i∈V

pi fi(xi) + ∑
j∈Ni

fi,j(xi, xj), (38)

where pi is the probability of xi belonging to some subnetwork in G. In solv-
ing optimization problems, usually only a subinstance of the original problem
is solved. To refine the solution, reoptimization is applied but this is a resource
consuming (time- and spacewise) approach. This comes particularly problematic
when dealing with NP-Hard optimization problems, which is usually the case in
optimization problems in P.G.Ms.

Let us look closer at the formulation of the M.A.P problem. The energy func-
tional E is divided into two functionals: ∑i∈V fi(xi), which controls the "bending"
or contour energy of the grid, and ∑j∈Ni

fij(xi, xj) which governs the relations

60

between the edges of the nodes in the neighborhood. The second functional is
solved using the C.M.G structure by belief revision. The modification strategy
is applied to the first energy function, which governs the how much each grid
point "costs". Using a constant weight on evaluating the unary potential cost
fi(xi) and then processed as a 4−neighborhood can be seen as making conser-
vative decisions about the state of the pixel, because a 4−neighborhood system
cannot account, for example, line breaks.

The modification strategy computes an a priori solution for the unary po-
tential cost. In this work, the a priori solution is computed by the semblance
measure. After the computation of the a priori solutions, the solutions are then
further solved in the message-passing scheme. Thus, this approach is a "greedy"
heuristic of solving the M.A.P assignment problem:

1. Set a set of solutions S← ∅.
2. Order the parabolas (messages) in the multi-scale structure in increasing

order.
3. Include a minimum solution into S.
4. Remove the minimum solution from the network with any edge incident

parabola (messages) to the solution (done in the infimal convolution step).
5. Repeat steps 2 and 3 until there is no more solutions to be removed.
6. return S.

2.3 H.P.C approaches

(In this section, we will refer the multi-level structure presented in Section 2.1.2
as a M.G structure.) Here we consider a more "technical" aspect of solving B.P
inferences on an image grid, using the M.G structure in Section 2.1.2. When con-
sidering speeding up a M.G structure using parallel computing, some suitable
components of the M.G structure are suitable for parallel computation. However
the over all M.G structure is not fully parallelizable. There are two reasons for this:

1. The levels in a M.G structure are proceeded in a sequential manner.
2. The M.G levels limits the degree of parallelism (coarse grids versus fine

grids).

Furthermore, the selected M.G structure has an effect on the complexity of par-
allelism. This is because a number of levels may be solved a number of times
(V−cycle versus W−cycle (Appendix 3.4)).

When solving numerical computations with M.G solvers, there are two ap-
proaches for solving the computation in parallel:

1. Use a fast, efficient sequential solver for the problem and parallelize this
solver.

2. Domain decomposition, where the problem is decomposed into a number
of subproblems, and then each subproblem is solved in parallel.

61

With the above in mind, there are two different parallelizing approaches which
can be considered:

1. Memory optimization: an elementary approach to speed up computation,
where accessing data from memory also retrieves nearby data which are
stored in cache7. That is, exploit cache-coherency, which minimizes data
retrieval from cache (Loshin (1999)). The exploitation will be done using
loop-blocking, where the grid is processed in a n× n or m× n blocks, in order
to speed up the access to data stored in memory8.

2. Parallelization via domain decomposition: the M.G structure in Section2.1.2
takes advantage of a red-black relaxation approach, to reduce the number of
message computations done in the grid. This is a standard approach in
M.G literature, which we will exploit in a parallel, brute-force-manner, us-
ing OpenMPI9.

7 A small auxilary storage location in the computer, allowing fast data retrieval.
8 This is an elementary approach for speeding up a five star stencil operator in numerical

methods. See Appendix 3.4 for an example the stencil operator.
9 OpenMPI is an open source interface using a set of compiler directives for Fortran, C and

C++ languages. https://www.open-mpi.org/

3 EXPERIMENTAL RESULTS

“A thinker sees his own actions as experiments and questions – as attempts to find out
something. Success and failure are for him answers above all.”

Friedrich Wilhelm Nietzsche – The Gay Science

Here three experiments will be covered, using the methods discussed in previous
Sections:

Section 3.1.2 : Image denoising using B.P with and without semblance.
Section 3.2 : Image denoising, using B.P with H.P.C-based acceleration.
Section 3.3 : Retrieving and estimating physical parameters from simulated spec-

tra, using a combination of C.N.N and Bayesian Networks.

3.1 Image denoising: problem definition

Understanding image recording and formation processes helps a long way in
dealing with any type of image processing and analysis techniques. Biologically
speaking, the image formation systems in (most) mammals are done via iris-lens
systems and the image sensor or recording systems are done via the retina (An-
drews and Hunt (1977)). Given an object f (ψ, ν), where (ψ, ν) are coordinates of
the object, an image formation system transforms the object into an image plane
g(x, y), where (x, y) are the coordinates of the image (see Figure 13.). The object-
to-image transformation is done by a source of radiant energy (reflected, trans-
mitted or emitted by the object).

There are three image formation principles on which the object-to-image
transformation is done. The first principle is neighborhood processing. As the
object f (ψ, ν) is transformed into the image plane g(x, y) through radiant energy
propagation, the recorded object at some point (ψ, ν) is affected by its neighbor-
ing points. So the object-to-image transformation process may be dependent not
only a single object point, but (possibly infinite) neighborhood points surround-
ing the object point.

63

ψ

ν y

x
g(x, y)f (ψ, ν)

FIGURE 13 Transformation from the object plane to the image plane by an image for-
mation system. The object f (ψ, ν) is transformed from the (ψ, ν) coordinate
system to the image coordinate system (x, y) into an image g(x, y) by some
formation system.

The second principle is nonnegativity. It is assumed that when the object
is transformed into an image, the resulting energy distribution (from the radiant
energy propagation) is either positivie or zero.

The third principle is superposition. Given two points in the object plane
f1(ψ, ν) and f2(ψ, ν), if only f1(ψ, ν) is the radiating energy, then we observe the
corresponding measurement in the image plane by the quantity g1(ψ, ν) (sim-
ilarly, if we only observe f2(ψ, ν)). The image transformation is responsible for
the energy distribution in the object plane. Taking this responsibility into account,
we can describe the energy distribution in the image plane g(x, y) as a function h
of the object f (ψ, ν), its coordinate points (ψ, ν) and its corresponding points in
the image plane (x, y) as

g(x, y) = h(x, y, ψ, ν, f (ψ, ν)). (39)

The function h can be used to represent the energy distribution of points
as a superposition, because many transport processes of energy radiation are ad-
ditive. The image formation may be nonlinear, in which case the components in
the object plane may not be additive, where as the components may be additive
in the image plane. In either case of linear or nonlinear image formation, it is
possible to describe the image formation process by extending from pointwise
to a continuum. This is done by summing up the infinitesimal contributions of
points in the image plane due to all contributing points in the object plane. These
contributions can be expressed generally as

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
h(x, y, ψ, ν, f (ψ, ν))dψdν. (40)

3.1.1 Image denoising: program

Now to restore the image using

E(X) = ∑
i∈V

fi(xi) + ∑
j∈Ni

fi,j(xi, xj),

the first step is to compute the initial energies (or data costs) of each pixel
state, which the term ∑i∈V fi(xi). After the initial energies have been computed,
we construct the multi-scale structure to evaluate ∑j∈Ni

fi,j(xi, xj), where the be-
lief messages are computed and propagated from the coarsest level to the finer

64

level (using the computed unary potentials). Then, from the computed messages,
the denoised image is produced. Programs 1 and 2 shows the main body of the
denoising program, with the relevant Subprograms are shown in Subprograms 3
and 4.

Progam 1: Image denoising using B.P with C.M.G structure. (Mini-
mization problem (27)).

input : Corrupted image I0, truncation cost d, scaling level L, number
of iterations T, number of states K

output: Restored image
∼
I

1 // Define quadratic cost function

2 f (x, y) def
= min{(x− y)2, d};

3 // Compute unary potentials
4 E0 ← InitialEnergies(I0, f , d, K);
5 // Approximate posterior with C.M.G structure
according to equation (32), and red-black ordering
(Subprogram 3)

6
∼
I ← ConstructMultiscale(E0, f , d, L, T, K);

Progam 2: Image denoising using B.P with C.M.G structure and sem-
blance measure (Minimization problem (36)).

input : Corrupted image I0, semblance radius r, truncation cost d,
scaling level L, number of iterations T, number of states K

output: Restored image
∼
I

1 // Define quadratic cost function

2 f (x, y) def
= min{(x− y)2, d};

3 // Define semblance kernel K (Subprogram 4)

4 Kz(r);
5 // Compute unary potentials
6 E0 ← InitialEnergies(I0, f ,K, d, K);
7 // Approximate posterior with C.M.G structure
according to equation (32), and red-black ordering
(Subprogram 3)

8
∼
I ← ConstructMultiscale(E0, f , d, L, T, K);

65

Subprogam 3: Computing belief messages.

input : Grid points at level Gl, cost function f , truncation cost d,
number of iterations T, number of states K, width |ml| and
height |nl| of block Gl

output: ml
n, ml

s, ml
e, ml

w
1 for t← 0 to T − 1 do
2 for x ← 0 to |ml| − 1 do
3 for y← ((m + t) mod 2) to |nl| − 1 do
4 ml

n(G
l(x, y + 1), Gl(x + 1, y), Gl(x− 1, y), f , d, K);

5 ml
s(G

l(x, y− 1), Gl(x + 1, y), Gl(x− 1, y), f , d, K);
6 ml

e(G
l(x, y + 1), Gl(x1, y− 1), Gl(x− 1, y), f , d, K);

7 ml
w(G

l(x, y + 1), Gl(x, y− 1), Gl(x + 1, y), f , d, K);

Subprogam 4: Compute semblance measure α of given pixel I(x, y)
input : Image I, semblance radius r, current spatial coordinates (x, y)

of I
output: maximum coherency α

1 // Denumerator variables
2 denum0 ← denum1 ← denum2 ← denum3 ← 0;
3 // Numerator variables
4 num0 ← num1 ← num2 ← num3 ← 0;
5 // Semblace variables
6 α0 ← α1 ← α2 ← α3 ← 0;
7 for i← −r to r do
8 num0 ← num0 + I(x + i, y);
9 num1 ← num1 + I(x + i, y + i);

10 num2 ← num2 + I(x, y + i);
11 num3 ← num3 + I(x− i, y + i);
12 denum0 ← denum0 + I(x + i, y)2;
13 denum1 ← denum1 + I(x + i, y + i)2;
14 denum2 ← denum2 + I(x, y + i)2;
15 denum3 ← denum3 + I(x− i, y + i)2;

16 α0 ←
num2

0
(2r+1)denum0

;

17 α1 ←
num2

1
(2r+1)denum1

;

18 α2 ←
num2

2
(2r+1)denum2

;

19 α3 ←
num2

3
(2r+1)denum3

;

20 α← max{α0, α1, α2, α3}

66

3.1.2 Image denoising: results

Here we compare the B.P by Felzenszwalb and Huttenlocher (2006), against the
B.P using the semblance measure. We tested our method with 8bit encoded
grayscale images: the well-known Lena and Barbara images. Both images were
corrupted with Gaussian random noise with standard deviations σ = {10, 12, 15}.
The experiments were carried out using C++11 with an Intel Ivy Bridge i5 pro-
cessor in a Linux environment (kernel version 5.2.11-1). The code was compiled
using native architecture optimization flags. We used two validation metrics to
evaluate the denoising results: Peak-Signal-to-Noise ration (P.S.N.R) and Structural
Similarity Index (S.S.I).

The base-line B.P by Felzenszwalb and Huttenlocher (2006) is computed
using Program 1 and will be denoted plainly as B.P. Applying the semblance
measure on the B.P will denoted as B.Pr and is computed with Program 2, using
the following parameters for the semblance kernel Kz(r):

1. semblance radius r = 1, 2, 3,
2. threshold level β = 0.3.

The following parameters for the C.M.G structure, and cost function for unary
and pairwise pixel costs, were set for both Programs 1 and 2:

– number of iterations T = 5.
– number of levels L = 5.
– threshold d = 200 for the quadratic truncation cost (min{(xi − xj)

2, d}).
– number of states K = 255 (since we aim to restore a full gray scale image).

Note that the implementer may use any other cost function for evaluating the
energy costs. The quadratic cost and parameters r, β, T, L, d were experimentally
chosen by trial-and-error.

Figure 14 shows the uncorrupt test images of Lena and Barbara. The P.S.N.R
can be found in Tables 1 and 3 for Barbara and Lena images respectively. In
Figures 15–17 are shown the denoising experiments using the baseline model and
the proposed approach for Barbara, and in Figures 18–20 shows the denoising
experiments of Lena.

67

(a) (b)

FIGURE 14 Original, uncorrupted test images: (a) Barbara; (b) Lena

TABLE 1 Comparing P.S.N.R values between Felzenszwalb and Huttenlocher (2006)
and B.P with semblance measure (B.Pr). The highlighted quantities denotes
the best result column-wise.

Barbara (512× 512)
σ = 10 σ = 12 σ = 15 CPU(s)

B.P 22.14 22.13 22.10 10.7

B.Pr

r = 1 26.14 25.62 24.46 13.7
r = 2 26.10 25.58 24.44 14.3
r = 3 26.01 25.51 24.40 14.8

TABLE 2 Comparing S.S.I values between Felzenszwalb and Huttenlocher (2006) and
B.P with semblance measure (B.Pr). The highlighted quantities denotes the
best result column-wise.

Barbara (512× 512)
σ = 10 σ = 12 σ = 15 CPU(s)

B.P 0.586 0.5853 0.5832 10.7

B.Pr

r = 1 0.8690 0.8184 0.7164 13.7
r = 2 0.8581 0.8177 0.7159 14.3
r = 3 0.8567 0.8167 0.7153 14.8

68

(a) (b)

(c) (d)

FIGURE 15 (a) Image with additive Gaussian noise σ = 10. (b) Denoising using
Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed method with span
r = 1, 3 respectively.

TABLE 3 Comparing P.S.N.R values between Felzenszwalb and Huttenlocher (2006)
and B.P with semblance measure (B.Pr). The highlighted quantities denotes
the best result column-wise.

Lena (512× 512)
σ = 10 σ = 12 σ = 15 CPU(s)

B.P 24.30 24.27 24.26 10.4

B.Pr

r = 1 26.05 25.28 24.37 13.4
r = 2 26.00 25.54 25.05 14.2
r = 3 25.95 25.05 24.32 14.6

69

(a) (b)

(c) (d)

FIGURE 16 (a) Image with additive Gaussian noise σ = 12. (b) Denoising using
Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed method with span
r = 1, 3 respectively.

TABLE 4 Comparing S.S.I values between Felzenszwalb and Huttenlocher (2006) and
B.P with semblance measure (B.Pr). The highlighted quantities denotes the
best result column-wise.

