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Abstract

This thesis investigates the interplay between weighted bounded mean oscillation (BMO),
Riemann—Liouville type operators applied to cadlag processes, real interpolation, gradient type
estimates for functionals on the Lévy—Ito space, and approximation for stochastic integrals with
jumps.

There are two main parts included in this thesis. The first part discusses the connections be-
tween the approximation problem in L, or in weighted BMO, Riemann—Liouville type operators,
and the real interpolation theory in a general framework (Chapter 3).

The second part provides various applications of results in the first part to several models:
diffusions in the Brownian setting (Section 3.5) and certain jump models (Chapter 4) for which
the (exponential) Lévy settings are typical examples (Chapter 6 and Chapter 7). Especially, for
the models with jumps we propose a new approximation scheme based on an adjustment of the
Riemann approximation of stochastic integrals so that one can effectively exploit the features of
weighted BMO.

In our context, making a bridge from the first to the second part requires gradient type es-
timates for a semigroup acting on Holder functions in both the Brownian setting (Section 3.5)
and the (exponential) Lévy setting (Chapter 5). In the latter case, we consider a kind of gradient
processes appearing naturally from the Malliavin derivative of functionals of the Lévy process,
and we show how the gradient behaves in time depending on the “direction” one tests.
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Tiivistelma

Painotettu rajoitettu keskiheilahtelu, Riemann-Liouville-tyyppiset operaattorit ja
stokastisten integraalien approksimointi malleissa, joissa on hyppyji

Viitoskirjassa yhdistyvit painotettu rajoitettu keskiheilahtelu, cadlag-prosesseihin sovelletut
Riemann—Liouville-tyyppiset operaattorit, reaalinen interpolointi, Lévy—Ito-avaruuden funktio-
naalien gradienttityyppiset estimaatit sekd hyppyprosesseihin perustuvien stokastisten integraalien
approksimointi. Tutkimuksen kohteena on ndiden keskindinen vuorovaikutus.

Viitoskirjassa on kaksi keskeistd osaa. Ensimmaéinen osa késittelee yhteyksid L;-mielessi
tai painotetun rajoitetun keskiheilahtelun mielessd approksimoinnin, Riemann—Liouville tyyp-
pisten operaattoreiden ja yleisen viitekehyksen reaalisen interpoloinnin vililld (Luku 3).

Toinen osa késittidid erilaisia sovelluksia ensimmadisen osan tuloksille useissa malleissa: Brow-
nin liikkeeseen perustuvat diffuusiot (Luku 3.5) ja tietyt hyppyprosessit (Luku 4), joista (eks-
ponentiaaliset) Lévy-prosessit ovat tyypillisid esimerkkejd (Luvut 6 ja 7). Erityisesti hyppyja
siséltiville malleille esitimme uuden approksimointiskeeman, joka perustuu stokastisten inte-
graalien Riemann-approksimointiin siten, ettd painotetun rajoitetun keskiheilahtelun piirteitd voi
hyodyntid tehokkaasti.

Téssd kontekstissa ensimmdisen ja toisen osan yhdistiminen vaatii gradienttityyppisid es-
timaatteja erdille puoliryhmaille Holder-funktioilla sekd Brownisessa tapauksessa (Luku 3.5)
ettd (eksponentiaalisen) Lévy-prosessin tapauksessa (Luku 5). Jalkimmaisessd kidytamme Lévy-
prosessin funktionaalin Malliavin-derivaatasta luonnollisesti muodostuvaa gradienttiprosessin
kaltaista prosessia, ja ndytimme miten gradientti muuttuu ajan suhteen riippuen testattavaksi
valitusta “suunnasta’.
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CHAPTER 1

Introduction

Assume a stochastic basis (€2, F,IP, (F¢);e[o,7]) With finite time horizon T > 0. There are
various applications in which stochastic processes ¢ = (¢;);¢[o,T) appear that have a singularity
when ¢ 1 T, for example in L, for some p € [1,00]. Examples are gradient processes obtained
from (semi-linear) parabolic backward PDEs within the Feynman—Kac theory, where these pro-
cesses appear as integrands in stochastic integral representations (see Section 3.5) or in backward
stochastic differential equations as gradient processes. The same type of processes appear also as
gradient processes originating from convolution semi-groups based on Lévy processes and that
are used, for example, in Galtchouk—Kunita—Watanabe projections (see Chapters 5 and 6).

If one analyses these examples, then one realizes the following:

o Self-similarity: There is a Markovian structure behind that generates a self-similarity in the
sense that, given a € (0,T) and B € F, of positive measure, then (¢;);e[q,T) Testricted to
B has similar properties as (¢¢);c[o,7)- If one is interested in good distributional estimates
of (¢1)e[0,T) or functionals of it, then it is useful to consider the BMO-setting: the partic-
ular feature of BMO-estimates is that one uses conditional L,-estimates, where one might
exploit conditional orthogonality, in order to deduce L ,-estimates for p > 2 or exponential
estimates by John—Nirenberg type theorems.

e Polynomial blow-up: In the problems mentioned above the size of the singularity of ¢ (or,
again, a functional of it) increases polynomially in time with a rate (7 —¢)™* for some
o > 0. In particular, this often occurs in the presence of Holder functionals as terminal
conditions in backward problems.

The above observations lead to an interplay between Riemann—Liouville (type) operators,
BMO, and the real interpolation method. These components interact as follows: We realized
that the Riemann-Liouville operators allow for a transformation of a stochastic process with
a certain singularity when ¢ 1 T into a stochastic process without this singularity (but without
loosing any information about the process one is starting from). In particular, this is of interest
for martingales. By the obtained formulas this opens a link to real interpolation theory, which
has a natural explanation as we interpolate with a two-parametric scale between, for example,
martingales without singularity and martingales with a singularity. As a consequence of the
self-similarity of the singular process one is starting from, it is natural to think that the Riemann—
Liouville operator turns this process into a BMO-process by removing the singularity but keeping
the self-similarity. Therefore, we consider the stochastic processes transformed by the Riemann—
Liouville type operator in the BMO-setting. One starting point to investigate the connections
between Riemann—Liouville operators, BMO, and real interpolation is an approximation problem
for stochastic integrals, so that we will deal with four objects that interact with each other.

