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Abstract

Korkiamäki, Tatu
Thermal conductance of pillar-based phononic crystals at sub-Kelvin temperatures
Masters thesis
Department of Physics, University of Jyväskylä, 2020, 99 pages.

A phononic crystal (PnC) is an artificial periodic structure in one, two or three
dimensions that affects the propagation of phonons, the quanta of elastic waves. As
heat is mostly carried by phonons in insulators and semiconductors, PnC can be
utilised in controlling thermal transport in such materials. The mechanisms how
PnCs can work can be generally divided into two categories: one where incoherent,
diffusive particle-like scattering dominates, and another where coherent wave-like
scattering is operational. Compared to hole-based PnCs, much less studied 2D
crystals in thermal conductance manipulation are the pillar-based PnCs, where the
lattice is formed by a periodic array of pillars on a thin membrane. For such PnCs,
the phonon spectrum can also include localised resonances which cannot carry heat.

In this thesis we have fabricated and measured the thermal conductance of two
pillar-based PnC with a different lattice constant, where aluminium pillars with
a height of 300 nm, a 0.65 filling factor and lattice constants of 5 µm and 1 µm
were deposited on a 300 nm thick silicon nitride film. The measurements were
conducted at sub-Kelvin temperatures with a superconducting junction-based heater-
thermometer setup fabricated onto the sample. Low temperatures were achieved
via a 3He/4He dilution refrigerator. The results showed up to an 85 % reduction
in thermal conductance compared to an unaltered film. Initially, it appears that
the mechanism responsible for the reduction was incoherent scattering. Possible
causes for the breakdown of the coherence include the pillar surface roughness, the
pillar-film-interface, or grain boundaries within the pillars.

Keywords: phononic crystal, pillar-based, thermal conductance, coherence
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Tiivistelmä

Korkiamäki, Tatu
Pilaripohjaisten fononikiteiden lämmönjohtavuus alle Kelvinin lämpötilassa
Pro gradu
Fysiikan laitos, Jyväskylän yliopisto, 2020, 99 sivua

Fononikide on keinotekoinen periodinen rakenne yhdessä, kahdessa tai kolmessa
ulottuvuudessa, joka vaikuttaa fononien eli elastisten aaltojen kvanttien etenemiseen.
Koska lämmön johtuminen eristeissä ja puolijohteissa tapahtuu pääasiassa fononi-
en välityksellä, voidaan fononikiteillä vaikuttaa lämmön kulkeutumiseen kyseisissä
materiaaleissa. Fononikiteiden toimintamekanismit voidaan karkeasti jakaa kahteen
eri kategoriaan: epäkoherenttiin, jossa hiukkasmainen diffusiivinen sironta hallitsee,
ja koherenttiin, jossa fononit etenevät aaltomaisesti. Verrattuna reikärakenteisiin
perustuviin kiteisiin, lämmönjohtumiseen vaikuttavien fononikiteiden joukossa huo-
mattavasti vähemmän tutkittuja 2D-kiteitä ovat niin kutsutut pilaripohjaiset fono-
nikiteet, joissa hila muodostuu periodisesti järjestyneistä pilareista ohuella kalvolla.
Näiden fononikiteiden spektri voi sisältää niin kutsuttuja lokaaleja resonansseja,
jotka estävät lämmön kulkeutumisen.

Tässä pro gradu -tutkielmassa valmistettiin kaksi pilaripohjaista fononikidettä eri
hilavakiolla, joiden lämmönjohtavuudet mitattiin. Pilareiden materiaali oli alumiini,
ja niiden korkeus oli 300 nm, täyttösuhde oli 0.65, hilavakiot olivat 5 µm ja 1 µm, ja
ne olivat 300 nm paksun piinitridikalvon pinnalla. Mittaukset suoritettiin suprajoh-
taviin liitoksiin perustuvalla lämmitin-lämpömittari-laitteella, joka valmistettiin
näytteelle. Mittaukset tehtiin alle Kelvinin lämpötilassa, joka saavutettiin 3He/4He-
laimennusjäähdyttimellä. Tuloksina saatiin 85 %:n lämmönjohtavuuden aleneminen
verrattuna puhtaaseen kalvoon, joka kuitenkin vaikuttaisi olevan peräisin epäkohe-
rentista sironnasta. Mahdollisia syitä koherenssin katoamiselle ovat pilareiden pinnan
epätasaisuus, pilareiden ja kalvon välinen rajapinta sekä pilareiden sisäiset raerajat.

Avainsanat: fononikide, pilaripohjainen, lämmönjohtavuus, koherenssi
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1 Introduction

A phonon can be understood as the quantum of an elastic wave. The name phonon
implies an analogy with photon, the quantum of electromagnetic waves. The field of
phononics covers the alteration of elastic wave propagation from sound and vibrations
in earths crust, or vibrations in the order of Hz, to thermal vibrations which can
extend to the order of THz [1]. Since the existence of phononic band gaps in a
periodic elastic medium was predicted in 1993 [2], there has been an increasing
interest in phononics and its potential applications.

Materials with an artificially created periodicity in one, two or three dimensions
which alter the phonon spectrum by creating so-called band gaps are called phononic
crystals (PnC). A perhaps more well known and well studied analogue to phononic
crystals are photonic crystals, which are artificial periodic structures created to
control the propagation of photons [3]. A band gap created by the periodicity
prevents certain frequencies of elastic waves from propagating within the material [4].
The frequencies which are affected by the phononic crystal are inversely proportional
to the periodicity of the PnC, so with developing fabrication methods manipulation
of phonons of increasingly high frequencies has been realised.

The main goals in phononics dealing with the thermal frequency range include
increasing the effectiveness of semiconducting devices by reducing thermal conduc-
tivity, creating more well isolated systems for more sensitive detectors by increasing
thermal insulation and reducing thermal noise [5, 6]. PnCs can perhaps be utilised
in quantum computing either in isolation or computation [7–9]. It is also possible to
guide, filter and multiplex acoustic waves [10] and even to achieve a wave-like control
of heat via various waveguide systems [5]. Phononic crystals can also function as a
radiation detector by themselves [11].

Controlling thermal transport with PnCs can be divided into two categories: coherent
and incoherent effects. Incoherent effects generally dominate at high temperatures
where diffusive scattering is the main contributor to thermal resistance, whereas
coherent effects begin to become significant at low temperatures, and are dominant
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in the sub-Kelvin region. In the coherent regime phonons act like waves, and can be
controlled as such by Bragg-like interference [1, 12].

In 1D coherent effects and the conditions to achieve them are well documented
[13–17], but until fairly recently results of coherent effects in higher dimensions have
remained absent or inconclusive [18–20]. In recent years, significant numerical and
even experimental results have been obtained of coherent thermal transport control
at low temperatures with 2D PnCs [1, 10, 18, 19, 21].

These results have mainly focused on hole-based PnC structures on thin films.
However, there exists another type of 2D-PnCs called pillar-based phononic crystal,
where the geometry can be described as pillars on a periodic array on top of a film
or a plate, and the band gaps are introduced to the spectrum by so-called local
resonances [4, 10]. The first results for a locally resonant PnC were presented in
2000 [22]. Pillar-based PnCs have been rather extensively studied in the sonic range
(frequencies near audible sound frequencies) [4, 10], but little research has been
conducted on pillar-based PnCs in the thermal frequencies, and even less attention
has been given to the low temperature regime [23].

An extensive study has been conducted in our research group on phononics at
low temperatures, including studies on thermal conductance reduction with hole-
based PnCs [18, 21, 24]. This existing knowledge is extended in this thesis, where
pillar-based PnCs with aluminium pillars on a 300 nm silicon nitride (SiN) film
are fabricated, and the thermal conductance is measured with well-established
methods. The measured thermal conductance of the PnC is compared to the thermal
conductance of an unmodified SiN film and to numerical simulations to discover
whether numerical results in the ballistic regime are in agreement with experiments
for these structures.

These pillar-based PnCs can be utilised in much the same way as hole-based PnC
in detector applications. An application where pillar-based PnCs could actually
be superior to their hole-based counterpart is in semiconducting thermoelectric
materials, where PnCs can notably increase their efficiency [5]. This efficiency is
described by the thermoelectric figure of merit ZT ∝ σ/κ, where σ is the electrical
and κ is the thermal conductance. The improvement stems from the fact that with
hole-based PnCs κ is significantly reduced, while σ is only slightly lowered in the best
case scenario. In pillar-based structures however the ZT can be even better, as the
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film itself is not impaired in any way, leaving the electrical conductivity completely
unaltered [25, 26]. The creation of holes also inevitably creates some roughness in
the hole surfaces which introduces nonidealities, whereas in the case of pillar-based
PnCs the film again remains unaltered.
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2 Theoretical background

2.1 Thermal conduction at low temperatures

2.1.1 Thermal transport in insulators

Phonons are collective excitations of elastic vibrations in a lattice. They are re-
sponsible for sound transport in solids, and heat conduction in insulators and
semiconductors. This is in contrast to metals, where electrons are responsible for a
significant portion of heat conduction.

Phonons behave like bosons, and thus obey Bose-Einstein statistics with an occupation
number of the form

nB = 1
eβ~ω − 1 , (1)

where ~ is the reduced Planck constant, ω is the phonon frequency and β = (kBT )−1,
where kB is the Boltzmann constant and T is temperature [27].

It is convenient to consider the propagation of phonons in the k-space, a three-
dimensional Cartesian space with axes kx, ky and kz. Each allowed wave vector k
occupies a k-space volume (2π)3/V , giving a k-space density of states [28]

V

(2π)3 . (2)

For periodic systems an essential tool is the reciprocal lattice. It is defined by the
vectors K that give out plane wave solutions with the periodicity of a given Bravais
lattice of points R [28]

eiK · (r+R) = eiK · r, (3)

or
eiK · R = 1. (4)

The first Brillouin zone is a primitive cell in the reciprocal lattice defined as the unit
cell created by enclosing a lattice point with planes normal to a line between two
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lattice points, the planes intersecting the lines at the middle point of each line. The
reciprocal lattice primitive vectors can be defined by the Bravais lattice primitive
vectors a1, a2, a3 as

b1 = 2π a2 × a3

a1 · a1(a2 × a3)
, b2 = 2π a3 × a1

a1 · a1(a2 × a3)
, b3 = 2π a1 × a2

a1 · a1(a2 × a3)
. (5)

With the primitive vectors, the reciprocal lattice vector K can be written as

K = v1b1 + v2b2 + v3b3, (6)

where vn are integers. We can also write any arbitrary k in the reciprocal space as a
linear combination of the reciprocal lattice primitive vectors:

k = k1b1 + k2b2 + k3b3. (7)

The atomic displacements can be expressed as a travelling wave with the displacements
of individual atoms, at vector Ri as functions k [29]:

ui(k,s,R,t) =
∑
k,s

u(k,s)ei(k · Ri−ωt), (8)

where s is the mode index. Any elastic wave in a periodic lattice can be described
with wave vectors in the first Brillouin zone. [28, 29]

The distinction between high and low temperatures is typically done by considering
the Debye model of lattice waves. The Debye model assumes only three isotropic
acoustic modes of the vibrational spectrum with linear dispersion relations

ω = ck, (9)

where c are the average speeds of each acoustic mode, or the speeds of sound, defined
as [30]

3
c3 =

(
1
c3

l

+ 1
c3

t1
+ 1
c3

t2

)
(10)

for the three phonon modes, one longitudinal cl and two transverse ct1 and ct2.

Here the Brillouin zone is replaced by a sphere of radius kD, which contains N
allowed wave vectors, where N is the number of atoms. kD is thus defined by the
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k-space density of states (equation (2))

N

V
= k3

D

6π2 . (11)

The lattice specific heat of the Debye model is

C = ∂Q

∂T
= 3~c

2π2
∂

∂T

∫ kD

0

dkk3

(eβ~ω − 1)2 . (12)

By defining the Debye frequency

ωD = ckD (13)

and the Debye temperature
ΘD = kBωD (14)

in terms of kD, and making the substitution β~ω = x, one can write equation (12)
in the following form:

C = 9nkB

(
T

ΘD

)3 ∫ ΘD/T

0

x4exdx

(ex − 1)2 . (15)

The physical significance of ΘD is that is gives a temperature limit above which all
modes are exited, and below which modes begin to "freeze out". This is apparent as
we look at equation (15): When T � ΘD, the integral part can be solved to obtain
a simple T 3 dependence. This makes ΘD an useful tool in defining the difference
between high and low temperatures for a solid. [28]

Equation (15) is valid for a 3D phonon gas. The equation for 2D heat capacity can
be derived from equation (12) in the low temperature limit by making the same
change of variables as above, resulting in [31]

C2D = 3ζ(3)
π

k3
B

~2

(
1
c2

l

+ 2
c2

t

)
T 2, (16)

where ζ is the Riemann zeta function.

Another useful tool obtained from the Debye model is the dominant thermal phonon
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Figure 1. Phonon spectral energy density for 3D and 2D phonon gases.

wavelength. The spectral phonon energy density from the Debye model is [30]

uE(ω) = ~ω
eβ~ω − 1D(ω), (17)

where D(ω) is the Debye density of states, given by [30]

D3D(ω) = 3ω2

2π2c3 (18)

for a 3D phonon gas, and by [32]

D2D(ω) = ω

2πc2 (19)

for a 2D gas. A is the area. Thus, the spectral phonon energy densities in 3D and
2D are

uE 3D(ω) = 3~
2π2c3

ω3

eβ~ω − 1 , (20)

and
uE 2D(ω) = ~

2πc2
ω2

eβ~ω − 1 , (21)
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respectively. These are plotted in Figure 1. Knowing the peak value constant B of
the spectrum, 2.821 for a 3D and 1.594 for a 2D gas [18, 30], one can easily calculate
the dominant phonon frequency

ωdom = BkBT

~
, (22)

and the dominant wavelength
λdom = 2πc

ωdom

(23)

for a given temperature.

