
Antti Neuvonen

JYU DISSERTATIONS 336

Toward an Understanding of Hydrogen-
Bonding Bifunctional Organocatalyst 
Conformations and Their Activity in 
Asymmetric Mannich Reactions



Antti Neuvonen

Toward an Understanding of Hydrogen-
Bonding Bifunctional Organocatalyst 
Conformations and Their Activity in 

Asymmetric Mannich Reactions

Esitetään Jyväskylän yliopiston matemaattis-luonnontieteellisen tiedekunnan suostumuksella
julkisesti tarkastettavaksi joulukuun 11. päivänä 2020 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Mathematics and Science of the University of Jyväskylä,

on December 11, 2020 at 12 o’clock noon.

JYU DISSERTATIONS 336

JYVÄSKYLÄ 2020



Editors
Petri Pihko
Department of Chemistry, University of Jyväskylä
Ville Korkiakangas
Open Science Centre, University of Jyväskylä

ISBN 978-951-39-8464-9 (PDF)
URN:ISBN:978-951-39-8464-9
ISSN 2489-9003

Copyright © 2020, by University of Jyväskylä
 
Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-8464-9

 



ABSTRACT 

Neuvonen, Antti 
Toward an Understanding of Hydrogen-Bonding Bifunctional Organocatalyst 
Conformations and Their Activity in Asymmetric Mannich Reactions 
Jyväskylä: University of Jyväskylä, 2020, 77 p. 
(JYU Dissertations 
ISSN 2489-9003; 336) 
ISBN 978-951-39-8464-9 (PDF) 

Small molecule catalysts capable of simultaneously activating and coordinating 
reactive substrates through weak interactions, in a highly selective fashion, typi-
cally suffer from a lack of generality. Moreover, the interplay of several weak 
interactions in catalyst-substrate complexes is often not well understood. The aim 
of this thesis is to explain the factors governing the complexation and the activa-
tion of hydrogen bonding substrates with conformationally flexible bifunctional 
thiourea-tertiary amine organocatalysts during the catalytic cycle. Enantioselec-
tive Mannich reactions were used as model reactions. The catalyst family discov-
ered in a prior study was further screened and developed to improve selectivity, 
reactivity and to expand the catalyst utility in related reactions. Computational 
and kinetic studies were conducted to establish a model explaining the observed 
selectivity and reactivity patterns. Additionally, conformational preference of the 
catalyst upon anion binding was studied with an array of anions in the solid state 
and in the solution to correlate the anion size and shape with observed catalyst 
folding. The thesis is based on three peer-reviewed publications. 

Keywords: bifunctional organocatalysis, organic synthesis, anion binding, 
hydrogen bonding, kinetic experiments 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Neuvonen, Antti 
Kohti vetysitoutuvien bifunktionaalisten organokatalyyttien konformaatioiden 
ja niiden aktiivisuuden ymmärtämistä asymmetrisissä Mannich-reaktioissa  
Jyväskylä: University of Jyväskylä, 2020, 77 p. 
(JYU Dissertations 
ISSN 2489-9003; 336) 
ISBN 978-951-39-8464-9 (PDF) 

Katalyyttisten pienmolekyylien, jotka kykenevät samanaikaisesti aktivoimaan ja 
koordinoimaan heikoin vuorovaikutuksin lähtöaineita, toimintatapa ei usein ole 
yleistettävissä. Lisäksi useiden heikkojen vuorovaikutusten yhteisvaikutuksia 
katalyyttien ja substraattien sitoutumisessa ei usein ymmärretä. Tämän väitös-
kirjan tarkoituksena on selvittää vetysitoutuvien lähtöaineiden sitoutumiseen ja 
aktivointiin vaikuttavat tekijät katalyyttisen kierron eri vaiheissa käytettäessä 
konformaatioiltaan mukautuvaa, tioureaan ja tertiääriseen amiiniin perustuvaa 
bifunktionaalista organokatalyyttiä. Tutkimuksessa mallireaktioina käytettiin 
enantioselektiivisiä Mannich-reaktioita. Aikaisemmassa tutkimuksessa kehite-
tyn katalyyttiperheen toimintaa selvitettiin ja kehitettiin edelleen selektiivisyy-
den, reaktiivisuuden ja käytettävyyden parantamiseksi uusilla lähtöaineilla.  Ha-
vaitun selektiivisyyden ja reaktiivisuuden selittävän mallin luomiseksi suoritet-
tiin laskennallisia ja reaktiokineettisiä kokeita. Konformaatioiden määräytymistä 
katalyytin sitoutuessa anioneihin tutkittiin sekä kiinteässä tilassa että liuoksissa. 
Anionin muodon ja koon vaikutusta katalyytin konformaatioon tutkittiin käyt-
täen valittua joukkoa anioneita. Tämä väitöskirja perustuu kolmeen vertaisarvi-
oituun julkaisuun. 

Avainsanat: bifunktionaalinen organokatalyysi, orgaaninen synteesi, anionisi-
toutuminen, vetysitoutuminen, kineettiset kokeet
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15 

1.1 Catalysis is All Around Us, but It is Difficult Understand 

Biological catalytic processes are a significant factor in the vital functions of all 
known forms of life, and thus they have been an essential part of life on Earth for 
billions of years. On the other hand, catalysis has proven to be the main driver of 
new innovations in chemical research and industrial processes which enable the 
modern healthcare and food supply. 1  Despite the many successful 
implementations and the general understanding of catalytical processes there is 
still a long journey ahead to fully understand the phenomena behind asymmetric 
catalysis.2  

Catalytic applications form the backbone of sustainable energy, fertilizer, 
and materials industries, comprising of e.g. fuel and power production, 3 
ammonia production 4 , monomer production for polymeric materials and 
polymerization,1 and fine chemical production.5 Shortly put, in things that have 
changed societies in the modern era throughout the globe. In these cases, metal 
catalysis is mostly used. Catalysis by organic small molecules is still a niche area 
in chemical industries. However, as pharmaceutical and agrochemical6 active 
ingredients are required to be more effective and selective, approaches to 
introduce chirality7 and enantiomeric purity have been taken. To reach these 
goals, new activation modes and the use of asymmetric organocatalysis is bound to 
find more and more industrial applications.8  

Penflufen (1), an SDHI fungicide, is used as a racemic mixture despite the 
S-enantiomer being almost 5 times as effective against apple scab (Venturia
inaequalis) as the R-enantiomer at 25 g/ha application rate (FIGURE 1).9 This
means that the same efficacy could be reached with 40% less material if only pure
S-enantiomer was used. In this case the benefits of using a pure enantiomer are
clear but the availability of feasible enantioselective large-scale manufacturing
processes limits the availability of the pure S-enantiomer.

1 INTRODUCTION TO CATALYSIS AND ITS ROLE 
IN SOCIETY 
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FIGURE 1. Structures of R and S enantiomers of SDHI fungicide Penflufen. 

In pharmaceuticals such racemic active ingredient mixtures caused “the 
biggest man-made medical disaster”. 10  Whereas the S-enantiomer of 
Thalidomide (2) is an effective sedative and anti-emetic in treatment of morning 
sickness in pregnant women, the R-enantiomer is teratogenic to the unborn child 
and caused permanent physical defects to over 10 000 children. In this case even 
the enantioselective synthesis of the active ingredient does not solve the problem 
as the stereocenter epimerizes in physiological conditions to result a racemic 
mixture (SCHEME 1). 

 

 

SCHEME 1. Epimerization of Thalidomide enantiomers. 

Although the examples above are just individual cases, they remind us of 
the fact that these differences of activity in biocatalytic processes are often not 
obvious from the molecular structure even to the experts in the area, revealing 
the limits of human understanding, especially in understanding structure-
activity relationships.  

Still today the development of catalysts for enantioselective transformations 
is mostly relying on trial and error, and chemical intuition.11 Despite the outlook 
from nearly 20 years ago12 and the exponential increase in computation power, 
computational design of enantioselective catalysts has not yet become 
mainstream and many alternative approaches are still in early 
development.13,14,15 Due to the high development effort, tailor-made catalysts 
that are required to reach high yields and selectivity are much more expensive 
than more widely used general catalysts. A better understanding of the structure-
activity relationship would reduce the labor cost of catalyst development but not 
necessarily the material cost of catalyst itself. To reduce the cost of catalysis and 
to increase the feasibility of catalytic processes, high turnover frequency (TOF) 
and turnover number (TON) are essential. These targets should be among the 
main drivers for any catalysis development efforts.  
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Both governmental bodies, such as “Europe 2020 Strategy” by European 
Union 16 , and non-governmental organizations 17  are advocating resource 
efficiency as the solution to lower human impact on the nature. Additionally, 
sustainability goals are becoming increasingly important to customers and 
stakeholders across industries. Catalysis is widely considered to be a significant 
part of the solution.18,19 

1.2 Catalysis in the Scope of this Dissertation 

1.2.1 General Principles of Catalysis 

Molecules and polymeric materials exhibiting catalytic activity have been 
grouped and labeled, based on structure and activity, into numerous catalysis 
subcategories. However, few fundamental principles apply to all forms of 
catalysis.20,21 In a catalytic reaction a catalyst interacts with the starting material(s), 
intermediate(s), or other species in the reaction. Hence the reaction mechanism is 
changed leading to the formation of reaction products via a lower-energy 
pathway (FIGURE 2).  

 

 

FIGURE 2. Simplified depiction of an energy diagram of a non-catalyzed reaction and a 
catalytic reaction, TS denoting a transition state. 

A lower energy in the TOF determining transition state leads to an 
increased rate of product formation. Since the starting materials and products in 
a catalytic reaction and non-catalytic reaction are the same, the reaction enthalpy 
(ΔH) is not altered and thus the equilibrium of the reaction does not change. In 
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2011 Kozuch and Shaik21 published an article introducing an “Energetic Span 
Model” which refined the terminology describing the factors governing TOF, 
namely the TOF-determining transition state (TDTS) and TOF-determining 
intermediate (TDI).  

Another general principle in catalysis is that the catalyst is regenerated after 
participating in the catalytic reaction. The regeneration of catalyst allows the 
presentation of the consecutive reactions as a catalytic cycle where reaction 
starting materials enter the cycle and product together with potential side 
products leave the cycle (SCHEME 2). This presentation helps us to understand 
the concepts of TOF and TON, TOF being the number of cycles per time unit and 
TON being the number of times a single catalyst molecule, on average, completes 
a cycle. This presentation however does not explain the deactivation of catalyst 
through irreversible complexation or through side reactions which result in the 
observed TON.  

 

 

SCHEME 2. Proposed catalytic cycle of a Suzuki reaction.22  

1.2.2 Introduction to Asymmetric Catalysis 

Main purpose of asymmetric catalysis is to have access to a compound which can 
exist as stereoisomers 23  known as enantiomers 24  and to obtain it as a pure 
enantiomer. Without any external factor promoting the formation of one 
enantiomer over the other in a reaction, the enantiomers would be obtained as a 
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racemic mixture, with 1:1 ratio of enantiomers. The enantiomeric selectivity of a 
reaction is typically governed by a difference in the rate of formation.2 However, 
in the case of reversible reactions or epimerizable stereocenters, thermodynamic 
or kinetic equilibrium in chiral environment can also favor formation of one 
enantiomer over the other. Examples of such enrichment of enantiomers are 
crystallization-induced asymmetric transformations 25 , 26  and dynamic kinetic 
resolutions (DKR)27. 

In the development of asymmetric catalysis, the aim is to increase the 
reaction rate against the non-catalyzed reaction as well as to promote the 
formation of the desired enantiomer over the undesired enantiomer. The rates of 
enantiomer formation are controlled by the energies in the stereoselectivity 
determining transition state.2 Thus, to achieve high selectivity, it is mandatory 
for a catalyst to differentiate the enantioselectivity determining transition states.  

In enantioselective catalysis the reaction energy diagram (FIGURE 2) 
transforms to account for two pathways leading to R and S enantiomers (FIGURE 
3). In this example of kinetic control, enantioselectivity arises from the energy 
difference ΔG of diastereomeric transition states TS2(R) and TS2(S).2 In FIGURE 3 
a scenario is depicted where prior to the bond forming reaction two slightly 
different diastereotopic substrate-catalyst complexes I1(R) and I1(S) are formed 
that would lead to different product enantiomers. This complexation can be 
reversible, and in that case the enantiomeric ratio is determined in the bond 
forming reaction between two substrates.  

 

 

FIGURE 3. Simplified energy diagram of a catalytic enantioselective reaction.  
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The enantiomeric ratio, a key performance indicator in enantioselective 
catalysis, arises from the energy difference (ΔG) of enantioselectivity determining 
transition states2 or difference in energetic span (δE)21. The ratio of enantiomers 
can be derived from rate law: 

 

𝑟𝑎𝑡𝑒 = 𝑘[𝐴][𝐵][𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡] (1) 

𝑟𝑎𝑡𝑒(𝑆)

𝑟𝑎𝑡𝑒(𝑅)
=
𝑘𝑆[𝐴][𝐵][𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡]

𝑘𝑅[𝐴][𝐵][𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡]
=
𝑘𝑆
𝑘𝑅

 (2) 

𝑘𝑆 = 𝑒
−∆𝐺ǂ𝑆
𝑅𝑇  (3) 

 
Considering a common TDI (I1(S)) for both pathways the enantiomeric ratio can 
be written as: 

∆𝐺 = ∆𝐺ǂ𝑅 + ∆𝐺0 − ∆𝐺ǂ𝑆 (4) 

𝑒𝑟 = 𝑒
−∆𝐺
𝑅𝑇 = 𝑒

−(∆𝐺ǂ𝑅+∆𝐺
0−∆𝐺ǂ𝑆)

𝑅𝑇  (5) 

1.2.3 Enantioselective Mannich-Type Reactions 

The first Mannich reactions were described already a century ago in 1917 by 
Mannich in a publication titled “Synthesis of β-Ketonic Bases”. 28  The three-
component reaction between acetone (3), dimethylammonium hydrochloride (4) 
and formaldehyde yields a linear β-unsubstituted amine 5 with two new covalent 
bonds (SCHEME 3). One of the new bonds is formed in a reaction between 
dimethylammonium hydrochloride and formaldehyde and the second bond in a 
C-C bond forming reaction between in situ formed iminium species 6 and 
acetone. However, the reaction using diethyl ketone (7) instead of acetone yields 
a branched compound 8 with a stereocenter in the α position. As no molecules 
capable of chiral induction are present, the reaction most likely yields a racemic 
mixture of enantiomers.  
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SCHEME 3. First Mannich reaction reported in 1917. 

In contrast to the report by Mannich, the focus throughout this thesis is in 
catalytic asymmetric two-component transformations of aldehyde derived 
imines. Such imines, also known as aldimines, form a stereocenter on the β-
carbon adjacent to the amine in a Mannich reaction.29 The generation of these 
stereocenters in high fidelity through enantioselective Mannich reactions has 
been a goal for many research endeavors. The history, general principles, and 
development of Mannich reaction22 and its enantioselective variants7,29 have been 
well documented in the literature. In addition to catalytic approaches to induce 
chirality, the use of chiral auxiliaries in Mannich reactions is also described.30,31 

Since the first reports of stoichiometric32  and catalytic33  enantioselective 
additions of enol or enolate nucleophiles to imines, several approaches have been 
developed to access a variety of chiral aminoketones and aminoesters.7 Few of 
the most widely studied approaches include the use of enol silanes,34,35 in situ 
formed enamines36,37 and β-dicarbonyl compounds38,39,40 as nucleophiles. These 
catalytic asymmetric approaches avoid the use of chiral auxiliaries from the chiral 
pool to induce chirality to the final product. Catalytic asymmetric approaches are 
considered to lead to better atom economy than chiral induction from 
auxiliaries.19 However, even in catalytic reactions, selection of a suitable 
protecting group may be necessary.  

In 1998 Sodeoka34 and Lectka35 groups published Lewis acid catalyzed 
enantioselective Mannich reactions between silyl enol ethers and glyoxalate 
derived imines (SCHEME 4). Silyl enol ethers react readily with electrophiles and 
Lectka proposes that catalytic activity and selectivity is achieved through 
bidentate coordination of glyoxalate derived imine to Lewis acidic metal.  
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SCHEME 4. Selected examples of enantioselective catalytic Mannich-type reactions of Silyl 
enol ethers. 

Secondary amine–carboxylic acid catalysts 16 and 17 are proposed to have 
additional interactions in the enantioselectivity determining C-C bond forming 
reaction. In these examples the amine functional group interacts with the 
aldehyde (18) or ketone (19) pronucleophile by covalently binding to the carbonyl 
functional group. The formed enamine is highly nucleophilic which contributes 
to rate acceleration and the high nucleophilicity of enamines is utilized in many 
catalytic applications.41 Additionally, the carboxylic acid functional group can 
interact with mildly basic imine electrophiles activating it towards nucleophilic 
attack. Catalysts capable of activating both substrates synergistically through 
two distinct functional groups are known as bifunctional catalysts.42 

In contrast to the previous examples, enantioselective Mannich reactions in 
SCHEME 5 are catalyzed by small organic molecules. Asymmetric 
organocatalysis as a concept is used to describe catalysis with small organic 
molecules with asymmetric induction from the catalyst.43 The various subclasses 
of asymmetric organocatalysis are discussed thoroughly in the book 
“Asymmetric Organocatalysis” by Berkessel and Gröger29 and the utility of 
Asymmetric Organocatalysis has since been expanded to new reaction types.  
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SCHEME 5. Selected examples of Mannich-type reactions catalyzed by chiral secondary 
amines. 

A third often used nucleophile type in Mannich reactions are β-Dicarbonyl 
compounds (SCHEME 6). These nucleophiles can be activated by Brønsted base 
catalysts and thus are highly potential substrates for asymmetric organocatalysis 
by organic bases. Ishihara and co-workers used a strong chiral base to 
deprotonate the pronucleophile.38 They propose that the lithium cation activates 
also the imine towards nucleophilic attack and thus the catalyst system can be 
described as being bifunctional. The catalysts reported by Deng and co-corkers39 
and Schaus and co-corkers40 include a Brønsted basic tertiary amine and a H-
bond donor moiety in their structure. Similarly to Ishihara’s report, the H-bond 
donor is proposed to activate the imine electrophile towards nucleophilic 
addition in an enantioselective fashion. 
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SCHEME 6. Selected examples of enantioselective Mannich reactions with β-dicarbonyl 
substrates.  
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2.1 Non-covalent Interactions 

Covalently bonded atoms interact mostly through shared electrons in a 
bonding molecular orbital. Bonding molecular orbitals have distinct geometries, 
spatial orientation and size, depending on hybridization of involved atoms.44 In 
contrast, non-covalently interacting species are not limited in their relative 
orientation and the interaction occurs through space. Knowles and Jacobsen have 
summarized the distance dependency of non-covalent interaction energies which 
underlines the variety of these interactions (TABLE 1).45  

At short intermolecular distances (<1,5Å) the orbital interactions are having 
a more profound effect on interaction energy. Biedermann and Schneider have 
compiled a comprehensive list of various experimental interaction energies. It is 
apparent that interaction energies should not be generalized based on interaction 
type but should rather be determined in the actual conditions.46 
  

2 UNDERSTANDING CATALYTIC REACTIONS IN 
BIFUNCTIONAL ORGANOCATALYSIS  
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TABLE 1. Distance dependencies of idealized non-covalent interactions 

Non-covalent 
interaction 

 Distance dependency of 
interaction energy  

Ion-ion 

 

1/r 

   

Ion–dipole 

 

1/r2 

   

Dipole–dipole 

 

1/r3 

   

Ion–induced dipole 

 

1/r4 

   

Dipole–induced dipole 

 

1/r5 

   

Dispersion 

 

1/r6 

   

Hydrogen bond 

 

complex ~1/r2 

   

Steric repulsion 

 

1/r12 

However, the table shown above does not consider the directionality of 
many of the weak interactions.  For example, dipole moment is a vector variable 
and the dipolar interactions of polar compounds have an optimal direction. Thus 
magnitude of ion-dipole interaction depends on the direction of a dipole 
(FIGURE 4) with regards to a point charge and the Coulombic law which 
describes the interaction between two point charges (q1 and q2, equation 6) is 
transformed into equation 7.47 
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FIGURE 4. Factors affecting the strength of ion-dipole interaction 

𝑉 =
𝑞1𝑞2
4𝜋𝜀𝜀0𝑟

 (6) 

𝑉 =
𝜇𝑞2 cos 𝜃

4𝜋𝜀𝜀0𝑟2
 (7) 

  
According to equation 7, the ion-dipole interaction energy V is proportional 

to the cosine of the angle between the dipole and the ion (θ). Additionally, the 
interaction energy is more sensitive to the distance as it is inversely proportional 
to its square. 

The dipole–dipole interaction energy between two parallel stationary 
dipoles is proportional to the cubical of the distance. Also, in this case the angle 
between the dipoles (θ, FIGURE 5) has a great influence on the interaction energy 
V that follows equation 8. 

