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Abstract. We propose a framework for solving offline data-driven mul-
tiobjective optimization problems in an interactive manner. No new data
becomes available when solving offline problems. We fit surrogate mod-
els to the data to enable optimization, which introduces uncertainty. The
framework incorporates preference information from a decision maker in
two aspects to direct the solution process. Firstly, the decision maker can
guide the optimization by providing preferences for objectives. Secondly,
the framework features a novel technique for the decision maker to also
express preferences related to maximum acceptable uncertainty in the so-
lutions as preferred ranges of uncertainty. In this way, the decision maker
can understand what uncertainty in solutions means and utilize this in-
formation for better decision making. We aim at keeping the cognitive
load on the decision maker low and propose an interactive visualization
that enables the decision maker to make decisions based on uncertainty.
The interactive framework utilizes decomposition-based multiobjective
evolutionary algorithms and can be extended to handle different types
of preferences for objectives. Finally, we demonstrate the framework by
solving a practical optimization problem with ten objectives.

Keywords: Decision support · Decision making · Decomposition-based
MOEA · Metamodelling · Surrogate · Kriging · Gaussian processes.

1 Introduction

Sometimes while solving data-driven multiobjective optimization problems (or
MOPs) additional data can not be acquired during the solution process. Instead,
we may have pre-collected data of the phenomenon of interest that was obtained
beforehand, e.g. by conducting physical experiments. This type of optimization
problems are termed as offline data-driven MOPs [3,8, 17]. For formulating the
optimization problem, we can build surrogate models using the given data to
approximate the behaviour of the phenomenon. Optimization can then be per-
formed utilizing these surrogates as objective functions e.g. by a multiobjective
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evolutionary algorithm (MOEA). However, approximation error in the surro-
gates’ prediction can not be avoided. Certain surrogate models such as Kriging
also provide information about the uncertainty (e.g. as standard deviation) in
predictions. This uncertainty information can be utilized in the optimization
process to improve the quality of the solutions [11].

Previous works on offline multiobjective optimization such as [3,8,11,17] ap-
proximate the entire Pareto front. This makes decision making a difficult task as
the decision maker (DM) has to choose from a large set of solutions. Interactive
multiobjective optimization approaches allow the DM to find solutions in an
interesting region of the Pareto front and learn about the problem and the feasi-
bility of one’s preferences and adjust the latter. They also provide limited amount
of information at a time thereby reducing the cognitive load (see [13] for more
information). There have been many developments in interactive MOEAs [14]
and decomposition based MOEAs have become quite popular because of their
capability of solving MOPs with a large number of objectives [2, 4, 20]. Hence,
interactive approaches such as [7,10,21] have been proposed for decomposition-
based MOEAs. However, as far as we know, addressing DM’s preferences while
solving offline MOPs in decomposition-based MOEAs has not been considered.

Utilizing the uncertainty information in interactive optimization may be quite
valuable to the DM for a better understanding of the solutions and better deci-
sion making while solving offline MOPs. The major challenge in utilizing uncer-
tainty in an interactive optimization process is conveying this extra information
to the DM as (s)he may not be familiar with it.

In this paper, we propose a framework for solving offline data-driven MOPs
interactively using decomposition-based MOEAs. It enables the DM to under-
stand and make decisions based on the uncertainties present in the approximated
solutions. The framework does not increase the cognitive load of the DM signi-
ficantly while providing preference information for uncertainties along with the
preferences for objectives.

2 Background

We consider the underlying MOP that has to be solved of the following form:

minimize {f1(x), . . . , fK(x)},
subject to x ∈ S, (1)

where K ≥ 2 is the number of objectives and S is the feasible region in the deci-
sion space Rn. For a feasible decision vector x, the corresponding objective vector
f(x) comprises of the underlying objective (function) values (f1(x), . . . , fK(x)).