Lena (512× 512)
σ = 10 σ = 12 σ = 15 CPU(s)

B.P 0.7237 0.7220 0.7221 10.4

B.Pr

r = 1 0.8616 0.7910 0.6341 13.4
r = 2 0.8616 0.7909 0.6347 14.2
r = 3 0.8600 0.6347 0.6350 14.6

70

(a) (b)

(c) (d)

FIGURE 17 (a) Image with additive Gaussian noise σ = 15. (b) Denoising using
Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed method with span
r = 1, 3 respectively.

71

(a) (b)

(c) (d)

FIGURE 18 (a) Image with additive Gaussian noise σ = 10. (b) Denoising using
Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed method with span
r = 1, 3 respectively.

72

(a) (b)

(c) (d)

FIGURE 19 (a) Image with additive Gaussian noise σ = 15. (b) Denoising using
Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed method with span
r = 1, 3 respectively.

73

(a) (b)

(c) (d)

FIGURE 20 (a) Image with additive Gaussian noise σ = 15. (b) Denoising Felzenszwalb
and Huttenlocher (2006). (c)-(d) Proposed method with span r = 1, 3 re-
spectively.

74

3.1.3 Strengths and limitations

When comparing P.S.N.R scores between the proposed approach and the base-
line method, the proposed method was able to provide better scores as seen in
Tables 1 and 3. Comparing to the respective S.S.I scores in Tables 2 and 4, the
proposed method also gave higher scores, with the exception on noise level σ =
15 with the Lena image. In both Lena and Barbara, there remains noise artifacts
with σ = 15, however qualitatively the textures recovered from both images are
satisfactory.

When comparing the Barbara image, the proposed approach was able to re-
construct the diagonal texture stripes from the hood, pants and table cloth. Addi-
tionally the chair in the background was reconstructed well preserving the chair’s
textures. The blurred background in the Lena image provided challenges for the
proposed method while the textures from the hat’s decorations were well pre-
served.

The strengths of the proposed approach is that with a small, extra computa-
tional overhead, better reconstructions was achieved. The simplicity of the sem-
blance measure is also a strength, since the implementation is simple and can be
executed during the unary potential calculation (Program 2, line 6.). Also the pro-
posed method does not require training1 on many types of images (compared to
a generic A.N.N). This makes the proposed B.P method suitable for low-level de-
noising tasks for arbitrary digital images. However, why the semblance measure
works so well could be due to the underlying C.M.G data structure and because
of the presence of multiple loops in the network.

The limitations of the proposed approach is that it will not work on higher
noise levels. As seen from in Figures 17 and 20, there remains noise artifacts in
the image. With higher noise levels the method will leave more artifacts in the
image. Comparing to other neurocomputing models, say C.N.Ns, is pointless in
the sense because C.N.Ns (or other neural network models) require a lot of data
for training. These types of network models also have a large degrees of free-
dom (the number of parameters) which makes these networks models (trivially)
better2 when a sufficiently large size of training images is provided.

1 When using a generic A.N.N architecture, a large and diverse set of training images is re-
quired, and not only in different scales and rotations.

2 Or paraphrasing Uncle Ben: with great degrees of freedom, comes great (neural) perfor-
mance.

75

3.2 High-Performance B.P

3.2.1 Better belief corrections or speeding up computation?

The belief revisions in B.P are done in parallel. However this only means that the
beliefs are updated in parallel, or simultaneously. For time-critical applications,
or machines with limited hardware resources, two considerations must be done
if one is to use B.P methods. Either achieving faster convergence to the correct
posterior estimate3, or speeding up the computational steps in the B.P method.
In general, the interest in speeding up the computation of the optimization prob-
lems in B.Ps is that the number of computed messages is high, which results also
in higher resource requirements both in time and space. An interesting obser-
vation in solving the combinatorial structure of the parabolas with the quadratic
truncation cost, we can still capture meaningful content (such as textures and
edges) with fewer pixel states in the problem formulation. (See Figures 21 and
22.) Another interesting effect of the semblance method is that a fewer iterations
are needed to obtain a decent result of the image restoration task (Figure 23).

To speed up the convergence of the B.P inference, one approach is to refor-
mulate the optimization problem, such that the number of computed messages
is minimized. Another way would be to rewrite the optimization problem, such
that the computational problem could be decomposed into independent compu-
tational stages and apply parallel computing4 approaches. A third option would
be to consider H.P.C approaches (Section 1.7), which is basically combines com-
piler optimizations, thread and memory optimizations additionally to parallel
computing solutions.

All three options stated above are valid and correct in their own right and
depends entirely on the situation. One must also consider additional cost of
thinking and code implementations to a particular problem when choosing an
approach5.

3 This approach may not be resource friendly.
4 We separate the terms parallel computing and H.P.C. The reason being, that (in general),

parallel computing literature focuses on the mathematical formulation (Aki (1989); Greenlaw
et al. (1995)) of the problem, while H.P.C focuses more on the implementation and hardware
aspects.

5 Irwing J. Good coins this mentality as Type 2 rationality (Good (1983)).

76

(a) (b)

(c) (d)

FIGURE 21 Reconstruction using 130 states. (a) Regular Lena. (b) Sampling using
Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed method with span
r = 1, 2 respectively.

77

(a) (b)

(c) (d)

FIGURE 22 Reconstruction using 190 states (a) Regular Lena. (b) Sampling using
Felzenszwalb and Huttenlocher (2006). (c)-(d) Proposed method with span
r = 1, 2 respectively.

78

(a) (b)

(c) (d)

FIGURE 23 Resulting restoration with (a) B.P, iteration 1. (b) B.Pr, r = 1, iteration 1. (c)
B.P, iteration 2.(d)B.Pr, r = 1, iteration 2, respectively.

79

(a) (b) (c)

FIGURE 24 Memory optimization approaches. (a) No memory optimization. The
whole grid is processed in a brute-force manner with no consideration of
data locality. (b) Memory optimization using inner-loop approach: the grid
is processed in a particular sized slab, defined by the user. Now grid points
in memory are more localized and can be retrieved faster, minimizing cache
misses. (c) Memory optimization using double-loop approach: the grid is
processed within k× k blocks. Same principle applies as in (b).

3.2.2 H.P.C: problem formulation

The main bottle-neck is computing the messages on the image grid (Subprogram
3). Here we consider H.P.C approaches which have been applied to solving M.G
computations. The main observation (also an exploit) is the fact that the B.P ap-
proach by Felzenszwalb and Huttenlocher (2006) utilizes a message computing
scheme which is analogous to solving discretized P.D.Es with Gauss-Seidel relax-
ation with red-black ordering. The aim is to exploit the red-black ordering of the
message computation. We consider the following speed-up approaches:

1. Parallel Brute-force: A simple "brute-force" approach, where we process
the grid points in parallel with no memory optimization.

2. Inner-loop optimization: The grid is partitioned into "slabs" with respect to
the width of the grid.

3. Double-loop optimization: The grid is partitioned into k× k blocks.

The inner- and double-loop optimization approaches are also parallelized. Figure
24 illustrates the above approaches on a grid of points. To compute the inner-
and double-block loop optimization in parallel, one just parallelizes the all loops
except the iteration loop.

3.2.3 H.P.C: results

In this experiments, we will consider only speeding up the computation of the
message computation section of the B.P inference using the Lena image. Since
computing the unary potentials in the model is done separately from the rest of
the program, we will omit the B.P inference model with semblance computation.
The experiment were carried out with the following hardware:

80

Subprogam 5: Computing belief messages using inner-loop optimiza-
tion.

input : Grid points at level Gl, cost function f , number of iterations T,
number of states K, width |ml| and height |nl| of block Gl

output: Return messages
1 for t← 0 to T − 1 do
2 for x ← 1 to |nl| − 1; x = x + 4 do
3 // Inner block

4 for xb← (x + t) mod 2 to |ml| − 1; xb = xb + 8 do
5 for y← xb to xb + 3; xb = xb + 1 do
6 ml

u(G
l(x, y + 1), Gl(x + 1, y), Gl(x− 1, y), f , K);

7 ml
d(G

l(x, y− 1), Gl(x + 1, y), Gl(x− 1, y), f , K);
8 ml

r(G
l(x, y + 1), Gl(x1, y− 1), Gl(x− 1, y), f , K);

9 ml
l(G

l(x, y + 1), Gl(x, y− 1), Gl(x + 1, y), f , K);

– Intel Xeon E5-2670 (2.60GHz)6, 8 cores with 20MB cache size and 32GB RAM
on the PC. Used Linux environment: 4.18.0.

– Intel i7-4910MQ (2.90GHz), 4 cores with cache size 8MB and 32GB RAM on
the PC. Used Linux environment: 3.10.0.

All codes were compiled using native architecture optimization flags. Figure 25
shows how increasing the number of threads or computing messages in separate
blocks affect the message computation times.

	0

	2

	4

	6

	8

	10

	12

	14

	0 	2 	4 	6 	8 	10 	12 	14 	16

W
al

lcl
oc

k	
tim

e	
(s

)

#Threads

Message	computing	in	C.M.G	(Lena(512x512))

Xeon-bf
i7-bf

Xeon-ib
i7-ib

Xeon-db
i7-db

(a)

	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0 	2 	4 	6 	8 	10 	12 	14 	16

Ca
ch

e-
m

iss
	(%

)

#Threads

Message	computing	in	C.M.G	(Lena(512x512))

Xeon-bf
i7-bf

Xeon-ib
i7-ib

Xeon-db
i7-db

(b)

FIGURE 25 Computation statistics of belief message computations in C.M.G structure.
(a) Measuring Wall-clock time (s) vs Threads. (b) Measuring cache-miss vs
Threads.

6 Experiments done with this machine had two computing nodes. In other words, two 8-
core processors with the potential of using 32 threads. The experiment was limited to 16
threads. It is good practice to reserve at least one thread to handle various background
operations done by the operation system, behind the program execution.

81

Subprogam 6: Computing belief messages using double-loop opti-
mization.

input : Grid points at level Gl, cost function f , number of iterations T,
number of states K, width |ml| and height |nl| of block Gl

output: Return messages
1 for t← 0 to T − 1 do
2 // Outer block

3 for xb← 1 to |nl| − 1; xb = xb + 8 do
4 // Inner block

5 for yb← ((xb) + t) mod 2 to |ml| − 1; yb = yb + 8 do
6 for x ← xb to xb + 3; xb = xb + 1 do
7 for y← yb to yb + 3; yb = yb + 1 do
8 ml

u(G
l(x, y + 1), Gl(x + 1, y), Gl(x− 1, y), f , K);

9 ml
d(G

l(x, y− 1), Gl(x + 1, y), Gl(x− 1, y), f , K);
10 ml

r(G
l(x, y + 1), Gl(x1, y− 1), Gl(x− 1, y), f , K);

11 ml
l(G

l(x, y + 1), Gl(x, y− 1), Gl(x + 1, y), f , K);

When adding more threads to the computation, the wallclock time reduced
as the number of threads were increased. The only exception was with computing
the messages in a double-loop approach, where the wallclock time and cache-
misses remained fairly linear. Using the inner-loop optimization, both i7 and
Xeon processors managed to reduce the wallclock time and cache-miss when the
number of threads were increased. The Xeon processor performed better with the
inner-loop optimization compared to the i7.

When it comes to image quality, whatever hardware or computational par-
alellization should not (ideally) differ from the sequential approach. In Figure
26 the brute-force parallelization does not differ from the sequential approach in
both with and without semblance. However when using inner- and double-block
loop optimization (Figures 26 and 27) there is a difference when semblance is not
applied. When semblance is applied, the restored image is closer to the sequential
output but there are block-like artifacts present in the image.

82

(a) (b)

(c) (d)

FIGURE 26 Image restoration using B.P with and without semblance measure using
H.P.C approaches. (a) B.P with brute-force paralellization (P.S.N.R: 24.30).
(b) B.Pr=1, brute-force parallelization (P.S.N.R: 26.05). (c) B.P with inner-
block optimization (P.S.N.R: 23.43). (d) B.Pr=1, with inner-block optimiza-
tion (P.S.N.R: 24.18).

83

Subprogam 7: Computing belief messages in parallel in a brute-force
manner.

input : Grid points at level Gl, cost function f , number of iterations T,
number of states K, width |ml| and height |nl| of block Gl

output: Return messages
1 for t← 0 to T − 1 do
2 parfor x ← 1 to |nl| − 1; x = x + 4 do
3 parfor y← (x + t) mod 2 to |ml| − 1; y = y + 4 do
4 ml

u(G
l(x, y + 1), Gl(x + 1, y), Gl(x− 1, y), f , K);

5 ml
d(G

l(x, y− 1), Gl(x + 1, y), Gl(x− 1, y), f , K);
6 ml

r(G
l(x, y + 1), Gl(x1, y− 1), Gl(x− 1, y), f , K);

7 ml
l(G

l(x, y + 1), Gl(x, y− 1), Gl(x + 1, y), f , K);

(a) (b)

FIGURE 27 Image restoration using B.P with and without semblance measure using
H.P.C approaches. (a) B.P with double-loop optimization (P.S.N.R: 23.04).
(b) B.Pr=1, with double-loop optimization (P.S.N.R: 24.01).

84

3.2.4 Strength and limitations

Considering data locality in Subprogram 3 can be done in a straight-forward way,
and the implementation is easy. The red-black ordering of the Gauss-Seidel ap-
proach makes both parallelization and inner-loop (memory) optimization a fea-
sible approach in processing grid points. Double-loop optimization approach is
also feasible, however the experiments show, that the choice of processor has an
effect in both computation time and the number of cache-misses.

The choice of hardware has an effect on the choice of H.P.C approach when
using the red-black ordering on the B.P inference method. Also one should con-
sider border or halo effects when processing the grid point in parallel, as seen in
Figures 26 and 27. Surprisingly, when using the base-line B.P method, the same
cartoonish restoration is not obtained as in the sequential experiments (Section
3.1). This reveals interesting, not yet found, properties of B.Ps on arbitrary net-
works.

85

3.3 Retrieving physical parameters from simulated image spectra

In this Section, we combine two interpretations of neurocomputing into a unified
tool, namely A.N.Ns and P.G.Ms. This tool consists of two parts:

1. A neural network architecture component, which is used to learn and generate
data.

2. A P.G.M component, more specifically a Gaussian B.N structure, for do-
ing probabilistic queries on the dependencies between (parameter) proposi-
tions.

The motivation for the above experiment is to explore how B.Ns could be used
as a "modern" expert system (Jones and Graham (1988)). Before the second A.I
winter, expert systems were applied in many situations in various industry and
medical applications, of which the MYCIN system (Shortliffe (2012); Sotos (1990))
is perhaps the well-known in the medical domain. We will use this expert sys-
tem framework, in the context of modelling skin cancer from a set of physical
parameters of the skin. These physical parameters are derived using the Kubelka-
Munk light propagation model. From this light propagation model, we retrieve
the physical parameters using a C.N.N model, and finally do probabilistic queries
for evaluating physical parameter dependencies.