At high temperatures, when T > ΘD, most of the thermal resistance is attributed
to inelastic phonon-phonon-phonon scattering. When considering phonons, it is
important to note that a plane wave does not transport a net momentum, and
~k is referred to as the crystal momentum. A consequence of this is that crystal
momentum need not be conserved in phonon-phonon collisions, as opposed to say
collisions in an ideal gas.

A simple three phonon interaction, where two phonons coalesce into one, can be
described by the equation

k1 + k2 = k3 + G, (24)

where k1 and k2 are the incoming phonons, k3 is the resulting phonon and G is
a reciprocal lattice vector. Processes when G = 0 are called normal processes,
and these collisions conserve crystal momentum and do not contribute to thermal
resistance. When G 6= 0 the process is called an Umklapp process. In sufficiently
high temperatures the sum vector k3 may be large enough to reach to an adjacent
Brillouin zone. As only the wave vectors in the first Brillouin zone are significant,
the k-vector is "returned" to the first zone by G. This results in a loss of (crystal)
momentum and creates a heat resistance. [27]

A general kinetic formula for the thermal conductivity in three dimensions is

κ = 1
3CvΛ, (25)

where v is the appropriately averaged phonon velocity and Λ is the mean free path
of phonons. At high temperatures, or when Umklapp scattering is the dominant
mechanism of heat resistance, the mean free path, and thus the thermal conductivity,
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are inversely proportional to temperature [27]:

Λ ∝ 1
T
, κ ∝ 1

T
, when T > ΘD. (26)

When T < ΘD Umklapp processes quickly freeze out, as for long phonon wavelengths
they are not possible [27]. In the absence of inelastic scattering the main source
of heat resistance is boundary scattering, or scattering from lattice imperfections
and specimen surfaces. This can allow Λ to drastically increase. In a length scale
< Λ, phonon propagation is referred to as ballistic. At very low temperatures,
where phonon wavelengths can be in the µm scale [24], this ballistic regime can be
macroscopic. Ballistic transport has been reported to be dominant in silicon nitride
at 0.1 mK in length scales of 0.1 − 1 mm [18, 33].

Another essential concept to define is coherence. A collection of waves is coherent
if they have a constant phase difference and an identical frequency. Coherence
also requires specular scattering from interfaces preserving the phase, as diffusive
scattering destroys the coherence [12]. In a simplified manner it can be said that
incoherent phonons act like particles, whereas coherent phonons propagate as waves.
Thermal phonons as a whole are incoherent, as they are created by a random motion
in a lattice [12]. Thus, in the context of thermal transport, when talking about
coherence it is considered spectrally, i.e. separately for each frequency. It is clear, that
for phonons to behave coherently they are also required to propagate ballistically.

The proportion of specular surface scattering is approximated by the following model
by Ziman [27], which has been corrected according to a revision by Maznev [34]:

P (λ) = exp
(

−16π2η2

λ2

)
, (27)

where η is the root mean square roughness of the surface and λ is the phonon
wavelength. This can be interpreted so that for a given roughness coherent phonon
propagation becomes significant only below a certain temperature, where the domi-
nant phonon wavelength is longer than η.

Using (22) and (23), at 0.1 K for SiN the λdom ≈ 1700 nm, if 5800 m/s [18] is used
for the speed of sound. The RMS surface roughness of a SiN film is < 1 nm in the
commercial films used by our group [35]. From equation (27), the proportion of



21

specular scattering with these parameters is P (λ) ≈ 0.99994, decreasing to 0.994 at
1 K. As 1 K is essentially the upper limit for the range of the measurements and the
films studied are 300 × 300 µm, within the range of ballistic phonon propagation in
SiN, it can be assumed that coherent effects are dominant in the case of a pristine
membrane.

2.1.2 Elastic waves in a suspended membrane

As has now been established, phonons propagate ballistically at a given temperature
and length scale in a material with smooth enough surfaces. In these circumstances,
thermal transport in a membrane can be understood simply as propagation of elastic
waves in a plate. The results for elastic wave propagating in a plate, an object that
a suspended thin film can be considered as, were first presented by Rayleigh and
Lamb in 1889 [36].

We consider a semi-infinite plate with a thickness of 2d in the y-direction. An
SH-wave is a shear wave which is horizontally polarised, meaning displacements only
in a single direction are allowed. For a plate with traction free boundaries in the
y = ±d direction, wave displacements for an SH-wave travelling in the x-direction
are in the z-direction, and are of the form

uz = [A1 sin(βy) + A2 cos(βy)]eiϕ, (28)

where A1 and A2 are amplitudes for the waves, and ϕ = ξx− ωt is the phase. β is
defined as

β = ω2

c2
t

− ξ2, (29)

where ξ is a wavenumber.

From equation (28) one can solve the frequency equation

cos(βd) sin(βd) = 0, (30)

which is satisfied by

βd = nπ

2 , where n = 0, 1, 2, ... . (31)
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The wave modes with displacements in the remaining two directions are called the
symmetric and antisymmetric Lamb modes. For a plate with similar boundary
conditions, symmetric wave displacements travelling in the x-direction are of the
form [36]

ux = i[Bξ cos(αy) + Cβ cos(βy)]eiϕ, (32)

uy = −[Bα sin(αy) − Cξ sin(βy)]eiϕ. (33)

Here α is a similar coefficient to β, but for longitudinal waves:

α2 = ω2

c2
l

− ξ2. (34)

The corresponding antisymmetric displacements are

ux = i[Aξ sin(αy) −Dβ sin(βy)]eiϕ, (35)

uy = [Aα cos(αy) +Dξ cos(βy)]eiϕ, (36)

and A, B, C, D are amplitudes for the waves. From equations (32) and (33), and
from the boundary conditions one can derive the symmetric Rayleigh-Lamb frequency
equation

tan(βd)
tan(αd) = − 4αβξ2

(ξ2 − β2)2 . (37)

Similarly, the antisymmetric frequency equation can be solved from equations (35)
and (36), resulting in

tan(βd)
tan(αd) = −(ξ2 − β2)2

4αβξ2 . (38)

Equations (30), (37), and (38) define the dispersion of the eigenmodes of a suspended
plate, an infinite set of modes depending on the thickness of the plates. The lowest
Lamb modes along with the SH-modes for a 300 nm SiN film are shown in Figure
2. Only these type of waves can propagate with straight wave fronts within a plate
with the boundary conditions set above. [36]
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Figure 2. The lowest wave modes of a suspended 300 nm SiN membrane. The
image is from Ref. [37], originally calculated by Tuomas Puurtinen.

2.1.3 Emitted phonon power in the ballistic regime

As it turns out, it is possible to model ballistic phonon propagation in a thin
film directly with Rayleigh-Lamb theory. Lamb mode-based simulations have been
successful in calculations of ballistic phonon transport in SiN membranes [37–39], as
well as predicting the emitted phonon power in 2D hole-based PnCs [18, 21].

In an isotropic three-dimensional material the emitted phonon power has the form
of the Stefan-Boltzmann law for a phonon gas

P (T ) = AσT 4, (39)

where
σ = π5k4

B

15h3Σ(ei/c2
i )
, (40)

where h is the Planck constant, and Σ(ei/c
2
i ) is a summation of radiator emissivities

ei and different phonon mode speeds of sound ci [39].

When approaching a two-dimensional case the calculation becomes much less trivial,
and Lamb modes are required for calculating the emitted phonon power. in the
ballistic regime, for a heater on a 2D membrane the emitted phonon power is given
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by [24]

P (T ) = 1
(2π)2

∑
j

∮
γ
dγ
∫

K
dk~kωj(k)nB

∂ωj

∂k
· n̂γΘ

(
∂ωj

∂k
· n̂γ

)
. (41)

Here γ is the heater surface perpendicular to the membrane, ωj(k) is the phonon
dispersion relation, nB is the Bose-Einstein distribution, the term ∂ωj/∂k is the
phonon group velocity, and the step function Θ ensures that only the outward flowing
waves with wave vectors k · n̂γ are taken into account. Because only the modes
parallel to the surface are considered, the model does not perfectly describe a scenario
where the phonons are emitted from a heater on top of the sample surface. A more
accurate model

P (T ) = 1
(2π)2

∑
j

∮
γ
dγ
∫

K
dk~kωj(k)nB

∣∣∣∣∣∂ωj

∂k

∣∣∣∣∣ , (42)

developed for [37], was used in the simulations included in this work. The im-
proved model takes into account the wave vectors emitted radially from the heater.
Essentially, the difference between the models is a π/2 multiplier.

If the membrane is thin and the temperature is low, determined by the condition
Td � ~ct/2kB, the phonon power can be analytically solved for the fully 2D limit as
[38, 39]

P2D(T ) = l~
2π2
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(43)

where Γ is the gamma function, ζ is the Riemann zeta function, and m∗ is the
effective mass of the antisymmetrical Lamb mode

m∗ = ~
[
2ctd

√
(c2

l − c2
t )/3c2

l

]
, (44)

where cs is the speed of sound of the symmetric Lamb mode defined as [38]

cs = 2ct

√
(c2

l − c2
t )/c2

l . (45)

With a low enough film thickness the first term in equation (43) becomes negligible,
and we are left with a P ∝ T 5/2 dependence.
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Figure 3. a) Examples of phononic crystals in one, two and three dimensions.
b) A band gap in the dispersion relation of a phononic crystal. Γ, X and M
are points of symmetry in the first Brillouin zone. The figure is reprinted with
permission from Ref. [5]. c©2013 Springer Nature.

From the emitted phonon power one can calculate the thermal conductance

G = dP

dT
≈ P

∆T . (46)

Note, that thermal conductance G, which has the unit of W/K, is not to be confused
with thermal conductivity κ with the dimensions of W/Km. This is analogous
to electrical conductance and conductivity. Conductivity is a material constant
independent of the geometry, whereas conductance depends on the dimensions of
the measured specimen. Within the ballistic regime thermal conductivity is actually
not well defined, as the conductance is in that case not dependent on distance.

2.2 Phononic crystals

2.2.1 Overview

A phononic crystal (PnC) is an artificial periodic material which modifies the
propagation of phonons, either impeding or enhancing it via some mechanism. The
periodicity of the PnC is generally in the same order of magnitude as the wavelength
of the phonons which are affected by the crystal, which can be calculated from (23).
For example at sub-Kelvin temperatures the dominant thermal phonon frequency is
in the order of GHz, which requires a PnC period of ∼µm [18].

PNCs can exist in one, two or three dimensions. An example of each is given in
Figure 3.a. In principle the materials of a PnC can be anything physically possible.
The material of the lattice points can be solid, liquid, gas or a vacuum, and the
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surrounding material can be anything capable of supporting the lattice points. For
PnCs aimed for thermal transport manipulation, a majority of the devices are simply
2D periodic hole structures in a thin film, the holes filled with air or a vacuum [1,
10, 12].

2.2.2 Coherence and incoherence

The method with which a PnC alters the phononic properties can generally be
divided into two categories: coherent and incoherent. For incoherent mechanisms,
the phonons scatter diffusely from interfaces and surfaces. This backscattering
reduces the number of transported phonons, which effectively reduces the mean free
path and results in the reduction and thermal conductance [19, 40, 41]. It is rather
widely accepted in the field that for 2D PnCs which affect the heat transport at high
temperatures (above T ≈ 10 K), the thermal conductivity reduction is dominated by
incoherent effects [18–20, 40, 41].

When considering incoherent phononic crystals, the essential question is whether a
phonon can pass through the lattice. Contrary to coherent scattering where wave
phenomena such as interference are essential, with incoherent scattering a phonon
can be considered to be purely particle-like. For a fully incoherent scenario the
transmitted phonon power per unit are can be calculated from [19, 21, 42]

P

A
= 1

4〈τ〉
∑

i

∫
dωcigi(ω)~ωnB, (47)

where 〈τ〉 is the average phonon transmission probability, and ci and g(ω) are the
speed of sound and the density of phonon states of the mode i, respectively. The
summation is over the three bulk phonon modes, two transverse and one longitudinal.
The transmission probability depends on the geometric parameters of the PnC and
the proportion of specular scattering. Here the phonon modes are not modified by
the film thickness, so unlike in equation (43) the temperature dependence would
always correspond to a 3D case, equation (39), if the effective mean free path is
temperature independent.

In a hole-based structure with diffuse surface scattering, a greater reduction of
phonon transmission is induced in a smaller period structure [19, 21], as for smaller
periods the "neck" between the holes becomes more narrow. The smaller period
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introduces more possible backscattering points for diffusely scattered phonons, as is
explained in more detail in Ref. [19].

As discussed in Section 2.1.1, for coherent effects to play a significant role, the phonon
transport is required to be ballistic, and the scattering from interfaces needs to be
specular. For the majority of coherent phonon manipulation, the physical principle is
that phonons Bragg scatter from the periodic lattice with a similar periodicity to the
phonon wavelength. The Bragg condition, which gives the constructive interference
angles, is given by [28]

nλ = 2d sin θ, (48)

where n is an integer, d is the distance between lattice planes and θ is the angle of the
incoming waves. The Bragg scattered wave-like phonons then interfere with each other
either destructively or constructively. This alters the dispersion relation, creating
band gaps in the destructive case, which prevent a phonon with a given frequency
from propagating. An example of this is given in Figure 3.b. If the interference
is constructive, the phonon DOS can actually increase in certain frequencies, even
enhancing the thermal conductivity [24, 43].

