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Abstract

Generalized Linear Latent Variable Models (GLLVM), a family of statistical
models developed on recent years, has gained a lot of attraction in applications, in
particular in the field of community ecology. Ecologists are often concerned with
the relationships between two or more species across a multiple test sites. Such
situations naturally lead to the collection of multivariate abundance data and call
for appropiate statistical methods to analyze such data. GLLVMs offer a model-
based approach for such analyses that is also flexible in the terms of the type of
abundance response at question, i.e., species count, presence/absence, biomass,
and such. As their namesake implies, GLLVMs generally assume the presence of
some unobserved, latent variables as predictors. These latent variables are useful,
for example in the modelling of the between-species correlation, but they also
introduce some computational challenges into the model fitting.

In its general form, the GLLVM marginal likelihood involves an integral over
the aforementioned latent variables. Under the standard assumptions this integral
cannot be solved analytically, when dealing with other than normally distributed
response variables. Thus some form of numerical approximation technique is often
needed. This thesis starts by introducing a variational approximation (VA) ap-
proach for fitting GLLVMs, which has shown to be an attractive choice in terms
of both the computational efficiency and estimation precision. From there we in-
troduce a recently proposed method of extended variational approximation (EVA),
which extends upon the standard VA approach by allowing a wider set of response
distributions and link functions to be used in modelling. Then the comparative
performance of these two approaches and a popular alternative, Laplace approxi-
mation (LA), is addressed in simulation studies. Additionally, an example study
concerning the use of EVA in ordination of plant cover data is conducted. Lastly
we discuss some ideas for further development regarding the EVA approach.

The VA and LA approaches to estimation of GLLVMs are readily available in
the R package gllvm, which has been used in this thesis. An implementation of the
EVA approach for a few types of common response distributions was developed as
a part of this thesis in R and C++ using the package TMB.

Keywords: generalized linear latent variable models, variational inference, abun-

dance data, simulation, ordination
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Tiivistelmä

Yhteisöekologian alalla tutkijat ovat usein kiinnostuneita yhden tai useamman
kasvi- tai eläinlajin välisistä esiintyvyyssuhteista eri mittauspaikoilla tai ekosys-
teemeissä. Tämänkaltaiset tutkimuskysymykset johtavat luonnostaan moniulot-
teisen runsausdatan keräämiseen. Kasvi- tai eläinlajin ekologista runsautta tie-
tyssä ekosysteemissä voidaan kuvata esimerkiksi suoraan lajiyksilöiden lukumää-
ränä tai binäärisenä esiintyvyysindikaattorina. Runsausvasteen tyyppi on otettava
huomioon tilastollista mallia sovittaessa. Yleistetyt lineaariset latenttimuuttuja-
mallit tarjoavat joustavan tavan mallintaa moniulotteista runsautta olettamalla
yhden tai useamman latentin muuttujan olemassaolon. Latentit muuttujat ovat
luonteeltaan satunnaisia ja havaitsemattomia. Niiden voidaan tulkita kuvaavan
esimerkiksi havaitsematta jääneitä ympäristötekijöitä. Latentit muuttujat ovat
hyödyllisiä, sillä niiden avulla voidaan mallintaa eri lajien välistä korrelaatioraken-
netta. Latenttimuuttujamallien sovittaminen ei kuitenkaan ole erityisen suoravi-
ivaista latenttien muuttujien havaitsemattomuudesta johtuen.

Latenttimuuttujamallia vastaava marginaalinen uskottavuusfunktio sisältää in-
tegraalin, jolla ei yleisessä tapauksessa ole analyyttistä ratkaisua. Mallin sovituk-
sessa joudutaan tämän vuoksi käyttämään jotakin approksimatiivista menetelmää.
Eräs varteenotettava vaihtoehto on niin sanottu variaatiomenetelmä, joka esitellään
tämän tutkielman alussa. Menetelmän etuna on sekä estimointitarkkuus että lasken-
nallinen tehokkuus. Variaatiomenetelmän selvänä heikkoutena on sen huono yleisty-
vyys, sillä se ei suoraan sovellu käytettäväksi kaikkien tavanomaisten vastejakauma-
linkkifunktio -parien yhteydessä. Tämän vuoksi tässä tutkielmassa esitetään nyt
laajennettuksi variaatiomenetelmäksi nimetty menetelmä. Esitettyä laajennosta
verrataan sekä tavanomaiseen variaatiomenetelmään että Laplace-approksimaati-
oon perustuvaan kilpailevaan menetelmään aineistopohjaisten simulointikokeiden
avulla. Lisäksi esitellään laajennetun variaatiomenetelmän käyttöä suoaineistolle
tehtävässä ordinaatiossa. Suoaineisto on peräisin Jyväskylän yliopiston Bio- ja
ympäristötieteen laitokselta. Laajennettu variaatiomenetelmä implementoitiin oh-
jelmointikieliä R ja C++ käyttäen muutaman tyypillisimmän latenttumuuttuja-
mallin tapauksessa.

Avainsanoja: yleistetty lineaarinen latenttimuuttujamalli, variaatiopäättely, run-

sausdata, simulointi, ordinaatio
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1 Introduction

In some research fields applying statistical methods, there is often a need to pro-

cess and analyse multidimensional data. Several response variables of interest may

be measured per observational unit, and a key research question might be about

determining the structure of the relationships between the different response vari-

ables through the observation units. Typical example of this can be found from

the field of community ecology, where researchers collect and use ecological abun-

dance data to gain knowledge about several interacting plant or animal species

across different test sites or ecosystems. Such data can naturally be represented

as n×m matrix Y , where rows correspond to n observational units or sites, and

columns correspond to m species. Thus, an element yij of Y is the abundance

of species j = 1, . . . ,m measured at site i = 1, . . . , n. Commonly, abundance is

measured as the count of the individual units at a particular site. In this thesis

however, we are going to use a bit more loose definition, allowing for the inclusion

of binary ’presence/absence’ data, and continuous proportion data. In general, the

term abundance can be understood as any kind of appropriate measure for repre-

sentation of species in a given ecosystem. The type of abundance responses needs

to be accounted for when using a model based approach to analyse multivariate

abundance data.

Traditionally, the analysis of multivariate abundances has been conducted us-

ing algorithmic ordination methods, such as non-metric multidimensional scaling

(nMDS, Kruskal, 1964). In algorithmic ordination, a multidimensional data is

reduced down to (typically) two primary axes of variation, according to some pre-

determined way of measuring the dissimilarities between sites. The data might

need to be transformed before applying the dimensionality reduction technique.

The main disadvantages of these types of methods is the lack of proper diagnostic

tools when compared to model based approaches. This means that the appropri-

ateness of the chosen dissimilarity measure or the transformation method might

be difficult to assess.

Statistical modelling of multivariate abundances is a fairly recent field of de-

velopment, made possible by the increase and availability in computational power.

When the inter-species interactions are of interest, a joint species distribution model

(Pollock et al., 2014) is needed. One flexible class of statistical models suited for

the task are the generalized linear mixed models (GLMM, Jiang, 2007). In its

essence, a GLMM is an extension of generalized linear model (GLM), containing
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random effects in addition to the fixed effects present in a standard GLM. In the

purpose of joint modelling of species abundances, the random effects can be as-

sumed to be specific to site, independent and distributed according to multivariate

normal distribution, zi = (zi1, . . . , z
ᵀ
im)

i.i.d∼ N (0,Σ). The covariance matrix Σ now

represents the inter-species interactions across the different test sites. Typically,

no additional assumptions regarding the structure of Σ are made. This is often

troublesome, as the amount of parameters to be estimated in the m×m matrix Σ

increases quadratically with the amount of species, quickly leading into computa-

tional problems. Thus, a call for a more efficient modelling approach is reasonable.

An attractive answer to this call is the class of statistical models called the gener-

alized linear latent variable models (GLLVM, Skrondal and Rabe-Hesketh, 2004).

In GLLVM, the random effect zij present in GLMM is assumed to actually be

a dot product of two vectors, one being the vector of the so-called latent variable

values or scores ui = (ui1, . . . , uip)
ᵀ, and the other being the vector of latent

variable loadings λj = (λj1, . . . , λjp)
ᵀ, where p denotes the assumed number of

latent variables. As the subscripts suggest, the scores are assumed to be specific

to sites, while the loadings are assumed to be specific to species. This type of

factorization coupled with the additional modelling assumptions described in more

detail in Section 2.1 lead to a potentially far more computationally efficient way

to make inferences about the inter-species correlation structure, than what the

standard GLMMs can provide. Additionally, GLLVMs can be used to do model

based ordination as is, simply by choosing p = 2.

Even though potentially more efficient than the mixed models in theory, in

practice the actual estimation of latent variable models remains a difficult task,

caused by the assumed existence of latent random variables. To carry out infer-

ences about the model parameters based on maximum likelihood estimation, one

needs to integrate over the latent variable space. The integral in question lacks an

analytical solution in most cases and thus a numerical approximation scheme is of-

ten needed. Here, one often has to make a choice between computational efficiency,

estimation accuracy and general applicability. In this thesis we extend upon one

such numerical method called the variational approximation (VA, Ormerod and

Wand, 2010). According to Warton et al. (2015) the use of VA in the fitting of

GLLVM provides a promising balance between accuracy and efficiency, when com-

pared to alternatives. What the VA approach is lacking however, is the general

applicability. For example in the case of Bernoulli distributed binary abundance

data, i.e. presence/absence responses, one must resort to using the probit link
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function, as the method is not applicable for the canonical logit link function.

