
Leevi Annala

JYU DISSERTATIONS 332

Convolutional Neural Networks  
and Stochastic Modelling in  
Hyperspectral Data Analysis



JYU DISSERTATIONS 332

Leevi Annala

Convolutional Neural Networks  
and Stochastic Modelling in  
Hyperspectral Data Analysis

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi joulukuun 12. päivänä 2020 kello 10.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

on December 12, 2020 at 10 o’clock am.

JYVÄSKYLÄ 2020



Editors
Timo Männikkö
Faculty of Information Technology, University of Jyväskylä
Ville Korkiakangas
Open Science Centre, University of Jyväskylä

ISBN 978-951-39-8453-3 (PDF)
URN:ISBN:978-951-39-8453-3
ISSN 2489-9003

Copyright © 2020, by University of Jyväskylä
 
Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-8453-3

 



ABSTRACT

Annala, Leevi
Convolutional neural networks and stochastic modelling in hyperspectral data
analysis
Jyväskylä: University of Jyväskylä, 2020, 56 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 332)
ISBN 978-951-39-8453-3 (PDF)

Hyperspectral imaging is relatively new and rapidly growing field of research.
The datasets produced by hyperspectral imaging are large, and handling such
data requires large computational resources. Therefore, there is a need for devel-
oping machine learning methods that can cope with the data, and methods to re-
duce the necessary amount of data gathering missions. For the latter, problem the
author and his co-authors have developed stochastic modelling and generative
adversarial neural networks for data augmentation. In machine learning, they
have experimented with using convolutional neural network in conjunction with
said stochastic model in order to retrieve useful information from hyperspectral
data. Additionally, the author lists useful Python packages for hyperspectral data
analysis.

Keywords: Hyperspectral imaging, Convolutional neural network, Stochastic mo-
delling, Biophysical parameter retrieval, Data augmentation



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Annala, Leevi
Konvoluutioneuroverkkojen ja stokastisen simuloinnin käyttö hyperspektriku-
vien analysoinnissa
Jyväskylä: University of Jyväskylä, 2020, 56 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 332)
ISBN 978-951-39-8453-3 (PDF)

Hyperspektrikuvantaminen on kasvava ala. Hyperspektrikuvantaminen on re-
surssien ja datan määrän suhteen vaativaa, ja siksi on tarpeen kehittää koneop-
pimismenetelmiä, jotka pystyvät käsittelemään dataa, ja menetelmiä tarvittavan
datan keräämisen vähentämiseksi. Viimeksi mainittua ongelmaa varten kirjoitta-
ja ja hänen kanssakirjoittajansa ovat kehittäneet stokastista mallintamista ja gene-
ratiivisia kilpailevia neuroverkkoja datan määrän kasvattamiseksi mitatun datan
rinnalla. Koneoppimisessa he ovat käyttäneet konvoluutioneuroverkkoa maini-
tun stokastisen mallin kanssa saadakseen hyödyllistä tietoa hyperperspektrida-
tasta. Lisäksi työssä etsittiin ja ja testattiin hyödyllisiä Python-paketteja hypers-
pektridatan analysointiin.

Avainsanat: Hyperspektrikuvantaminen, Konvoluutioneuroverkko, Stokastinen
mallintaminen, biofysikaalisen parametrin palauttaminen, Datan li-
sääminen
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1 INTRODUCTION

1.1 Background

It all started with a rainbow on a wall during the black death pandemic in 1660s.
Isaac Newton had dimmed his living room and made a tiny hole in his curtains to
experiment with light. Now we know that rainbow is produced by water droplets
acting as a prism to refract the different light wavelengths of white light into
their own beams. While prisms were known for centuries before him, Newtons
work "Opticks" is the earliest known scientific accounting of light refraction in the
prism. This was the beginning of the research field now known as spectroscopy.
(Thomas, 1991)

Spectroscopy is the study of electromagnetic radiation, for which light is
subcategory of, and its interaction with matter. When a photon, the light particle,
hits the matter, it either reflects off of the matter, is absorbed into it, or transmits
through it. In optical spectroscopy one measures the amount and wavelength
of photons hitting the sensor. The measuring device takes into account the pho-
tons transmitted through the matter, the photons scattered from the surface of the
matter and the photons emitted by the matter. Emission happens, when excited
electron state is released, and the electron state is excited when the photon energy
is absorbed into the matter. (Hof, 2003)

When we add spatial, i.e. photographic, information to the spectral infor-
mation gathered in the field of spectroscopy, we enter the domain of spectral
imaging. In order to do spectral imaging, we generally need a device with two
parts:

1. We need a way to capture spatial data, like a camera, and
2. a way to control the wavelength of light detected by the camera.

In this research, it is achieved with a machine vision camera and Fabry-Perót
interferometer (Saari et al., 2009, 2013). Such imager produces an image similar
to normal digital photograph, but instead of channels for red, green and blue
there is 20-200 channels for specific small wavelength ranges. A hyperspectral
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image is often referred to as datacube, because it is essentially a thick stack of
monochromatic photographs. From each pixel of a hyperspectral datacube, one
can plot a spectrum that is similar to one captured with a traditional spectrometric
device. Example of hyperspectral image and a spectrum of a pixel can be seen in
Figure 1.

Hyperspectral imaging has multitude of applications. For example, in the
remote sensing field it has been used in forestry and agriculture applications
(Adão et al., 2017), and in marine biology applications (Dumke et al., 2018). For
example, Kaivosoja et al. (2013) studied the ways to use hyperspectral imaging to
accurately apply fertiliser to the field. This includes using hyperspectral imaging
in biomass and nitrogen content estimation. In (Zarco-Tejada et al., 2013), hyper-
spectral imaging was used to estimate carotenoid content from vineyard imagery.
Näsi et al. (2015) took hyperspectral images with a drone and used the images
to estimate the amount of bark beetle damage in Norway spruce. Dumke et al.
(2018) used hyperspectral imaging underwater to identify taxonomical classes of
deep-sea fauna.

In industry, hyperspectral imaging is used in various ways. For example,
in the paper industry it is used to monitor the drying of the cellulose mass (Ma
et al., 2020). In pharmaceutical industry, it is used in quality control (Hamilton
and Lodder, 2002; Gendrin et al., 2007; Roggo et al., 2005). In is also used in
plastic waste recycling (Serranti et al., 2011). In food industry, there is multitude
of applications in quality control (Liu et al., 2017). Hyperspectral imaging is used,
for example, in meat quality control (Elmasry et al., 2012), fish quality control
(Cheng and Sun, 2014) and dairy quality control (Gowen et al., 2009).

Hyperspectral imaging is also finding use in the biomedical field. In the
field, hyperspectral imaging is used, for example, in skin cancer research (Dicker
et al., 2006; Zherdeva et al., 2016; Neittaanmäki-Perttu et al., 2013; Zheludev et
al., 2015) and in diabetic foot ulceration monitoring (Nouvong et al., 2009; Yu-
dovsky et al., 2010). More general wound monitoring applications are also avail-
able (Shah et al., 2003; Calin et al., 2015; Wahabzada et al., 2017).

1.2 Research environment

The research was carried out in the Spectral Imaging Laboratory of the Faculty of
Information Technology in the University of Jyväskylä, headed by Docent Ilkka
Pölönen. The author was mainly responsible of data analysis tasks, for which the
computational clusters were provided by the Finnish Grid and Cloud Infrastruc-
ture.

The research described in this dissertation builds on the work of previous
graduates of Spectral Imaging Laboratory. These graduates include the founder
of the laboratory, Docent Ilkka Pölönen, Dr. Hannu-Heikki Puupponen and Dr.
Matti A. Eskelinen. Pölönen published his dissertation by the name of “Discov-
ering knowledge in various applications with a novel hyperspectral imager” in
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Revenio Prototype 2016, which has spatial resolution of 1920 × 1200 pixels and
spectral resolution of 120 wavelengths from 460 nm to approximately 842 nm.

1.3 Objectives and Scope

This dissertation provides an answer to the question: How can the hyperspec-
tral images, deep learning algorithms and mathematical modelling be used in
conjuction to increase the human knowledge? The context of the research are in
fields of forestry and medicine. The author starts by finding the right tools for
the work in PI. Then he uses convolutional neural network (CNN) in a direct
way to solve hyperspectral classification problems in PII and PIII. In PIV the au-
thor uses a stochastic model to produce training data for CNN regression. The
author uses CNN as an inversion method for the model. In PV and PVI this idea
is expanded by extending the model used in forestry context in PIV to general
stochastic model for layered media and using the model in producing skin spec-
tra. The stochastic model and a Kubelka-Munk model are inverted in PV, and in
PVI, the author proceeds to finding out which machine learning algorithms work
well in inverting such mathematical models. PVII is a short excursion to finding
out if the mathematical modelling part of articles PIV, PV and PVI is replaceable
with another deep learning algorithm.

The research questions of these articles are the following:

PI What are the best tools in Python programming language for hyperspectral
image analysis, machine learning, and neural networks?

PII How well does the CNN work in tree species classification?
PIII How well does the CNN work in skin cancer classification?
PIV 1. How well can the Stochastic Model for Leaf Optical Properties (SLOP)

be inverted in terms of chlorophyll content?
2. How well can the inverted stochastic model be transfered to predict

chlorophyll content in hyperspectral images?
PV 1. Can SLOP be transported to skin optical model?

2. How well does it work compared to Kubelka-Munk model?
3. How well do these two models work with CNN inversion?

PVI Which machine learning algorithm (of the researched algorithms) is the best
for stochastic model inversion?

PVII Can hyperspectral data be easily modelled using generative adversarial neu-
ral network (GAN)?

Author’s contributions are described in detail in chapter 3.
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1.4 Author’s other works

During his PhD training, the author has contributed to the following works not
listed as part of this thesis:

1. "Hexyl aminolevulinate, 5-aminolevulinic acid nanoemulsionand methyl a-
minolevulinate in photodynamic therapy ofnon-aggressive basal cell car-
cinomas: A non-sponsored,randomized, prospective and double-blinded
trial" by Salmivuori et al. (2020)

2. "Hexylaminolevulinate and Aminolevulinic acid Nanoemulsion have Sim-
ilar Tolerability, Initial Efficacy and Cosmetic Outcome as Methylaminole-
vulinate in Photodynamic Therapy of Basal Cell Carcinoma in a Prospective
Randomized Double-blinded Trial" by Salmivuori et al. (2019)

3. "Miniature MOEMS hyperspectral imager with versatile analysis tools" by
Trops et al. (2019)

4. "Minimal learning machine in anomaly detection from hyperspectral im-
ages" by Pölönen et al. (2020).

1.5 Dissertation structure

The dissertation is structured as follows. In Chapter 1, the author puts the dis-
sertation in historical context, describes the environment the where work is done,
presents the research questions and his other work. In Chapter 2, the foundations
of the included articles are described and the necessary background information
is given. Chapter 3 summarises the research results and presents the authors
contributions to the articles. In Chapter 4, the author discusses the strengths and
weaknesses of the work and in Chapter 5, the author provides concluding re-
marks on the work.



2 THEORETICAL FOUNDATION

2.1 Hyperspectral imaging and hyperspectral data

Hyperspectral imaging is combining spectroscopy and photogrammetry. Hyper-
spectral imagers can be broadly divided into four categories (Chang, 2007):

– line scanners,
– pushbroom scanners,
– whiskbroom scanners, and
– framing cameras.

The devices used during this research fall under the last category. The hyper-
spectral cameras consist of a machine vision camera and a device that controls
the wavelength range of the electromagnetic radiation passed on to the cam-
era, such as Fabry-Pérot interferometer (FPI) (Pérot and Fabry, 1899; Saari et al.,
2009, 2013). The imaging procedure is to make small adjustments to the wave-
length range and take a photograph after every adjustment. This is done quickly,
and normal imaging time is less than one second for a full hypespectral image.
The resulting hypespectral image has roughly the same spatial information as an
RGB-photograph of the object, but it contains more information in the spectral
dimension, upwards to 200 wavelength ranges compared to the 3 in the RGB-
photograph. Example of a hyperspectral image can be seen in Figure 1.

Considering the amount of data contained in a hyperspectral image, it re-
quires considerably more storage space than an RGB-photograph. While using
hyperspectral imagers of the FPI type used in this research, one raw hyperspec-
tral image consists of RGB-photographs for each wavelength setting. Therefore
it takes up the disc space of 50-200 2 megapixel RGB-photographs. From the raw
images, the radiance is calculated. Radiance is the amount of electromagnetic
radiation leaving the imaged object towards the camera. Sometime reflectance,
which describes the ratio of incoming and outgoing light, is more useful. Re-
flectance can be calculated for instance by calculating the ratio of radiance and
white reference. Now, we have three to four sets of hyperspectral datacubes, de-
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pending on the amount of needed white references. This easily adds app to 2-4
gigabytes of data per imaging target. If we are doing data science with the en-
tire hyperspectral images, for example classifying lesions in skin cancer research,
there is no upper limit for the amount of data we would like to have. By the end of
all this, we easily get datasets of hundreds of gigabytes. This creates benchmark
for the used tools, as they need to be suited for data intensive science.

2.2 Stochastic modelling of hyperspectral data

Fortunately, hyperspectral data can be also modelled by physically based mathe-
matical models. The goal is to calculate the spectral data by using known physical
and biological properties of the imaged object and the physical principles behind
light-matter interaction. These models are used to approximate the spectra.

For example, in skin reflectance modelling, some relevant properties would
be the concentrations of different chromophores, such as melanin or hemoglobin,
in the different skin layers, or the thicknesses of the layers. The physical in-
teraction can be modeled for example by using by using Kubelka-Munk theory
(Kubelka, 1931) as in (Angelopoulou, 2001; Jolivot et al., 2013), or Boltzmann pho-
ton transport theory (Ishimaru, 1978) or diffusion theory models (Van Gemert et
al., 1987). These are called deterministic models by Baranoski et al. (2015). Other
class of models are stochastic models which include randomness and are based
on Monte Carlo modelling (Hammersley, 2013). Examples of different stochastic
models can be found in (Shimada et al., 2001; Wang et al., 1995).

In the remote sensing field, the mathematical modelling task is slightly dif-
ferent compared to skin modelling, as the distance from the imaged object is
longer. Therefore, in the forestry context, the modelling usually takes into ac-
count both canopy and individual leaf properties. The division into determin-
istic and stochastic models is less strict, as one can model canopy stochastically
and leaf determinististically or other way around. Examples of models used in
forestry can be found from (Jacquemoud and Baret, 1990; Jacquemoud et al., 2009;
Jacquemoud and Ustin, 2008; Govaerts et al., 1996; Goel, 1988)

Stochastic modelling approach used in PIV, PV and PVI is based on Markov
chain. The idea is to model the imaged object pixelwise as a network of states
and their connections. The work is based on stochastic model for leaf optical
properties by Maier et al. (1999) and Tucker and Garratt (1977). It is used with-
out modifications in article PIV, and modified for skin optical properties by the
author in PV and PVI by using skin chromophore parameters and scattering and
absorption coefficients from Jacques (2013).

The stochastic model used in PV and PVI is described in Figure 2. It consists
of states, and their connecting probabilities. Each layer in the figure represents a
layer in the skin (in PV and PVI context). The probabilities are calculated in each
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layer as follows:

Pdirect reflection =

⎧⎪⎨
⎪⎩

0.02 if the current state is illumination,
1 if the current state is direct reflected,
0 otherwise

Pabsorption(λ) =

{
1 if the current state is absorbed,

a(λ)
a(λ)+s(λ) · (1 − e−(a(λ)+s(λ))·L) otherwise,

Pscattering(λ) =

{
0 if the current state is absorbed,

s(λ)
a(λ)+s(λ) · (1 − e−(a(λ)+s(λ))·L) otherwise,

Pup/down(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − Pabsorption − Pscattering if the current state is up or down,
1−Pabsorption−Pscattering

2 if the current state is scattered,
0 if the current state is absorbed,
0.98 if the current state is illumination,

where

– Pdirect reflection represents the probability of photon moving to state direct re-
flected,

– Pabsorption represents the probability of photon moving to state absorbed
(note that the photon can move to this state only from the same layer),

– Pscattered represents the probability of photon moving to state scattered (note
that the photon can move to this state only from the same layer),

– Pup/down represents the probability of photon moving from one layer to an-
other,

– λ is wavelength in nanometers,
– a(λ) = ∑n ai(λ)ci is the absorption coefficient,

– s(λ) = s(500 nm) · fRay

(
λ

500 nm

)−4
+ (1 − fRay)

(
λ

500 nm

)−bMie
is the reduced

scattering coefficient,
– L is the length of the light path, which is assumed to be the thickness of the

layer,
– ai are the chromophore (i.e. part of a molecule responsible for its color)

absorption coefficients,
– ci are the chromophore concentrations,
– s(500 nm) the measured reduced scattering coefficient at 500 nm,
– fRay fraction of the Rayleigh scattering, and
– bMie the Mie scattering power.

These parameters and their definitions are for skin modelling, and we used slightly
different definitions in article PIV, where the stochastic model for leaf optical
properties (SLOP) is used.

The chromophores used in the skin studies PV and PVI were melanin, de-
oxygenated and oxygenated hemoglobin and water, and additional parameters
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Illumination Direct reflected Emitted

Down to first layer Absorbed Scattered Up to first layer

Down to second layer Absorbed Scattered

Absorbed

FIGURE 2 Network of states and transitions of light propagation in the Stochastic
Model. Adapted from PVI.

were scattering and absorption parameters and skin layer thicknesses. For the
forestry study in PIV the chromophores were chlorophyll a and b, β-carotene,
lutein, violaxanthin, neoxanthin and water. Additionally, scattering coefficient
and probability of direct reflection were varied and chloroplast diameter and con-
centration and leaf layer thicknesses were handled as constants. Example spectra
produced by the stochastic models is in Figure 3.

This stochastic model can be used in a direct way to produce spectra based
on the input parameters. It can also be inverted by various methods, for example
using machine learning. After inversion, the machine learning methods takes an
input of a spectrum, and uses that input to produce information of the stochastic
model input parameters. For example in PIV the inverted model is used to esti-
mate chlorophyll concentrations from hyperspectral drone imagery. This is called
physical parameter retrieval and is described in more detail in section 2.3.2.

2.3 Machine learning problems in hyperspectral imaging

Machine learning problems can be divided in to four categories; supervised and
unsupervised machine learning, semi-supervised learning, and reinforcement learn-
ing (Kubat, 2017). In hyperspectral image analysis the machine learning tasks can
be divided into categories of classification, detection, spectral unmixing and pa-
rameter estimation (Gewali et al., 2019). Of these the scope of this work is mainly
on the classification and parameter estimation problems, for which mainly super-
vised machine learning methods are used.