As the Bragg condition requires the wavelength to be roughly in the same order of
magnitude as the periodicity, one can explore the possibility of achieving Bragg-like
interference with room temperature phonons. Using equation (23) we have λdom = 0.6
nm at T = 300 K in SiN. For Bragg scattering to possess a significant role, the
periodicity would have to be of the order of 1 nm. This, along with the required level
of surface roughness, is not possible to achieve with current fabrication methods.

2.2.3 Hole-based phononic crystals

For 2D phononic crystals, the majority of research conducted on thermal transport
control has been done with hole-based PnCs, both in the coherent and incoherent
regime [1, 10]. At room temperature, significant reductions in thermal conductivity
have been achieved. In a numerical study by Xie et al.. [41] the thermal conductance
of PnCs in silicon with a period in the order of 60 - 100 nm with a varied filling factor
was calculated in a temperature range of 50 - 300 K. The simulations were based on
Boltzmann transport theory, so incoherent propagation was assumed. The thermal
conductivity was significantly reduced, and the simulation was in agreement with
experimental data. Here the reduction of thermal conductivity was not attributed
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Figure 4. Emitted phonon power as a function of temperature for a 485 nm
SiN membrane and two PnCs fabricated on a membrane of the same thickness.
The solid lines represent the theoretical results for each case. Figure reprinted
from Ref. [18] with permission. c©2014, The Author(s).

to increased number of Umklapp processes which would be dominant in an uniform
film, but the reduction was caused by an increase in diffuse surface and boundary
scattering caused by the holes.

Thermal conductivity κ of hole-based PnCs in room temperature has been measured
for example by Hopkins et al.. [44]. In the study the thermal conductance of a PnC
with a = 500 nm on a 300 nm thick single crystalline Si film was measured to be as
low as 4.81 ± 1.0 W/Km, which is more than an order of magnitude less than the
value for an unaltered Si film of the same thickness, 148 W/Km. In the model used
by the authors the reduction was not covered by only diffusive scattering, but also a
reduction in the phonon DOS was observed in a simulation generated to explain the
result.

On the other hand, Anufriev, Maire and Nomura [40] conducted a similar experiment
for 80 nm thick single crystalline Si PnCs with a period of 160 - 280 nm with square,
hexagonal and honeycomb lattices. The experiment was performed in 4 K and 300
K. The 4 K experiment showed a larger decrease in κ, attributed to coherent effects
beginning to have significance. In 300 K the largest reduction was close to 50 %,
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but the smaller reduction can be explained by 80 nm Si film already possessing a
rather low κ of 58 W/Km. The reduction of κ at 300 K was entirely attributed to
incoherent effects, the reduction originating from surface scattering caused by the
holes.

At sub-Kelvin temperatures, experimental results have been obtained of coherent
thermal conductance reduction by hole-based PnCs. In a study by Zen et al.. [18]
finite element method (FEM) simulations were used to predict a period which would
introduce a band gap, and a PnC device with these parameters was fabricated. The
emitted phonon power was measured with SINIS-thermometry. The results are
presented in Figure 4, where a thermal conductance reduction of over an order of
magnitude is observed. Based on the results it was concluded that the decrease of
thermal conductance is caused not only by the band gap, but also the reduction of
group velocities and the DOS. Further theoretical investigation of this is presented in
an article by Puurtinen and Maasilta [24], where 300 nm thick PnCs with a constant
filling factor and a period ranging from 62.5 nm to 8 µm were studied with FEM
simulations in a temperature range of 0.1 - 400 mK. The largest thermal conductance
reduction was observed with the largest period.

In Ref. [18] most of the thermal conductance reduction was attributed to the
decreased group velocity. In a further study [21], PnCs with a similar thickness and
filling factor with periods of 4, 8 and 16 µm were studied with SINIS-thermometry.
Here even lower thermal conductances than in [18] are measured, the lowest thermal
conductance of 3.2 pW/K at 0.2 K being achieved with the 8 µm period. A fully
coherent theory would predict the largest period to have the largest reduction, so
here it is concluded that with the 16 µm period the coherent theory starts to break
down as incoherent effects begin to have significance.

A numerical study by Anufriev and Nomura [45] also provides a reduction of thermal
conductance around one order of magnitude compared to an unpatterned film. Here
periods of 80 nm, 160 nm and 320 nm are studied at 0-2 K, the largest period again
yielding the greatest reduction. The effects of different lattice geometries (square,
hexagonal and honeycomb) are also calculated. The impact of the lattice geometry
was rather weak compared to other parameters, but the largest reduction was in the
case of a honeycomb lattice.

Also, as was noted in section 2.2.2, hole-based PnCs in the coherent regime with small
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enough period can actually increase thermal conductivity. This was also studied in
[24]. The enhancement seems to be resulting from an increase of the DOS with a
small enough period at low frequencies, and appears to peak with a factor of ∼ 3 at
around 300 mK with the smallest studied period of 62.5 nm. The enhancement seems
to disappear with a large enough period. The thermal conductance enhancement
is also observed in a numerical study by Anufriev and Nomura [43]. Here FEM
simulations are also used, but here the thermal conductance seems to grow limitlessly
with a smaller period instead of peaking. According to Puurtinen and Maasilta the
difference is caused by an erroneous assumption of constant group velocities on a
constant energy surface in [43], as 2D PnCs are not isotropic.

2.2.4 Local resonance

Coherent dispersion manipulation in 2D PnCs with Bragg scattering is a relatively
well understood method, even in the thermal phonon regime. A somewhat less
studied coherent method is the local resonance-based dispersion manipulation, where
in the 2D-case the band gaps are created with locally resonant structures on top of a
membrane.

The following examination is based on an example by Laude in [4]. We consider
the behaviour of a single massive resonator on top of a 1D waveguide, such as a
suspended nanowire, with only one allowed frequency mode ω = πc/d, where d is
the thickness of the waveguide. The resonator can be described as a forced harmonic
oscillator

κu+M
∂2u

∂t2
= Feiωt, (49)

where u is the displacement, κ is the stiffness of the material, and F is the force on
the oscillator. If the motion is harmonic (u = ū exp(iωt)), the oscillation amplitude
ū can be written as a function of the resonance frequency Ω =

√
κ/M as

ū = F

M

1
Ω2 − ω2 = F

M
L(ω), (50)

where L(ω) is the Lorenzian spectral line shape. Here clearly ū → ∞ as ω → Ω. If
we set x1 = 0 at the location of the resonator, we can write the field far from and on
the left and right of the resonator as a superposition of the left and right propagating
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guided waves

p0(x) =


ψ0(x2)(A1e

−ikx1 +B1e
ikx1), if x1 � 0

ψ0(x2)(A2e
−ikx1 +B2e

ikx1), if x1 � 0,
(51)

where A and B are amplitudes, k = ±ω/c, and ψ0(x2) is the transverse mode
distribution. ψ0(x2) can be considered a constant in the 2D case, where x2 is the
direction orthogonal to the waveguide in the direction of the resonator.

Equation (51) however does not hold close to the resonator. In the resonators vicinity,
the boundary conditions are modified so that field inside the waveguide induces a
driving force on the resonator, given a frequency near the resonance frequency. This
motion of the resonator changes the equilibrium of the waveguide locally. In an
idealisation where the resonator is in contact with the waveguide in only one point
x1 = 0, where the force density is proportional to the Dirac delta δ(x1), this localised
excitation results in bound evanescent modes in the waveguide. The field of this
second transmission channel is

p1(x) =


C1ψ1(x2)eαx1 , if x1 < 0

C2ψ1(x2)e−αx1 , if x1 > 0,
(52)

where α =
√

(π/d)2 − (ω/c2), and ψ1(x2) ∝ cos(πx2/d) is the transverse mode
distribution for evanescent modes in the waveguide. For the whole waveguide, except
for x1 = 0, the total field is now p(x) = p0(x) + p1(x). As the two modes are
orthogonal, we obtain the conditions

A1 +B1 = A2 +B2, (53)

C1 = C2. (54)

We assume the field is continuous at the connection point. However, ∂p/∂x1 is
not continuous at at the junction due to p1 being discontinuous. The jump of the
derivative ∂p/∂x1 will be written as

[
∂p

∂x1

]
0+

−
[
∂p

∂x1

]
0−

= L(ω)β(x2)p(0,x2). (55)
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This is obtained by integrating the waveguide wave equation which is subjected
to a force density L(ω)β(x2)p(x)δ(x1), where β(x2) is a stress distribution with a
cross-section dependence created by the force density on the resonator, the shape of
which is given by L(ω). This can be interpreted as a field distribution p(x) at the
junction setting the resonator into motion creating a stress distribution, a function
of x2. By applying this for the two modes, we obtain the relations

ik(−A2 +B2) − ik(−A1 +B1) = L(ω)(β00(A1 +B1) + β01C2) (56)

−α(C1 + C2) = L(ω)(β10(A1 +B1) + β11C2), (57)

where
βij =

∫
dx2β(x2)ψi(x2)ψj(x2). (58)

Essentially, the discontinuity couples the two modes at the junction point. As we
have created two equations for the amplitudes of ψ1,2 from one equation, we must
make sure the determinant of the matrix βij vanishes by adding a compatibility
relation β00β01 − β01β10.

By solving the equations (56) and (57), and by defining the terms γ0j = L(ω)β0j/(2ik)
and γ1j = L(ω)β1j/(2α), we obtain the solution matrix relating the incoming and
outgoing amplitudes 

A2

B1

C2

 =


t r

r t

s s


A1

B2

 , (59)

where r is the reflection coefficient, t is the transmission coefficient and s is the
proportion of the incoming amplitude stored in the evanescent wave. The coefficients
can be written explicitly as

t = 1 + γ11

D
, (60)

r = t− 1, (61)

s = γ10

D
. (62)

Here D = (1 + γ00)(1 + γ11) − γ01γ10 = 1 + γ00 + γ11 with the compability condition
applied. ťFar from the resonance condition γij are negligible, and t = 1. The
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condition for t = 0, and therefore r = 1, is given by 1 + γ11 = 0, which occurs when

ω2 = Ω2 + β11

2α . (63)

This tells us that even with a small coupling strength, the transmission can be
cancelled with a frequency in the close vicinity, but not exactly equal to the natural
frequency of the oscillator Ω.

This can be expanded for a case with a 1D periodic lattice of resonators on the
waveguide, with periodic Bloch boundary conditions

p0(a/2, x2) = eiKap0(−a/2,x2), (64)

where K is the Bloch wave vector [28] and a is the lattice constant. By solving the
transmission matrix A2

B2

 =
 t2−r2

t
r
t

− r
t

1
t

 =
A1

B1

 (65)

with the eigenvalues of λ = e−iKa, the dispersion relation for the system becomes

cos(Ka) = cos(ka) + i
r

t
sin(ka) = cos(ka) − L(ω)αβ11

2αβ + L(ω)kβ22
sin(ka). (66)

As r → 0 the relation reduces to K = ±k, and we again have the unaltered dispersion
of the waveguide mode, where the resonators do not affect the wave propagation.
When approaching the resonance, the second term in equation (66) becomes dominant.
Around the resonant frequency, when | cos(Ka) > 1|, K becomes complex, which
creates a transmission zero, or a band gap, in the dispersion relation. This is
illustrated in Figure 5.

2.2.5 Pillar-based phononic crystals

Phononic crystals for which local resonance is the phenomenon creating the band
gaps are generally referred to as locally resonant phononic crystals. The first locally
resonant PnC, created by Liu et al. in 2000 [22], was a structure where the resonators
were lead balls coated with silicon rubber in a 3D lattice in an epoxy matrix [22].
The lead balls could move rather freely in the rubber, and band gaps caused by
resonance were observed around 1 kHz. However, arguably the most common type of
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Figure 5. The real and imaginary parts of the dispersion relation of a periodic
array of pillars on a 1D waveguide around the resonance frequency ω0.

locally resonant PnCs are pillar-based PnCs, 2D-crystals where the locally resonant
structures are pillars on top of a film, a bulk material, or a suspended beam or a
wire.

For the pillar-based PnCs, the sonic frequency range of acoustic phonons is relatively
well studied, and most of the theoretical and especially experimental studies are
focused there. The acoustic band gaps created by local resonances can exist in
frequencies two orders of magnitude lower than the Bragg gap would be for a PnC
of identical periodicity [10, 46]. Locally resonant PnC structures, much like like
hole-based PnCs [5], can also be utilised in waveguiding applications [47], where
phonons with a given frequencies are only allowed to propagate through a certain
path. More on the low frequency pillar-based PnCs and their applications can be
found in the review article by Pennec et al. [10], and the book by Laude [4].

In a number of theoretical studies it is stated that both the local resonances and
Bragg scattering contribute to to the band gap formation in pillar-based PnC [48–52].
An example of this is given in Figure 6. This is supported by the experimental
evidence by Achaoui et al. [53], where periodic and non-periodic arrays of pillars
were studied. The PnC was fabricated on LiNbO3, the piezoelectric properties of
which were used for measuring the phonon transmission. As can be seen in Figure 7,
in the case of a PnC with a honeycomb lattice, there is an observable Bragg band
gap, which disappears when the periodicity is destroyed. However, a gap created by
the local resonances persists for both cases. This also implies that periodicity is not
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Figure 6. Dispersion relation for a pillar-based PnC, where a Bragg scattering
and a local resonance induced band gap are both visible. Here the material of
the substrate and the pillars is steel, the pillars being cylindrical with a narrower
"neck" between them and the substrate. The parameters for the PnC were a = 10
mm, height h = 4 mm, pillar radius was r = 4.5 mm and the membrane thickness
was d = 1 mm. Figure reprinted from Ref. [52] with permission. c©2011 IOP
Publishing, Ltd.

needed for local resonance based dispersion relation manipulation, but the periodicity
can increase the effect by creating additional band gaps. In [54] Achaoui et al. again
observed two band gaps: a high frequency one in the range of a Bragg gap, and a
lower frequency gap attributed to local resonances. Based on the theoretical studies
by Pourabolghasem et al. [50], the local frequency band gap can also exist in higher
frequencies than the Bragg gap.