In the second part of the thesis, we give applications of the first part to the discrete-time
approximation problem for stochastic integrals in both Brownian setting and models with jumps.
Besides its own mathematical interest and its application to numerical methods, the approxima-
tion of a stochastic integral has a direct motivation in mathematical finance. Let us start with

1



2 1. INTRODUCTION

the well-known Black—Scholes model. Assume that the discounted price process of a risky asset
is modelled by the geometric Brownian motion S; = eWr _%, where W = (W;);e[o,1] is a stan-
dard Brownian motion defined on a complete filtered probability space (2,7, P, (F¢)sefo,77)-
Here, T > 0 is a fixed finite time horizon and the filtration (F¢);¢[o,7] is assumed to satisfy the
usual conditions (right continuity and completeness). For a Borel function g:(0,00) — R with
g(ST) € L»(IP), one has the representation

T
¢(S7) = Eg(Sr) + /0 3,G(t, S1)dS:, (L)

where G(1,y) :=IEg(ySt—) is the option price function and (3, G (7, S¢))s¢[o,T) is the so-called
delta-hedging strategy of the payoff g(S7). In mathematical finance, the stochastic integral in
(1.1) can be interpreted as the theoretical hedging portfolio which is readjusted continuously in
time. However, in practice this task is impossible because one can only rebalance the hedging
portfolio finitely many times. This fact leads to a substitution of the stochastic integral by a
discretised version which causes the discretisation error.

Let us recall some known results regarding the error caused from the Riemann approximation
of the stochastic integral. For a deterministic time-net T = (fi)?=o, O=tpo<ty-<t,=T,we
define the error process E(g:7) = (E;(g:7))se[0,T] DY

t n
E(g:t) = / 0y G(u, Sy)dSy _ZayG(ti—l,St[_l)(Sti/\t —St_1At)- (1.2)
0 i=1
For 6 € (0, 1], we define the adapted time-nets t,‘f = (lie,n _o by setting

tf, =T0—Y1=i/n).

Then we have the following statements (among others), where 6 € (0, 1] and p € [2,00):

Table 1.1:
approximation rate equivalent condition
@) | sup,oy Vi | Er (g5t L, < 00 g(ST) €Dy
T - 2,15
() | sup,y VAl ET (g7, @) < 00 E| fo (T—0'18:G(t.8)| dr|* < o0
(©) | sup,>1 v/l E(g; tH|l BMOS ([0.7) < | & is (equivalent to) a Lipschitz function

The case (a) was considered by C. Geiss and S. Geiss in [21] where D 5 is the Malliavin—
Sobolev space of differentiable random variables in the Malliavin sense. Several results in the
L,-setting were also obtained by Zhang [62], Gobet and Temam [31]. The case (c) was exam-
ined by S. Geiss [25] where the space BMO‘; ([0,T1]) is given in Section 2.2. The case (b) was
studied by S. Geiss and Toivola [27] where the parameter 6 stands for the fractional smoothness
in the sense of fractional order Malliavin—Sobolev spaces obtained by real interpolation. The

non-uniform time-nets r,? allow to achieve the optimal rate —= by compensating the lack of

N
smoothness when g(S7) €Dy 5.



1. INTRODUCTION 3

One can visualize the cases (a), (b), and (c) as follows, where the known parts are in green
and the unknown parts are in red:

/ \
Case (c¢): g Lipschitz Case (a): g(S7) €D

0, p) € (0,1]x[2,00)
case (b)

~

0
0

1 1 1

oo p 2
The case (6, p) € (0,1) x {oo} was open. Here, in the limiting case p = oo we choose the
(weighted) BMO spaces rather than the L, spaces because it is in a line with scenarios in real
analysis. Namely, we are going to investigate the case (6,00) where the parameter 6 € (0, 1)
describes the fractional smoothness and co means the (weighted) BMO spaces.
For the error process given in (1.2), using conditional Itd’s isometry yields that for any a €
[0,7), as.,

Er[lET(g:t)— Ea(g:0)*]

The quantity on the left-hand side of (1.3) appears in the definition of weighted BMO-norms of
E(g;7) (see Section 2.2), and the equality (1.3) suggests that one can reduce the original proba-
bilistic problem to a “more deterministic” setting where the corresponding quadratic variation is
employed. Therefore, in Chapter 3 we focus on investigating the approximation problem for the
quadratic variation of the original error process.

n
ayG(% Su) - Z ayG(li—l ) St,'_l )ﬂ(l‘i_l ,ti](u)

i=1

2
Sfdu}. (1.3)

This thesis contains original works of three preprints [29, 60, 61], where the author of this
thesis has actively taken part in the research of the joint preprint [29]. Chapter 3 is written based
on [29], Chapter 5 is based on [29, 60], Chapters 4 and 6 are based on [60], Chapter 7 is based
on [61].



CHAPTER 2

Preliminaries

This section provides notations and summarizes some facts about weighted BMO spaces,
Riemann—-Liouville type operators, interpolation spaces, and time-nets.

2.1. Notations

General notations and conventions. Denote R := (0,00) and Ry := R\{0}. For a,b € R, we
set a Vb :=max{a,b} and a Ab := minfa,b}. In particular, a* :=a Vv 0, a~ := (—a) V0. For
A,B >0and c > 1, the notation A ~. B stands for %A < B < ¢A. The corresponding one-sided
inequalities are abbreviated by A >, B and 4 <. B.

The sign function is defined by setting sign(x) := 1 for x > 0 and sign(x) := —1 for x <0.

For a probability space (€2, F,P) and a measurable map X : @ — R, where R? is equipped
with the Borel o-algebra B(R?), the law of X is denoted by Px. If X is integrable (non-negative),
then the (generalized) conditional expectation of X given a sub-o-algebra G C F is denoted by
Eg[X]. We also agree on the notation L, (P) := L, (2, F,P).

We set 00 := 1 and inf@ := oo.

Notations about measures.
— The Lebesgue measure on the Borel o-algebra B(R) is denoted by A.

— Given a finite signed measure 1 on B(R), we denote by || := u™ + ™ its variation , where
w™T and pu are the positive and negative variations of j respectively (see, e.g., [50]). The total
variation of [ is denoted by ||| tv := || (R).