 

 

FIGURE 5. Factors affecting the interaction energy between two stationary dipoles 

𝑉 =
𝜇1𝜇2(1 − 3cos2 𝜃)

4𝜋𝜀𝜀0𝑟3
 (8) 

  
 
Non-covalent interactions are in the focus in the field of supramolecular 

chemistry.48 Although supramolecular chemistry and catalysis are often studied 
and discussed separately, they share many common features. 49  The often 
relatively static molecular assemblies studied in supramolecular chemistry can 
give important insight to phenomena occurring in highly dynamic environment 
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of catalysis. One of these insights is that the directionality of H-bonding is higher 
than of any other weak interaction.50  

The weakest of intermolecular interactions are the dispersion interactions. 
When ionic and dipolar interactions are present dispersion interactions can have 
an amplifying effect but seldom can overpower stronger interactions. However, 
when ionic and polar interactions are not present, the physical properties of 
substances are more dependent on dispersion interactions. Compared to ionic and 
dipole interactions dispersion interactions weaken rapidly as a function of distance. 

Strength of hydrogen bonds is generally 20 kJ/mol but range between 0.2 
and 40 kJ/mol.50 Whereas ion-dipole, dipole-dipole and dispersion interactions 
are entirely coulombic interactions, in hydrogen bonds the governing interaction 
is dependent on the distance between the H-bond donor and the acceptor 
(TABLE 2). In extremely short H-bonds the interaction is mainly between two 
molecular orbitals and thus the fraction of coulombic interaction in the total 
interaction energy is small. In contrast, the longest H-bonds are close to dipole-
dipole interactions since the orbital overlap is poor and most of the interaction 
energy is of coulombic origin. Thus, it can be stated that “H-bond” is often used 
as a general term for coulombic interactions in which part of the interaction 
energy comes from orbital overlap between an X-H antibonding orbital and an 
electron-rich full molecular orbital.  

TABLE 2. Strength and type of interaction in hydrogen bonds. 

 Strong Medium Weak 

Type of interaction mainly covalent mainly coulombic coulombic 
Bond length (Å) 1.2–1.5 1.5–2.2 2.2–3.2 
Bond angle (°) 175–180 130–180 90–180 
Bond energy 
(kcal/mol) 

14–40 4–15 <4 

2.2 Brønsted Acids and Hydrogen Bond Donors in Noncovalent 
Activation of Electrophiles 

The capability of Brønsted acidic compounds to lower the LUMO of carbonyls 
(C=O), conjugated C-C double bonds (C=C),51,52 and imines (C=N)53 has led to a 
plethora of new catalytic reactions.54 The relation between the pKa of an H-bond 
donor and the pKaH of an H-bond acceptor separates the concepts of Brønsted 
acid and H-bond catalysis. In Brønsted acid catalysis the pKa of a catalyst is 
significantly lower than the pKaH of a reactant or an intermediate leading to full 
dissociation of the acid catalyst. In contrast, in the H-bond catalysis the pKa of a 
catalyst is higher than pKaH of a reactant or an intermediate, and catalyst 
stabilizes negative charges along the reaction coordinate without full 
dissociation.2 
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Brønsted acid catalysis can be further divided into two subgroups called 
general and specific acid catalysis. In general acid catalysis a proton is transferred 
from a catalyst to a reactant in a TOF determining transition state whereas in the 
specific acid catalysis a reactant is covalently bound to a proton before a TOF 
determining transition state. Thus, in specific acid catalysis the acid 
concentration affects the reaction rate only by increasing the equilibrium 
concentration of protonated intermediate and the acid catalyst performance 
cannot be observed through kinetic measurements. 

In contrast to Brønsted acid catalysis, in the H-bond catalysis an H-bond 
stabilized anionic product is protonated only after a rate determining transition 
state by a non-catalytic proton source. Since the activity of H-bond catalysts does 
not rely on proton transfer, they are not, by definition, acid catalysts. The H-bond 
catalytic moiety may have ion-dipole or dipole-dipole interactions with the 
substrate in different states along the reaction coordinate, especially during 
complexation. However, the activation of substrate(s) towards the desired 
reaction should have orbital interactions between an occupied molecular orbital 
of the H-bond acceptor and σ* of H-X bond in the H-bond donor.  

Similarly to Lewis acid and Brønsted acid catalysts, H-bond catalysts are 
not limited to a single functional group and thus can be tuned to obtain optimal 
pKa55 and binding geometry (FIGURE 6) for the targeted reaction.56,57 Examples 
of H-bond donors used in catalytic applications include ureas,58  thioureas, 59 
squaramides,60 ,61 ,62  and chiral diols such as TADDOLs63  and BAMOLs64 . To 
explain and predict the catalytic activity of H-bond donors, spectrophotometric 
measurements have been used to analyze H-bonding and anion binding and to 
correlate interactions against catalyst structure.65,66 

 

FIGURE 6. Directions of dipoles and distance of H-bond donors in reported H-bond 
catalytic moieties.57  

Also, in the field of asymmetric Brønsted acid catalysis a major focus point 
has been on developing more acidic organic Brønsted acids capable of catalyzing 
reaction beyond the capabilities of previously available catalysts.54 

H-bond catalysts have been found effective in many transformations where 
catalyst does not directly interact with the electrophile but instead stabilizes an 
anion formed during the catalyst cycle67,68,69 or generates a chiral environment 
around nucleophile through solvation70 (FIGURE 7). The Jacobsen group has 
developed several enantioselective catalytic systems relying on formation of 
oxocarbenium species through anion abstraction.71,72,73 Similarly Mattson and co-
workers have developed chiral silanediols as anion binding catalysts.74  
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FIGURE 7. Examples of H-bonding in anion binding catalysis. 

2.3 Basic Design Concepts of Catalysts for Enantioselective 
Reactions 

2.3.1 Conceptualization of Catalyst Design 

Often for communication purposes it is beneficial to conceptualize certain 
common features. Ways to describe homogeneous chiral catalyst structure have 
become established over the history of catalyst development. Typically, structure 
of catalysts for enantioselective transformations can be described with three 
distinct parts. The basic design remains the same in transition metal catalysts, 
Lewis-acid catalysts and organocatalysts. 1) Site for primary interaction with 
substrate facilitating the desired reaction. In the case of bifunctional catalysis two 
interactions activate substrates in conjunction. 2) Chiral backbone (also chiral 
scaffold or chiral platform are used) that creates asymmetry around the site of 
primary interaction with substrate. 3) Parts of catalyst that have secondary weak 
interactions with substrates to enhance enantioselectivity and preferably also 
reactivity. 

2.3.2 Primary Interactions Between Catalyst and Substrates 

Catalytic activity of a catalyst can be mostly attributed to the primary interactions 
that also define the nomenclature related to the catalyst. Examples of primary 
interactions include H-bonding,51 deprotonation by a Brønsted base, 
coordination of π and non-bonding orbitals to Lewis acids,75 and transition metal 
activation of C-H bonds.76 Many electrostatic factors influencing behind binding 
of substrate to catalyst were discussed in chapter 2.1.  

In the context of chemical catalysis, bifunctionality is used to describe 
simultaneous activation and spatial positioning of two substrates, such as a 
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nucleophile and an electrophile or diene and dienophile. Bifunctional catalysts 
have two functionalities that act in conjunction to activate substrates undergoing 
a chemical reaction.29,75 Since the reactants need to be in a specific orientation at 
a specific distance for a reaction to occur, the design of the catalyst must promote 
such an orientation. High control over transition states through a preorganized 
electrostatic environment results in high chemo and enantioselectivity. 77 
Although this organization of the reacting substrates has an entropic cost it 
reduces the free energy of the turnover determining transition state (TDTS).78  

Since the first reports from the group of Takemoto,79 bifunctional hydrogen 
bond (H-bond)-Brønsted base organocatalysis has gained significant attention 
among chemists. Due to its simple structure, easy synthesis, and general 
applicability, the original thiourea and tertiary amine-based catalyst is still an 
excellent benchmark for newly developed bifunctional H-bond organocatalysts. 
These features allow researchers to alter one or both functional groups to 
modulate the activity of bifunctional catalysts. Functions of the two moieties in 
Takemoto catalyst (39, FIGURE 8) can be described in the following way: 

1. H-bond donor moiety activates and positions the electrophile through 
interaction between a polar heteroatom-hydrogen bond of the H-
bond donor (electrostatic or σ* orbital overlap depending on distance) 
and a non-bonding lone electron pair of an unsaturated heteroatom 
in the H-bond acceptor.51  

2. Brønsted basic site deprotonates completely the nucleophile before or 
concertedly with the bond forming nucleophilic attack. The basicity 
should be high enough to be able to deprotonate the nucleophile 
generating an ion pair of the deprotonated anionic nucleophile and 
the protonated cationic catalyst.80 
 

 

FIGURE 8. Activity of Takemoto catalyst 39 is results in simultaneous function of thiourea 
H-bond donor moiety and a tertiary amine Brønsted base. 

2.3.3 Chiral Backbone in Enantioselective Catalysts 

Chiral backbone generates the chiral environment around the primary interaction 
and together with the primary interaction allows the substrates to be correctly 
positioned for bond formation in the transition state. Catalysts containing 
rotatable bonds can in theory exist in an infinite number of conformations. 
However, certain well-established preferences exist which are based on steric 
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and electronic properties of the molecules. Below are listed most relevant for this 
study. 

1. Allylic 1,3-strain is an interaction governing conformations in 
vicinity of double bonds in open-chain molecules81  as well as in 
cyclic molecules.82  

2. Substituents of saturate cyclic structures favor equatorial 
conformations over axial.44 

3. Branched alkyl chains favor staggered conformations.83  
4. Conformational preferences of β-peptoids can be engineered by side 

chain structure.84,85,86 
Catalyst conformational robustness is essential for enantioselective 

catalysis. However, conformational predictability is not synonymous with 
rigidity. Predictability can be obtained through rigid cyclic structures or open-
chain structures with high conformational preference. In cyclic structures the 
conformational changes through bond rotation are governed by energy 
differences between axial orientation of substituents versus equatorial 
orientation (SCHEME 7). 

 

SCHEME 7. Conformational freedom of few common moieties in H-bond organocatalysts. 

Additionally, conformations of flexible molecules can be stabilized by 
intramolecular attractive interactions such as H-bonds,87 dispersion interactions, 
π-π interactions and dipole-dipole interactions.88  However, weakest of these 
attractive interactions can be easily overcome by torsional strain required for the 
attractive interaction.89  

2.3.4 Secondary Interactions Between Catalyst and Substrates 

Secondary interactions contribute to the binding of catalyst (ligand) and substrates 
in conjunction with the primary interaction leading to increased concentration of 
catalyst substrate complex. Additionally, the secondary interactions can lower 
the transition state energies by stabilization of partial charges formed in the 
reaction (FIGURE 3). In principle, distinction between primary and secondary 
interactions can be elusive if rate acceleration attributed to a single secondary 
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interaction is high. Many of the proposed secondary interactions are based on 
dispersion interactions and induced dipoles in aromatic groups. Such 
interactions include π–π,90,91 cation–π 92,93, anion–π 94 interactions and London 
dispersion95.  

Wagner and Schreiner discuss in their article of London dispersion the fine 
balance between positive dispersion interactions and repulsive steric effects. As 
described in TABLE 1, the energy of dispersion interactions is highly distance 
dependent. For this reason, some degree of flexibility helps to maximize catalyst 
(ligand)-substrate dispersion interactions. Experimental quantification of 
individual attractive interactions is challenging but conformational preferences 
can be studied both experimentally and computationally.95 Due to the 
challenging analysis of attractive interactions, simplified models, such as so 
called quadrant model for C2-symmetric ligands, have been developed to explain 
observer selectivity trends.2 However, more recently the focus has been devoted 
to the studies of steric bulk as a repulsive factor versus attractive dispersion 
interactions. 96 , 97  As a result the crucial role of ligand-substrate attractive 
interactions in asymmetric transition metal catalysis has been discovered.98,99 

Matile and co-workers have studied Brønsted base catalysis and anion-π 
interaction in malonate anion stabilization (SCHEME 8) by a covalently bound 
malonate and polyaromatic π-system. They found that the stabilization of the 
deprotonated malonate anion by anion-π interaction lowered the malonate pKa 
by 1.9 units and increased the reaction rate 86-fold compared to 
diethylmalonate.91 In a similar polyaromatic system, anion–π interaction was 
found to be the enabling factor in a Kemp elimination reaction with a 
naphthalenediimide carboxylate catalyst. 100 , 101  These reports highlight the 
potential of secondary interactions to increase the catalyst performance through 
the understanding of secondary substrate-catalyst interactions. 
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SCHEME 8. Rate acceleration by enolate and transition state stabilization in a Michael 
reaction. 

When discussing electrostatic interactions, one must keep in mind that in 
practice these interactions are always susceptible to effects from surrounding 
functional groups, solvents102, and even external electric fields103. In systems 
consisting of even few atoms the complexity of intramolecular and 
intermolecular interactions, also including intramolecular orbitals interactions, 
become too high for human comprehension. With the advances in computation 
power and force fields, computational analysis has validated its role as a tool for 
quantification of the forces governing for example solution state confirmations 
and catalyst substrate binding interactions. 
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2.4 Experimental Kinetic Methods Help to Reveal Reaction 
Mechanisms 

2.4.1 General Considerations in Experimental Kinetic Measurements of 
Organocatalytic Reactions 

Conducting experimental kinetic measurements requires significant amount of 
preparative thought and work. Before any experimental work is performed the 
purpose of kinetic experiments need to be clearly defined. Do we know what are 
the properties of substrates, solvent and catalyst, and the factors in reaction 
conditions that allow the reaction to take place? What do we already know from 
previous reports or general reactivity patterns which can be considered valid for 
the studied reaction? What information is missing and is considered essential? In 
many cases, different complementary approaches such as experimental kinetic 
measurements and computational methods can provide the missing data and 
support for rationalization of observed reactivity and selectivity.  

Second, we need to we need to find the best way to obtain the necessary 
data with good accuracy and acceptable effort with the available resources. We 
also need to secure access to the required substrates and equipment. It is often 
enough to use only few carefully selected methods to reveal missing details of 
the reaction mechanism. Moreover, often there is no individual experiment that 
could provide all required information in a single experiment and, on the other 
hand, many experiments can provide essentially the same information. In the 
worst case, wrong choice of experimental method can lead to vast amounts of 
useless data and lost time and money. Thus, the selection of most suitable 
experimental methods is of utmost importance.  

We also need to confirm that the reaction is reproducible, robust, and 
selective. Poor selectivity of the studied reaction poses two major challenges in 
kinetic studies: 1) observed rate is a sum of the desired reaction and all side 
reactions with different kinetics consuming starting materials 2) the observed 
rate of product formation is the sum of all reaction pathways leading to the 
product. Thus, it is important to distinguish or eliminate competing reaction 
pathways and side reactions.2  

2.4.2 Factors for Selecting Experimental Methods  

A vast majority of organocatalytic reactions are addition reactions to double 
bonds. Typically, these reactions occur between two substrates mediated by the 
catalyst in solution phase and the initial concentrations of all components are 
known. This situation is a good foundation for kinetic measurements if a suitable 
measurement technique can be identified. A measurement technique capable of 
determining both substrate and product concentrations at any given time after 
initiation of reaction is essential for obtaining accurate kinetic data.104 In addition 
to substrate and product concentrations, observation and identification of short-
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lived intermediates and catalyst complexes can provide the missing clue in 
solving the reaction mechanism.105,106  

Characteristics of the studied reaction can dictate which measurement 
techniques provide accurate and true results. Below are listed a few important 
considerations when selecting the measurement technique for a batch reaction. 
This list is not intended to be exhaustive but is rather intended to provide an 
overview of factors to be accounted in the selection.  

1. Reaction heat. In highly exothermic reactions the main consideration 
is if the reactor setup can ensure sufficient heat transfer during 
reaction. As an example, the temperature control inside an NMR 
instrument is limited and the temperature of the reaction mixture 
cannot be controlled directly. Thus, the control of strongly 
exothermic reactions is poor in an NMR instrument. On the other 
hand, measurement techniques relying on probes that are 
introduced into bench scale reactions, such as ReactIR and other 
spectroscopic measurements, often provide excellent control over 
reaction temperature. Calorimetry excels in exothermic and highly 
selective reactions as the released reaction heat can often be directly 
converted into conversion by a calorimeter.   

2. Reaction temperature. Very high and very low reaction temperature 
also present limitations to suitable measurement techniques. 
Especially reactions conducted in reflux require sufficient scale to be 
performed. The same limitations apply for high and low 
temperatures as for highly exothermic reactions. Additional 
challenge for spectrometric measurements in reflux conditions 
comes from inhomogeneity of reaction mixture due to boiling.  

3. Viscosity of reaction media. Highly viscous reaction mixtures require 
efficient mixing to ensure adequate mass and heat transfer during 
the reaction. In many cases proper mixing can be achieved only by 
mechanical stirring which is available for reactions in >20 mL scale. 

4. Heterogeneity of the rection mixture. Similarly to highly viscous 
reaction mixtures, heterogeneity presents a challenge of sufficient 
mass transfer to ensure that it does not limit the reaction rate. In 
addition, homogeneity can cause challenges in spectroscopic 
measurement techniques due to fouling of the probe.  

5. Detection and identification of intermediates. When kinetic 
measurements are performed the identity of main product is known. 
However, the reaction may proceed via an unknown intermediate 
that has remained undetected. Measurement techniques capable of 
detecting and more importantly identifying unknown intermediates 
include 1H NMR and GC-MS. 1H NMR has proven to be a superior 
method by allowing the identification of unexpected 
intermediates.105,106 

6. Pressure reactions. In the case of highly selective reactions progressing 
through well documented intermediates, such as heterogeneous 
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hydrogenation of nitroaromatics, reaction progress can often be 
adequately monitored by indirect phenomena, such as hydrogen 
consumption in an autoclave or heat formation in a calorimeter. 

7. Reaction time and resolution of data. In fast reactions the measurement 
frequency must be sufficient to provide several datapoints during 
the reaction. In such cases, on-line measurement is mandatory to 
obtain high resolution data. On the other hand, if the studied reaction 
is slow and reaction conditions do not allow direct observation of 
product and substrates, reaction rates can be measured by taking 
aliquots from reaction mixture for off-line analyses such as GC, 
HPLC and NMR. 

8. Reaction Scale. Certain measurement techniques are available only for 
small-scale or gram-scale reactions. If only small amounts of starting 
material available, such as for deuterated substrates, or catalyst not 
available for large scale reactions on-line 1H NMR and off-line 
measurements such as GC and HPLC are best options. Use of on-line 
probes often requires >20 mL of reaction mixture volume and thus 
are not compatible with small scale reactions. 

2.4.3 Reaction Order 

The determination of reaction order and the use of reaction progress kinetic 
analysis (RPKA) in the research of small-molecule catalysis has been promoted 
by the Blackmond group. Reaction rate dependency from initial substrate and 
catalyst concentrations is a powerful way to analyze reaction kinetics as it can 
reveal catalyst saturation and other deviations from ideal reaction kinetics. 
Indeed, such approaches have been systematically and successfully used in 
enzymatic catalysis studies.104 In an ideal case, first order kinetics in a two 
component organocatalytic reaction would result in equation 9. 

 

𝑟𝑎𝑡𝑒 = 𝑘[𝑆1]1[𝑆2]1[𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡]1 (9) 
 

The RPKA affords a practical view of the limiting factors in the overall 
reaction rate but it fails to give detailed information on individual events in a 
catalytic cycle. Examples of successful use of a simplified RPKA in reactions 
catalyzed by small molecules include an organocatalytic chlorolactonization 
revealing a catalyst-substrate ion pair as the catalyst resting state (SCHEME 9).107 
In this case the carboxylic acid starting material fully saturates the catalyst by 
forming an ion pair. The RPKA methodology was able to show that acid-base 
reaction is fast and precedes the TDTS by the indication that rate is zeroth order 
for the carboxylic acid 45 (Equation 10). However, it was not able to show which 
transition state is TOF determining. The key indication was obtained through 
other kinetic measurements such as linear free-energy relationships and kinetic 
isotope effects. 
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SCHEME 9. Organocatalytic enantioselective chlorolactonization reaction studied with 
RPKA. 