In Figure 7, the crystal with a hexagonal lattice exhibits a transmission differing
from the honeycomb lattice around the local resonance band gap. This would
indicate that the lattice type has a role even in the locally resonant case. There
exist a few theoretical studies on the matter: If calculations are performed with a
semi-infinite substrate, such as simulations by Khelif, Achaoui and Aoubiza [48], the
locally resonant band gaps show marginal dependence on the lattice type. When the
calculations are done on a finite slab of material in a vacuum, where the membrane
waves are Lamb waves and the surface waves are Rayleigh waves, surface waves
similar to Lamb waves, a stronger dependence on the lattice type appears. This
was the case in a numerical study by Hsu [52]. This dependence is caused by the
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Figure 7. Transmission as a function of frecuency for pillar-based phononic
crystals of different lattice types in the MHz regime. Figure reprinted from [53],
with the permission of AIP Publishing.

coupling of adjacent resonators, so it is fair to assume that the lattice type would
affect the coupling. In both articles the simulations were conducted using FEM.

Obviously, other geometrical parameters of the PnC also affect the dispersion. The
pillar mass, which depends on size and the density of the material, partly determines
the resonant frequency. A PnC with cylindrical pillars of silicon on top of a silicon
substrate were studied with FEM simulations by Khelif et al. [49]. It was discovered
that the ratio of pillar height and the lattice period h/a was a parameter for which
the location of the local resonances in energy was the most sensitive to. However,
this could also be interpreted as a sensitivity to the resonator mass or the filling
factor.
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2.2.6 Pillar-based phononic crystals at thermal frequencies

In the past few years, a number of different approaches have been adopted in
simulating the thermal transport in pillar-based PnCs. One of the earliest proposals
of using locally resonant PnCs in reduction of thermal conduction was by Hussein
and Davis in 2014 [26]. Here lattice dynamics simulations in silicon were used to
obtain the phononic band structure, and the Callaway-Holland model [55] was used to
predict the thermal conductivity. The frequency range was in the THz, corresponding
to the dominant phonon frequencies at room temperature. The film thickness was
2.72 nm and the period was 3.26 nm, which would allow for coherent effects to take
place in an ideal structure. The simulations showed a significant alteration to the
DOS, group velocity and dispersion, resulting in a reduced thermal conductivity
down to 50 %.

Molecular dynamics simulations, a computational method similar to lattice dynamics,
were used by Honarvar and Hussein [56] to analyze the phononic spectrum of a
pillar-based structure with Si pillars on a suspended Si membrane in the THz range.
Based on the dispersion relation, the structure exhibited numerous local resonances,
which caused a reduction in the phonon group velocity, and subsequently in thermal
conductivity. The simulation results were consistent with earlier lattice dynamics
simulations in Ref. [26], yielding a reduction of 50 %. Continuing this work, another
article with room temperature molecular dynamics simulations by Honarvar, Yang
and Hussein [57] discussed the effects of the pillar and unit cell size. The length
scale in both of these studies was also quite small, in the order of 1 nm to 10 nm.
According to the simulations, the thermal conductivity is reduced with increasing
pillar height and decreasing film thickness and pillar width. Wei et al. [58] also used
molecular and lattice dynamics in the THz frequency range and nm size range to
obtain a thermal conductance reduction of up to 71.4 %. The pillars were Si on a
suspended Si thin film.

Molecular dynamics was also utilised by Xiong et al. [59] to calculate phonon
propagation in SiGe alloy nanowire with pillars on one side, or pillars symmetrically
on two or four sides of the wire. These simulations were also done in the THz
regime, the wire thickness was 4.34 nm, and the resonator period was varied between
2.17 and 7.60 nm. The increase of pillars on different sides of the wire appeared to
decrease the thermal conductivity, and the conductivity also decreased with a smaller
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Figure 8. The behaviour of the thermal conductance of pillar based hexagonal
phononic crystals compared to the thermal conductance of an unmodified film
as a function of a) pillar height, b) radius, c) period and d) temperature. In c)
and d) the values are also compared with the values of a hole-based PnC with
similar parameters. The film thickness is 80 nm, and the constant values in the
graphs where the value itself is not under study are T = 0.5 K, a = 160 nm,
h = 80 nm, and r/a = 0.4. Figures reprinted with permission from [25]. c©2017
by the American Physical Society.

period, resulting in a similar ∼ 50 % decrease as in Ref. [26]. A similar structure,
a silicon nanowire with periodic rectangular "wings", was studied by Anufriev and
Nomura [60], although here the simulations were done in the coherent regime at 0.5
K, and using continuous elasticity theory and FEM. Due to the low temperature, the
wing period was 300 nm, and the phonon frequencies were < 100 GHz. A reduction
in thermal conductance of ∼ 50 % was again obtained. However, here most of the
thermal conduction reduction was attributed to the periodicity, and the effect of
local resonances was considered weaker.

A rather extensive numeric study on the effects of different parameters to the thermal
conductance was conducted by Anufriev and Nomura in 2017 [25], where FEM



39

simulations were used to obtain the dispersion relations. Some of the results of the
article for a hexagonal lattice of cylindrical pillars are presented in Figure 8. As in
previously discussed studies, here the maximum reduction of thermal conductance is
also close to 50 %. The effects of different lattice geometries were also studied, and
a honeycomb lattice resulted in a 10 % decrease in thermal conductance compared
to the hexagonal lattice, while a square lattice resulted in a 20 % decrease. However,
these reductions were rather small compared to the effects of other parameters. A
hybrid structure of pillars and holes was also investigated, yielding a 21 % greater
thermal conductance reduction than a hole-based PnC. This is argued to originate
from the additional flattening of the band structure and a strongly reduced group
velocity.

Yet another molecular dynamics based study by Honarvar and Hussein in 2018 [61]
at room temperature frequencies resulted in a thermal conductance reduction of
factor 130. The studied system was once again a suspended Si membrane of thickness
≤ 10 nm, with Si pillars on one or both sides. For the largest reduction the film
thickness was 9.78 nm, and the pillar height and width were 6.13 nm. For most
of the previous THz studies, the thermal conductivity reduction quickly decreased
with a larger structure. This is not the case here. The difference was accounting for
the vibron (hybridization between pairs of the wave-number-independent vibration
modes) compensation, meaning that the resonator sizes were increased with a higher
rate than the base membrane, when the size of the unit cell increases. This leads to
a stronger coupling between the phonons and the localised resonance modes than
with other numeric studies, where the method of obtaining larger reductions was
mere parameter optimisation.

Pillar-based PnCs with a period of the order of 100 nm have been successfully
fabricated [51, 62, 63]. Sledzinska et al.. [62] fabricated Al pillars with a period
of 500 on a suspended Si film. In a study by Graczykowski et al.. [51] the pillar
material was Au, and a study by Yudistira et al.. [63] had pillars of LiNbO3 on a 3D
substrate of the same material. In all of these studies the existence of band gaps in
the GHz frequencies was experimentally confirmed by Brillouin light scattering.

The heat capacity of a PnC consisting of Si pillars on bulk Si crystal, fabricated with
reactive ion etching from a single wafer, was measured by Iskandar et al. [64] in the
temperature range from 3 to 300 K. The heat capacity of the specimen was altered,
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either decreased or increased depending on the height, diameter and the slope of the
pillar walls.

In a room temperature study by Anufriev, Yanagisawa and Nomura [65], the thermal
conductivity of a nanobeam with a periodic arrangement of Al pillars was measured
to be 20 % lower than the unaltered wire. The beam width was 840 nm, the thickness
was 70 nm, the studied pillar diameters were 229.5 nm, 243.5 nm and 335 nm,
and the period was 560 nm. The measurements were done using Time-domain
thermoreflectance (TDTR), and the largest decrease in thermal conductivity was
caused by the largest pillar diameter. The authors concluded that the thermal
conductivity reduction was caused by diffusive scattering from the Al-Si interface, as
the temperature was too high for coherent effects to play a role.

Incoherent thermal conductance reduction can also be achieved with other pillar-like
structures. Huang et al. [66] measured the thermal conductance of a 50 nm thick Si
nanobeam using TDTR, with cone-like Si structures with the structure size in the
order of tens of nanometers on the surface. The cones had a random arrangement and
they were of unequal size. The measurement temperature range was 4 K - 295 K, and
the lowest thermal conducitivity was 58 % of the smooth beam thermal conductivity
at 4 K. As normally the proportion of the specular scattering would increase at
lower temperatures, here the cones increase the phonon scattering decreasing the
amount of specular scattering events and "trapping" the phonons, thus decreasing
the thermal conductance. The experimental data fit to this model.

A research paper from 2019 by Zhang et al. [67] describes a 56 % thermal conductance
reduction of a suspended 500 nm SiN membrane by a pillar pattern at 100 mK. A
Transition edge sensor (TES) was surrounded by an array of pillars in a hexagonal
lattice or rings, the period being either 7 or 10 µm with a 1/3 or a 2/3 filling factor.
The materials for the features were Au (h = 270 nm), a normal metal, and Mo (h =
54 nm), a superconductor. The best results were achieved with a 7 µm period of
Au pillars with a 2/3 filling factor, and Au rings with a 7 µm spacing and a 2/3
coverage. Here the suggested mechanism of thermal conductance reduction was
diffusive scattering from the metal features, in other words incoherent scattering.
The thermal conductance was obtained by analysing the IV-characteristics of the
TES.
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2.2.7 Comparison of pillar- and hole-based phononic crystals

Most numerical studies yield a reasonably consistent ∼ 50 % reduction in thermal
conductivity for pillar-based PnCs, both in the sub-Kelvin region and at room
temperature, with the one outlier of Ref. [61] producing an immensely greater
reduction. The ∼ 50 % was also obtained for the single experimental result at
sub-Kelvin temperatures. With hole-based PnCs, reductions of the order of 100
have been routinely achieved with numeric studies, and also with a few experimental
ones. Figure 8 presents an example of calculated pillar- vs hole-based PnC thermal
conductance reductions. However, with the results of Ref. [61], it may be possible to
experimentally reach similar reductions for pillar-based structures as for hole-based
PnCs with careful parameter planning.

As both Bragg and local resonances play a role in the coherent regime for pillar-based
PnCs, they may be more versatile in phonon dispersion manipulation. Combining
these effects could lead to a wider band gap or a larger affected frequency range.
Also, as was suggested in Ref. [25], pillars and holes can also be combined to form a
single structure. These hybrid structures can exhibit a larger thermal conductance
reduction than a simple hole-based PnC. Perhaps an even larger reduction can be
achieved by combining pillars and holes with different parameters.

2.3 SINIS thermometry

In this work, a SINIS-thermometer (superconductor-insulator-normal metal-insulator-
superconductor) was used in conjunction with a SNS-heater (superconductor-normal
metal-superconductor) to measure the emitted phonon power. A SINIS-junction
consists of two NIS tunnel junctions in series. A single NIS-junction can also function
as a thermometer, but a SINIS-junction is more sensitive. If the junction is biased
with an appropriate constant current, voltage over the junction becomes sensitive to
changes in temperature at the temperature range roughly from 100 mK to below the
critical temperature of the superconductor. The range and sensitivity can also be
tuned by changing the bias current. [68, 69]

The advantages of using SINIS-junctions as a thermometer include low self-heating,
high sensitivity in the range of the thermometer, and compact size so that they can
be easily fabricated on a given sample. A SINIS-junction can also function as a
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heater or an electron cooler [68–70]. The limitations of SINIS thermometry include
its limited temperature range and the tendency to break easily due to static charges.
The range for the most common type of junctions, where the superconducting metal
is aluminium, is approximately 0.1-1 K. For a larger range, for example niobium
and niobium nitride based devices have been developed achieving sensitivities at
temperatures up to 11 K [70, 71].

2.3.1 Aspects of the BCS Theory of Superconductivity

The phenomenon of superconductivity was first discovered by Heike Kamerlingh
Onnes in 1911 in mercury cooled with liquid helium. A microscopic theory for
superconductivity was however only devised in 1957 by Bardeen, Cooper and Schrieffer
[72], named the BCS theory according to its creators. This chapter will only briefly
discuss the primary concepts and results of conventional type I superconductivity,
and subjects such as high temperature superconductors are not discussed.