Thus to address this issue, we introduce an approximation method called the ex-

tended variational approximation (EVA), in Section 2.3. Specific derivations of the

approximate log-likelihoods associated with EVA are also provided, in Section 3,

for some common types of latent variable models. In Section 4, the performance

of the proposed approach is addressed in three distinct simulation studies, also

involving the standard VA method and one traditional alternative, the method of

Laplace approximation (LA, Tierney and Kadane, 1986). In addition, an example

case study showcasing the use of EVA in ordination of presence/absence bryophyte

data is conducted in Section 5. The data was received from the Department of

Biological and Environmental Science at University of Jyväskylä. Lastly, the pos-

sible developments for the future regarding the method of EVA are discussed in

Section 6.
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2 About GLLVMs and approximative inference

2.1 Generalized linear latent variable models

Generalized linear latent variable models (GLLVM) are, according to Huber et al.

(2004), an extension to the popular and well-known framework of generalized linear

models (GLM). As in the case of GLMs, the mean µij of an exponential family

type response variable yij is regressed against a linear predictor of the explanatory

variables via an appropriate choice of link function. However, while GLMs assume

that all of the explanatory variables are of observable nature, GLLVMs allow for

the existence of some latent, unobservable covariates. Huber et al. (2004) claim

that for example in the field of psychology these latent variables can be seen as

an unobservable measure of a person’s intelligence or some other trait that can

only be tested for indirectly, such as anxiety or welfare. In the field of community

ecology, latent variables can be thought of as ordination axes describing different

test sites by their species abundance or composition, as noted by Hui et al. (2015).

In this thesis, we are going to follow the formulation of GLLVMs in the context

and terminology of analysing ecological abundance data.

Let µij denote the mean response for species j = 1, . . . ,m at site i = 1 . . . , n

and let xi be the vector of the observed environmental covariates specific to the

site i. Then, a GLLVM in its standard form assumes that

g(µij) = αi + β0j + xᵀ
iβj + uᵀ

iλj, i = 1, . . . , n, j = 1, . . . ,m, (1)

for a known and well-behaved link function g. Here the term β0j and the vector

βj stand for the species specific intercept and regression coefficients (related to

the environmental covariates xi) as in the case of regular GLMs. Now, the vector

ui represents the values of p latent variables at site i. Then, the vector λj of

species specific loadings quantifies the relationship between the species’ response

and the latent variables. Finally, αi is an optional site specific parameter that can

be treated either as a fixed or random effect. Hui et al. (2015) argue, that the

choice of p = 1 or 2 latent variables is often suitable for ordination. The authors

also remark that the choice of whether to include the site effects αi or not in the

model (1) corresponds to the choice of whether to plot an ordination of species

abundance or composition; by including the terms αi, the ordination is performed

in the basis of the species composition, as the site effect αi and the species specific
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intercept β0j together act to standardize the coordinates of the ordination found

in the vector ui.

The latent variables ui in (1) are assumed to be independent and follow a stan-

dard multivariate normal distribution. GLLVMs also assume that the responses

yi1, . . . , yim at site i are conditionally independent given the latent variables ui.

This essentially means, that the correlation structure between responses is com-

pletely accounted by the latent variables. Additionally, the vectors of site-wide

responses y1, . . . ,yn are assumed to be independent from each other. Now, use Ψ

to denote the vector of all model parameters, that is Ψ = (α,β0, vec(β), vec(Λ)),

where α = (α1, . . . , αn)ᵀ, β0 = (β01, . . . , β0m)ᵀ and β and Λ are matrices contain-

ing the vectors βj and λj as columns, respectively. Also let u = (uᵀ
1, . . . ,u

ᵀ
n)ᵀ

denote a vector of the latent variables. Then the full likelihood function for a

GLLVM is

L(Ψ;u) =
n∏
i=1

(
m∏
j=1

f(yij|ui,Ψ)

)
f(ui), (2)

where f(yij|ui,Ψ) is the conditional p.d.f. for the response yij and f(ui) is the

standard (multivariate) normal p.d.f. for the latent variable ui. We can denote the

joint distribution of the latent variables as f(u) =
∏n

i=1 f(ui) and the joint dis-

tribution of the responses as f(y|u,Ψ) =
∏n

i=1

∏m
j=1 f(yij|ui,Ψ), thus simplifying

(2) into

L(Ψ;u) = f(y|u,Ψ)f(u). (3)

After finding the specific complete likelihood function L(Ψ;u) as in (2) and

(3), a reasonable next step would be to apply the standard maximum likelihood

estimation techniques to get estimates for the model parameters Ψ. However, due

to their unobservant nature, the latent variables cause some issues to this, and the

usual methods are typically of no use. One approach to dealing with these issues

is to use the marginal likelihood function

L(Ψ) =

∫
f(y|u,Ψ)f(u)d(u) (4)

in the estimation process, instead of the full likelihood in (3). This is the ap-

proach we are going to focus on in this thesis. Do note however, that methods

operating more directly on the complete likelihood exist, including for example

the Expectation-Maximization algorithm (EM algorithm, Dempster et al., 1977)

or Markov Chain Monte Carlo sampling (MCMC, Metropolis et al., 1953). Both
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of these methods are quite general and widely used across the different fields of

applied and computational statistics.

2.2 Variational approximation

While looking at the marginal GLLVM likelihood in (4), or rather, the marginal

log-likelihood

`(Ψ) = log

(∫
f(y|u,Ψ)f(u)d(u)

)
, (5)

one will quickly run in to additional problems, as the integral in (4) or (5) does

not possess an analytical solution in the case of non-normal responses and thus

a some form of numerical approximation technique is needed, as noted by Huber

et al. (2004). One such technique is the use of variational approximations (VA), a

general class of methods for approximative inference first popularized in statistical

literature by Ormerod and Wand (2012, 2010) in the contexts of Bayesian inference

and generalized linear mixed models (GLMM) – a family of statistical models

closely related to GLLVMs. The basic idea of variational approximation is to

replace a complex optimization problem, possibly involving intractable integrals –

such as in (5) – by an easier, approximative one. For GLLVMs (or GLLMs) this

can be done by first introducing the so-called variational lower bound

`(Ψ) = log

(∫
f(y|u,Ψ)f(u)d(u)

)
=

∫
q(u) log

{
f(y,u|Ψ)

q(u)

}
d(u)

+

∫
q(u) log

{
q(u)

f(u|y,Ψ)

}
d(u)

≥
∫
q(u) log

{
f(y,u|Ψ)

q(u)

}
d(u) , `(Ψ|q), (6)

where q(u) denotes the density of a variational distribution of the latent variables

u. For a more detailed derivation and explanation of (6), refer to Ormerod and

Wand (2010, p.142, 152). Note that the term `(Ψ|q) in (6) actually coincides with

the negative Kullback-Leibler divergence (Kullback and Leibler, 1951) between

q(u) and f(y,u|Ψ).

For an arbitary variational density q, the lower bound in (6) does not offer

much in terms of tractability. Thus, a assumption of belonging to some parametric

family of distributions {q(u|ξ) : ξ ∈ Ξ} is often imposed on q. We will further
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assume this parametric family to be the family of products of multivariate normal

densities, that is

q(u) = q(u1, . . . ,un) = q1(u1) · · · qn(un),

where each qi(ui) is the density of multivariate normal distribution governed by the

parameters mean ai and a diagonal covariance matrixAi. Taking this development

into consideration, the lower bound in (6) now takes the form of

`(Ψ, ξ|q) =

∫
q(u|ξ) log

{
f(y,u|Ψ)

q(u|ξ)

}
d(u). (7)

Now, by solving the maximization problem

(Ψ̂, ξ̂) = argmax
Ψ,ξ

`(Ψ, ξ|q),

one finds the variational approximation Ψ̂ of the maximum likelihood estimate

for the model parameter vector Ψ. Then standard error estimates for the model

parameters can be found from the approximate Fisher information matrix corre-

sponding to the variational log-likelihood `(Ψ, ξ|q). The estimates âi of the varia-

tional means ai corresponding to ξ̂ can be used as the variational approximations

for the predictive scores of the latent variable effects.

According to Ormerod and Wand (2010), the key advantage of the variational

approximation is it’s computational efficiency when compared to common alterna-

tives, for example the use of Markov Chain Monte Carlo or Laplace’s approxima-

tion. When applicable, (7) gives a closed form expression which can then be easily

maximized using a standard, readily available optimization software, such as the

function optim in R. The authors do note however, that the approximation accu-

racy of variational approximations is generally more limited than that of MCMC

based methods.