— For two measures 1 and v on a measurable space (£2,.F), we write v < u if v is absolutely
continuous with respect to (.

— For a set A € F with u(A) € (0,00), we let 114 be the normalized restriction of u to the trace
o-algebra F|4.

Let 1 be a measure on B(R?), then the support of p is the closed set defined by
supp(u) :={x € RY W(Ug(x)) > 0 for all ¢ > 0},

where Ug(x) is the open Euclidean ball centered at x with radius ¢ > 0.

Given a random variable X : @ — R?, we let supp(X) := supp(Px ). One knows that P({X €
supp(X)}) = 1, and that for independent random variables X : 2 — R™ and ¥ : Q — R” it holds
supp((X,Y)) = supp(X) x supp(¥').

Notations about stochastic processes. Let 7 > 0 be a fixed finite time horizon, and let (2, F,P)
be a complete probability space equipped with a right continuous filtration F = (F¢);¢[0,7]-
Assume that Fy is generated by P-null sets only. The conditions imposed on [ allow us to assume
that every martingale adapted to this filtration is cadlag (right continuous with left limits). We
use the following notations and conventions where

I[=[0,T] or 1=][0,T).

5
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2. PRELIMINARIES

— For processes X = (X¢)ser and Y = (Yy)ser, we write X = Y to indicate that X; = Y; for

c_

all € [ a.s., and similarly when the relation “=" is replaced by some other standard relations
such as “<”, “>", etc.

For a cadlag process X = (X;)¢er, the process X_— = (X;_)er is defined by setting Xo— := X
and X;— :=limg44; X5 for £ € [\{0}. We set AX := X — X_.

CL(Il) denotes the family of all cadlag on I and F-adapted processes.

CLo(I) (resp. CL™ (II)) consists of all X € CL(I) with X¢ = 0 a.s. (resp. X > 0).

P is the predictable o-algebra! on © x [0, T'] and P=P® B(R).

We recall some notions regarding semimartingales on the finite time interval [0, 7.

A process M € CL(J0,T]) is called a local (resp. locally square integrable) martingale if
there is a sequence of non-decreasing stopping times (py),>1 taking values in [0, 7'] such that
P(pn < T) — 0 as n — oo and the stopped process MP" = (M¢np,)tefo,T] is @ martingale
(resp. square integrable martingale) for all n > 1. Let MY(P) be the space of all square
integrable P-martingales M = (M;);c[o,7] With Mo = 0 a.s.

A process S € CL([0,T]) is called a semimartingale if S can be written as a sum of a local
martingale and a process of finite variation a.s. The quadratic covariation of two semimartin-
gales S and R is denoted by [S, R]. The predictable Q-compensator of [S, R], if it exists, is
denoted by (S, R)?, where Q is a probability measure. We will omit the reference measure if
there is no risk of confusion.

Let M, N be locally square integrable martingales under a probability measure Q. Then M
and N ge said to be Q-orthogonal if [M, N] is a local martingale under Q, or equivalently,
(M,N)* =0.

2.2. Weighted bounded mean oscillation (BMO) spaces
For ¢t > 0, we denote by S; the collection of all stopping times p: 2 — [0,¢]. Let
I[=[0,T) or I=]0,T].

Definition 2.2.1 ([25, 29], Weighted BMO and weight regularity). Let p € (0,00). For Y €
CLo(I) and ® € CL*(I), we define

1Y lemog @ = inf{c > 0:Ez,[|Y;—Y,-|P] <cP®h as. Vpe S, Vi elf,
||Y||bmo§>(]1) =inf{c > 0:Ex,[|Y,—Y|?] <cP®Las. Vpe S, Vi ell,

[®llsa,@ = inf{c >1 :Efp[supp@eﬂ @f’] < cl’d)g a.s. V stopping times p: Q2 — I[}.

If [Y]e < oo (resp. [[®[lsa,m@ < 00), then we write ¥ € © for © € {BMOI?(I[),bmo;D(]I)}
(resp. ® € SMp(I)). In the non-weighted case, i.e. ® =1, we drop ® and simply use the
notation BMO, (I) and bmoy, (I).

The theory of classical non-weighted BMO- and bmo-martingales can be found in Del-

lacherie and Meyer [16, Ch.VII] or Protter [47, Ch.IV], and they were used later in different
contexts (see, e.g., Choulli, Krawczyk and Stricker [11], Delbaen et al. [15]).

P is the o-algebra generated by {A x {0} : A € Fol U{Ax(s,t]:0<s <t <T,Ae F}.



2.2. WEIGHTED BOUNDED MEAN OSCILLATION (BMO) SPACES 7

It is clear from the definition that if ¥ € CLo(I) has continuous paths, then ||Y ||bm0;1>(ﬂ) =
Y ”BMOS @- When Y has jumps, then the relation between weighted BMO and weighted bmo
is as follows (the proof is provided in [29, Propositions A.5]).
Proposition 2.2.2. For ® € CLT(I), Y € CLo(I),
|AY |1 :=inf{c > 0:|AY;| <c®; forallt €l as.},

and for p € (0,00) the following assertions are true:

(=D
(D ||Y||BM0§’(1[) <2 (||Y||bm0§’(1[) + |AY|q>,11)-

(2) IfE|supgefo, ) Ps|? < oo forallt €1, then

Lvi
”Y”bmog)(]l) < ”Y”BMO‘FP(H) and |AY|<I>,]I < 20" ”Y”BMOS(D’
As verified in [29, Propositions A.4 and A.1], the definitions of weighted bmo and SM, can
be simplified by using deterministic times instead of stopping times, which means
I®llsp, @ = inf{c > 1:Ex,[sup,c e @F ] <cP®F  as. foralla €I},
||Y||bm0;1>(ﬂ) =inf{c > 0:Ex,[|V; —Ya|?] < PP as. forallae(0,f]ands €l}. (22.1)
Definition 2.2.3 ([25], Reverse Holder inequality ). Let Q be a probability measure equivalent
to P so that U := dQ/dP > 0. Then Q € RH(P) for some s € (1,00) if U € L(IP) and if there
is a constant ¢ > 0 such that U satisfies the following reverse Holder inequality
VE£ US| <cEg[U] as., VpeSr,
where the conditional expectation Ez, is computed under IP.