A solution x1 ∈ S dominates another solution x2 ∈ S if fk(x1) ≤ fk(x2)
for all k = 1, . . . ,K and fk(x1) < fk(x2) for at least one k = 1, . . . ,K. If a
solution of an MOP is not dominated by any other feasible solutions, it is called
nondominated. Solving an MOP using an MOEA typically produces solutions
that are nondominated within the set of solutions it has found. The solutions
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of Eq. (1) that are nondominated in S are also called Pareto optimal solutions.
Next, we discuss a generic approach to solve an offline data-driven MOP.

2.1 Generic Approach for Offline Data-Driven Multiobjective
Optimization

A generic way for offline data-driven optimization using an MOEA described
in [8, 18] is shown in Fig. 1. The solution process can be divided into three
parts: a) data collection, b) formulating the MOP and building surrogate models,
and c) running an MOEA. The first step involves performing experiments to
acquire the data and pre-processing it if necessary. Next, surrogate models are
built to approximate the behaviour of the underlying objective functions using
the provided data. The prediction vector of the fitted surrogate models can be
represented as f̂(x) = (f̂1(x), . . . , f̂K(x)), where f̂k is the surrogate’s prediction
for fk. Surrogate models such as Kriging also provide the uncertainty in the
model’s prediction generally in the form of standard deviation. The predicted
uncertainty vector is represented as σ̂(x) = (σ̂1(x), . . . , σ̂K(x)), where σ̂k is the
uncertainty in prediction for the kth objective function. In the third step, an
MOEA is run to solve the optimization problem with the surrogates as objective
functions.

Offline
data

Build
surrogate
models

Output 
solutionsRun MOEA

Fig. 1. A generic approach for offline data-driven multiobjective optimization.

Next, we briefly discuss an interactive approach for decomposition-based
MOEAs which is a building block of the framework proposed in this paper.

2.2 Interactive Decomposition-Based MOEA

Decomposition-based MOEAs use reference (or weight) vectors to decompose
the objective space into a number of sub-spaces. In general, they solve several
simpler sub-problems that represent an aggregate of the objective functions by
using a scalarizing function. Some examples of the scalarizing functions used
are Chebyshev [20], penalty based boundary intersection distance (PBI) [20]
and angle penalized distance (APD) [2]. The solutions obtained by solving these
sub-problems jointly represent the approximated Pareto front of the MOP in the
objective space.

Interactive decomposition-based MOEAs find solutions only in certain re-
gions of the Pareto front. These approaches utilize preference information from
the DM in the form of, e.g. a reference point, weights and preferred ranges for
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objectives. For more details, see, e.g. [14, 19]. In this paper, we adopt the in-
teractive approach proposed in [7] for decomposition-based MOEAs and briefly
describe its main ideas as follows.

Converting Preference Information to Reference Vectors: One of the
ways to incorporate preference information into decomposition-based MOEAs is
by adapting the reference vectors to follow the DM’s preferences [14]. We here
demonstrate how to utilize a reference point which consists of the DM’s desired
value for each objective. However, the framework proposed later in this paper is
not limited to only this type of preference information.

Consider a set of uniformly distributed reference vectors V = {vi ∈ Rk|i =
1, . . . ,m}, where m is the total number of reference vectors, and z̄ ∈ Rk is a single
reference point provided by the DM. Each reference vector can be adapted as
follows [2, 7]:

vi =
r · vi + (1− r) · vc

‖r · vi + (1− r) · vc‖ , (2)

where vc = z̄/ ‖z̄‖ and r ∈ (0, 1). The central vector vc is the projection of z̄ on
a unit hypersphere and the spread of the adapted reference vectors is determined
by the parameter r. The adapted reference vectors are close to vc if r is close to
zero and if r is close to one, the reference vectors are not changed much.