Superconductivity is characterised by two main phenomena: perfect conductivity,
or a current without resistance, and the Meissner effect. A material enters the
superconducting phase when it is cooled below its critical temperature Tc. For all
elemental superconductors Tc < 10 K. A sufficiently weak magnetic field is also
completely repulsed from the material. This is called the Meissner effect. The length
a magnetic field penetrates into a superconductor is referred to as the penetration
depth λ. An approximation by London for λ at zero temperature is given by

λ(0) =
√

m

µ0ne2 , (67)

where n is the density of conduction electrons. For a large enough field Hc the
magnetic field completely penetrates into the sample, and superconductivity is lost
in type I sueprconductors. The critical temperature and field are approximately
related by the empirical law

Hc(T ) = Hc(0)
[
1 −

(
T

Tc

)2]
. (68)

From the existence of a critical field it is apparent that a critical current also exists,
where a current in a wire is large enough to induce a magnetic field around the wire
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surface equal to the critical field. This can be written as

Jc = 1
µ0

Hc

λ
. (69)

[73]

The fundamental idea of the BCS theory is that even a weak attractive interaction
between electrons can form bound states of two electrons. The source of this attractive
interaction is electron-phonon coupling, where a moving electron polarises the ion
lattice by attracting a positive ion, which then in turns attracts an another electron,
inducing an effective attraction between the two electrons. These coupled electron
pairs are called Cooper pairs. Between the superconducting ground state and a
certain energy there are no occupied states, and any quasiparticle excitations exists
only above this energy gap, the magnitude of which is equal to half the energy
required to break a Cooper pair. The effective size of a Cooper pair, or the smallest
possible size of a wave packet, is given by the Pippard coherence length

ξ0 = a
~vF

kBTc

, (70)

where vF is the Fermi velocity and a is a numerical constant with a value of 0.18
given by the BCS theory. [73]

The magnitude of the energy gap at zero temperature is [72]

∆ = ~ωc

1/ sinh [N(0)V ] , (71)

where N(0) is the normal density of states at Fermi energy, and V is the interaction
potential. The ωc is the critical frequency above which no acoustic phonons exist.
With the Debye model, ωc = ωD. The temperature dependence of ∆ is given by [72]

1
N(0)V =

∫ ~ωc

0

tanh
[

1
2β(ξ2 + ∆2) 1

2
]

(ξ2 + ∆2) 1
2

dξ, (72)

where β is the familiar (kBT )−1, and ξ is the single particle energy relative to
the Fermi energy. In the so-called weak coupling limit, which applies to many
low temperature superconductors [73], the zero temperature energy gap can be
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approximated by
∆(0) = 1.764 kBTc. (73)

The critical field of a bulk specimen at 0 K can also be expressed in term of the BCS
energy gap [72]:

Hc(0) =
[
N(0)
µ0

] 1
2

∆(0). (74)

2.3.2 Andreev reflection

If a current flows from a normal metal to a superconductor, part of the current is
immediately converted into a supercurrent at the interface, and a part of the current
is carried over to the superconductor as a nonequilibrium quasiparticle charge, which
is converted into a supercurrent over a certain diffusion length. The actual proportion
of these two conversion mechanisms is dependent on the properties of the barrier
and bias voltage[73, 74].

The mechanism where the conversion happens immediately at the interface is called
Andreev reflection, and it is generally dominant at interfaces with high transparency.
If an electron incoming from the normal metal has an energy of E > ∆, it can pass
into the superconductor uninhibited as a quasiparticle, converting into supercurrent
after the diffusion length. However, if the energy of an electron is E < ∆, it can not
be transferred into the superconductor as a quasiparticle, as the states below ∆ are
forbidden. With a clean interface, or in the absence of a scattering potential, the
electron is reflected back to the normal metal as a hole, which transfers a charge of
−2e into the Cooper pair condensate of the superconductor. With a clean interface
with E and kBT � ∆, Andreev reflection is the dominant current transfer method
across an NS-junction. For a transmission probability t = 1, we have reflection
probabilities R of [74]

r = 1, |E| < ∆ (75)

r = E −
√
E2 − ∆2

E +
√
E2 − ∆2

, |E| > ∆. (76)

Also, with Andreev reflection as the prominent method of carrying current across
the interface, there is no heat current carried from the normal metal into the
superconductor, as no quasiparticles penetrate the interface. [73, 74]
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However, in a real life scenario there is often a finite tunnel barrier present, especially
in the presence of an oxide layer [73]. This decreases the proportion of Andreev
reflection as normal reflection from the barrier becomes more prominent. With t � 1,
the subgap reflection probability has the form [75]

r = t2∆
4(∆2 − E2) , E < ∆. (77)

The proximity effect is a larger scale phenomenon induced by the Andreev reflection.
In a contact between a normal metal and a superconductor, Cooper pairs from the
superconductor are diffused into the normal metal, and quasiparticle excitations
from the normal metal are carried into the superconductor. The proximity effect
can be observed as the suppression of a Tc of a superconductor in the presence of a
normal metal layer, and inversely as an increase of conductivity in a thin layer of
the normal metal. [74]

Figure 9. A measured thermal conductance ratio of superconducting Ks and
normal metal Kn in Al. The different Al represent different levels of purity, with
Al-26 being the most impure with a 0.3 % concentration of copper. Solid lines
represent values calculated from BSC-theory with different values for the energy
gap. Figure reprinted with permission from [76]. c©1959 American Physical
Society.
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2.3.3 Phonons in superconductors

As was mentioned earlier, in normal metals the majority of heat is carried by
electrons. In superconductors, below the transition temperature the electronic
thermal conductivity begins to drop exponentially. On the other hand, in an infinite
crystal the phononic thermal conductance increases, although at a slightly lower
rate compared to the decrease of the electronic component. As a result, the overall
thermal conductance is lowered as a function of temperature, as is shown in Figure 9
[77].

In a metal, or in an interface between a metal and an insulator, electrons can either
receive or give out energy to phonons. An electron absorbing or emitting a phonon is
illustrated in a Feynman diagram in Figure 10. The mechanism of phonon absorption
can be understood as a lattice vibration inducing a change in an electrons momentum,
and the phonon emission can be thought as a a change in local charge density induced
by an electron, which is then mediated by an elecrostatic interaction into vibrations.
As there are no gaps in the density of states for normal metals near Fermi energy,
phonons at any energy can be absorbed.

Low frequency phonons at low temperatures do not scatter from superconductors,
as the superconducting energy gap prevents phonons with subgap energies from
transferring energy to the Cooper pair electrons, leaving the phonon with its initial
momentum. This can be easily verified for aluminium at temperatures T � Tc: The
superconducting gap for Al, from equation (73) with a Tc value of 1.196 K [28], is
0.18 meV. The energy of a phonon is ω~. Using the dominant phonon frequency
of equation (22) we have Ephonon = 0.068 meV at 0.1 K, so most of the incoming
phonons are not scattered in Al.

q

k

q+k

e−

p

e−

q

k

q-ke−
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Figure 10. A Feynman diagram of an electron absorbing (left), and emitting a
phonon (right). k and q are the phonon and electron wave vectors, respectively.
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Figure 11. A semiconductor model density of states of a normal metal-insulator-
superconductor (NIS) junction at 0 < T < Tc. The occupied states are coloured.
EF N is the Fermi level of the normal metal, EF S is the Fermi level of the
superconductor, ∆ is the superconducting energy gap, and eV is the energy
difference of the Fermi levels, where V is the voltage difference created by a bias.
For the currents, IN = IS.

2.3.4 SINIS-junction

A Josephson junction is a junction between two superconductors connected by a
weak link, across which Cooper pairs can tunnel. A weak link can be a normal metal
layer, a constriction in a superconductor, or as in this study, an insulating oxide
layer [73]. In superconductor based tunnel junctions, Josephson effect is generally
dominant at low bias currents and temperatures, whereas at high bias currents and
temperatures quasiparticle tunnelling is the dominant method of tunnelling [68].
The SINIS tunnel junctions associated with this work do not exhibit Cooper pair
tunnelling, because the tunnel barrier prevents the leakage of supercurrent from the
normal metal, as Andreev reflection is prevented by the barrier. For the SNS heater
there are no barriers, but the relatively large size of the normal metal island, which
far exceeds the coherence length for Al, prevents supercurrent from flowing across
the normal metal island. [73]

The so called semiconductor model of a NIS-junction is illustrated in Figure 11.
When T > 0, there is a nonzero probability of a particle tunnelling across a potential
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barrier, represented in the figure by I. In the presence of a bias voltage eV , the
Fermi level of a normal metal is altered. If the level is raised, and eV > ∆, the
electrons from the normal metal can tunnel into to the superconductor even at T = 0
[73]. At T > 0, even with eV < ∆, some thermally excited electrons are able to
tunnel through the barrier, creating a finite current in the subgap region. With a
constant current bias, this voltage becomes dependent on the temperature, making
the junction applicable to thermometry.

The current-voltage behaviour of a NIS-junction is given by the equation [68]

I(V ) = 1
2eRT

∫ ∞

−∞
NS(E)[fN(E − eV ) − fN(E + eV )]dE, (78)

where V is the voltage bias over the junction, e is the elementary charge, RT is
the tunnelling resistance, fN(E) is the Fermi function of the normal metal in a
quasiequilibrium, E is the energy, and NS(E) is the quasiparticle density of states
[68]

NS(E) =

∣∣∣∣∣∣Re
 E + iΓ√

(E + iΓ)2 − ∆2

∣∣∣∣∣∣ . (79)

Γ is a constant called the Dynes parameter. The Dynes parameter is essentially a
parameter modelling the pair-breaking rate [68], or inelastic quasiparticle scattering,
within the superconductor. However, a similar theory can be also used for the
modelling of photon assisted tunnelling, and the Dynes parameter can therefore
be used in the fitting of the leakage current in the subgap region essentially as a
measure of nonideality [18].

2.3.5 Effects of geometry and materials

The superconducting part of the junction is generally aluminium due to the ease of
growing aluminium oxide (AlOx) barriers of good quality on top of an aluminium
film. The normal metal material that has been more widely used, at least in our
research group, has been copper. However, more recently a titanium-gold bilayer,
with the Ti layer being 5 nm and Au layer being ≥ 20 nm has been found to be
promising [78]. The advantages of Ti-Au compared to Cu as a normal metal include
greater durability, both in terms of chemical attacks during the fabrication and a
smaller risk of breakdown due to static charges. The resilience to static charges is
caused by a lower specific tunnelling resistance. The Ti-Au devices also exhibit a
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stronger cooling power compared to a Cu device [78].

Recent thermal conductance measurements for PnCs in our research group have
been conducted with both the heater and the thermometer being a SINIS-junction,
fabricated "face-to-face" [18, 21]. However, there are some factors in this geometry
which complicate the interpretation of the measured data. In the first place, only a
certain percentage of the heat emitted by the heater is intercepted by the thermometer.
Calculating this so-called view factor complicates the data analysis. Another factor
considering the emitted heat is that because the SINIS-heater island resistance
includes tunnel junctions with obviously larger resistance than the normal metal,
practically all of the heat is generated by the tunnel processes, half of which is
dissipated in the superconducting lead.

To combat these issues, a new measurement geometry was recently developed in
the group [37]. In this design, the heater is an SNS device encircling the SINIS-
thermometer, pushing the view factor close to unity. A scanning electron microscope
image of an SNS-SINIS pair with this geometry is shown in Figure 12. Because of
the absence of tunnel junctions, the heat is emitted evenly from the normal metal
part. The normal metal part consists of a Ti-Au bilayer, and the superconducting
leads in the heater are niobium. Niobium has the highest critical temperature and
the largest gap of elemental superconductors (9.25 K) [28], and therefore also a high
critical current and thermal isolation properties. This combined with the absence of
a tunnelling barrier allows for a large range for the heating experiment.

As a downside to this geometry, the fabrication of the SNS-SINIS pair is somewhat
more challenging compared to the design with two SINIS-junctions. For the old
geometry, the patterning and the metal evaporation of both junctions could be done
simultaneously. For the new geometry the SNS and the SINIS need to be fabricated
separately, which increases the number of fabrication steps and thus fabrication time.
The increasing of steps also necessarily increases the probability of something going
wrong during the fabrication.
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Figure 12. A SEM image a SNS-SINIS-heater-thermometer. The image is
coloured to highlight the different metals. Gold is coloured as gold, turquoise or
lighter blue is aluminium and dark blue is niobium. S means superconductor,
N is normal metal and I is insulator. Note that there is superconducting Nb
beneath the Au layer in the wires leading to the normal metal.
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3 Fabrication

The sample fabrication was done in the Nanoscience Center cleanroom. The samples
were fabricated on approximately 7 × 7 mm chips cut from a commercial single
crystalline 〈100〉 lattice direction silicon wafer with 300 nm of silicon nitride (SiN) on
each side. The fabrication process could be divided into four distinct steps: fabrication
of the suspended SiN films, the phononic crystal structure, the SNS heater and the
SINIS thermometer. The fabrication steps along with the most important processes
are presented in Table 1. Figure 13 gives a pictorial representation of the fabrication
steps.

Table 1. Fabrication steps.

Fabrication step Process Equipment
1. Suspended SiN film Chip cleaning Sonicator

Resist application Spin coater
E-beam lithography SEM
Reactive ion etching RIE
KOH-etching Wet-etch bench

2. PnC pillars Resist application Spin coater
E-beam lithography SEM
O2 plasma cleaning RIE
Al evaporation UHV evaporator

3. SNS-heater Resist application Spin coater
E-beam lithography SEM
O2 plasma cleaning RIE
Ti + Nb + Au evaporation UHV evaporator

4. SINIS-thermometer Resist application Spin coater
E-beam lithography SEM
O2 plasma cleaning RIE
Al evaporation UHV evaporator
Oxidation UHV evaporator
Ti + Au evaporation UHV evaporator
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Figure 13. Sample fabrication steps. The 3D images were drawn with ACAD
Inventor.
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Figure 14. The most essential equipment used for sample fabrication: a) the
spin coater, b) eLine scanning electron microscope, c) the reactive ion etcher
(RIE), and d) the UHV evaporator.

3.1 Suspended SiN films

After the chips were cut from the wafer they were cleaned. This was done by
sonicating them in warm acetone for 5 minutes with a FinnSonic M3 ultrasonicator,
after which the chips were wiped with a cotton swap and rinsed with clean acetone
and isopropanol (IPA). The chips were dried with a nitrogen gas gun.