Using (7) to derive the exact formulas of variational log-likelihoods for common

response types (count, overdispersed count, presence/absence, biomass and such)

is not in the scope of this thesis. Instead, a more detailed treatment will be

reserved for an approach we call the extended variational approximation (EVA),

upon which we are going to focus on next. For a more refined overview of the

standard variational approximation approach to GLLVMs laid out above, refer to

Hui et al. (2017).
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2.3 Extended variational approximation

A major disadvantage of the standard VA approach laid out above is the fact that

the further derivation of the variational log-likelihood from (7) depends heavily on

the assumed distribution of the responses and the link function g in (1). In fact,

a tractable, closed form expression might not be available even for some popular

response-link combinations, such as in the case of logistic Bernoulli GLLVM, for

example. In the case of Bernoulli distributed (i.e. presence/absence) responses,

one has to resort to using the probit link function, even if logit or complemen-

tary log-log (cloglog) would provide a better description of the data at hand. In

order to overcome this issue and to broaden the applicability of VA, we present

an approach to GLLVM fitting we now simply call the extended variational ap-

proximation (EVA). Do note, that a very similar method going by the name delta

method variational inference has been presented by Wang and Blei (2013).

Derivation of the EVA approach starts by expanding the `(Ψ, ξ|q) in (7) in a

following way:

`(Ψ, ξ|q) =

∫
q(u|ξ) log

{
f(y,u|Ψ)

q(u|ξ)

}
d(u)

=

∫
q(u|ξ) log

{
f(y|u,Ψ)f(u|Ψ)

q(u|ξ)

}
d(u)

=

∫
q(u|ξ) log f(y|u,Ψ)d(u) +

∫
q(u|ξ) log

{
f(u|Ψ)

q(u|ξ)

}
d(u). (8)

Next up, the log-density of the responses, log f(y|u,Ψ), is approximated by it’s

quadratic Taylor expansion with respect to the latent variables u. The center of

the expansion is taken to be the mean of the variational distribution, that is a.

This approximation gives us that

log f(y|u,Ψ) ≈ log f(y|a,Ψ) + (u− a)ᵀ∇u log f(y|a,Ψ)

+
1

2
(u− a)ᵀ∇2

u log f(y|a,Ψ) (u− a). (9)

Now, by substituting log f(y|u,Ψ) in (8) by its Taylor expansion (9), we get the
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EVA-log-likelihood

`(Ψ, ξ|q) =

∫
q(u|ξ) log f(y|u,Ψ)d(u) +

∫
q(u|ξ) log

{
f(u|Ψ)

q(u|ξ)

}
d(u)

≈
∫
q(u|ξ)

{
log f(y|a,Ψ) + (u− a)ᵀ∇u log f(y|a,Ψ)

+
1

2
(u− a)ᵀ∇2

u log f(y|a,Ψ) (u− a)
}
d(u)

+

∫
q(u|ξ)

{
log f(u|Ψ)− log q(u|ξ)

}
d(u)

= log f(y|a,Ψ) +
1

2
Tr(∇2

u log f(y|a,Ψ)A)

−DKL

(
q(u|ξ) || f(u|Ψ)

)
, `EVA(Ψ, ξ|q), (10)

where DKL

(
q(u|ξ) || f(u|Ψ)

)
is the Kullback-Leibler divergence from the distri-

bution of the latent variables, f(u|Ψ), to the variational distribution, q(u|ξ). In

the derivation of (10) we used the result that for quadratic forms XᵀAX, where

E[X] = m and Var(X) = S, it holds that E[XᵀAX] = Tr(AS)+mᵀAm (Mathai

and Provost, 1992, p.50), together with the fact that Eq(u|ξ)[u] = a. Additionally,

as both of the densities f(u|Ψ) and q(u|ξ) were assumed to be multivariate nor-

mal, we can expand (10) further by using the well-known formula (Duchi, 2007,

p.13) for KL-divergence between two p-dimensional multivariate normal distribu-

tions, leading us to

`EVA(Ψ, ξ) = log f(y|a,Ψ) +
1

2
Tr(∇2

u log f(y|a,Ψ)A)

− 1

2

{
Tr(A) + aᵀa− p− log det(A)

}
. (11)

Now by solving the maximization problem

(Ψ̂EVA, ξ̂EVA) = argmax
Ψ,ξ

`EVA(Ψ, ξ),

one attains the extended variational approximation Ψ̂EVA for the maximum likeli-

hood estimate Ψ̂ of the model parameters.

Wang and Blei (2013) also present two additional options for a reasonable

choice of the point around which the quadratic expansion of log f(y|u,Ψ) is cen-

tered. First of these alternatives is to take the center to be the point (in the latent

variable space) that maximizes log f(y|u,Ψ). This choice leads to a distinct ap-

9



proximative method the authors call the Laplace variational inference. The other

of the alternatives is to center the expansion around the mean of the variational

distribution from the previous iterative step of the optimization algorithm. How-

ever, according to the authors this approach did not often lead to desirable results

in terms of the model convergence.

10



3 EVA for some common GLLVMs

In this section we are going to derive the specific EVA log-likelihoods based on (11),

for some of the response distributions and link functions commonly encountered in

ecological studies concerned about joint species distribution modeling. Namely, we

are going to focus on modelling count data in the case of both Poisson distributed

and overdispersed responses, binary data using logit and probit links and finally,

percent cover data with Beta distributed responses using logit link.

3.1 Models for count data

The concept of species abundance in ecology is perhaps most often thought of as

the amount of individual units of the given species on a specific site. Thus in a

way, latent variable models targeting responses that represent counts might well

be the most fundamental ones for community ecology. First we are going to look

at the case of Poisson GLLVM. Though needlessly simple and often misspecified

because of the prevalence of overdispersion, the Poisson model provides an easy-

to-follow example of using (11) for the specific model at hand. Up next we will

be looking at a negative binomial model, a bit more involved alternative for the

Poisson model capable of accounting for overdispersion.

3.1.1 Poisson GLLVM

Assume now that the response variables follow a Poisson distribution, that is,

yij ∼ Poisson(µij), where µij is such that

log(µij) = αi + β0j + xᵀ
iβj + uᵀ

iλj = ηij, i = 1, . . . , n, j = 1, . . . ,m, (12)

and thus µij = exp(ηij). Then, the likelihood and the log-likelihood of the response

yij are given as

f(yij|xi,ui,Ψ) = exp
(
yij log(µij)− µij

)
and

log f(yij|xi,ui,Ψ) = yijηij − exp(ηij), (13)

11



where constant terms have been omitted. Now, by looking at (11), one sees that the

real model specific part of the EVA log-likelihood in need of additional derivation

is the term ∇2
u log f(y|a,Ψ). Now by differentiating log f(yij|xi,ui,Ψ) in (13)

twice with respect to ui, we get that

∂ log f(yij|xi,ui,Ψ)

∂ui
=
[
yij − exp(ηij)

]
λᵀ
j

and

∂2 log f(yij|xi,ui,Ψ)

∂ui∂u
ᵀ
i

= − exp(ηij)λjλ
ᵀ
j .

Next, observe that

Tr
(
∇2
ui

log f(yij|xi,ai,Ψ)Ai) = Tr
(
− exp(ηij)λjλ

ᵀ
jAi

)
= − exp(ηij)λ

ᵀ
jAiλj.

Finally, by (11), this leads to the following form of the EVA log-likelihood for

Poisson GLLVM:

`LVA(Ψ, ξ) =
n∑
i=1

m∑
j=1

{
yij η̃ij − exp(η̃ij)−

1

2
exp(η̃ij)λ

ᵀ
jAiλj

}
− 1

2

n∑
i=1

{Tr(Ai) + aᵀ
iai − log det(Ai)},

where η̃ij = αi + β0j + xᵀ
iβj + aᵀ

iλj, that is, the linear predictor ηij evaluated at

the variational mean ai.

3.1.2 Negative binomial GLLVM

Let yij follow the negative binomial distribution governed by mean µij and variance

µij +µ2
ij/φj, where φj is a species specific dispersion parameter. Using logarithmic

link function yields the same model equation as in (12). The likelihood and the

log-likelihood functions given the response yij are

f(yij|xi,ui,Ψ) =
Γ(yij + φ−1

j )

Γ(φ−1
j )Γ(yij + 1)

(
µij

µij + φ−1
j

)yij (
φ−1
j

µij + φ−1
j

)φ−1
j

,

12



and

log f(yij|xi,ui,Ψ) = log Γ(yij + φ−1
j )− log Γ(φ−1

j ) + φ−1
j log(φ−1

j )

+ yijηij − (yij + φ−1
j ) log(µij + φ−1

j ),

where Γ is the Gamma function and constant terms w.r.t. model parameters and

latent variables have been omitted from the log-likelihood. Differentiation w.r.t.

ui gives us

∂ log f(yij|xi,ui,Ψ)

∂ui
=

[
yij −

φ−1
j + yij

φ−1
j + µij

µij

]
λᵀ
j ,

and

∂2 log f(yij|xi,ui,Ψ)

∂ui∂u
ᵀ
i

=

[
φ−1
j + yij

(φ−1
j + µij)2

µ2
ij −

φ−1
j + yij

φ−1
j + µij

µij

]
λjλ

ᵀ
j .

Putting it all together using (11) we arrive at the following EVA log-likelihood

`LVA(Ψ, ξ) =
n∑
i=1

m∑
j=1

{
log Γ(yij + φ−1

j )− log Γ(φ−1
j ) + φ−1

j log(φ−1
j )

+ yij η̃ij − (yij + φ−1
j ) log(µ̃ij + φ−1

j )

+
1

2

[
φ−1
j + yij

(φ−1
j + µ̃ij)2

µ̃2
ij −

φ−1
j + yij

φ−1
j + µ̃ij

µ̃ij

]
λᵀ
jAiλj

}

− 1

2

n∑
i=1

{
Tr(Ai) + aᵀ

iai − log det(Ai)
}
, (14)

where η̃ij = αi + β0j + xᵀ
iβj + aᵀ

iλj and µ̃ij = exp(η̃ij).