The problems can be also classified by field. This classification includes
remote sensing, biomedical applications, food and agriculture, and other appli-
cations (Signoroni et al., 2019). Using this classification, the work at hand is in the
fields of remote sensing and biomedical applications. Signoroni et al. (2019) also
adds data enhancement to the list of tasks by Gewali et al. (2019). In this section,
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the reader will be provided sufficient knowledge for machine learning tasks for
understanding the articles the author has written.

2.3.1 Hyperspectral classification problems

Classification is conceptually one of the easiest to understand among machine
learning tasks. The idea is to take data and classify it according to pre-determined
labels. This is called training of a machine learnig algorithm. Mathematically the
idea is to minimize a loss function, which with well defined loss function means
that the the desired metric, usually accuracy, of the resulting trained algorithm is
the best possible with the used input data.

In hyperspectral imaging, the classification can be done either by classify-
ing the image pixel by pixel or by using a spatial-spectral approach (Gewali et al.,
2019; Signoroni et al., 2019). In pixel by pixel approach, only the spectral domain
affects the classification, and in spatial-spectral approach, the pixel’s surround-
ings with spatial features are taken into account. The author’s articles PII and
PIII are about hyperspectral data classification. In both spatial-spectral approach
is utilized.

2.3.2 Biophysical parameter retrieval

Biophysical parameter retrieval is a subclass of hyperspectral regression prob-
lems. In biophysical parameter retrieval, the machine learning algorithm is trained
similarly to classification algorithm. Only the loss metric is different and the label
is a value that represent some parameter of the imaged object. The goal is to esti-
mate the value of the parameter, such as leaf chlorophyll content or skin melanin
content.

According to Verrelst et al. (2018), the parameter estimation strategies can
be divided into four categories, which are in order of complexity:

1. Parametric regression methods,
2. Nonparametric regression methods,
3. Physically based model inversion methods, and
4. Hybrid regression methods.

Of these, the first category generally means spectral indices, such as NDVI (Pon-
tailler et al., 2003; Stenberg et al., 2004) or TCARI/OSAVI (Haboudane et al., 2002)
and similar methods that are calculated directly from the hyperspectral data. The
second category is generally machine learning with direct measurements of the
parameters as labels, as used in (Lazaridis et al., 2011; Feilhauer et al., 2017).
Third category means mathematically modelling the result, like in with PROSAIL
for tree canopies (Jacquemoud et al., 2009). Fourth category means combining
some of the previous categories in one model, such as using previously defined
stochastic model in producing training data for a machine learning algorithm and
using the trained algorithm for the estimation. This is the paradigm used in ar-
ticles PIV, PV and PVI. Other examples of similar methodology can be found in
(Rivera-Caicedo et al., 2017; Malenovskỳ et al., 2013)
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2.3.3 Hyperspectral data augmentation

Hyperspectral data augmentation is another interesting problem class (Nalepa et
al., 2019), where the amount of usable data is increased by modifying the existing
data or manufacturing synthetic data. The desire to use data augmentation rises
from the data gathering being a laborious process and the data size being in or-
ders of gigabytes per captured hyperspectral image. The augmentation process
is used to spend minimal amount of time in data gathering and to minimize the
amount of original data needed.

The traditional ways of reusing the data are normal transformations of the
used data, such as flipping an image upside down or mirroring it. One can 8-fold
the data with the eight symmetry axels of rectangle shaped image data. There are
also more interesting new ways to go about it, like generative adversarial neural
network (Goodfellow et al., 2014) used in article PVII.

The idea of the generative adversarial neural network is to have two com-
peting neural networks. The generator network’s objective is to fool discrimina-
tor network to believe the data is from the training dataset, which has been intro-
duced to the discriminator beforehand, but not to the generator. Mathematically
the objective is achieved by using the true/false labels produced by discriminator
to change the discriminator and generator losses to the opposite directions. When
trained, the generator can be used for producing data similar to the training data
in the dataset.

2.4 Convolutional neural network

The main machine learning algorithm used is this work is the convolutional neu-
ral network (CNN). It was invented in its current form by Yann LeCun, who in
his article “Backpropagation applied to handwritten zip code recognition” (1989),
thought of combining previously known hand tuned convolutional neural net-
work by Fukushima and Miyake (1982) and backprobagation algorithm studied
previously by Linnainmaa (1970), Werbos (1974) and Rumelhart et al. (1986). The
resulting network correctly updated its convolution kernels by itself–without hu-
man intervention.

This section is structured as follows: First we take a look at the intuitional
explination why CNN works well in image analysis tasks. Then we introduce
the neural network (NN), also known as multi-layer perceptron (MLP), and go
through the backpropagation process with an example. After that we look at the
mathematical definition of convolution and lastly we introduce the CNN with an
example.
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2.4.1 Convolutional neural network – Intuition

The usefulness of convolutional neural network (CNN) in image and signal anal-
ysis is easy to understand by looking at convolution in a small example. Let us
consider the image and convolution kernels in Figure 4a. If we want to look for
features described in the convolution kernels, we can calculate the convolutions
and see the results in Figure 4b. The resulting feature maps are brightest where
the searched feature was most likely to be found, which is the intuition behind
CNN. By reducing the image to the searched features, the machine learning tasks
become much simpler, because the features act as a link between the individual
pixels and the label. As already mentioned, in the CNN these feature kernels,
officially known as convolution kernels, are automatically formed through the
training process.

The intuition holds true. If we look at state-of-the-art object recognition
algorithms (Xie et al., 2020; Touvron et al., 2020), they have been based on convo-
lutional neural network since AlexNet by Krizhevsky et al. (2012). CNN has also
been successfully used in various non-image applications, for example in signal
analysis tasks (Jafarzadeh et al., 2019), natural language processing (Collobert
and Weston, 2008) and time series forecasting (Borovykh et al., 2017). It was also
used in Google’s AlphaGo Go program in evaluating the best moves in the game
(Silver et al., 2016).

2.4.2 Neural Network

Mathematically, a neural network is a network of nodes and their connections.
The connections have weights, which are initially random values. Then the goal
is to adjust the weights in the training phase so that the loss function is minimised.
The loss function (error function) is always non-negative, and zero, when the
true and predicted labels of the training dataset are the same. The usual way for
minimizing the loss function is through gradient descent with backpropagation
as introduced by Amari (1993).

Let us discuss an example of a neural network. Let us assume the network
has the same architecture as in the Figure 5. The first step of training a neural
network is forward pass. The input is forwarded to the first hidden layer where
the input of a node is the sum of the input connections multiplied by the output
value in the connected input node

hin
1 = iout · wi1, (1)

gin
1 =

3

∑
k=1

hout
k · wk1. (2)

If the nodes have bias, as introduced by Blum (1989); Lisboa and Perantonis (1991)
in order to solve the XOR-problem with neural networks, a constant bias is added
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FIGURE 5 Example of a fully connected deep neural network with one input and one
output, and two hidden layers with 3 and 5 nodes.
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to the Equations 1 and 2

hin
1 = iout · wi1 + bh1 , (3)

gin
1 =

3

∑
k=1

hout
k · wk1 + bg1 . (4)

The output of the node is the input that goes through activation function σ,
such as rectified linear unit (reLU) (Nair and Hinton, 2010), sigmoid (Kilian and
Siegelmann, 1993), or softmax (Bridle, 1990)

hout
1 = σ(hin

1 ) (5)

Finally, we arrive at the output layer, for which the input is calculated simi-
larly to Equation 2 and output similarly to Equation 5

oout = σoin = σ

(
5

∑
k=1

gout
k · wko

)
. (6)

Now, we can compare the training data to the output data by calculating the loss
function. Let us use mean square error in this example. Mean square error in the
case of one output is just square error (Eq. 7). In the case there are multiple
outputs it is the mean of the squared errors (Eq. 8):

L = (oout − oexp)2, (7)

L =
1
n

n

∑
k=1

(oout
k − oexp

k )2. (8)

In order to update the weights, we need to know each node contributes to the
error propagation in the loss function. This is called backpropagation. Accord-
ing to the law of error propagation (Birge, 1939), the contribution is the partial
derivative of loss function by the weight. For weight w it is ∂L

∂w . The actual update
is in Eq. 9, where l is the learning rate, which determines how fast the weights
are allowed to change in gradient descent algorithm

wnew = wold − l
(

∂L
∂w

)
. (9)

In the usual case when there are more than one data point in the training data,
the update in Eq. 9 is the average of the batch of partial derivatives (Eq. 10)

wnew = wold − l

(
1
n

k=n

∑
k=1

∂Lk
∂w

)
. (10)

Now, let us calculate the partial derivative for w1o. First we need to repre-
sent L as a function of w1o:

L = (oout − oexp)2

= (σ(oin)− oexp)2

= (σ

(
5

∑
k=1

gout
k · wko

)
− oexp)2.
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Let us denote f (x) = (σ(x)− oexp)2, and the L simplifies as

L = f

(
5

∑
k=1

gout
k · wko

)

= f

(
gout

1 · w1o +
5

∑
k=2

gout
k · wko

)

= f (g(w1o)),

where g(x) = gout
1 x + ∑5

k=2 gout
k · wko. Now the partial derivative of this is easy to

calculate through the chain rule:

∂L
∂w1o

= f ′(g(w1o)) · g′(w1o).

Now, the derivative of g is easy to calculate:

g′(w1o) = gout
1 ,

as the weights and node outputs in the sum are not functions of w1o. The deriva-
tive of f on the other hand must be calculated again using chain rule: let us say
h = (x + oexp)2. Now f can be written as

f (x) = h(σ(x)), and
f ′(x) = h′(σ(x))σ′(x).

Now we can put it all together:

∂L
∂w1o

= f ′(g(w1o)) · g′(w1o)

= h′(σ(g(w1o))) · σ′(g(w1o)) · g′(w1o)

= h′(σ(oin)) · σ′(oin) · gout
1

= 2 · (oout − oexp) · σ′(oin) · gout
1 .

We did not set the activation function σ for this example, but they are usually
simple to differentiate. For example with logistic activation (Elliott, 1993) the
function and derivative are

σ(x) =
1

1 + e−x , and

σ′(x) =
ex

(1 + ex)2 = σ(x)σ(−x).

Then the partial derivative would come to

∂L
∂w1o

= 2 · (oout − oexp) · σ(oin) · σ(−oin) · gout
1 .

Similar calculation would be done for each of the weights and biases, and
the update would be calculated according to Eq. 10. The current neural network
implementations use automatic differentation for backpropagation (Baydin et al.,
2017), which means that for any computational graph, such as neural network,
the backpropagation can be automatically computed.
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2.4.3 Convolution

This section is based on “Deep Learning Book” Chapter 9.1 by Goodfellow et al.
(2016). Convolution is defined as follows:

( f ∗ g)(x) =
∫

f (t)g(t − x)dt. (11)

However, in computer science, the computation is discrete, which leads to dis-
crete convolution, described as

( f ∗ g)(x) =
∞

∑
t=−∞

f (t)g(t − x). (12)

As we can see, in the Equation 12 the integral of the Equation 11 is replaced with
summation. Now this can be extended to multiple dimensions if needed:

( f ∗ g)(x, y) =
∞

∑
t=−∞

∞

∑
u=−∞

f (t, u)g(t − x, u − y) (13)

In Equations 11 – 13 the function f is the convoluted function, and function g is
called kernel. Now, as the input data in machine learning application is always
both finite and discrete, functions f and g can be represented as finite vector in
one dimension, matrix in two dimensions or tensor in higher dimensions. Now,
equation 12 can be written as

( f ∗ g)(x) = ∑
t∈I

f (t)g(t − x) = ∑
u∈K

f (x + u)g(u), (14)

where I denotes the input data, and K the kernel. This final form is very close to
the convolution used in deep learning libraries such as Tensorflow (Abadi et al.,
2016).

2.4.4 Convolutional neural network

CNN differs from normal deep neural network by the forward pass method.
While in dense neural network every node in a layer affects the input of the next
layer’s nodes, in CNN the nodes far from each other have no cross-effect on the
next layer.

Let us take a look at an one dimensional neural network described in Figure
6. It consist of input layer, convolutional layer, pooling layer and output layer. Let
us look at them one by one. First the convolution layer calculates the convolution
for the input layer. Let us assume the input is

[x1, x2, x3, x4, x5, x6, x7, x8, x9]

and the original convolution kernel is randomly chosen to be

[w1, w2].



33

Now, the output of convolutional layer, before the activation function is[
2

∑
i=1

wi · xi,
2

∑
i=1

wi · xi+1,
2

∑
i=1

wi · xi+2,
2

∑
i=1

wi · xi+3,

2

∑
i=1

wi · xi+4,
2

∑
i=1

wi · xi+5,
2

∑
i=1

wi · xi+6,
2

∑
i=1

wi · xi+7

]
.

Let us assume, for simplicity, that our activation function is linear, so the
output after activation is the same as input for activation. Next we have pooling
layer, which is intended to drop some of the data in a controlled way in order to
further reduce the dimensionality of the network (Passricha and Aggarwal, 2020).
For example, here we use max pooling with kernel size two and stride two, which
means we take the first two inputs to the layer and choose the maximum of the
two, and then take the next two values and take the maximum of the two and so
forth. The output of the layer is[

max

(
2

∑
i=1

wi · xi,
2

∑
i=1

wi · xi+1

)
, max

(
2

∑
i=1

wi · xi+2,
2

∑
i=1

wi · xi+3

)
,

max

(
2

∑
i=1

wi · xi+4,
2

∑
i=1

wi · xi+5

)
, max

(
2

∑
i=1

wi · xi+6,
2

∑
i=1

wi · xi+7

)]

The output layer is just a normal dense layer, so the input (and output after
linear activation) is

w3 · max

(
2

∑
i=1

wi · xi,
2

∑
i=1

wi · xi+1

)
+ w4 · max

(
2

∑
i=1

wi · xi+2,
2

∑
i=1

wi · xi+3

)
+

w5 · max

(
2

∑
i=1

wi · xi+4,
2

∑
i=1

wi · xi+5

)
+ w6 · max

(
2

∑
i=1

wi · xi+6,
2

∑
i=1

wi · xi+7

)

Now the backpropagation is similar to the non-convolutional neural net-
work, but due to weight sharing in the convolutional layer, the arithmetic is
slightly more difficult. Let us consider the contribution of weight w1 to the loss L:

∂L
∂w1

.

By chain rule this can be expressed as

∂L
∂w1

=
∂L

∂yout

∂yout

∂w1
,

where loss function L is defined as

L = (yout − yexp)
2.
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FIGURE 6 Example of (one dimensional) convolutional neural network that has nine
inputs, convolution with one kernel of size two, pooling layer of size two
and one output. Usually a fully connected part is added after enough
convolution-pooling combinations. Note that the amount of connections is
lower than if all layers would be fully connected. This means that in the ma-
chine learning training phase, there is less parameters to optimise.
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Now, yout can be expressed as a function of previous layer:

yout =
4

∑
i=1

wi+2pi(w1),

where pi is output of pooling layer, which are functions of w1. Now we can use
the chain rule again:

∂L
∂w1

=
∂L

∂yout

∂yout

∂w1
=

∂L
∂yout

4

∑
i=1

∂yout

∂pi

∂pi

∂w1
.

Again, pi can be further expanded:

pi = max
(
cj(w1), cj+1(w1)

)
,

where j = (i − 1) · 2 + 1 and cj is the output of the convolution layer. We use the
chain rule and get

∂L
∂w1

=
∂L

∂yout

4

∑
i=1

∂yout

∂pi

∂pi

∂w1
=

∂L
∂yout

4

∑
i=1

∂yout

∂pi

(i−1)·2+2

∑
j=(i−1)·2+1

∂pi

∂cj

∂cj

∂w1
.

Now, when we remember that cj = w1xj + w2xj+1, where xj are inputs to the
network, we can calculate all the partial derivatives in the chain:

∂L
∂yout

= 2 · (yout − yexp)

∂yout

∂pi
= wi+2

∂pi

∂c(i−1)·2+1
=

{
1, if c(i−1)·2+1 ≥ c(i−1)·2+2

0, otherwise

∂pi

∂c(i−1)·2+2
=

{
1, if c(i−1)·2+1 < c(i−1)·2+2

0, otherwise
∂cj

∂w1
= xj.

Now, the only difference a different activation function would make is that one
would have to calculate more partial derivatives. The remaining steps are calcu-
lating the backpropagated errors for the other weights as well, and calculating
the update to the weights with Equation 10.

The useful CNN’s would usually include more convolutional and pooling
layers, a few dense layers at the end, and some dropout layers to battle overfitting
(Srivastava et al., 2014). Depending on application, the convolution layers can be
one, two or three dimensional. Building even higher dimensional networks are
entirely possible, but the scientific community has not yet found use for such
networks. The purpose of this example was to familiarise the reader with basic
principles of training a convolutional neural network.



3 RESEARCH RESULTS AND AUTHOR

CONTRIBUTION

3.1 PI: Practical Approach for Hyperspectral Image Processing in
Python

3.1.1 Results

This article identified the tools that were used throughout the project: scikit-learn
(Pedregosa et al., 2011), Tensorflow and keras (Abadi et al., 2016) and xarray
(Hoyer and Hamman, 2017). The article also showed that the Python program-
ming language ecosystem is sufficient for our line of work.

3.1.2 Author contribution

In this paper the author did most of the research on the Python packages in col-
laboration with Matti Eskelinen and Jyri Hämäläinen, wrote the draft and final
versions of the article and wrote 2/3 of the original software introduced (MaskAc-
cessor and VisualisorAccessor). The author also translated one algorithm from
Matlab to Python (3D histogram (Eskelinen, 2017), part of VisualisorAccessor)
and was a contributor in the spectral indices library, which was mainly done by
Matti Eskelinen and Aamos Riihinen.

3.2 PII: Tree Species Identification Using 3D Spectral Data and 3D
Convolutional Neural Network

3.2.1 Results

This article establishes the three dimensional convolutional neural network (3DCNN)
as an accurate and robust tool for tree classification in hyperspectral forest im-
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agery. It also concludes that another benefit of using the 3DCNN in classification
is the automation of time consuming feature extraction and selection.

3.2.2 Author contribution

In this article, the author was a part of the team (with Ilkka Pölönen and Samuli
Rahkonen) that was resposible of producing the neural networks that was used
to obtain the results. The author also proofread the original draft and provided
comments to increase the quality of the manuscript.

3.3 PIII: Convolutional neural networks in skin cancer detection
using spatial and spectral domain

3.3.1 Results

The results of this article were promising, even though the authors had very small
dataset (n=61) to work with. The results show that when the convolutional neural
networks with different amount of dimensions (1, 2 or 3) can be used together to
improve the classification. The positive predictive value of the classifiers matched
the clinical accuracy of specialized medical professionals, even though the sensi-
tivities were poor. The results show promise that is still, at the time of writing, to
be verified with a larger dataset.