2.4.4 Kinetic Isotope Effects 

Although focusing only on organometallic transformations, an excellent review 
from Gómez-Gallego and Sierra describes the theory and ways to exploit kinetic 
isotope effects (KIEs) in study of reaction mechanisms.108 Kinetic isotope effects 
can be divided into four classes, primary and secondary kinetic isotope effects, 
equilibrium isotope effect and solvent isotope effect. The classes differ in the 
information they provide and the magnitude of the observed kinetic isotope 
effect. The most studied isotope effects are those of H/D which have the largest 
relative mass change, as the weight of the atom is doubled from 1.000 to 2.000 
g/mol. Weight difference of an atom in a covalent bond affects the zero-point 
energy of the bond which affects the energy profile of a reaction involving that 
bond or occurs in its vicinity. Kinetic isotope effects can be measured also for 
heavier atoms such as 13C but the magnitude of KIEs are small. This weakness 
can be overcome by exploiting the natural abundance of 13C. 109  Successful 
examples can be found also in enantioselective organocatalysis.110 

1° KIE reveals if the atom is transferred in the TDTS or product determining 
transition state, in other words, if bonds to H/D are broken or formed. The two 
origins of KIE can be separated by experiment design. Intra- and intermolecular 
competition experiments should be avoided if the obtained KIE is used solely in 
determining the TDTS of the studied reaction.111 In FIGURE 9 the zero-point 
energy of the deuterated compound (ZpED) is lower than the zero-point energy 
of non-deuterated compound (ZpEH). Another variable affecting the kinetic 
isotope effect is the difference between transition state energies of TOF 
determining steps ΔGZpE(TS). If the activation energy ΔGZpE(TS) of deuterated 
compound is larger than activation energy of non-deuterated, the reaction rate 

𝑟𝑎𝑡𝑒(𝑐ℎ𝑙𝑜𝑟𝑜𝑙𝑎𝑐𝑡𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛) = 𝑘𝑜𝑏𝑠[𝟒𝟓]
0[𝟒𝟔]1[𝑿]1 (10) 
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(kD) of deuterated product is lower than rate of non-deuterated product (kH), 
resulting in KIE >1. In the opposite case, when reaction of deuterated substrate 
is faster than of non-deuterated substrate, an inverse kinetic isotope effect (KIE 
<1) is observed.  

𝐾𝐼𝐸 =
𝑘𝐻
𝑘𝐷

 (11) 

  

 

FIGURE 9. Energy diagram of a normal primary kinetic isotope effect. 

The magnitude of normal 1° KIEs can vary from 1 to >10 depending on 
several factors through the reaction coordinate. The simplified concept of 
transition state ZpE difference in KIE quantification has been recently challenged 
and more consideration of the effect of all intermediates on KIE is suggested.112 
Moreover, the importance on events preceding the TDTS, such as substrate 
catalyst coordination, have been recognized early in the research of enzymatic 
mechanisms by kinetic isotope effects.113 ,114  1° KIEs have been most notably 
utilized in mechanistic studies of several C–H activation reactions, such as 
palladium(II) acetate catalyzed coupling of pyridine N-oxides and aryl bromides 
(SCHEME 10).108,115  
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SCHEME 10. Selected example of primary kinetic isotope effect in catalytic reaction. 

 2° KIE is based on hybridization change in the heavy atom to which H/D 
is bonded and, in contrast to 1° KIE, bond to H or D is not broken. Thus, 2° KIE 
reveals if hybridization of adjacent atom is changed. 2° KIE has been proven 
helpful in determining mechanisms of addition reactions to double bonds. In 
double bonds the atoms are sp2 hybridized and during the addition reaction the 
double bond transforms to a single bond. In this process the hybridization 
changes to from sp2 to sp3 and the bond geometry from trigonal planar to 
tetrahedral. This change results in a negative secondary kinetic isotope effect if it 
occurs in the TDTS of the reaction (FIGURE 10). Reaction to the opposite direction, 
an elimination reaction, would result in a positive secondary kinetic isotope effect 
as the hybridization changes from sp3 to sp2. 
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FIGURE 10. Energy diagram of an inverse secondary kinetic isotope effect. 

Equilibrium isotope effect in turn affects the rates of reversible reactions 
resulting in altered equilibrium constant Keq.  

𝐾𝑒𝑞 =
𝑘𝐻
𝑅𝑃 𝑘𝐷

𝑅𝑃⁄

𝑘𝐻
𝑃𝑅 𝑘𝐷

𝑃𝑅⁄
 (12) 

Solvent isotope effect is observed when deuteration, for example protic 
solvent, affects the reaction rate. When studying solvent isotope effects in protic 
solvents, the H/D scrambling of solvent and substrate can result in an apparent 
solvent isotope effect although a deuterated substrate is generated in situ. Other 
solvent isotope effects arise from differences is solvation of substrates affecting 
relative energies of TDTS and TDI. In all studies involving kinetic isotope effects, 
unwanted H/D scrambling must be avoided since conclusive interpretation of 
obtained data becomes extremely complex. 

2.4.5 Linear Free Energy Relationships 

Linear free energy relationships (LFER) can be used to correlate observed 
reactivity or selectivity against structure related parameters that have been 
determined from a model reaction.116 In case such correlation is not observed the 
factor likely does not influence the reaction performance. One of the most widely 
used, easily conducted, and best understood LFERs is Hammett relationship. It 
reveals how electronic substituent effects change the reaction rate of aromatic 
substrates. Hammett constants have been derived from 39 reaction types in 
which reaction rates were monitored. 117  Also more specific variations of 
Hammett, such as Taft equation, have been developed.118  
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2.4.6 Computational Methods Compliment Experimental Results 

Although this thesis focuses on experimental methods, often experimental 
methods are not enough to solve the fine details of a reaction mechanism. In 
many occasions, computational methods, especially DFT calculations, have 
provided additional insight to reaction mechanisms that are beyond the 
limitations of experimental measurements.119 With sufficient initial information 
of reaction mechanism the transition states and intermediates can be identified 
with computational methods and their relative energies quantified. The 
challenge with computational studies of asymmetric catalysis is the often 
relatively small energy differences between competing pathways (ΔG, FIGURE 
3) leading to different enantiomers. At 0 °C, a ΔG of 7.5 kJ/mol affords the 
product in 93% ee, whereas a ΔG of 12.6 kJ/mol would afford the product in a 
much more impressive ee of 99.2%.2 This difference in ΔG can be explained by 
only one amide-amide H-bond or anion-π interaction in polar organic solvent.46 

If the number of clearly identified non-covalent interactions is the same 
between two competing pathways, several weak interactions, such as dispersion 
interactions between alkyl groups, can provide an explanation for the observed 
selectivity. Cheong et al. describe in their 2011 review the deficiencies of DFT 
calculation with commonly used functionals especially for quantifying weak 
interactions. However, more recently weak interactions, such as dispersion 
interaction between substrate and ligand, have been proposed to explain 
observed trends in selectivity.120  
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3.1 Aim of the Work 

Although enantioselective addition reactions to C-N double bonds53 and 
activation of β-dicarbonyl nucleophiles80, 121  are well documented, and first 
mechanistic studies of uncatalyzed three-component Mannich reactions were 
performed in 1960 by Cummings and Shelton,122 to our knowledge mechanisms 
of organocatalytic asymmetric Mannich reactions have not been studied 
experimentally with β-dicarbonyl nucleophiles. Additionally, experimental 
kinetic studies for reactions catalyzed by bifunctional H-bond catalysts are scarce 
and thus suitable experimental procedures for organocatalysis needed to be 
established. 

The first report of a catalyst capable of promoting Mannich reaction of 
aliphatic imines in high enantioselectivity with low catalyst loading was 
published by the Pihko group in 2012.123 In this report the factor allowing the use 
of aliphatic imines as electrophiles was not found. The work described in this 
dissertation is built on the work of Dr. Nicholas Probst, partly published in 
reference 123 (SCHEME 11), while studying ways to improve H-bonding ability 
of bifunctional catalysts. The structure of catalyst 52 drew inspiration from the 
research done in the group of Martin Smith on protein-mimicking H-bond 
networks in asymmetric catalysis 124  and partly on the previously published 
bifunctional thiourea Brønsted base catalysts in malonic ester activation.125,126 
Many catalytic methods in Mannich reactions are limited to using non-enolizable 
imines as substrates (SCHEMES 4–6) or require high catalyst loading.127 This 
limitation is likely caused by a rapid isomerization of imines to enamides in 
acidic conditions. 

 

3 RESULTS AND DISCUSSION 
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SCHEME 11. General scheme of enantioselective Mannich reaction studied in reference 123.  

The research described in Publications I and II was aimed at expanding the 
utility of the discovered catalyst family that is compatible with enolizable imines 
in Mannich reactions. Publication I focuses on the exploring the limits of 
nucleophile activation while maintaining excellent selectivity observed with 
malonic esters. 

Publication II also explores ways to experimentally study the reaction 
mechanism of the reported Mannich reaction catalyzed by the developed catalyst 
family. However, the main objective of this publication was to find an 
explanation for observed distinctive reactivity with aliphatic imines compared to 
other, superficially similar, catalysts. In this publication the author contribution 
was limited to the experimental work and manuscript preparation so only most 
essential discussion on computational results is covered in this thesis. 

Publication III focuses on determining catalyst folding as salts of selected 
organic and inorganic acids. This information is essential in creating a foundation 
for potential future work in asymmetric anion binding catalysis by increasing the 
understanding of catalyst conformational preferences relative to anion shape and 
size. In this publication the author contribution was mainly on solid state 
structure elucidation by solving 8 out of 14 published structures and manuscript 
writing. Thus, detailed discussion about solution-state structures and 
computational analysis is omitted. 

3.2 Expanding the Scope of Enantioselective Organocatalytic 
Mannich ReactionsI 

The use of various structurally diverse aliphatic imines in organocatalytic 
asymmetric Mannich reactions with malonate esters was demonstrated in Pihko 
group already in 2012.123 However, in this paper only malonate esters were used 
as nucleophiles and there was no proof of the generality of the catalyst with other 
nucleophiles. The reaction depicted in SCHEME 11 was chosen as a starting point 
for expanding the scope of compatible nucleophiles. 
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A hypothesis of reactivity was formulated from previous observations of 
notable reactivity differences between β-dicarbonyl compounds and the 
correlation with the pKa (SCHEME 12) at the α-carbon in α-unsubstituted β-
dicarbonyl and related compounds. 128 , 129  It was expected that reactivity, 
pKa130,131,132 and Lewis basicity correlate also in this case as depicted in SCHEME 
12. Previous reports have established that α-substitution increases the α-proton 
pKa by circa two units in DMSO133 and increases the nucleophilicity by 3-5 fold.134 
Additionally, from the study of cyclic structures, it is know that strain from an 
endocyclic double bond increases the nucleophilicity of the enolate.  

 

SCHEME 12. Properties of β-dicarbonyl compounds. a) see ref. 133, b) see ref. 132, c) see 
ref. 130  d) see ref. 131, e) see ref. 129. 

During the preparation of Publication I, it was quickly observed that α-
unsubstituted β-ketoesters are excellent nucleophiles with regards to reaction 
rate. On the other hand, reactions with catalysts 52 and 53 afforded poorer 
enantioselectivities than with less reactive malonate esters. High reaction rate but 
unacceptable enantioselectivity gave us an excellent starting point for catalyst 
modification to improve enantioselectivity. From prior published work from 
other research groups it is known that Lewis acid complexes135,136 and Brønsted 
acids137 activate imines sufficiently towards nucleophilic additions even without 
nucleophile activation. However, increased Brønsted acidity of the H-bond 
donor could jeopardize the stability of the aliphatic imines which are stable in 
basic conditions but readily isomerize to enamines in acidic conditions. With 
these aspects in mind we decided to focus on varying the Brønsted basic tertiary 
amine. The modular design of the catalyst allowed us to quickly obtain a 
modified catalyst 54 (FIGURE 11) with bulkier Brønsted base which was 
hypothesized to improve enantioselectivity without causing significant rate 
deterioration. 
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FIGURE 11. Catalysts studied in enantioselective Mannich reactions with β-ketoesters. 

In addition to the published results, various ways to improve the basicity 
of the catalyst were studied. Inspired by Dixon and co-workers,138 Feng and co-
workers, 139  and Lambert and Bandar 140 , especially guanidine bases were 
identified as potential targets. However, all attempts to incorporate so called 
superbases, such as tetramethyl or tetracyclohexyl guanidine, into the catalyst 
design failed. The incorporation of a superbase was expected to result in a 
zwitterionic catalyst molecule by the deprotonation of the thiourea and favoring 
the nucleophile binding and deprotonation. 

Nearly all screened β-ketoesters (55) provided good yields and selectivity 
with an acceptable reaction rate (TABLE 3) when using catalyst 54. We were even 
able to reduce the catalyst loading to 1 mol-% when aromatic β-ketoesters were 
used and reduce imine excess by 50%. However, these conditions were not 
suitable for all substrates and an outlier was identified that did not afford any 
Mannich product. When tBu-acetoacetate (55b) was subjected to the standard 
reaction conditions, only unreacted starting materials we observed. Since the 
electronic properties of the tBu-acetoacetate are similar to other α-unsubstituted 
aliphatic β-ketoesters, the only plausible hypothesis is that steric factors inhibit 
formation of ternary complex and simultaneous activation of both substrates. 
Additionally, distinct reactivity was observed when cyclic β-ketoester was used 
(55f). Two pKa units lower acidity and higher nucleophilicity of α-substituted β-
ketoesters compared to α-unsubstituted β-ketoesters, steric hindrance at α-
carbon and the observation of poor selectivity might suggest that a loose binary 
complex of catalyst and β-ketoester is formed and the C-C bond formation occurs 
without strong imine activation. 

Tertiary β-ketoamides, such as 56, are known to be more difficult to activate 
than β-ketoesters by Brønsted bases (SCHEME 12).141 When pyrrolidine derived 
β-ketoamide was subjected to the reaction conditions no product was formed.142 
Constantineux and co-workers observed over 10-fold rate difference between 
tertiary amides and secondary amides in enantioselective conjugate addition 
reactions to nitroolefins catalyzed by bifunctional H-bond–Brønsted base 
catalysts.141 Since the electronic properties do not explain the significant rate 
difference, allylic strain is more likely lowering the reactivity of tertiary β-
ketoamides as well as γ-tBu substituted β-ketoester 55e (TABLE 3, Entry 5). 
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Constantineux and co-workers also demonstrated that β-ketoamides afford 
conjugate addition products in high distereoselectivity.141 Unfortunately, these 
results were not available when conducting the experimental work for 
Publication I and we could not incorporate secondary β -ketoamides in this study. 
The use of β-ketoamides derived from primary amines could have afforded the 
Mannich reactions in higher diastereoselectivity than β-ketoesters. Due to the 
applicability of β-ketoamides derived from primary amines the explanation for 
failed reaction with pyrrolidine derived β-ketoamide can be a steric crowding 
upon enolization (FIGURE 12). 
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TABLE 3. Selected results from expanding nucleophile scope in asymmetric Mannich 
reaction. 

 
Entry Substrate Reaction time 

(h) 
Yield (%) Enantiomeric ratio 

(er) 

1 

 

6 90 99:1 

2 

 

no reaction - - 

3 

 

4 94 98:2 

4 

 

10 92 99:1 

5 

 

36 82 91:9 

6 

 

8 97 74:26 

7 

 

no reaction - - 
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FIGURE 12. Hypothesis for failed application of pyrrolidine derived β-ketoamide 56 versus 
sterically challenging β-ketoester 55e. 

Despite the reactivity lowering effect of tertiary amides and α-substitution, 
Dixon and co-workers were able to demonstrate the utility of bifunctional 
organocatalysis in the total synthesis of (-)-Nakadomarin A (SCHEME 13), albeit 
high catalyst loading and long reaction time was required.143 

 

SCHEME 13. Diastereoselective organocatalytic generation of the key quaternary 
stereocenter in (-)-Nakadomarin A total synthesis.143 

3.3 Understanding the Mechanism of Mannich Reactions 
Catalyzed by Bifunctional OrganocatalystsII 

3.3.1 The Approach 

Based on our previous studies and reports of reaction mechanisms catalyzed by 
bifunctional organocatalysts, a hypothetical reaction mechanism was formalized 
(SCHEME 14). However, we were missing definitive evidence of substrate 
binding and C-C bond formation, and the main factors behind observed high 
enantioselectivity. The hypothetical catalytic cycle consists of sequential 
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reversible binding of substrates (malonate and imine) to form first a binary 
complex of catalyst and one substrate which would form a ternary complex of 
catalyst and both substrates. Very rapid C-C bond formation after ternary 
complex formation would essentially mean that the ternary complex formation 
is irreversible. 

 

  

SCHEME 14. Initial hypothesis for catalytic cycles of enantioselective Mannich reaction 
leading to both enantiomers. 

Several experimental methods to provide evidence to support reaction 
mechanism hypotheses are described in Chapter 2.4. Most of the methods can 
provide insight into formation or braking of covalent bonds but formation and 
breaking of non-covalent bonds such as H-bonds are more difficult to observe. 
At the beginning of the studies we were not able to say if the formation of the 
ternary complex or the C-C bond formation limits the reaction rate. In the end, 
these steps can be influenced by the catalyst design and thus it is a key 
information in the process of developing more efficient catalysts. We expected to 
see a clear Hammett relationship if the C-C bond formation limits the turnover 
rate. Additionally, results from other kinetic experiments, such as significant 2° 
KIE, could support C-C bond formation as the turnover rate limiting step. 

3.3.2 Key Findings of Kinetic Studies 

First, to test the hypothesis of turnover rate limiting C-C bond formation in a 
model reaction (SCHEME 15), initial rates method was used for Hammett 
relationship determination. The observed positive Hammett relationship (ρ) 
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supports turnover rate limiting C-C bond formation after ternary complex 
formation. However, the relationship was found to have some non-linearity at σ 
= 0 (ρ = 3.2 for electron-rich, ρ = 0.88 for electron-poor imines, FIGURE 13) and 
the explanation was not trivial. To complicate conclusions, in addition to TDTS 
energy, the para-substituent can affect the concentrations of intermediate 
complexes which in turn affect the overall reaction rate.  

Ideally Hammett effect describes the direction of electron flow during TDTS. 
However, since the rate of C-C bond formation depends also on TDI energy, 
substituent effects before or after TDTS can affect the overall turnover frequency. 
Since coordination of imine to catalyst through H-bonding would lead to flow of 
electron density from the imine carbon, the Lewis basicity of imines and their 
strength as H-bond acceptors can be expected to have a Hammett relationship. 
In this scenario electron-donating substituents would increase the equilibrium 
concentration of the imine-catalyst binary complex as well as the stability of 
ternary complex leading to an increased reaction rate.  

Substituent effects on secondary interactions between the catalyst and 
imine (Chapter 2.3.4) such as interactions between π-systems144,145 could also 
contribute to the reaction rate through the binding energy of the imines. However, 
the strength and origin of the substituent effects on Ar-Ar binding interactions 
are still debated.91 Although the reaction rate is susceptible to minor changes in 
substrate electronic effects, to a certain limit stronger binding of the substrates 
would result in a higher concentration of ternary complex, thus increasing the 
turnover rate. 

 

 

SCHEME 15. Model reaction used in determination of Hammett relationship. X denotes the 
para-substituent. 
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FIGURE 13. Relative reaction rate as a function of Hammett constant (σ). Reprinted with 
permission from ACS Catalysis, 2017, 7, 3284-3294. Copyright 2017 American Chemical 
Society. 

The uncertainty caused by the possible Hammett relationship of imine 
coordination to the catalyst prompted us to study the mechanism further with 
complementary kinetic methods. Secondary kinetic isotope effect of the imine 
H/D was expected be able to differentiate plausible causes for observed 
Hammett relationship (SCHEME 16). Since 2° KIE is a result of a hybridization 
change adjacent to deuterium atom, rate limiting H-bonding of imine to catalyst 
should not result in observable kinetic isotope effect. Furthermore, the 2° KIE was 
expected to be the same for electron deficient and electron-rich imines if the C-C 
bond formation is TDTS, although such substituent effects are not often 
determined and reported. The observed inverse 2° KIEs (0.90–0.93) were initially 
considered as further support for the rate limiting C-C bond formation with all 
tested imines. However, a thorough literature search brought to our attention an 
alternative explanation to the inverse isotope effect. A report from Gajewski and 
Ngernmeesri demonstrated an inverse equilibrium isotope effect of 0.86 in 
coordination of aromatic aldehydes to a strong Lewis acid.146 Thus it cannot be 
excluded that EIE also contributes to the observed isotope effect. Unfortunately, 
the error limits especially with the electron deficient p-CN aryl imine were too 
large for conclusions about minor changes in the energy profile of the reaction. 
Nevertheless, the explanation that 2° KIE results from C-C bond formation event 
is consistent with the observed substituent effects of the Hammett plot. 
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SCHEME 16. Model reaction used in determination of 2° KIE. X denotes the para-
substituent. 

The enantiomeric ratios of the isolated products from kinetic measurements 
were determined to confirm the reliability of the obtained results. In general, it is 
important to be able to verify that kinetics of the desired reaction is measured.2 
The results showed that the reactions proceeded in an enantioselective manner 
under the studied conditions. In a study leading to the work described in this 
thesis, a non-Arrhenius relationship on enantioselectivity was observed.123 This 
result suggests that in this reaction and with this catalyst at temperatures above 
0 °C a racemic or less selective mechanism contributes to the rate of product 
formation. This deviation from ideal can affect the magnitudes of Hammett 
reaction constant and isotope effects, but it would not produce false results of 
this magnitude. Despite the non-ideal measurement conditions, such as scale and 
reaction temperature, the methods used herein were considered suitable for 
obtaining enough data with the available resources and existing time constraints. 