3 The Proposed Framework

As mentioned, since no new data is available in offline data-driven optimization,
the approximation accuracy of the surrogate models determines the quality of
solutions. In reality, the surrogate models’ approximation involve uncertainty.
As mentioned, Kriging surrogates [6] also provide an estimate of the uncertainty
in its prediction. A solution with a higher uncertainty indicates that the objec-
tive values predicted by the surrogates have a lower probability of being close to
the values of the underlying objective function. In other words, the uncertainty
predicted by the surrogate models can represent the accuracy of the solutions
when evaluated using the underlying objective functions. In [11], utilizing the
predicted uncertainties from the surrogates as additional objective(s) produced
solutions with a better hypervolume and accuracy in root mean squared er-
ror (RMSE) compared to the generic approach. This was because the approach
simultaneously minimized the objective functions and their respective uncertain-
ties. The solutions generated represented the trade-off between objective values
and uncertainties. However, this results in an increase in both computational
and cognitive load with a large number of objectives. Overall, it is desirable for
the DM to get solutions that have a low uncertainty in order to achieve better
accuracy.

As explained before, interactive approaches are quite advantageous as the
DM can guide the optimization process through preferences for objectives and
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also learn about the problem. To incorporate preferences for uncertainties while
solving an MOP interactively, the DM should first understand what uncertainty
really means in regards to the MOP. Giving the DM an opportunity to provide
preferences for uncertainties is desirable but may increase cognitive load.

The proposed framework aims at solving offline data-driven MOPs inter-
actively by considering preferences for both objectives and uncertainties. The
framework is based on a decomposition-based MOEA and preference informa-
tion for objectives in the form of reference points. The first and primary challenge
faced is the DM’s understanding of uncertainty, specifically the uncertainty in
the surrogates’ approximation. Secondly, the cognitive load should not drasti-
cally increase when the DM wants to provide preferences for uncertainties along
with the preferences for objectives. The proposed framework tackles both of
the challenges and aims at providing an improved decision support for the DM
during the solution process. Next, we discuss two steps which are the primary
building blocks of the proposed framework.

3.1 Pre-Filtering Solutions Following DM’s Preferences

Generally, in offline data-driven MOPs, there exists a trade-off between the
quality of solutions (e.g. hypervolume) and the accuracy of the solutions (e.g.
RMSE) [11]. To have a diverse range of uncertainty and objective values, we
first store the solutions from all the generations of an MOEA in an archive. This
allows us to filter and make decisions from a pool of solutions having various
objective and uncertainty values. However, only the solutions representing the
DM’s preferences for objectives are interesting to him/her. Hence, the archive
needs some amount of pre-filtering before we can present it to the DM. We have
to further filter these solutions such that only the solutions that simultaneously
achieve the best objective values and the lowest uncertainties are shown to the
DM. Hence, we propose a two-stage pre-filtering approach as follows.

Fig. 2. Pre-filtering solutions: Green dots are kept and red dots are rejected.
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The first stage is to find solutions in the archive that follow the DM’s pref-
erences for objectives, i.e., reference points. As described in Section 2.2, at first,
the uniformly distributed set of reference vectors are adapted using Eq. (2) that
reflects the DM’s preferences for objectives. Next, we find the adapted reference
vectors that have the highest component in one of the objectives and call them
edge vectors. Initially, the set of reference vectors are uniformly distributed and
have just one vector at each axis (objective). As the adaptation in Eq. (2) is lin-
ear; we find just one reference at every extreme or edge. Thus, the total number
of edge vectors is K. The multidimensional volume enclosed by the edge vectors
is termed as the hypercone. A solution is accepted by the first stage pre-filter
if it lies inside the hypercone. Fig. 2 shows the idea of the pre-filtering for a
bi-objective minimization problem. The edge vectors are v1 and v2 and the an-
gle between the edge vectors is θ0. The angle between solution A and the edge
vectors v1 and v2 is θ1 and θ2, respectively. A solution is accepted for the next
pre-filtering stage if both θ1 and θ2 are smaller than θ0. In the figure, the solu-
tions in green (e.g. A) are accepted by this pre-filtering stage, and the solutions
shown in red (e.g. B) are rejected. The rejected solutions do not follow the pref-
erences and hence are not of interest to the DM. In general, with K objectives,
the angle θ0 between any two edge vectors is the same. This is because the set
of uniformly distributed reference vectors is adapted by using a linear transfor-
mation. Hence, a solution is inside the hypercone if θik < θ0 for all k = 1, . . . ,K,
where θik is the angle between the kth edge vector and the ith solution.
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Fig. 3. The sub-figures show the solutions in different pre-filtering stages while solving
a bi-objective minimization problem. The grey solutions are the ones filtered out at
each stage. The red point denotes the reference point provided by the DM.