We summarize from [29, Proposition A.6] and [60, Proposition 2.5] some features of weighted
BMO which play a key role in our applications. Notice that these results are not valid in general
for weighted bmo.

Proposition 2.2.4 (Features of weighted BMO). Let p € (0,00).
(1) (Lp-estimate) Forr € (0,00), there exists a constant ¢1 = c1(p,r) > 0 such that

I'suprer [Yelllz, @) < cillsuprer ®ellz, @ 1Y llgmo2 m-
(2) (Equivalent weighted BMO-norms) If ® € SMy(Il), then for any r € (0, p] there is a
constant ¢2 = ¢2(r, p, | Pllsr, @) > 0 such that || - [|gyoe ) ~eo |- llpymo @)
(3) (Change of measure) Let 1 = [0,T]. If Q € RHs(P) for some s € (1,00) and ® €
SMp(Q), then there is a constant c3 = c(s, p, || Pl s, (@) > 0 such that

I lemog @ < €3ll- lsmo2 @)-

Here, BMO;}> (Q) and SM,(Q) mean the BMOS— and the SMp-condition formulated
under Q respectively.

The benefit of Proposition 2.2.4(2) is as follows: If p € [2,00) (this is usually the case in
applications), then one can choose r = 2 so that || - || BMOP (1) ~¢2 Il ||BMO<21> (@)» @nd then we can
still exploit some similar techniques as in the L-theory to deal with || || BMOL (1)° Combining this
observation with item (1) yields the following estimate provided that ® € SM,(I), p € [2,00):

Isupser [YelllL, @) < crcallsuprer @i, @ 1Y llemoe )
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Item (3) gives a change of the underlying measure which might be of interest for further applica-
tions in mathematical finance.

2.3. Riemann-Liouville type operator

Riemann-Liouville operators are a central object and tool in fractional calculus. It is natural
and useful to extend them to random frameworks. There are two principal approaches: Directly
translating the approach from fractional calculus, that uses Volterra kernels, leads to the notion of
fractional processes, in particular fractional martingales. In our setting one would take a cadlag
process K and would consider

t
t|—>/ (t—u)* 'K, du.
0

This yields to an approach natural for pathwise fractional calculus of stochastic processes and is
used, for example, for Gaussian processes by Hu, Nualart and Song [33]. For our purpose we
use the different approach

T
tr—>/ (T —u)* ' Kyardu
0

to define Z¢ K in Definition 2.3.1 below. The idea behind the operator Z¢ is to remove or reduce
singularities of a cadlag process (Ky);efo,7) When ¢ 1 T'. As we see in Theorem 3.1.1 below,
this approach is the right one to handle fractional smoothness in the Malliavin sense and in
the sense of interpolation theory. One basic difference to the Volterra-kernel approach is that,
starting with a (sub-, super-) martingale ¢, we again obtain a (sub-, super-) martingale Z%¢. This
second approach was exploited by S. Geiss and Toivola [28, Definition 4.2] and [27, Section 4],
Applebaum and Bafuelos [2], and relates to fractional integral transforms of martingales (see,
for example, Arai, Nakai and Sadasue [3]).

Definition 2.3.1 (Riemann—Liouville type operator). For o > 0 and a cadlag function K:[0,7T) —
R, we define 7% K = (Z} K);¢[o,T) by setting

a (T 1
I¥K = ﬁ./o (T —u)*™ " Kynrdu.

Moreover, for o = 0 we define Z°K := K.

There are two reasons for using the normalizing factor £ in front of the integral: first, we
want to interpret K as the integrand with respect to a probability measure, and secondly, this
factor allows us to obtain a semigroup structure of (Z%)4>0.

We summarize from [29, Section 3] some properties of Z¢:
(1) (Semigroup) T¢(TPK) =T* TP K for1 € [0.T), o 8 > 0.
(2) (Inverse formula) K; = (%)_aff‘l( —rix _f(f(T —u) "1 7%Kdu, t €[0,T), a > 0.

(3) (Martingale preservation) If (¢¢)se[o,) is a cadlag martingale (super-, or sub-martingale),
then (Z¢);c[o,T) is a cadlag martingale (super-, or sub-martingale).

The semigroup structure can be also understood from equation (2.3.1) below in the martin-
gale setting.
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Proposition 2.3.2. For a > 0, a cadlag martingale ¢ = (¢1)se[0,7) € L2(P) and0<a <t <T

one has, a.s.,
o T —u\*

179 =@o+ T doy, (2.3.1)

T-— u 2a-1 du:|

J(0,¢]

T
Ez||Tfo—Tiol | = 20Ky, [ | 10uns —<pa|2(
a

2 T—a)** =1 gy
Efa[lff‘w—lgfpl ]+(T |0al® = 20EF, /a lount | T 7 | (2.3.3)

PROOF. See the proof of [29, Proposition 3.8]. U

(2.3.2)

2.4. Interpolation spaces

Let (Eo, E1) be a couple of real Banach spaces such that £y and E; are continuously em-
bedded into some topological Hausdorff space X. Forx € Eg+ E1 :={x =x9+x1 :x; € E;}
and v € (0,00), we define the K-functional

K(v,x: Eo, Ev) :=inf{[|xo|| g, + vlx1l[£, : x = x0 + x1}.
Given (0,q) € (0,1) x[1, 0], we let
(Eo, E1)g,q := {X € Eo+ Er: ||x|(By.E)oy = Vv P K(.x; Eo, EDlL,(0.00),22) < 00}-
We obtain a family of Banach spaces ((Eo, E1)g,q. || - | (£, E1),.,) With the order
(Eo.E1)6,q0 € (Eo,E1)g,q, forall® € (0,1)and 1 <go < g1 <0
Moreover, if E1 C Eo with ||x||g, < c| x| g, for some ¢ > 0, then one has
(Eo.E1),q0 S (Eo0.E1)g,,4, forall0<6; <8 <1andgp.q1 €[l,00].