The advantage of the negative binomial model when compared to the Poisson

model laid out before is the fact that it is able to better manage overdispersion.

Assumptions of the Poisson model say that Var(yij) = µij = E[yij], which is

often not the case. Overdispersion is diagnosed, when the observed variance of the

responses is greater than the observed mean. The additional dispersion parameters

φj present in the negative binomial model and the assumption that Var(yij) =

µij + µ2
ij/φj give the model a better chance to adjust to the situation. However,

having more parameters to be estimated from the data often translates to a greater

computational load and possibly some decreased modeling accuracy in the cases

13



where overdispersion is actually not present.

3.2 Models for binary data

In the context of community ecology, binary abundances yij ∈ {0, 1} can be

thought of as indicators of either presence or absence of the species j at the test

site i. As typically in statistics, the responses yij are now assumed to follow a

Bernoulli distribution with probability or mean µij = g−1(ηij), which gives us

f(yij|xi,ui,Ψ) = µ
yij
ij (1− µij)1−yij

and

log f(yij|xi,ui,Ψ) = yij log(µij) + (1− yij) log(1− µij). (15)

The steps of the derivation to follow differ by the choice of the link function g used.

Here we are going to look at two cases in particular, the one where g is taken to

be the logit function and the other in which it is taken to be the probit function.

3.2.1 Bernoulli logit GLLVM

Assume the relationship between the probability µij and the linear predictor ηij

to be governed by the logit link function. Then

logit(µij) = log
( µij

1− µij

)
= ηij = αi + β0j + xᵀ

iβj + uᵀ
iλj

and

µij = logit−1(ηij) =
exp(ηij)

exp(ηij) + 1
.

Then (15) takes the form of

log f(yij|xi,ui,Ψ) = yij log(µij) + (1− yij) log(1− µij)

= yij log

(
exp(ηij)

exp(ηij) + 1

)
+ (1− yij) log

(
1

exp(ηij) + 1

)
= yijηij − log

(
exp(ηij) + 1

)
.
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Differentiating w.r.t. ui gives

∂ log f(yij|xi,ui,Ψ)

∂ui
=

[
yij −

exp(ηij)

exp(ηij) + 1

]
λᵀ
j ,

and

∂2 log f(yij|xi,ui,Ψ)

∂ui∂u
ᵀ
i

= −

[
exp(ηij)(

exp(ηij) + 1
)2

]
λjλ

ᵀ
j ,

which leads us to the following expression for EVA log-likelihood based on (11):

`EV A(Ψ, ξ) =
n∑
i=1

m∑
j=1

{
yij η̃ij − log

(
exp(η̃ij) + 1

)
− exp(η̃ij)

2
(
1 + exp(η̃ij)

)2 λ
ᵀ
jAiλj

}

− 1

2

n∑
i=1

{Tr(Ai) + aᵀ
iai − log det(Ai)}. (16)

The logistic Bernoulli GLLVM is a good example of a situation where the

ordinary VA approach, as described in section 2.2, fails to provide a tractable

closed form approximation of the log-likelihood function. Thus the use of EVA

to fit the model is very reasonable. The method of Laplace approximation (LA,

Tierney and Kadane, 1986) can however also be used in the case of logit model

and thus one of the simulation studies described in Section 4.1 is concerned with

comparing the performance of EVA and LA in this particular modeling scenario.

3.2.2 Bernoulli probit GLLVM

According to the probit model, the relationship between µij and the linear predic-

tor ηij is assumed to be

probit(µij) = Φ−1(µij) = ηij, (17)

where Φ is the cumulative distribution function of the standard normal distribu-

tion. Now (15) becomes

log f(yij|xi,ui,Ψ) = yij log(µij) + (1− yij) log(1− µij)

= yij log
(
Φ(ηij)

)
+ (1− yij) log

(
1− Φ(ηij)

)
.
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Then,

∂ log f(yij|xi,ui,Ψ)

∂ui
=

[
yij
φ(ηij)

Φ(ηij)
− (1− yij)

φ(ηij)

1− Φ(ηij)

]
λᵀ
j

∂2 log f(yij|xi,ui,Ψ)

∂ui∂u
ᵀ
i

=

[
yij
φ′(ηij)Φ(ηij)− (φ(ηij))

2

(Φ(ηij))2

]
λjλ

ᵀ
j

−

[
(1− yij)

φ′(ηij)(1− Φ(ηij)) + (φ(ηij))
2

(1− Φ(ηij))2

]
λjλ

ᵀ
j ,

where φ(ηij) denotes the p.d.f. of the standard normal distribution evaluated at

ηij, and φ′(ηij) denotes the first derivative of the said p.d.f. evaluated at ηij. This

gives us the following EVA log-likelihood (11)

`EV A(Ψ, ξ) =
n∑
i=1

m∑
j=1

{
yij log

(
Φ(ηij)

)
+ (1− yij) log

(
1− Φ(ηij)

)
+

1

2

[
yij
φ′(ηij)Φ(ηij)− (φ(ηij))

2

(Φ(ηij))2

]
λᵀ
jAiλj

− 1

2

[
(1− yij)

φ′(ηij)(1− Φ(ηij)) + (φ(ηij))
2

(1− Φ(ηij))2

]
λᵀ
jAiλj

}

− 1

2

n∑
i=1

{
Tr(Ai) + aᵀ

iai − log det(Ai)
}
. (18)

The probit model (18), unlike the preceeding logit model (16), is a type of a

GLLVM where the ordinary VA approach can be applied in the model estimation

process. It remains reasonable however to assess the comparative performance of

these two types of variational inference -based methods, as the results can bring

valuable insight about the accuracy and the efficiency of the EVA approach as a

whole. Thus two of the three distinct simulation studies conducted as a part of

this thesis involve comparing VA, LA and EVA approaches against each other in

the case of the Bernoulli-probit GLLVM.

3.3 Beta model for percent cover data

Assume now that the responses yij represent the percent cover of the (plant)

species j at site i. That is, 100× yij tells the percentage that the species j covers

of the total area observed at site i. Then, yij is continuous and constrained to
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the closed unit interval [0, 1]. If however, the endpoints can be excluded, meaning

that no species can be assumed to cover all (or none) of the observable area at any

site, then a multivariate Beta model can be specified, yij ∼ Beta(µij, φj). That

is, to assume that the responses yij follow a Beta distribution with mean µij and

variance µij(1−µij)/(1+φj), where φj is a dispersion parameter specific to species

j. Then, the responses have the following log-density:

log f(yij|xi,ui,Ψ) = log Γ(φj)− log Γ(µijφj)− log Γ
(
(1− µi,j)φj

)
+ (µijφj − 1) log(yi,j) +

(
(1− µij)φj − 1

)
log(1− yij). (19)

By assuming the logit link function, the relationship between µij and ηij is

log

(
µij

1− µij

)
= ηij =⇒ µij =

exp(ηij)

exp(ηij) + 1

Differentation w.r.t. ui gives

∂ log f(yij|xi,ui,Ψ)

∂ui

=

[
−ψ(µijφj)φjµ

′
ij + ψ

(
(1− µij)φj

)
φjµ

′
ij + φjµ

′
ij log

(
yij

1− yij

)]
λᵀ
j ,

where ψ is the digamma function, ψ(x) = d
dx

log
(
Γ(x)

)
and µ′ij, is a shorthand

notation for µ′(ηij) =
exp(ηij)

(exp(ηij)+1)2
. Further differentiation gives us

∂2 log f(yij|xi,ui,Ψ)

∂ui∂u
ᵀ
i

=
[
− ψ1(µijφj)φ

2
j(µ
′
ij)

2 − φjµ′′ijψ(µijφj)
]
λjλ

ᵀ
j

+
[
−ψ1

(
(1− µij)φj

)
φj(µ

′
ij)

2 + ψ((1− µij)φj)φjµ′′ij
]
λjλ

ᵀ
j

+
[
φjµ

′′
ij

(
log(yij)− log(1− yij)

)]
λjλ

ᵀ
j , (20)

where ψ1 is the trigamma function, ψ1(x) = d
dx
ψ(x) and µ′′ij is a shorthand for

µ′′(ηij) =
exp(3ηij)−exp(ηij)

(exp(ηij)+1)4
. As usual, by plugging (19) and (20) into (11), one gets

the desired approximate log-likelihood function.

3.4 Notes about computer implementations

As mentioned, the use of both the standard method of variational approximation

and the method of Laplace approximation is possible when fitting GLLVMs using

17



the package gllvm (Niku et al., 2019b). The extended variational approximation

approach was implemented as part of this thesis. The implementation was done

partly in R and partly in C++ using the package TMB (Kristensen et al., 2016).

First, the negative EVA log-likelihoods were written in C++. Then, by using TMB,

the negative log-likelihoods were compiled, resulting in R object containing both

the negative log-likelihood function and it’s gradient function, attained by the

technique of automatic differentiation. Lastly, the negative log-likelihood and the

gradient were passed to some optimization procedure readily available in R – such

as the function optim – leading to the approximative maximum likelihood estimates

and predictions for the latent variable values.
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4 Simulation studies

In this section, we present both the simulation settings used and the results and

conclusions that followed.