The archive contains objective vectors and their respective uncertainties from
all the generations. However, only the solutions with the smallest uncertainties
and objective values are interesting for the DM. Hence, we propose a second
pre-filtering stage that performs nondominated sorting on the solutions filtered
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by the first stage and include uncertainties as additional components in the
vectors while sorting (as done in [11]). Considering uncertainty while perform-
ing nondominated sorting finds the solutions representing the trade-off between
objective values and uncertainty.

These two stages are applied sequentially in the pre-filtering stage of our
proposed framework. The functioning of the pre-filtering stage can be understood
from Fig. 3, which shows solutions in the archive for a bi-objective minimization
problem. The colour code represents the normalized average of the uncertainty
vector for the solutions. Sub-figure (a) shows all the solutions in the archive
before the pre-filtering. Sub-figure (b) shows the solutions after the first stage
pre-filtering. It can be observed that only the solutions following the preferences
for objectives (here the reference point in red) are filtered. Sub-figure (c) shows
the solutions obtained after the second stage pre-filtering. The solutions after
the pre-filtering stage follow the DM’s preferences for objectives and represent
the trade-off between objective values and uncertainties in the solutions. The
grey solutions are the ones that are rejected at each pre-filtering stage.

3.2 DM’s Understanding of Uncertainty

As discussed before, knowledge of uncertainty is an essential aspect while solv-
ing offline optimization problems. However, while solving real-life problems, the
DM is not always familiar with uncertainty in the solutions. Depending on the
problem, the DM can be assumed to have an idea of permissible tolerances in
objective values. For example, in the welded beam problem [5], cost and end
deflection are minimized. Considering just the DM’s preference regarding cost,
(s)he has an idea of the highest permissible cost. Here, the permissible deviation
in the objective value is referred to as one-sided tolerance of the DM [9]. In
other words, one-sided tolerance information can be considered as a cutoff over
the probable variation in the objective values. In our case, the variation in ob-
jective values is available in the form of uncertainty in the surrogates. Preferred
one-sided tolerances are preferences for uncertainties provided by the DM and
represent the maximum permissible variation in the solutions when they are eval-
uated by the underlying objectives. In this paper, we refer to one-sided tolerance
as tolerance for simplicity.

For the proposed framework (and later in the tests), we consider indifference
tolerances. They are provided as a percentage for every objective and represent
the 95% tolerance interval [9]. Let us consider the indifference tolerance pro-
vided by the DM for the kth objective function as τk%, where k = 1, . . . ,K. The
distribution of the predicted objective value is Gaussian while using Kriging sur-
rogates and the predicted standard deviation of the kth objectives’ surrogate is
σ̂k(x). Thus, cutoff tolerance functions can be formulated such that the solutions
do not violate the DM’s preferences for uncertainties and thus are of interest to
the DM. The kth cutoff tolerance function is:

gk(x) = 1.96σ̂k(x)− τk · f̂k(x)/100 ≤ 0, (3)
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where x is the decision vector and k = 1, . . . ,K. A solution is interesting to
the DM if the objective value of the kth objective function does not exceed
1.96σ̂k(x) or 95% confidence interval of the Gaussian distribution. Thus, the DM
can change the preferences for uncertainties and visualize the solutions that do
not violate the cutoff tolerance functions in Eq. (3). However, it has to be noted
that the cutoff tolerance function can be modified depending on the prediction
distribution of the surrogate.