Given a linear operator T : Eo + E1 — Fo+ Fy with T : E; — F; fori = 0,1, we use that the
real interpolation method is an exact interpolation functor, i.e.

IT: (Eo. E1)a.g — (Fo. F1)eqll <|T: Eo— Fo| " °|T : Ey — Fy||°. (2.4.1)

For more information about the real interpolation method, the reader is referred to Bergh and
Lofstrom [7].

We now give two types of Banach spaces obtained by interpolation which will be used later.
Given a real Banach space E and (g, s) € [1,00] xR, we use the Banach spaces

€ (E) = {(i0f2o  10m)Rolleg 2y = 1% Ikl £)§2o e, < 00}
and set {4(E) := 62 (E). Here, {4 consists of all g-summable sequences of real numbers where
the supremum is taken if ¢ = 0o. For gg,¢1,¢q € [1,00] and s¢,s1 € R with sg # 51, and 6 € (0, 1),
[7, Theorem 5.6.1] implies that
U (E), LG\ (E))g g =Ly(E) where s := (1—60)so + 051, (2.4.2)

and where the norms are equivalent up to a multiplicative constant.
We turn to Holder spaces and their interpolation. For 1 € [0, 1], we define

Hol, (R) := { f:R — R Borel :|f|ns1,®) := sup M <0

—00<X <y <00 IX—y|’7
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HoI) (R) := { f € Hol,(R) : f(0) = 0},
Hol) ,(R) := (CZ (R).H8I) (R)) .4 for (17.9) € x(0.1) x [1,00].
where C [? (R) is the family of all bounded continuous functions vanishing at zero, which is a

Banach space with the supremum norm. It follows from the reiteration theorem (see Bergh and
Lofstrom [7, Theorem 3.5.3]) that

(Ho1), o (R). HEL) - (R))g,, =H&I) (R) forp:= (1—60)no+ 6.

where 6,710,171 € (0,1) with no # 11, ¢,90.91 € [1,00], and the norms are equivalent up to a
multiplicative constant. By the above definitions (H('jlg (R), |- |ne1,(r)) is a Banach space, and

for n € (0,1) we have that Hélgm(R) = H(Sl?7 (R) with equivalent norms up to a multiplicative
constant.

2.5. Time-nets

Let Tge: be the family of all deterministic time-nets T = (#;)7_, on [0, 7] with 0 =19 <11 <
e<ty=T,n=>1.
The mesh size of 7 = (#;)7_, € Tqe is measured with respect to a 6 € (0, 1] by

Izllg ;= max _ izt
Ci=len (T =)0

For 6 € (0, 1] and for the adapted time-nets t,? = (tig’n 7, defined by
tf, =T0-Y1=i/n). (2.5.1)
we have
len It < T/(Bn) and 5] llg < T°/(On). (2.5.2)

One remarks that the smaller 6 is, the more the time points of r,f are concentrated near 7'. The
reason for using those adapted time-nets is to compensate the growth of gradient processes.



CHAPTER 3

Approximation, Riemann-Liouville type operator, and Interpolation

3.1. The L;-setting revisited

The first result makes a link between the approximation, the Riemann—Liouville type oper-
ator, and interpolation in the L,-setting. This will be extended later to the setting of weighted
bounded mean oscillation.

Theorem 3.1.1. Let 0 € (0,1). For a cadlag martingale ¢ = (¢1)sefo,1) S L2(P) =: H with the
discrete-time version

0% = (91 )2, with 1 :=T(1-275),
the following assertions are equivalent:
(1) There exists a constant ¢ > 0 such that for all T = (t;)7_, € Taet,

T
e,
J0

1-6
2) (Z,2 (p)te[O,T) is closable in L, (P).
(3) ¢? € (" (H) too(H))g 2.

Theorem 3.1.1(3) states that (pd belongs to the space obtained by interpolating between two
1 2(H ) and £, (H ) with the parameters (6,2). Let us comment on these two

n 2
Pu _Z¢tf_1 ]]-(t,'_l,ti](u) du < 62”-[”9'

i=1

end-point spaces £,
end-points. By the definition of K;l/ 2(H ) and the monotonicity of ¢ — ||¢;|| g7, we have

T
—-1/2

ot e 20 = [l < oo,
and the condition fOT oz ||%1dt < oo typically appears when ¢ is the integrand of certain stochas-
tic integrals. On the other hand,

9 € loo(H) <= sup,eo,r) el < o,
and the finiteness implies that the martingale ¢ is closable in H.
PROOF OF THEOREM 3.1.1. Because (||¢s || 77)7—, is non-decreasing, we get for s € R that

2
10t R0 s (a1
272s

00 T
D e o e € A
k=0 70
(3.1.1)
for some cr,s > 1. For s := (1—-0) (—%) + 60 (so that —1 —2s = —0) and for « := % we use
Proposition 2.3.2 (equation (2.3.3)) with @ = 0 to get

20 20

T
_ T

/ (T—1)"g;13;dt = sup E[IZ¢¢ —@ol> + lol’] = sup —E|Z¥o|.

Jo tef0,T) 20 te[0,T) 20

11
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Now the equivalence (2)<>(3) follows from (2.4.2) and (3.1.1). The equivalence (1)< (2) follows
from Theorem 3.3.2(3.3.1) below appliedto M := ¢, 0 =1,a:=0, and G := {@, Q2}. O
3.2. The weighted BMO-setting: Results with general random measures

We now turn in the weighted BMO-setting, which can be regarded as a localization in time
of the L,-setting above. Our next aim is to consider the equivalence Theorem 3.1.1((1)<(2)) in
weighted BMO, and it turns out that the orthogonality structure behind this equivalence can be
generalized by using two random measures IT and Y as given in Assumption 3.2.1.

Assumption 3.2.1. We assume random measures
I, Y: Q2 x B0, T)) — [0,00],
and a progressively measurable process (¢¢);c[o,7), and a constant k > 1, such that
M@, (0,b]) + Y (@, (0,b]) + supsefo by o1 (@)] < 00 32.1)
for all (w,b) € 2x(0,T) and such that, for0 <s <a<b<T,as.,

B [ e~ Bl e @ + [ 6o,
- (aab] " (aab]

(3.2.2)
If (3.2.2) holds with <, (resp. >,), then we denote the inequality by (3.2.2)S (resp. (3.2.2)7).