4.1 Simulation settings

The main purpose of the method of extended variational approximation was to

broaden the class of the specific models for which a variational approximation

type approach could be performed. This is clearly achieved by the method of EVA

as described in section 2.3. What remains unknown however is the actual perfor-

mance of EVA, in terms of both computational efficiency and estimation accuracy,

when compared to orher methods of approximative inference. Poor performance in

either efficiency or accuracy could render the approach useless in practice. Thus,

three distinct simulation studies were conducted as part of this thesis, comparing

EVA against the method of standard VA and the method of LA, both readily im-

plemented in the package gllvm (Niku et al., 2019b). The simulation setups to be

presented next essentially follow the ones used previously in Niku et al. (2019a).

4.1.1 Simulation study #1: amoeba data

The first study involves all three approaches VA, LA and EVA in the case of both

count and binary responses simulated based on a data set analysed in Secco et al.

(2016). The data set contains counts of 48 different amoeba species measured

from 263 test sites. Additionally, the data set contained measurements from two

environmental covariates, totaling to 263 observations for both. First, four sets of

row indices were generated in the following way; the first index set was randomly

drawn sample of 50 row indices out of the 263 sites of the full data. The second

set was then created by augmenting the first one by 70 additional randomly drawn

indices. The third and fourth sets further added 70 additional row indices each,

thus resulting to four sets of indices corresponding to n = 50, 120, 190 and 260

rows of the original data. Then, a negative binomial GLLVM with logarithmic

link function (defined in Section 3.1.2), was fitted to the full data, using the VA

approach. Row effects αi were not included. The parameter estimates of the full

model were then used as the ’true parameter values’. Thousand sets of simulated

responses were generated for each of the four index sets, using the parameter

estimates from the full model corresponding to the given indices. This resulted
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in to thousand simulated sets of count responses for each number n of test sites

n = 50, 120, 190, 260. The number of species was kept as a constant, m = 48, for

all of the total of 4000 simulations.

The purpose of this study was to observe how the methods of VA, LA and EVA

perform in the case of the negative binomial latent variable model as the number

of test sites, n increases. Thus, all three of the methods VA, LA and EVA were

used to fit a negative binomial GLLVM on the 1000 simulated sets of responses

for each value of n. On each iteration, the same set of initial values was used

for all methods. The initial values were attained by first fitting a multi-response

negative binomial GLM on the simulated data set at question, from which the

initial values for the regression and dispersion parameters were attained. Then, a

standard factor analysis procedure was carried out on the GLM residuals, giving

initial values for the latent variable scores and loadings. This method of initializing

the model parameters is readily available in the package gllvm (Niku et al., 2019b).

The methods were compared in the terms of average bias and root mean squared

error (RMSE) regarding the estimates of regression coefficients (β0j, β1j, β2j)
ᵀ and

the dispersion parameters φj. RMSE of a model parameter estimate θ̂ is defined

as

RMSE =

√√√√ 1

N

N∑
j=1

(
θ − θ̂

)2

,

where θ is the corresponding true parameter value and N is the amount of simu-

lation runs.

Total computation times for each set of 1000 runs were also recorded for each

approach and compared. Additionally, the Procrustes error of both the latent

variable predictions and the loading estimates were compared. By Peres-Neto and

Jackson (2001), the Procrustes error of the latent variable predictions is defined

as

Procrustes error =
n∑
i=1

p∑
r=1

(ûir − uir)2 ,

where ûir is the Procrustes-rotated prediction of the value of the rth latent variable

for site i; with uir being the corresponding true coordinate value. The Procrustes-

rotation re-scales the fitted and the true latent variable scores to common size and

then successively rotates the fitted scores until the sum of the squared residuals

between the fitted values ûir and true the values uir – the Procrustes error – is

minimized. Similarly, the Procrustes error can also be calculated for the latent
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variable loading estimates λ̂ij, as was done as a part of the studies..

In addition to the case of negative binomial model, the simulation procedure

as outlined above was also carried out in the case of Bernoulli probit GLLVM (17)

simply by transforming the count valued responses in the original amoeba data

into binary indicators of presence and absence. Meaning that responses, for which

yij > 0 were transformed in to 1. Comparison were done using the same metrics

as in the case of negative binomial model. The beta GLLVM discussed in Section

3.3 does not possess a readily available implementation in the gllvm package using

either of the LA or VA approaches, and thus it was not included in the simulation

studies.

4.1.2 Simulation study #2: bird data

The second simulation setting mirrored the first one using a bird data set analysed

in Cleary et al. (2005) as it’s basis. Here we fix the amount of sites n = 37, and

study the effect of the amount of the species m on the performance of the three

approaches, when fitting a negative binomial or binary probit GLLVM. Thus, four

sets of column indices were generated in the same manner as the sets of row

indices in the first study, leading to thousand sets of simulated responses for each

of the four increasing column index sets, with m = 30, 60, 100, 140. The original

data set had observations from 177 species, of which 29 were considered to be

rare enough (observed at most on 2 of the 37 test sites) to not be involved in

the studies, reducing the total amount of species to 148. Unlike in the case of

the amoeba data, the simulations carried out with the bird data did not involve

any environmental covariates. The metrics of comparisons were the same as in

the first study: average bias and RMSE for the species specific intercepts β0j and

dispersions φj (in the case of the negative binomial model), and average Procrustes

error for the latent variable scores uir and loadings λij. The same procedure of

model parameter initialization was used as in the first simulation study.

4.1.3 Simulation study #3: logit model

The aim of the third simulation study was to compare EVA to LA in a modelling

situation, where the standard VA could not be applied. A logit latent variable

model for Bernoulli distributed responses, as discussed in Section 3.2.1, represents

one such situation. Both the amoeba and bird data were used, similarly as in the

cases of probit models in the two studies discussed above, leading to eight sets of
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1000 simulation runs for both methods. The true model, on which the simulations

were based on, was fitted using the LA approach for both the amoeba and the bird

data. The metrics of comparison were the same as in the previous studies, that is,

average computation time, bias and RMSE of the regression parameters and the

Procrustes errors of both the latent variable scores and loadings.

4.2 Results

In this section, we present the results of the simulation studies described previously

in section 4.1.

4.2.1 Simulation study #1

The first simulation study was concerned with the comparative performance of the

EVA method, when the amount of samples, or sites, n increases. The four values

used for the sample size were n1 = 50, n2 = 120, n3 = 190 and n4 = 260. The

amount of species was kept as constant, m = 48. The study was conducted for

both a negative binomial count data GLLVM and a binary data probit GLLVM.

4.2.1.1 Negative binomial model. The proportion of negative and finite

log-likelihoods, denoted by `0, was quite low for the method LA in the case of the

two of the largest sample sizes n3 and n4, meaning that the method of LA was

quite prone to converging on to a local maximum. The average computational

times, biases, RMSEs and Procrustes errors reported in Table 1 were calculated

using only the results from model fits on which the log-likelihood attained a proper

value. This decision was made so that the instability of the specific implementation

would not influence the results on which the actual methods were compared, by

too large of a margin, as tge low `0 of the method LA was suspected to be related

to some issue of sensitivity on initial values. Additionally, a trimming factor of 2%

was used when calculating the average bias and RMSE, meaning that the the most

extreme 2% of the values were omitted, reducing the effect of possible outliers.

In terms of computational efficiency, the methods of VA and EVA seemed to

perform quite evenly, while the average computation time t̂ was much higher for

LA. The ranges for computation time (in seconds) were (1.41, 9.67), (1.62, 5.94)

and (11.26, 75.42) for EVA, VA and LA, respectively, in the case of the small-

est sample size n1, and (6.37, 49.55), (8.75, 44.96) and (68.75, 226.18) and for the
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largest sample size n4, when only the ’good fits’ were considered. The mean com-

putation times are reported in Table 1.

In terms of the regression parameter estimation accuracy, VA was the winner

in all cases, producing the lowest average biases and RMSEs, as can be seen from

Table 1. When measuring by the Procrustes error of the latent variable scores,

all three methods performed quite equally. On average, both VA and LA were

a bit more accurate than EVA in the estimation of the latent variable loadings.

Each method managed to improve in accuracy on all cases as the sample size n

increased.

Overall, the method VA can be considered as the best performing approach

both in terms of speed and accuracy. In terms of estimation accuracy, the method

LA takes the second place, with EVA coming in quite close. However, as EVA

attained a much higher proportion of proper fits `0 and held on closely to the

good computational speed of VA, the method EVA can be reasonably considered

to have been the second best approach overall.

Table 1: Summary of the amoeba data based simulation study involving a negative binomial GLLVM. The column
`0 marks the proportion of ’proper fits’, indicated by finite and negative log-likelihood value. The computation
time t̂, biases, RMSEs and Procrustes errors are reported as averages calculated using only the proper fits. In
addition, a trimming factor of 2% was used when calculating the average biases and RMSEs. Sample sizes were
n1 = 50, n2 = 120, n3 = 190 and n4 = 260. Amount of species was kept constant, m = 48.