3.3.2 Author contribution

In this article, the author was a part of the team (with Ilkka Pölönen and Samuli
Rahkonen) that was resposible of producing the neural networks that was used
to obtain the results. The author also proofread the original draft and provided
comments to increase the quality of the manuscript.

3.4 PIV: Chlorophyll Concentration Retrieval by Training Convo-
lutional Neural Network for Stochastic Model of Leaf Optical
Properties (SLOP) Inversion

3.4.1 Results

This article found the one dimensional convolutional neural network a good way
to invert the stochastic model for leaf optical properties (SLOP) by Maier et al.
(1999). The correlation coefficients between predicted and SLOP input values
were consistently high. With empirical data, the CNN chlorophyll concentration
predictors correlated well with a more traditional way of estimating the chloro-
phyll concentration from hyperspectral image. Also the chlorophyll a/b of the
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predictions were within the expected range.

The results indicate that there is a way to build a remote tree health monitor
based on hyperpsectral imaging, convolutional neural networks, and stochastic
modelling.

3.4.2 Author contribution

In this article, the author was the main author. The author chose the studied
models and algorithms, designed the experiments, wrote the original manuscript
draft, edited the article based on co-author and review comments, and wrote the
final version of the article.

3.5 PV: Kubelka-Munk Model and Stochastic Model Comparison
in Skin Physical Parameter Retrieval

3.5.1 Results

This article establishes the skin stochastic model for light scattering in layered
media, developed by the author extending the SLOP model from PIV, as a worthy
object for further research. The leaf to skin modification from SLOP and other
sources is successful, as the spectrum is similar to spectra provided by Kubelka-
Munk model and measured skin spectra. It can also be successfully inverted
using convolutional neural network.

3.5.2 Author contribution

In this article the author the main author. The author chose the studied models
and algorithms, designed the experiments, wrote the original manuscript draft,
edited the article based on co-author and review comments, and wrote the final
version of the article.

3.6 PVI: Comparison of Machine Learning Methods in Stochastic
Skin Optical Model Inversion

3.6.1 Results

This article compared the convolutional neural network to many other algorithms
in inversion of stochastic model developed in PV. The CNN was the most accu-
rate based on all used metrics.
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3.6.2 Author contribution

The subject of this study was suggested to the author by his supervisor and co-
author Ilkka Pölönen. Sami Äyrämö suggested some of the used algorithms and
metrics they were evaluated with. Other than that the research design and article
preparation was conducted by the author.

3.7 PVII: Generating Hyperspectral Skin Cancer Imagery using
Generative Adversarial Neural Network

3.7.1 Results

This article found that using generative adversarial neural network (GAN) is a
prospective way to produce/augment hyperspectral data for machine learning
purposes. The results show that with very little effort GAN can produce some-
thing similar to hyperspectral data. With more effort in the designing of the GAN
and defining the goals of the generator and discriminator, and with more special-
ized data, the produced data could become more useful in the machine learning
applications. This remains an open research subject for the future.

3.7.2 Author contribution

This article was the authors idea. The data gathering and labeling were done by
Noora Neittaanmäki, John Paoli, and Oscar Zaar, and the author used their data
to conduct his experiments. The research design was the authors task as well as
the writing of the article and editing based on co-author and review comments.
The data gathering process was not originally for this article, and Ilkka Pölönen
was responsible for combining the article idea with suitable data.

3.8 Summary of the results

The results are in line with the research questions. In PI the tools used in the
other articles were selected and evaluated. In PII and PIII the convolutional neu-
ral network was succesfully used in hyperspectral classification problems. In PIV
the SLOP model was found out to be of the type that inverts well with convolu-
tional neural network. It is also established that the predictions from measured
hyperspectral data correlate with the ground truth.

PV discovered that the SLOP model can be transferred to skin model by
adapting the transfer probabilities and using skin pigments. The resulting model
compares well with the Kubelka-Munk model and measured skin spectra. It is
also found that the resulting stochastic model is invertible for the most important
parameters of the model. PVI compared the convolutional neural network to
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other machine learning methods and discovered it to be the best tool for inverting
the stochastic model.

PVII found that there is great hope for future research in using GAN to
produce hyperspectral data for different purposes.



4 DISCUSSION

One of the main themes in this thesis is data augmentation. The data gather-
ing process for hyperspectral imaging physical parameter retrieval is a resource
intensive process. In addition to the hyperspectral data one needs a sufficient
dataset of corresponding measurements of the desired parameters. This often
requires highly trained work force that can be divided into three categories:

1. Sample gatherers: in skin cancer research these are the nurses and clinical
doctors who take the samples and hyperspectral images. In forestry they
are drone/satellite operators and forest care takers.

2. Laboratory workers: pathologists in skin cancer research and biologist in
forestry.

3. Machine learning specialists: people working on the data.

Group one does the field work and produces spectra, group two does the labo-
ratory work and produces measurements. Group three the builds the model to
estimate one from another. Of course these groups can be intermixed, but due
to the extreme specialisation needed for the tasks, this is rare. Data augmenta-
tion reduces the work required from the first two categories if the a data similar
enough can be produced.

The stochastic model for light scattering in complex media (PIV, PV and
PVI) seems to perform fairly well in the physical parameter retrieval tasks. The
model described in PIII, which had already been verified in terms of accuracy in
leaf spectrum production by Maier et al. (1999), showed consistency also in the
canopy level when the results of the chlorophyll concentration estimation were
compared to TCARI/OSAVI (Haboudane et al., 2002), a spectral index that is
known to correlate well with chlorophyll concentration. The results are similar to
previous research by Croft et al. (2015); Atzberger et al. (2003), although they are
directly comparable to the research scheme used in PIV.

In PV and PVI, similar index comparison was not available since most of
the known spectral indices are developed for remote sensing tasks and vegeta-
tion in mind. However, visual comparison with measured hyperspectral data
suggested that the inverted stochastic model is viable. The lesions were distin-
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guishable from the feature maps and the values seem to correlate as expected.
At least the melanin concentration was higher where the skin was darker, as is
expected. In PV the stochastic model was compared to more traditional Kubelka-
Munk model (Jolivot et al., 2013). The comparison showed no reason to doubt
the accuracy and usefulness of the stochastic model, even though they should be
further verified. Also the generative adversarial neural network showed promise
in the data augmentation task (PVII).

Another contribution of this research is further establishing CNN in hyper-
spectral classification and regression tasks. In article PIII we showed that even
with relatively low amount of data we can match the clinical diagnosis on a diffi-
cult task of skin cancer classification with CNN. In PII we showed that the three
dimensional CNN is a useful tool in the classification task. We achieved greater
accuracy compared to the previous research on the same dataset by Nevalainen
et al. (2017), with less preprocessing necessary. In PIII we used CNN to achieve
similar accuracy to clinical examination by a doctor (Heal et al., 2008).

In PIV and PV we used one dimensional CNN in stochastic model inver-
sion and the accuracy was good. The correlation results were slightly inferior
to results by Vyas et al. (2013, 2015). It may be due to the difference in used
mathematical models, as they used Kubleka-Munk modelling (Doi and Tomi-
naga, 2003; Jolivot et al., 2013) in their research. The one and three dimensional
CNN’s are still less known compared to normal two dimensional CNN. In PVI
we compared the one dimensional CNN to other machine learning algorithms
in stochastic model inversion. It outshone the other algorithms by every metric.
In PVII we used three dimensional GAN, which is not yet much researched, and
found it useful. The results in the spectral domain of the generated hyperspectral
images were as encouraging as in the spatial domain.

Finally, the research done in PI listed the necessary tools for researcher in
hyperspectral imaging field in Python. The field is still working mainly on Mat-
lab, and while it is not inherently wrong, free open source tools are better for
the accessibility of the research. In PI we listed some good data processing tools
in Python, such as NumPy (Oliphant, 2006), rasterio (Gillies et al., 2013), xar-
ray (Hoyer and Hamman, 2017) and GDAL (GDAL Development Team, 2018),
as well as tools for data visualisation (Jupyter notebook Kluyver et al. (2016),
matplotlib (Hunter, 2007), HoloViews (Rudiger et al., 2020)) and machine learn-
ing tools (tensorflow (Abadi et al., 2016) and scikit-learn (Pedregosa et al., 2011)).
With these tools, one with some prior experience in hyperspectral imaging and
programming can start to transfer towards more open scientific programming.

4.1 Limitations and further research

The research of article PI was not made in a systematic manner. This means we
likely missed some useful tools. However, the packages found in the research
have served us well. Some packages developed in this research have found very
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little use, but they served as a useful programming practice.
The article PIII suffered from lack of data, as did PVII. While the results of

PVII showed promise, the results were not yet good enough for data augmenta-
tion purposes. The main pitfall of the article was that due to the lack of data the
different skin lesion labels were mixed in the training data set, resulting in gener-
ated hyperspectral images that failed to represent any of them. The encouraging
part of the results should be verified with a larger dataset specified on a single
lesion type. The network design should also be revisited. The results in PIII are
also expected to be better with larger dataset.

The stochastic model developed in PIV – PVI is one dimensional, therefore
it does not provide additional help when using the spatial information of the
hyperspectral images. It does not take into account the shape or structure of the
leaves, canopy or lesions, and therefore the inverted model can not be used in
assessing those parameters. Especially in the skin cancer research the shape of
the lesion is important in determining the stage of the cancer (Abuzaghleh et al.,
2014).

In further research, the stochastic model could be extended to three dimen-
sions by combining it with a different model for the leaf, canopy or lesion struc-
ture. For canopy level forestry research, this could be achieved by combining the
stochastic model with a radiative transfer simulator, such as Librat by Disney et
al. (2000). One could also try to evaluate how the stochastic model parameters
fluctuate with the structure.

The articles PIV – PVI also lacked verification datasets. In further research
these leaf and skin parameters should be measured in order to verify the stochas-
tic model inversion with the CNN.



5 CONCLUSION

In this thesis the author has provided the reader with fundamental understand-
ing of convolutional neural network, hyperspectral imaging, and relating ma-
chine learning problems. The research shows practical implications in the fields
of forestry and skin cancer research. The author has provided evidence of con-
volutional neural network being useful in the inversion of mathematical mod-
els of hyperspectral data, and that the inversion is accurate. The author also
showed that the stochastic model he designed by adjusting an existing model
to another field did not fail rudimentary tests for accuracy and usefulness. The
author also experimented with generative adversarial neural networks and listed
useful Python tools for hyperspectral image analysis.



YHTEENVETO (SUMMARY IN FINNISH)

Väitöskirjatyössä tutkittiin konvoluutioneuroverkkoa ja stokastista simulointia
hyperspektrikuvien analysoinnissa. Stokastinen malli toimii hyvin. Aiemmassa
tutkimuksessa julkaistu lehden optisten ominaisuuksien stokastinen malli (SLOP),
jota käytettiin artikkelissa PIII oli yhtenevä verrattuna spektri-indeksiin, joka kor-
reloi vahvasti klorofyllin määrän kanssa. Artikkelissa PV malli sovitettiin iho-
syöpätutkimukseen eri lähteistä löydettyjen ihon parametrien avulla. Näin saa-
tua mallia verrattiin yleisesti käytössä olevaan Kubelka-Munk mallin tuottamaan
spektriin ja ihon spektriin. Molemmista malleista tehtiin myös käänteismallit kon-
voluutioneuroverkon avulla ja artikkelissa PVI verrattiin eri koneoppimismene-
telmiä käänteismallien tuottamisessa. Näiden tutkimusten perusteella on syytä
olettaa, että stokastista mallintamista kannattaa jatkossakin tutkia, ja jatkotutki-
muksessa painopisteenä voisi olla mallin toimivuuden varmistaminen mitatulla
datalla ja mallin laajentaminen kolmeulotteiseksi. Myös generatiivinen kilpaileva
neuroverkko näytti lupaavalta hyperspektridatan lisäämisessä.

Työn toinen tuotos oli konvoluutioneuroverkon käytön vakiinnuttaminen
hyperspektrikuvantamisen luokittelu- ja regressio-ongelmissa. Artikkelissa PIII
näytettiin, että käytettäessä konvoluutioneuroverkkoa verrattain vähäisellä da-
tan määrällä päästään ihotautilääkärin kliinisen diagnoosin kanssa likimain sa-
maan tulokseen ihosyöpäkasvaimien luokittelussa. Artikkelissa PII näytettiin, et-
tä kolmiulotteinen konvoluutioneurkko on hyödyllinen hyperspektrikuvien luo-
kittelussa. Saavutettu tarkkuus oli suurempi aiempaan samalla datalla tehtyyn
tutkimukseen verrattuna, eikä dataa tarvinnut esikäsitellä yhtä paljon. Artikke-
leissa PIV ja PV käytettiin yksiulotteista konvoluutioneuroverkkoa stokastisen
mallin käänteismallin ratkaisemiseen. Näin saadun käänteismallin tarkkuus oli
hyvä. Artikkelissa PVI verrattiin yksiulotteista konvoluutioneuroverkkoa mui-
hin koneoppimismenetelmiin stokastisen mallin käänteismallin ratkaisemisessa.
Konvoluutioneuroverkko oli kaikkien käytettyjen mittareiden mukaan paras. Ar-
tikkelissa PVII käytettiin kolmiulotteista generatiivista kilpailevaa verkkoa, jota
ei olla vielä paljoa tutkittu verrattuna kaksiulotteiseen malliin. Kaksiulotteinen
malli on itsessäänkin varsin tuore keksintö. Generatiivisen kilpailevan neurover-
kon data näytti lupaavalta niin spatiaalisessa kuin spektrinsuuntaisessa ulottu-
vuudessa, joten kolmiulotteisen verkon käyttäminen näyttää perustellulta.

Lisäksi artikkelissa PI listattiin hyperspektrikuvantamisen Python-työkalu-
ja. Alan tutkijat käyttävät edelleen yleisesti suljettua ja maksullista Matlab-ohjel-
mointikieltä, mikä ei sinänsä ole väärin, mutta avoimen lähdekoodin ja ilmais-
ten työkalujen käyttö lisää tutkimuksen saavutettavuutta. Työssä listattuja hy-
perspektridatan prosessointiin käytettäviä työkaluja ovat NumPy, rasterio, xar-
ray ja GDAL. Datan visualisointiin käytettyjä työkaluja olivat Jupyter notebook,
matplotlib ja HoloViews ja koneoppimiskirjastoja Tensorflow and scikit-learn.
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ABSTRACT:

Python is a very popular programming language among data scientists around the world. Python can also be used in hyperspectral

data analysis. There are some toolboxes designed for spectral imaging, such as Spectral Python and HyperSpy, but there is a need for

analysis pipeline, which is easy to use and agile for different solutions. We propose a Python pipeline which is built on packages xarray,

Holoviews and scikit-learn. We have developed some of own tools, MaskAccessor, VisualisorAccessor and a spectral index library.

They also fulfill our goal of easy and agile data processing. In this paper we will present our processing pipeline and demonstrate it in

practice.

1. INTRODUCTION AND MOTIVATION

Python is a go-to programming language of many scientists and

it could also be good programming language for hyperspectral

data analysis. It has advantage of being actively developed, free,

open source programming language. In addition, since it looks

like pseudocode, it is easy to learn and write. There are Python

tools and packages for all kinds of users, and especially for sci-

entists. There are specialized open source tools for hyperspectral

data analysis like Spectral Python (Boggs, n.d.) and HyperSpy

(de la Peña et al., 2017), but the scope of potential usage may be

too narrow and the structure of such an specialized tool can be too

strict for some purposes, for example for transferring data to ma-

chine learning algorithm and developing tools that work together

with them.

In this paper, we utilize some general open source tools for dif-

ferent aspects of hyperspectral data analysis and determine if they

are useful for analysing and visualising hyperspectral images. We

also introduce some new tools and packages, which are our own

work. We aim at providing the reader with a modular set of tools

that can be used in many contexes. These tools are reusable ele-

ments, which work fine on their own and can be used for building

more complex tools. The packages and tools will be evaluated

using following questions: How easy is it to use? How agile is it?

What can we do with it?

2. DIFFERENT ASPECTS OF HYPERSPECTRAL DATA
ANALYSIS

In this section we will go through different aspects of hyperspec-

tral data analysis and an example of how the selected tools can be

used in these subjects. The example is divided into smaller ex-

amples and what has been done on previously is assumed to hold

on to the new example. We go through the example in figures

and in text, and the source code is included in the figures. The

example problem is that we have a hyperspectral image of a for-

est and a dataset of two tree species, birch and pine, in that forest,

and we want to use machine learning to differentiate one from the

∗Corresponding author

other. First we of course need to import all of the packages, like

in figure 1.

import x a r r a y as x r
import numpy as np
import pandas as pd
import h o l o v i e w s as hv
from s k l e a r n import svm
import s k l e a r n
from s k l e a r n . m o d e l s e l e c t i o n import GridSearchCV
import v i s a c c
import maskacc

hv . n o t e b o o k e x t e n s i o n ( ’ m a t p l o t l i b ’ )

Figure 1. Importing all necessary packages and declaring that

Holoviews should use Matplotlib backend.

2.1 Handling hyperspectral data

For handling hyperspectral data, we recommend the xarray1

package (Hoyer and Hamman, 2017). It provides multidimen-

sional arrays and datasets with metadata. It is an actively devel-

oped open source project by the pydata team. The basic usage

of xarray is relatively easy and for more advanced users it offers

plenty of options for handling the data. Xarray’s basic idea is to

have netCDF (Rew et al., 1997) compatible multidimensional ar-

ray object in Python. NetCDF stands for network Common Data

Form and the basic idea is that the netCDF file describes itself

to the reader. Xarray is also easily extendable, which means that

one can add new properties as they are needed.

Xarray supports reading spectral image formats like ENVI or

TIFF, and other formats. For reading it uses Rasterio (Gillies

et al., 2013–), which in turn uses GDAL (GDAL Development

Team, 2018). Rasterio is a python toolbox developed solely

to read and write geospatial data, and it does it well. GDAL

(Geospatial Data Abstraction Library) is a lower level C++ li-

brary that translates geospatial raster and vector data.

When xarray has read dataset from file (see figure 2), it is either

DataArray or Dataset. There are differences between the two, but

1Xarray can be installed with pip (pip install xarray) or conda

(conda install xarray) Python package managers.
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from now on we will assume that the data is in DaraArray format.