The cleaned chip was then coated with a 7 % solution of 950 polymethyl methacrylate
(PMMA) in anisole, abbreviated to 950 PMMA A7. The spin coating was done
with a Laurell WS 650 Spin Coater at 3500 rpm for 1 min, resulting in a layer of
approximately 750 nm of PMMA. The chip was baked for 2 min in 160 ◦C afterwards
to remove the solvent from the PMMA layer.

To create the suspended films of desired size, the PMMA coating was patterned using
electron beam lithography (EBL). PMMA is a positive e-beam resist, so exposure
to an electron beam with a certain energy breaks the bonds of the polymer chains,
making the exposed areas more soluble. The EBL was done with Raith eLine
scanning electron microscope (SEM). For the patterning, a 20 kV electron beam
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was used with a 120 µm aperture, a 215 µC/cm2 area dose and a 1000 µm write
field. Because the resolution was not of high priority in this process step, the largest
aperture and a high current mode were used resulting in a current of approximately
10 nA and a short exposure time of ∼ 10 minutes for one chip.

After the exposure the pattern was developed following a standard procedure of
submerging the sample for 40 s in a 2:1 solution of IPA and isobutyle ketone (MIBK).
The reaction was stopped by washing the sample with IPA for 1 min and drying the
chip with the nitrogen gun.

A Reactive ion etching (RIE) process was then used to etch through the SiN layer on
the exposed back side of the chip. The SiN was etched in Oxford Plasmalab80Plus
RIE using a manufacturer given room temperature recipe for SiN: 100 W RF power,
30 ◦C, 55.0 mTorr pressure and 55.0 sccm total gas flow. The reaction gas was a 10:1
mixture of CHF3 and O2. The exact thickness of the SiN layer was actually unknown
due to poor documentation, even though the thickness was presumed to be 300 nm.
The thickness could still be defined with a decent accuracy. The etching rate of the
used RIE recipe is 30.9 ± 0.7 nm/min [35]. Because 10 minutes of etching was not
sufficient to etch through the SiN layer, but a 11 min process was, it is reasonable
to assume that the SiN film thickness on the wafer is between 300 nm and 345 nm.
Also, a measurement with Rudolph AUTO EL III ellipsometer gave a thickness of
320 nm.

After the RIE step, the chip was wet etched at 97 ◦C in a 34 % solution of potassium
hydroxide (KOH) for approximately three hours. KOH does not react with SiN, and
etches silicon in the direction of the 〈111〉 lattice plane very slowly, which results in a
54.74 ◦ sidewall angles etch in the 〈100〉 direction [79]. This allows for an anisotropic
etch for creating rectangular suspended SiN films. The windows created in the film
with EBL and RIE were 680 × 680 nm squares, which resulted in ∼ 300 × 300 nm
SiN films on the front side of the chip. After the chip was removed from the KOH it
was first rinsed in deionised (DI) water, after which it was cleaned in 0.09 % HNO3

solution for 3 minutes and rinsed in DI water and IPA. The nitric acid cleaning
was performed because the chip frequently cam out looking dirty from the KOH,
and there were some crystals of unknown material on top of the film visible with a
microscope. Even this brief washing in the dilute HNO3 solution was able to almost
completely eradicate this problem.
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3.2 Fabrication of the phononic crystal

For the pillar fabrication, the chip was initially coated with a PMMA copolymer
P((8.5)MAA)MMA in a 9 % ethyl lactate solution, abbreviated to EL9. Two layers
at 3000 rpm were spun on the chip, each layer being baked for 1 minute at 160 ◦C.
The result was a ∼750 nm thick layer of EL9. The purpose of the copolymer was to
ease the lift-off process by preventing any excess metal on the resist from evaporation
from sticking to the pillars, which would interfere with the lift-off. On top of the
EL9, two layers of 950 PMMA A4 were spun at 3500 rpm creating a combined
layer thickness of ∼ 400 nm. Each PMMA A4 layer was baked for 2-3 minutes at
160 ◦C. Between the PMMA layers a 5 mn layer of aluminium was evaporated using
a physical vapor deposition (PVD) process with the Ultra high vacuum electron
gun evaporator (UHV evaporator) located in the cleanroom. The purpose of the
aluminium layer was to prevent charging of the insulating layers of PMMA and SiN
during the EBL, allowing electrons to propagate in the material. It was discovered
that if the aluminium layer was not present, the pillar rows would be misaligned due
to the electron beam being deflected by accumulated electrons in the PMMA and
the SiN.

The acceleration voltage and the area dose for the EBL were again 20 kV and 215
µC/cm2. A smaller aperture of 30 µm and a current of approximately 0.3 nA were
used for a finer resolution. The area of the pillar structure was 200 × 200 µm, so a
200 µm write field was used to expose the whole crystal pattern with a single write
field. This prevented even the slightest misalignment. Along with the crystal pattern
two sets of markers, three large and three smaller ones, were also drawn to facilitate
the the alignment in the later process steps. The EBL design for the entire device,
including the bonding pads, is shown in Figure 15. Two different periodicities, 5 µm
and 1 µm , for the pillar structures were fabricated, both with a filling factor of 0.6
in the design, translating to 0.65 filling factor in the finished sample.

After the exposure the development was done according to the following steps:
15 s submersion into 2:1 IPA MIBK solution (developer 1), 1 min cleaning with
IPA, 10 s submersion into room temperature KOH solution to remove the 5 nm of
aluminium, washing with DI water and IPA, a second 15 s development in developer
1 to remove the PMMA below the Al, a 5 s exposure to 2:1 solution of methanol and
methoxyethanol (developer 2) to develop the copolymer and to create an undercut.
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Figure 15. Design for the electron beam lithography including a zoom-in on the
area around the heater-thermometer, drawn with the Raith program. Different
layers are represented by different colours.

Finally the reaction was stopped by a 1 min submersion in IPA, and the chip was
dried with the nitrogen gun. After the development, the chip was examined under
an Olympus BX51M optical microscope. If the pattern was not a desired one, the
fabrication step was repeated from the beginning.

The metal pillars were deposited using the UHV evaporator. Before the evaporation,
any excess residues of the resist from the developed areas were removed using an O2

cleaning process with the RIE with 60 W RF power, 40.0 mTorr pressure and 50.0
sccm gas flow with a 45-60 s process time. For aluminium pillars the evaporation rate
was 0.1 nm/s, and the calibration factor was determined with the Bruker Multimode
8 atomic force microscope (AFM) to be 1.25. With this calibration evaporating a
300 nm layer of aluminium from a 0 degree angle the evaporation thickness monitor
reading was 240 nm. The pressure inside of the evaporation chamber was generally
in the range of 10−9 and 10−7 mbar, depending on the evaporated metal, the current
frequency of use of the device, and when the vacuum chamber was last opened.

The lift-off, or the removal of the metal in the areas that were not patterned, was
done by immersing the chip in acetone near its boiling point. The hot acetone
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was also sprayed onto the chip with a syringe until the metal layer appeared to be
removed. The results were then investigated under the optical microscope, and the
lift-off process was repeated if there was any unwanted metal remaining.

In the fabrication of the 1 µm period PnC sample the copolymer was omitted from
the pillar fabrication step, and 3 layers of PMMA A4 deposited with 2500 rpm were
used instead. The resulting layer was approximately 600 nm thick, and the 5 nm Al
layer was evaporated between the second and the third layer. The reason for this was
that after developing the copolymer the PMMA A4 layer collapsed with lack of any
support, which prevented the lift-off. For the 5 µm pillars, some copolymer remained
to support the PMMA layer, which prevented such a collapse. As the lift-off was
successful without a copolymer, it is probable that no EL9 layer would have been
required with the 5 µm pillars either.

3.3 SNS and SINIS fabrication

The fabrication of the SNS heater and the SINIS thermometer was done in two
different lithography cycles, but the steps were fairly similar. In both the SNS and
the SINIS fabrication the resists applied were EL9 at 2500 rpm (∼350 nm) baked
for 1 minute at 160 ◦C, and two layers of 950 PMMA A4 at 2000 rpm (∼700 nm
combined) baked for 2-3 minutes at 160 ◦C. A 5 nm aluminium layer was once again
evaporated between the layers of PMMA. As even the first resist layer was thicker
than the height of the pillars, there appeared to be no problems with the spinning of
the resist.

The acceleration voltage for EBL for both the SINIS and the SNS was again 20 kV.
The are dose was 300 µC/cm2 for all structures. For the smaller parts of the pattern
the 30 µm aperture was used with a 50 µm write field to achieve the necessary
resolution. As the write field was not big enough to fit all of the thinner lines with
the junctions, the write field had to be manually aligned with the software’s write
field alignment procedure. To further increase the resolution and to confirm the
alignment of the write field a beam spot was exposed in the vicinity of the are to
be patterned, and the final focusing, the stigmation correction and the write field
alignment were done on the spot. The larger parts of the leads and bonding pads
(Figure 15) were exposed with a 120 µm aperture, a current of ∼5 nA and a 1000
µm write field.
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To create the pattern precisely in the right spot in the empty space space inside the
pillar array, a 3-point alignment procedure provided by the software was utilised.
First, one of the larger alignment markers created along with the pillars was located.
An angle correction was performed with the two large markers above the design.
Then the coordinate system of the software was set to match the location of one of
the markers. After this rough alignment was made, the smaller markers closer to
the centre of the structure were located (see Figure 15), and an angle correction was
again performed on the two markers with the same y-coordinate. Then the 3-point
alignment procedure was performed, where each of the real marker locations was set
to match the marker location in the design. This way the location of the exposure
could be set very accurately.

The development steps for the SINIS and the SNS both were 20 s in developer 1, 1
min clean with IPA, 10 s in room temperature KOH, washing with DI water and
IPA, 20 s in developer 1, 7 s in developer 2, and 1 min in IPA. The parameters for
the O2 clean were the same as the cleaning done for the evaporation of the crystal
structure.

For the SNS heater the superconducting leads leading to the titanium-gold normal
metal were of niobium with a thin layer of titanium underneath. A 5 mn layer
of Ti was evaporated from a 60 ◦ angle (Figure 13) from the sample normal with
evaporation rate of 0.1 nm/s. Then a 20 nm layer of Nb was evaporated from the
same angle at 0.2 nm/s. The purpose of the Ti layer here was to create a barrier
between the Nb and the SiN in the film, as the Nb layer will grow to be of higher
quality in the presence of the Ti barrier [80]. The larger evaporation rate of Nb was
to decrease the grain size to reduce oxygen pathways that would lead to a deeper
oxidation and a lower quality film [80, 81]. Then the sample stage was rotated 90 ◦

in the xy-direction, and the same thicknesses of Ti and Nb layers were evaporated to
form the second superconducting lead. Then another 5 nm of Ti was deposited from
0 ◦. The purpose of this Ti layer was to work as an adhesive for the gold. A 20 nm
layer of Au was then evaporated from 0 ◦ on top of the titanium. This created the
normal metal link between the superconducting leads. The lift-off procedure was
similar to that of the pillar fabrication phase. The width of the Nb leads near the
heater were 1 µm , and the Ti-Au wire was 300 nm wide.

Several times during the thesis project it was discovered that the after the evaporation
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Figure 16. A SEM image of the heater-thermometer fabricated with an aged
EL9 copolymer. The normal metal part of the SNS-junction is notably thinner
than it should and not intact.

and the lift-off, the normal metal part of the SNS-junction was not fully intact. When
this was the case, often times the normal metal Au would only show faintly in the
optical microscope images or not at all. Sometimes there were parts that were clearly
missing, or the Au wire consisted of small "islands". An image of an example of this
problem is shown in Figure 16. This was also occasionally observed with the Al wires
leading to the SINIS junction. Fortunately, this problem had also previously been
encountered during the fabrication in [37]. Apparently the copolymer EL9 had aged,
as producing a new solution from the EL11 stock solution seemed to immediately fix
the issue for a while, although the problem usually appeared again in a few weeks.
After this had been going on for a while, a new bottle of ethyl lactate was produced.
A solution made from this new bottle appeared to age more slowly, as the first
solution made from the new bottle persisted through the rest of the fabrication work.
Fro addition the SNS normal metal part and the SINIS superconducting wires were
made slightly wider as an attempt to improve the yield of the overall process. The
SINIS wires were not widened around the tunnel junction to keep the junction area
constant.
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After confirming the wires in the SNS structure were intact, a similar lithography
process as described for the SNS structure was conducted, this time to create the
SINIS-junction. The alignment was done for the same markers created during the
PnC fabrication phase, and similar apertures and write fields were used for the
smaller and the larger structures. The metal deposition began by evaporating 20 nm
of Al from 60 ◦ angle with the familiar rate of 0.1 nm/s (Figure 13). This created
the superconducting wires leading to the junction. Next the insulating barrier of
AlOx was created by transferring the sample to the loading chamber of the UHV
evaporator, and exposing it to a 200 mbar of pure oxygen atmosphere for 5 minutes.
The sample stage was then rotated 90 degrees, and the stage was pulled back into
the evaporation chamber. Ti was once again used as an adhesive for the Au normal
metal. To have an even layer of the normal metal evaporation was done in several
angles. First Ti and then Au were evaporated from both sides from 55 ◦, 50 ◦ and
45 ◦ angles, at a rate of 0.1 nm/s. 0.7 nm of Ti was deposited per turn, making the
final Ti thickness 4.2 nm. The final Au layer thickness was 21 nm, resulting from
evaporating 3.5 nm per turn. The Al leads and the Ti-Au wire were both 300 nm
wide.