3.3 Steps of the Framework

Fig. 4 shows the simplified structure of the proposed interactive offline data-
driven MOEA framework. The framework can be broadly divided into five steps:

1. Building surrogate models and initializing the MOEA.
2. Running the MOEA and storing the solutions in an archive.
3. Applying two-stage pre-filtering on the archive.
4. Interactively visualizing the solutions based on the preferences for uncertain-

ties provided by the DM.
5. Asking for preference information for objectives from the DM and adapting

the reference vectors.

Offline
data

Adapt reference
vectors

Build
surrogates DM's preferences

for objectives
Stage 2 : 

Nondominated
sorting

Cutoff tolerance
functions

Initialize
decomposition-
based MOEA

DM's preferences
for uncertainty

Visualize
solutions

(1) (2) (3) (4)

Run MOEA 

Archive

(5)

Stage 1:
Hypercone

Pre-filtering

Most
preferred
solution

DM 
satisfied?

Yes

No

Fig. 4. The proposed framework for interactive offline data-driven multiobjective op-
timization.

Step 1: We formulate the MOP by utilizing the provided data. The expertise
of the DM may be required in this. We build Kriging surrogate models for every
objective function using the data (as in the generic approach in Section 2). Next,
we initialize a decomposition-based MOEA and generate a uniformly distributed
set of reference vectors and create the initial population.
Step 2: We run an MOEA for a fixed number of generations. The objective
values and uncertainties for the individuals from every generation are stored in
an archive that serves as a database for Step 3.
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Step 3: At the end of Step 2, we have an archive containing objective vectors
and uncertainties of different individuals. We apply the pre-filtering techniques
as in Section 3.1. Note that for the first iteration, we do not have any preferences
for objectives, and the reference vectors (that includes the edge vectors) are not
adapted. Hence, the hypercone constitutes the entire objective space and the
first pre-filtering stage accepts all the solutions.
Step 4: The DM provides preferences for uncertainties (indifference tolerances)
τk% and the pre-filtered solutions from Step 3 qualifying the cutoff tolerance
functions in Eq. (3) are shown.

The DM can provide preferences for uncertainties as many times (s)he wishes
thereby enabling him/her to view different solutions within the provided toler-
ances. For a better understanding of uncertainties while visualizing, solutions
can be colour coded. This can be done by the normalized average of the uncer-
tainty vector (in percentage) or by the maximum uncertainty of a solution for
any of the objective functions. The DM may skip this step entirely if solution
uncertainties are not interesting. As this step consists of just filtering solutions
obtained after Step 3, it can be repeated with a very low computational cost.
Step 5: In this step, the DM can stop the optimization process if (s)he has found
a satisfactory solution. Otherwise, (s)he is asked for new preference information.
We adapt the reference vectors according to Eq. (2) so that solutions follow the
preferences for objectives. After adapting the reference vectors, we go to Step 2.

The interaction process is split into Steps 4 and 5, where the DM provides
preferences for uncertainties and objectives, respectively. Due to this, the cog-
nitive load on the DM does not increase significantly. The DM can provide
different preferences for uncertainties and view the corresponding solutions and
repeat this as long as one wishes. The proposed way of providing preferences for
uncertainties does not modify the selection process of the MOEA. Hence, the
solution process is not affected.

4 Numerical Results

Assessing and comparing the performance of interactive approaches is still a
research challenge. Hence, we demonstrate and discuss the advantages of the
proposed framework by solving the general aviation aircraft (GAA) [15, 16] de-
sign problem. Due to space limitations, further analysis on benchmark problems
is available at http://www.mit.jyu.fi/optgroup/extramaterial.html as ad-
ditional material.