We will see later that the measure IT is related to the quadratic variation of the driving process
of the stochastic integral and the measure Y describes some kind of curvature of the stochastic
integral.

Under condition (3.2.1), we define for © = (¢;)7_, € 7ae the non-negative, non-decreasing,
and cadlag process [¢: T]" = ([¢: 7]} )sefo,T) by setting [¢: 7] = 0 and

[p: 7]} = /
(07t]

and let [¢; T]T := limsq7[@; 7]7 € [0, 00].

n 2
Ou— Pt L) )| TI(.du) €[0.00), 1 €(0,T), (3.2.3)

i=1

The next two results, Theorems 3.2.2 and 3.2.3, are an important step to characterize the
approximation in weighted BMO by means of the Riemann-Liouville type fractional integral.
The original idea to come up with these results is due to S. Geiss and Hujo [26, Lemma 3.8], S.
Geiss and Toivola [27, Lemma 5.6].

Theorem 3.2.2 (Upper estimate). Let Assumption 3.2.1 hold with (3.2.2)S. For 6 € (0,1], T =
(ti)7—¢y € Taer and a € [tx_1.1x), one has, a.s.,

Ex,[lo: 7)F —[p; 77 ]

[zlle
_ T —t,_ 1-6
<«Egz, / (T =)' =0 (-, du) + %pra —pu PG (a,1e]) |-
a,T) Ik —tk—1
PROOF. See the proof of [29, Theorem 4.3]. ]

Theorem 3.2.3 (Lower estimate). Let Assumption 3.2.1 hold with (3.2.2)%, and let (0,a) €
(0,1] x[0,7).
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(D) If t=(ti)7— € Taev @ € [ti—1.tx), and ||t|g = %, then, a.s.,

> -
Ik —Ik—1

Erllyeli—leiela] 1y (T =)™
Ille €

|®a Pty |2H(-, (a,[k])i| .
(2) There exist ty € Taer, n = 1, with a € t, and limy, ||t,||g = 0 such that, a.s,

E 1% — o1, |7 1
liming el wIF —lgimli] 1 EH[/ (T_”)I_GT(-,du)]
n lTnllo k2812 (@.T)

PROOF. See the proof of [29, Theorem 4.4]. O

3.3. The weighted BMO-setting: A specification of random measures

We now specialize random measures IT and Y to the settings that will be used in Section 3.5
(the Brownian case) and in Section 5.2 (the Lévy case). Another realization for those random
measures in the exponential Lévy setting will be given in Chapters 6 and 7.

Assumption 3.3.1. We assume that there are

(1) a positive continuous and adapted process (0¢),e[o,7] such that sup,¢pg 770+ € L2(IP) and
such that there is a constant ¢, > 1 with

1 b
E]—‘a|: / 05dui| ~co 03 as.,VO<a<b<T.
b—a /,

(2) asquare integrable martingale M = (M;);c[o,1) With Mo = 0.
(3) ap € CL([0, 7)) with Esup,, (4.7 |Pa0u |2 <ooforalla € [0,7T).

Assume that (3.2.2) is satisfied for
(w,du) ;= 02(w)du and Y(w,du):=d(M,M),(®), uel0,T).
Since the measure IT is defined based on o, we denote [p;7]° := [@; T]”.
From Theorem 3.2.2 and Theorem 3.2.3 we immediately deduce:

Theorem 3.3.2. Assume Assumption 3.3.1, (6,a) € (0,1]x[0,T), and a o-algebra G C F,. Then
there are constants c(33.1),¢(33.2) = 1 depending at most on (0,k . cy) such that, a.s.,

Eo[[o: 7]% — [0:7]° 1=6 1=6 |2
esssup oL 1o ]“]%m“ Eg| sup |7,7 M—T,7 M| |, (3.3.1)
T€Tqe,T3a Izl t€la,T)
E 7)9 — [ T]° 1-6 1-6 |2
esssup 7lle:lf ~lo ]a]~c<3_3_2)E7a sup |Z,> M-Z,° M
€T Ille tela,T)
T—a 5 o
+ sup —9|¢a—<ps| o;. (332

s€[0,a] (T - S)

We remark that the inequality (3.3.1) is formulated for a more general o-algebra G to prove
Theorem 3.1.1. In (3.3.2) such a formulation is not necessary for us.
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PROOF OF THEOREM 3.3.2. Relation (3.3.2): Let 7 = (ti);.“zo € Tget. For tp_1 < a < ty, As-
sumption 3.3.1 implies that

|2 (T _tk—l)l_g

O'g(lk —a) a.s.
Ik —1k—1

(T —tg—1)'7°
E]‘—a |(Pa —Ptr— |2H(" (a’tk]) ~co |§0a — Pt
Ik —lk—1

Maximizing the right-hand side over 7 gives (T—Ttﬁ |0a— Py, 1262 a.s. Moreover, by Propo-
sition 2.3.2(2.3.1) and conditional Itd’s isometry we have, a.s.,

27 7 _y\1-?
E =E M)y
fa[ | f[/(]( -)a M)}

for0 <a <t < T so that

5 5l AN
7,” M—T,> M| |~4Ex, wn 7 d(M, M),
a,

by Doob’s maximal inequality. Now we use Theorem 3.2.2 and Theorem 3.2.3.
Relation (3.3.1) for G = F, follows again from Theorem 3.2.2 and Theorem 3.2.3. In the
case of G C F, we argue as follows: let ¢(33.1) = 1 be the constant in (3.3.1) for F,, then we get

Eg[[¢: 7] — [¢:7]7] 2}

Izl
as well for all ¢ with a € T which implies the general inequality < in (3.3.1). Regarding the
remaining inequality we choose the time-nets from Theorem 3.2.3(2) to get by Fatou’s lemma
that, a.s.,

1-6 1—-6

7,2 M—-T,° M

£, o

1—-6

1—-6

I, M-T,> M

<caanEg| sup
t€la,T)

2
<K20T2E, |:limianE ;a[
n I znll

10 [ 10
< k262 liminfEg |:Efa|:[(p’ wlr 0l i|i|
n

Eg| sup
t€la,T)

Il
[¢: Tn](jr* —[p: Tn]g:|

(]
Iz llo

= k262 liminfEg [
n

We now are in a position to provide a weighted BMO-version for the equivalence Theo-
rem 3.1.1((1)<(2)). One recalls [¢; 7]™ from (3.2.3).