The lift-off was again done in hot acetone, and the results were first examined under
the optical microscope. An image of the finished design is presented in Figure 17.
The integrity of the wires and the existence of a tunnel barrier was confirmed by
measuring the room temperature resistance of the junctions with a Fluke 175 digital
multimeter. The multimeter was attached to micrometer-scale probes that allowed
the measurement of resistance from the bonding pads. Typical room temperature
resistances for the SNS-junctions were 1.5 − 2.5k Ω, and typical SINIS resistances
were 4 − 7 kΩ. If the resistance of the SINIS was equal or below the resistance of the
SNS, it was assumed that no tunnelling barriers were present.
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Figure 17. SEM images of the finished phononic crystal device with the heater-
thermometer, taken from a 45 ◦ angle. The suspended area of the SiN film can
be seen as the darker square in the upper image.
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Figure 18. Some of the most crucial electronics used in the measurements: a)
The PID-controller on the top, and the resistance bridge on the bottom. b) The
voltage amplifiers and the current amplifier.

4 Methods

4.1 Measurement equipment

The measurements were conducted in an electrically shielded measurement room
in the Nanoscience Center. The room functioned as a Faraday cage which would
shield everything inside from external electromagnetic radiation. The room also had
a ground separate from the standard building ground to prevent any noise or current
spikes originating from other devices.

An analogue voltage sweep box was used as the voltage source for the measurements.
The sweep box was powered by a car battery to prevent noise from the electrical grid.
The voltage signals were amplified with two DL Instruments 1201 voltage amplifiers,
and the current was amplified with a DL Instruments 1211 current amplifier (Figure
18). The analogue signals from the amplifiers were fed to a National Instruments
BNC-2090 Data Acquisition System, and the signal was converted to a digital form
with a National Instruments PXI-6251 ADC. The digital signal was then sent to a
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Figure 19. a) The bare PDR dilution refrigerator "Noiseless". b) The cryostat
in a He dewar during a measurement.

computer via an optical fiber. A home-made battery powered current source was
used for a source for a constant current.

The electrical measurements were done below 1 Kelvin. The cooling to these
temperatures was achieved with a home-made 3He/4He dilution refrigerator "Noiseless"
(Figure 19), which was able to reach temperatures around 50 mK. The cryostat
contained a RuO resistance thermometer, which allowed for a precise monitoring
of the sample stage temperature at low temperatures. The thermometer resistance
was read with an RV-Elektroniikka Picowatt AV47 resistance bridge, and the signal
was transferred to a computer via the same route as with the amplifier signals.
The temperature of the stage could be fixed with a <1 mK accuracy with an RV-
Elektroniikka TS-530 PID (proportional-integral-derivative) controller, which was
connected to a heater in the sample stage.

Multiple stages of electrical filters were present at different temperatures along the
measurement lines. At the base of the cryostat sample stage, integrated into the
stage bonding pads, were simple RC low-pass filters. At the base temperature level
there were also meander-line high-frequency metal powder filters. The purpose of
these filters was essentially to filter out any thermal noise. At 1 K a metal powder
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feedthrough was used for additional filtering. At liquid He temperature, 4 K, the
lines had commercial pi-filters. Additionally, the amplifiers used also possessed their
own output filters, set for low-pass/DC for the measurements.

The working principle of a 3He/4He dilution refrigerator is based on the phase
behaviour of a 3He and 4He mixture at sub-Kelvin temperatures. Below a certain
temperature the mixture undergoes a separation into two phases, one with a high
concentration of 3He and one with a low concentration of 3He, referred to as the
concentrated and the dilute phase, respectively. The dilute phase has a larger
enthalpy than the concentrated phase, so transferring 3He atoms to the dilute phase
requires energy, which is taken as heat from the environment. This is the source of
the main cooling power of the device. The 3He is moved from one phase to another
by pumping it through a circulatory system involving multiple heat exchangers and
a still heater enhancing the circulation. Although the initial gas mixture has a
proportion of approximately 30 % of 3He, the circulating gas is almost entirely 3He
due to it having a higher vapour pressure, the 4He being condensed in the mixing
chamber.

The phase separation temperature is below 1 K, and is dependent on the concentration
of the initial mixture. This temperature is reached by first cooling down to 4 K with
liquid helium-4, after which a temperature of ∼ 1. K is achieved with a pot cooler,
where the cooling is created by pumping of 4He from the dewar. Both components
of the mixture liquefy at this temperature. Then the condensed mixture is pumped
until the phase separation temperature is achieved, in the case of our system around
0.7 K.

4.2 Measurements

To determine the thermal conductance reduction of the phononic crystal, the emitted
phonon power as a function of temperature of an unaltered 300 × 300 µm 300 nm
thick SiN membrane and a similar membrane with two pillar-based phononic crystal
with Al pillars of h = 300 nm, a filling factor of 0.65, and periods of a = 5 µm
and a = 1 µm were measured. These results were then compared with each other
and with the coherent theory simulation data. The measurement procedure and the
data analysis were identical for all samples. In this chapter the measurement of the
unaltered membrane is used as an example.
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4.2.1 Cooldown

The sample chip was attached to the sample stage of the cryostat with low temperature
varnish. A piece of tobacco paper soaked in varnish was placed between the chip and
the varnish to allow for air to escape from the cavities below the membranes and
to prevent the varnish from making direct thermal contact with the film, without
compromising the thermal contact with the chip itself. A Kulicke & Soffa 4523A
wire bonder was used to connect the sample bonding pads to the sample stage
contacts with Al wires. After the bonding the stage was attached to the cryostat, the
connections and the integrity of the device were checked with a multimeter. Then
the vacuum jacket and all of the lines of the cryostat were pumped to a vacuum.
During all of this the sample stage contacts were connected to the measurement
room ground.

After starting up the pumps and checking that no leaks were present, the cooldown
was initiated by submerging the cryostat into liquid nitrogen, while a small amount
of air was let inside the vacuum jacket to function as a heat exchange gas. Before
the submerging the pot was flushed with 4He, and after that kept at a constant
pressure slightly above 1 ATM. When the cryostat had reached 77 K, it was quickly
transferred into a liquid helium dewar. A small amount of 3He was let into the
vacuum jacket to once again function as the heat exchange gas. 3He was used here
because it is much easier to pump than 4He, as it remains a gas even at 4 K. The
pressurising of the pot was also ceased after this point. Once the vacuum jacket had
reached a sufficiently low pressure, the pumping of the pot was initiated, and the
cryostat was left to condense the mixture overnight.

If there were no leaks, the cryostat had cooled close to 1 K overnight. A much higher
temperature would indicate a leak. With no evident leaks, the circulation of 3He was
initiated by beginning to pump the still (dilute phase) side of the circulatory system.
The temperature then decreased until reaching the phase separation temperature,
where the decrease slowed down, until after a while it greatly accelerated, indicating
the phase separation. The cooling was also accelerated by heating the still, which
increased the evaporation rate of the 3He. The heating was gradually increased until
a temperature close to 50 mK was achieved.
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Figure 20. A circuit diagram of the IV-measurements. R1 and R2 are the
resistors for the voltage divider.

4.2.2 IV-measurements

After reaching the lowest achievable temperature of the cryostat, the IV-characteristics
of the SINIS-junctions were measured. The measurement circuit was a standard
4-point measurement, a circuit diagram of which is presented in Figure 20. The
output voltage of the voltage divider is determined by the resistors R1 and R2 by

Vout = Vin
R2

R1 +R2
. (80)

The voltage divider output essentially determined the range of the voltage sweep.
Typical divider values during the IV-measurements were 1/1000, 1/2000 and 1/5000.
The output signals were amplified and collected through the measurement card. The
measurement was run and the data was collected with a LabVIEW-program.

The IV-curves were measured to confirm the existence of a SINIS-junction, and
to determine a suitable bias current for utilising the SINIS as a thermometer. For
this, the IV-curve was measured at multiple temperatures between 50 mK and 1 K,
the temperature having been set with the PID. An example of some IV-curves is
presented in Figure 21a. Albeit the amplifiers were manually corrected for offset,
there always existed a small offset for both the voltage and the current. This was
corrected by taking a numerical derivative of the current data to obtain a differential
conductance (dI/dV ) curve, for which the voltage offset was corrected by setting
the curve to be symmetric around zero bias. The current offset was then corrected
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by aligning the zero of the current to the zero of the offset-corrected voltage in the
IV-curve. This was done with the Origin software. The amplified values were also
converted into physical values by taking into account the gains of the amplifiers.
Differential conductance curves derived from the IV-curves are shown in Figure 22.

A suitable bias current was then determined by plotting all of the measured IV-curves
on a logarithmic scale. The bias current was chosen so that the voltage would have a
maximal change as a function of temperature, to have the optimal sensitivity for the
thermometer (Figure 23). BCS-theory fits were done for the SINIS IV-characteristics
to obtain the values for the energy gap at zero temperature and the Dynes parameter.
A code created by Geng Zhuoran was used for this. Initially the fitting was done
using a simple theory, which ignores for instance any heating and cooling caused
by the junctions and the normal metal. These fits are presented in Figure 24. As
seen from the figure, the simulations do not fit very well. To obtain better fits, a
so-called thermal model present in the same code was used. The thermal model
takes into account the strength of the electron-phonon coupling and the heating and
cooling caused caused by the SINIS-junction, as well as heat flow in the metals. The
values for the superconducting energy gap obtained from the fits correspond fairly
well to the value of the gap of Al, and the Dynes parameter is in the same order of
magnitude as in previous studies within the group [18, 37].

4.2.3 Calibration and the heating experiment

The circuit diagram for the calibration and the heating experiment is presented in
Figure 26. The SINIS-thermometer circuit had a floating ground to prevent any
current leakage between the two circuits.

The calibration was performed by measuring the SINIS voltage and the stage ther-
mometer resistance while cooling down the cryostat. The cooling down was assumed
to be slow enough to have the SINIS junction constantly in a thermal equilibrium
with the sample stage. The correct stage temperature was obtained by performing a
ninth-order polynomial fit to the RuO thermometer calibration data. This was then
plotted with the voltage to obtain the voltage as a function of temperature, shown
in Figure 27.

After the calibration, the cryostat temperature was set to a value as low as possible
with the PID-heater. This temperature was generally 10-20 mK higher than the
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(b) SINIS-IV-curves with the 55 mK curve having a smaller voltage divider.

Figure 21. SINIS-junction IV-curves from the first measurement.
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Figure 22. Differential conductance curves of the first measurement for different
temperatures. A zero bias peak at T < 100 mK can be observed.

0 . 0 0 . 2 0 . 4

0 . 0 1

0 . 1

1

1 0

1 0 0

 7 0  m K
 1 0 0  m K
 2 0 0  m K
 4 0 0  m K
 7 0 0  m K

I (n
A)

V  ( m V )

1 0 0  p A

Figure 23. Logarithmic scale IV-curves that were used to determine a suitable
bias current. A 100 pA bias current used in the measurements for the unaltered
SiN film is shown.
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0 . 0 0 . 2 0 . 4
0 . 0 0 1

0 . 0 1

0 . 1

1

1 0

1 0 0

∆(0) = 0 . 2 2  m V
Γ = 3 . 5 e - 4  

 7 0  m K
 1 0 0  m K
 2 0 0  m K
 4 0 0  m K
 7 0 0  m K
 7 0  m K  s i m
 1 0 0  m K  s i m
 4 0 0  m K  s i m
 2 0 0  m K  s i m
 7 0 0  m K  s i m

I (n
A)

V  ( m V )

Figure 25. The unaltered membrane IV-curves with thermal model simulations.
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Figure 26. The heating experiment as a circuit diagram. The calibration of the
SINIS voltage before the heating experiment was done for the same circuit. The
SINIS circuit was floating, so the grounds of the two circuits are not connected.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

V (
mV

)

T  ( K )

Figure 27. The SINIS calibration curve with a 100 pA current bias used in the
measurement of the unaltered film emitted phonon power.
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Figure 28. The emitted phonon power measured for an unaltered film. A power
law fit divided into two parts is done for the experimental data.

lowest achievable temperature as some heating was required for a stable temperature.
This temperature is referred to as the bath temperature Tb. The voltage sweep box
functioned as the voltage source for the SNS-heater, and the voltage and current of
the SNS and the voltage over the SINIS were measured. Three sets of data with
voltage dividers of 1/300, 1/1000 and 1/5000 were measured. An offset correction
was once again conducted on the SNS voltage and current. The SINIS voltage was
left unaltered, as that would have destroyed the calibration, and absolute voltage
values were not required to obtain the temperature from the SINIS voltage.

The temperature of the SINIS was obtained by a linear interpolation of the calibration
data, and the power emitted by the heater was calculated from Joule’s law P = V I.
The power was then plotted as a function of the temperature. A simple power law

P = A(T n − T n
b ) − Pnoise (81)

was fitted to the curve, where A, n and Pnoise are parameters to be determined. The
purpose of the Pnoise term is simply to set the zero of the fit to match the zero of
the measured data. Physically, it corresponds to noise heating. The fitting for the
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unaltered film data was conducted in two parts, for T > 300 mK and T < 300 mK,
following the example of Ref. [37]. This was done because there was a noticeable
change in the power law of the curve, which is expected for a quasi-2D membrane
[37, 39]. There is also possibily some effect caused by the self-cooling of the SINIS-
junction. The fitting for the unaltered film data is presented in Figure 28. The three
resulting emitted power curves from the three measurement runs were compared to
confirm they were consistent, and the data used for the fitting and the comparison
between different samples was the one with the largest voltage range.