Bias RMSE PE

t̂ `0 β0 β1 β2 φ β0 β1 β2 φ u λ

n1

EVA 3.50 0.996 -1.404 0.016 -0.150 -4.745 2.320 0.982 0.987 5.518 0.266 0.508
VA 3.46 1.000 -0.401 -0.073 -0.079 -3.651 0.834 0.658 0.669 4.559 0.230 0.316
LA 23.21 0.964 -1.307 0.010 -0.139 -4.735 2.137 0.927 0.946 5.511 0.269 0.487

n2

EVA 8.92 1.000 -0.583 0.014 -0.047 -2.952 1.072 0.493 0.476 4.097 0.194 0.328
VA 7.86 1.000 -0.113 -0.024 -0.026 -1.630 0.458 0.380 0.368 3.410 0.186 0.186
LA 52.64 0.949 -0.545 0.013 -0.045 -2.954 0.990 0.476 0.463 4.115 0.198 0.303

n3

EVA 14.72 1.000 -0.359 -0.011 -0.022 -2.171 0.722 0.340 0.350 3.440 0.187 0.239
VA 14.45 1.000 -0.032 -0.033 -0.010 -0.814 0.347 0.296 0.283 2.978 0.185 0.139
LA 91.10 0.399 -0.327 -0.013 -0.013 -2.129 0.655 0.332 0.339 3.460 0.189 0.212

n4

EVA 17.95 1.000 -0.258 -0.016 -0.009 -1.681 0.552 0.293 0.287 2.997 0.177 0.183
VA 19.93 1.000 0.012 -0.037 -0.002 -0.267 0.291 0.260 0.243 2.729 0.176 0.109
LA 134.46 0.215 -0.257 -0.018 -0.009 -1.775 0.543 0.287 0.283 3.075 0.179 0.171

4.2.1.2 Bernoulli probit model. Contrary to the case of the negative bino-

mial model, all fits acquired from the amoeba data based binary response probit

model simulation study had a finite and non-negative log-likelihood value. Thus

the column `0 was dropped from the summary in Table 2. The quantities in

the summary were reported as averages, with a 2% trimming factor used in the
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calculation of bias and RMSE.

As can be seen from Table 2, the method EVA was, on average, the most

computationally efficient among the three approaches. The method LA was again

vastly slower than either VA or EVA in all cases, though interestingly the average

computation time of LA generally decreased as the sample size n increased.

The method VA was again the approach producing the most accurate results,

on average. The method LA struggled with bad accuracy in the case of the smallest

sample size n1 = 50, particularly with the estimation of the intercept parameter β0

and the latent variable loadings λ. However, the accuracy of all methods generally

improved as the sample size increased, and the results provided by the methods

EVA and LA were quite indistinguishable in the cases of two of the largest sample

sizes.

Based on these results, the method VA should be considered as the default

choice when choosing to fit a Bernoulli probit GLLVM on a binary presence/absence

abundance data, unless a strict computational efficiency is considered as only the

decisive factor, in which case the use of EVA approach could perhaps be reasoned.

If for some reason only EVA or LA are considered and the sample size n is on the

smaller size, then EVA could be the better choice.

Table 2: Summary of the amoeba data based simulation study involving a binary response probit GLLVM. The
computation time t̂, biases, RMSEs and Procrustes errors are reported as averages. In addition, a trimming factor
of 2% was used when calculating the average biases and RMSEs. Sample sizes were n1 = 50, n2 = 120, n3 = 190
and n4 = 260. Amount of species was kept constant, m = 48.

Bias RMSE PE

t̂ β0 β1 β2 β0 β1 β2 u λ

n1

EVA 0.74 -0.312 -0.056 -0.043 0.719 0.465 0.418 0.353 0.489
VA 1.86 -0.276 -0.052 -0.053 1.063 0.374 0.354 0.269 0.285
LA 93.86 -18.457 0.943 0.820 42.267 16.119 12.244 0.319 0.870

n2

EVA 2.04 -0.235 0.020 0.010 0.546 0.297 0.253 0.276 0.417
VA 3.69 -0.027 -0.004 -0.013 0.224 0.197 0.180 0.242 0.146
LA 104.73 -2.834 0.521 0.172 8.174 2.576 1.862 0.264 0.793

n3

EVA 5.25 -0.187 0.020 0.019 0.449 0.210 0.199 0.272 0.345
VA 8.51 -0.004 -0.001 0.001 0.161 0.146 0.142 0.250 0.111
LA 87.95 -0.691 0.078 0.035 2.235 0.664 0.495 0.269 0.545

n4

EVA 11.41 -0.122 0.002 0.007 0.331 0.172 0.153 0.247 0.247
VA 15.39 0.016 -0.014 -0.007 0.133 0.127 0.119 0.233 0.082
LA 83.75 -0.247 0.013 0.009 0.889 0.281 0.234 0.245 0.313
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4.2.2 Simulation study #2

The second simulation study was based on bird data set, where m� n. That is,

the amount of species was larger than the amount of sites. The aim of the study

was then to assess how the performance of EVA compares to that of standard VA

and LA when the amount of sites is kept as constant and the amount of species is

increased gradually. The four values used for the amount of species were m1 = 40,

m2 = 60, m3 = 100 and m4 = 140. The amount of test sites was n = 37 in

all cases. The study setting was conducted for both a negative binomial and a

Bernoulli probit GLLVM.

4.2.2.1 Negative binomial model. As in the case of the amoeba data based

study, the negative binomial model had a tendency to converge in to an improper

solution when using the methods of LA or EVA. For EVA, the occurrence of these

incidents was quite minor. The proportion of proper fits, `0, can be seen from

Table 3. The other quantities in the summary are reported based on only the

negative and finite fits. A trimming factor of 2% was again used when calculating

the average biases and RMSEs.

As can be seen from Table 3, the average computation times followed the

already established trend, with LA being clearly the slowest method among the

three, while EVA and VA attained fairly even speeds. EVA attained a bit lower

average computation time than VA in the cases of two of the smallest values for

amount of species, m1 and m2, with the situtation being reversed in the case of

the largest value m4.

In terms of both average bias and RMSE, the standard VA was clearly the

most accurate approach, with LA placing second by a small margin over EVA.

Generally, the estimates got slightly more imprecise, as the amount of species

increased. When, measured by the Procrustes error of latent variable scores, the

three methods performed almost indistinguishably. The differences were more

drastic in the Procrustes error of latent variable loadings, with VA achieving the

lowest error for all values of m, and LA coming in at second place with slightly

lower errors than EVA.

The method VA can again be considered as a good default choice for the given

situation, based on these results. Between the methods of EVA and LA, the choice

comes down to whether to prioritise speed and reliability (higher `0) over a slightly

more accurate estimation, or vice versa.

25



Table 3: Summary table of the bird data based simulation study involving a negative binomial GLLVM. The
column `0 marks the proportion of ’proper fits’, indicated by finite and negative log-likelihood value. The com-
putation time t̂, biases, RMSEs and Procrustes errors are reported as averages calculated using only the proper
fits. In addition, a trimming factor of 2% was used when calculating the average biases and RMSEs. The amount
of sites was kept as constant, n = 37, while the amounts of species varied, m1 = 40, m2 = 60, m3 = 100 and
m4 = 140.

Bias RMSE PE

t̂ `0 β0 φ β0 φ u λ

m1

EVA 1.00 0.981 -0.301 -0.710 0.721 1.413 0.519 0.567
VA 1.61 1.000 0.072 0.196 0.378 1.360 0.493 0.558
LA 8.31 0.871 -0.264 -0.694 0.654 1.410 0.513 0.559

m2

EVA 3.29 0.991 -0.304 -0.598 0.693 1.244 0.238 0.469
VA 3.99 1.000 -0.080 -0.140 0.384 1.100 0.214 0.388
LA 25.16 0.916 -0.293 -0.599 0.663 1.240 0.234 0.457

m3

EVA 6.04 0.999 -0.347 -0.642 0.784 1.308 0.122 0.459
VA 6.01 1.000 -0.142 -0.344 0.458 1.144 0.113 0.351
LA 47.55 0.855 -0.334 -0.642 0.751 1.304 0.122 0.449

m4

EVA 9.90 1.000 -0.370 -0.656 0.810 1.279 0.086 0.478
VA 7.56 1.000 -0.188 -0.434 0.497 1.133 0.081 0.349
LA 74.62 0.869 -0.366 -0.655 0.799 1.280 0.086 0.465

4.2.2.2 Bernoulli probit model. A summary of the results from the bird

data experiment regarding a Bernoulli probit GLLVM can be seen from Table

4. EVA was on average the fastest method among the three across all values of

m. At worst, LA produced average computation times higher by two orders of

magnitude, when compared to both VA and EVA. In terms of the average bias

and RMSE regarding the intercept parameter β0, the results produced by LA again

fell short compared to that of EVA or VA. The methods EVA and VA managed to

be quite competitive, with VA being more accurate on all but the largest value of

m. As m increased, the RMSE increased for VA, and decreased for EVA. Similar

development can also be seen for bias.

EVA had the highest Procrustes errors of latent variable scores, with VA and

LA attaining almost equal precision on two of the largest values of m. LA had

clearly the most trouble among the three in estimation of the latent variable load-

ings, as can be seen from Table 4.

Judging by these results, VA once again gets to be considered the most reason-

able default choice when choosing to fit a type of model in question. The method

of LA would be very hard to recommended in any such situation. Meanwhile, it

would be interesting to assess, that whether the EVA could keep on improving in

accuracy over the VA approach, if the ratio of the amount of species to the amount
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of sites would be increased even further.