A combination of kinetic measurements and DFT calculations has been 
found useful in rationalization of observed reactivity and quantification of 
energy profiles in bifunctional organocatalysis. 147  Unfortunately, the kinetic 
experiments failed to answer is the relative orientations of substrates and catalyst 
in the ternary complex as the binding energies of ternary complexes did not show 
a significant difference. However, these complexes of similar energy result in the 
same enantiomer of the Mannich reaction product. 

Taken together, the experimental kinetic studies supported by 
computational results were able to show that C-C bond formation is indeed the 
TDTS and thus plays a significant role in the turnover frequency. This important 
result still leaves open the question about the significance of ternary complex 
formation. To be able to answer this question, further experimental test focusing 
on events before C-C bond formation were required.  

3.3.3 Inhibition Experiments as a Proxy for Complex Formation Studies 

The most convenient way for studying catalyst-substrate complexation would be 
direct observation of a measurable change in either catalyst of substrate upon 
binding. Unfortunately, the substrates did not cause quantifiable changes in the 
substrates or catalyst by 1H NMR spectroscopy. The small magnitude of observed 
changes even with high substrate loading is indicative of weak binding. Thus, we 
turned our attention to indirect methods to study the significance of catalyst-
substrate complexation for turnover frequency. 
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We envisioned a slowly reacting electron-rich aromatic imine should 
competitively inhibit the reaction in the presence of a more reactive imine if the 
formation of catalyst-imine complex limits the turnover frequency. The observed 
significant reduction of reaction rate supports this conclusion. 

According to the Energetic Span Model formulated by Kozuch and Shaik, 
also intermediates after the TDTS can influence the turnover frequency.21 In the 
studied reaction, such an intermediate could be the catalyst-product complex. In 
enantioselective reactions one of the product enantiomers can bind more strongly 
than the other enantiomer, since diastereomeric complexes are formed. The initial 
rate of the model reaction was determined with added product to quantify the 
inhibitory effect of the product. This approach relates to RPKA discussed in 
Chapter 2.4.3 and the reaction rate should reduce in case of an inhibitory effect. 
Inhibition experiments indeed show that the reaction product has an inhibitory 
effect which is more pronounced as the product concentration increases. The 
observed inhibitory effect can be rationalized with the number and type of H-
bond acceptors and donors in starting materials and Mannich reaction product 
shown in SCHEME 17. 

Ideally, only the starting materials should bind to the catalyst active site and 
in a productive fashion while product and possible side products should have no 
or only weak interactions with the catalyst. In many H-bond catalyzed C-C bond 
forming reactions the starting materials and product contain the same functional 
groups, such as ketone, ester, and nitro groups. Although this similarity 
inevitably leads to some degree of inhibition and lowered TOF especially at high 
conversion, product inhibition of organocatalysts is rarely discussed in literature, 
despite being extensively studied in enzymatic processes which rely on H-bond 
catalysis. The practical outcome of significant product inhibition is incomplete 
conversion which can be overcome by increasing the catalyst loading. 

In the Mannich reaction the only major change in H-bonding ability of the 
product 64 versus the substrates is the transformation of imine 65 H-bond 
acceptor into an H-bond donor (SCHEME 17). Additionally, the entropy of 
binding would likely disfavor the productive binding of two substrates over the 
binding of a single product molecule.78 

 

 

SCHEME 17. H-bond acceptor (red) and donor (blue) sites in Mannich reaction substrates 
and product. 
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Catalysts 53 and 54 have an excellent pocket for binding urea. The same 
binding moiety with urea can found in all Mannich reaction products studied in 
Publications I-III, namely a syn-carbamate. The observed H-bonds in solid state 
structure of catalyst 54-urea complex (FIGURE 14) fill the criteria for a medium-
strength H-bond (TABLE 2). On the other hand, steric factors likely prevent the 
adoption of the perfect binding geometry since the product is sterically more 
demanding than urea. Unfortunately, we were not able to obtain catalyst-product 
co-crystals for single crystal XRD measurement. 

 

FIGURE 14. Hydrogen bond network of bifunctional catalyst 54 and urea.  

The inhibition experiments discussed above suggest that the concentration 
of productive ternary complex of malonate, imine and catalyst is lowered by 
competitive complexation of the product by the catalyst. Thus, it can be stated 
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that the developed organocatalytic enantioselective Mannich reaction shows 
significant product inhibition which can explain why in some cases a high 
catalyst loading is required to reach full conversion. 

In extreme cases of product inhibition, the catalyst binds the product much 
more strongly than to the starting material, leading to complete product inhibition 
(TON ≤ 1). Intramolecular Lewis acid mediated Schmidt reaction is a good 
example of this effect.148 In this case, an equimolar amount of Lewis acid was 
required to reach full conversion because the amide formed in the reaction is a 
stronger Lewis base than the starting material ketone (SCHEME 18). This problem 
was overcome, and reaction rendered Lewis acid catalyzed, by using a Brønsted 
acidic solvent hexafluoroisopropanol (HFIP) to break the complex between the 
Lewis acid catalyst and product.149  

 

SCHEME 18. An example of extreme product inhibition in a Lewis acid catalyzed Schmidt 
reaction. 

3.4 Weak Interactions and Enhanced Activity in H-bond 
Catalysis 

One of the main aims of the study leading to Publication II was to find an 
explanation for the exceptionally good performance of the catalyst family with 
aliphatic imines in Mannich reactions. The kinetic experiments described in the 
previous chapter did not unfortunately bring any insight to this matter. An 
interesting distinction between the catalyst 54 and Takemoto catalyst 39 was 
found in the computational analysis of the transition state. Whereas the 
Takemoto catalyst 39 shows only little dispersion interactions between the 
substrates and the catalyst, catalyst 54 shows in contrast tight secondary 
interactions between substrates and catalyst C and D rings (FIGURE 15). As 
described in Chapter 2.1, the interaction energy is highly dependent on the 
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distance and relative orientation of the interacting components which in the 
transition state with catalyst 54 appear beneficial for ternary complex stability.  

 

 

FIGURE 15. Computational comparison of plausible dispersion interactions with urea-
thiourea catalyst 54 (1a in figure) and Takemoto catalyst 39 (2a in figure). Phenyl and 
cyclohexyl imines = red, dimethylmalonate = blue. Dispersion interactions = green, catalyst 
= light grey. Reprinted with permission from ACS Catalysis, 2017, 7, 3284-3294. Copyright 
2017 American Chemical Society. 

These interactions may contribute to the applicability of aliphatic imines as 
substrates with the folding catalysts such as 52–54. However, based on the 
competition experiments between the aliphatic and aromatic imines in 
Publication II, the additional secondary interactions in the catalyst 54 compared 
to Takemoto catalyst 39 are beneficial with aliphatic and aromatic imines. To the 
authors’ knowledge, the secondary interactions have not been widely studied in 
bifunctional H-bond-Brønsted base catalysis. As an example, Soós and co-
workers have studied edge-to-face interactions of dimeric Cinchona-thiourea 
bifunctional catalyst complexes in solution. However, no correlation in catalysis 
was presented.150 
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3.5 Solving the Active Catalyst and Catalyst Salt ConformationsIII 

3.5.1 The Native Conformation of Free Catalyst 

The data gathered from Smith and co-workers on related structures88,124 and our 
prior work123 supported the idea that the intramolecularly H-bonding fold is the 
major conformation of the free catalyst in solution. This fold was therefore called 
“native fold”. However, in solid state structures, we have encountered 
conformational changes in the thiourea moiety, resulting in alternative folds. In 
principle, N,N’-disubstituted thioureas can exist as four different conformers, 
assuming the two substituents are not identical (FIGURE 16a). 

 

 

 

FIGURE 16. Observed catalyst 53 and catalyst 53 salt conformers in solid state. Reprinted 
with permission from The Journal of Organic Chemistry, 2019, 84, 15009–15019. Copyright 
2019 American Chemical Society. 
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Two of these conformers had indeed been observed in solid state structures 
of free catalyst 53, N2,N3 anti (Fold A) and N2 syn,N3 anti (Folds B and C, 
FIGURE 16b). We had previously obtained also an unexpected solid-state 
structure of catalyst hydrochloride salt with distinctive anion binding 
conformation (Fold D, N2 anti,N3 syn) and a structure of catalyst 52 hfacac salt 
where catalyst remained in its native fold (Fold A).123 Of the four possible 
thiourea conformers, only N2,N3 syn has not been observed and it expected to be 
a high energy conformation due to unfavorable steric congestion. Prior to the 
work published in Publication III, we had obtained only the solid-state structures 
of 52 and 53 described above which do not provide sufficient data for 
generalization of anion binding modes of catalysts 52 and 53. 

The observations and computational analyses we have published 
previously provide conclusive evidence that the catalytically active catalyst 
conformation is indeed the intermolecularly H-bonded native fold. However, the 
exact stability of the catalyst conformations upon binding to various acids and 
the influence of the geometrical positioning of the anion H-bond acceptor sites 
were not known. Due to the number and type of possible simultaneous 
interactions, such as highly directional and distance dependent H-bonds, and 
less directional and less distance dependent ion-ion and ion-dipole interactions, 
we were not able to predict any catalyst salt conformations. An additional 
challenge in such a complex system is that individual interactions are cumulative. 
Also, cooperativity of interactions has been proposed to contribute significantly 
to overweighing the entropic cost of binding.78,151  

3.5.2 Structure Elucidation of Catalyst Salts in Solid State and in Solution 

Over the course of several years, we were very fortunate to obtain a complete set 
of solid-state structures from halide salts with both catalyst diastereomers 52 
(diastereomer 2) and 53 (diastereomer 1, FIGURE 17). Painstaking screening of 
crystallization conditions finally allowed us to study these structures 
systematically and generalize the anion binding mode with hydrohalic acids. 
Additionally, we were able to obtain solid-state structures of few catalyst salts 
with structurally more complex organic acids. Availability of the solid-state 
structures provided us a solid starting point for computational analyses and to 
use them as reference for solution-state contact analyses, such as NOESY. 

The striking similarity of the solid-state structures of catalyst halide salts 
across anion sizes suggests that anion size does not influence anion binding 
conformation significantly (FIGURE 17c). Such pincer-type binding is often 
highly dependent on anion size and binding affinity is low especially if large 
anions do not fit the binding pocket. However, a closer look at the binding reveals 
that the three H-bonds to anion are only on one face of the anion leaving the other 
face open. In the crystal lattice the other face of anions shows intermolecular 
coordination to thiourea syn N3–H.  

The three-coordinate anion binding of 53 greatly resembles the anion 
binding mode observed by Gouverneur and co-workers in solid state of the 
fluoride binding phase-transfer catalyst. In their recent study N-alkylation of bis-
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urea phase transfer catalyst was found to improve significantly the selectivity 
and yield of enantioselective fluorination of azetidinium salts.70 The binding 
models of the N-alkylated urea show an anti-syn urea conformation with alkyl 
group pointing outwards and the three remaining urea hydrogens binding the 
fluoride from one face. This binding mode shows a clear preference for small 
anions such as fluoride over bromide (by 17 kJ/mol).152  

The binding modes of diastereomeric catalysts 52 and 53 differ mainly in 
the direction of the dimethylammonium hydrogen. In catalyst 52 salts the 
ammonium hydrogen points towards the anion whereas in salts of 53 the 
hydrogen points away from the anion. Since ion-ion interactions are mostly non-
directional the importance of this difference might not be significant. Perhaps 
more importantly, the distance between the ammonium N-H and the halide ion 
in salts of 52 (see FIGURE 17, a and b) is significantly shorter than in salts of 
catalyst 53, suggesting that the nature of binding is more ionic than in salts of 53.  
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FIGURE 17. Solid state structures of catalyst 52 and 53 halide salts. Adapted with 
permission from The Journal of Organic Chemistry, 2019, 84, 15009–15019. Copyright 2019 
American Chemical Society. 
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Thioureas are known to bind several types of anions and their anion 
binding modes have been summarized by Zhang and Schreiner.67 High chloride 
binding affinity of conformationally flexible urea-thiourea H-bond 
organocatalysts have been demonstrated by Smith and co-corkers. The authors 
propose the intramolecularly H-bonded ground-state conformation, similar to 
the native fold, as the anion binding conformation. However, they do not provide 
any evidence for this conclusion.124 Gale, Davis and co-workers have 
demonstrated significant size discrimination in steroidal squaramide receptors 
with a rigid scaffold and five H-bond donors. While these receptors had 
extremely high affinities towards chloride and acetate ions, perchlorate and 
iodide showed hardly any affinity.153 With similar structures, the clear trend in 
affinity (Cl>Br>I) was attributed mostly to anion size and the high selectivity to 
the number and positioning of H-bonds.154 

We were able to obtain solid-state structures of catalyst 52 as salts with a 
few organic acids. However, catalyst 53 did not afford proper crystals for XRD 
measurements with the examined salts of organic acids. The only example of 
catalyst 53 salt structure was presented already in 2012 in the form of a hfacac 
salt. The hfacac structure was expected to mimic the binding of malonate anion 
in the catalyst. At the time, we were excited to obtain such a structure with the 
catalyst native fold that can be directly correlated with catalyst malonate ion pair, 
albeit being much more stable due to hfacac acidity.123 In this work, we obtained 
a solid-state structure of 52 TFA salt (FIGURE 18), measured and solved by Filip 
Topić, that also exhibits the native fold. This trend was further demonstrated 
with diphenyl phosphate and 2,6-bis(trifluoromethyl)benzoic acetate salts of 
catalyst 52.III These structures provided further support to the notion that native 
fold of the catalyst is retained with organic acids. 

 

FIGURE 18. Solid-state structure of catalyst 52 TFA salt. 
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A general challenge in obtaining XRD quality single-crystals with this 
catalyst family was the high solubility of free catalyst and also its salts with 
organic acids in most common organic solvents, and the propensity to oil-out 
from non-polar solvents. To emphasize this difficulty, all attempts to crystallize 
piperidine catalyst 54 as free catalyst or as a salt failed. Interestingly, as a last 
resort, the author was able to obtain a highly crystalline C2-symmetric 2:1:1 
catalyst 54-urea-acetonitrile complex (FIGURE 19) with a neutral and strongly 
hydrogen bonding urea.II  

 

FIGURE 19. Solid-state structure of C2-symmetric 2:1:1 catalyst-urea-acetonitrile complex.II 
One catalyst molecule is presented as space-fill model and urea, acetonitrile, and second 
catalyst molecule as wireframe model. H-Bonding moieties in second catalyst molecule are 
colored according to atom colors and the rest colored green for clarity. 

With the solid-state structures at hand, we had an excellent starting point 
to compare the interactions observed in the crystal structures with the results 
obtained from DFT computations and solution state NMR measurements, such 
as expected NOESY peaks across the catalyst molecule. The NMR measurements 
highlight the dynamic nature of the free catalyst 52 as conflicting NOESY peaks 
were observed. The best explanation is that two similar-energy conformations 
(Folds A and C) are present that interconvert slowly enough to be observed in 
the 1H NMR timescale. However, NOESY peaks suggest that in the free catalyst 
53, only one conformation, the native fold, is present to a significant degree. The 
computational analyses were also well in line with the solid-state structures. 
Thus, it can be concluded that in this case the solid-state structures most likely 
are good representations of actual confirmations present in future solution-state 
applications. 
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Through kinetic experiments we were able to fulfill one of the main aims of this 
thesis. Factors influencing the turnover frequency of enantioselective Mannich 
reactions were qualitatively defined although quantification of the catalyst 
substrate and catalyst product interactions was not successful. Studies of rate 
determining factors in catalysis can help chemists to find ways to lower the 
turnover frequency determining transition state energies. With this research we 
were able to demonstrate the importance of lowering the transition state energy 
of C-C bond forming step and the equally important effects governing catalyst 
substrate complexation. However, a definite answer to the excellent performance 
of this catalyst family with aliphatic imines was still not found. 

Another aim of the studies behind this thesis was to study and find an 
explanation to conformational preferences of the developed catalyst family. As a 
result of this study, a clear correlation of catalyst conformation and counter anion 
shape was found. Whereas spherical halide anions facilitate a conformational 
change, organic anions allow catalyst to maintain its native fold. Since the anion 
transfer processes are also biologically and technologically important, the results 
presented in this thesis can be utilized in these fields to build a better 
understanding of the underlying phenomena. Thus, the results lay a foundation 
for potential anion binding related catalytic applications and applications in 
biological anion transport. 

We were also able to define the limits of β-dicarbonyl nucleophiles both in 
terms of highly reactive and less selective β-ketoesters and non-reactive β-
ketoamides of secondary amines. The catalyst structure was successfully 
modified to improve the enantioselectivity of Mannich reactions with β-
ketoesters. 

Through multidisciplinary collaboration we have obtained and shared with 
the chemical community detailed, systematic, and hopefully useful studies of 
anion binding, catalytic enantioselective Mannich reactions and the factors 
governing H-bonding catalysis beyond Mannich reactions. 

4 SUMMARY AND CONCLUSIONS 
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ABSTRACT: An efficient urea-enhanced thiourea catalyst
enables the enantioselective Mannich reaction between β-keto
esters and N-Boc-protected imines under mild conditions and
minimal catalyst loading (1−3 mol %). Aliphatic and aromatic
substituents are tolerated on both reaction partners, affording
the products in good enantiomeric purity. The corresponding
β-amino ketones can readily be accessed via decarboxylation
without loss of enantiomeric purity.

β-Amino ketones are highly valuable functionalities that can be
found, typically in a protected form, in a large number of
natural products and biologically active compounds.1 A typical
synthesis of the β-amino ketone subunit involves a classical
Mannich-type reaction between enolates or enamines and
imines.1,2 With enamine catalysis, the reaction appears to be
restricted to N-arylimines or aromatic N-Boc-protected imines.3

With alternative enol equivalents such as enol silanes or β-
dicarbonyl compounds, several enantioselective Mannich
reactions with imines have been discovered,4,5 especially with
malonate esters. However, enantioselective reactions involving
ketone and β-keto ester enolates are less common. Typically,
Mannich reactions with β-keto esters and N-carbamoylimines
are restricted to imines derived from aromatic aldehydes6 or
glyoxalates.7 A third alternative to the β-amino ketone subunit
involves Michael addition of nitrogen nucleophiles to enones.8

Although the Michael addition strategy offers excellent
enantioselectivities and wide substrate scope including aliphatic
side chains, the methods still have practical limitations, such as
the potentially hazardous use of azides under acidic
conditions8c or high catalyst loadings (20 mol %).8d Herein,
we report a practical protocol for a catalytic enantioselective
Mannich reaction of both β-keto esters 1 with imines 2 using a
highly efficient catalyst 3c. Aliphatic and aromatic side chains
are tolerated on both components, and the products can be
readily converted to chiral β-amino ketones.
In our previous study,9 we established the use of bifunctional,

conformationally restricted urea−thiourea catalysts 3a and 3b
(Scheme 1) for the organocatalytic Mannich reaction between
malonates and both aliphatic and aromatic N-Boc imines.9,10

Catalysts 3a and 3b were found to be profoundly more active in
the Mannich reaction with aliphatic imines, which failed to
react at all under catalytic conditions with the Takemoto11 or
the Chen−Dixon−Sooś12 catalysts lacking the extra urea group
of 3a or 3b.