DataArray has following properties (see figure 3):

• data, N-dimensional NumPy (Oliphant, 2006) or Dask

(Dask Development Team, 2016) array,

• coords, dictionary of coordinate arrays, one array for each

dimension of the data,

• dims, names of the dimensions,

• attrs, dictionary keeping track of other metadata,

• name, the name of the DataArray,

which follow the netCDF specification. These properties help in

cube = xr . o p e n d a t a a r r a y (
’C : / Use r s / l e a l a n n a /DATAA/ vvkk2 . nc ’
)

w a v e l e n g t h = [ 5 0 7 . 6 0 , 5 0 9 . 5 0 , 5 1 4 . 5 0 , 5 2 0 . 8 0 ,
5 2 9 . 0 0 , 5 3 7 . 4 0 , 5 4 5 . 8 0 , 5 5 4 . 4 0 ,
5 6 2 . 7 0 , 5 7 4 . 2 0 , 5 8 3 . 6 0 , 5 9 0 . 4 0 ,
5 9 8 . 8 0 , 6 0 5 . 7 0 , 6 1 7 . 5 0 , 6 3 0 . 7 0 ,
6 4 4 . 2 0 , 6 5 7 . 2 0 , 6 7 0 . 1 0 , 6 7 7 . 8 0 ,
6 9 1 . 1 0 , 6 9 8 . 4 0 , 7 0 5 . 3 0 , 7 1 1 . 1 0 ,
7 1 7 . 9 0 , 7 3 1 . 3 0 , 7 3 8 . 5 0 , 7 5 1 . 5 0 ,
7 6 3 . 7 0 , 7 7 8 . 5 0 , 7 9 4 . 0 0 , 8 0 6 . 3 0 ,
8 1 9 . 7 0 , 8 3 3 . 7 0 , 8 4 5 . 8 0 , 8 5 9 . 1 0 ,
8 7 2 . 8 0 , 8 8 5 . 6 0 ]

cube . c o o r d s [ ’ w a v e l e n g t h ’ ] = ( ’ band ’ , w a v e l e n g t h )
cube = cube . swap dims ({ ’ band ’ : ’ w a v e l e n g t h ’ })
cube . v a l u e s [ cube . v a l u e s <0]=np . nan

Figure 2. Here we read the cube, attach wavelength data to it and

remove non-physical negative values.

p r i n t ( cube )

<x a r r a y . Da taAr ray ( w a v e l e n g t h : 38 , y : 4120 , x : 3930)>
a r r a y ( [ [ [ nan , nan , . . . , nan , nan ] ,

[ nan , nan , . . . , nan , nan ] ,
. . . ,
[ nan , nan , . . . , nan , nan ] ,
[ nan , nan , . . . , nan , nan ] ] ,

. . . ,
[ nan , nan , . . . , nan , nan ] ,
[ nan , nan , . . . , nan , nan ] ] ,
. . . ,
[ nan , nan , . . . , nan , nan ] ,
[ nan , nan , . . . , nan , nan ] ] ] ,
d t y p e = f l o a t 3 2 )

C o o r d i n a t e s :
∗ l o n g i t u d e ( l o n g i t u d e ) f l o a t 6 4 6 .804 e +06 . . .
∗ l a t i t u d e ( l a t i t u d e ) f l o a t 6 4 3 .983 e +05 . . .
band ( w a v e l e n g t h ) i n t 3 2 1 2 3 4 5 6 7 . . .
∗ w a v e l e n g t h ( w a v e l e n g t h ) f l o a t 6 4 507 .6 5 0 9 . 5 . . .

A t t r i b u t e s :
r e s : [ 1 . −1.]
i s t i l e d : 1
t r a n s f o r m : [ 1 . 0 0 0 0 0 0 0 0 e−01 0 .00000000 e +00 . . .
n c o l s : 3930
rows : 4120
x l l c o r n e r : 398296
y l l c o r n e r : 6804299
c e l l s i z e : 0 . 1

Figure 3. Simple print-command to see what the cube holds

inside.

extracting data from the DataArray, since the user can use either

index based lookups or label based lookups. For example, if we

only had NumPy2 array, we would only know the dimensions by

2NumPy is in practice the Python standard array library.

index, but with DataArray we have names like latitude, longitude

and wavelength3. Then we can extract data from DataArray like

in figure 4 by telling it that we want to see data where latitude is

between 39◦ N and 40◦ N, longitude is between 116◦ E and 117◦

E, and wavelength is between 400 nm and 700 nm.

cube . s e l ( l a t i t u d e = s l i c e ( 3 9 , 4 0 ) ,
l o n g i t u d e = s l i c e ( 1 1 6 , 1 1 7 ) ,
w a v e l e n g t h = s l i c e ( 4 0 0 , 7 0 0 ) )

Figure 4. Here we use xarray’s sel-method to extract the data we

want.

There are also other useful functionalities of xarray DataArray.

For example two or more arrays can be attached to each other

with easy one line command, where the user only has to align the

arrays by common dimension. Generally speaking, xarray han-

dles dimensions well and altering and extracting data using them

is generally quite easy. Xarray also handles missing data well and

there is possibility to use Dask arrays to parallel compute.

Xarray fullfills our criteria of being easy to use and agile. It has

a lot of functionality, enough to keep basic and advanced users

satisfied most of the time.

2.2 Visualisation

For visualizing the xarray data, one excellent solution is

Holoviews4 (Stevens et al., n.d.). Holoviews is a visualization

library that uses Bokeh (Bokeh Development Team, 2014), Mat-

plotlib (Hunter, 2007) or Plotly (Plotly Technologies Inc., 2015)

for showing images. All figures in this paper are produced with

Holoviews using Bokeh or Matplotlib visualisation backends.

Basic idea of Holoviews is that visualizing of data should be easy

and simple. If user wants to see anything, it should not take many

lines of code. In our opinion, Holoviews succeeds in that goal.

As we move on, one will see that all images in this paper are

produced with less than four lines of code. One basic example

of producing Holoviews image is to look at one band of a hyper-

spectral image like in figure 5.

Now that we have figured out how to visualise a single chan-

nel of an image, the next logical step is to want to visualise the

entire multidimensional dataset. This is also easy. Holoviews

supports multidimensional datasets very well and there are data

backends that support multiple different data formats including

xarray. As we can see in figure 6, more complex visualisation is

easy to make. In the example we make a Holoviews dataset out of

xarray DataArray, and tell Holoviews to make a series of images

out of the dataset.

One of the properties of Holoviews is that one can make inter-

active figures using the Bokeh backend with no extra effort. By

having Bokeh backend selected user can right away use interac-

tive tools like zooming the image either by scrolling or drawing

boxes on the image. A little more work is required for using

hover, tapping or selection tools, which all can be programmed to

do what the user wants them to do. An example of usage of tap-

ping and selection tools are using them to select data for further

analysis or activating other visualisation with them.

3Note, that the user can freely name the dimensions. The user is not

stuck with these names.
4Holoviews can be installed with pip (pip install holoviews) or

conda (conda install holoviews) Python package managers.
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for selecting pixels in n-dimensional datasets. In figure 8 we see

that the accessor is initiated when one imports the xarray and the

accessor. After that every DataArray has the property, and the

user can use the accessor by calling it by name.

import x a r r a y as x r
import maskacc

cube = xr . Da taAr ray ( . . . )
cube .M. dims

Figure 8. When the accessor is imported, every xarray

DataArray created after that has the accessor attribute.

The mask dimensions are set at the initialisation to be the first two

dimensions of the DataArray, but there is the reset method that is

used to change the dimensions, as we see on figure 9. One can

also initialise the mask here or just assign a new mask afterwards.

The MaskAccessor class checks that the shape of the mask is

correct.

import numpy as np
cube .M. r e s e t ( dims =[ ’ a ’ , ’ b ’ ] ,

m a t r i x = [ [ 0 , 1 , 0 , 1 ] ,
[ 1 , 0 , 1 , 0 ] ,
[ 0 , 1 , 0 , 1 ] ] )

# OR
cube .M. r e s e t ( dims =[ ’ a ’ , ’ b ’ ] )
cube .M. mask = np . a r r a y ( [ [ 0 , 1 , 0 , 1 ] ,

[ 1 , 0 , 1 , 0 ] ,
[ 0 , 1 , 0 , 1 ] ] )

Figure 9. Different ways of assigning a specific matrix as the

mask.

On figure 10 one can see four different selection methods to set

mask on individual points.

# S e l e c t
cube .M. s e l e c t ( [ 0 , 0 ] )
cube .M. s e l e c t ( [ ( 0 , 2 ) , ( 1 , 1 ) ] )

# U n s e l e c t
cube .M. u n s e l e c t ( [ ( 0 , 2 ) , ( 1 , 1 ) ] )

# A l l t o ones
cube .M. s e l e c t e d o n e s ( )

# A l l t o z e r o s
cube .M. s e l e c t e d z e r o s ( )

Figure 10. Different selection methods for MaskAccessor.

Finally, on figure 11 there is three different methods to get the

mask or masked data.

# Get t h e mask as x a r r a y . DataArray
cube .M. m a s k a s x a r r a y ( )

# Get t h e masked p o i n t s as x a r r a y . DataArray
cube .M. where masked ( )

# Get t h e masked p o i n t s as a l i s t
cube .M. t o l i s t ( )

Figure 11. Methods for getting data out of MaskAccessor and

underlyind DataArray.

VisualisorAccessor is a hyperspectral imaging specific visualis-

ing tool for xarray and MaskAccessor. It is designed to make ba-

sic visualizations of xarray DataArray and MaskAccessor mask

with easy one-line commands. For example the image in figure

6 can now be produced with the one line code of figure 12. It is

also easy to add visualisations like this to the VisualisorAccessor.

cube . v i s u a l i z e . b a s i c ( s l i d e r s = [ ’ w a v e l e n g t h ’ ] )

Figure 12. The visualisation on figure 6 can be done with one

line code with VisualisorAccessor.

We have implemented three chooser functions, which access the

mask and select or unselect pixels. They are called Point Chooser,

Box Chooser and Spectre Chooser. Spectre Chooser and Box

Chooser use Bokeh’s box drawing tools for selecting which pixels

are chosen and Point Chooser uses tap tool. Example uses of the

Choosers is on figure 13, and screenshots of the Choosers are on

figures 14 (Point Chooser), 15 (Box Chooser) and 16 (Spectre

Chooser).

l a y o u t b o x = cube . v i s u a l i z e . b o x c h o o s e r ( )
l a y o u t p o i n t = cube . v i s u a l i z e . p o i n t c h o o s e r ( )
l a y o u t s p e c t r e = cube . v i s u a l i z e . s p e c t r e c h o o s e r ( )

Figure 13. VisualisorAccessor has three different chooser tools.

Figure 14. Screenshot of the point chooser.

Finally there is a histogram method (figure 17), that calculates

histograms for each bands and shows those histograms side by

side. This is translated from hsicube (Eskelinen, 2017) MATLAB

package to Python.

2.4 Machine learning

Machine learning can be handled using scikit-learn6 package (Pe-

dregosa et al., 2011). The main idea of scikit-learn is to make

6Scikit-learn can be installed with pip (pip install sklearn) or

conda (conda install sklearn) Python package managers.
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ABSTRACT

In this study we apply 3D convolutional neural network

(CNN) for tree species identification. Study includes the three

most common Finnish tree species. Study uses a relatively

large high-resolution spectral data set, which contains also a

digital surface model for the trees. Data has been gathered

using an unmanned aerial vehicle, a framing hyperspectral

imager and a regular RGB camera. Achieved classification

results are promising by with overall accuracy of 96.2 % for

the classification of the validation data set.

Index Terms— Tree species, spectral imaging, 3D, con-

volutional neural network, UAV

1. INTRODUCTION

This study is continuum for [1], where the individual tree de-

tection and classification pipeline for the hyperspectral and

point cloud data is clearly described. We are interested to

see if deep learning methods could improve or simplify the

data processing chain for identifying the species of individual

trees.

There exists plenty of research concerning tree species

identification, but it is mainly concentrated on large scale re-

mote sensing, which uses forest stand and plot level data. For

example in Scandinavia combination of airborne laser scan-

ning and aerial images is used in forest inventory [2]. There

are less studies and applications for the tree species identi-

fication from unmanned aerial vehicles (UAV) using hyper-

spectral sensors. If hyperspectral data has been used for tree

species identification, the platform for data gathering has been

manned aircraft or satellite.

As in [1], these remote sensing studies use quite tradi-

tional feature extraction and selection methods before clas-

sification. Deep learning methods have dramatically im-

proved performance of pattern recognition [3]. Especially

This research has been co-financed by Finnish Funding Agency for In-

novation Tekes (grants 2208/31/2013 and 1711/31/2016)

deep convolutional neural networks (CNN) have provided

breakthroughs in image, video and audio processing. If we

consider hyperspectral data, it seems that they should handle

hyperspectral data combined with 3D data as well. There

is currently increasing number of research, which applies

CNN’s and 3D CNN’s to hyperspectral imager [4, 5].

In this paper we first test performance of 3D CNN for

tree species classification. Neural networks has the nature of

being a black box, that doesn’t reveal how it has reasoned its

results. However, while doing classification we can calculate

saliency maps, which will give us hints on which parts of the

input data are relevant for the CNN [6].

This paper has the following structure. First, in Section

2 we describe the used data set, its acquisition and prepro-

cessing. Then the structure and functionality of the used 3D

CNN is described. In Section 3, the results are presented and

Section 4 includes the conclusion.

2. MATERIALS AND METHODS

2.1. Data gathering and preprocessing

The research data is the same as reported in [1]. The col-

lected remote data was captured in Vesijako research forest

area in the municipality of Padasjoki in southern Finland (ap-

proximately 61o24’N and 25o02’E). Area has been used for

forestry research by Natural Resources Institute of Finland.

The area contains experimental plots with different research

setups. All the trees with the diameter of at least 50 mm at the

breast-height were measured and estimated with various met-

rics, such as the tree species, diameter, height and volume.

Locations of these trees were collected with GPS.

In total, 4142 trees were selected for further study. The

data set contained three most common species of Finnish

forests: scots pine ( Pinus sylvestris, 2821 samples), norway

spruce ( Picea abies, 742 samples) and silver birch (Betula
bendula, 579 samples). These selected trees were compared

to aerial orthoimage mosaics to ensure that the GPS coordi-



nates were in the centres of the treetops.

The used remote sensing data was a combination of two

data modalities captured by the UAV remote sensing system,

which belongs to Finnish Geospatial Research Institute. Sys-

tem consist of a Tarot 960 hexacopter and a Pixhawk autopi-

lot. System is capable of carrying 3 kg payload at maximum.

Average flying time of the system is 30 minutes. As a pay-

load, we had a tunable Fabry-Pérot inteferometer based spec-

tral imager (FPI) and an ordinary RGB camera, the Samsung

NX1000 (RGB). Flying height from ground level varied be-

tween 83-94 meters.

The FPI imager captures raw data, which is processed to

radiance based on the radiometric laboratory calibration [7].

The geometric imaging model was then determinated. The

model includes both the interior and exterior orientations of

the images. The digital surface model is calculated by dense

image matching. Because of the slight variations between

bands in the FPI camera, we had to apply registration of the

spectral bands of FPI images. To make data cubes and further

mosaics radiometrically homogenous, the radiometric imag-

ing model has to be determined [8, 9]. The hyperspectral im-

age mosaic is calculated after the radiometric model is applied

to each cube. The detailed radiometric and geometric pro-

cessing of the data set is explained in [1]. Finally, the spectral

mosaics with 33 bands and digital surface model (DSM) both

with 10 cm GSD are created.

For the tree species identification, 4 × 4 meter windows

surrounding each treetop were extracted. The windows con-

tained both DSMs as rasters and spectral cubes. For each tree-

top, the extracted DSMs were scaled by the minimum value

of the whole DSM. The DSM and spectral cube for each tree-

top were concatenated in spectral axis to unified data cubes

(41 × 41 × 34). In Finland there exist laser scanned nation

wide ground surface elevation model, which is freely avail-

able. Thus, canopy surface model could have been calculated,

but it isn’t actually needed, because we are only using height

of the treetops.

Figure 1 illustrates average treetops for each species. We

can see that there are slight differences between the shapes.

Pine’s treetops are quite symmetric. Spruce’s treetops are

more of ellipses and aligned on north-west to south-east axis.

Birch is more irregular, but its leaves and branches are to-

wards south where the Sun shines.

Figure 2 represents how spectral distribution diverges to

different wavelengths for each tree species. The line in the

figure represents the average spectra for each treetop. Quite

obvious differences can be found between birches and Nordic

coniferous trees. Birches have stronger reflection in green and

infrared regions. Birches have steeper spectrum at red edge

area.

Fig. 1. Avarage shape of treetop for each tree species.

Fig. 2. Histogram spectra of each tree species. Black line is

average spectrum.

2.2. Convolutional Neural Network

Originally CNN’s were presented by LeCun and Bengio [10].

The idea was to tackle feature extraction and selection prob-

lem in fully connected feed-forward networks. The network

uses a convolution matrices. Traditional neural network lay-

ers are usually based on consecutive dense (fully connected)

neurons. In convolutional neural networks, there exists at

least one convolution operation in the network. We applied

quite simple structure to our CNN, using four types of lay-

ers: 3D convolutional, pooling, dropout and fully connected

layers. Our network’s structure is presented in Table 1.

In general, convolutional layers have trainable filters,

which use convolution operations to extract features. In our

implementation, the convolution layer uses activation called

rectified linear unit (ReLU). ReLU has advantages of being

efficient with non-linear relations and having less vanishing

gradient problems during the network optimisation compared

to other popular activation functions [11]. Pooling layers,

which usually follow convolutional layers, are non-linear

downsampling functions, which reduce dimensions of input

data. Dropout layer is a regularization method for reducing

overfitting in the neural network by introducing noise to the

network. Flatten layer translates data to one dimensional

stack.



Layer Kernel / Output Shape Parameters

pool size or

Activation

Conv3D (3,3,1) ReLU (39, 39, 33, 64) 640

Conv3D (3,3,3) ReLU (37, 37, 31, 64) 110656

MaxPooling3D (2,2,1) (18, 18, 31, 64) 0

Conv3D (3,3,3) ReLU (16, 16, 29, 128) 221312

MaxPooling3D (2,2,3) (8, 8, 9, 128) 0

Conv3D (3,3,3) ReLU (6, 6, 7, 256) 884992

MaxPooling3D (2,2,3) (3, 3, 2, 256) 0

Flatten (4608) 0

Dense ReLU (128) 589952

Dropout (0.25) (128) 0

Dense SoftMax (3) 387

Total params: 1,807,939

Trainable params: 1,807,939

Non-trainable params: 0

Table 1. Structure of our experimental CNN.

A dense layer is a fully connected layer, which consists of

parallel neurons which are connected to all previous layer’s

outputs. Weights of the connections and activation functions

determine which features are correlating with different tree

species. The last dense layer is activated with softmax func-

tion, whose output is the final classification.