Table 4: Summary table of the bird data based simulation study involving a binary response probit GLLVM.
The computation time t̂, bias, RMSE and Procrustes errors are reported as averages calculated. In addition, a
trimming factor of 2% was used when calculating the average bias and RMSE. The amount of sites was kept as
constant, n = 37, while the amounts of species varied, m1 = 40, m2 = 60, m3 = 100 and m4 = 140.

Bias RMSE PE

t̂ β0 β0 u λ

m1

EVA 0.27 -0.047 0.539 0.588 0.676
VA 1.03 0.049 0.283 0.492 0.539
LA 37.34 -6.778 33.478 0.557 0.848

m2

EVA 0.80 -0.049 0.482 0.334 0.538
VA 1.51 -0.012 0.326 0.236 0.395
LA 59.03 -2.568 46.035 0.271 0.875

m3

EVA 1.63 -0.050 0.441 0.200 0.426
VA 2.22 -0.037 0.375 0.140 0.333
LA 102.05 -2.038 35.452 0.158 0.890

m4

EVA 2.86 -0.028 0.384 0.170 0.399
VA 3.29 -0.050 0.412 0.094 0.318
LA 152.92 -0.821 24.403 0.106 0.891

4.2.3 Simulation study # 3

The third simulation study used both the amoeba and the bird data sets to compare

EVA against LA in the estimation of a logistic GLLVM for Bernoulli distributed

responses. The true model was fitted using the LA approach.

4.2.3.1 Amoeba data. As with all of the previous cases, EVA was again

considerably faster method to fit the model, than LA. Table 5 contains a summary

of the results of the amoeba data based simulations. Noticeably, there is a stark

contrast between methods when it comes to the accuracy in terms of the regression

coefficients, in favor of LA. In general, both of the methods struggled with the

regression coefficients, particularly with the intercept β0. The average biases and

RMSEs produced were much higher than in any of the previous studies. This

raises concerns about possible sensitivity issues relating to the choice of the method

used to fit the true model on which the simulations were based on. For increased

generality, in the future, the same simulation setting should be conducted using

EVA as the approach in estimation of the true model.
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The Procrustes errors of latent variable scores and loadings were rather more in

line with previous simulation studies. LA was in general the more accurate one of

the methods. Neither of the methods showed noticeable improvement in accuracy

relating to the latent variables when the sample size n was increased.

Based solely on this evidence, the use of LA would be more favorable when

fitting a logistic GLLVM on binary response data, where the amount of sites n

exceeds the amount of species m. Both methods performed quite poorly overall,

especially with the smaller values of n. Replication of the study using EVA in the

true model fitting would be a sensible next step in future developments.

Table 5: Summary of the amoeba data based simulation study involving a binary response logistic GLLVM.
The computation time t̂, biases, RMSEs and Procrustes errors are reported as averages calculated. In addition,
a trimming factor of 2% was used when calculating the average biases and RMSEs. Sample sizes were n1 = 50,
n2 = 120, n3 = 190 and n4 = 260. Amount of species was kept constant, m = 48.

Bias RMSE PE

t̂ β0 β1 β2 β0 β1 β2 u λ

n1
EVA 3.25 -44.112 0.974 2.946 77.446 30.527 24.392 0.280 0.704
LA 41.45 -51.493 1.588 2.227 86.491 34.308 27.043 0.282 0.697

n2
EVA 9.90 -21.110 4.865 3.172 38.620 13.500 10.480 0.238 0.754
LA 98.49 -19.600 4.809 2.352 37.177 12.442 9.091 0.233 0.774

n3
EVA 20.63 -13.511 4.277 2.187 23.417 7.732 6.733 0.240 0.768
LA 127.47 -9.273 2.552 0.967 17.703 5.460 4.135 0.235 0.727

n4
EVA 35.89 -9.647 3.920 1.494 16.746 6.324 4.388 0.221 0.785
LA 165.00 -4.996 1.550 0.526 10.327 3.448 2.126 0.217 0.661

4.2.3.2 Bird data. When fitting a logistic GLLVM on simulations based on

the binary response bird data, EVA was much faster method than LA, on average,

as can be seen from the summary in Table 6. The differences between the methods

in the average bias and RMSE of the intercept β0 were not as stark as in the case

of the amoeba data. Either way, the bias and the RMSE again seemed rather

bloated when compared to the results from the first and second simulation study.

This might be another indicator of the need to replicate the study using EVA as

baseline for the true model, and compare the results. Based only on these results,

LA seems more accurate in the estimation of the intercept β0. A similar story

holds for the latent variables, as LA attained, in general, lower average Procrustes

errors. Thus essentially, the choice between the methods depends on which is

deemed more important in a given situation, computational efficiency (EVA), or

estimation accuracy (LA).

28



Table 6: Summary table of the bird data based simulation study involving a binary response logistic GLLVM.
The computation time t̂, bias, RMSE and Procrustes errors are reported as averages calculated. In addition, a
trimming factor of 2% was used when calculating the average bias and RMSE. The amount of sites was kept as
constant, n = 37, while the amounts of species varied, m1 = 40, m2 = 60, m3 = 100 and m4 = 140.

Bias RMSE PE

t̂ β0 β0 u λ

m1
EVA 1.07 -6.527 55.789 0.541 0.892
LA 22.48 -7.740 55.172 0.554 0.866

m2
EVA 2.27 -3.799 36.149 0.278 0.846
LA 18.86 -3.697 35.505 0.277 0.832

m3
EVA 3.99 -3.198 28.079 0.161 0.860
LA 24.06 -2.877 27.690 0.160 0.855

m4
EVA 5.79 -2.034 20.584 0.100 0.625
LA 30.97 -1.750 21.586 0.099 0.681

4.2.4 Conclusion

As a general verdict based on the results from the three simulation studies laid

out above, the standard VA approach can be deemed as the most sensible option

among the three in all of the cases where it can be applied in the fitting of a

GLLVM. In general, computation speed was the sole possibly decisive factor in

which the EVA managed to perform better in some situations, the differences

being quite minor however. What is clear, is that the LA is definitely the slowest

method of the three, by a fairly large margin.

In terms of accuracy, EVA and LA performed fairly evenly overall. Smaller

values for the amount of sites n seemed to favor EVA over LA more clearly, with

the differences subsiding as the sample size increased. The results from the third

study leaned heavily toward LA, but the comparatively bloated errors raised a

question of possible sensitivity issues of the simulation setting relating to the choice

of the fitting approach used in estimation of the true model. To asses this, the third

study should be repeated using EVA in place of LA in the fitting of the true model.

Similarly, the sensitivity of the first two studies could be assessed by replicating the

study settings using both EVA and LA, or maybe some fourth method not part of

the actual comparisons, to reduce the possibility of favoritism. Alternatively, the

use of completely synthetic simulation settings could be reasoned. The decision to

use real data sets as a basis for the simulations was made based on the notion of

it possibly leading to more realistic approximations of abundance data collected

in real world applications.
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5 Example: model based ordination of peatland

data

In this section, we use EVA to fit a logistic Bernoulli GLLVM for a model based

ordination of multivariate presence/absence vegetation data, collected across 120

Finnish peatlands of varying environmental backgrounds. A detailed description

of the data collection process and the related study setting can be found in Elo et

al. (2016). As said, the data set contained measurements from 120 test sites, with

the response variables of interest being the percent covers of total of 86 bryophyte

species. Ten 1m2 sample plots were used on each site to conduct the measurements,

leading to a 1200 × 86 response matrix. Of the 120 sites, half were considered to

be in a pristine state, while the other half were sites disturbed by drainage. The

pristine sites were considered as the control group in the original study, with the

disturbed sites forming the treatment group. Additionally, the sites consisted

evenly of three distinct peatland ecosystem types, those being spruce mires, pine

mires and fens. Third environmental classifier considered was productivity, with

59 sites being deemed as sites of low productivity, and the rest labeled as sites of

high productivity.

Empty rows, or rows with missing values were removed from the response

matrix, as well as columns corresponding to species with less than five observations

total. Then, the plant cover percentages were pooled site-wise, as in Elo et al.

(2016), by calculating the mean abundance in the ten sample plots found on each

site. These actions led to response matrix of size 119 × 65. Then, diverting from

the original article, the mean coverages were transformed into binary indicators of

presence or absence. Originally, the aim was to use the model for beta distributed

responses discussed in 3.3, but the very high proportion of measured coverages of

zero percent (about 84%) deemed the use of beta model to be problematic. In the

future, some type of augmented beta model allowing for the inclusion of zero cover

responses should be considered and implemented.

As was previously mentioned, a GLLVM with the amount of latent variables

specified to be p = 2 leads naturally to two dimensional ordination plots, by

simply plotting the scatterplot of the resulting latent variable score predictions

ûi = (ûi1, ûi2)ᵀ. First, a null model was specified, that is, a GLLVM with no
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environmental covariates included,

logit(µij) = β0j + uᵀ
iλj, i = 1, . . . , 119, j = 1, . . . , 65. (21)

The ordination plot resulting from the null model (21) can be seen in Figure

1. The sites in the first plot have been colored according to ecosystem type. The

sites form very clearly visible clusters according to the ecosystem type, with fens

tending to top portion of the plot and spruce mires tending to bottom portion of

the plot. In the Figure 2, the coloring corresponds to productivity level. The sites

of high production tend heavily to the right portion of the plot, while sites of low

production tend to left.
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Figure 1: Ordination of the test sites present in the peatland data set, according to the null model (21), i.e. a
binary logistic GLLVM without any environmental covariates. Sites are colored according to ecosystem type; sites
classified as spruce mires on black, pine mires on orange and fens on blue. There is a clear clustering of the sites
by the ecosystem type, with spruce mires tending to the lower portion of the plot, while the sites classified as fens
tend to top.