The β-keto ester derived enolates are less basic and,
therefore, less reactive than the malonate enolates as substrates
for reactions with less activated imines such as Boc-protected
imines.13 As such, we expected that the reaction might require
even more active catalysts. Indeed, a preliminary screen with
diastereomeric catalysts 3a and 3b revealed that the Mannich
reaction with β-keto ester 1a and imine 2a afforded good
enantioselectivity only with catalyst 3a. Further optimization by
replacing the dimethylamino group of catalyst 3a with a slightly
more basic and bulky piperidine unit afforded a more active and
selective catalyst 3c (Scheme 1). This catalyst was thus selected
for further reaction optimization.
The optimization of conditions was started from toluene as

the solvent at 0 °C (Table 1, entry 1) since these conditions
were found to be optimal for the related Mannich reaction
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Scheme 1. Cooperatively Assisted Bifunctional
Organocatalysts
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between malonate esters and N-Boc-imines.9 Surprisingly,
under these conditions, the product (4a) was obtained in
excellent yield but with only moderate enantioselectivity (89:11
er). We envisioned that reducing the polarity of the solvent and
lowering the temperature (entries 2−4) should enhance the
enantioselectivity by producing a tighter ion pair between the
protonated catalyst and the enolate nucleophile. Although the
enantioselectivity was improved significantly, the reaction
mixtures became very heterogeneous. This problem was solved
by returning to dichloromethane as the solvent (entries 5−7),
and excellent yields and good enantioselectivities were obtained
without any precipitate formation. Interestingly, the enantiose-
lectivity dropped significantly when the reaction was performed
at 28 °C instead of 0 and −30 °C. This type of non-Arrhenius
behavior was also observed previously in the Mannich reaction
using malonate esters.9

Even with dichloromethane as the solvent, we found that the
enantioselectivities were not fully reproducible while the yields
remained excellent (entry 6). To examine the possibility of
residual water affecting the enantioselectivity, we carried out
control experiments by excluding the water with solid drying
agents and alternatively adding water into the reaction mixture.
Molecular sieves decreased the enantioselectivity (entry 8),
presumably allowing competing racemic Lewis acid promoted
reaction. A less Lewis acidic drying agent, Na2SO4, indeed
improved both the enantioselectivity and the reproducibility of
the reaction (entry 9). However, a control experiment with
added water also improved the enantioselectivity (entry 10).
Presumably, both water and Na2SO4 can trap traces of
inorganic impurities in the imine that lead to lower
selectivities.14 For maximum reproducibility, Na2SO4 was
selected as the additive for further screening.
The β-keto ester and the imine components were then varied

(Scheme 2). Aromatic β-keto esters reacted smoothly with only
1 mol % of catalyst to give products 4a−d and 4p−t, and with
aliphatic β-keto esters 3 mol % of catalyst was required to
access products 4e−m,o in a reasonable reaction time.
Interestingly, electron-donating substituents in the aromatic

β-keto ester nucleophiles do not increase reactivity but instead
result in lower reaction rates (4a vs 4c). The catalytic process is

Table 1. Optimization of Reaction Conditionsa

entry
t

(°C) solvent additive
time
(h)

yieldb

(%) erc

1 0 toluene 1 98 89:11
2 0 mesitylene 1 95 93:7
3 −30 mesitylene 3 97 95:5
4 −30 mesitylene/

hexane (1:1)
3 95 96:4

5 28 CH2Cl2 3 98 81:19
6d 0 CH2Cl2 3 94

−99
91:9
−96:4

7 −30 CH2Cl2 3 98 97:3
8 0 CH2Cl2 granular

4 Å MS
3 97 88:12

9 0 CH2Cl2 Na2SO4 4 99 97:3
10 0 CH2Cl2 H2O 4 99 97:3

aReactions were conducted with 0.2 mmol of 1a, 0.4 mmol of 2a, and
0.002 mmol of 3c in 0.66 mL of indicated solvent. bYields of isolated
product. cDetermined by chiral HPLC as a sum of diastereomers.
dResults of three independent reactions.

Scheme 2. Substrate Scopea,b

aAmount of catalyst (mol %) in parentheses. bReaction times, yields of
isolated products, diastereomeric ratios, and enantiomeric ratios are
reported below each product. cDetermined by chiral HPLC analysis as
a sum of diastereomers. dDetermined by chiral HPLC analysis after
decarboxylation. e150 mol % of 2d (R″ = CH2CH2Ph); see the
Supporting Information. Boc = tert-butyloxycarbonyl, TBDPS = tert-
butyldiphenylsilyl.
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also fairly sensitive to steric properties of the β-keto ester, and
while branched alkyl and cycloalkyl substituents are tolerated,
tert-butyl esters are not (4e vs 4g). Similarly, the quaternary
substitution in the γ-position in ethyl pivaloylacetate lowers the
rate and affords lower enantioselectivity but nevertheless affords
excellent diastereocontrol (4j, dr > 95:5).15 In all of the other
cases, the diastereoselectivity was found to be below 2:1, and
this ratio is likely to be thermodynamically controlled.
On the side of the imines, aliphatic and electron-poor

aromatic imines were found to be highly reactive substrates for
the Mannich reaction. In contrast, electron-neutral (4m) and
electron-rich (4n) aromatic imines required longed reaction
times. o-Methyl substitution in the arylimine was especially
challenging for the present catalytic system. With 3 mol % of
catalyst, product 4n was obtained after 9 days in good to
moderate yields and slightly lower enantioselectivity (catalyst
3c, 9 days, 94% yield, 92:8 er; catalyst 3a: 9 days, 74%, 91:9 er;
catalyst 3b: 9 days 94%, 88:12 er).
Finally, gram-scale synthesis of 4p using 1 mol % of catalyst

and only 1.5 equiv of imine 2d proceeded smoothly, affording
the desired Mannich adduct 4p in 96% yield and 95:5
enantioselectivity.
An interesting reactivity difference between α-branched

aliphatic imines, leading to 4q and 4s, was observed. While
the cyclohexanecarboxaldehyde-derived imine 2b provided
good enantioselectivity (giving 4q in 98:2 er), the isobutyr-
aldehyde derived imine 2c provided only modest enantiose-
lectivity (4s, 81:19 er) (Scheme 3). To rationalize these

observations, we presume that the reactions proceed through a
mechanism where the β-keto ester anion reacts with the imine
or iminium ion.9 In a control experiment in the absence of
catalyst 3c, imine 2c does not provide product 4s, suggesting
that the catalyst is still involved in the racemic pathway. It
should be noted that 2c readily tautomerizes to the
corresponding enecarbamate whereas 2b does not.16 Although
the enecarbamates do not appear to react directly with β-keto
esters, the catalyst β-keto ester salt could protonate the
enecarbamate, leading to an enolate−iminium ion pair which
should directly collapse to product 4.17

This rationalization is consistent with previously proposed
mechanisms for Brønsted18 and Lewis19 acid catalyzed
enecarbamate to imine tautomerization−nucleophilic addition
sequences. Although α-unbranched imines could also tauto-
merize to the corresponding enecarbamates, these enecarba-

mates could readily dimerize or oligomerize with the imines
and thus would not participate in further reactions. In contrast,
2b and 2c are more hindered and less likely to react with the
corresponding enecarbamates.
As an application of the Mannich addition protocol,

decarboxylation should directly afford enantioenriched β-
amino ketones. Since the reaction tolerates both ethyl and
benzyl β-keto esters (Scheme 2, 4e and 4f), the decarboxylation
could be initiated either via saponification or hydrogenation,
respectively. These unoptimized decarboxylative transforma-
tions (Scheme 4) result in over 70% overall yield of 6a (form

ethyl and benzyl acetoacetate) without compromising the
enantiomeric purity. The absolute stereochemistry of 6a was
determined to be R by correlation with the corresponding
carboxylic acid.20

In conclusion, cooperatively assisted urea−thiourea catalyst
3c catalyzes the Mannich reaction between β-keto esters and N-
Boc-imines with high yields and enantioselectivities under very
mild conditions. Both aliphatic and aromatic substrates are
tolerated. A full account on the mechanistic implications of this
study is forthcoming.
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ABSTRACT: Catalysts containing urea, thiourea, and tertiary
amine groups fold into a three-dimensional organized structure
in solution both in the absence as well as in the presence of
substrates or substrate analogues, as indicated by solution NMR
and computational studies. These foldamer catalysts promote
Mannich reactions with both aliphatic and aromatic imines and
malonate esters. Hammett plot and secondary kinetic isotope
effects provide evidence for the C−C bond forming event as the
turnover-limiting step of the Mannich reaction. Computational
studies suggest two viable pathways for the C−C bond
formation step, differing in the activation modes of the malonate
and imine substrates. The results show that the foldamer
catalysts may promote C−C bond formation with an aliphatic
substrate bearing a cyclohexyl group by enhanced binding of the substrates by dispersion interactions, but these interactions are
largely absent with a simpler catalyst. Additional control experiments demonstrate the ability of simple thiourea catalysts to
promote competing side reactions with aliphatic substrates, such as reversible covalent binding of the thiourea sulfur to the imine
which deactivates the catalyst, and imine to enamine isomerization reactions. In foldamer catalysts, the nucleophilicity of sulfur is
reduced, which prevents catalyst deactivation. The results indicate that the improved catalytic performance of foldamer catalysts
in Mannich reactions may not be due to cooperative effects of intramolecular hydrogen bonds but simply due to the presence of
the folded structure that provides an active site pocket, accommodating the substrate and at the same time impeding undesirable
side reactions.

KEYWORDS: organocatalysis, bifunctional, cooperativity, mechanism, kinetics, computations, Mannich reaction

■ INTRODUCTION

Enzymes bind their substrates into a characteristic active site
cleft that contributes to binding and the remarkable degree of
selectivity obtained in enzymatic catalysis.1 In contrast, many
organocatalysts are small molecules that do not appear to
possess any folded active site cleft, yet they are often able to
exhibit remarkable degrees of selectivity as well.2

We have previously described a family of urea−thiourea−
tertiary amine catalysts (1a−c in Scheme 1) that appear to fold
into a conformation with an active site pocket. These catalysts
promote highly enantioselective Mannich reactions of
malonates and β-keto esters with aromatic and aliphatic imines
(Scheme 1).3 In contrast to the prototype small-molecule
bifunctional catalyst, Takemoto’s thiourea−tertiary amine
catalysts (2a),4 these new catalysts readily accepted both
aliphatic and aromatic imines as electrophiles in the Mannich
reaction. The design of these catalysts was sparked by the
seminal work of Smith, who showed that intramolecular
hydrogen bonds between urea and thiourea groups lead to
enhanced reactivity.5 An alternative explanation for the higher
activity of our catalysts is that the intramolecular hydrogen

bond generates a folded structure and an active site cleft in the
catalyst. Such folding is not possible with catalyst 2a.
Herein we show that these catalysts indeed form a well-

defined folded structure in solution, even in the presence of
substrates or substrate analogues. Furthermore, the most likely
reason for the superiority of the new catalyst family is that the
active site pocket, generated upon folding of the catalyst, allows
additional stabilizing interactions with the substrates and
facilitates the turnover-determining C−C bond formation step.
The dual activation modes of tertiary amine−thiourea

bifunctional organocatalysts have previously been studied
using both computational and experimental methods.6 In
addition, the H-bond donor ability of thioureas and other
hydrogen-bonding catalysts have been studied by colorimetry
by Kozlowski.7 However, the folded, more complex nature of
catalysts 1a−c suggests that mechanistic lessons learned in
previous studies should be complemented for these catalysts.
To enable a more rational design of future catalysts, and to
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expand the substrate scope, we undertook a combined
experimental and computational mechanistic study of these
new catalysts.

■ RESULTS
Conformational Analysis of Catalyst 1a in Solution.

We had previously established that catalyst 1b, or its
diastereomer 1c, could fold into at least two completely
different conformations with different anions (Figure 1).8

The first conformation, corresponding to an intramolecularly
hydrogen bonded structure, is observed when the catalyst forms
a salt with a malonate surrogate, hexafluoroacetylacetonate
(hfacac). The hfacac salt might be viewed as an analogue of the
corresponding catalyst−malonate ion pair that likely forms in
the Mannich reaction. The second conformation was observed
in the HCl salt of 1c.3a These results, however, were obtained
in the solid state.
To elucidate the major populated conformations in solution,

a benzene-d6 solution of catalyst 1a was studied by 1H NMR

measurements. NOESY cross peaks in the free catalyst 1a in
benzene (Figure 2) are consistent with the obtained crystal

structure of the folded urea complex ((1a)2·urea·MeCN) of the
catalyst (see the Supporting Information). Importantly, the
same characteristic NOESY cross peaks were also observed in
the spectrum of the hfacac salt of 1a in benzene. These NMR
experiments thus established that the fold of the catalyst
remains similar in both the free state and the catalytically
relevant ion pair complex (assuming that the fold remains
similar to the malonate salt and the hfacac salt). The presence
of several close contacts in the structure indicates that the fold
is tight, and the piperidine ring A as well as the indane (CD)
and one of the aryl rings (E) can form the walls of a possible
catalytic pocket (Figure 2).
Our computational analysis9 provides further support for the

preference of the folded structure of catalyst 1a. We find that
the most stable form of 1a features an asymmetric double
hydrogen bonding pattern between the urea and thiourea
moieties with an additional intramolecular hydrogen bond
formed between the tertiary amine and the adjacent NH group
(see Figure 3). The unfolded structures (i.e., those without N−
H···S hydrogen bonds) are all predicted to be at least 8 kcal/
mol less stable than the most favored conformer.10

Catalyst−Substrate Binary Complexes. In the folded
structure of catalyst 1a, the thiourea NH groups are easily
accessible by the substrate molecules; therefore, the formation
of binary complexes is expected. Computations were carried
out for binary 1a·substrate systems relevant to our present
mechanistic studies (Scheme 2).
Dimethyl malonate (3a) forms a multiply H bonded complex

with 1a, as shown in Figure 4; however, the complexation is
predicted to be slightly endergonic. In complex 1a·3a, one of
the C−H bonds of the methylene group is oriented toward the

Scheme 1. Catalysts 1a−c and 2a and Their Contrasting
Reactivity

Figure 1. Comparison of X-ray structures of two different salts of
catalyst 1c, showing that at least two possible folds are readily
accessible.

Figure 2. Structurally diagnostic 2D NOE cross peaks of (a) 1a and
(b) 1a·hfacac in benzene-d6 at 30 °C. (c) X-ray structure of 1a
complexed with urea and MeCN (MeCN molecule omitted for
clarity).
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basic center of the catalyst; thus, the malonate is structurally
well prepared for deprotonation. The deprotonation occurs via
a relatively low barrier (14.7 kcal/mol) and leads to an ion pair
(1aH+·3a−) lying at +4.7 kcal/mol in free energy.11

Various binding modes could be identified computationally
for imine 4a. In the most stable form, the imine binds via its N
atom to thiourea (see Figure 5) and this 1a·4a complex is
practically isoenergetic with the dissociated state (1a + 4a).12

Para-substituted aromatic imines 4b,c form very similar binary

complexes with 1a. The predicted stabilities (+0.3 and +1.9
kcal/mol, respectively) do not fully reflect the trend expected
from the nature of the substituents, which is likely related to
entropic effects.13 An analogous binary complex formed with
the aliphatic imine 4d is found to be notably less stable (at +2.5
kcal/mol).
Our attempts to identify complexes with malonate 3a and

catalyst 1a experimentally were not productive, which is in line
with the computed thermodynamics. However, with acetyla-
cetonate (acac), a more acidic β-dicarbonyl compound, small
shifts were indeed observed in NMR titration experiments
(Figure 6). More pronounced shifts were observed in NMR
titrations with imine 4b, indicating that the imine interacts with
several key protons in the catalytic pocket of 1a (see Figure 6).

Competition Experiments. To be able to directly
compare the reactivity of aromatic and aliphatic N-Boc imines,
we conducted a series of competition experiments using two
foldamer bifunctional catalysts (1a,b), Takemoto catalyst (2a),
and urea-Takemoto catalyst (2b) (Figure 7). In order to avoid
problems associated with the imine isomerization, we selected

Figure 3. Most stable conformer of catalyst 1a as predicted by DFT
calculations. Internal hydrogen bonds are indicated by blue dotted
lines (related distances are given in Å). Hydrogen atoms are omitted
for clarity, except those of NH groups.

Scheme 2. Substrates Used in the Computational Study of
Binary Complexation

Figure 4. Binary complex 1a·3a and the ion pair formed upon
substrate deprotonation. Relative stabilities (in kcal/mol; with respect
to 1a + 3a) are given in parentheses. For the sake of clarity, internal H
bonds between urea and thiourea are not indicated. Most of the
hydrogen atoms are not shown either (except those of NH groups and
the CH2 of 3a in 1a·3a). Carbon atoms of the substrate are highlighted
in dark green. The hydrogen involved in the proton shift is marked
with a blue H.

Figure 5. Most stable form of complex 1a·4a and the ion pair formed
upon substrate deprotonation. The relative stability (in kcal/mol; with
respect to 1a + 4a) is given in parentheses.

Figure 6. Summary of 1H NMR shifts observed when catalyst 1a was
titrated with (a) acetylacetone (acac) or (b) imine 4b.
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the imine 4d as the aliphatic imine since 4d is less prone to
isomerization side reactions than other aliphatic imines.14 As
expected, arylimine 4a and aliphatic imine 4d exhibited clearly
different reactivities when Takemoto catalyst (2a) was used.
Interestingly, the urea variant of 2a (2b) displayed increased
activity but maintained the clear reactivity difference between
4a and 4d. These graphs indicate that, for aromatic imine 4a,
the foldamer structure of the bifunctional catalysts 1a,b provide
only a slight rate acceleration in comparison to Takemoto
catalyst; however, the reaction with aliphatic imine 4d is
catalyzed more efficiently by foldamer catalysts. Moreover, the
foldamer catalyst 1b gave similar initial rates for both aromatic
and aliphatic imine.
We had already demonstrated the superiority of catalyst 1a

over 1b in reactions with β-keto esters.3b Catalyst 1a was also
superior to catalyst 1b in preparative experiments with dimethyl
malonate (Table 1). Both catalysts provide excellent isolated

yields regardless of the imine used. For both imines, catalyst 1a
gave better selectivity than catalyst 1b. Especially in the case of
aromatic imine 4a the selectivity difference was significant.

Kinetic Measurements. We anticipated that a linear free-
energy relationship, such as a Hammett plot (Figure 8), could
clarify the rate-limiting step of the catalytic Mannich reaction.
For example, if the rate is limited by the binding of the imine to

Figure 7. Mannich reaction progress curves in competition experiments between imines 4a and 4d. The product concentrations are plotted as a
function of time relative to the internal standard. Reaction conditions: catalyst (10 mol %), [3a]0 = 0.2 M, [4a]0 = 0.1 M, [4d]0 = 0.1 M, [dibenzyl
ether] = 0.2 M, benzene-d6 at 30 °C.

Table 1. Preparative Mannich Reaction Examples with
Malonate using Foldamer Catalysts 1a,b

catalyst R yield (%) er

1a Ph (4a) 99 97.0:3.0
1b Ph (4a) 99 7.5:92.5
1a c-hex (4d) 99 >99.5:0.5
1b c-hex (4d) 95 1.0:99.0

Figure 8. Hammett plot. p-SMe imine was omitted from the line
fitting.
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the catalyst, a negative reaction constant (ρ) should be
obtained. In contrast, with a rate-limiting C−C bond formation,
the ρ value should be positive.
With nine para-substituted imines a clear positive Hammett

correlation was observed; however, there was significant
deviation from linearity.15 In the Hammett plot, two subgroups
were clearly distinguishable, the electron-rich and the electron-
poor aromatic imines. For both the electron-donating (ρ =
3.22; R2 = 0.989) and the electron-withdrawing (ρ = 0.882; R2

= 0.978) substituents excellent correlations were obtained. This
relatively small deviation from linearity does not support any
profound change in the reaction mechanism but instead
suggests a change in the energy profile of the reaction as the
electronic properties of the imine are changed. With different
imines, the relative stabilities of the complexes preceding the
turnover-determining transition state may change, which would
influence the reaction rate.
Nevertheless, the Hammett plot clearly suggests that the

rate-determining step involves a transition state with increasing
electron density at the imine carbon. Thus, initial binding of the
imine, or final protonation of the intermediate, is unlikely to be
rate-limiting. An internal rearrangement within the catalyst
structure after the C−C bond formation event might, in theory,
exhibit a positive ρ value. In order to rule out this possibility, a
kinetic isotope effect study with deuterium-labeled imines was
carried out.
KIE measurements were conducted by 1H NMR reaction

monitoring by comparing the reaction rates16 with aromatic
imines 4a−c and 4a−c-d1 with dimethyl malonate in parallel
experiments (Table 2). In all cases, a notable inverse secondary

KIE (0.90−0.93) was observed. These KIEs are indicative of a
change in the bonding environment (hybridization) of the
imine carbon in the rate-determining step. Together with the
Hammett plot data, these experiments strongly indicate that the
C−C bond formation is rate-determining. An alternative
rationalization for the KIEs, an inverse 2° equilibrium isotope
effect17 arising from the binding event of the imine, is not
compatible with the results of the Hammett plot, which
indicates that the rate-determining step involves an increase in
the electron density of the imine carbon.
Further support for the C−C bond formation step as the

rate-determining step could be obtained from a crossover
experiment with the Mannich reaction product 5a (0.2 M) and
imine 4c (0.2 M) in the presence of 10 mol % of catalyst 1a. In
this experiment, no crossover product was observed after 24 h,
indicating that the C−C bond formation step is essentially
irreversible.
Inhibition and Complexation Experiments. To clarify

the importance of catalyst complexation with imines, we
performed a kinetic experiment with p-CN benzaldimine (4c)

and a substoichiometric amount of p-OMe benzaldimine (4b)
as a potent inhibitor (Scheme 3a). As the rate difference of

these imines in the Mannich reaction is over 20-fold, 4b can be
considered purely as an inhibitor. The presence of 50 mol % of
4b retarded the Mannich reaction between p-CN benzaldimine
(4c) and dimethyl malonate by a factor of 1.88. This inhibitory
effect might result from a change in the turnover-determining
intermediate (TDI) of the reaction.18 With an electron-rich
imine, such as 4b, the complex with the catalyst could become
the TDI.
In addition, 4b (50 mol %) inhibited the Mannich reaction of

4a by a factor of 2.91 (Scheme 3b). Although in this case the
reactivity difference of the imines is only 8-fold, the Mannich
reaction rate of 4b was found to be negligible. These results
further support the notion that competitive substrates retard
the reaction by lowering the concentration of the productive
complex, even if the interactions are weak (as evidenced by the
NMR titration experiments).
Finally, product inhibition with product 5a was also observed

(k/kinhib = 2.26, Scheme 3c), which justifies the need for an
excess of imine to drive the reactions to completion.