If the amount of data is limited, meaning that the number

of training samples is low, then there is option to apply data

augmentation. Basically this means that we will generate new

training data from existing ones. In this study we fivefold our

training data by using simple rotation and flipping operations.

Selected training data was flipped both horizontally and ver-

tically. Data was also rotated 90 degrees to left and right.

In machine learning structures like neural networks are

so called ”black box“ solutions. We don’t have clear vision

how data is classified. It is reasonable to ask, is the classifi-

cation based on real feature of wanted object or something

secondary such as ground type in tree species recognition.

Luckily there are methods to see where network is putting

weight in classified data. It is possible to calculate gradient

over layers from output to input. This way to get actually im-

age, where areas with higher values contributes most to clas-

sification result. These maps are called saliency maps.

Stochastic gradient decent was used to tune weights be-

tween layers. We used categorical cross entropy as a loss

function, which basically calculates cross entropy between

categories probability distributions. Primary metric for model

evaluation was accuracy

acc =
TP + TN

TP + FP + FN + TN
,

where TP is true positive, TN is true negative, FP is false

positive and FN is false negative classification result.

CNN’s were trained by using IBM PowerAI platform

which includes two Tesla V100-SXM2 16 GB GPU units.

Tensorflow was used as a computational backend [12]. All

machine learning phase coding was done using Python 3.6

and Keras library [13]. Saliency maps were calculated using

Keras-vis library [14].

3. RESULTS

Altogether 3311 trees were randomly selected for the training

of the 3D CNN. After data augmentation there was 16555

samples. Training was performed with batch size 128 and

with 100 epocs. Training took two and half hours (approx.

88 seconds/epoch). Results were validated with 831 samples,

which weren’t included in training set.

Figure 3 shows that accuracy of trained model is relatively

high. It seems that we can with quite large confidence identify

tree species from each other. Overall accuracy for classifica-

tion of validation set was 96.2%, which is higher with earlier

results achieved in [1]. Producer accuracies were for each

tree species were 96.2% (Pine), 86.6 % (Spruce) and 98.2 %

(Birch). Respectively users accuracies were 96.3 %, 83.8 %

and 95.7 %.

Fig. 3. Confusion matrices show good separation between

tree species.

Figure 4 is presenting average saliency maps in spatial

domain over all input bands of validation data. It seems that

most of the important features are handling data surround-

ing tree top. This is shown more clear in the figure 5, where

figure’s 4 maps are rendered over validation sets average 3D

treetops. Thus, we can be quite confident that, at least in spa-

tial domain, tree top’s shape is relevant feature in classifica-

tion.

In spectral domain most characterising features seems to

be located between wavelengths from 600 to 720 nm. Figure

6 presents average salience in each spectral band. It can seen

that there is differences between tree species. For example

birch has lower saliency in 560 nm and higher in 700 nm than

coniferous trees.

If we consider individual trees, it seems that classifying is

working quite efficiently. In figure 7 there is one tree of each

species from the validation set. It can be seen that for example

pine in this case doesn’t have very clear treetop, but classifier

is able to find one and saliency map seems to confirm the

result.



Fig. 4. Average saliency maps in spatial domain over all input

bands of validation data for each tree species. Brighter pixel

indicates that band is probably more meaningful in classifica-

tion.

Fig. 5. Here figure’s 4 saliency maps are rendered over val-

idation set’s average 3D treetops. It can be seen that maps

surround quite well treetops.

4. CONCLUSIONS

In this paper we demonstrate how 3D hyperspectral data can

be analysed using 3D convolutional neural networks. As a

concluded result we can see that even with quite simple 3D

CNN, it is possible to create network, which has good capa-

bility to classify single trees based on their shape and spectral

features.

In classical machine learning one of the most time con-

suming thing for data analysist has been feature extraction and

selection. In case of convolutional neural network this phase

is now automated. After preprocessing there is quite limited

amount of things to do, if you want to utilize trained network.

Network training itself is time consuming, but before hand

trained network can deliver results almost in realtime. In our

case training took two and half hours.

Compared to earlier work [1] we actually used all cap-

tured test areas. In original paper one area was left behind,

because of the poor quality of image block. Based on that, our

results seems to show that trained 3D CNN is actually more

robust as a classifier than methods used in previous study.

It is obvious that more studies is needed. Used network

structure is one of the most simple ones. With more sophis-

ticated structures it might be possible to improve learning re-

sults. One of the tested things in the future is, how general

trained model actually is. If we have another data set, can

we have similar classification results? We used quite limited

amount of data augmentation. Even tough overfitting wasn’t

Fig. 6. Average saliencies of spectral domain for each tree

species. Higher value indicates that band is probably more

meaningful in classification.

observed based loss and accuracy curves during the training,

it would be useful to do more cross-validation within data.

One potential research question is that how many bands

and what GSD is needed, if we want to gain similar results.

Our next steps include more augmented data to training such

as scaling, adding noise, chancing lightness and adding more

rotation to see if we could detect trees also with lower resolu-

tion.

The used data set has more parameters for single trees

(height, estimated volume, etc..) and there is also 300 fixed

radius (9 m) sample plots, which have been used for area

based forest inventory. In near future we will also test how

well 3D CNN approach is able to estimate these parameters.

Our consortium has ongoing research project where our

aim is to produce real time processing for the DSM and hy-

perspectral mosaics. This combined with pre-trained CNN

classifier, could be significant tool to provide forest tree iden-

tification and parameter estimation without wasting time on

massive preprocessing.
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Hyyppä, Heikki Saari, Ilkka Pölönen, Nilton N Imai,

et al., “Individual tree detection and classification

with uav-based photogrammetric point clouds and hy-



Fig. 7. Comparison individual trees. CNN is capable to detect

trees surprisingly well.

perspectral imaging,” Remote Sensing, vol. 9, no. 3, pp.

185, 2017.

[2] Erik Næsset, “Predicting forest stand characteristics

with airborne scanning laser using a practical two-stage

procedure and field data,” Remote sensing of environ-
ment, vol. 80, no. 1, pp. 88–99, 2002.

[3] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton,

“Deep learning,” Nature, vol. 521, no. 7553, pp. 436–

444, 2015.

[4] Sungbin Choi, “Plant identification with deep convolu-

tional neural network: Snumedinfo at lifeclef plant iden-

tification task 2015.,” in CLEF (Working Notes), 2015.

[5] Luiz G Hafemann, Luiz S Oliveira, and Paulo Cav-

alin, “Forest species recognition using deep convolu-

tional neural networks,” in Pattern Recognition (ICPR),
2014 22nd International Conference on. IEEE, 2014,

pp. 1103–1107.

[6] Mariusz Bojarski, Philip Yeres, Anna Choromanska,

Krzysztof Choromanski, Bernhard Firner, Lawrence

Jackel, and Urs Muller, “Explaining how a deep neural

network trained with end-to-end learning steers a car,”

arXiv preprint arXiv:1704.07911, 2017.

[7] Heikki Saari, Ilkka Pölönen, Heikki Salo, Eija

Honkavaara, Teemu Hakala, Christer Holmlund, Jussi
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T. Hakala, “Geometric processing workflow for ver-

tical and oblique hyperspectral frame images collected

using uav,” ISPRS - International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information
Sciences, vol. XL-3, pp. 205–210, 2014.

[9] Eija Honkavaara, Heikki Saari, Jere Kaivosoja, Ilkka

Pölönen, Teemu Hakala, Paula Litkey, Jussi Mäkynen,
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ABSTRACT

Skin cancers are world wide deathly health problem, where significant life and cost savings could be achieved if
detection of cancer can be done in early phase. Hypespectral imaging is prominent tool for non-invasive screening.
In this study we compare how use of both spectral and spatial domain increase classification performance of
convolutional neural networks. We compare five different neural network architectures for real patient data. Our
models gain same or slightly better positive predictive value as clinicians. Towards more general and reliable
model more data is needed and collection of training data should be systematic.

Keywords: Hyperspectral imaging, convolutional neural network, skin cancer, melanoma

1. INTRODUCTION

Skin cancers are constantly increasing problem world wide. Traditionally this has been concern of people whose
skin is relatively lightly coloured and annual portion of sunlight is high. Because of increased traveling and
ageing of the population, melanoma is increasing problem also in the Nordic countries. For example in Sweden,1

50 % of all the annual skin cancer related costs are caused by melanomas.

There is a need for tools, which are able to detect early stage skin cancers and delineate them properly from
healthy tissue. With proper detection it is possible to reduce amount of re-surgeries, when part of the malignant
tissue has been left to the patient in original tumor removal. This is highlighted by the fact that overall positive
predictive value of clinical melanoma diagnosis is 33 %.2 In non-specialised clinics this is even lower. For every
melanoma removal there will be 9 to 30 non-melanoma lesions removed depending on how specialised clinic is.3

Thus, early detection will lower the treatment costs and will ensure higher survival rate.

Hypersepctral imaging is method where hundreds narrow wavebands of light are imaged simultaneously. This
method will provide almost continuous spectrum for each pixel of the image as figure 1 is showing. Hyperspectral
imaging is non-invasive imaging modality, because it is using only visible and near infra-red illumination to
capture images. Previously we have used it in delineation of tumor border and distinguish in-situ melanoma
from malignant melanoma.4,5

If you look at closely two spectra in the figure 1 , it is quite easy to see that in clear cases melanoma and
healthy skin have characteristic spectra. Unfortunately this is not so in all the cases. In figure 2 we have spectral
distributions of malignant melanoma, lentigo-maligna, dysplastic nevus and benign nevus. We can see that these
distributions are overlapping. This means that if the melanoma is hard to recognise in clinical study, it will be
hard distinguish using just spectral information. Thus, it seems natural that we also utilize spatial domain in
the classification task.
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Figure 3. Schematic structure of used convolutional neural networks. Best results were gained using all inputs and all
three different convolutional feature learning parts simultaneously.

set consisted of approximately 240 000 data points. For the optimization we used Adam, which is a first-
order gradient-based optimization method of stochastic objective functions. The used hyperparameters for the
optimization was the learning rate of 0.001, β1 = 0.9 and β2 = 0.999, while the learning rate decay over each
update stayed at 0. The used cost function was categorical cross-entropy.

Our implementation used Keras with Tensorflow backend and Python 3.6 . All calculations were executed
using IBM PowerAI platform, which includes two Nvidia Tesla V100-SXM2 16 GB GPU units.

There were only 61 imaged lesions (15 malignant melanoma, 6 lentigo maligna, 26 dysplastic nevus and 14
benign nevus). Thus, leave-one-out cross-validation was used. In this procedure classifier is trained 61 times for
each image separately. This will guarantee that training set does not include data points from the image which
is currently under classification.

3. RESULTS

Our ground truth consist of the results of histopathology. This meant that whole lesion was labelled based on
most dangerous diagnosis. Because our approach gives us pixel wise information we ended situations where one
lesion had several differently classified pixels. This actually might be quite realistic situation. Malignant lesions
can have non-malignant parts. Thus, final classification for each lesion was made based on most dangerous pixel,
which was found from lesion. If there was even a single pixel, which was classified as melanoma, whole lesion
was classified to melanoma. In melanoma detection with this approach we will gain relatively high sensitivity,
but low specificity which is seen in table 1 and in figure 8. And as opposite for benign nevus will have high
specificity and low sensitivity.

Table 1. Sensitivity, specificity and positive predictive value of different classifiers for the melanoma classification

CNN 1D CNN 2D CNN 3D CNN 3D+1D CNN 3D+2D+1D

Sensitivity 1 1 0.93 0.93 0.93

Specificity 0.15 0.12 0.14 0.14 0.21

Positive predictive value 0.34 0.35 0.32 0.32 0.34







needed to develop and calculate a more robust and accurate neural network model. This would mean that we
will need multi center studies, where patient data is gathered in several countries simultaneously. For example
Finnish population is too small to produce enough patients to train enough general models.

Another limitation is that the ground truth labeling is based on histopathological diagnosis of whole lesion.
There is a great possibility that a lesion can include several classes. Thus, our ground truth contains bias and
this bias is also transferred to our training data. What we actually should do is that we should have several
biopsied training points from each lesion so that we could use those spots in our training data. This would
decrease bias in the training data, but it would also lead to reduced training data size.

Process of validating results and gathering training data should be similarly iterative as training of the neural
network itself. When a hyperspectral imager and a classification model is used in a clinical study, we should
take biopsies based on results. The spatial locations of these biopsies should be saved and the model should be
updated using histopathological results of these studies afterwards.

The approach to use spectral and spatial domains seems feasible. Our next ideas are to add more features to
the data. By modifying the illumination source we can take photogrammetric stereo images. From these images
it is possible to calculate surface normals, a digital elevation model and skin’s albedo as a function of wavelength.
Each of these can be used as new features in cancer classification and delineation.

5. CONCLUSION

We have shown that use of spectral and spatial domain will increase classification performance of convolutional
neural network. Our results show that with a relative small data set we are able to get same or slightly better
positive prediction values as clinicians. This information was achieved by using a novel hyperspectral imager
prototype in a clinical setup and train five different neural network models based on histopathological diagnoses.
Because of the climate change proportion direct of sun radiation seems to grow, thus non-invasive automatic skin
cancer detection and delineation systems will be needed even more in the future. These results are incremental
steps towards this goal.
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the methods for biophysical parameter retrieval can be divided into four categories [6,7]: parametric
and non-parametric regression methods, physically based methods, and hybrid methods. Parametric
regression methods directly take the spectral data and make estimations based on them, such as
spectral indices. Non-parametric regression generally means using machine learning methods directly
on the measured data. Physically based methods are based on physical cause–effect relationships of
the interaction of light and matter. Hybrid methods are combinations of the previous three methods,
in which a machine learning algorithm and a physically based model are typically used. A physically
based model is inverted by teaching the machine learning algorithm using the outputs of the model as
inputs and the inputs of the model as outputs. Once it has been taught, the machine learning algorithm
can then receive inputs in the form of spectra and provide results in the form of a desired parameter
value. In this article we develop a methodology that belongs to the hybrid method category.

The hyperspectral datasets used in remote sensing applications can be based on imaging or
non-imaging spectrometers [4]. The convolutional neural networks (CNNs) have been shown to be
powerful in regression and classification tasks with both data types [8–12]. In such networks, the dense
layers that utilize matrix multiplications are replaced with convolutional layers [13].

Chlorophyll retrieval from hyperspectral images of a forest by model inversion has been studied
previously [14,15]. Croft et al., for example, found promising results for inverting a PROSPECT
models [16] using lookup tables [14]. However, this approach inverts the function only point-wise,
when it would be useful to have a more precise approximation of the true inverse function. In another
example, Atzberger et al. [15] used artificial neural networks to invert the PROSPECT+SAIL model [17].
However, neural network research has progressed significantly since these attempts, and particularly,
CNNs have become popular in recent years.

Machine learning and artificial neural networks have been previously used in different physical
parameter retrieval applications. For example, the density and depth of snow cover have been retrieved
utilizing microwave image satellite data and a model for brightness temperature, which was inverted
using an artificial neural network. The results were verified with on-site measurements with good
accuracy [18]. Notarnicola et al. compared two methods, neural network and Bayesian method,
for soil moisture retrieval. In their study, training data were simulated and validation data were on-site
measurements, and the neural network outperformed the Bayesian approach [19]. Trombetti et al. used
a radiative transfer model inverted by an artificial neural network in retrieving the water content of a
canopy. The results correlated well with the amount of rain in the research area [20]. In another study,
a generalized radial basis function neural network was used to retrieve optically active parameters of
seawater from hyperspectral images [21]. This study concluded that the neural network outperformed
other algorithms that are typically used in the field.

Although there is a significant amount of research on using neural networks in physical parameter
retrieval, there appears to be a lack of research on using CNNs in such retrieval. The objective of
this study is to develop a model for non-invasive prediction of chlorophyll values. This is achieved
by solving the inverse function of the stochastic model of leaf optical properties (SLOP) [22,23] with
respect to chlorophyll a and b values by utilizing a one-dimensional convolutional neural network
(1DCNN). Our proposed model utilizes the SLOP for CNN training, and then uses the trained network
to predict the chlorophyll values in the hyperspectral image of a forest. We selected SLOP for inversion
because it is mathematically appealing and it appears to have the potential to be more accurate when
compared to plate or Kubelka–Munk models [24] while the simulations are still fast enough.

2. Materials and Methods

2.1. Stochastic Model of Leaf Optical Properties

SLOP is a stochastic model of leaf optical properties based on Markov chains. It was first
introduced by Tucker and Garratt in 1977 [23] and improved by Maier et al. in 1999 [22]. It takes leaf
properties (see Table 1) and wavelength as an input and calculates leaf reflectance, transmittance, and
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absorbance. The basic idea of the stochastic modeling approach is that the leaf is modeled as a network
of different states and their connections. For each connection, there is a corresponding probability
for transition between states. The possible transitions in a leaf are described in Figure 1. The black
boxes are end states where the only possible transition is to itself. In each layer of the leaf (see Figure 1)
the photon goes to the next layer (or out), goes to the previous layer (or out) due to scattering, or it is
absorbed into the layer. Each of these can also happen after scattering and therefore each layer contains
four basic states: down, up, absorbed, and scattered. In addition, there are two white illumination
states—for input—and four end states on the outside of the leaf. For each of these events probabilities
are calculated based on the layer structure and pigment concentrations with the help of Beer’s law.
For each transition, the probability is calculated as follows:

1. For each up (similarly down) state, the up (down), scattering and absorption probabilities are

Pabsorption(λ) =
a(λ)

a(λ) + s
· (1 − e−(a(λ)+s)·L), (1)

Pscattering(λ) =
s

a(λ) + s
· (1 − e−(a(λ)+s)·L), (2)

Pup (down)(λ) = 1 − Pabsorption − Pscattering. (3)

2. For each scattered state the scattering and absorption probabilities are same as for the up and
down states on the same layer. The up and down probabilities are

Pdown(λ) = Pup(λ) =
1 − Pabsorption − Pscattering

2
. (4)

3. The probability of direct reflection is given as a parameter and the probability of entering the first
layer is 1 − Pdirect reflection.

4. The probability of going from absorbed state, reflected state, or emitted state to itself is 1.
5. All other transition probabilities are 0.