In this experiment the following steps are applied:

1. Simulate physical parameters using the Kubelka-Munk light propagation
model (Section 3.3.2).

2. Retrieve the physical parameters by learning an inverse function using a
C.N.N architecture (Section 3.3.3).

3. Evaluate physical parameter dependencies with probabilistic queries, using
Gaussian B.Ns (Section 3.3.4).

3.3.1 Skin cancer – motivation

Over the past decades there has been an increase of non-melanoma and melanoma
incidences, and it is currently estimated that there are 2–3 million non-melanoma
and 132000 melanoma skin cancer occurrences every year. One thirds of every
cancer diagnosis are diagnosed as skin cancer. Skin cancer also has big societal
costs. For example in Sweden in 2005, it was estimated that skin cancer had a to-
tal cost ofe142.2 million, of whiche79.6 million was spent on health services and
e62.8 million due to loss of production. Therefore there is a need for establishing
and designing effective preventive measures for skin cancer detection to avoid
increasing costs and suffering of skin cancer. One possible options for preventive
diagnosis of skin cancer is using spectral imaging. Spectral imaging offers both
spectral and spatial information of a digital image, obtained by imaging multiple
spectrums of the electromagnetic spectrum of a target digital image (Garini et al.
(2006)). These spectral and spatial information can be used to detect abnormali-

86

(a) Melanoma (b) Nodular Melanoma

FIGURE 28 Biopsy samples from H&E stained tissues. Images provided by Noora Neit-
taanmäki and used with permission.

ties in skin tissue, using hematoxylin eosin (H&E) stained preparations of normal
and abnormal skin, benign nevi and melanomas (Figure 28).

3.3.2 Light propagation modelling

We model the major layer structures using the Kubelka–Munk (K.M) light propa-
gation model (Kubelka and Munk (1931)), which is based on the relation between
scattering and the absorption coefficient of the skin layers, as well as the over-
all reflectance. The K.M theory describes radiation in diffuse scattering media
through an energy transport equation (Jolivot et al. (2013)). Based on this equa-
tion, it is possible to make quantitative studies about absorption, scattering and
luminescence in diffuse scattering media, as illustrated in Figure 29. A similar
approach has been used previously by Jolivot et al. (2013). The optical properties
of skin have been studied widely in traditional spectroscopy research7, where
the focus is on the light propagation model. The model consists of the structural
properties of several layers, where the most important layers are epidermis, der-
mis and subcutaneous fat (Anderson et al. (1981)). In principle, it is possible to
represent each layer as as a combination of absorption and scattering properties
of different chromophores in the skin.

There is a wide range of potential candidates for the model (see for example
Jolivot et al. (2013)), but in this experiment, one of the simplest and a numerically
inexpensive approach has been chosen. The major chromophore of epidermis is
melanin (Norvang et al. (1997)), and in dermis, oxygenated and de-oxygenated
haemoglobin.

According to Jacques (2013), the absorption µa of each skin layer can be
characterized as the following linear mixture of different chromophores:

µa =BSµa,oxy + B(1− S)µa,deoxy + Wµa,water+

Fµa, f at + Mµa,mel + 2.3(Cbiliµa,bili + Cβµa,β), [cm−1]
(41)

where µa,_ are known absorption coefficients of chromophores. Other parameters

7 See for examples, the works of Anderson and Parrish (1981) and Jacques (2013)

87

Light source Detector

Diffuse

reflectance
Diffuse

light

Reflectance

Emmittance

Absortion

Scattering

Muscle

Fat

Reticular dermis

Papillary dermis

Epidermis

Stratum corneum

FIGURE 29 Light reflectance of rays in between different skin tissue layers (Pölönen
(2013)).

TABLE 5 The seven parameters and their operating range based on literature (Jolivot et
al. (2013)).

Skin choromophores and parameters
used in the equations Symbol

Hemoglobin oxygen saturation O
Blood volume fraction VB

Scattering fraction SF
Scattering power SP

Melanosome volume fraction VM
Epidermis thickness TE

Dermis thickness TD

88

are listed in Table 58.
A simplified absorption model is considered: using only the mixture of

main chromophores and a baseline spectrum

µa =BSµa,oxy + B(1− S)µa,deoxy

+ Mµa,mel + (1−M− B)µa,base, [cm−1]
(42)

where the melanin absorption coefficient is

µa,mel = 6.6× 1011λ−3.33[cm−1] (43)

and the baseline absorption coefficient is

µa,base = 0.244 + 85.3 exp
−(λ−164)

66.2 .[cm−1] (44)

Both estimates were originally presented by Jacques (1998). When considering
non-cancerous skin as a two-layered structure, it follows that B = 0 in the epi-
dermal layer, and M = 0 in the dermal layer. Cancerous tissue complicates the
structure. For example, in advanced malignant melanoma, blood may be found
in the epidermal layer, and melanocytes in the dermal layer.

Skin scattering can be approximated using Mie theory (Wriedt (2012)) as
follows:

µ′s = a
(

λ

500(nm)

)−b
, [cm−1] (45)

where µ′s is the reduced scattering, a is the scaling factor and b the scattering
power. Variance between Mie and Rayleigh scattering is dependent on the di-
ameter of the fibres in the skin. If the majority of skin fibres are very small, then
the fraction of Rayleigh scattering fRay is large. For example, low fRay could in-
dicate that the amount of collagen is high in a certain spot of skin. The skin
anisotropy factor g varies between 0.5 and 0.9. The scattering for each skin layer
is µs = (1− g)µ′s.

The equation for reflectance R for one layer can be represented as a function
of layer thickness dlayer, absorption µa and scattering µs (Jolivot et al. (2013)):

Rlayer(λ) =
(1− β)2)(expKlayerdlayer − exp−Klayerdlayer)

(1 + β)2 exp−Klayerdlayer −(1− β)2 exp−Klayerdlayer
(46)

Transmittance T can be represented as

Tlayer(λ) =
4β

(1 + β)2 expKlayerdlayer −(1− β)2 exp−Klayerdlayer
(47)

where K is the backward flux

Klayer =
√

klayer
(
klayer + 2× slayer

)
[cm−1] (48)

8 Haemoglobin absorption coefficients used for this study were downloaded from
http://omlc.org/spectra/index.html.

89

and β is the forward flux

βlayer =

√
klayer

klayer + 2slayer
, (49)

and
klayer = 2× µalayer , slayer = 2× µslayer .[cm−1] (50)

These equations follow from the Kubelka–Munk theory.
The total reflection can be expressed as

Rtotal = RepidermalRdermal = Repidermal +
T2

dermalRepidermal

1− RepidermalRdermal
. (51)

3.3.3 Physical parameter retrieval with C.N.Ns

We follow the modeling approach from Erkkilä et al. (2021). Using the results
and parameters of the K.M-model, we aim to train a C.N.N architecture in order
to learn an inverse function, which would retrieve parameters from the simulated
light propagation model. The training is done in a supervised manner (Section
1.5.2), using a relatively simple architecture model, with rectified linear activation
unit (ReLU) transfer functions, which is a piecewise function

ReLu(w) = max{0, w}, (0 is a zero vector.).

ReLU functions, particularly ReLu networks (Zou et al. (2020)), are currently
popular in practice because of because it makes gradient descent-based optimiza-
tion easier (Goodfellow et al. (2016); Zou et al. (2020)). Below is a description of
the used C.N.N model:

– 1D Convolutional layer, 64 different kernel with kernels size 3 and ReLU
activation

– Maximum pooling layer with pooling size 2
– 1D Convolutional layer, 128 different kernel with kernels size 3 and ReLU

activation
– Maximum pooling layer with pooling size 2
– 1D Convolutional layer, 256 different kernel with kernels size 3 and ReLU

activation
– Maximum pooling layer with pooling size 2
– Fully connected layer with 128 units and ReLU activation
– Dropout with rate 0.5
– Fully connected layer with 64 units and ReLU activation
– Dropout with rate 0.5
– Fully connected layer with 32 units and ReLU activation
– Fully connected layer with 7 unit

90

FIGURE 30 Resulting simulated spectra using the K.M light propagation model (Sec-
tion 3.3.2).

For the experiment, we used the Tensorflow and PgmPy packages. Training of the
C.N.N is done with back-propagation (Werbos (1994)) using the Adam stochastic
optimization program (Kingma and Ba (2014)). We use a modified loss function
for measuring correlation between the true output and the predicted outputs:

err = ∑i(xi − yi)
2

∑i(xi − x)2 , (52)

where xi is the target physical parameter value, yi is the estimated value and x
is the average of the output values. The input (Figure 30) and output data are
spectra of skin model parameters.

3.3.4 Parameter dependency estimation with Bayesian Networks

After we have modelled the simulated data with the C.N.N model, we assess
the dependencies between physical parameters using Gaussian Bayesian Network
(G.B.N) (instead of discrete states, the proposition are assumed to be from a Gaus-
sian distribution). Instead of variables, we now use the term propositions.

We treat the problem of parameter dependency evaluation as a state-space
problem with added stochasticity. The evaluation of the statistical dependen-
cies between propositions and targets are solved in the form of linear regression
problem. Because we are dealing with continuous variables (that is, spectral sig-
natures), we will define a conditional probability distribution (C.P.D) over the vari-
ables. For example, given target Y with parent propositions x1, x2 and x3, then

91

FIGURE 31 Physical parameters retrieved by the C.N.N model from the simulated spec-
tra.

92

the C.P.D is defined as

P(Y | x1, x2, x3) = N (β1x1 + β2x2 + β3x3; σ2). (53)

If Y is a linear Gaussian of its parents x1, x2 and x3, then we have

P(Y|x) = N (β0 + BTx; σ2). (54)

The distribution of Y will be a normal distribution with

−
yY = β0 + BT (55a)
−
σY = σ2 + BTΣB. (55b)

The joint distribution over x and Y is defined by the covariance

ΣxiY = Σk
j=1β jΣi,j. (56)

With the above equations, a linear G.B.N then defines a joint Gaussian distri-
bution (Koller and Friedman (2009)). The goal here is to solve the latent variables
BT and σ2, which can be solved using maximum likelihood estimation (M.L.E) (Ap-
pendix 2.4.1). In order to treat the propositions as continuous variables, a G.N.B
requires the propositions to be from a Gaussian distribution. However, C.N.Ns
are shown to be connected Gaussian processes9 (Borovykh (2018)), which makes
it possible to solve the latent variables of equations (55)–(56).

Proposition queries. Table 6 shows the resulting probability queries for esti-
mating the dependencies between various physical parameters. The aim is to
evaluate the dependencies between the epidermis TE and dermis TD layers and
the melanosome VM, to scattering power of the spectra. That is, our target is
Y = SP. In order to evaluate Y from both the epidermis and dermis layer as a
combination, we have to combine the propositions of each respected layers. That

is, we form two new propositions P1
def
= {TE, VM} and P2

def
= {TD, VM}.

Figure 32 shows the structure of the G.B.N used to do the queries. Fig-
ures 33 – 35 shows the kernel density estimations (K.D.E) of {TE, VM}, {TD, VM},
{TE, TD, VM} propositions respectively from the C.N.N model simulated spectra.

When combining propositions which are at the "same level" in the network
(Figure 32), we get stronger dependencies between physical parameters TE, TD
and VM for SP, if we use SP for inferring melanosome from spectral signatures.
That is, observing VM in either TE or TD does not give strong of a correlated
dependency, as observed in Table 6.

To exemplify a limitation of the proposed parameter dependency estimation
approach, consider the following probability query. Estimating the dependencies
between TD and VM, with the additional observations of oxygen saturation O.
For this query estimation, we must define the following conditional proposition

9 In fact, given a "large enough" A.N.N, the network will converge to a Gaussian process.

93

Epidermis

thickness

Melanosome
volume fraction

Scattering
power

Scattering
fraction

thickness
Dermis Melanosome

volume fraction
Blood
volume fraction

Oxygen saturation

FIGURE 32 The complete G.B.N structure, with all physical parameters, used for solv-
ing the example probability queries in Table 6.

TABLE 6 Probabilistic queries results on the parameters using the G.B.N structure in
Figure 32.

Parameter dependencies between propositions and target
Proposition β0 β1 β2 σ2

P(SP | TE, VM) 2.10 0.67 0.21 4.03
P(SP | TD, VM) 2.15 0.65 0.20 5.01
P(SP | P1, P2) 1.87 0.88 0.5 4.01
P(SP | P3, TD, VM) 8.19 - - 10.19

P3
def
= (O | VB) (Figure 32). Afterwards we can solve the query using M.L.E. The

result can be found in the last entry in Table 6.
Elaborate propositional queries, such in the case of adding the conditional

proposition (O | VB), the estimation is unable to capture the dependencies be-
tween propositions10. This however expected since we are experimenting with
a linear G.B.N to model the variable dependencies. Furthermore our approach
is only capable of detecting linear dependencies between propositions. Using
a B.N model, equipped with a nonlinear estimator, would work better in these
types of situations.

10 That is, to give sensible results.

94

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
melanosome volume fraction

0.0

0.2

0.4

0.6

0.8

ep
id

er
m

is
th

ick
ne

ss

FIGURE 33 K.D.E plots between retrieved parameters epidermis layer thickness and
melanosome volume fraction from the C.N.N model, used on the simulated
spectra.

95

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
melanosome volume fraction

0.0

0.2

0.4

0.6

0.8

de
rm

is
th

ick
ne

ss

FIGURE 34 K.D.E plots between retrieved parameters dermis layer thickness and
melanosome volume fraction from the C.N.N model used on the simulated
spectra.

96

0.4 0.5 0.6 0.7 0.8 0.9 1.0
p(epidermis,melanosome)

0.5

0.6

0.7

0.8

0.9

1.0

p(
de

rm
is,

m
el

an
os

om
e)

FIGURE 35 K.D.E plot between parameter combinations (epidermis layer thickness,
melanosome volume fraction) and (dermis layer thickness, melanosome
volume fraction), retrieved with the C.N.N model, used on the simulated
spectra.

97

3.3.5 Strengths and limitations

As mentioned, the main limitation of the proposed approach is that only linear
dependencies can be evaluated between propositions. Elaborate queries cannot
be solved using this approach. To capture properly the possible nonlinear inter-
actions between propositions, nonlinear solvers should be used for the estimation
step. Another limitation is the selection of the A.N.N architecture for doing the
parameter dependency estimation.

Note that, the purpose of the proposed approach is not to explain the mod-
eling done by the C.N.N. The use of the G.B.N is merely to assist evaluating the
used A.N.N model in a certain application domain (medical in this case). There
exists methods which are aimed at "explaining" the decision made by a statistical
model. Some approaches are for example

– LIME (Ribeiro et al. (2016)), which evaluates individual point decision from
the given decision surface.

– Cooperative game theoretic (Lundberg and Lee (2017); Strumbelj and Kononenko
(2014)), where parameters of the model is evaluated using Shapley values
(Shapley (1953)).

– Evaluating propagation of learning and decision making in A.N.Ns (Shriku-
mar et al. (2017); Bach et al. (2015)).