Theorem 3.3.3. Let Assumption 3.3.1 be satisfied. Then, for @ € (0,1] and ® € CL*([0,T)) the
Jollowing assertions are equivalent:

(1) There is a constant ¢ > 0 such that for all T € Tqey,

13 71 o2 o,y < €M7 llo- (33.3)

(2) One has T 5P M e bm0§I> ([0,T)) and there is a constant ¢ > 0 such that

NUEHILS.

: as,Y0<s<a<T. (3.3.4)
(T —a)z a

|(Pa_§0s| <
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If ® = (01 V¥¢)se[0,T), Where W € CL™ ([0, 7)) is pathwise non-decreasing, then (3.3.4) is equiv-
alent to the existence of constants cg > 0 such that

0a— 00| <co(T—a) T W, as, ¥O<a<T if0e 1), (335

T
loa —@s| < c1 (1+logT s)\Ila as,Y0<s<a<T ifo=1. (3.3.6)

PROOF. The equivalence between (1) and (2) follows directly from the second equivalence in
Theorem 3.3.2 and [29, Proposition A.4]. The equivalence between (3.3.4) and (3.3.5)-(3.3.6)
follows from [29, Lemma C.1]. O

3.4. Oscillation of stochastic processes and lower bounds

This section discusses some lower bounds for (3.3.3) in the non-weighted case (i.e. ® = 1).
It turns out that these lower bounds are closely related to some Lso-0scillatory quantities of the
integrands. Let us start to introduce the notion of maximal oscillation of a stochastic process.

Definition 3.4.1. If ¢ = (¢¢);¢[0,T) is a stochastic process and ¢ € (0,7'), then we let

Osc, (¢) := sei[r(l)ft) lor —@sllLoo ) € [0.00],
Osci(p):= inf sup [l¢r—oulL. @) € [0.00].
SE[O:t)ue[s,t]

The process is called of maximal oscillation with constant ¢ > 1 if for all ¢ € (0,T") one has

1
Osc;(9) = _ller = ¢oll Lo @)-
If both sides equal infinity, then we use ¢ = 1 (however, this case is not of relevance for us).

Lemma 3.4.2. For a stochastic process ¢ = (¢t)se[o,T) the following holds:

(1) One has Osc,(¢) < Osc;(¢) fort € (0,T).

(2) One has Osc;(¢) < 20sc,(¢) fort € (0,T) if ¢ is a martingale.

(3) If pa = 1gn[o,1)(a) fora € [0,T), then 0 = Osc,(¢) < Oscs(¢) =1 forallt € (0,T).
PROOF. (1) follows from the definition. (2) If ¢ is a martingale and 0 < s < ¢ < T, then we have

sup [lor —PullLoo®) < 0t —@sllLeo@ + suP llou —0sllLoo®) < 2ll0r — sl Lo @)-

u€(s,t] u€ls,t]
Taking the infimum on both sides over s € [0,¢) yields the assertion. Item (3) is obvious. O
Remark 3.4.3. In the sequel we do not need the following two statements, so that we state them
without proof:

(1) It is possible to construct examples such that for a given ¢ € [1,00) the constant ¢ is
optimal in the definition of maximal oscillation.
(2) Again by examples one can see that the constant 2 in Lemma 3.4.2(2) is optimal.

To verify a maximal oscillation we make use of the following observation:
Lemma 3.4.4. Assume two random variables A, B : Q@ — R on (2, F,P). Assume a probability
measure Q < P such that EQ|B| < oo and E2B = 0. Then

. . . 1
|B—AllL.m@ = ;2&”3 —allp ) implies | B—A|Lm@) = §||B||LOO(P)-
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PROOF. We may assume that || B — 4[|z ») < 00, otherwise there is nothing to prove. Because
of our assumption, for all ¢ > O there is an a, € R such that we have
IB—AllLo@) Z IBllLo@) —las| —¢
and
IB—AlL @ =EYB—as|—e>E®B—a,|—&=|as| —e.

The combination of the inequalities implies

IB—AlLo@) Z 1BllLoo@ —lael == [ BllLoo@ — 1B —AllLoo@ —
so that 2|| B — Al ) = | BllL..p) —2¢. By € | 0 we get our statement. O

Now we consider two examples relevant for us:

Example 3.4.5 (Markov type processes). Let (¥;);e[o,7] be a process with values in Ry, where
Ry =R or Ry = (0,00), and Yy = yg € Ry. Assume continuous transition densities I'y :
{(5,2) :0<s <t <T} xRy xRy — (0,00) such that

P(Y; € B|Ys) =/ I'y(s,t;Ys,y)dy as.
B

for Be B(Ry)and 0 <s <t < T. Then for 0 <s < ¢ < T and continuous H,FI Ry — R,
one has

1H(Ye) = H(Y)|Loo@) = 1H (V) = H(50) | Loy @
This follows from the fact that the density Dy ; : Ry x Ry — [0,00) of law(Y, Y;) with respect
to the Lebesgue measure A ® A|r, xr, 1S the positive and continuous function

Dst(y1,y2) :==Ty(0,5;y0, y1)Ly (5,2, y1, 2).
Consequently, if there is a probability measure Q < [P and if for all # € [0,7) one has that
H(t,)) : Ry — R is continuous, EQ|H(¢,Y;)| < oo, and EQ(H(t,Y;) — H(0, y9)) = 0, then
(H(t,Y:)—H(0,y0)):ef0,1) is of maximal oscillation with constant 2 according to Lemma 3.4.4.