C−C Bond Formation Pathways. The details of the C−C
bond formation process in the present Mannich reactions were
explored computationally for the reaction 3a + 4a promoted by
foldamer catalyst 1a. We considered several possible mecha-
nistic scenarios for this step that involve different substrate
activation modes, and we found two feasible reaction pathways
as illustrated in Figure 9.
In route 1, the deprotonated dimethyl malonate is bound to

the protonated amine and to the proximal NH group of
thiourea, whereas the imine is activated via the distal NH group
of the thiourea moiety of the catalyst. This type of substrate
activation has already been described in our previous work,3a

and it has also been identified as the most favored pathway for
organocatalytic vinylogous Michael reaction of α,β-unsaturated-
butyrolactam to chalcone.6e On the other pathway, in route 2,
the deprotonated nucleophile is shifted to thiourea displaying
double H-bonding interactions, and the electrophilic imine
binds to the protonated amine unit via the carbonyl group of
the Boc moiety.

Table 2. Kinetic Isotope Effect Measurements

X rate0 H (mM min−1) rate0 D (mM min−1) KIE (kH/kD)

OMe (4b) 0.0779 0.0865 0.90 ± 0.04
H (4a) 0.499 0.552 0.90 ± 0.16
CN (4c) 1.82 1.97 0.93 ± 0.07

Scheme 3. Inhibition Experiments Carried Out with (a) 4c
and 4b, (b) 4a and 4b, and (c) 4a and 5a
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The C−C bond formation transition states identified
computationally on the two reaction pathways (TSF1

Ph and
TSF2

Ph in Figure 9) represent very similar barriers with respect
to the 3a + 4a + 1a reactant state (17.7 and 17.9 kcal/mol,
respectively), suggesting that both addition mechanisms might
be operative in this particular reaction.19 This finding may seem
surprising, but it actually supports the view formulated recently
in our previous work that the application of a single reactivity
model might not always be sufficient to describe the
mechanism of bifunctional noncovalent organocatalysis.20

To test the two mechanistic scenarios against experimental
data, calculations were carried out for analogous reactions with
para-substituted imines 4b,c as well. We find that both C−C
bond formation mechanisms account qualitatively for the
observed reactivity trend. As shown in Table 3, the barriers
predicted for the two pathways decrease gradually in the 4b−
4a−4c series, which is in line with the positive Hammett
correlation. It is also apparent that computations predict nearly
identical kinetic isotope effects for the two C−C bond
formation pathways, all equal to or very close to 0.9, which
are in reasonable agreement with the measured data (see Table
2). These results thus provide further support for the relevance
of parallel reaction channels in this Mannich reaction.

Comparative Analysis. To gain insight into the origin of
the unprecedented reactivity of foldamer catalysts in Mannich
reactions with aliphatic aldimines, we performed a comparative
computational analysis for reactions 3a + 4a and 3a + 4d
catalyzed by bifunctional organocatalysts 1a and 2a. The
computed barriers associated with the two C−C bond
formation mechanisms are collected in Figure 10.

Note first that the foldamer catalyst 1a offers a kinetically
favored pathway for the reaction with aliphatic imine 4d as well,
since the barrier computed in route 1 is only 15.3 kcal/mol,
which is actually lower than that computed for 4a. On the other
hand, route 2 becomes less accessible in this reaction, as
expected from the increased barrier (20.1 kcal/mol). The free
energy data obtained for analogous reactions catalyzed by the
Takemoto catalyst 2a reveal a different pattern in the diagram.
The barriers in route 1 are found to be notably lower for both
substrates, and the reaction with aromatic imine 4a is predicted
to be kinetically more favored in both reaction pathways.
Although these results corroborate the diverse catalytic effect

of the two catalysts in the 3a + 4a and 3a + 4d reactions, and
they point to an enhanced reactivity of 4d with the foldamer
catalyst, the computed barriers are not fully consistent with the
results of competition experiments (Figure 2). The reactivity
difference between 4a and 4d is reasonably well reproduced for
the Takemoto catalyst, but computations seem to overestimate
the reactivity of 4d for the foldamer catalyst.21 The quantitative
discrepancy between the computed barriers and the observed

Figure 9. C−C bond formation pathways explored computationally
for reaction 3a + 4a catalyzed by 1a. In the schematic view, the carbon
atoms involved in bond formation are labeled by black dots. Relative
stabilities (solution phase Gibbs free energies with respect to reactant
state 3a + 4a + 1a; in kcal/mol) are given in parentheses. Hydrogen
bonds formed between the substrates and the catalyst are indicated by
blue dotted lines, whereas the developing C−C bond is illustrated by
green dotted lines (related distances are given in Å). For clarity of
images, hydrogen atoms are omitted, except those of NH groups.

Table 3. Computed Barriers (ΔG⧧; in kcal/mol) and Kinetic
Isotope Effects (KIE) for Reactions with Para-Substituted
Aromatic Iminesa

route 1 route 2

imine R ΔG⧧ KIE ΔG⧧ KIE

4b OMe 18.1 0.90 19.7 0.91
4a H 17.7 0.90 17.9 0.90
4c CN 15.5 0.92 17.5 0.92

aThe barriers refer to reactions with nondeuterated imines.

Figure 10. Computed C−C bond formation barriers (in kcal/mol) for
reactions 3a + 4a (filled bars) and 3a + 4d (empty bars) promoted by
catalysts 1a and 2a.
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rates could be related to the inaccuracy of the applied
computational method, which might be considerable, partic-
ularly for large molecular models involving the bulky catalyst
1a.22

In addition to computational errors, the apparent discrepancy
might be due to mechanistic events beyond the C−C bond
formation step; therefore, we examined the mechanism of
reprotonation as well for the reaction 3a + 4a. This step
involves a proton shift from the protonated amine unit of the
catalyst to the N atom of the anionic adduct intermediate
formed in the C−C bond formation step. We find that proton
transfer occurs very easily in route 2 because the N atom of the
adduct lies in close vicinity of the protonated amine (see TSF2

Ph

in Figure 9).23 In route 1, however, substantial structural
rearrangement in the H-bonded network of this intermediate is
required prior to proton transfer (see TSF1

Ph in Figure 9). This
rearrangement and subsequent reprotonation is still facile with
the Takemoto catalyst; however, it appears to be hindered with
the bulky foldamer catalyst. The difference found for the two
catalysts is clearly due to the presence of the urea side group in
catalyst 1a, which imposes a restriction on intramolecular
structural rearrangements needed for reprotonation. Potential
energy scan calculations suggest that transition states of this
multistep rearrangement process may lie above TSF1

Ph; thus,
the 3a + 4a reaction may preferentially follow route 2 with
catalyst 1a.24 In the 3a + 4d reaction, the reprotonation step in
route 1 is likely hindered as well, but this pathway could be still
favored over route 2. It is therefore possible that the reactions
with the two imines (4a and 4d) take place via two different
pathways (route 2 and route 1, respectively) but with
comparable rates. We recall that experimentally, in the reaction

with aromatic imines (4a−c), the C−C bond formation is
clearly rate limiting, but the same may not hold true with
aliphatic imine 4d. Unfortunately, a reliable KIE analysis could
not be performed for imine 4d due to side reactions.

Beneficial Role of the Foldamer Catalyst. To provide
further understanding of the beneficial effect of catalyst 1a on
the C−C bond formation barrier for imine 4d, we analyzed the
structures and the nature of interactions in transition states
located in route 1 (see Figure 11).
We note first that the intramolecular hydrogen bonds

between urea and thiourea in TSF1
Ph and TSF1

Cy are notably
strengthened in comparison to the free foldamer catalyst (see
Figure 3), which is evidence for the cooperativity, but these
changes alone do not account for the improved reactivity for
aliphatic imines. Cooperative effects amplify the acidity of the
thiourea unit in foldamer catalysts,25 which is likely beneficial
for both aromatic and aliphatic imines; however, this does not
translate to increased reactivity for aromatic imines, only for
aliphatic imines.
In transition states involving the Takemoto catalyst (TST1

Ph

and TST1
Cy) the binding of reacting partners is very similar, as

indicated by the distances characteristic of H-bonding
interactions (e.g., both imines form hydrogen bonds with a
distance of 1.84 Å). In contrast, there are notable differences in
these distances in transition states involving the foldamer
catalyst 1a (TSF1

Ph and TSF1
Cy), and they show a more

compact binding for aliphatic imine 4d. For instance, the N−
H···N hydrogen bond associated with the activation of imine 4d
is significantly elongated in TSF1

Ph and it is shorter in TSF1
Cy

(1.94 and 1.80 Å, respectively). The longer N−H···N hydrogen
bond in TSF1

Ph is consistent with the trend obtained for relative

Figure 11. Bond distances (in Å) characteristic of H-bonding interactions in C−C bond formation transition states in route 1 in reactions 3a + 4a
and 3a + 4d promoted by catalysts 1a (upper structures) and 2a (lower structures). Catalyst−substrate interactions are indicated in blue, and
intramolecular urea−thiourea interactions are shown in black. Relative stabilities (in kcal/mol; with respect to reactants) are given in parentheses.
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stabilities of the transition states and suggests that the foldamer
catalyst cannot accommodate aromatic imines as efficiently as
aliphatic imines into the catalytic pocket.
Figure 12 shows another representation of the four transition

states and highlights the differences in noncovalent interactions
between the catalyst and the evolving adduct species. It is
apparent that the Ph/Cy groups of the imines and the Me
substituents of dimethyl malonate have practically no contact
with catalyst 2a, but these groups do interact with various parts
of catalyst 1a. The presence of the urea side group in catalyst 1a
provides a well-defined binding pocket for the reacting
substrates, which induces selectivity with respect to imine
substitution. The cyclohexyl moiety of 4d seems to
accommodate more favorably into this pocket than the flat
and more rigid phenyl group of 4a, presumably because the
more flexible cyclohexyl ring can bend and fit in the binding
pocket generated by rings C−E of the catalyst. This is also
visible from the more extended contact surface in TSF1

Cy. The
longer N−H···N distance in TSF1

Ph in comparison to TSF1
Cy

(and also in comparison to TST1
Ph) implies destabilizing steric

hindrance.
The role of the urea side group in catalytic selectivity was

further analyzed by calculations carried out for model catalysts
derived from 1a (Scheme 4).
C−C bond formation transition states analogous to TSF1

Ph

and TSF1
Cy were computed for each model. The barriers related

to the identified transition states are given in Table 4.
As reported above, the barriers computed for imines 4a,d

with the original catalyst (1a) are 17.7 and 15.3 kcal/mol,
respectively, giving ΔΔG = −2.4 kcal/mol as a difference. The
presence of the indene ring and the neighboring CF3-
substituted phenyl group appears to be important in getting
enhanced reactivity with 4d, because without these groups
(models m1 and m2) the computed ΔΔG is close to 0 (similar
barriers for 4a,d). The elimination of the entire urea side group

Figure 12. Noncovalent contacts in C−C bond formation transition states in route 1 in reactions 3a + 4a and 3a + 4d promoted by catalysts 1a
(upper structures) and 2a (lower structures). The protonated catalyst is represented via an isodensity surface (ρ = 0.01 au); imines 4a,d are
highlighted in red and malonate 3a is shown in blue. Green regions represent weak noncovalent interactions as obtained from NCI analysis. The
applied cutoff for reduced density gradient is s = 0.3 au.

Scheme 4. Model Catalysts Derived from 1aa

aUnits altered with respect to the original catalyst are highlighted in
blue.

Table 4. Computed Barriers and Their Differences Obtained
for Model Catalystsa

catalyst ΔGPh ΔGCy ΔΔG = ΔGCy − ΔGPh

1a 17.7 15.3 −2.4
m1 18.5 18.6 +0.1
m2 17.9 18.3 +0.4
m3 19.9 21.1 +1.2
no cat. 11.8 14.9 +3.1b

aΔGPh and ΔGCy refer to barriers computed for aromatic and aliphatic
imines (4a and 4d). bIn the absence of catalyst, the barriers are
computed relative to the 3a− + imine state.
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(model m3) gives ΔΔG = +1.2 kcal/mol; therefore, the
catalysis becomes less efficient for the aliphatic imine similarly
to that with Takemoto catalyst 2a (for which ΔΔG = +2.1
kcal/mol). We note that, in the absence of catalyst, the C−C
bond formation is clearly favored for the aromatic imine (ΔΔG
= +3.1 kcal/mol).26

Our computational analysis thus suggests that the improved
catalytic performance of foldamer catalysts in Mannich
reactions with aliphatic imines cannot be explained solely by
the cooperative effects of intramolecular H-bonding inter-
actions between urea and thiourea, although cooperativity is
clearly evident in the shortening of the intramolecular H bonds
in the transition states. The structural fit of the substrates to the
binding pocket of the folded structure appears to be better with
the aliphatic imines, and this also contributes to their higher
reactivity.
Catalyst Deactivation and Substrate Isomerization.

To further rationalize the differences between the catalysts 1a
and 2a, we examined whether the aliphatic imines might suffer
additional disadvantages with catalyst 2a that are not present
with 1a. We were especially concerned about potential side
reactions, which were investigated by using the less hindered
and more reactive imine 4e (Scheme 5).

Indeed, we observed isomerization of the imine 4e to the
enamine (6) form with catalyst 2a (Scheme 5). This
isomerization leads to low conversion, as the isomerization is
irreversible under the reaction conditions. Previously, Take-
moto and co-workers have noted that problems with the
bifunctional thiourea catalysts27 can be avoided if the highly
nucleophilic thiourea moiety is replaced with a less nucleophilic
H-bond donor.28

The effect of the catalysts on the isomerization reaction was
studied in more detail by 1H NMR monitoring (Scheme 5a).
Mixing an aliphatic imine 4e and catalyst 2a in a 1:1 ratio in
benzene led to the immediate disappearance of the imine-
related peaks. In addition, most of the catalyst had formed the
new species 7, which was stable enough to be detected on the
1H NMR time scale. The degradation of this new species was
directly related to formation of the enamines 6 and also to an
increase in the catalyst peak integrals.
Mixing imine 4e with 2-mercaptopyridine resulted in a stable

product (8) that could be fully characterized with NMR
(Scheme 5b; see the Supporting Information). 1H, 13C, COSY,
and HMQC measurements were all consistent with a 1,2-
addition product of 2-mercaptopyridine to imine 4e. The

stability of this product implies that the amine base in the
Takemoto catalyst is necessary for the adduct to decompose.
When the isomerization experiment was conducted with 20

mol % of 2a, the isomerization process was sluggish, as only
73% conversion was obtained after 2 h (Table 5). However, a

urea version of the Takemoto catalyst (2b) was more effective
in the isomerization process, while no covalently bound species
could be observed in the 1H NMR spectra.
Catalyst 2b also produced the enamine in higher Z selectivity

in comparison to the Takemoto catalyst. Surprisingly, the
foldamer catalyst 1b was found to be the most effective in the
isomerization of the imine to the enamine, implying that the
isomerization process is favored by stronger H-bond donors. In
addition, the selectivity for the double bond was inversed to
favor the E enamine. With the bulkier piperidine catalyst 1a the
rate of isomerization was much slower than that with the N-
dimethylamine foldamer catalyst (1b) and the E:Z selectivity
was also close to those obtained with 2a,b. These results
demonstrate that blocking the sulfur atom of the catalyst by the
foldamer structure does not solve the isomerization problem.
Overall, the deactivation and isomerization experiments

suggest that the reactivity difference between the foldamer
catalysts 1a,b and Takemoto catalyst 2a could at least partially
be attributed to the nucleophilicity of the sulfur atom in 2a,
resulting in fast but reversible deactivation of the catalyst by an
aliphatic imine such as 4e. In catalysts 1a,b, the intramolecular
hydrogen bonds and the folding may completely block the
nucleophilic attack of the thiourea sulfur and thus prevent
deactivation of the catalyst. Isomerization of the imine appears
to be a side reaction that is common to all catalysts. A control
experiment with triethylamine showed that aliphatic imines are
relatively stable under moderately basic non-nucleophilic
conditions. The imine to enamine isomerization appears to
require the presence of H-bond donors in the catalyst.

■ CONCLUSIONS
The folded structure of the foldamer urea−thiourea−tertiary
amine catalyst 1a was confirmed by solution NMR, solid-state
X-ray, and computational analyses, both in the free state as well
as as a complex with the imine substrate or in an intramolecular
salt form with substrate analogues (acac or hfacac). In all cases,
evidence for the folded structure could be readily inferred from
the structural data.
In competition experiments, aliphatic imine 4d and aromatic

imine 4a reacted at comparable rates with dimethyl malonate
when the foldamer catalysts 1a,b were used. In contrast, with 2a
and its urea variant 2b, 4d reacted very slowly in comparison to
4a.

Scheme 5. Deactivation of Catalyst 2a: (a) Isomerization of
Imine 4e and (b) Addition of 2-Mercaptopyridine to 4e

Table 5. Isomerization of Aliphatic Imine with Bifunctional
Organocatalysts

catalyst conversion (%) time (min) E:Z

1a 80 120 1:1.5
1b 100 <8 3.8:1
2a 73 120 1:1.2
2b 97 40 1:1.8
Et3N 6 120 1:2.1
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The Hammett plot and the secondary kinetic isotope effects
measured for the Mannich reaction with aromatic imines
supported a mechanism where the C−C bond forming event is
the turnover-limiting step. Computational studies revealed two
viable C−C bond formation pathways in these reactions, route
1 and route 2, that differ in the alternate activation modes of
the malonate and imine substrates. For aliphatic imine 4d
bearing a cyclohexyl group, route 1 allows a kinetically favored
C−C bond formation process as well, which is found to be a
unique feature of foldamer catalyst 1a. For reactions with
Takemoto catalyst, computations predict significantly reduced
reactivity of 4d in comparison to aromatic imines 4a−c, which
is in line with experimental observations. Our computational
analysis suggests that, in addition to H-bonding interactions,
the foldamer catalyst can further facilitate the C−C bond
formation via dispersion forces provided by the catalyst’s
binding pocket. These stabilizing noncovalent interactions are
scarcely present in C−C bond formation transition states with
simpler thiourea−tertiary amine catalysts. These differences
may explain the improved performance of the foldamer catalyst
with aliphatic imines.
The folded structure of catalysts 1a,b also helps to block the

nucleophilicity of the thiourea sulfur atom, preventing catalyst
deactivation via nucleophilic attack to imines. This provides an
additional reason for the improved catalytic performance of the
foldamer catalysts in the Mannich reactions with aliphatic
imines.
In summary, the results obtained herein point to the

importance of the folded structure with an active site cleft, in
contrast to cooperative effects associated with the intra-
molecular hydrogen bond, as the explanation for the enhanced
reactivity of foldamer catalysts 1a,b with aliphatic imines.
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ABSTRACT: Four distinct folding patterns are identified in
two foldamer-type urea−thiourea catalysts bearing a basic
dimethylamino unit by a combination of X-ray crystallog-
raphy, solution NMR studies, and computational studies
(DFT). These patterns are characterized by different
intramolecular hydrogen bonding schemes that arise largely
from different thiourea conformers. The free base forms of the
catalysts are characterized by folds where the intramolecular
hydrogen bonds between the urea and the thiourea units
remain intact. In contrast, the catalytically relevant salt forms
of the catalyst, where the catalyst forms an ion pair with the
substrate or substrate analogues, appear in two entirely different folding patterns. With larger anions that mimic the dialkyl
malonate substrates, the catalysts maintain their native fold both in the solid state and in solution, but with smaller halide anions
(fluoride, chloride, and bromide), the catalysts fold around the halide anion (anion receptor fold), and the intramolecular
hydrogen bonds are disrupted. Titration of catalyst hexafluoroacetylacetonate salt with tetra-n-butylammonium chloride results
in dynamic refolding of the catalyst from the native fold to the anion receptor fold.