The above approaches have in common that the model parameters or weights
are evaluated with respect to target outputs without taking the context of the appli-
cation into consideration11. For example, in LIME one can evaluate how individual
decisions are made and how the model has weighted the parameters to a given
target. If one would make a decision is the used model feasible to a given ap-
plication, one would have to evaluate all or selectively the decisions made by
the model. This is approach could be (possibly) error prone and cumbersome
in practice, given that the A.I industry is geared towards "efficiency". The game
theoretic approach has the strength of evaluating all parameter pairs or in differ-
ent permutations (tree structured models only). However the given values of the
Shapley values could be difficult to interpret, especially when the combination of
the parameters are not taken into the context the application.

The strength of the proposed approach in this Section, is that evaluating
variable dependencies to a chosen target variable is model agnostic, and the user
can define the dependencies between to a given (known) background informa-
tion of the application. The approach of using B.Ns to do variable dependen-
cies is well-used in many medical applications (Bucci et al. (2011); Donnat et al.
(2020)). That is, using B.Ns for evaluating variable dependencies is not only for
simulated data (as we have used). The proposed approach could also be used to
model the uncertainties between classes: in our skin cancer case, a possible next

11 Note: feature and function of a feature (parameters obtained by the model) are not the same
thing. Many of these "model explainer" approaches explain the model parameters, not the
feature itself.

98

step would be to evaluate the parameter dependencies between melanoma and
non-melanoma type cancers.

If looking for new, unobserved relations between parameter can also be
done with B.Ns in the form of structured learning (Koller and Friedman (2009)).
The drawback in this approach is that learning a model structure in B.Ns is NP-
Complete (Chickering (1996)) (Appendix 3.1), which is done after the user has
initially established the structure of the B.N.

4 DISCUSSION & CONCLUSION

"You have to consider the possibility that God does not like you. He never wanted you.
In all probability, he hates you."

Tyler Durden – Fight Club

In this research work, algorithmic optimizations in P.G.Ms, more specifically in
Belief Propagation, were considered. Applications of B.Ns were experimented
in quantifying probabilistically physical parameter dependencies, where the pa-
rameters were modelled with a light propagation model and C.N.Ns.

The unary potentials were probabilistically evaluated using a semblance
measure. This resulted in improvements in both computational speed (less iter-
ations in B.P inference needed to obtain a solution) and restoration quality, com-
pared to the vanilla approach of using constant weights. H.P.C solutions were
also explored to speed-up the message computations in the C.M.G data struc-
ture. When using memory optimization techniques such as loop blocking, if one
does not use semblance measures in the computation, an incorrect posterior is
approximated. This due to not considering the border cases in each block. How-
ever, using the semblance measure in the memory optimization one can obtain
near correct approximations to the posterior with small artifacts remaining in the
solution. With the memory optimization, considerable speed-ups can be obtained
if using the appropriate blocking approach.

Such low-level H.P.C approaches have yet to be reported in vision literature.
The presented H.P.C approaches are widely used in various high-performance
numerical methods. A suitably selected data structure to solve messages on a
P.G.M, combined with basic H.P.C approaches, would offer a more pragmatic ap-
proach to speed up B.P inferences, compared to laboriously rewrite the optimiza-
tion problem into a (potentially) more complicated form. Existing parallel com-
putational and H.P.C approaches to B.P on arbitrary networks include compu-
tations on computing clusters (Mendiburu et al. (2007)), a MapReduce ¤Lämmel
(2008)) approach to B.P inference in parallel (Gonzalez and Guestrin (2009)) and
using a shared memory approach to compute B.P inference in parallel (Gonzalez
et al. (2011)). Most approaches in the literature are computations on large scale

100

architectures. The benefit of our approach is that they are suited more for local
computation environments and are easier to implement.

A.N.Ns and P.G.Ms were experimented by combining them into evaluate
physical parameter dependencies in the context of skin cancer modelling. This
type of approach has yet to be reported in the literature (for better or for worse).
Initially a C.N.N model was trained to model the physical parameters and then
a B.N model was used to evaluate to probabilistic dependency between variables
using queries.

4.1 Further considerations

While the presented approaches in this research work does not compete with
the state-of-the-art methods in vision tasks, the approaches did reveal some in-
teresting properties. For example, the distance transform sampling done in the
C.M.G structure was able to exploit the new combinatorial structure, done by the
semblance measure on the unary potentials. The reason the C.M.G structure is
a fruitful data structure for solving arbitrary network structures, is that the so-
lutions in an arbitrary network exhibit periodicity (Jordan et al. (2001)). The goal
of M.G structures is to smooth out the errors between grid layers by filtering out
undesirable high and low frequency components. By applying local fourier analy-
sis1 (Trottenberg et al. (2000)), one could design more appropriate M.G or C.M.G
structures to aid B.P inference. Also, said local fourier analysis could be another
tool to analyze the effects of the coherence measure on vision tasks using the
C.M.G structure.

The challenge of using B.Ns to evaluate the variable dependencies from
other models, is the construction of an appropriate network structure for the
problem. There are computational approaches to solve a suitable structure when
given some initial node dependencies, however for continuous variables this is an
intractable problem2. If in Section 3.3 we would have had discrete state, we could
have use for example Bayes information criterion (Koller and Friedman (2009)) or
K2 (Cooper and Herskovits (1992)) to evaluate an appropriate structure.

A suitable coherence measure should also be considered when using mea-
surements such as spectral imaging. The simulated K.M model provided spectral
signatures for each physical parameter, however if using a spectral imaging de-
vice on capturing an image of a skin lesion, other coherence measures should be
considered where structural infromation could be retrieved. For example, coher-
ence measure by Gersztenkorn and Marfurt (1999) which is sensitive to lateral
changes of the input signals but not to changes in the signal amplitude. Or the
measure by Chopra and Marfurt (2007) which can distinguish for example re-
gional, local discontinuities which many coherence measures lack.

1 These are tools used to design M.G structures to solve problems in practice.
2 An empirical observation, yielded during experimentation.

YHTEENVETO (SUMMARY IN FINNISH)

Tässä työssä käsiteltiin neurolaskentamenetelmiä konenäkösovelluksissa. Työn
tavoitteena oli kehittää laskentamenetelmä hyödyntämällä koherenssimittaa ja
rinnakkaislaskentaa todennäköisyysverkkoihin, jolloin todennäköisyysverkkojen
lasketansuoritus paranee sekä laadullisesti että laskenta-ajallisesti. Työssä estel-
tiin myös menetelmä, jossa todennäköisyysverkkojen ja neuroverkkojen yhdis-
telmä sovitetaan arvioimaan tilastollisesti neuroverkkojen tuottaman luokittelun
tulosta fysikaalisten mallien pohjalta. Sovellusesimerkissä tarkastellaan fysikaa-
lisen mallin muuttujien keskinäistä riippuvuutta ihosyövän tapauksessa. Näitä
muuttujia ovat muun muassa hemoglobiinin ja melamiinin määrä sekä ihoker-
rosten paksuus.

Työssä käsiteltiin myös alemman tason konenäkötehtäviä kuten kohinnan
poistoa. Ilman painokerrointa, todennäköisyysverkkoon käytettyjä kustannus-
funktiot huomattiin tekevän konservatiivisempia pikselin arvovalintoja verrattu-
na adaptiivisiin painokerrosmentelmiin. Tavoite oli ymmärtää todennäköisyys-
verkkojen toimintaa ja löytää halvempia kustannusfunktioita tehtävien hoitami-
seksi.

Menetelmän tulokset eivät ole tarkkuudessa kilpailukykyisiä nykyisten ti-
lastollisien menetelmien kanssa, kuten konvoluutioverkkojen tai muiden neuro-
verkkojen kanssa. Näihin nähden esitetyn menetelmän etuna on, ettei se tarvitse
esiopetusta ja se voidaan muokata erilaisiin tehtäviin vaatimattomilla laskentare-
sursseilla.

Työssä käsiteltiin myös todennäköisyysverkkojen rinnakkaislaskentaa. Haas-
teena monitasotietorakenteen rinnakkaistamisessa että rinnakkaisuuslaskennan
kompleksisuus kasvaa kun mennään hienommasta tasosta karkeampaan verkko-
tasoon. Tämä vaikuttaa suoraan siihen kuinka montaa laskenta prosessoria voi-
daan hyödyntää laskentaan. Työssä esiteltiin vaihtoehtoisia rinnakkaistamislas-
kentatapoja, joita käytetään numeeristen menetelmien laskentojen tehostamiseen

REFERENCES

Aho, A. V. & Hopcroft, J. E. 1974. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc.

Aki, S. G. 1989. The design and analysis of parallel algorithms. Old Tappan, NJ
(USA); Prentice Hall Inc.

Amdahl, G. M. 1967. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference, 483–485.

Anderson, J. A., Rosenfeld, E. & Pellionisz, A. 1988. Neurocomputing, Vol. 2. MIT
press.

Anderson, R. R. & Parrish, R. R. 1981. The optics of human skin. Journal of Inves-
tigative Dermatology 77, 13–19. doi:10.1111/1523-1747.ep12479191.

Anderson, R. R., Hu, J. & Parrish, J. A. 1981. Optical radiation transfer in the
human skin and applications in in vivo remittance spectroscopy. In Bioengi-
neering and the Skin. Springer, 253–265.

Andrews, H. C. & Hunt, B. R. 1977. Digital image restoration. Prentice-Hall.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. & Samek, W. 2015.
On pixel-wise explanations for non-linear classifier decisions by layer-wise rel-
evance propagation. PloS one 10 (7), e0130140.

Bahorich, M. & Farmer, S. 1995. 3-d seismic discontinuity for faults and strati-
graphic features: The coherence cube. The leading edge 14 (10), 1053–1058.

Beeri, C. 1980. On the menbership problem for functional and multivalued de-
pendencies in relational databases. ACM Transactions on Database Systems
(TODS) 5 (3), 241–259.

Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society: Series B (Methodological) 36 (2), 192–
225.

Bickhard, M. H. & Terveen, L. 1996. Foundational issues in artificial intelligence
and cognitive science: Impasse and solution, Vol. 109. Elsevier.

Bird, R. & De Moor, O. 1996. The algebra of programming. In The algebra of
programming.

Bogachev, V. I. 2007. Measure theory, Vol. 1. Springer Science & Business Media.

Borgefors, G. 1986. Distance transformations in digital images. Computer vision,
graphics, and image processing 34 (3), 344–371.

doi:10.1111/1523-1747.ep12479191

103

Bornemann, F. A. & Deuflhard, P. 1997. Cascadic multigrid methods. In Domain
Decomposition Methods in Sciences and Engineering, Procs. 8th International
Conference, Beijing, PR China, 205–212.

Borovykh, A. 2018. A gaussian process perspective on convolutional neural net-
works. arXiv preprint arXiv:1810.10798.

Boykov, Y., V. O. & Zabih, R. 1999. Fast approximate energy minimization via
graph cuts. In Proceedings of the Seventh IEEE International Conference on
Computer Vision, Vol. 1. IEEE, 377–384.

Boykov, Y. & Funka-Lea, G. 2006. Graph cuts and efficient nd image segmenta-
tion. International journal of computer vision 70 (2), 109–131.

Brémaud, P. 2013. Markov chains: Gibbs fields, Monte Carlo simulation, and
queues, Vol. 31. Springer Science & Business Media.

Bucci, G., Sandrucci, V. & Vicario, E. 2011. Ontologies and bayesian networks
in medical diagnosis. In 2011 44th Hawaii International Conference on System
Sciences. IEEE, 1–8.

Burt, P. & Adelson, E. 1983. The laplacian pyramid as a compact image code. IEEE
Transactions on communications 31 (4), 532–540.

Caetano, T. S., Caelli, T., Schuurmans, D. & Barone, D. A. C. 2006. Graphical mod-
els and point pattern matching. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 28 (10), 1646–1663.

Carlo, C. M. 2004. Markov chain monte carlo and gibbs sampling. Lecture notes
for EEB 581.

Chalmond, B. 2003. Modeling and inverse problems in image analysis, Vol. 155.
Springer Berlin.

Chan, T. F. & Shen, J. J. 2005. Image processing and analysis: variational, PDE,
wavelet, and stochastic methods, Vol. 94. Siam.

Chekuri, C., Khanna, S., Naor, J. & Zosin, L. 2004. A linear programming formu-
lation and approximation algorithms for the metric labeling problem. SIAM
Journal on Discrete Mathematics 18 (3), 608–625.

Chickering, D. M. 1996. Learning bayesian networks is NP-Complete. In Learn-
ing from data. Springer, 121–130.

Chopra, S. & Marfurt, K. J. 2007. Seismic attributes for prospect identification and
reservoir characterization. Society of Exploration Geophysicists and European
Association of

Choquet, G. 1966. Topology. Academic Press, Series on Pure and Applied Mathe-
matics.

104

Cohen, D. A., Cooper, M. C., Jeavons, P. G. & Krokhin, A. A. 2006. The complexity
of soft constraint satisfaction. Artificial Intelligence 170 (11), 983–1016.

Cooper, G. F. & Herskovits, E. 1992. A bayesian method for the induction of prob-
abilistic networks from data. Machine learning 9 (4), 309–347.

Daubechies, I. 1992. Ten lectures on wavelets, Vol. 61. Society of Industrial and
Applied Mathematics.

Davis, M., Sigal, R. & Weyuker, E. J. 1994. Computability, complexity, and lan-
guages: fundamentals of theoretical computer science. Elsevier.

Dechter, R. 2003. Constraint processing. Morgan Kaufmann.

Dobkin, D., Lipton, R. J. & Reiss, S. P. 1979. Linear programming is log-space hard
for P.

Dobkin, D. P. & Reiss, S. P. 1980. The complexity of linear programming. Theoret-
ical Computer Science 11 (1), 1–18.

Donnat, C., Miolane, N., Bunbury, F. d. S. P. & Kreindler, J. 2020. A bayesian
hierarchical network for combining heterogeneous data sources in medical di-
agnoses. arXiv preprint arXiv:2007.13847.

Ehrenfels, C. v. 1890. Über gestaltqualitäten. Vierteljahrsschrift für wis-
senschaftliche Philosophie 14 (3), 249–292.

Erdös, P. 1959. Graph theory and probability. Canadian Journal of Mathematics
11, 34–38.

Erkkilä, A.-L., Räbinä, J., Pölönen, I., Sajavaara, T., Alakoski, E. & Tuovinen, T.
2021. Using Wave Propagation Simulations and Convolutional Neural Net-
works to Retrieve Thin Film Thickness from Hyperspectral Images. Springer
Verlag. Intelligent Systems, Control and Automation: Science and Engineering.
(in press).

Felzenszwalb, P. F. & Huttenlocher, D. P. 2006. Efficient belief propagation for
early vision. International journal of computer vision 70 (1), 41–54.

Field, D. J. 1987. Relations between the statistics of natural images and the re-
sponse properties of cortical cells. Josa a 4 (12), 2379–2394.