In the previous equations,

• a(λ) is the absorption coefficient,

a(λ) =
π

4
· (1 + 2e−ρ(λ)

ρ(λ)
+

2(e−ρ(λ) − 1)
ρ(λ)2 ) · d2

chloroplast · cchloroplast + aH2O(λ) · wH2O, (5)

where
ρ(λ) =

6
π

· 1
d2

chloroplast · cchloroplast
∑

pigments
ai · ci, (6)

• s is the scattering coefficient,
• L is the length of the light path, which is assumed to be the same as the thickness of the layer,
• ai are the absorption coefficients of the pigments (chlorophyll a, chlorophyll b, beta-carotene,

lutein, violaxanthin, neoxanthin) [22,25–29] and
• ci are their concentrations,
• aH2O and wH2O are the absorption coefficient [30–32] and volume concentration (cm3/cm3) of

liquid water, and
• dchloroplast is the diameter of chloroplast (cm) and cchloroplast is its concentration (1/cm3).
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Figure 1. Diagram representation of stochastic model of leaf optical properties (SLOP). A tree leaf is
assumed to have two major layers: a palisade layer and a spongy layer. In both layers, a photon can go
straight through, be absorbed or scatter until it is absorbed or it moves to the previous or next layer.
Adapted from [22].

Table 1 shows the inputs and constants SLOP uses to calculate the previously introduced probabilities.

Table 1. Constants and variables used in making training, testing, and validation data with SLOP.
The training, testing, and validation data consist of 500,000 spectra made with SLOP. Each spectrum
is produced by taking a random value from each interval in the table and calculating SLOP for each
specified wavelength. The spectra are divided into training, testing, and validation data randomly,
with constant sizes.

Leaf Layer
Palisade Spongy

Variables

Chlorophyll a concentration (mg/cm3) [1, 10] [0, 4]
Chlorophyll b concentration (mg/cm3) [0.5, 5.5] [0, 3]
β-carotene concentration (mg/cm3) [0, 1] [0, 0.5]
Lutein concentration (mg/cm3) [0, 1] [0, 0.5]
Violaxanthin concentration (mg/cm3) [0, 0.5] [0, 0.25]
Neoxanthin concentration (mg/cm3) [0, 0.5] [0, 0.25]
Water content (cm3/cm3) [0.8, 1] [0.1, 0.5]
scattering coefficient (1/cm) [3.5, 5.5] [1000, 1100]
Probability of direct reflection [0.4, 0.06]

Constants
Chloroplast diameter (cm) 0.0005
Chloroplast concentration (1/cm3) 5 × 10−9 6.7 × 10−8

Thickness (cm) 0.0069 0.0069

Mathematically, the Markov chain is handled as a matrix multiplication routine. The algorithm is
the following:

1. Initialize the state vector: The initial state of the network of states, for example “all photons
coming from above, none inside” corresponds to the following state vector:
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powerful for image-related tasks, such as image classification [8,9], or regression problems concerning
images, such as object detection [10]. Altogether, CNN has been found to work well with signals [11,12].

The used 1DCNN architecture is described in Table 3. It consisted of 1D convolution with 64
filters and a kernel size of 3, 1D pooling with a kernel size of 3, another 1D convolution with a kernel
size of 3 and 128 filters, 15% dropout, a 100-filter dense layer and a dense output layer, and batch
normalization [34] at the beginning and after each convolution layer. Input shape, and therefore the
shape of each layer, depended on the shape of the training data. In this study, two different input data
shapes were used. For the simulated validation data, the input data had a length of 210 and in the case
of remotely sensed validation data it had a length of 19. Each layer that had an activation function
used rectified linear unit activation [35]. The Adam optimizer was used [36], with a learning rate of
0.001, β1 = 0.9, β2 = 0.999, and ε = 10−7. The loss score was mean square error (MSE) [37], and the
accuracy score was the coefficient of determination or, as it is also called, the r2-score [38]. The dropout
layers and batch normalization were added to reduce overfitting and also to help transition from the
simulated data to the noisy empirical data.

All neural network implementation was performed with a Keras [39] package using the
TensorFlow [40] backend. The computer used in neural network training had an Nvidia GT1080
16 Gb GPU.

Training data for the 1DCNN was split from the dataset produced by SLOP. For simulated data
validation these data were used as they were, and for the case with remotely sensed data some
Gaussian noise (M = 0, SD = 0.025) was added to the data. In both cases chlorophyll a and b estimators
were trained separately.

2.3. Empirical Dataset

The empirical test site was located in the Vesijako experimental forest area in the municipality of
Padasjoki in southern Finland. The test site was covered by young to middle-aged forest dominated
by birch (Betula pendula), with spruce (Picea abies) as a secondary tree species. The flight campaign
was carried out on 26 June 2014 from 12:09 to 12:22 using a hexacopter UAV. The weather conditions
were cloudy. The hyperspectral images were captured using a 2D frame format hyperspectral camera
based on a tunable Fabry–Pérot interferometer (FPI). The flying height was 88 m from the ground level,
providing an average ground sampling distance (GSD) of 8.8 cm for the FPI images at ground level;
the flight height was 67 m from the tree treetops, giving a GSD of 6.7 cm at the treetops. Hyperspectral
orthophoto mosaics were calculated with a 10 cm GSD and calibrated to reflectance units using
the Finnish Geospatial Research Institute’s (FGI) in-house mosaicking software. The wavelengths
measured were from 507.6 nm to 885.6 nm, of which only 19 wavelength bands up to 671 nm were
used for neural network training and validation. All wavelengths were available for index calculations.
Table 2 presents wavelength and full width of the half maximum (FWHM) values in detail. Example
spectra can be seen in Figure 3. For details of the datasets and post-processing, see Nevalainen et al. [41]

Table 2. Wavelength and full width of the half maximum (FWHM) values of the measured
hyperspectral data [41].

Wavelength (nm): 507.60, 509.50, 514.50, 520.80, 529.00, 537.40, 545.80, 554.40, 562.70, 574.20, 583.60, 590.40,
598.80, 605.70, 617.50, 630.70, 644.20, 657.20, 670.10, 677.80, 691.10, 698.40, 705.30, 711.10,
717.90, 731.30, 738.50, 751.50, 763.70, 778.50, 794.00, 806.30, 819.70

FWHM (nm): 11.2, 13.6, 19.4, 21.8, 22.6, 20.7, 22.0, 22.2, 22.1, 21.6, 18.0, 19.8, 22.7, 27.8, 29.3, 29.9, 26.9,
30.3, 28.5, 27.8, 30.7, 28.3, 25.4, 26.6, 27.5, 28.2, 27.4, 27.5, 30.5, 29.5, 25.9, 27.3, 29.9
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Figure 4. Flow chart of the research methodology. Ovals represent data and boxes represent methods.

2.4.1. Simulated Validation Dataset

In order to validate the method, the simulated data was divided into the training (45%), testing
(22%), and validation (33%) datasets. The estimator was trained with the training and testing data and
validated with the independent validation dataset. The predicted concentrations were provided by
the estimator and compared to the validation data. Then the following metrics for the original and
predicted concentrations were calculated:

• r2 score between predicted and original values,
• Correlation coefficient between original and predicted values,
• MSE of their difference,
• Average difference,
• Standard deviation for the difference, and
• 95% confidence interval for the difference.

2.4.2. Empirical Validation Dataset

With the remotely sensed validation data, chlorophyll a and b maps were calculated by using the
empirical data as input into the trained estimators. First, however, the data was shifted with a linear
shift of 0.02 in order to get it to the same level as the training data and to eliminate negative values,
that remained in the data after calibration. Since chlorophyll measurements for the data were not
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3.5. Other Observations

The TCARI
OSAVI index can also be used to estimate chlorophyll concentrations [42]. This estimation

would be useful to correlate with our estimators, yet then the leaf area index (LAI) should be calculated.
Unfortunately, it was not possible to estimate the LAI from the used empirical dataset.

In vegetation parameter retrieval studies, the leaf-level model is often paired to a canopy radiative
transfer model (RTM) [14,15,17]. This procedure would have been advantageous in our study as well,
and the fact that we used the leaf-level simulated spectral data instead of canopy-level features will
cause some uncertainties in the analysis. However, we expect that these differences are smaller than
in studies with conventional manned aircrafts or satellites. Firstly, our dataset had ultra-high spatial
resolution with a ground sampling distance of 8 cm, thus spectral values of individual pixels had
less mixing with background than the typical aircraft or satellite images with GSDs of e.g., 50 cm to
10 m. Secondly, the measurements took place in cloudy weather with diffuse illumination, thus the
disturbing bidirectional reflectance (BRDF) effects were minimal in the data [41]. Thirdly, we added
some Gaussian noise to the leaf-level training data, which could also account for some of the uncertainty
that is introduced in transition from leaf-level to canopy-level. Even though we did not account for
the canopy RTM, the results were consistent with the leaf level simulations. In future studies we
will also implement the canopy RTM in our modeling. If the 1DCNN model is integrated with a
radiative transfer simulator such as Librat [47], training data for various sensors and conditions could
be generated.

Based on our literature review, the combination of using a simulation model for hyperspectral data
and CNN for parameter retrieval is new in the field of hyperspectral data analysis. As discussed earlier,
CNN is a powerful tool for signal regression and classification problems. It has been shown to perform
better than traditional dense deep neural networks in image recognition and other signal-related
tasks, thus it should perform better in regression problems concerning hyperspectral images. The
use of simulated data in training is justified by the fact that obtaining a comprehensive dataset
in field measurements requires a huge effort, whereas mathematical models can be developed
with significantly less labor. Our approach of using simulated data for CNN training has the
potential for a more universal and accurate regression and classification models in the context of
hyperspectral imaging.

One of the difficult parts of using simulated data in parameter retrieval is accounting for
error sources in hyperspectral images. The simulated data are smooth and noiseless, whereas the
empirical data are vulnerable to multiple error sources. Two approaches to tackle this challenge are the
development of rigorous data calibration approaches [4] and the implementation of different error
sources to the canopy radiative transfer modeling [47]. In this study we attempted to take noise into
account in the design of the CNN by adding batch Normalization layers to the bare-bones CNN
template, by adding Gaussian noise to the training data and by averaging the resulting chlorophyll a
and b and TCARI

OSAVI maps over an 8 × 8 pixel sliding window. There is still a need for development in this
area to identify the best ways to control noise in hyperspectral images.

While it appears that our approach works relatively well with SLOP, it would be interesting
to study different other models as well, such as ray tracing models [48,49], models specialized in
coniferous trees [50], or models that take the entire forest stand into account [51–54]. They could
improve the results, because SLOP is tied to the composition of the basic leaf. The ray tracing would
be more accurate, but it would also require more computing time. In some cases, the use of a simpler
or less accurate model could be justified if computation time is the limiting factor. It is also possible
to obtain more specialized training data by narrowing the range of SLOP parameters around known
values of some certain tree species. This would probably make results more accurate for that species
while degrading the results for other tree species.

The 1DCNN model may not be the best possible network for the task. However, it has already
shown promising results as the basis for the further developments. There is much work to do
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on developing CNN networks for different tasks, including regression and classification tasks in
hyperspectral data analysis.

4. Conclusions

Our study has presented a novel method for chlorophyll a and b estimation from hyperspectral
image data using the stochastic model of leaf optical (SLOP) properties and a convolutional neural
network. We found that when the conditions and imaging system are consistent with the SLOP
model, the convolutional neural network estimators for chlorophyll a and b produce feasible results.
Our results showed that even with less-than-ideal remote sensing data, the results were in the right
range and correlated well with an index known to correlate strongly with chlorophyll concentration.
This indicates that our method shows promising results in measuring chlorophyll, although further
verification of the results is needed to ensure their correctness.

We utilized a conventional one-dimensional convolutional neural network (CNN) structure,
which showed promising performance. By optimizing the CNN model, the results are expected
to improve, and the prediction errors are expected to decrease. The aim of further research could
be developing a model based on CNN and hyperspectral data for reliable estimation of tree health
through measurements of chlorophyll a and b.
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The following abbreviations are used in this manuscript:

1DCNN One Dimensional Convolutional Neural Network
CNN Convolutional Neural Network
FGI Finnish Geospatial Research Institute
FPI Fabry–Pérot interferometer
FWHM Full width of the half maximum
GPU Graphics Processing Unit
GSD Ground Sampling Distance
LAI Leaf Area Index
MSE Mean Square Error
OSAVI Optimized Soil Adjusted Vegetation Index
RTM Radiative Transfer Model
SLOP Stochastic model of Leaf Optical Properties
TCARI Transformed Chlorophyll Absorption Reflectance Index
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Kubelka-Munk Model and Stochastic Model
Comparison in Skin Physical Parameter
Retrieval

Leevi Annala and Ilkka Pölönen

Abstract In medical field there is need for non-invasive diagnostic tools. One partic-
ular research area is skin cancer diagnostics. Here we study Kubelka-Munk model

and stochastic skin reflectance model, which we combined from two sources to

better reflect the physical structure of the skin. Our objective is to compare the

models to each other in terms of accuracy, usefulness and biophysical parameter

retrieval using convolutional neural network. The results are promising. Both model

are found suitable options for further research and used stochastic model is similar

to Kubelka-Munk in terms of accuracy. In physical parameter retrieval both models

performmoderately. Inverted models reasonably retrieve the pigment concentrations

from the simulated test data set. With empirical testing data the inverted models are

mutually consistent.

1 Introduction

There is a need for automated non-invasive diagnostic methods for different illnesses

and diseases in the medical field. Especially in case of melanomas and other skin

cancers, the accuracy of the clinical diagnostic tools are poor, resulting in unneces-

sary operations and re-operations [9]. Awell working non-invasive detection method

could decrease the number of unnecessary operations and therefore bring savings

to the hospital. One potential technology is combination of hyperspectral cameras,

machine learning and neural networks in skin diagnostics [21, 23, 25].

Machine learning, and particularly training of the neural networks, require large

amount of training data. A way to avoid laborious data gathering process is to use
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mathematicalmodelling in producing such augmented data set.Mathematicalmodels

for skin reflectance can be roughly divided into two categories: deterministic and

stochastic [4]. Deterministic models are models where the inputs directly determine

the output. Stochasticmodels include randomness. Examples of deterministicmodels

includemultitude ofKubelka-Munk equation basedmodels [12, 26, 3, 6, 17, 1, 31, 7],

Boltzmann photon transport equation [10], diffusion theory models [29] and many

more, while stochastic modelling is exclusively based on Monte Carlo modelling

[8, 27, 32, 19]. Model, that augments training data for machine learning, should have

useful input parameters for inversion. This model should be easy to understand and

modify and it should be sufficiently accurate.

Examples of previous research in non-invasive methods to determinate biochem-

ical and biophysical skin properties using hyperspectral imaging include a study

where skin thickness was successfully retrieved from hyperspectral image using in-

verted Kubelka-Munk Model [30]. The results were verified by ultrasound imaging

and the machine learning method used in inversion was support vector regressor.

Jolivot et al. retrieved melanin and blood concentrations and skin layer thicknesses
from multispectral images [12]. They inverted Kubelka-Munk Model using genetic

algorithm.

In this chapter we compare the Kubelka-Munk implementation of Jolivot et al.
[12] to our own implementation of Stochastic Model, which is based on multi-

layered stochastic radiative transfer model by Maier et al. [19] and parameters

described in [11]. Our objective is to use both models to skin reflectance modeling

and compare them in terms of accuracy, usefulness and inversion with convolutional

neural network [18]. Based on our knowledge this approach of stochastic modeling

and convolutional neural network has not been used previously in skin physical

parameter retrieval.

2 Materials and Methods

2.1 Stochastic Model

Stochastic Model (SM) is a Markov chain based model for the light propagation in

layered media. The SM we use is modified from [19], by changing the pigments

to those of the skin and using more general absorption and scattering coefficients.

The basic principle of the SM is that the skin is seen as a network of states, and

there is a certain probability of each transition between two states. The states and

possible transitions are described in Figure 1. For this study, we assume that the

skin has two layers: epidermis and dermis. Light that goes past these two layers

is considered absorbed. The transition probabilities (𝑃) are based on Beer’s law

and calculated as follows[19]. For up and down states the up/down, scattering and

absorption probabilities are [19]
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For the scattered state, the scattering and absorption probabilities are the same as

for up/down states in the same layer. The up/down probabilities are

𝑃up = 𝑃down =
𝑃up/down

2
, (6)

as the photon can now go both ways. The probability of direct reflection is given

as a parameter to the model 𝑃𝑑𝑟 = 0.02 and therefore transition probability to the
first layers down state is 1 − 𝑃(𝑑𝑟) = 0.98. Transition probabilities from absorbed,

reflected or emitted state to itself is 1, and transition between states that are not

connected is impossible.

The parameters needed for calculating the transition probabilities include pigment

concentrations in skin layers, scattering coefficients and thicknesses of the skin layers

and blood oxygenation level. These are sufficiently described in [11] and listed in

Table 1. Example reflectance spectrum produced by SM can be seen in Figure 2.

The values used in creating Figure 2 can be seen in Table 2.

Table 1 Input parameters and their ranges for Stochastic Model.

Input parameter Range Layer

Melanosome volume fraction 0 - 0.08 Epidermis

Blood volume fraction 0 - 0.01 Dermis

Blood oxygen fraction 0.2 - 0.5 Dermis

Water volume fraction 0.5 - 0.8 Dermis

Reduced scattering

coefficient at 500nm (cm−1) 38 - 58 Both

Rayleigh scattering fraction 0.38 - 0.42 Both

Mie scattering power 0.3 - 1 Both

Thickness of epidermis (cm) 0.005 - 0.035 Epidermis

Thickness of dermis (cm) 0.1 - 0.4 Dermis

Table 2 Input parameters and their ranges for Stochastic Model and Kubelka-Munk Model in

Figure 2.

Input parameter Value for SM Value for KM

Melanosome volume fraction 0.1 0.1

Blood volume fraction 0.02 0.02

Blood oxygen fraction 0.5 0.5

Water volume fraction 0.4 Not applicable
Reduced scattering

coefficient at 500nm (cm−1) 48 48

Rayleigh scattering fraction 0.41 0.41

Mie scattering power 0.7 0.7

Thickness of epidermis 0.007 cm 0.000 07m
Thickness of dermis 0.2 cm 0.002m
Anisotropy Not applicable 0
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2.2 Kubelka-Munk Model

Kubelka-Munk Model (KM) is a special case solution to the radiative transfer equa-

tion [17]. The model consists of two differential equations for opposing light fluxes

𝐼 and 𝐽: {
𝑑𝐼
𝑑𝑥 = −𝐾𝐼 − 𝑆𝐼 + 𝑆𝐽
𝑑𝐽
𝑑𝑥 = −𝐾𝐽 − 𝑆𝐽 + 𝑆𝐼,

(7)

where 𝐾 and 𝑆 are absorption and scattering functions, and 𝑥 is the thickness of the
media. Their reasoning and analytical solution can be found for example in [22].

Our implementation of the model follows the implementation described in [12].

Compared to that we changed the scattering coefficient to the same we used in

SM, from [11]. The model takes into account the two first main layers of the skin:

epidermis and dermis. Light that goes through these layers is considered absorbed.