■ INTRODUCTION

The prevailing tenet in designing enantioselective catalysts is
that the catalyst must be able to efficiently differentiate
between two competing diastereomeric transition states,
leading to different enantiomers of the product.1 To this
end, catalyst structures often include relatively bulky side
chains to increase steric constraints2 and to restrain conforma-
tional flexibility.
In contrast to the rigid design of synthetic catalysts, recent

research has unearthed evidence that enzyme catalysis is highly
tolerant of conformational f lexibility in the structure of the
protein.3 In some cases, the binding of the substrate helps in
preorganizing the active site of the enzyme.4 It also appears
that even after long periods of evolutionary optimization,
enzymes often possess significant conformational flexibility
that enables them to adapt to different substrates.5 These
properties are crucial for evolution of new functions and also
for allosteric regulation. Although the importance of conforma-
tional adaptability is well-recognized in the realm of enzymes,
conformational flexibility of synthetic catalysts has gained
recognition only relatively recently.6 In particular, synthetic
peptides, in the same fashion as larger enzyme proteins,
provide an important exception to the typical rigidity of
synthetic catalysts.6c−e

Herein, we describe a pair of highly enantioselective
synthetic catalysts displaying significant conformational flexi-

bility, with a native, active folded state and at least three
alternative folded states.
The catalysts that are the subject of the current study (1−3;

see Scheme 1) are capable of highly enantioselective catalysis
of Mannich reaction between malonate esters or β-keto esters
and imines.7,8 The intramolecular urea−thiourea hydrogen
bond motif in these catalysts was originally designed by the
Smith group as a β-turn mimic,9 connecting the design of our
catalysts to the realm of peptides. Mechanistically, in an initial
proton transfer event, the malonate or β-keto ester anions are
proposed to be tightly bound to the catalytic pocket via
hydrogen bonds (Scheme 1a).7a Whereas all catalysts gave
reasonable enantioselectivities in the catalytic Mannich
reaction (Scheme 1b), catalyst 1 was superior to catalyst 2
in both selectivity as well as reactivity (Scheme 1b),7d and
catalyst 3 was even more selective than either catalysts 1 or 2.
We have earlier reported7a how important the catalytic pocket
and the overall fold, including the rigid indane ring7c (rings C
and D), are for catalysis with this catalyst family (Scheme 1c).
However, evidence for alternative folds with these catalysts

was evident even in our first X-ray studies. For example, a
completely different type of fold was characterized by X-ray
when the counteranion was a small chloride ion (Figure 1). In
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this case, the intramolecular hydrogen-bonded fold and the
catalytic cleft were completely disrupted, and the catalyst
instead folded around the chloride ion.
The presence of several different folds in catalysts is well-

established in the realm of enzymes, where it is possible to
distinguish between the native, catalytically competent state
and other improperly folded or even denatured states.5 Our
foldamer-like catalysts are complex enough that different
folding patterns may similarly emerge. These folding patterns,
or folds, arise as a combination of four possible conformations
for the thiourea unit (Figure 2a)10 and the presence of
hydrogen bond acceptors and donors within the catalyst, giving
rise to additional conformational possibilities. Some of the
possible folding patterns are shown in Figure 2b. Fold A is the
fold that we have previously associated with catalytic
activity,7a,c exhibiting the anti−anti thiourea unit and intra-
molecular urea−thiourea hydrogen bonds. Given its potential
role in catalysis, fold A is herein called the “native fold”,

whereas the chloride-disrupted fold D is called “anion receptor
fold”.11

Our early studies, however, did not establish to what extent
the native fold of these catalysts was maintained in solution.
Furthermore, why did the chloride anion give rise to the anion
receptor folding pattern, while the hexafluoroacetylacetonate
(hfacac) anions maintained the native fold of the catalyst? In
order to study the behavior of the catalysts in a more
systematic manner, we decided to examine the original
catalysts 1 and 2 and their salts with different anions, both

Scheme 1. (a) Catalytic Mannich Reaction via Ion-Pair
Intermediate, (b) Structures of Catalysts 1−3 and Their
Relative Performance in a Test Reaction,a and (c)
Transition State (TS) Structure (DFT) Showing Catalyst 3
and the Test Substratesb

aWith 10 mol % of catalyst, toluene, 0 °C for catalysts 1 and 3, −40
°C for 2; see refs 7a and 7c. bShowing the folding of the catalyst in the
TS (left) and the surface of the active site cleft (right).7a

Figure 1. Two examples of previously characterized folding patterns
of catalyst 2 (CCDC codes YEKPEL and YEKPIP) in their active salt
form.7c

Figure 2. (a) Different thiourea conformations with unsymmetrical
thioureas and (b) possible folding patterns in catalyst 1.
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in solution and in the solid state. The free catalysts were
examined first, followed by a more systematic variation of
different anions, from small halides to larger organic anions
mimicking possible pronucleophiles.

■ RESULTS AND DISCUSSION
Improved Synthesis of Catalysts 1 and 2. We have

found that the precursor 4 (Scheme 2) is hindered enough to

enable a straightforward and highly selective monothiourea
formation between 4 and 5 (via an isothiocyanate derived from
4). In this manner, catalysts 1 and 2 can be obtained very easily
from precursor 4 after reductive amination of intermediate 6 or
7.
Solid-State Structures of Free Catalysts 1 and 2. The

X-ray structures of the free catalysts 1 and 2 were published
previously.7c For comparison, the salient features of the
structures are discussed herein.
Catalyst 1 exhibits the native folded conformation 1A in the

X-ray structure (Figures 3 and 4). In this structure, the

thiourea sulfur atom is hydrogen bonded to the urea HN5. The
distance from the thiourea sulfur to N5 was 3.29 Å (HN5···S
distance = 2.48 Å).12 In turn, the hydrogen bond from thiourea
sulfur to the second urea HN4 was weaker, with S···N4 distance
of 3.51 Å (HN4···S = 2.68 Å). The differentiation between the
two urea H-bond donors is mainly caused by geometrical
restraints from the aminoindanol linker and limited rotation
around the ether bonds due to 1,5-interaction. In this
structure, the angle between least-squares planes of the urea
and thiourea is 75.8°. The thiourea unit is in the catalytically
active (anti−anti) conformation, with the N2−H and N3−H

bonds parallel, facing outward and open for coordination by
hydrogen bond acceptors. The HN2−N2−CB1−HB1 and HN3−
N3−CC1−HC1 dihedral angles on both sides of the thiourea are
governed by allylic strain by minimizing the interaction
between sulfur and the neighboring alkyl groups. This
conformation is analogous to highly preferred 120 or 180°
φ-angle clusters in peptides.13 In fact, in catalyst 1, the torsion
angle of HN2−N2−CB1−HB1 is close to 120° (133°) and the
torsion angle of HN3−N3−CC1−HC1 is close to 180° (169°)
(Figure 3). The thiourea hydrogens HN2 and HN3 form
intermolecular hydrogen bonds to urea oxygen of the adjacent
catalyst molecule with hydrogen bond lengths of 3.00 Å (N2···
O′) and 2.99 Å (N3···O′) (H···O′ distance being 2.17 Å for
both hydrogen bonds).
In contrast to the free catalyst 1, the X-ray structure of

catalyst 2 shows two crystallographically independent con-
formations, 2B and 2C (Figure 4). Fold 2A was not observed
in the solid state. In both conformations (2B and 2C), the
catalyst backbone stays relatively unchanged, highlighting its
rigidity. However, the folding of the rest of the catalyst is
different from the fold 1A observed for 1 (Figure 4). In both
2B and 2C, the thiourea is the syn−anti conformer, and the
intramolecular hydrogen bonds between the urea and thiourea
units are retained. The difference between 2B and 2C lies in
the orientation of cyclohexyl ring B. In 2B, the dimethylamino
group (N1) can form one more intramolecular hydrogen bond
with the thiourea HN2 (N2···N1 distance = 2.70 Å and HN2···N1
distance = 2.37 Å), but in 2C, a similar contact is not possible.
A weaker hydrogen bond between N1 and HN3 is feasible based
on the N3···N1 distance of 3.03 Å and HN3···N1 distance of 2.56
Å.

Solution Structures of Free Catalysts 1 and 2. The
observation of three distinct folds in these X-ray structures
supported the notion that these catalysts can adopt a variety of
conformations in the solid state. The catalytic reactions,
however, take place in solution. To assess the solution
conformations, NOESY NMR spectra of the catalysts 1 and
2 were recorded in CD2Cl2. Different conformations of the

Scheme 2. Improved Synthesis of Catalysts 1 and 2 Directly
from Diamine 5

Figure 3. φ-Angle torsions in (anti−anti) conformer of the solid-state
structure of catalyst 1.

Figure 4. X-ray structures of diastereomers 1 (CSD: YEKQEM) and
2 (YEKPAH) showing three distinct folds for the catalysts. All except
NH hydrogens are omitted for clarity.
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catalysts 1 and 2 were also examined computationally. We used
DFT calculations at the M06-2X/6-311++G(3df,3pd)//M06-
2X/6-311G(d,p) level to compute the structure and the
relative stability of various catalyst conformers (for details, see
Supporting Information).
The most stable computed structures are shown in Figure

5b,d. For catalyst 1, three conformers with very similar relative
stabilities were identified. Conformer 1A displays the
conformation observed in the X-ray structure of 1, with the
anti−anti thiourea. Conformers 1B and 1C, in contrast,
possess a syn−anti thiourea unit, but still involving intra-
molecular H-bonding interactions between the thiourea S
atom and the urea NH groups. Neither of these folds was
observed in the X-ray studies of 1, but the 1B fold is similar to
the fold 2B of catalyst 2. For catalyst 2, the most stable form
corresponds to conformer 2B displaying a syn−anti thiourea
unit, whereas the anti−anti thiourea conformation (2A) is
predicted to be 1.5 kcal/mol less favored in free energy. The
overall fold of 2B in the X-ray structure is almost identical with
the DFT structure (see Figure 5e). Interestingly, although fold
2C was present in the X-ray structure (see above), it turned

out to be 3.0 kcal/mol less stable than 2B, even after
optimization of the structure. The existence of fold 2C in the
X-ray crystal structure (Figure 4) may be attributed to
intermolecular hydrogen bonds between structures 2B and
2C in the X-ray structure (Figure 5f). These hydrogen bonds
could stabilize 2C in the solid state.
In solution, the most diagnostic NOESY cross-peaks in

catalyst 1 were those observed between N1-Me↔HC2, HB1↔
HN5, and HB1↔HN4. The observed N1-Me↔HC2 interaction is
consistent with the structures 1C (computed distance = 2.3 Å)
and possibly also with 1A (5.1 Å) but appears inconsistent
with the most stable conformer 1B (6.1 Å). The HB1↔HN5
interaction can be also supported by conformers 1A (2.5 Å)
and 1C (3.5 Å), but the distance in 1B is longer (4.8 Å). Last,
the interaction between HB1↔HN4 is expected on the basis of
structure 1A (computed distance = 3.8 Å) and 1C (3.1 Å) but
appears less likely for conformer 1B (5.0 Å). Taken together,
these results suggest that catalyst 1 is mostly populated by
conformers 1A and 1C in the solution state, but we cannot rule
out the contribution of conformer 1B to the solution structure.
The ΔG⧧ for the rotation around the thiourea C−N bond is

Figure 5. (a−d) Key NOESY correlations (NMR) and the most stable DFT structures of free catalysts 1 and 2. To rationalize the NMR results for
catalyst 2, two different folds (2A and 2B) are presented to account for the observed NOESY cross-peaks (see text). (e) Overlay of the X-ray of
fold 2B (gold) with the DFT structure (blue). (f) Packing of structures 2B and 2B in the X-ray structure of 2 (CSD: YEKPAH). The computed
relative stabilities shown in parentheses (in kcal/mol) refer to solution-phase Gibbs free energies with respect to the most stable forms of catalysts 1
and 2.
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13.5−14.4 kcal/mol,14 and as such, NMR experiments at a 303
K probe temperature used herein are well above the
coalescence temperature.14a

In catalyst 2, the key diagnostic NOESY cross-peaks
correspond to the correlations between N1-Me↔HC2,
HB6eq↔HF2/F6, and the N1-Me↔HF2/F6. The most stable
DFT structures, 2A and 2B, are consistent with most of the
observed NOESY cross-peaks. The N1-Me↔HC2 correlation is
readily explained by fold 2B (computed distance = 4.5 Å) but
not by 2A (MeN1···HC2 distance = 6.7 Å). Likewise, the
correlation N1-Me↔HF2/F6 is expected for 2B (2.9 Å), but the
corresponding computed distance in 2A is 5.4 Å. In contrast,
the correlation HB6eq↔HF2/F6 cannot be readily rationalized by
fold 2B (distance = 7.3 Å), but it is very consistent with 2A
(distance = 2.9 Å). These data suggest that, in solution, both
folds 2A and 2B may contribute to the averaged NMR
structure as neither of these structures alone can fully
rationalize the observed NOEs.
Structures of the Halide Salts in the Solid State and

in Solution. We decided to probe the effect of anion size by
generating a series of structures from two available catalyst
diastereomers with hydrohalic acids. Indeed, we could
successfully form salts and isolate good quality single crystals
of hydrofluoric, hydrochloric, and hydrobromic acid salts of
both catalysts 1 and 2. Salts of hydroiodic acid, however, did
not afford crystalline material with either catalyst diastereomer.
The X-ray structures (Figure 6) show that the structures of

the hydrohalide salts are remarkably similar to those of
different anions. In all structures, the halide anions are bound
to the catalyst 1 via the urea HN4 and HN5 hydrogens and via
one of the thiourea NH, the HN2. The thiourea is in the anti−
syn conformation.15 The protonated ammonium HN1 forms a
weaker hydrogen bond to the halide with a longer H···N
distance. For example, in 1·HF, the HN1···F distance is 2.54 Å
(N1···F = 3.10 Å), whereas the contacts to the thiourea and
urea protons are shorter (HN2···F = 1.93 Å, HN4···F = 2.08 Å,
HN5···F = 1.87 Å). In addition, the fluoride ion also contacts
the thiourea HN3 of the adjacent catalyst molecule in the solid-
state structure (see the Supporting Information).16

All catalyst 1 halide salts show a similar bonding pattern, and
the catalyst molecules overlap almost perfectly. Although the
binding of the halide causes a small distortion in the upper
CDEF urea segment of the catalyst molecule, the overlaid
structures of the free catalyst 1 and 1·HCl show a remarkable
degree of similarity (Figure 6e).
The X-ray crystal structures of the hydrohalide salts of

catalyst 2 are also remarkably similar to those of the HX salts
of catalyst 1. The only major change in the folding pattern is
that the dimethylammonium group in this diastereomer is
better able to contact the halide ion, even in the case of the
smallest fluoride anion (see Figure 6b). In contrast, the
thiourea HN2 is not ideally pointed toward the halide ion and
forms only a weak contact with the anion, with a HN2···F
distance of 2.96 Å in 2·HF (Figure 6b).
It is evident from these solid-state structures that the halides

do not fit the pocket perfectly and thus allow the formation of
intermolecular hydrogen bonds on the exposed face of the
anion. In particular, the bromide ion is large enough that it is
bound only from one side of the sphere by one catalyst
molecule, as exemplified by the spacefill structure of 1·HBr
(Figure 6f).
Structures of Catalyst Hydrochloride Salts: Solution-

State Structures. The NOESY spectrum of the HCl salt of

catalysts ent-117 and 2 confirms most of the expected
interactions that are observed in the X-ray structure (Figure
7). Many of the NOESY correlations observed in the free
catalysts remained similar in the HCl salts. However, the
correlation between HN2 and HC1 indicates a conformational
change in the thiourea moiety to the anti−syn conformation.
Furthermore, the cross-peaks between MeN1 and HF2 in both
structures as well as HN5 and HB2 in ent-1·HCl were indicative

Figure 6. (a−d) Solid-state structures of the HX salts of catalysts 1
and 2. (e) Overlay of the X-ray structures of 1·HCl (blue, except for
the urea and thiourea units) and free catalyst 1 (YEKQEM, gold)
showing the similar folding of the CDEF region of the catalyst. (f)
Spacefill model of 1·HBr showing how the bromide ion protrudes out
from the binding pocket.
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of a folded, compact conformation where the catalyst wraps
around the chloride ion.
Structures of Catalysts with Organic Acids. In contrast

to the salts of hydrohalic acids, we had already previously
recorded examples where catalysts 1−3 exhibited the native
fold A in the presence of organic acids.7c We therefore
examined a series of acids with catalysts 1 and 2 to obtain
further insight into how the size and the shape of the anions
affect the overall fold of the catalyst.
Although it would have been desirable to obtain X-ray

structures for a complete series of anions, in practice, these
studies had to be limited to scattered cases where the crystal
properties were satisfactory. In many cases, even if proper size
crystals were obtained, they were often soft or brittle, making
the experiments hard to conduct. Nevertheless, in addition to
the previously characterized 2·hfacac (Figure 1), we could also
obtain the corresponding trifluoroacetate (TFA, Figure 8a),
diphenylphosphate (DPP, Figure 8b), and bis(2,6-
trifluoromethyl)benzoate (BTB, see Supporting Information)
salts, all of which exhibited the expected native fold A. The

intermolecular hydrogen bonding patterns observed in these
structures are, however, dependent on the hydrogen bond
acceptor properties of the anion. For example, in the DPP salt,
the ammonium HN1 contacts a neighboring diphenylphosphate
anion in the solid state (see the Supporting Information)
instead of forming a third hydrogen bond to the anion that is
bound by the urea. For these reasons, these X-ray structures
may not always offer a realistic insight into the conformers
populated in solution.

Structures of Catalyst hfacac Salts: Solution-State
Structures. The solution-state structures of the hfacac salts of
catalysts 1 and 2 were obtained by recording NOESY spectra
in CD2Cl2 and analysis of the key correlations. The results
(Figure 9) support the notion that these catalysts primarily

populate fold A in solution with larger anions such as hfacac
and the enolate of dimethyl malonate.7a For example, the
HN3↔HC2 NOESY cross-peak observed in 1·hfacac shows that
the thiourea moiety is likely to adopt an anti−anti
configuration. Most diagnostically, the cross-peaks between
HF2 and HB2 and HB4ax (1·hfacac) or HF2 and H5ax (2·hfacac)
are consistent with fold A (Figure 9).
Interestingly, the lower reactivity and selectivity of catalyst 2

relative to that of 1 may be related to its relatively lower
preference for the active anti−anti conformer (fold A).
Catalyst 2 will need to adopt the active fold 2A instead of
the preferred folds 2B or 2C (with a syn−anti thiourea unit)
upon binding to the malonate ion.7a,c In contrast, catalyst 1
appears to populate the native fold 1A with greater occupancy
in solution (see Figure 4a). If fold A is the fold required for
catalysis, this difference may explain the higher reactivity and
selectivity of catayst 1 compared to 2.

Addition of Chloride Ion Source Dynamically
Switches the Catalyst Conformation in Solution. We
also hypothesized that the refolding of the catalyst in the
presence of different anions might be sufficiently rapid so that
the event could be monitored by NMR. To this end, we

Figure 7. Structures of HCl salts of catalysts ent-1 and 2 in (a)
CD3CN (with diagnostic NOESY cross-peaks indicated by arrows)
and (b) in the solid state (X-ray). For the structure of ent-1·HCl, the
mirror image of the X-ray of 1·HCl is shown for clarity.

Figure 8. Solid-state structures of catalyst 2 as the (a) TFA salt and
(b) DPP salt.

Figure 9. Solution-state structures of hfacac salts of catalysts 1 and 2.

Scheme 3. Dynamic Switching between the A and D Folds
of the Catalyst with Addition of n-Bu4NCl as the Chloride
Source
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selected n-Bu4NCl as the chloride anion source that could
potentially replace the hfacac anion in solution (Scheme 3).
Thus, a solution of 2·hfacac in CD3CN was titrated with a

solution of n-Bu4NCl (0.5 M in CD3CN). During the titration,
the 1H NMR of the mixture slowly began to resemble the
spectrum of pure 2·HCl (compare panels a and b of Figure
10), and this species was still detectable beyond 1.2 equiv of n-

Bu4NCl (Figure 10c). These data suggest that, during the
titration, catalyst 2 had almost exclusively switched from the
fold 2A to the anion receptor fold 2D. Similar results were
obtained with catalyst 1 and n-Bu4NCl (see the Supporting
Information for details). The titration results with n-Bu4NCl
indicate that the equilibrium in this case lies on the side of the
chloride complexes (D fold). However, titration of a solution

Figure 10. (a) 1H NMR spectrum of 2·HCl. (b) 1H NMR spectrum of 2·hfacac after addition of 1.2 equiv of n-Bu4NCl. (c)
1H NMR titration of 2·

hfacac with 0.5 M solution of n-Bu4NCl. All spectra were recorded in CD3CN.
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of 2·hfacac with n-Bu4NBr (a source of bromide ion) yielded a
more complex NMR spectrum, suggesting that in this case the
switch was either not complete or that other conformations
were also populated.