Freedman, D. & Drineas, P. 2005. Energy minimization via graph cuts: Settling
what is possible. In 2005 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), Vol. 2. IEEE, 939–946.

Fujishige, S. 2005. Submodular functions and optimization. Elsevier.

Fukunaga, K. 2013. Introduction to statistical pattern recognition. Elsevier.

105

Garini, Y., Young, I. T. & McNamara, G. 2006. Spectral imaging: principles and
applications. Cytometry Part A: The Journal of the International Society for
Analytical Cytology 69 (8), 735–747.

Geiger, A., Roser, M. & Urtasun, R. 2010. Efficient large-scale stereo matching. In
Asian conference on computer vision. Springer, 25–38.

Geman, S. & Geman, D. 1984. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and ma-
chine intelligence 6, 721–741.

Gersztenkorn, A. & Marfurt, K. J. 1999. Eigenstructure-based coherence compu-
tations as an aid to 3-d structural and stratigraphic mapping. Geophysics 64
(5), 1468–1479.

Gibbs, J. W. 1902. Elementary principles in statistical mechanics: developed with
especial reference to the rational foundations of thermodynamics. C. Scribner’s
sons.

Gibson, J. J. 2002. A theory of direct visual perception. Vision and Mind: selected
readings in the philosophy of perception, 77–90.

Goldschlager, L. M., Shaw, R. A. & Staples, J. 1982. The maximum flow problem
is log space complete for P. Theoretical Computer Science 21 (1), 105–111.

Gonzalez, J., L. Y. & Guestrin, C. 2009. Residual splash for optimally parallelizing
belief propagation. In Artificial Intelligence and Statistics, 177–184.

Gonzalez, J., Low, Y. & Guestrin, C. 2011. Parallel belief propagation in factor
graphs. Scaling Up Machine Learning: Parallel and Distributed Approaches.

Good, I. J. 1983. Good thinking: The foundations of probability and its applica-
tions. U of Minnesota Press.

Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. 2016. Deep learning, Vol. 1.
MIT press Cambridge.

Greenlaw, R., Hoover, H. J., Ruzzo, W. L. et al. 1995. Limits to parallel computa-
tion: P-completeness theory. Oxford University Press on Demand.

Gács, P. & Lovász, L. 1981. Khachiyan’s algorithm for linear programming. In
Mathematical Programming at Oberwolfach. Springer, 61–68.

Hadlock, F. 1975. Finding a maximum cut of a planar graph in polynomial time.
SIAM Journal on Computing 4 (3), 221–225.

Hager, G. & Wellein, G. 2010. Introduction to high performance computing for
scientists and engineers. CRC Press.

Hecht-Nielsen, R. 1990. Neurocomputing. Addison-Wesley Publishing Co.

106

Hertz, J. A. 2018. Introduction to the theory of neural computation. CRC Press.

Horn, B. K. P. 1977. Understanding image intensities. Artificial intelligence 8 (2),
201–231.

Hubel, D. H. & Wiesel, T. N. 1962. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of physiology 160
(1), 106–154.

Ihler, A. T. & Willsky, A. S. 2005. Loopy belief propagation: Convergence and
effects of message errors. Journal of Machine Learning Research 6 (May), 905–
936.

Jacques, S. L. 1998. Skin optics. Oregon Medical Laser Center News 1998 (1), 1–9.

Jacques, S. L. 2013. Optical properties of biological tissues: a review. Physics in
Medicine and Biology 58 (11), R37. 〈URL:http://stacks.iop.org/0031-9155/58/
i=11/a=R37〉.

James, W. 1984. Psychology, briefer course, Vol. 14. Harvard University Press.

Johnson-Laird, P. N. 1988. The computer and the mind: An introduction to cog-
nitive science. Harvard University Press.

Jolivot, R., Benezeth, Y. & Marzani, F. 2013. Skin parameter map retrieval from a
dedicated multispectral imaging system applied to dermatology/cosmetology.
Journal of Biomedical Imaging 2013, 26.

Jones, P. L. & Graham, I. 1988. Expert systems: knowledge, uncertainty and deci-
sion. Chapman and Hall.

Jordan, M. I., Sejnowski, T. J. & Poggio, T. A. 2001. Graphical models: Foundations
of neural computation. MIT press.

Jordan, M. I. 2004. Graphical models. Statistical science 19 (1), 140–155.

Jähne, B. 2005. Digital image processing, Vol. 4. Springer Berlin.

Khrennikov, A. 2009. Interpretations of probability. Walter de Gruyter.

Kingma, D. P. & Ba, J. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Koenderink, J. J. 1984. The structure of images. Biological cybernetics 50 (5), 363–
370.

Koller, D. & Friedman, N. 2009. Probabilistic graphical models: principles and
techniques. MIT press.

Kolmogorov, A. N. 1983. On logical foundations of probability theory. In Proba-
bility theory and mathematical statistics. Springer, 1–5.

http://stacks.iop.org/0031-9155/58/i=11/a=R37
http://stacks.iop.org/0031-9155/58/i=11/a=R37

107

Kolmogorov, V., Thapper, J. & Zivny, S. 2015. The power of linear programming
for general-valued CSPs. SIAM Journal on Computing 44 (1), 1–36.

Koster, A. M. C. A., Van Hoesel, S. P. M. & Kolen, A. W. J. 1998. The partial con-
straint satisfaction problem: Facets and lifting theorems. Operations research
letters 23 (3-5), 89–97.

Kozen, D. C. 2012. The design and analysis of algorithms. Springer Science &
Business Media.

Kubelka, P. & Munk, F. 1931. Reflection characteristics of paints. Zeitschrift fur
Technische Physik 12, 593–601.

Landau, L. D. & Lifshitz, E. M. 1969. Statistical physics, part 2, Vol. 5. Pergamon
Press.

Lauritzen, S. L. 2002. Lectures on Contingency Tables.

Lauritzen, S. L. 1996. Graphical models, Vol. 17. Clarendon Press.

Leeuwenberg, E. L. J. & Buffart, H. F. J. M. 1978. Formal theories of visual percep-
tion. John Wiley & Sons.

Lengauer, T. & Wagner, K. W. 1990. The binary network flow problem is logspace
complete for p. Theoretical Computer Science 75 (3), 357–363.

Li, S. Z. 2009. Markov random field modeling in image analysis. Springer Science
& Business Media.

Loshin, D. 1999. Efficient Memory Programming. McGraw-Hill Professional.

Luenberger, D. G. 1973. Introduction to linear and nonlinear programming, Vol.
28. Addison-Wesley Reading, MA.

Lundberg, S. M. & Lee, S.-I. 2017. A unified approach to interpreting model pre-
dictions. In Advances in neural information processing systems, 4765–4774.

Lämmel, R. 2008. Google’s mapreduce programming model—revisited. Science
of computer programming 70 (1), 1–30.

Malfait, M. & Roose, D. 1997. Wavelet-based image denoising using a markov
random field a priori model. IEEE Transactions on image processing 6 (4), 549–
565.

Mallat, S. 1999. A wavelet tour of signal processing. Elsevier.

Mallat, S. 2001. Applied mathematics meets signal processing. In Challenges for
the 21st Century. World Scientific, 138–161.

Maragos, P. 2001. Differential morphology. In Nonlinear Image Processing. Else-
vier, 289–329.

108

Marr, D. 1980. Visual information processing: The structure and creation of visual
representations. Philosophical Transactions of the Royal Society of London. B,
Biological Sciences 290 (1038), 199–218.

Marr, D. 1982. Vision: A computational investigation into the human representa-
tion and processing of visual information. Inc., New York, NY 2 (4.2).

Matheron, G. 1975. Random sets and integral geometry. Wiley, New York.

McCulloch, W. S. & Pitts, W. 1943. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics 5 (4), 115–133.

Mendiburu, A., Santana, R., Lozano, J. A. & Bengoetxea, E. 2007. A parallel frame-
work for loopy belief propagation. In Proceedings of the 9th annual conference
companion on Genetic and evolutionary computation, 2843–2850.

Mezard, M. & Montanari, A. 2009. Information, physics, and computation. Ox-
ford University Press.

Mine, H. & Osaki, S. 1970. Markovian decision processes. American Elsevier.

Minsky, M. & Papert, S. A. 1969. Perceptrons. MIT Press.

Montanari, U. 1974. Networks of constraints: Fundamental properties and appli-
cations to picture processing. Information sciences 7, 95–132.

Murat, C. & Paschos, V. T. 2006. Probabilistic combinatorial optimization on
graphs. Wiley Online Library.

Murphy, K., Weiss, Y. & Jordan, M. I. 2013. Loopy belief propagation for approxi-
mate inference: An empirical study. arXiv preprint arXiv:1301.6725.

Murphy, K. P., Torralba, A. & Freeman, W. 2003. Using the forest to see the trees:
A graphical model relating features, objects, and scenes. Advances in neural
information processing systems 16, 1499–1506.

Müller, V. C. & Bostrom, N. 2016. Fundamental issues of artificial intelligence,
Vol. 376. Springer.

Neidell, N. S. & Taner, M. T. 1971. Semblance and other coherency measures for
multichannel data. Geophysics 36 (3), 482–497.

Norvang, L. T., Milner, T. E., Nelson, J. S., Berns, M. W. & Svaasand, L. O. 1997.
Skin pigmentation characterized by visible reflectance measurements. Lasers
in Medical Science 12 (2), 99–112.

Oppenheim, A. V. 1978. Applications of digital signal processing. Englewood
Cliffs, NJ, Prentice-Hall, Inc., 1978. 510 p.

Pearl, J. 2014. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier.

109

Pearl, J. & Paz, A. 1985. Graphoids: A graph-based logic for reasoning about
relevance relations. University of California (Los Angeles). Computer Science
Department.

Pitts, W. & McCulloch, W. S. 1947. How we know universals the perception of
auditory and visual forms. The Bulletin of mathematical biophysics 9 (3), 127–
147.

Prince, S. 2012. Computer vision: models, learning, and inference. Cambridge
University Press.

Pölönen, I. 2013. Discovering knowledge in various applications with a novel
hyperspectral imager. University of Jyväskylä.

Quincy, E. & Tomich, D. 1985. Image enhancement using coherence processing
with applications to seismograms. In ICASSP’85. IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, Vol. 10. IEEE, 188–191.

Ribeiro, M. T., Singh, S. & Guestrin, C. 2016. "why should i trust you?" explain-
ing the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, 1135–1144.

Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review 65 (6), 386.

Sapiro, G. 2006. Geometric partial differential equations and image analysis.
Cambridge university press.

Schrijver, A. 2003. Combinatorial optimization: polyhedra and efficiency, Vol. 24.
Springer Science & Business Media.

Serra, J. 1983. Image analysis and mathematical morphology. Academic Press,
Inc.

Shapley, L. 1953. A value for n-person games. Contributions to the Theory of
Games 2 (28), 307-317.

Shlezinger, M. I. 1976. Syntactic analysis of two-dimensional visual signals in the
presence of noise. Cybernetics and systems analysis 12 (4), 612–628.

Shortliffe, E. 2012. Computer-based medical consultations: MYCIN, Vol. 2. Else-
vier.

Shrikumar, A., Greenside, P. & Kundaje, A. 2017. Learning important features
through propagating activation differences. arXiv preprint arXiv:1704.02685.

Simpson Jr, S. M. 1967. Traveling signal-to-noise ratio and signal power estimates.
Geophysics 32 (3), 485–493.

110

Smyth, P., Heckerman, D. & Jordan, M. I. 1997. Probabilistic independence net-
works for hidden markov probability models. Neural computation 9 (2), 227–
269.

Sotos, J. G. 1990. Mycin and neomycin: two approaches to generating expla-
nations in rule-based expert systems. Aviation, space, and environmental
medicine 61 (10), 950–954.

Strang, G. & Nguyen, T. 1996. Wavelets and filter banks. SIAM.

Strumbelj, E. & Kononenko, I. 2014. Explaining prediction models and individual
predictions with feature contributions. Knowledge and Information Systems
41 (3), 647–665.

Sun, J., Zheng, N.-N. & Shum, H.-Y. 2003. Stereo matching using belief propa-
gation. IEEE Transactions on pattern analysis and machine intelligence 25 (7),
787–800.

Teuscher, C. & Sanchez, E. 2001. A revival of turing’s forgotten connectionist
ideas: exploring unorganized machines. In Connectionist Models of Learning,
Development and Evolution. Springer, 153–162.

Tjelmeland, H. & Besag, J. 1998. Markov random fields with higher-order inter-
actions. Scandinavian Journal of Statistics 25 (3), 415–433.

Torralba, A., Murphy, K. P. & Freeman, W. 2004. Contextual models for object
detection using boosted random fields. Advances in neural information pro-
cessing systems 17, 1401–1408.

Trottenberg, U., Oosterlee, C. W. & Schuller, A. 2000. Multigrid. Elsevier.

Valiant, L. G. 1980. Reducibility by algebraic projections. University of Edin-
burgh, Department of Computer Science.

Vapnik, V. N. 1998. Statistical learning theory. John Wiley & Sons, Inc.

Vazirani, V. V. 2013. Approximation algorithms. Springer Science & Business Me-
dia.

Verma, T. & Pearl, J. 1990. Causal networks: Semantics and expressiveness. In
Machine intelligence and pattern recognition, Vol. 9. Elsevier, 69–76.

Warren, W. H. 2012. Does this computational theory solve the right problem?
marr, gibson, and the goal of vision. Perception 41 (9), 1053–1060.

Werbos, P. J. 1994. The roots of backpropagation: from ordered derivatives to
neural networks and political forecasting, Vol. 1. John Wiley & Sons.

Winkler, G. 2012. Image analysis, random fields and Markov chain Monte Carlo
methods: a mathematical introduction, Vol. 27. Springer Science & Business
Media.

111

Witkin, A. P. 1987. Scale-space filtering. In Readings in Computer Vision. Elsevier,
329–332.

Wolpert, D. H. & Macready, W. G. 1997. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation 1 (1), 67–82.

Won, C. S. & Derin, H. 1992. Unsupervised segmentation of noisy and textured
images using markov random fields. CVGIP: Graphical models and image pro-
cessing 54 (4), 308–328.

Wriedt, T. 2012. Mie theory: a review. In The Mie Theory. Springer, 53–71.

Xie, J., Xu, L. & Chen, E. 2012. Image denoising and inpainting with deep neural
networks. In Advances in neural information processing systems, 341–349.

Yilmaz, Ö. 2001. Seismic data analysis: Processing, inversion, and interpretation
of seismic data. Society of exploration geophysicists.

Zhang, L. & Ji, Q. 2009. Image segmentation with a unified graphical model. IEEE
Transactions on Pattern Analysis and Machine Intelligence 32 (8), 1406–1425.

Zou, D., Cao, Y., Zhou, D. & Gu, Q. 2020. Gradient descent optimizes over-
parameterized deep relu networks. Machine Learning 109 (3), 467–492.