31



1

2

3

4

5

6

7

8

9

10

11

1214

16

17

18

19

20

21

22

23

2526
28

29

30

31

32

33

34

35

36

37

38

39
40

42

43

44

45

4647

48

4950

51

52
53

55

56

57

60

61

62

64

67

68

70

71

72
74

75

79

80

82

83

84
85

90

92

93

94

95

96

99

100

104

110

111

113
114

115
116

119

−2

−1

0

1

2

−2 −1 0 1 2

LV1

LV
2

Productivity a aLow High

Ordination plot

Figure 2: Ordination of the test sites present in the peatland data set, according to the null model (21), i.e. a
binary logistic GLLVM without any environmental covariates. The sites are colored according to productivity
level, sites of low productivity on black and sites of high productivity on red. Sites of low productivity tend
heavily to left, while sites of high productivity gravitate to right.
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The notes above suggest that both the productivity and ecosystem type should

possibly be included in to the latent variable model as predictors, leading to model

specified as

logit(µij) = β0j + β1jx1i + β2jx2i + β3jx3i + uᵀ
iλj, (22)

where x1i and x2i are dummy variables corresponding to the categories of pine mire

and fen ecosystems, respectively, and x3i indicates whether the site i is classified as

site of high production or not. This model resulted in to the ordination plot shown

in Figure 3. When looking by ecosystem type, the sites seem to be fairly mixed

when compared to Figure 1. The sites considered to be in pristine state seem to

cluster heavily in to the upper portion of the plot, while the sites disturbed by

drainage tend towards the lower portion of the plot.
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Figure 3: Ordination of the test sites according to the model (22). In terms of ecosystem type, the sites appear
to be quite mixed. When looking at the sites by the treatment level, the sites classified as pristine can be seen to
form a cluster on to the upper portion of the plot.
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The third and final model fitted included all three of the environmental covari-

ates present in the data set, leading to a model equation of the form.

logit(µij) = β0j + β1jx1i + β2jx2i + β3jx3i + β4jx4i + uᵀ
iλj, (23)

where x1i, x2i and x3i are as in the model (22) and x4i is an indicator of site i

being in pristine state or not. The resulting ordination plot is shown in Figure

4. Now, the effects of the treatment level seems to have been taken care of by

the model. Moreover, the sites seem to fall more tightly around the origin. Sites

further away from the origin tend to be sites with more species being present, than

on average. For example, the sites labeled as 7, 28 and 57 had presence of 17, 18

and 15 species, respectively, of the included 65, with the average being around 10.
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Figure 4: Ordination of the sites according to the model (23), with the ecosystem type and both treatment and
productivity levels as covariates. Visibly clear clustering in terms of treatment level is no more present and the
sites seem to be not as spread out as with the previous models. The sites are labelled according to the site number.
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With latent variable models, the residual covariance matrix, calculated as

Σ = ΛΛᵀ using the loading matrix Λ, carries information about the inter-species

relationships after the effects of the measured environmental covariates have been

controlled for. For example, trace of the matrix Σ can be thought as a measure

of unexplained variation. The ratio of traces can be used as a ’pseudo-R2 type’

method to compare nested models. In this example, the trace of the residual co-

variance matrix resulting from the third model (23) was about 86.5% of that of

the second model (22), meaning that the inclusion of treatment level as a predictor

explained approximately 13.5% of the variation in the species abundances. When

comparing the third model (23) to the null model (21), the ratio of the traces

suggests that the three environmental covariates together managed to explain ap-

proximately 87.6% of the variation present in the abundances.

The soundness of a GLLVM fit can be assessed much in the same way as in

the case of typical GLMs, by the use of residual plots. For discrete responses, the

so-called randomized quantile, or Dunn-Smyth residuals (Dunn and Smyth, 1996)

are often employed. The Dunn-Smyth residuals are defined as

rq,ij = Φ−1(cij), (24)

where cij ∼ U
(

limy↑yij F (y|µ̂ij, φ̂), F (yij|µ̂ij, φ̂)
)
, with F (·|µ̂ij, φ̂) being the c.d.f.

of the response yij. This definition gives us residuals following exact standard

normal distribution, in the case of properly estimated model parameters. The

Dunn-Smyth residuals can be plotted against the values of the linear predictor η̂ij.

Normal quantile-quantile plots can also be constructed. These two types of plots,

corresponding to the final model (23), can be seen in Figure 5. Neither of the

residual plots show anything problematic regarding the model fit.

A good way to visualize the co-occurrence structure among the species is to

construct a correlation plot based on the residual covariance matrix Σ. The corre-

lation plot resulting from the model (23) can be seen in Figure 6. The red blocks of

squares correspond to groups of species with highly negative correlations of abun-

dance. These are species that tend to not occur on same sites, after the effects of

the three environmental predictors have been controlled for. Meanwhile, the blue

regions consist of species having positively correlated absences, i.e. species that

have high chance of co-occurrence.
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Figure 5: Two types of residual plots resulting from the final model (23). Here, the residuals used were the
randomized quantile residuals presented in Dunn and Smyth (1996).
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Figure 6: A correlation plot resulting from the logistic latent variable model (23) containing all three of the
environmental covariates; ecosystem type and treatment (disturbance) and productivity levels. The noticeably
red regions corresponds to species that have high negative correlation in abundance, i.e. species that tend to not
co-exist on same sites – after the effects of the environmental covariates have been controlled for. On the opposite,
the blue regions mark the species with positively correlated probabilities of presence.
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6 Discussion

The method of EVA, as described in Section 2.3, managed well to broaden the

amount of feasible response distributions and link functions, when compared to

the standard VA (Section 2.2). In addition, in the simulation studies conducted,

EVA was generally not far off from the accuracy of LA, one of the more popular

alternatives. In terms of computational efficiency, EVA was vastly superior to LA

in all cases studied, and slightly faster than VA in most cases. As discussed already

in the Section 4.2.4, a replication of the simulation studies should be conducted,

aiming to eliminate the possible effect of favoring the method chosen for fitting

the true model. Additionally, completely synthetic simulation studies could also

be considered.

Two distinct branches for future development regarding EVA can be seen, one

concerned with improving and extending the current ”basic” implementation of

EVA into a more readily available form for practitioners to use, and the other con-

cerned with extending EVA to the cases of some of the more general GLLVMs, like

the so-called fourth corner models (Brown et al., 2014), or models with spatially

or temporally correlated latent variables.

The current iteration of EVA considered rests firmly on the simple, standard

definition of GLLVM as given in Section 2.1. Basic implementations concerning the

specific models derived in Section 3 are already in place, yet lacking the methods

required for sophisticated model diagnostics, for the method to be usable as a

”black box” by researchers in applied fields. For instance, a routine for calculation

of standard error estimates could be added, as well as significance tests for model

parameters. Residual analysis tools, based on the Dunn-Smyth residuals (24) in

the discrete cases, could be added too. The possibility of specifying random row

effects αi needs to be implemented, as the current version considers only fixed

ones. Some additional models should also be considered, including for example

a GLLVM for Tweedie distributed (with power parameter 1 < ν < 2) responses

(Jorgensen, 1997), a popular choice of distribution for modelling biomass data,

as well as models for zero-inflated Poisson and zero-one-inflated Beta distributed

responses. Special attention could also be paid to improving numerical stability of

the algorithms, as numerical overflow and underflow tends to happen frequently

with link functions involving logarithmic transformations.

The possibility of using Taylor approximation of higher order, in place of 9 in

the derivation of EVA, should be assessed. Hypothetically, higher order approxi-
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mation should lead to a more accurate estimation of model parameters, at the cost

of computational efficiency. Alternatively, the effects of the choice of the center

of expansion could also be studied, first considering for example the method of

Laplace variational inference discussed in Wang and Blei (2013).

The framework of GLLVMs can be generalized further by including additional

terms in to the model equation (1), or by relaxing the assumptions of independence

of the latent variables. In addition to the environmental covariates discussed in

this thesis, the inclusion of species traits and the interactions between environ-

mental and species traits could be considered, leading effectively to the topic of

fourth corner models (Brown et al., 2014). The assumption of independent latent

variables could be replaced with dependent latent variables, with the dependency

structure perhaps being governed by some temporal or spatial (or spatio-temporal)

stochastic process. For example, a assumption that the latent variable values are

more similar on sites geographically closer to each other, than on sites distant from

each other, sounds a plausible description for many real world situations. General-

ization of the method of EVA in to these situations could be explored. The method

of EVA on GLLVMs on sparse data presents one possible additional direction for

future research, as well robust methods and regularization for GLLVM estimation.

The bryophyte data considered in Section 5 is a good example of sparse data set,

as almost all of the elements of the response matrix were zero. The extension of

EVA (and GLLVMs in general) into situations of sparse data could perhaps im-

prove the prospects of using actual percent cover response model, instead of the

presence/absence model considered in this thesis.
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