The parameters and their used ranges are adapted from [11, 12] and are described

in Table 3. Details of the implementation can be found in [12]. Example spectrum

produced by KM can be seen in Figure 2. The values used in creating Figure 2 can

be seen in Table 2.

Table 3 Inputs and their ranges for KM.

Input parameter Range Layer

Melanosome volume fraction 0.01 - 3.01 Epidermis

Blood volume fraction 0.001 - 0.501 Dermis

Blood oxygen fraction 0.6 - 0.99 Dermis

Reduced scattering

coefficient at 500nm (cm−1) 38 - 58 Both

Rayleigh scattering fraction 0.38 - 0.42 Both

Mie scattering power 0.3 - 1 Both

Thickness of epidermis (m) 0.0001 - 0.0006 Epidermis

Thickness of dermis (m) 0.001 - 0.004 Dermis

Anisotropy 0.7 - 0.8 Both

2.3 Convolutional neural network

Convolutional neural network (CNN) is a neural network where at least one of the

traditional fully connected layers is replacedwith convolutional layer [18]. It has been

found useful in various tasks including image and signal type data [16, 13, 28, 5, 24].

Our CNN implementation can be seen in Table 4. It consists of two convolutional

layers and three dense layers. Additionally there are two pooling layers and one

dropout layer and the output layer. It is very conventional CNN. The optimization

algorithm used is the Adam-algorithm [14] with meta parameters of learning rate =
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Table 5 Correlation coefficients of values retrieved from Stochastic Model.

Retrieved parameter Correlation coefficient

between estimated and real value

Melanosome 0.96

Blood volume fraction 0.87

Blood oxygen fraction 0.07

Water volume fraction 0.27

Reduced scattering

coefficient at 500nm 0.57

Rayleigh scattering fraction 0.11

Mie scattering power 0.92

Thickness of epidermis 0.95

Thickness of dermis 0.96

2.4 Model Inversion

Both SM and KM are inversed by CNN and the inversion results are used to predict

parameters from simulated and empirical data. For the inversion, the training and

validation labels described in Tables 1 and 3 are scaled to range from 0 to 1 in order

to receive best possible performance from CNN. Hence, the predictions are also in

range from 0 to 1. For predictions using simulated data, correlation coefficients are

calculated and analyzed. Predictions from empirical data are visually interpreted and

their potential for further research is discussed.

Our empirical data consinsts of a hyperspectral image of human skin with a large

nevus. Example spectrum can be seen in Figure 2.

3 Results and Discussion

3.1 Retrieval Results

The inversion results for SM were strongest at dermis and epidermis thicknesses and

melanosome concentration, with correlations of 0.96, 0.95 and 0.96 respectively.

The weakest correlations were in blood oxygenation, Rayleigh scattering fraction,

and water volume fraction at 0.07, 0.11, and 0.27, respectively. Altogether three

correlations could be considered weak, one moderate and five strong. (Figure 3,

Table 5)

The results of the inversion of the KM had strongest retrieval correlations in blood

oxygen fraction, blood volume fraction and thicknesses of epidermis and dermis at

0.99, 0.94, 0.94 and 0.92 respectively. The weakest correlations were in Rayleigh

scattering fraction andMie scattering power at 0.02 and 0.29, respectively. Altogether

two correlations could be considered weak, two moderate and five strong.
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Table 6 Correlation coefficients of values retrieved from Kubelka-Munk Model.

Retrieved parameter Correlation coefficient

between estimated and real value

Melanosome 0.89

Blood volume fraction 0.94

Blood oxygen fraction 0.99

Reduced scattering

coefficient at 500nm 0.40

Rayleigh scattering fraction 0.02

Mie scattering power 0.29

Thickness of epidermis 0.94

Thickness of dermis 0.92

Anisotropy 0.39

The results for empirical data (Figure 5) showed that there is potential for further

research using both models as a training data source for CNN. The models were

mutually consistent in showing higher and lower values for different parameters and

at least for the melanin concentration the models rightly predicted higher melanin

concentrations on the area of the nevus.

3.2 Model Comparison

3.2.1 Accuracy

Both of these models seemed to produce spectra, which mimic skin reflectance,

although the the effect of haemoglobin absorption (450-550 nm) in KM spectrum

was suspiciously symmetrical (Figure 2). The haemoglobin absorption seems to have

too much influence to the KM while the SM seems to be influenced too little. The

spectrum of KM seemed similar to normal skin while the spectrum of SM appeared

to be similar to pale (less blood) skin [2, 11, 15]. The fact that parameters given

to the KM (Table 3) were not realistic decreases the KMs credibility. Especially

melanosome volume fraction was too high. The accuracy of the KM we used has

been partially verified previously by inverting the model with evolutionary algorithm

and retrieving plausible pigment concentrations from living skin [12].

The accuracy of SM was verified in previous research with pigments typical to

plants [19]. The modifications we made did not change the mathematical core of

the model, therefore the accuracy of the model is derived from the accuracy of the

pigment absorption spectrums.

The accuracy of the inversions varied for both models. From SM, predictions

(Figure 3) of skin layer thicknesses and melanosome concentration were well pre-

dicted and Mie scattering power and blood volume fraction less accurately. For the

rest of the parameters the accuracy was non-existent.
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From KM (Figure 4), the blood oxygen fraction and blood volume fraction were

particularlywell predicted andmelanosome concentration, and skin layer thicknesses

were little less accurate. Once again, for the rest of the parameters (4), the accuracy

was poor.

3.2.2 Usefulness

KM is the most used in the field of colour modelling [26], and it is sufficiently

accurate while being easy to understand and fast to calculate. Our implementation of

SM takes a while to calculate, but it seems like it has potential to be more accurate

than KM.

For physical parameter retrieval, the models were useful in different areas. For

some reason the scattering parameters seemed to have little to no impact on the KM,

while for the SM the result were a little bit better. KM seemed more likely to return

the correct values on the actual pigment concentrations, and SM gave better results

at evaluating the thicknesses of the skin layers.

3.3 Discussion

The results indicate that the both KM and SM can be used as a data augmentation

source in physical parameter retrieval from skin. KMs strengths are in calculation

time and its simplicity. SMs strengths are higher potential accuracy and adaptability,

as the absorption and scattering coefficients are independently tunable and the layers

are easily added and removed and probability calculations can be changed if needed.

With more investigation the reason for the irretrievable parameters could be found.

The easiest hypothesis is that they simply do not affect the spectrum enough to be

retrieved, and based on Figure 2, this seems to be the case for SM. Water absorption

in the studied wavelength range is quite small compared to the other parameters [11],

and haemoglobin absorption has a negative peak between 450 nm and 550 nm [15],

and our SM does not seem to show it. In KM retrieval, only parameters related to

scattering are poorly retrieved. They are also poorly retrieved in SM and they appear

to affect the spectrum very little.

When we compare the spectra in Figure 2 to previous research it is clear that the

measured skin spectra can be replicated pretty closely [2]. The empirical implications

are left for further research, but this research and previous research have given us

reason to believe that the SM can be well adapted for accurate skin reflectance

modelling [19]. If this holds, it means that we could use SM and a skin structure

model to produce accurate training data for machine learning applications in medical

field. This would decrease the need for data gathering for such application. However,

measured data always includes noise, therefore one needs to find a way to introduce

realistic noise to the model.
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4 Conclusion

We have demonstrated that the Stochastic Model originally developed for leaf optical

properties can be successfully transported to skin reflectance modelling by changing

equations and parameters of the model to skin related equations and parameters.

We have demonstrated that the model has similar accuracy with Kubelka-Munk

Model, while being easier to modify. It is up for debate if the probability and

transition net based Stochastic Model is easier to understand when compared to

Kubelka-Munk Model, which is based on solutions of a differential equations. The

most direct implications of our work are, that the model should be first verified and

further adapted to skin reflectance modelling and then tested in machine learning

applications in the medical field.
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Featured Application: This research can potentially be applied in improving the accuracy of

clinical skin cancer diagnostics.

Abstract: In this study, we compare six different machine learning methods in the inversion of a
stochastic model for light propagation in layered media, and use the inverse models to estimate four
parameters of the skin from the simulated data: melanin concentration, hemoglobin volume fraction,
and thicknesses of epidermis and dermis. The aim of this study is to determine the best methods for
stochastic model inversion in order to improve current methods in skin related cancer diagnostics
and in the future develop a non-invasive way to measure the physical parameters of the skin
based partially on the results of the study. Of the compared methods, which are convolutional neural
network, multi-layer perceptron, lasso, stochastic gradient descent, and linear support vector machine
regressors, we find the convolutional neural network to be the most accurate in the inversion task.

Keywords: skin; physical parameter retrieval; neural networks; convolutional neural network;
machine learning; model inversion

1. Introduction

Skin related diseases such as skin cancer are common [1], and non-invasive methods for
diagnosing them are needed. According to Le et al. [2], the melanoma incidence is increasing.
The incidence between 2009–2016 was 491.1 cases per hundred thousand people, which is nearly
64% more compared to the time period of 1999–2008. The difference in incidence at an older age is
even starker, as the incidence nearly doubled from 1278.1 to 2424.9 in people older than 70 years old [2].
The cost of the melanoma for the society has the same trend and early detection and accurate treatment
lowers these costs and improves the life expectancy of the patients. Hyperspectral imaging is one
way for the early detection and guidance for the treatment. Skin physical parameter retrieval with
hyperspectral camera or spectrometer and machine learning (ML) provide a non-invasive method of
measuring the chromophore concentrations and other parameters in the skin [3].

One hinderance to developing ML models for clinical use is that the needed training datasets are
large and difficult to produce. The ethical standards of using human testing make it hard to obtain data,
and there needs to be a team of medical staff in addition to computer science specialists for the work.
One way to avoid some of these pitfalls is to use mathematical modeling to produce training data for
ML algorithms. In this study, we use the stochastic model, which is partially of our own design.

In our previous research [4,5], we have used convolutional neural networks (CNN) for stochastic
model inversion. In [4], we used CNN in inverting the stochastic model for leaf optical properties
(SLOP) [6], which was the inspiration for the stochastic model used in this study. We found the
inversion successful. In [5], we compared the invertibility and usefulness in the physical parameter
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retrieval from the stochastic model used in this study and a Kubelka–Munk model [7] by inversion
with CNN. It has since occurred to us that it would be useful to verify the applicability of the CNN
networks in model inversion by comparing it to other ML algorithms.

The ML algorithms have been compared multiple times in different hyperspectral imaging
scenarios. For example, one study compared ML algorithms in assessing strawberry foliage
Anthracnose disease stage classification [8]. They compared spectral angle mapper, stepwise
discriminant analysis, and their own spectral index they call simple slope measure. These algorithms
did not show good performance in the task, with classification accuracy just breaking 80%. Another
study found a least mean squares classifier to perform best in classifying a small batch of lamb
muscles compared to six other machine learning algorithms including support vector machine (SVM)
approaches, simple neural networks, nearest neighbor algorithm, and linear discriminator analysis [9].
The algorithms were also tested using principal component analysis (PCA) for dimensionality reduction
in training and testing data. They found no statistical differences in the classification results between
using PCA for the data or not.

Gewali et al. [10] have written a survey on machine learning methods in hyperspectral remote
sensing tasks. The retrieval of (bio)physical or (bio)chemical parameters from the hyperspectral images
was one of the tasks, and they found three articles where SVMs were used in retrieval, five articles that
used latent linear models such as PCA, four that used ensemble learning, and five that used Gaussian
processes. Surprisingly, they found no articles where deep learning was used in retrieval.

In the articles [8–10], the distinction to our work is that they do not apply mathematical modeling
prior to applying machine learning. In contrast, the following articles by Vyas et al. and Liang et al.
are similar to our work, only employing different mathematical and machine learning models [11–13].

Liang et al. [11] used simulated PROSAIL data to select optimal vegetation indices for leaf and
canopy chlorophyll content prediction from an inverted PROSAIL model. In the inversion, they used
an SVM algorithm and a random forest (RF) algorithm, of which they found RF to be better. The results
were promising, as the coefficient of determination (r2) was 0.96 between measured and predicted
data. However, their usage of indices makes it rather incomparable to our research.

Vyas et al. [12,13] have done the work most similar to ours. In [12], the Kubelka–Munk (KM)
model was inverted using a k nearest neighbors (k-NN) method with different distance metrics and
a support vector regressor. The inversion parameters were melanosome volume fraction, collagen
volume fraction, hemoglobin oxygenation percentage, and blood volume fraction. In the synthetic
experiment, they found the k-NN with spectral angle distance to have the smallest mean absolute
errors. In the in vivo experiment, they show that the predicted parameters produce modeled spectra
strikingly similar to measured spectra. This is used as evidence of inversion success.

In their other study [13], the KM model was inverted using an SVM approach. The inversion
parameter was thickness of the skin. The linear correlation coefficient (r) between inverted KM
predictions and ultrasound measurements of the skin thickness was 0.999. In further experiments, they
found the measured and modeled spectra nearly indistinguishable, although it is not disclosed how
they chose the other parameters for the modeling. The difference to our approach in aforementioned
studies is that the inverted models differ from ours, as we are trying to find useful models alternative
to KM.

The objective of our study is to find a good way to invert the stochastic model for skin optical
properties. Our hypothesis is that the convolutional neural network (CNN) will outperform the others
as it has been shown to perform well in similar tasks [14–17].

In Section 2, we provide the reader with information of our data, the methods we use, including the
stochastic model and the different machine learning algorithms, and the metrics we use in evaluating
the results. In Section 3, we show the experimental results and, in Section 4, we compare our results to
the previous research, discuss the strengths and weaknesses of our work, and discuss the direction of
future work. Section 5 concludes the work.
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2. Materials and Methods

2.1. Data

2.1.1. Stochastic Model

The training data for the machine learning methods was produced by a stochastic model for
light propagation in the skin (SM). The SM was adapted from the stochastic model for leaf optical
properties [6] by using skin specific parameters [18].

SM is the Markov chain based model for light propagation. The light propagation can be expressed
as a network of transitions and states (Figure 1), in which there is a physically meaningful probability
of transfer from one state to another. The probabilities are based on the chromophore concentrations
and absorption and scattering properties of the skin. SM is used in the same way and with the same
parameters as in [5].

Illumination Direct reflected Emitted

Down to epidermis Absorbed Scattered Up to epidermis

Down to dermis Absorbed Scattered

Absorbed

Figure 1. Network of states and transitions of light propagation in the Stochastic Model.

In this research, the first two main skin layers, epidermis and dermis, were considered.
Light through dermis was considered absorbed. From the first state, illumination, the light either goes
into the skin (P = 0.98) or is reflected (P = 0.02). In the epidermis and dermis layers, the transition
probabilities are based on Beer’s law and calculated as follows [6]:

Pabsorption(λ) =

⎧⎨
⎩1 if the current state is absorbed,

a(λ)
a(λ)+s(λ) · (1 − e−(a(λ)+s(λ))·L) otherwise,

(1)

Pscattering(λ) =

⎧⎨
⎩0 if the current state is absorbed,

s(λ)
a(λ)+s(λ) · (1 − e−(a(λ)+s(λ))·L) otherwise,

(2)

Pup/down(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1 − Pabsorption − Pscattering if the current state is up or down,
1−Pabsorption−Pscattering

2 if state is scattered,

0 if state is absorbed.

(3)

In the previous equations, λ is the wavelength in nanometers, a(λ) is the absorption
coefficient [18], and s(λ) is the reduced scattering coefficient [18] and L is the length of the light
path, which is assumed to be the same as the thickness of the layer [18].
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and epidermis and dermis thicknesses, are normalized to between 0 and 1, and the spectral data
are normalized to between 0 and 1 for the neural network algorithms (convolutional and regular
neural networks described in Sections 2.2.2 and 2.2.3) and to between −1 and 1 for scikit-learn
algorithm implementations (other algorithms, described in Sections 2.2.4–2.2.6) by the StandardScaler
algorithm [19].

2.1.2. Empirical Data

The empirical data were used for visual inspection of the trained machine learning regressors.
The used hyperspectral image was captured using Revenio Prototype 2016 hyperspectral imager
with spatial resolution of 1920 × 1200 pixels and spectral resolution of 120 wavelengths (Table 2).
The hyperspectral camera/imager is a device that captures multiple monochrome photographs in
rapid succession, while controlling the wavelength of the light that gets through the controlling device
to the imaging sensors. Each monochrome photograph represents a narrow wavelength interval that
can be interpreted as single wavelength, such as 400 nm. There are usually approximately one hundred
of these monochrome images in one hyperspectral image. The hyperspectral image contains the same
spatial data as the normal RGB-picture, but far more data in the spectral domain, that is, the interaction
between light and the subject of the image can be seen with greater precision [20].

Table 2. Wavelength of the measured hyperspectral data and the wavelengths used in training
data production.

Wavelength (nm): 460, 461.84, 464.2, 466.43, 468.96, 471.16, 473.83, 476.66, 479.12,
481.5, 483.88, 486.82, 489.01, 491.28, 494.12, 496.09, 498.67, 501.44,
504.48, 506.89, 509.53, 512.15, 514.76, 517.53, 520.37, 523.1, 525.76,
528.48, 531.25, 534.27, 536.97, 539.63, 542.39, 545.15, 547.8, 550.48,
553.09, 555.93, 558.72, 561.27, 564.1, 566.55, 569.19, 571.85, 575.39,
579.44, 582.22, 584.92, 587.49, 590.13, 592.77, 595.46, 598.37, 600.98,
603.7, 606.47, 609.16, 612, 615.07, 617.84, 621.01, 623.53, 626.28,

629.25, 632.06, 634.8, 637.95, 640.51, 643.59, 646.8, 649.04, 651.97,
654.93, 657.75, 660.5, 663.63, 666.51, 669.53, 672.59, 675, 678.46,
682.67, 687.25, 691.66, 696.16, 700.39, 704.64, 708.56, 712.78, 716.63,
720.81, 725.04, 729.34, 733.99, 738.38, 742.65, 746.64, 751.27, 755.19,
759.42, 763.86, 768.13, 772.48, 776.92, 781.83, 786.09, 790.58, 795.01,
799.41, 803.62, 807.85, 812.18, 816.33, 820.69, 824.78, 829.33, 832.96,
836.72, 840.25, 842.35

2.2. Machine Learning Models

The inversion methods we compare are multi-layer perceptron (MLP) [21], convolutional neural
network (CNN) [16], stochastic gradient descent regressor (SGD) [22], linear support vector regressor
(SVR) [23], and lasso regressor [24].

The machine learning methods for inversion are selected by following criteria:

1. Applicability for special characters of hyperspectral data, such as

• nonlinearity,
• sparsity, i.e., some wavelengths have greater significance.