APPENDIX 1 IMAGE MODELS

This appendix gives a brief introduction to different image processing and anal-
ysis methods. We follow Chan and Shen (2005) in this Appendix unless stated
otherwise.

APPENDIX 1.1 Mathematical Morphology

The study of mathematical morphology (M.M) began with Georges Matheron’s study
of random sets (Matheron (1975); Serra (1983)). Modelling objects in an image can
be done in either on a continuous 2D plane in R2, or in a discrete 2D lattice in Z2

+.
An object A can be identified with a binary characteristic function:

1A(a) def
=

{
a when a ∈ A
0 when a 6∈ A

A morphological transformation is done with an operator T, which gives a
mapping between objects A and B, such that

T(A)
def
= B← A. (57)

The operator T does a local mapping between A and B: evaluating a pixel a,
we determine does a belong to B according the local behaviour of a ∈ A in some
chosen neighborhood of A itself.

There is two basic operation in M.M, from which other operations can be
derived from. These two operations are known as erosion E and dilation D. Both
operations depend on a local neighborhood template S, which is known as a
structuring element. A basic structuring element could be, for example, a 3 × 3
square template:

S def
= {(i, j) ∈ Z2

+ : i, j = −1, 0, 1}.

With the above template S, we can define E and D operations for defining
object boundaries in an integer lattice Z2 as

DS(A)
def
= {a ∈ Z2 : y + S ∩ A 6= ∅}

ED(A)
def
= {a ∈ Z2 : y + S ⊂ A}.

We can also use morphological operators on grayscale or color images by
applying the above principles to their respective level-sets.

113

APPENDIX 1.2 Fourier methods

Fourier and spectral methods are classic tools in signal and image processing (Op-
penheim (1978)). Given a continuous image u as a function in a rectangular do-

main Ω def
= (0, 1)2 ⊂ R2 with periodic extension L. Then we can encode the

information of u into coefficients of its Fourier series:

cn0,n1 = 〈u(~x), exp{i2π < x,~n >}〉L2(Ω) , n0, n ∈ Z2
+, ~x = (x0, x1) ∈ Ω.

In a discrete case, Ω is defined as a square matrix (0, n − 1) × (0, n − 1),
n ∈ Z2

+. Then we can encode u using a discrete Fourier transformation:

cn0,n1 = ∑
~j∈Ω

u~j exp{~j 2π

N
~j,~n >},~j = (j0, j1),~n = (n0, n1) ∈ Ω.

Fourier methods have wide applicability in many image processing tasks,
such as linear filtering and image compression1.

APPENDIX 1.3 Wavelet and Space-Scale methods

In the 1989s, Wavelet transforms challenged Fourier transform methods. In Fourier
transformations, long-range spatial information are mixed, causing indiscrimi-
nate responses to local visual features. Wavelets organizes the locality of features
with respect to different scales (Daubechies (1992); Mallat (2001)).

A wavelet representation of an image u is defined as

cα
def
=< u, ψα >, αΛ,

where ψα are the wavelets indexed by the set Λ. Each wavelet possesses a
similar (psychological) differential property as the human vision system2:

< 1, ψα >= 0, ∀α ∈ Λ.

The above property implies that differentiation is constant for featureless
images. Generally, wavelets often satisfies

< xj0
0 xj1

1 , ψα >= 0, ∀j0 + j1 ≤ m, m ∈ Z+.

1 The JPEG image compression method is a well-known example.
2 Cognitive and physiological results given by Field (1987) and Hubel and Wiesel (1962).

114

which is called the vanishing-moment condition. This is an annihilation prop-
erty, which implies the coefficients of the wavelets responds to important visual
cues (such as edges) but are negligible to piecewise smooth cues (Strang and
Nguyen (1996); Mallat (1999)).

APPENDIX 1.4 Stochastic modelling

Statistical methods are more suitable for images which are stochastic in nature.
This stochastic nature of an image u can arise from:

1. The observed image u and given some random effect X gives the composi-
tion u0 as

u0 = F(u,X),

where F is either a deterministic or non-deterministic function. For exam-
ple, F(u,X) could represent Gaussian noise or a Poisson process.

2. Treat each composition u0 as a random field.

Stochastic methods are the ideal choice when dealing with images with statis-
tical nature. For example, statistical pattern recognition or learning theory are
important methods for estimating signals and parameters.

Observing an image u0 with latent variables caused by the (non-)deterministic
function F, a Bayesian inference of F is solved by the maximum a posteriori (M.A.P)
probability:

p(F|u0) =
p(F)p(u0|F)

p(u0)
.

p(F) is called the prior model, specifying independently of u0 a priori bias
among targeted patterns. p(u0|F) is the conditional probability of how u0, de-
scribing the distribution once F is specified. p(u0) is a normalizing constant and
plays no role in the computation. Estimating F without prior knowledge, M.A.P
aims to maximize the maximum likelihood of

F∗ = arg max
F

p(u0|F),

However in high-dimensional images the number of degrees of freedom
is large. For this reason, prior knowledge becomes important for solving the
M.A.P estimation effectively. Combining both prior and data knowledge, M.A.P
estimation can be done, such that:

F∗ = arg max
F

p(F|u0) = arg max
F

p(u0)× p(u0|F).

The above Bayesian principle emerges frequently in various image process-
ing and analysis models.

115

APPENDIX 1.5 Variational methods

Variational methods can be viewed as a deterministic reflection of the Bayesian ap-
proach. This reflection comes from mirroring the Gibb’s formula in statistical
mechanics (Landau and Lifshitz (1969)):

p(F) =
1
Z

exp{−βE(F)},

where β
def
= 1/(kT) denotes the reciprocal of temperature T multiplied by

the Boltzmann constant k and Z denotes the Zustandssumme of the system. Gibb’s
formula expresses directly the likelihood of the prior p(F) of a configuration F,
with respect to its "energy" E(F). For any given T, the Bayesian M.A.P estimation
becomes the minimization of the posterior energy:

E(F|u0) = E(F) + E(u0|F).

If F and u0 belong to a certain functional space, for example Sobolev or
bounded variation space, the posterior minimization leads naturally to variational
models.

APPENDIX 1.6 Partial Differential Equations

The power of partial differential equation (P.D.E) based models comes from that:

1. P.D.Es offers adequate mathematical descriptions of continuous models in
various scientific fields, and can be used to simulate many dynamic (and
equilibrium) phenomena in images (for example, diffusion or transport mod-
els). From P.D.Es, one can formulate variational models and then apply
them to imaging tasks.

2. Many variational problems, or their regularized approximations, can be ef-
fectively computed by transforming the problems into an Euler-Lagrange
form.

For example, using a variational model approach for image restoration could be
estimating F from u0 by solving

u∗ = argmin E(u|u0) = argmin
α

2

∫
Ω
|∇u(x)|2dx +

λ

2

∫
Ω
(u(x)− u0(x))2dx,

where the weights α and λ are inversely proportional to the variances of
the observed data. Using calculus of variation, the above variational model can
transformed into the following elliptic boundary value problem:

−α∆u(~x) + λu(~x) = u0, ~x = (x0, x1) ∈ Ω,
∂u
∂v

= 0, along ∂Ω,

116

with some suitable initial condition u(~x, t = 0). However, models based on
P.D.Es do not always result in a variational model. P.D.E models can also include
geometric features in the model, resulting into a geometric P.D.E (Sapiro (2006)).
Geometric P.D.Es can be constructed by optimizing either:

1. Some global geometric quantities in a variational setting (for example, length
or area).

2. Geometric invariance under certain transform groups.

APPENDIX 1.7 Intrinsic connection between different methods

The intrinsic connection between different methods will be presented in the case
of image restoration. Assume we observe an image u0, which is corrupted with
Gaussian white noise. That is, u0 is a composition of the form

u0 = F(u,X) = u +X , X = n (white Gaussian noise of mean 0.)

To recover the image u using Bayesian M.A.P estimation, the goal is to max-
imize the posterior distribution (or likelihood):

u∗ = argmax
u

p(u, |u0) = arg max p(u)p(u0|u). (59)

The performance of the above M.A.P estimator is mostly dependent on the
prior likelihood p(u) of the image.

If we use Gibb’s ensemble methods for solving the M.A.P estimation of
equation (59), we then dependent on the prior p(u) in the form of an energy
function E(u). The M.A.P estimation then becomes a variational model, when
we use a standard Cartesian topological structure on the underlying pixel lattice
Ω, and the energy E(u) is built upon dipolar quadratic pontentials. The varia-
tional model of the M.A.P estimation is then of the form:

min E(u|u0) =
1
2

∫
Ω
|∇u(x)|2dx +

λ

2

∫
Ω
(u(x)− u0(x))2dx. (60)

The integrals of equation (60) are to be read as discrete summations over the
(Cartesian) pixel lattice Ω.

The variational form of the M.A.P estimation can be converted into a P.D.E
model, by applying the first variation u→ u + δu to the energy function E(u|u0).
From which we obtain the following Euler-Lagrange equation

∂E(u|u0)

∂u
= −∆u + λ(u− u0) +

∂u
∂n

∣∣∣∣
∂Ω

, (61)

117

in a distributional sense. In this model, the boundary term ∂Ω is an element
of a Hilbert space L2(∂Ω,H1). That is, all boundary functions which are square
integrable with respect to the 1D Hausdorff measure H1 of ∂Ω. One can use ei-
ther gradient descent time evolution or solving the equilibrium equation directly,
yielding the P.D.E equations:{

ut = ∇u + λ(u0 − u) (Gradient descent time evolution)
−∇u + λu = u0. (Equilibrium equation)

Here, the boundary term for both equations is the Neumann boundary condition.
From the equilibrium equation−∇u+λu = u0, the optimally denoised estimator
of u is given as:

u0 = u +
−∇u

λ
= u + w, λ > 0, (62)

and this can be understood as decomposing the given image u0 into the
components u and w. Here u belongs to the Sobolov space H1, making u a smooth
or regular component. In contrast, w is the distributional Laplacian of u : w =
−∇u/λ, making w an oscillatory component containing the discontinuities of u.
Generally, w belongs only to L2(Ω).

The combination of locality, oscillation and strong responses of discontinu-
ity components, makes w a generalized wavelet projection of uo, encoding de-
tailed features. The smoother part u behaves similarly to a multiscale projection
in the multiresolution setting in wavelet theory3. This interpretation leads to the
wavelet methods.

To adjust equation (62) into a multiscale or wavelet form, we set

λ
def
=

1
h

and u0
def
= G√h ∗ u,

where Gσ
def
= G1(~x/σ)/σ2, with G1(~x) = G1(x0, x1) denoting the canonical

2D Gaussian (Burt and Adelson (1983)).

APPENDIX 1.8 M.A.P estimation in P.G.Ms

(The reader is reminded, that this Section uses the concepts defined in Section
1.4.3.) In a computer vision and image processing context, the M.A.P estimation
problem becomes an optimization problem (Appendix 1.4): we are interested in
finding the most probable configuration of a discrete set of labels L, associated

with a hypergraph H def
= (V , C, E), where V is the set of variables (or nodes) and

C is a set of cliques inH. The most probable configuration is determined over the

3 The components u and w may not need to be exactly orthogonal.

118

joint variable distribution of r.vs X = (xi)i∈V , which are indexed by i ∈ V . The
notion of a clique is important in solving M.A.P problems in P.G.Ms. A clique is
a maximal subset of variables, that is, one subset of variables are not contained
within any larger subset of propositions. Each clique c ∈ C is associated with a
potential function gc(xc) ∈ Q+ over the possible configurations xc, and can be
factorized as:

p(X) =
1
Z ∏

c∈C
gc(xc), (63)

where Z is the Zustandssumme of the P.G.M, and p(X) is the joint distribution
of the configuration xc. The cliques of the P.G.M encodes the prior information
between the interactions of variable subsets. Thus the M.A.P estimation problem
becomes

X∗ = arg max
X

p(X). (64)

The potential function (or clique potential) is usually defined as

fc(xc) = −log gc(xc),

because gc(xc) is a positive real-valued function. Defining the potential function
in this way, the joint distribution p(X) can now be expressed in a more convenient
way:

p(X) =
1
Z

exp{−E(X)}, (65a)

E(X) = ∑
c∈C

fc(xc), (65b)

where E(X) is the energy of the P.G.M. Observing that the “-log” transfor-
mation between the energy E(X) and the joint distribution p(X) is a monotonic
function, then the M.A.P estimation problem is equivalent to minimizing the en-
ergy function E(X) in a variational form (Appendix 1.5), instead of maximizing
the joint distribution p(X):

X∗ = arg min
X

E(X). (66)

Traditionally, the M.A.P problem of equation (16) is solved using unary and
pairwise potentials, which are expressed in the following form:

E(X) = ∑
i∈V

fi(xi) + ∑
i∈V ,
j∈Ni

fi,j(xi, xj), (67)

where X is a vector of binary variables, defined over a set i ∈ V with an appro-
priately defined neighborhood Ni of the i’th variables. Unary and pairwise po-
tentials are commonly used in P.G.M applications because they are easier to for-
mulate and certain pairwise models can be solved exactly4 in polynomial time.
4 That is, there is no need for approximating the optimization problem. When the optimiza-

tion problem cannot be solved exactly, such as the case in NP-Hard problems (Appendix
3.1), methods based on approximation should be used.

119

However, unary and pairwise potentials fails in capturing rich structural con-
tents, accurate spatial dependencies, nor recognizing convex or concave shapes
in a digital image (Tjelmeland and Besag (1998)). To this end, higher-order po-
tentials should be considered. The challenge is that higher-order P.G.Ms pose
a significant computational challenge, because adding higher-order terms gives
an exponential growth of variables in the optimization solution space. Another
challenge is the “competition” of two competing functional terms, namely convex
and concave functions, which is how higher-ordered P.G.Ms are formulated.

The potentials of xi and the pair (xi, xj) are given by the potential functions
fi(xi) : Q ← L and fi,j(xi, xj) : Q ← L×L respectively. The objective is to find
the most probable M.A.P configuration via minimizing the energy E with respect
to X. The neighborhoods Ni determines a maximal clique c of the P.G.M and is
expressed as xc = {xi : i ∈ c}. Note that, equation (67) is a special case of the
energy function:

E(X) = ∑
i∈V

fi(xi) + ∑
c∈C

fc(xc). (68)

P.G.M potentials expressed in the form of equation (67) have tractable algorithms
for certain types of networks where |C| ≤ 2.

Solving the M.A.P optimization problem can bee seen as minimizing a par-
tially separable function of many discrete variables. From this view, equation
(67) has a natural linear programming relaxation formulation (Shlezinger (1976);
Koster et al. (1998); Chekuri et al. (2004)). However, the structure of the M.A.P
problem determines how effectively or can we even solve the problem. That is,
given an arbitrary hypergraph, we try to solve all functions which belongs to a
given subset of all possible functions. In theory of computation, this means that
we are trying to recognize a language (see Appendix 3.1 for more detail and conse-
quences).