The GAA problem refers to designing an aircraft for recreational pilots to
business executives. We solved the problem as in [15] with 27 decision variables,
ten objectives and one constraint. As we are dealing with offline optimization
problems, we generated data using the implementation [1]. We used Latin hyper-
cube sampling [12] to generate 1000 samples for decision variables and evaluated
them using the GAA functions to obtain the offline data. To approximate the un-
derlying objective functions, we used Kriging with a radial basis function kernel
as our surrogate models. We used RVEA as the MOEA with standard parame-

http://www.mit.jyu.fi/optgroup/extramaterial.html
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ter settings as in [2] and executed it for 100 generations in each iteration with
standard crossover and mutation parameters. The spread parameter r was set
as 0.2. However, it can be increased if the DM’s wants a more diverse set of solu-
tions. As our framework does not support constraint handling, we considered the
constraint violation as an additional objective function for the demonstration.

Fig. 5. The solutions obtained for two iterations of the interactive framework (all
objectives are minimized). (a): solutions in the archive after the first iteration. (b)
& (c): solutions after pre-filtering in the first and second iteration respectively with
different reference points (red line). (d): solutions after DM provides preferences for
uncertainties.

Fig. 5 shows solutions produced by the framework for two iterations. The
colour coding represents the normalized average of the uncertainty vector for the
solutions (blue is lowest and yellow is highest). Sub-figure (a) shows the solutions
in the archive at the first iteration when there are no preferences for objectives
available. In sub-figure (b) the DM provides the reference point (in red) and
gets the pre-filtered solutions. It can be observed that the solutions produced
follow the DM’s preferences for objectives. However, (s)he chooses to skip the
step of providing preferences for uncertainties as none of the solutions has a
low uncertainty (as represented by the colour). In the next iteration, the DM



Interactive Framework for Offline Data-Driven Multiobjective Optimization 11

changes the preferences for objectives. The solutions after pre-filtering, as shown
in sub-figure (c) not only follow the DM’s preferences for objectives but also have
a lower uncertainty. We now provide hypothetical tolerances to demonstrate the
framework’s ability to consider preferences for uncertainties. In sub-figure (d)
only a few solutions that are within the preferred uncertainty of the DM are
shown. Finally, one of the solutions that matches the preferences for objectives
and uncertainties may be chosen by the DM. (S)he may choose to reset the
cutoff tolerances again to view a different set of solution to make decisions.
Alternatively, if the DM is not satisfied with any of the solutions, (s)he may
choose to change the preferences for objectives and continue the optimization.

If the DM is unaware of the uncertainties in the solutions, (s)he may be
deprived of valuable knowledge regarding the acceptability of the solutions. In
certain situations such as Fig. 5 (b), judging the goodness of a solution based on
the objective values alone may be misleading. By observing the uncertainties, the
DM avoids making a worse decision and can modify preferences for objectives.
The DM may choose to provide preferences for uncertainties and see solutions
within different tolerances with a low computational cost. As the DM can see
the solutions pre-filtered from the archive that have various uncertainties, (s)he
has a wide range of solutions to make decisions if so desired.

5 Conclusions

In this paper, we proposed a framework for interactively solving offline data-
driven MOPs. It enabled the DM to understand and provide preferences for
uncertainties during an interaction. By using preferences for objectives, the DM
can guide the solution process. The solutions generated follow the DM’s pref-
erences for objectives and have a variety of uncertainties. By preferences for
uncertainties, the DM can control which solutions (s)he can see. The two-step
interaction proposed in the framework does not significantly increase the cogni-
tive load on the DM. We also demonstrated it by solving the GAA problem that
proved its capability in solving many-objective problems. The visualization in the
framework enabled the DM to provide preferences for uncertainties interactively.
However, more work should be done in the field of reference vectors adaptation
and development of comparison metrics for interactive approaches. We also need
to perform tests with different types of preferences for objectives. Furthermore,
the framework is not designed to handle constraints. Handling constraints for
offline data-driven problems deserves further attention.
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