4.3 Simulations

The simulations presented in this thesis are based on fully coherent theory, and
were performed by Tuomas Puurtinen. The frequency eigenmodes within the first
Brillouin zone for an unaltered film and the phononic crystal were solved using
FEM-simulations. The emitted phonon power could then be calculated from the
obtained eigenmodes via equation (42).

As the size of the unit cell of the PnC was much larger than the interatomic distance,
classical elastic theory was used for solving the eigenmodes within the unit cell from
the elastodynamic equations [18]

−µ∆u − (λ+ µ)∇ · u = ρω2u

n̂ · σ(u) = 0,
(82)

where u is a 3D displacement vector, µ and λ are the elastic parameters for the
material, ρ is the material density and σ(u) is the stress tensor. Experimental values
for amorphous bulk materials at room temperature were used. These parameters
could differ from the actual values for a thin film at low temperatures, but for a
hard material such as SiN the difference should not be great. The second equation
is for the assumption of stress free conditions at the membrane surfaces. Periodic
Bloch boundary conditions are used to connect the unit cells.

For the 5 µm period PnC, only frequencies up to 3 GHz were taken into account due
to the limitations of the computation time. This computational heaviness was in
large part caused by the large period, which in turn results in a comparatively small
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Brillouin zone. The small Brillouin zone results in an increased number of foldings of
the phonon branches at the edges of the first Brillouin zone. This then exponentially
increases the computation time for the frequency eigenmodes.

Because of this omission of higher frequencies, the resulting emitted power data is
only accurate at lower temperatures. As the temperature increases, higher frequencies
are required for the dispersion data as more phonons are thermally exited. This
gives rise to an approximately 50 % error at 400 mK for the 5 µm period data.

Figure 29 shows the simulated dispersion relations for an unaltered 300 nm SiN
film, and for the same film with pillar-based PnC with a 5 µm period Al pillars.
There appears to be no complete band gaps, but the bands are visibly flattened. For
clarity, only a fraction of the calculated modes are shown in the plots. The dispersion
relation for a 1 µm PnC is shown in Figure 30. Here the frequency range is larger,
as the smaller period leads to a less heavy computation. Here a similar flattening is
observed, and there even exists a complete band gap at around 2 GHz.
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Figure 29. Simulated dispersion relations up to 3 GHz for an unaltered SiN
film (upper) and a PnC with a 5 µm period Al pillar structure (lower).
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Figure 30. Dispersion relation for the 1 µm PnC.
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Figure 31. The unaltered membrane data compared with the previous results
of Ref. [37]. The temperature exponent in the high temperature end for this
particular previous work data set is 3.6.

5 Results and Discussion

5.1 Unaltered SiN film

The results for the emitted phonon power in a 300 nm SiN film (Figure 28) agreed
well with previous results where a similar measurement geometry was used [37]. The
film data and the data from Ref. [37] are plotted in Figure 31. The only difference
between the data is a slightly higher power of 3.6-3.8 in the > 300 mK range in the
previous measurement. The films in the two experiments were assumed to be of the
same thickness, but as the chips were from a different wafer there may be differences
in parameters such as stress.

In the SINIS IV- and differential conductance curves below 100 mK a peak near
zero bias was observed, as can be seen in Figures 22 and 23. This peak was not
observed in the previous experiments with the same heater-thermometer design [37].
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Figure 32. A close-up of a SINIS-junction where a possible Ti layer below the
normal metal Au appears to extend around the Au, possibly shunting the normal
metal.

A few possible explanations for this exist: Bulk titanium is a superconductor with a
critical temperature of 0.49 K. It is plausible that the superconductivity of the Ti
layer below the gold normal metal was not completely suppressed by the proximity
effect [37]. This could result from the Ti layer being thicker than expected, resulting
in a suppressed but finite Tc of ∼ 100 mK. In some SEM images (Figure 32) it was
also observed that the area where Ti was deposited was larger than the area of Au,
leaving a small part of the Ti exposed. This could also lead to the titanium shunting
the normal metal. Both of these cases would result in a SIS′IS-junction, which would
explain the zero bias current. The superconducting titanium being the source of
the peak is also supported by the fact that no such peak can be seen in the IV-data
from the measurement with the 5 µm or the 1 µm PnC sample, where the Ti layer
thickness below the Au was reduced by 30 %.

A similar zero-bias peak below 100 mK in a differential conductance curve of a
SINIS-junction has also been observed by for example Rajauria et al.. [82], where the
conductance peak is explained to originate from Andreev current, a double particle
tunnelling current induced by Andreev reflection. However, it is worthwhile to note
that in [82] the normal metal used was copper. However, an Andreev current across
a SINIS structure with a Ti-Au normal metal has been observed by Faivre et al. [83].
Instead of a current peak (Figure 23), the observed effect here was a step in the
sub-gap current, so that does not fit to our results. Another fact discouraging the
Andreev current as an explanation is that this peak has not been observed in any
previous measurements with a similar junction performed in our research group.
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Figure 28 includes the simulated curve for the emitted phonon power of the unaltered
film. The agreement of the measured data and the theory is decent, but not perfect.
The change of power law in the theory curve is different from the measured data.
The power of the simulation curve in the same at the low temperature range, but
at the high T range the power is 3.8. The power in the experimental data appears
to be more closely aligned with the results of Ref. [37]. In Ref. [37] two different
bias currents were used, one higher than the one used in this work. This provides a
better sensitivity at higher temperatures, which could explain the difference at high
temperatures.

There are a few factors which may explain the minor differences between the theory
and the experiment. The elastic parameters for thin films are generally not well
know, and even less so at low temperature. The simulations also assumed stress-free
films (82), which is rarely the case in real thin films. The high temperature end of
the measured data is also more prone to experimental error, as the sensitivity of the
thermometer decreases in sensitivity above 500 K, as can be seen in Figure 27.

5.2 The emitted power of a 5 µm period phononic crystal

The IV-curves measured for an optimal bias current for the sample with the 5
µm aluminium pillar PnC with thermal model simulations are shown in Figure 33.
Unfortunately, during the calibration and the heating experiment the cooling of the
cryostat was not optimal, and the available calibration data extend only to around
100 mK, even though eventually a passable bath temperature of 85 mK was reached.
This limits the measurement range at the lower temperatures.

Figure 34 presents the emitted power curve calculated from the heating experiment
data with a power law fit. The exponent is very close to 4, and remains constant
throughout the measurement range. This behaviour corresponds to the fully 3D case
of equation (39). In the case of coherent phonon manipulation, as in Figure 4, the
temperature exponent of the emitted power curve is expected to be lower than that
of an unaltered film. In contrast to these results, the hole-based PnC curve also has
a rather drastic change of power above 500 mK, perhaps caused by the coherence
being destroyed at higher temperatures.

As for the 5 µm period Al pillar PnC, the most likely cause for the power of the
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Figure 33. The IV-curves with thermal BCS-theory simulations for the SINIS-
junction in the 5 µm PnC sample. The constant bias current used in the
calibration and the heating experiment, which was identical to the one used in
the unaltered film measurement, is also shown.
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Figure 34. The emitted phonon power of the 5 µm period PnC with the power
law fit.
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Figure 35. A high magnification SEM image of a single Al pillar. A notable
surface roughness can be seen on the top of the pillar along with some large
particles, and an even greater roughness is present on the sides of the pillar.

emitted power is the absence of coherent modification of the phonon disperions. If
the phonons travelling in the film were incoherent and the phonon scattering would
be diffusive, and the phonons would scatter to all possible directions within the film.
Thus, equation (42) would no longer apply, and the situation would correspond to
that of a 3D phonon gas encountering obstacles.

Figure 35 sheds light (or electrons) on what could destroy the coherence. Slight
roughness is visible on the top of the pillars, and significantly more on the pillar
sidewalls. In addition to that, there are some large particles up to 100 nm in diameter
on the top of the pillar. From AFM images originally used for the calibration of the
pillar height, the RMS surface roughness on the top of the pillars is ∼ 3 nm. This
also takes into account the large particles. The roughness on the sidewalls is much
more difficult to quantitatively determine, but it appears to be around an order of
magnitude greater that the top roughness. Based on equation (27) the roughness on
the top of the pillars would still allow coherent effects, but the sidewall roughness
would be enough to destroy the coherence. The quality of the interface between the
aluminium and the SiN is also an unknown factor. If there is a significant mixture
of the two materials at the interface, such as was shown in [65] for Al and Si, it
could certainly affect the phonon scattering. It is also generally known that metal
evaporation usually produces polycrystalline films. Based on Figure 35 this is also
clearly the case here. These grain boundaries may also function as diffuse phonon
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Figure 36. A SEM image of a sample with 1 µm period Al pillars.

scatterers.

5.3 The emitted power of a 1 µm period phononic crystal

The second phononic crystal sample measured was identical to the first sample,
except it had a period of 1 µm (Figure 36). This time the cryostat worked better,
and a bath temperature of 60 mK was reached, allowing for the investigation of the
thermal conductance below 100 mK. The emitted power as a function of temperature
for this sample along with the power law fit is presented in Figure 37. The behaviour
here resembles the unaltered film more than the 5 µm sample, as there is again a
visible change of the power law around 300 mK.

Unlike with the 5 µm PnC where the temperature dependence was ∼ T 4, the
temperature exponent is ∼ 3 below 300 mK, lower than the unaltered film, and
∼ 3.6 when T > 300 mK, which is higher than for the unaltered film. This dropping
of the power below 4 can imply that the phonon propagation is no longer entirely
incoherent, but coherent effects may start to emerge.
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Figure 37. Emitted power for a 1 µm period PnC with a power law fit divided
into two parts.

5.4 Discussion

The measured emitted power data of both the unaltered film and the 5 µm and the 1
µm PnCs along with the simulation data are plotted in Figure 38. As was discussed
above, the 5 µm PnC simulation data extends only to 400 mK, and even at this
temperature there exists a 50 % error. A notable reduction in thermal conductance
is observed with the 5 µm PnC: around 66 % at 200 mK, 55 % at 300 mK, and
getting smaller at higher temperatures. This appears to be even higher than the
reduction predicted by the coherent theory in many previous numerical studies [25,
48, 53, 59], exluding ref. [61], where the reduction was much higher than what was
obtained here. The reduction of the 1 µm PnC is even greater that with the 5 µm
structure, approximately 85 % across the whole sensitivity range of the thermometer.

However, the simulations deliver a completely opposite behaviour. Here, the thermal
conductance is predicted to decrease with a larger period, as is the case in other
coherent theory studies [21, 24, 25]. This further reinforces our conclusion that the
incoherent scattering is the dominant method of thermal conductance reduction for
the 5 µm period structure.
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If coherent thermal conductance reduction is suppressed or completely destroyed,
the likely source for the observed reduction is phonons being backscattered from the
pillars, which reduces the amount of phonons passing through the crystal. Local
resonances could also play a role even in the incoherent case by preventing phonons
with certain frequencies from propagating in the film. In a fully incoherent picture
the difference between the 1 µm and the 5 µm sample can perhaps be explained
by the results in [19] and [21], as the smaller period increases the scattering and
reduces the phonon transmission probability. Nevertheless, as the 1 µm PnC does
not appear fully incoherent based on the power of the T , some emerging coherent
effects may also increase the reduction further.

In Ref. [67] the 7 to 10 µm period of the structures was relatively large, so it is
reasonable to assume the origin of the reduction of the thermal conductance to be
mostly incoherent. The larger reduction with the normal metal structures would also
support this conclusion. As the reduction we observed is greater, and in Ref. [67]
the smaller period produced a larger reduction, these results seem to agree with ours
as a smaller period would produce a larger reduction in the incoherent case.

From the emitted phonon power data the thermal conductances were calculated with
equation (46), where ∆T = T − Tb. Figure 39 shows the thermal conductance for
both the unaltered film and the PnCs. The unaltered film curve appears to turn
upwards below 100 mK. This is most likely an artefact caused by the low sensitivity
of the sensor at these temperatures, and also by the fact that the emitted power
data appears to extend below the bath temperature.
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6 Conclusions

In this thesis an aluminium pillar-based PnC was fabricated, and its thermal con-
ductance was successfully measured in the temperature range of 60 mK - 1K. To
our knowledge, the largest thermal conductance reduction via a pillar-based PnC
was also observed. This shows that with some further development, the pillar-based
PnCs could rival their hole-based counterparts in thermal conductance reduction,
along with their other more favourable properties such as their higher durability and
unchanged electrical conductance in semiconductor applications.

The observation of the reduction of the thermal conductance was an expected result,
but the mechanism for this was tentatively concluded to be incoherent scattering
instead of coherent phonon diffraction. As no incoherent simulations of the structure
yet exist, it is left entirely to speculation whether there is any contribution for
the thermal conductance reduction from the local resonances. When incoherent
simulations are conducted, they could reveal if the incoherent scattering is the only
remaining mechanism.

The most likely explanation for the absence of clearly coherent effects with the PnC
is the roughness of the pillars. There are a number of approaches that could be taken
to overcome this issue. As has been demonstrated in previous studies, the pillars
could be directly etched from a single SiN film, which would give reduced roughness
and also eliminate the interface between the pillars and the substrate. The pillars
could also be etched from a metal film deposited on top of the film for a reduced
roughness. An epitaxial deposition method could also be utilised to create atomically
smooth surfaces.

The effects of different materials on the thermal conductance reduction, be it coherent
or incoherent, should also be studied. As the thermal properties of a superconductor
and a normal metal vary tremendously, comparison of the effects of normal and
superconducting pillars to the thermal conductance could provide an interesting
subject. Also, in contrast to a comparatively light element such as aluminium, a more
dense material could be used to reach resonance frequencies at different frequency
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range.
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