APPENDIX 2 MATHEMATICAL TOOLS

APPENDIX 2.1 Probability theory

A brief review of relevant concepts of probability theory, regarding image pro-
cessing and analysis, is covered here. Through out this section, Q is denoted as
the level of quantization of an image, f a probability density function (P.D.F) and
g a random variable (r.v).

Definition 2.1. In probability theory, all possible outcomes in given problem represents
a sample space. An event is a representation of some subset from the sample space (for
example, obtaining odd numbers after rolling a fair die). For each collection of events in
a sample space, there is an assigned probability which are not necessarily identical to the
collection of all subsets of a sample space.

An outcome q is a realization of an event A if q ∈ A ⊂ Q. Two events A and
B are said to be incompatible if and only if an outcome q realizes only either A or
B. This is notated as A ∪ B = ∅. If A ∩ B is non-empty, then q is said to realize
both A and B. For q to realize A ∪ B, it needs only to realize at least one event
among subsets A and B.

Definition 2.2. Let Q be our sample space and F a collection of events in Q. A contin-
uous r.v is a function X : Q← Q, which assigns a probability to an event {X ≤ a} =
{q; X(q) ≤ a}, a ∈ Q, q ∈ Q. That is, we assign a probability to a r.v, such that

{X ≤ a} ∈ F .

If the r.v is discrete, then the function becomes a mapping from a denumerable set E. That
is, we have X : E← Q if for all e ∈ E we have

{X = e} ∈ F .

Definition 2.3. Assigning probabilities to events is done by measuring (as in a proba-
bility measure) the likeliness of the events occurrence. Let P be a probability measure (see
Appendix 2.2 on measure theory) and F be a collection of events in Q. A probability is
given to the pair (Q,F) as a measure, with the mapping P : Q ← F , by the following
axioms of probability:

1. 0 ≤ P(A) ≤ 1, A ∈ F .
2. P(Q) ≡ 1.
3. P(∑∞

k=0 Ak) = ∑∞
k=0 P(Ak).

Definition 2.4. Two events A and B are said to be independent if we have the following
decomposition

P(A ∩ B) = P(A)P(B).

In the case of r.vs, independence of two r.vs X and Y is expressed as

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y), ∀x, y ∈ Q.

121

Definition 2.5. To express the expectation of an event A being realized after we have
observed the realization of event B, gives us the notion of conditional probability:

P(A|B) def
=

P(A ∩ B)
P(B)

, P(B) > 0. (69)

From the axioms of probability and the conditional probability (68), we can
give the well-known Bayes’ Rule.

Theorem 2.1. Given a probability measure P and events A, B ∈ F , the Bayes’ Rule
can be stated as the following three rules:

Bayes’ Rule of retrodiction. If P(A) > 0, then we have

P(B|A) =
P(A|B)P(B)

P(A)
. (70)

Bayes’ Rule of exclusive and exhaustive causes. Given events B0, B1, . . . , such
that

∞

∑
k=0

Bk = Q,

for all A we have,

P(A) =
∞

∑
k=0

P(A | Bk)P(Bk). (71)

Bayes’ sequential formula. For any sequence of events A0, A1, . . . , Ak−1, we have

P(∩k−1
i=0) = P(A0)P(A1|A0)P(A2|A1 ∩ A0) . . . P(Ak| ∩k−2

i=0 Ai). (72)

Definition 2.6. We say that events A, B ∈ F are conditionally independent given an
event C ∈ F , if we have

P(A ∩ B|C) = P(A|C)P(B|C). (73)

If we have three (discrete) r.vs X ∈ E, Y ∈ F, Z ∈ G, then X and Y are conditionally
independent given Z for all x ∈ E, y ∈ F, z ∈ G if the events {X = x} and {Y = y}
are conditionally independent given {Z = z}.

Definition 2.7. Markov property defines the following conditional independence for
the events A, B, C ∈ F :

P(C|A ∩ B) = P(C|B). (74)

122

Theorem 2.2. The Markov property for r.vs is defined as follows. Assume X ∈ E, Y ∈
F, Z ∈ G are discrete r.vs. If for some function g : [0, 1] ← E × F, P(X = x |Y =
y, Z = z) = g(x, y), for all x, y, z ∈ R, then we have P(X = x |Y = y) = g(x, y), for
all x, y.

Definition 2.8. Given quantization level Q, f and g within the interval [g, dg], the
P.D.F must meet the requirement ∫ ∞

−∞
f (g) dg = 1.

If f is a discrete P.D.F, then for the observed values gq, q = 0, 1, . . . , |Q| − 1, fq
gives the probability of the observed values, meeting the requirement

|Q|−1

∑
q=0

fq = 1.

Definition 2.9. The continuous and discrete expectation value, Ec and Ed respectively,
of a P.D.F and its observed r.v are defined as

Ec
def
=
∫ −∞

∞
g f (g) dg, Ed

def
=
|Q|−1

∑
q=0

gq fq

Alternatively, Ed can be determined without f by explicitly averaging an
infinite number of measurement observations:

Ed
def
= lim

P→∞

1
P

P

∑
p=0

gp.

Definition 2.10. A kernel density estimation is a non-parametric statistical method
way to estimate PDFs. If we have a ~x ∈ Rn, which is a univariate independent and
identically distributed sample from an unknown P.D.F f . The kernel estimator is
defined as

f̂h(~x)
def
=

1
n

n−1

∑
i=0

Kh(x− xi) =
1

nh

n−1

∑
i=0

K(
x− xi

h
), (75)

where K(·) > 0 is a kernel function, and h > 0 is the bandwidth of K.

APPENDIX 2.2 Measure theory

Measure theory is the mathematical study of the length of a set, and (in principle)
concern itself on the algebra of sets (Bogachev (2007)). Here we give the main
notions of measure theory.

Definition 2.11. Given some (fixed) set X, A is called an algebra of sets, if

123

1. X, ∅ ∈ A;
2. if X, Y ∈ A, then X ∪Y ∈ A, X ∩Y ∈ A and X \Y ∈ A.

Definition 2.12. If A is an algebra, then the mapping µ : R+ ← A is called measur-
able, if µ(X ∪Y) = µ(X) + µ(Y), ∀X, Y ∈ A, X ∩Y = ∅, and µ(∅) = 0.

Definition 2.13. An algebra A is called a σ− algebra, if for any sequence of sets Xn ∈
A, one has∪∞

n=0Xn ∈ A. Additionally, the measure µ is called σ− additive if µ(∪∞
n=0Xn) =

∑∞
n=0 µ(Xn).

Definition 2.14. A measurable space consists of a tuple (X,A), where X is a set and
collection of subsets ofA. More precisely, given arbitrary sets X1, X2 and their respective
algebras A1,A2, the mapping µ : (X2,A2)← (X1,A1) is called a measurable space.

Definition 2.15. A probability space is defined as a triple P = (W,A, µ), where W
is the set of elemantary events, A an arbitrary σ − algebra, and µ is a σ − additive
measure in the segment [0, 1] with the normalized condition µ(W) = 1.

r.vs in P are measurable functions µ : (R,B) ← (W,A), where B is a Borel

set1. A probability distribution of a r.v in P is defined as PS(A)
def
= P(µ−1(A)),

∀A ∈ B.

APPENDIX 2.3 Ensemble definition of probability

The probability of ensembles is the coefficient of the proportions of realized events
and all possible events (Khrennikov (2009)). Let S be a finite ensemble with ar-
bitrary properties, denoted as πS. Each property in πS cane be described as a

mapping µ : Kµ ← S, where Kµ
def
= {1, 2, . . . , kµ} is a finite set. An event can be

defined by setting S(µ = j) = {s ∈ S : µ(s) = j}, where A(πS) is the collection
of all possible events. The probability of an event is defined as

P(S[µ = j]) =
|S(µ = j)|
|S| . (76)

If A(πS) is an algebra, then P : TS ⊂ R+ ← A(πS) is a measure, where

TS
def
= {x = k/N : k = 0, 1, . . . , N}, N = |S|, with P(S) = 1.

Conditional probabilities are an important role in ensemble probabilities. As-
sume we have B = S(µ = l), A(ν = k), µ, ν ∈ πS with the set of events C =
A ∩ B ∈ A(πS). Then there exists a property φ ∈ piS such that C = S(φ = m).
The conditional probability of event B after observing A is defined as:

PS(B|A)
def
= PA(B) =

|B ∩ A|
|A| . (77)

1 That is, for a measurable function µ we have µ−1(A) ∈ A, ∀A ∈ B.

124

From the conditional probability, we can obtain what is known as the Bayes
formula2:

PS(B|A) =
PS(B ∩ A)

PS(A)
, PS(A) > 0. (78)

We have the following consequence of the Bayes formula:

PS(A ∩ B) = PS(B|A)PS(A). (79)

By symmetry we get

PS(A ∩ B) = PS(A|B)PS(B), (80)

from which we obtain

PS(A|B) = PS(B ∩ A)

PS(A)
, PS(B) > 0. (81)

One cannot directly generalize equation (77) from ensemble probabilities
to infinite ensembles S, using real analysis, because actual infinities do not exist
in the field3 of R. However, a measure theoretical approach can provide some
indirect generalizations (Kolmogorov (1983); Khrennikov (2009)). However, it
could be that a set of properties πS can be different from the set of r.vs in PS.
That is, there could exists r.vs which do not share the properties of s ∈ S. On-the-
other-hand, there can be properties ν ∈ πS which are not r.vs. Also it is important
to note, that all probability distributions depend on the ensemble S.

APPENDIX 2.4 Properties of numerical functions

Some properties of numerical functions (Choquet (1966)) are presented that are
used in Section 2.1.

Lower envelopes. Let (fi)i∈I be a family of numerical functions, where I is some
interval on a set E. For a numerical function g to have an upper bound for the
families of f , a necessary and sufficient condition is that fi(x) ≤ g(x), ∀x ∈
E, ∀i ∈ I. Among the functions g, there exists one function which is smaller than
all other functions, namely f (x) = sup

i∈I
fi(x).

2 "Standard" textbooks on probability omit the ensemble index.
3 As a reminder: a field is a real number system consisting of an uncountable set, the binary

operations addition + and multiplication · and order relations <,>,=.

125

Definition 2.16. The lower envelope4 of the family (fi)i∈I , denoted by inf
i∈I

, is defined

as the function f , such that

f (x) = inf
i∈I

fi(x) ∀x ∈ E.

Definition 2.17. Let (X, dX) and (Y, dY) be metric spaces and dX, dY denotes the met-
rics on sets X, Y respectively. A function f : Y ← X is called Lipschitz continuous
if

∃k ≥ 0, dY(f (x1), f (x2)) ≤ k · dX(x1, x2), ∀x1, x1 ∈ X. (82)

Proposition 2.1. Let (fi)i∈I be a family of arbitrary elements on a topological space
(E, R) and f its lower envelope. If each fi is Lipschitz continuous with ratio k, and if f
is finite at least at one point, then f is finite every and Lipschitz continuous with ratio k.

Proof of Proposition 2.1 can be found from Choquet (1966).

APPENDIX 2.5 Structure scores in Bayesian networks

For evaluating for structured learning in Bayesian Networks (B.Ns), we can use
either maximum likelihood scoring or Bayes scoring (Koller and Friedman (2009)).
Evaluating how well a B.N has learned the structure of the data, the evaluation
is posed as an optimization problem. The scoring function helps with scoring
candidate structures one wishes to learn from the training data.

Maximum likelihood estimation scoring. Here a structured scoring version of
the maxium likelihood estimation (M.L.E) for evaluating B.Ns is presented. In
order to make the data more probable for a given model, we aim to maximize
the likelihood of the pair (G, ~θG), where G is the network and ~θG is the parameter
vector of G. That is, we aim to maximize the likelihood of the structure G:

max
G,~θG

L(< G, ~θG > : D) = max
G

[max
~θG

L(< G, ~θG > : D)], (83)

where D is the data. The M.L.E of the pair (G, ~θG) should give the structure of G
with the highest likelihood of the given data D. Scoring of a network structure G
with a given data D will be denoted as

scoreL(G : D) = l(θ̂G : D), (84)

where l(· : ·) denotes the logarithm of the likelihood function L.
A information-theoretic interpretation of the likelihood score (84) is given

as follows. Given a network structure G0 and two independent propositions X
and Y, we get the following score:

scoreL(G0 : D) def
= ∑

m
log θ̂x[m] + log θ̂y[m]. (85)

4 We could also define a class of upper envelope functions by switching inf to sup.

126

Now consider a network structure G1 where the propositions X and Y have
an edge connecting them: X → Y. Now the likelihood score (84) is given as

scoreL(G1 : D) def
= ∑

m
log θ̂x[m] + log θ̂y[m] | x[m]. (86)

Here θ̂x is the maximum likelihood estimate for the prior P(x), and θ̂y | x is
the maximum likelihood estimate of the likelihood term P(y | x). Now between
the network structures G0 and G1, the scores (85) and (86) share a common com-
ponent, namely log θ̂x. Taking the difference between the two scores, we get

scoreL(G1 : D)− scoreL(G0 : D) = log θ̂y[m] | x[m] − log θ̂x[m].

Counting how many times each conditional probability parameter appears when
taking the difference, we can rewrite the difference as:

scoreL(G1 : D)− scoreL(G0 : D) = ∑
x,y

M[x, y] log θ̂y | x −∑
y

M[y] log θ̂y. (87)

If we denote P̂ as the empirical distribution (or frequency) inD, then denot-
ing M[x, y] = M · P̂(x, y), M[y] = M · P̂(y), θ̂y | x = P̂(y | x), and θ̂x = P̂(x), we
get the following score:

scoreL(G1 : D)− scoreL(G0 : D) = M ∑
x,y

P̂(x, y) log
P̂(y | x)

P̂(y)
= M · IP̂(X; Y),

(88)
where IP̂(X; Y) ≥ 0 is the mutual information between X and Y in P̂. That is,

IP̂(X; Y) tells us how strongly dependent X and Y are to each other in P̂. In
general, the M.L.E score in a network measures the strength of the dependency
between propositions and their parents.

Limitations. M.L.E is a good way to estimate the fit of the estimated B.N struc-
ture. However for learning the performance of the learned B.N to new unseen
data, from the same underlying distribution P∗, M.L.E will run into problems.

As an example, if we have a network Gα where X and Y are independent,
and Gβ where X is the parent of Y. Now from the score (88) gives that scoreL(Gβ :
D) ≥ scoreL(Gα : D) for any D. This tells us that the maximum likelihood score
never prefers the simpler network structure over a complex one. Moreover, the
maximum likelihood score gives identical scores to any network structure where
(in rare cases) X and Y are truly independent in D.

APPENDIX 3 THEORY OF COMPUTATION & DATA
STRUCTURES

APPENDIX 3.1 Languages

The theory of computation (or computability) has helped in distinguishing which
computational problems are solvable and which are not (Davis et al. (1994)). With
solvable problems, it is said to be tractable (or feasible1) in practical terms. Those
problems which, on the contrary, are solvable "in principle" but not in practical
terms are called intractable.