2. Applicability for the dataset and sample size

The multi-layer perceptron was chosen based on its applicability to nonlinear data [25,26], which
is usually the case when light is scattering in complex media. The convolutional neural network
fills both criteria, as it is proven to be good in image [14,15] and signal regression [16,17] problems,
and it scales well to big datasets. It also takes the structure/shape of the data into account by use of
convolution. The stochastic gradient descent regressor is also used in signal regression, and, according
to scikit-learn documentation, version 0.23.2 [19], it is also a good fit for the size of our data, which
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is in the range of hundreds of thousands pixels. The lasso regressor was chosen based on the first
criteria. It is also good for sparse problems [27], which means only some of the input parameters are
important. This is the case with spectral data: the spectra will follow the same line in many places,
but the differences are found in the wavelength zone of the chromophore of interest. The linear support
vector regression was included based on its applicability on pattern recognition [28].

All machine learning algorithms were either implemented in scikit-learn Python library [19]
version 0.20.1 or written by the authors using Python programming language and Tensorflow
library [29] version 2.0.0.

2.2.1. Training and Testing Process

All the models were trained and tested with the simulated data. The data set consisted of
50,000 simulated spectra with associated target variables, which were melanosome volume fraction,
hemoglobin volume fraction, epidermis thickness, and dermis thickness. All algorithms were trained
for all targets simultaneously, resulting in regressors with an output size of four.

The data set was divided into training (n = 48,000) and test samples (n = 2000). For each
method, the best set of hyperparameter values was found by the grid search method [19] and 5-fold
cross-validation strategy on training samples. The final model was then trained by using all the 48,000
training samples and the best combinations of hyperparameter values. The performance of each model
was then assessed with the test samples.

In addition to the simulated training and test data, empirical data were used in visual
interpretation of the trained models.

2.2.2. Convolutional Neural Network

CNN is widely used in image related regression and classification tasks [14–17]. The state-of-the-
art image classification algorithms utilize some form of CNN [30,31]. There is also a lot of research for it
being used with hyperspectral images [10]. The CNN algorithms we used are described in Tables 3–6.

In the first experiment with grid search (Table 3), we varied the shape of two convolutional layers,
the size of the convolution kernel, and size of the max-pooling [32] window. The resulting network
(Table 4) had two one-dimensional, convolution layers with convolution window of size 12, 32, and
64 filters, respectively. After each convolution, there were one-dimensional, max-pooling with pool
size of two. Both convolutional layers have rectified linear unit (ReLU) [33] activation. After the last
max-pooling layer, there was a flattening layer and three dense layers (ReLU activation), dropout of
50%, and an output layer. The first experiment is referred to in the results and the discussion as CNN.

Table 3. Grid search parameters for the first convolutional neural network experiment, abbreviated as
CNN in the results and discussion. The best parameters are bolded.

Parameter Values

Convolution filters (64 and 128), (128 and 256), (32 and 64)
Convolution kernel size 6, 9, 12
MaxPooling pool size 1, 2, 3

In the second experiment, we varied the amount of convolutional layers, the convolution kernel
size, and size of the max-pooling window (Table 5). The resulting network (Table 6) consisted of
a one-dimensional, convolutional neural network, max-pooling, two one-dimensional, convolution
layers, another max-pooling, flattening layer three dense layers, dropout of 50% [34], and output layer.
All dense and convolutional layers except output layers utilized ReLU activation. Every convolutional
layer had a convolution window of size 15, and the max-pooling pool size was two. The second
experiment is referred to in the results and discussion as CNNV2.
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The used optimizer was an Adam optimizer [35] in both experiments. The learning rate was 0.001,
β1 = 0.9, β2 = 0.999 and ε = 10−7, which were not included as the optimization parameters as the
focus was on the architecture of the network. The loss score was mean square error (MSE).

Table 4. The convolutional neural network used in first CNN inversion experiment. The best
parameters from Table 3 were used.

Layer Kernel/Pool Size Activation Output Shape Parameters

Conv1D (12) ReLU (109, 32) 416
MaxPooling1D (2) (54, 32) 0
Conv1D (12) ReLU (43, 64) 24,640
MaxPooling1D (2) (21, 64) 0
Flatten (1344) 0
Dense ReLU (128) 172,160
Dense ReLU (64) 8256
Dense ReLU (32) 2080
Dropout (0.5) (32) 0
Dense (4) 132

Total params: 207,684
Trainable params: 207,684
Non-trainable params: 0

Table 5. Grid search parameters for the second CNN experiment, abbreviated as CNNV2. The best
parameters are bolded.

Parameter Values

Amount of convolution layers 0, 3, 6
Convolution kernel size 9, 12, 15
MaxPooling pool size 1, 2, 4

Table 6. Convolutional neural network used in the CNNV2 experiment. The best parameters from
Table 5 were used.

Layer Kernel/Pool Size Activation Output Shape Parameters

Conv1D (15) ReLU (106, 64) 1020
MaxPooling1D (2) (53, 64) 0
Conv1D (15) ReLU (39, 64) 61,504
Conv1D (15) ReLU (25, 64) 61,504
MaxPooling1D (2) (12, 64) 0
Flatten (768) 0
Dense ReLU (128) 98,432
Dense ReLU (64) 8256
Dense ReLU (32) 2080
Dropout (0.5) (32) 0
Dense (4) 132

Total params: 232,932
Trainable params: 232,932
Non-trainable params: 0

2.2.3. Multi-Layer Perceptron

With the MLP, we varied the amount and shape of the dense layers of the network (Table 7).
The resulting network (Table 8) had a flattening input layer and three dense layers with one hundred
nodes each. After the dense layers, there is a dropout of 50% and the output layer. All layers except
the output layer are ReLU activated and the network optimizer is the Adam optimizer with the same
parameters as CNN. The loss score was MSE.
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Table 7. Grid search parameters for MLP. The best parameters are bolded.

Parameter Values

Dense layer shapes (128, 64, 32), (64,32), (100,100), (200,200), (100,100,100)

Table 8. The used multi-layer perceptron. The best parameters from Table 7 were used.

Layer Activation Output Shape Parameters

Flatten (120) 0
Dense ReLU (100) 12,100
Dense ReLU (100) 10,100
Dense ReLU (100) 10,100
Dropout (0.5) (100) 0
Dense (4) 404

Total params: 32,704
Trainable params: 32,704
Non-trainable params: 0

2.2.4. Lasso

Least absolute shrinkage and selection operator (More commonly known as its acronyme: Lasso)
was chosen because it works well with data where only some of the features are important [24], as is
the case with our data. Mathematically, Lasso is a linear model with an added regularization term,
and its objective function to minimize is

min
1

2n
||Xω − y||22 + α ||ω| |1,

where α is the penalty term, ω the fitted model, n the number of samples in the training data, X the
input training data, and y the target variables. In practice, we used the MultiClassLasso algorithm
from scikit-learn [19], which applies Lasso regression for all target variables at the same time.

In Lasso grid search training, we varied the α, the stopping tolerance of the algorithm, and the
selection method (Table 9). In the resulting estimator α = 1, tolerance = 10−4, and the selection
method was cyclic.

Table 9. Grid search parameters for Lasso. The best parameters are bolded.

Parameter Values

α 10−4, 10−3 . . . 100 . . . 103

Tolerance 10−7, 10−6 . . . 10−4 . . . 10−1

Selection cyclic, random

2.2.5. Linear Support Vector Regressor

In binary classification tasks, linear support vector regressor (LSVR) means simply fitting a line
or hyperplane in the space where the sum of minimum distances from each class to line is maximal.
In regression, the goal is to fit a line that has the most points within a predetermined distance from the
line [23].

The implementation we used was LinearSVR from scikit-learn package. It was transformed to
multi-class regression by a MultiClassRegressor algorithm in scikit-learn.

With grid search (Table 10) for LSVR, we varied the loss method, the regularization term C,
and whether or not the algorithm is solving primal or dual optimization problem.
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Table 10. Grid search parameters for linear support vector machine regressor. The best parameters
are bolded.

Parameter Values

Loss epsilon insensitive, squared epsilon insensitive
C 1, 10, 100, 1000
Dual True, False

2.2.6. Stochastic Gradient Descent Regressor

Stochastic gradient descent (SGD) is a gradient minimizing algorithm. It takes a random initial
value of the input training data and tries to adjust the initial value to a point where the gradient of the
objective function is zero. The adjustment is done one random observation at a time. The norm used
in optimization is L2-norm, as opposed to L1-norm used in Lasso regressor [22].

The implementation we used is SGDRegressor from scikit-learn. It was transformed to multi-class
regression by MultiOutputRegressor method in scikit-learn.

In grid search, we varied the regularization term α, loss function, penalty function, and the
learning rate method (Table 11). In the results and discussion, this method is referred to as a stochastic
gradient descent regressor (SGDR).

Table 11. Grid search parameters for linear stochastic gradient descent regressor. The best parameters
are bolded.

Parameter Values

Alpha 10−7, 10−6 . . . 10−4 . . . 10−1

Loss Squared loss, Huber, Epsilon insensitive
Penalty l2, l1, elastic net
Learning rate Constant, Optimal, Inverse scaling

2.3. Accuracy Evaluation Metrics

The following metrics were calculated from the regression results with the simulated testing data:

• Correlation coefficient (r),
• Root mean squared error (RMSE), also known as standard estimate of error (SEE),
• Mean squared error (MSE),
• Mean absolute error (MAE), and
• Saliency maps [36] were calculated only for the CNN and MLP regressors.

The correlation coefficient r was calculated to see the connection between the prediction and true
target values. It is covariance (cov) of the predictions (Ypred.) and true targets (Ytrue) normalized by
standard deviations (σ) for both groups:

r =
cov

(
Ypred., Ytrue)

σYpred. σYtrue
. (8)

RMSE, MSE, and MAE were calculated to capture the average errors in the predictions. They are
calculated as follows:

MSE =
1
n

n

∑
k=1

(Ypred.
k − Ytrue

k )2, (9)

RMSE =
√

MSE, (10)

MAE =
1
n

n

∑
k=1

∣∣∣Ypred.
k − Ytrue

k

∣∣∣ . (11)
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The saliency map shows how much each place in the map contribute to the prediction. In other
words, the map indicates to which locations in the input space the output is most sensitive. The saliency
map is described in detail in [36]. The saliency maps are useful in determining the most useful areas of
the training data. For example, if there is need to reduce the size of the training data, one can drop
the features that show lower values in the saliency map. The saliency maps were calculated using a
keras-vis package version 0.4.1 [37].

3. Results

The six inversions had variable success with the simulated data (Figures 3 and 4 and Table 12).
The CNN and CNNV2 experiments (Table 12) performed best with correlation coefficients being
the highest between 0.93 and 0.96 (mean 0.95) and their RMSE, MSE, and MAE values being
lowest 0.09–0.12 (mean 0.11) (RMSE), 0.01–0.02 (mean 0.01) (MSE), and 0.08–0.09 (mean 0.09) (MAE).
The performance of the MLP was also good. It outscored CNN in some regression goals by some metrics
and was a little poorer in others. Correlation coefficients were between 0.79 and 0.95 (mean 0.91),
RMSEs 0.09–0.18 (mean 0.12), MSEs 0.01–0.03 (mean 0.02), and MAEs 0.07–0.14 (mean 0.09). Based
on visual interpretation of Figure 4, the second experiment of CNN regressor is the best of the neural
network regressors, as the correlation seems to be strongest there.

Table 12. Performance metrics for the trained inversion models on the test set.

Coefficient of Correlation

Melanosome Hemoglobin Volume Epidermis Dermis
Volume Fraction Fraction Thickness Thickness

CNN 0.96 0.93 0.96 0.96
CNNV2 0.96 0.93 0.96 0.96

MLP 0.95 0.79 0.94 0.95
LASSO 0.78 0.56 0.62 0.88
LSVR 0.64 0.59 0.63 0.68
SGDR 0.78 0.55 0.62 0.88

Root Mean Squared Error

Melanosome Hemoglobin Volume Epidermis Dermis
Volume Fraction Fraction Thickness Thickness

CNN 0.10 0.12 0.09 0.10
CNNV2 0.10 0.12 0.11 0.10

MLP 0.09 0.18 0.11 0.09
LASSO 0.18 0.24 0.23 0.14
LSVR 0.23 0.24 0.23 0.22
SGDR 0.18 0.24 0.23 0.14

Mean Squared Error

Melanosome Hemoglobin Volume Epidermis Dermis
Volume Fraction Fraction Thickness Thickness

CNN 0.01 0.02 0.01 0.01
CNNV2 0.01 0.02 0.01 0.01

MLP 0.01 0.03 0.01 0.01
LASSO 0.03 0.06 0.05 0.02
LSVR 0.05 0.06 0.05 0.05
SGDR 0.03 0.06 0.05 0.02

Mean Absolute Error

Melanosome Hemoglobin Volume Epidermis Dermis
Volume Fraction Fraction Thickness Thickness

CNN 0.08 0.09 0.08 0.08
CNNV2 0.08 0.10 0.09 0.08

MLP 0.07 0.14 0.08 0.07
LASSO 0.15 0.20 0.19 0.11
LSVR 0.18 0.19 0.18 0.16
SGDR 0.15 0.20 0.18 0.11

In the saliency maps of the CNN and MLP regressors (Figure 3), we see that the CNN experiments
had similar areas of interest. The interval between 550 nm and 700 nm seems to be most important
in predicting the target variables. In the MLP experiment, the same interval seems to be useful, but
additionally it highlights some areas in the ends of the spectrum.

Lasso and stochastic gradient descent regressors showed similar results. As Figure 4 shows,
the correlation is virtually identical, and the points scatter to nearly the same place. In fact, only looking
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the predictions with respect to the model. Our ultimate goal is to obtain a comprehensive model for
predicting skin optical properties and its inverse function for predicting skin biophysical parameters.

5. Conclusions

We provided experiments that show that a convolutional neural network is a good option in
skin optical model inversion and skin physical parameter retrieval. The results indicate that the most
meaningful parameters of the used stochastic model were predicted accurately by the best inverted
model. We also tested the inverted models while measuring the hyperspectral data, and it showed
promising results to be tested in further research. It seems that the inverted model may work well with
the measured data, at least when one is looking at proportional differences of skin areas instead of
absolute values. Our research also suggests that the capacity of the traditional non-neural machine
learning models is insufficient for accurate modeling of the hyperspectral data.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional neural network
k-NN k-nearest neighbor
KM Kubelka–Munk model
Lasso Least absolute shrinkage and selection operator
LSVR Linear support vector regressor
MAE Mean average error
ML Machine learning
MLP Multi-layer perceptron
PCA Principal component analysis
r Coefficient of correlation
r2 Coefficient of determination
RF Random forest
(R)MSE (Root) mean squared error
SEE Standard error of estimation
SGD(R) Stochastic gradient descent (regressor)
SLOP Stochastic model for leaf optical properties
SM Stochastic model
SVM Support vector machine
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Generating Hyperspectral Skin Cancer Imagery using
Generative Adversarial Neural Network

Leevi Annala1,∗, Noora Neittaanmäki2, John Paoli3, Oscar Zaar3 and Ilkka Pölönen1

Abstract— In this study we develop a proof of concept of
using generative adversarial neural networks in hyperspectral
skin cancer imagery production. Generative adversarial
neural network is a neural network, where two neural
network compete. The generator tries to produce data that
is similar to the measured data, and the discriminator tries
to classify correctly classify the data as fake or real. This
is a reinforcement learning model, where both models get
reinforcement based on their performance. In the training
of the discriminator we use data measured from skin cancer
patients. The aim for the study is to develop a generator for
augmenting hyperspectral skin cancer imagery.

I. INTRODUCTION

In the northern countries, melanoma incidence is increas-

ing and the increase is predicted to continue [1]. Furthermore

the clinical accuracy of the skin lesion classification is poor,

leading to costly operations that could be avoided [2]. There

is a need for reliable non-invasive method for clinical use

for skin lesion diagnostics.

Hyperspectral imaging is one such potential tool, and it

has been previously used successfully in classification of

the lesions [3], [4]. While in both articles, the results were

promising both of the datasets used were relatively small.

Furthermore, if the models would be used in marginally

different situation, either a lengthy data gathering process

would have to take place or the existing data could be reused

as is or through a data transformation/augmentation process.

This transformation or augmentation could be achieved by

modeling mathematically the interaction of the light and the

matter and the structure of the matter, but the uncertainties

are high and the computations complex, downgrading the

usability.

Another way to transform or augment data is generative

adversarial neural network (GAN) [5]. The basic idea of the

GAN is that the generator network and the discriminator

network compete in a game. Discriminator networks task is

to determine whether or not the data given to it represents

the training data or not. The task of the generator network

is to produce data similar to the training data to trick the
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discriminator. The only input the generator receives during

this time is yes/no confirmations from the discriminator,

while the discriminator is trained with the full training data

set.

GANs have been previously used in the field of medical

imaging [6]. The use cases include denoising [7], image

reconstruction [8], artifact removal [9], superresolution [10],

image synthesis [11], classification [12] and segmentation

[13]. Despite producing promising results, the field of using

GANs in the medical field is still young, and there is lots of

room for experimenting [6].

In the more specific field of hyperspectral (medical) imag-

ing, GANs have been used in two different ways [14],

[15]. In [14], hyperspectral images of lung samples were

automatically stained using trained conditional GAN (cGAN)

[16]. In [15], Wasserstein distance was used as basis for

modifying GAN and the resulting networks were verified

using data sets from different fields of study. There are also

various different approaches to using GANs in hyperspectral

classification problems (for example [17], [18]).

The objective of this study is to provide the reader with

a minimal working example of a proof-of-concept level

data augmentation tool for hyperspectral skin cancer image

production.

II. MATERIALS AND METHODS

A. Generative Adversarial Neural Network Architecture

The used generative adversarial neural network (GAN)

was one implementation of deep convolutional GAN (DC-

GAN) [19]. The used generator architecture (Table I) con-

sisted of input layer and three transposed convolution blocks.

The first two convolutional blocks had two three dimensional

convolutional layers, first of which took into account the

spectral domain, and the second the spatial. The last block

had one convolutional layer, that worked in all dimensions.

Next in the blocks were batch normalisation [20]. The last

two blocks utilized striding, which in the case of transposed

convolution increases the output size which in the end will

be 40× 40× 40. The activation function used in the blocks

was leakyReLU [21] and the loss function is cross entropy

between a data cube full of ones and the generated data

cube. Both the generator and discriminator used the Adam-

optimizer [22], with a learning rate of 10−4, β1 = 0.9,

β2 = 0.999, and ε = 10−7.

The discriminator architecture (Table II) consisted of

two blocks that contained a 3-dimensional convolution and

dropout of 0.3 [23] and an output block that contained

flattening and output layers. The activation function used
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