■ SUMMARY AND CONCLUSIONS
In conclusion, the folding patterns of our foldamer-type
catalysts, capable of highly enantioselective Mannich reactions,
have been characterized. The patterns that emerge from the
solid-state XRD studies appear to be preserved in solution with
high fidelity. Thus, the intramolecular hydrogen bonds in the
native fold of the catalyst, where the catalytic pocket is intact,
were maintained in the free base form of the catalyst as well as
in its hfacac or TFA salts. However, the thiourea unit of the
catalyst does not uniformly adopt the desired anti−anti
conformation, and it turned out that the less-reactive catalyst
2 favored the undesired syn−anti thiourea conformer in
solution, as established by a combination of NMR studies and
computational conformational analysis.
In contrast, the salts with simple hydrohalic acids adopt a

different, anion-receptor-type fold, where the intramolecular
hydrogen bonding is completely disrupted, and the catalyst
conformation changes to allow multiple hydrogen bond
contacts with the small halide counteranion. This fold is
made possible by the alternative anti−syn conformation of the
thiourea unit, instead of the syn−anti conformation observed
for catalyst 2. These folding patterns were identified by X-ray
structures in the solid state for both catalyst diastereomers and
for different anions (F−, Cl−, and Br−), and the hydrochloride
salts of two catalyst diastereomers were found to populate
similar conformations in solution according to NOE studies.
The choice of the fold could also be modulated by addition

of chloride ions. Titration of the hfacac salts of the catalysts 1
and 2, possessing the native fold in solution, with a chloride
source (n-Bu4NCl), resulted in a switch to the anion receptor
mode as observed by 1H NMR. The fact that different anions
can affect the shapes of the catalysts suggests that anions could
also be used to modulate the selectivities and activities of
synthetic catalysts. Studies toward these goals are ongoing.

■ EXPERIMENTAL SECTION
General Information. All reactions were carried out under an

argon atmosphere in flame-dried glassware, unless otherwise noted.
When needed, nonaqueous reagents were transferred under argon via
syringe or cannula and dried prior to use. THF and CH2Cl2 were
obtained by passing deoxygenated solvents through activated alumina
columns (MBraun SPS-800 Series solvent purification system). Other
solvents and reagents were used as obtained from supplier, unless
otherwise noted. Analytical TLC was performed using Merck silica gel
F254 (230−400 mesh) plates and analyzed by UV light or by staining
upon heating with anisaldehyde solution (2.8 mL of anisaldehyde, 2
mL of concentrated H2SO4, 1.2 mL of concentrated CH3COOH, 100
mL of EtOH), vanillin solution (6 g of vanillin, 5 mL of concentrated
H2SO4, 3 mL of glacial acetic acid, 250 mL of EtOH), or KMnO4
solution (1 g of KMnO4, 6.7 g of K2CO3, 1.7 mL of 1 M NaOH, 100
mL of H2O). For silica gel chromatography, the flash chromatography
technique was used, with Merck silica gel 60 (230−400 mesh) and
p.a. grade solvents unless otherwise noted.
The 1H NMR and 13C NMR spectra were recorded in CD2Cl2 or

CD3CN on Bruker Avance 500, 400, or 250 spectrometers. The
chemical shifts are reported in parts per million relative to CHD2CN
(δ 1.94) or CHDCl2 (δ 5.32) for

1H NMR. For the 13C NMR spectra,
the residual CD3CN (δ 118.26) or CD2Cl2 (δ 53.84) were used as the
internal standards. The enantiomeric excesses (ee) of the products
were determined by HPLC in comparison to the corresponding

racemic samples using a Waters 501 pump and a Waters 486 detector.
Melting points (mp) were determined in open capillaries using a
Gallenkamp melting point apparatus. IR spectra were recorded on a
Tensor27 FT-IR spectrometer. Optical rotations were obtained with a
PerkinElmer 343 polarimeter. High-resolution mass spectrometric
data were measured using MicroMass LCT Premier spectrometer.

Single-crystal X-ray diffraction analyses were performed at
indicated, measuring temperature on an Agilent Super-Nova
diffractometer using mirror monochromatized Mo Kα (λ = 0.71073
Å) or Cu Kα (λ = 1.54184 Å) radiation. CrysAlisPro program was
used for the data collection and processing. The intensities were
corrected for absorption using the analytical face index absorption
correction method. The structure was solved by the charge-flipping
method with SUPERFLIP and refined by full-matrix least-squares
methods using the OLEX2-1.2 software, which utilizes the SHELXL
module. All non-hydrogen atoms were refined with anisotropic
thermal parameters. Hydrogen atoms were introduced in proper
positions with isotopic thermal parameters using the “riding model”.
The ORTEP figure was plotted and structure was analyzed with
Mercury v 3.10.

Synthesis of Catalysts. CAUTION: CSCl2 (thiophosgene) is a
toxic and corrosive reagent that must be used in an efficient fume
cupboard.

1-(2-(((1R,2R)-1-(3-((1R,2R)-2-Aminocyclohexyl)thioureido)-2,3-
dihydro-1H-inden-2-yl)oxy)-5-(trifluoromethyl)phenyl)-3-(3,5-bis-
(trifluoromethyl)phenyl)urea (6). Amine 4 (430 mg, 0.76 mmol, 100
mol %) was dissolved in a stirred biphasic mixture of DCM, THF, and
saturated aqueous NaHCO3 (10:1:10, total volume 21 mL) at 0 °C.
The stirring was stopped, and thiophosgene (117 μL, 1.52 mmol, 200
mol %) was added via syringe to the organic layer. Stirring was started
and continued for 4 h at 0 °C after which the layers were separated
and the aqueous layers extracted with DCM (3 × 20 mL). The
combined organic extracts were dried over Na2SO4 and concentrated.
The crude isothiocyanate was dissolved in a mixture of dry DCM and
THF (5:1, total volume 12 mL) under argon, and diamine (R,R)-5
(174 mg, 1.52 mmol, 200 mol %) was added in one portion at 0 °C.
The reaction mixture was stirred at rt for 3 h, after which most of the
solvents were removed under reduced pressure (2 mL of solvent left
in the flask). Purification of the residue by flash chromatography
(100:1:1 DCM/MeOH/triethylamine) afforded the desired product 6
as an off-white solid (535 mg, 98%): Rf (4% 7 N NH3/MeOH in
DCM) = 0.35; mp 141−142 °C; [α]D

25 = −50.7 (c 1.0, CH2Cl2); IR
(film, cm−1) ν 3259, 3083, 2934, 2860, 1709, 1543, 1385, 1276, 1170,
1121, 681; 1H NMR (500 MHz, CD2Cl2) δ 10.25 (s, 1H), 9.21 (s,
1H), 8.69 (s, 1H), 8.67 (brs, 1H), 8.17 (s, 2H), 7.53 (s, 1H), 7.34−
7.30 (m, 4H), 7.25 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 6.64
(brs, 1H), 6.13 (brs, 1H), 4.61 (app q, J = 8.2 Hz, 1H), 3.66 (dd, J =
14.9, 7.2 Hz, 1H), 3.25 (app. dd, J = 14.9, 9.1 Hz, 1H), 2.51 (app. td,
J = 10.1, 3.7 Hz, 1H), 2.04 (m, 1H), 1.78−1.13 (m, 9H); 13C{1H}
NMR (125 MHz, CD2Cl2) δ 184.1, 152.6, 150.0, 141.7, 138.9, 138.0,
132.3 (q, J = 33.1 Hz), 131.1, 129.1, 128.1, 125.7, 124.7 (q, J = 32.6),
123.9 (q, J = 272.6 Hz), 123.4, 122.7 (q, J = 271.1 Hz), 119.5, 118.5,
115.9 (quint, J = 3.8 Hz), 115.4, 113.7, 90.1, 66.1, 63.5, 56.4, 37.3,
35.2, 32.8, 25.0, 24.9; HRMS (ESI+, TOF) m/z calcd for
[C32H31F9N5O2S]

+ 720.2049, found 720.2045, Δ = 0.6 ppm.
1-(2-(((1R,2R)-1-(3-((1S,2S)-2-Aminocyclohexyl)thioureido)-2,3-

dihydro-1H-inden-2-yl)oxy)-5-(trifluoromethyl)phenyl)-3-(3,5-bis-
(trifluoromethyl)phenyl)urea (7). The reaction performed using 4
(300 mg, 0.53 mmol, 100 mol %) and (S,S)-5 (121 mg, 1.06 mmol,
200 mol %) using the procedure used for the preparation of 6. The
product was purified by flash chromatography (100:1:1 DCM/
MeOH/triethylamine) to afford 7 as an off-white solid (290 mg,
76%): Rf (4% 7N NH3/MeOH in DCM) = 0.45; mp 142−143 °C;
[α]D

25 = −183.0 (c 1.0, DCM); IR (film, cm−1) 3273, 2932, 2859,
1710, 1542, 1442, 1384, 1276, 1122, 681; 1H NMR (500 MHz,
CD2Cl2) δ 10.23 (s, 1H), 9.51 (s, 1H), 8.70 (d, J = 1.9 Hz, 1H), 8.53
(s, 1H), 8.19 (s, 2H), 7.52 (s, 1H), 7.31−7−24 (m, 5H), 7.08 (d, J =
8.4 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.07 (br s, 1H), 4.59 (q, J = 8.2
Hz, 1H), 3.67 (dd, J = 15.2, 7.4 Hz, 1H), 3.25 (dd, J = 15.1, 8.9 Hz,
1H), 3.08 (brs, 1H), 2.62 (td, J = 10.3, 3.5 Hz, 1H), 1.81 (app. d, J =

The Journal of Organic Chemistry Featured Article

DOI: 10.1021/acs.joc.9b01980
J. Org. Chem. 2019, 84, 15009−15019

15016



12.5 Hz, 1H), 1.75−1.63 (m, 5H), 1.21−1.07 (m, 4H); 13C{1H}
NMR (125 MHz, CD2Cl2) δ 183.7, 152.5, 150.0, 141.7, 138.4, 137.9,
132.2 (q, J = 33.0 Hz), 131.1, 129.1, 127.9, 125.7, 124.8 (q, J = 271.6
Hz), 124.6 (q, J = 33.7 Hz), 123.9 (q, J = 272.7), 123.5, 119.4, 118.4,
115.7, 115.4, 113.9, 91.4, 66.3, 63.1, 56.4, 37.4, 35.1, 32.6, 24.9;
HRMS (ESI+, TOF) m/z calcd for [C32H31F9N5O2S]

+ 720.2049,
found 720.2062, Δ = −1.8 ppm.
1-(3,5-Bis(trifluoromethyl)phenyl)-3-(2-(((1R,2R)-1-(3-((1R,2R)-2-

(dimethylamino)cyclohexyl)thioureido)-2,3-dihydro-1H-inden-2-
yl)oxy)-5-(trifluoromethyl)phenyl)urea (2). To a solution of com-
pound 6 (200 mg, 0.28 mmol, 100 mol %) in DCE (6 mL) was added
formaldehyde (38% CH2O in water, 61 μL, 0.84 mmol, 300 mol %) at
rt. The reaction mixture was stirred at rt for 15 min, after which
NaBH(OAc)3 (237 mg, 1.12 mmol, 400 mol %) was added in one
portion. The reaction mixture was stirred at rt for 4 h before saturated
aqueous NaHCO3 (18 mL) was added. The mixture was allowed to
stir for 15 min, and then the layers were separated. The aqueous layer
was washed with DCM (3 × 18 mL). The combined organic extracts
were dried over Na2SO4 and concentrated. Purification of the residue
by flash chromatography (4% 7N NH3/MeOH in DCM) afforded the
desired product 2 as a pale crystalline solid (133 mg, 64%).
Characterization data are in full agreement with our previous
publication:7c 1H NMR (500 MHz, CD2Cl2) δ 9.40 (b rs, 1H),
8.71 (s, 1H), 8.61 (s, 1H), 8.20 (s, 2H), 7.53 (s, 1H), 7.33−7−28 (m,
4H), 7.26 (dd, J = 8.4, 1.4 Hz, 1H), 7.09 (d, J = 8.4 Hz, 1H), 6.65 (s,
1H), 6.34 (brs, 1H), 4.46 (app. q, J = 8.1 Hz, 1H), 3.65 (dd, J = 14.6,
6.9 Hz, 1H), 3.49 (brs, 1H), 3.29 (dd, J = 14.6, 9.1 Hz, 1H), 2.31 (m,
1H), 2.21 (m, 1H), 1.93 (brs, 6H), 1.79 (m, 1H), 1.75 (m, 1H), 1.64
(brs, 1H), 1.27 (m, 1H), 1.16−1.12 (m, 3H); 13C{1H} NMR (75
MHz, CD2Cl2) δ 183.5, 152.6, 150.0, 141.8, 138.5, 138.1, 132.3 (q, J
= 33.1 Hz), 129.2, 128.2, 125.8, 124.9 (q, J = 271.5 Hz), 124.9 (q, J =
31.7 Hz), 123.9 (q, J = 272.7 Hz), 119.5, 118.4, 115.7 (sept, J = 4.0
Hz), 115.4, 114.2, 90.9, 67.8, 65.6, 57.0, 40.1, 37.4, 33.8, 24.8 (2C),
22.6.
1-(3,5-Bis(trifluoromethyl)phenyl)-3-(2-(((1R,2R)-1-(3-((1S,2S)-2-

(dimethylamino)cyclohexyl)thioureido)-2,3-dihydro-1H-inden-2-
yl)oxy)-5-(trifluoromethyl)phenyl)urea (1). The reaction was per-
formed using 7 (187 mg, 0.28 mmol, 100 mol %) utilizing the
procedure used for the preparation of 2. The product was purified by
flash chromatography (4% 7N NH3/MeOH in DCM) to afford 1 as a
pale crystalline solid (145 mg, 75%). Characterization data are in full
agreement with our previous publication.7c 1H NMR (500 MHz,
CD2Cl2) δ 9.61 (br s, 1H), 8.71 (s, 1H), 8.46 (s, 1H), 8.21 (s, 2H),
7.53 (s, 1H), 7.34 (m, 3H), 7.27 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 8.4
Hz, 1H), 6.65 (brs, 1H), 6.00 (brs, 1H), 4.47 (app. q, J = 7.5 Hz, 1H),
3.65 (dd, J = 15.3, 7.6 Hz, 1H), 3.27 (app. dd, J = 15.3, 8.8 Hz, 2H),
2.34 (app. td, J = 10.5, 3.5 Hz, 1H), 2.02 (s, 6H), 1.79 (app. d, J =
11.2 Hz, 1H), 1.69 (m, 2H), 1.62 (m, 1H), 1.17 (m, 1H), 1.09−1.01
(m, 3H); 13C{1H} NMR (125 MHz, CD2Cl2) δ 184.3, 152.5, 150.0,
141.7, 138.4, 138.1, 132.3 (q, J = 33.1 Hz), 131.4, 129.2, 128.0, 125.8,
124.8 (q, J = 271.6 Hz), 124.8 (q, J = 32.4 Hz), 123.9 (q, J = 272.6
Hz), 123.3, 119.4 (app. q, J = 4.0 Hz), 118.4 (app. d, J = 3.0 Hz),
115.8 (quint, J = 3.9 Hz), 115.5, 114.7, 91.8, 68.3, 65.9, 57.2, 40.2,
37.5, 33.8, 24.8, 24.7, 22.5.
Typical Procedure for the Preparation of HCl Salts of

Catalysts 1 and 2. To a solution of catalyst (10 mg, 0.013 mmol,
100 mol %) in DCM (2 mL) was added aqueous HCl (concentrated,
53 μL, 0.65 mmol, 5000 mol %) at 0 °C. A white precipitate was
immediately formed, and the mixture was stirred for 5 min at rt. The
solvent and the excess HCl were removed carefully under reduced
pressure.
All other catalyst HX salts were prepared in an analogous manner

except that, for nonvolatile acids, 110 mol % of the corresponding acid
was used. The crystalline salts were grown using a diffusion method
from a binary solvent mixture consisting of either cyclopentane,
benzene, or toluene (first component) and dichloromethane (second
component).
Note: The 2D NOESY spectrum of both HCl salts were measured

with a 500 MHz spectrometer at 30 °C (303 K). Both salts show
some instability after 24 h in CD3CN. ent-1·HCl salt is only sparingly

soluble in CD3CN, and as such, the NMR sample was warmed to 70
°C before the start of the measurement and then recooled to the
probe temperature (303 K).

(1R,2R)-2-(3-((1R,2R)-2-(2-(3-(3,5-Bis(trifluoromethyl)phenyl)-
ureido)-4-(trifluoromethyl)phenoxy)-2,3-dihydro-1H-inden-1-yl)-
thioureido)-N,N-dimethylcyclohexan-1-aminium chloride (2·HCl):
1H NMR (500 MHz, CD3CN) δ 11.10 (s, 1H), 9.28 (brs, 1H), 9.15
(s, 1H), 8.74 (s, 1H), 8.21 (s, 2H), 7.61 (br s, 1H), 7.57 (s, 1H),
7.32−7.24 (m, 5H), 7.17 (app. d, J = 8.3 Hz, 2H), 6.48 (t, J = 8.2 Hz,
1H), 5.29 (brs, 1H), 4.93 (brs, 1H), 3.63 (m, 2H), 2.83 (m, 1H), 2.78
(s, 3H), 2.77 (s, 3H), 2.24 (m, 1H), 2.08 (m, 1H), 1.90 (m, 1H), 1.80
(m, 1H), 1.59−1.49 (m, 2H), 1.41−1.26 (m, 2H); 13C{1H} NMR
(125 MHz, CD3CN) 182.8, 153.7, 149.3, 143.1, 140.1, 138.6, 132.4
(q, J = 32.9 Hz), 131.0, 129.6, 128.9, 128.7, 128.5, 128.4, 125.7 (q, J =
271.9), 126.3, 124.6, 124.5 (q, J = 272.0 Hz), 123.4 (q, J = 33.9 Hz)
119.9, 115.6, 112.6, 110.9, 84.2, 67.2, 63.2, 56.2, 42.9, 37.4, 36.2, 32.8,
25.1, 24.7, 23.3.

(1R,2R)-2-(3-((1S,2S)-2-(2-(3-(3,5-Bis(trifluoromethyl)phenyl)-
ureido)-4-(trifluoromethyl)phenoxy)-2,3-dihydro-1H-inden-1-yl)-
thioureido)-N,N-dimethylcyclohexan-1-aminium chloride (ent-1·
HCl): 1H NMR (500 MHz, CD3CN) 11.20 (s, 1H), 9.39 (s, 1H),
8.68 (s, 1H), 8.20 (s, 3H), 7.90 (br s, 1H), 7.59 (s, 1H), 7.38−7.28
(m, 4H), 7.24 (m, 1H), 6.78 (br s, 1H), 5.24 (m, 1H), 4.80 (m, 1H),
3.98 (m, 1H), 3.60 (dd, J1 = 15.5, 7.1 Hz, 1H), 2.90 (d, J = 3.7 Hz,
3H), 2.83 (m, 1H), 2.79 (d, J = 4.3 Hz, 3H), 1.88 (m, 1H), 1.65 (app.
d, J = 11.9 Hz, 1H), 1.47 (m, 1H), 1.42 (m, 1H), 1.26−1.12 (m, 3H),
0.75 (m, 1H); 13C{1H} NMR (125 MHz, CD3CN) 183.1, 153.7,
149.0, 143.0, 139.5, 139.0, 132.6 (q, J = 32.9 Hz), 131.0, 129.9, 128.5,
126.2, 125.6 (q, J = 270.2 Hz), 125.1, 124.5 (q, J = 271.9 Hz,), 123.7
(q, J = 32.2 Hz), 120.1, 116.0, 115.7, 113.1, 110.9, 87.5, 67.4, 63.2,
56.1, 42.8, 37.8, 36.5, 32.9, 24.9, 24.7, 23.1.

Catalyst Solution Structure Elucidation. Catalyst 1 solution
structure: The sample was prepared by dissolving catalyst 1 (10 mg,
0.0134 mmol, 100 mol %) in 0.6 mL DCM-d2. The 2D NOESY
spectrum was measured with 500 MHz spectrometer at 303 K.
Catalyst 2 solution structure: The sample was prepared by dissolving
catalyst 2 (10 mg, 0.0134 mmol, 100 mol %) in 0.6 mL of DCM-d2.
The 2D NOESY spectrum was measured with 500 MHz spectrometer
at 303 K.

Solution Structures of Hexafluoroacetylacetonate Salt
Catalysts. The sample of catalyst 1·hfacac salt was prepared by
dissolving catalyst 1 (10 mg, 0.0134 mmol, 100 mol %) in 0.6 mL of
DCM-d2, and hfacac (1.9 μL, 0.0134 mmol, 100 mol %) was
subsequently added. The 2D NOESY spectrum was measured with a
500 MHz spectrometer at 303 K. The sample of catalyst 2·hfacac salt
was prepared by using the procedure used for the 1·hfacac salt. The
2D NOESY spectrum was measured with a 300 MHz spectrometer at
303 K.

Titration Experiments. Titration of catalyst 1·hfacac with tetra-n-
butylammonium chloride (n-Bu4NCl) catalyst 1 (11.2 mg, 0.015
mmol, 100 mol %) was dissolved in CD3CN (0.6 mL), and hfacac
(2.1 μL, 0.015 mmol, 100 mol %) was subsequently added and
transferred to a NMR tube. This solution was titrated with 0.5 M
solution of n-Bu4NCl in CD3CN. The 1H NMR (300 MHz)
measurement was performed every 30 min after the addition of n-
Bu4NCl, insertion of the sample into the magnet, and initial shimming
and receiver gain adjustment. All measurements were carried out at a
probe temperature of 303 K.
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