Determining the tractability of a program is posed as a decision problem,
where from a given instance Π, we are seeking for a yes or no answer. Some
classical decision problems are

1. The travelling salesman problem: Given an undirected network G = (V, E), is
there a tour of the network of length k, such that each node is visited once
(except for the starting node).

2. SAT: Let f be a Boolean formula in conjuctive normal form. Is there a way to
satisfy the truth assignment of f ?

3. Cardinality vertex cover: Given an undirected network G = (V, E) and k ≥
Z+, can we find a vertex cover of size ≤ k?.

Answering these decision problems are viewed as recognizing a language L, which
is a subset of {0, 1}∗ (Vazirani (2013)). All elements in L are elements which can
be encoded with a "yes" answer of an given instance Π. The recognition can be
viewed as asking a question (an instance from Π) from a verifier (a suitable ab-
stract computing model) , which then answers "yes" or "no" in some time. For
"efficient" programs, this "time" is usually meant to be bounded by some polyno-

mial p(|n|) def
= nO(1), with respect to the programs input length. If the question

can answered in polynomial time, we say that answer belongs to the class NP.
Before formally stating polynomial time solvability, we refresh our memory on
the Turing machine2 computing model.

Definition 3.1. A deterministic Turing machine M is defined by the 10−tuple

M
def
= (Q, Σ, Γ,t,`,a, δ, s, t, r),

where

– Q a finite set of states.
– Σ is a finite input alphabet.

1 With feasibility, it is also meant that we can solve the problem with the given computing
resources (for example, processor speed, memory size, degree of decomposition.)

2 Examples of other computing machines: Kleene’s µ∗ recursive model, WHILE-programs,
Markov algorithms and Thue systems. All such machines are equivalent under the
Church’s thesis.

128

– Γ is a finite worktape alphabet.
– t ∈ Γ is a blank symbol.
– `∈ Γ \ Σ is the left endmarker.
– a6∈ Σ is the right endmarker.
– δ : Q× Γ× {−1, 0, 1}2 ← Q× (Σ ∪ {`,a})× Γ is the transition function.
– s ∈ Q is the start state.
– t ∈ Q is the accept state.
– r ∈ Q is the reject state r 6= t.

That is, M reads an input string from the input tape Σ, beginning at s, operates between
the endmarkers `,a, and is a read-only operation. The worktape Γ can read and write
between the endmarkers and moves according to the transfer function δ according the
directions {−1 (left), 0 (do not move), 1 (right)}. The machine M halts when it reaches
t. The number of operations of the machine M does on the worktape Γ determines the
complexity of the task.

The Turing machine can be made nondeterministic by using a nondetermin-
istic transfer function, which is more important when dealing with NP-Complete
problems.

Now we can formally state answering questions in polynomial time:

Definition 3.2. A language L is recognizable, that is L ∈ NP, if there is a polynomial p
and a polynomially bounded Turing machine M for each string x ∈ {0, 1}∗, such that:

– if x ∈ L, then there is a string y which M accepts in polynomial time. That is,
given M(x, y), we have |y| ≤ np(|x|).

– if x 6∈ L for any string y such that |y| ≤ np(|x|), then M rejects x.

Next we define the concept of a NP-Complete problem. First we need the
following definition.

Definition 3.3. Given two languages L1, L2 ∈ NP, we say L1 can be reduced in poly-
nomial time to L2, denoted as L1 � L2, if there exists a polynomial time Turing machine
T, with an input string x ∈ {0, 1}∗, the machine outpouts a string y such that x ∈ L1 if
and only if y ∈ L2.

Definition 3.4. A language L is NP-hard if ∀L′ ∈ NP, L′ � L. A language L is
NP-complete if L ∈ NP and L is NP-hard.

APPENDIX 3.2 Asymptotic complexity classes

This Section reviews rudimentary asymptotic complexity classes (Kozen (2012)).
Let (f , g) : N←N.

129

Definition 3.5. Worst-case complexity O(·) is the asymptotic upper bound of an
operation f if f ∈ O(g). That is,

c ∈N
∞
∀n f (n) ≤ c · g(n),

where
∞
∀ means "for almost all".

Definition 3.6. Lower-case complexity Ω(·) is the asymptotic lower bound of an
operation f if f ∈ Ω(g) and g ∈ O(f). That is,

c ∈N
∞
∀n f (n) ≥ 1

c
· g(n), c > 0.

Definition 3.7. Exact-case complexity Θ(·) is the asymptotic exact bound of an op-
eration f if f ∈ O(g) ∧ f ∈ Ω(g).

APPENDIX 3.3 Linear programming relaxation for M.A.P infer-
ence

Many computer vision and image analysis problems can be casted into a M.A.P
estimation problem (Appendix 1.4 and 1.5), and frequently come up as NP-Hard
combinatorial optimization problem. These arising NP-Hard optimization prob-
lems have a natural linear programming (L.P) relaxation (Shlezinger (1976); Koster
et al. (1998)) and are often included as a subroutine in solvers for many practical
problems.

We now reiterate the discrete energy minimization (or valued constrained sat-
isfaction problem (Cohen et al. (2006); Kolmogorov et al. (2015)) for the M.A.P in-
ference problem. We are interested in solving the probable configuration of a

discrete set of labels L in an associated hypergraph H def
= (V , C, E), where V is

the set of variables (or nodes) and C is a set of cliques in H. For each variable

xi ∈ V , i = 0, · · · |V| − 1, there is an associated state L. Define Q̄
def
= Q ∪ {∞}

as the extended set of rational numbers3. Let Φ : Q̄ ← LV be a partially separable
function if it can be expressed as

Φ(~x) = ∑
C∈H

φC(~xC), φC : Q̄← L|C|. (89)

If we do a L.P relaxation on equation (89), we obtain the following Basic L.P
relaxation (B.L.P) (Shlezinger (1976); Koster et al. (1998)) :

3 Discrete computers still cannot handle infinite precision numbers.

130

min← ∑
C∈H

∑
~x∈L|C|

φC(~x)µC(~x), (90a)

∑
~y∈L|C| | yc=x

µC(~y) = µc(x), c ∈ C ∈ H, x ∈ V , (90b)

∑
x∈L

µi(x) = 1, i ∈ V , (90c)

subject to µC(~x) ≥ 0, C ∈ H, ~x ∈ L|C| (90d)
µi(x) ≥ 0, i ∈ V , x ∈ L. (90e)

The aim is to minimize the functions4 µC : Q ← L|C| and µi : Q ← L. The
B.L.P (90) can be equivalently understood as a dual decomposition (or Lagrangian
relaxation).

Languages that can be solved with B.L.P. The interest of solving the discrete
energy minimization cost (89) is essentially to establish hardness results to the
constrained satisfaction problem (C.S.P), where we seek solutions to functions with
zero-labelling cost {0, ∞} (Montanari (1974)). C.S.P problems are generally NP-
Hard problems, so it is natural to study the restrictions on the general framework
that guarantee tractability. This study is done by studying language restrictions
that restricts the allowed constraints in the problem instance. Complexity results
for the language restricted C.S.Ps are known for binary element domains, three
element domains and few others. Structural restrictions on C.S.Ps do not impose
constraint conditions but restrict how constraints interact in the hypergraph.

The hardness results for C.S.Ps apply for the (more general) discrete energy
minimization cost problem (89). All known tractable solutions (or bounded ar-
ity) for structural, restricted C.S.Ps can be easily extended to the problem (89)
(Dechter (2003)). However, there are only a certain classes of (89) which are
known to be tractable in terms of BLP (90). The tractability is established by being
able to recognize a language (Appendix 3.1). The most well-known tractability
result for (90) is the concept of submodularity (Schrijver (2003); Fujishige (2005)).
Given a totally ordered set L and an r−ary function φ : Q̄← Lr, φ is submodular
if and only if for all ~x,~y,∈ Lr we have

φ(~x) + φ(~y) ≥ φ(min{~x,~y}) + φ(max{~x,~y}), (91)

where min and max are component-wise minimum and maximum oper-
ations respectively, with respect to the total order on L. Another well-known
tractable result is the Potts model5 (Mezard and Montanari (2009)), contains all

4 These functions can be seen as probability distributions on L|C| and L respectively.
5 A model from statistical mechanics with external field.

131

unary functions and a single binary function φ : Q← L2, φ, defined as

φ(x, y) =

{
1 if x = y
0 if x 6= y.

When r = 2, the Potts model is submodular and therefore tractable. For r > 2 the
Potts model is intractable (Vazirani (2013)).

APPENDIX 3.3.1 P-complete problems

P-complete problems are a set of (parallel) computational problems for which there
are no fast, feasible parallel solutions to every problem instance6 (Greenlaw et al.
(1995)). In parallel computing, processors are considered as a resource, just like
time and space requirements in sequential computing. When viewing processors
as a resource, we can address intrinsic issues in a computational task, such as
problem decomposition. Identifying P-complete problems is done in a similar
way as in identifying NP-complete problems, that is doing a language reduction
from a harder problem into a easier one.

The interest in identifying and analyzing P-complete problems is the same
as identifying recognizable languages: by identifying and characterizing com-
putational problems as P-complete, the hope is to identify common character-
istics of problems which are inherently sequential. As seen in Appendix 3.2,
that certain classes of discrete energy minimization problems have tractable so-
lutions, the same principle applies to solving parallel computational problems.
For example, L.P (Dobkin et al. (1979); Dobkin and Reiss (1980); Gács and Lovász
(1981); Valiant (1980)) and maximum flow (Goldschlager et al. (1982); Lengauer
and Wagner (1990)) are P-complete problems, while a two variable L.P and 0− 1
maximum flow have feasible parallel solutions.

APPENDIX 3.4 Multigrids

Here we give a very short and informal description of the multi-level data struc-
tures known as multigrids (M.Gs), which are mainly used as efficient numerical
solvers of P.D.Es. Refer to Trottenberg et al. (2000) for a more in-depth treat-
ment. M.Gs operate by creating a discretized version of the P.D.E on a mesh grid
of points, where the problem is solved iteratively using various approximation
schemes. The ordering of the grid points characterizes what type of discretiza-
tion we are using. We first define a "standard" M.G structure and then define the
cascadic M.G structure.

We illustrate the M.G principle on a Poisson P.D.E model problem7: Lu =
−∆u = −uxx − uyy = f , where L is a partial differential operator.

6 Or at least it is likely that no fast parallel solutions exists. That is, the problem is inherently
sequential.

7 M.Gs are well suited for elliptic P.D.E problems, which is why the toy problem. Incidentally,

132

Definition 3.8. A discrete Poisson model with Dirichlet boundary conditions is defined
as

−∆huh(x, y) = f Ω
h (x, y), ((x, y) ∈ Ωh) (92a)

uh(x, y) = f Γ
h (x, y), ((x, y) ∈ Γh = ∂Ωh) (92b)

where Ω = (0, 1)2 ⊂ R2 is a unit square, h = 1
n , n ∈ N the mesh size on a square grid.

The differential operator L is approximated using a smoothing kernel, for example the
so-called five point stencil approximation kernel which defines the point ordering

Lhuh(x, y) =
1
h2

 −1
−1 4 −1

−1

 uh(x, y).

The two main principles of M.G are

Smoothing principle : Chosen a suitable discretization for the P.D.E, the P.D.E is
solved by smoothing the error of the approximation.

Coarse grid principle : Computationally, smoothing the error on coarser mesh
points is cheaper, and provides better smoothing of the error.

With these principles, the M.G structure aims at smoothing the low and high fre-
quency error terms in the approximation. There are several smoothing strategies,
or cycles, which are applied iteratively on the mesh grids. Figure 36 illustrates
three strategies: V−cycle, W−cycle and cascadic cycle (to be explained later be-
low). A M.G cycle operates iteratively in the following, general way:

1. Compute a pre-smoothing solution to (uh, Lh, fh) at level h.
2. Do a coarse grid correction by i) computing the solution’s defect, ii) restrict-

ing the defect, iii) interpolate the correction between levels, iv) compute the
new corrected approximate solution on Ωh.

3. Compute a post-smoothing solution to (uh, Lh, fh).

W−cycleV−cycle Cascadic cycle

FIGURE 36 Examples of M.G structure cycles, where filled circles are smoothed points,
hollow circles exact solutions, \ fine-to-coarse propagation, / coarse-to-fine
propagation (Trottenberg et al. (2000)).

In this work, the cascadic M.G approach is used to solve early vision problems.
The same principles apply as in M.Gs, but the error smoothing is done only in
one direction, namely coarse-to-fine.

image processing & analysis problems are of elliptical P.D.E variety (if casted into P.D.E
form that is).

	Neurocomputing and Probabilistic Propagation in Computer Vision
	Abstract
	Tiivistelmä (Abstract in Finnish)
	Acknowledgements
	List of Acronyms
	List of Figures
	List of Tables
	Contents
	Introduction
	Research motivation
	Aim of research work
	Main results of research work

	Theoretical & technical background
	Processing visual information
	Theories for perception
	A computational approach to vision

	Principles of image processing
	Image representation
	Random variables
	Operating on pixels
	Multiscale data structures

	Probabilistic graphical models
	Set of axioms for graphical representation
	Markov networks
	Bayesian networks

	Probabilistic graphical models in vision
	P.G.Ms applied in vision tasks
	A note on differences between directed and undirected networks in vision
	Markov Random Fields

	Artificial Neural Networks
	Fundamentals
	Convolutional Networks
	Connection to P.G.Ms

	Similarity measures from seismic signal analysis
	Coherence measure

	High-performance computing
	Limiting factors in H.P.C

	Probabilistic propagation
	Propagation in networks
	Solving M.A.P estimation with message-passing in the presence of loops
	Speeding up max-product on arbitrary network structures

	Belief revision improvement by coherence
	Inducing new combinatorial structure with semblance measure
	Modification strategy for M.A.P estimation in vision

	H.P.C approaches

	Experimental results
	Image denoising: problem definition
	Image denoising: program
	Image denoising: results
	Strengths and limitations

	High-Performance B.P
	Better belief corrections or speeding up computation?
	H.P.C: problem formulation
	H.P.C: results
	Strength and limitations

	Retrieving physical parameters from simulated image spectra
	Skin cancer – motivation
	Light propagation modelling
	Physical parameter retrieval with C.N.Ns
	Parameter dependency estimation with Bayesian Networks
	Strengths and limitations

	Discussion & conclusion
	Further considerations

	Yhteenveto (Summary in Finnish)
	References
	Image models
	Mathematical Morphology
	Fourier methods
	Wavelet and Space-Scale methods
	Stochastic modelling
	Variational methods
	Partial Differential Equations
	Intrinsic connection between different methods
	M.A.P estimation in P.G.Ms

	Mathematical tools
	Probability theory
	Measure theory
	Ensemble definition of probability
	Properties of numerical functions
	Structure scores in Bayesian networks

	Theory of Computation & Data structures
	Languages
	Asymptotic complexity classes
	Linear programming relaxation for M.A.P inference
	P-complete problems

	Multigrids