Example 3.4.6 (Lévy processes). Let (X¢);e[0,7]» Xr : 2 — R, be a Lévy process. By [51,
Theorem 61.2] there are £ € R and a closed non-empty Q € R suchthat0 e Q, Q + Q = O,
and supp(X;) = Q + £t fort € (0, T]. Define

= (X¢ —L1) L x, esupp(X,)}

so that Y;(2) € Q and supp(Y;) = Q forallt € (0,7]. Let0<s <t < T and H.H:Q - R
be continuous on Q . Then

IH(Y:) = HY) Lo = 1HY:) — HO)|L @)

This can be seen from

IH(Y:)—HYs) L) = 1HYs + (Ve —=Ys) — HY) L) = wp [HY +y)—H()|
y,y'e

> sup |H(y) = H(0)| = | H(Y:) = H(O)l|Lo»)-
yeQ
Consequently, if there is a probability measure Q < P and if for all # € [0, T') one has that H(¢,-) :
Q — R is continuous, EQ|H(t,Y;)| < oo, and EQ(H(t,Y;) — H(0,0)) = 0, then (H(t,Y;) —
H(0,0));e[0,7) is of maximal oscillation with constant 2 according to Lemma 3.4.4.
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Now we connect the notion of oscillation to the behavior of [¢; 7] (by the notation [¢; T] we
mean (3.2.3) with the measure IT(w,du) = du, Yo € Q), where we use extended conditional
expectations for non-negative random variables.

Theorem 3.4.7. Assume 6 € (0,1], c34.1)> 0, and ¢ € CL([0,T)) such that, a.s.,
1

C34.1)

1 b
lpa — Z|? gEfa[m/ |<pu—Z|2dui| a.s. (3.4.1)
- a

Jorall0 <a <b <T and all F;-measurable Z : Q — R. Consider the following assertions:
. 1—-6
(1) inf;e(o,7)(T —1) 2 Osc,(¢) > 0.
(2) Thereis a ¢z 4.2y > 0 such that for all T = (t;)}_ € Tae with || T]lg = % one has

n
- 219,‘_1]1(1,;1,&](”)

T 2
0i,lei%€ﬂi_l)ae[tsku_rlj,tk) E7 |:/a = du:| e > 6(23.4.2)”7”9-
(34.2)
(3) There is a constant ¢3.43) > 0 such that for all time-nets t € Tge; one has
s ellbmon 0.7 > cBazliTlo- (343)
(4) infre(o,r(T — 1) 2" sy (p) > 0.
Then we have (1) = (2) = (3). If [[[¢: lllBmo, ([0,T)) < 00 for all T € Tae and if
I[e: zlllBMmO; (f0,7)) = O as  [Izlli =0,
then (3) = (4).
PROOF. See the proof of [29, Theorem 5.7]. O

We remark that condition (3.4.1) above is satisfied if ¢ is an L, (PP)-martingale.

3.5. Approximation in the Brownian setting via gradient estimates

In this section, we extend the equivalence in the case (c) in Table 1.1, which is formulated
for the geometric Brownian motion and for Lipschitz functionals, to more general frameworks.
As a first result, Theorem 3.5.3 shows that the geometric Brownian motion can be replaced by
a more general diffusion while keeping the equivalence. However, this extension is still in the
Lipschitz framework and gives the impression that this approach is tight to Lipschitz functionals.
Our next contribution is to move away from the Lipschitz framework, and this task is done in
Theorem 3.5.4.

3.5.1. Setting. Let us recall the setting from C. Geiss and S. Geiss [21]: Let X = (X¢)s¢[o,7]
be the solution of the stochastic differential equation (SDE)

dX; = 6(X,)dW; +b(X,)dr, Xo =x €R,
where 6 € C°(R), infyer 6 (x) >0 and b € Cp°(R). Assume that Y solves the SDE
dYt = U(Yt)th, YO =)o € R,

where two settings are used simultaneously:
e Case (Cl): Y =X withoc=6,b=0,and Ry =R.
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e Case (C2): Y =eX witho(y) = y6(Iny), l;(x) = —%6(x)2, and Ry = (0,00).
In both cases, denote by Cy the set of all Borel functions g: Ry — R such that

sup e_m|x|/ lg(a(x +ty))|ze_y2dy <oo, Vi>0
x€R R

for some m > 0, where a(x) = x in the case (C1) and a(x) = e* in the case (C2). It is clear that
all polynomial growth functions belong to Cy .
For g € Cy, we define

G@t,y):=E@gXr)|Yr=y), (,y)€[0,T]xRy.
Lemma 3.5.1. If g € Cy, then Assumption 3.3.1 is satisfied for
t
o= @(ieto.ry M i= ( | @6, deu) = By cor.
0 t€[0,T)
PROOF. The assertion follows from [29, Lemma 6.8] and S. Geiss [24, Corollary 3.3]. ]

For g € Cy and © = (;)7_ € Tdet, we define the error E(g:7) = (E¢(g:7))¢e[0,7] bY

t n
E/(g:7) = / oudYu =Y 91 (Yine =Yy yn), 1 €[0.T].
0 i=1
The following result verifies that gradient processes (dy, G(t,Y:));e[0,1) have a large oscilla-
tion. Its proof can be found in [29, the proof of Theorem 6.3].

Theorem 3.5.2. For g € Cy, the process (0, G(t,Yt))e[0,1) is of maximal oscillation with con-
stant 2 in the sense of Definition 3.4.1.

3.5.2. Approximation and gradient estimates. In this section, we use the processes o, M, and
¢ as given in Lemma 3.5.1.

Now we discuss cases in which we get equivalences by choosing the weight ® accordingly.
For 6 = 1 we get a characterization in terms of Lipschitz functions that extends [25, Theorem 8].

Theorem 3.5.3 (Lipschitz case). For g € Cy and ® = o, the following assertions are equivalent:
(1) There is a constant ¢ > 0 such that | E(g; 1’)||BMO§1>([0’T)) L/l for all T € Tyey.

(2) There is a Lipschitz function g: Ry — R such that g = g a.e. on Ry with respect to the
Lebesgue measure.

PROOF. See the proof of [29, Theorem 6.4]. O

In the case 6 € (0, 1), which potentially includes the Holder setting, we obtain an equivalence
in terms of the Riemann—Liouville type integral of the gradient process.

Theorem 3.5.4 (non-Lipschitz case). Let (8,q) € (0,1) x[2,00) and ® = (6:V¥¢)¢[0,T), Where
W e CLT ([0, T)) is pathwise non-decreasing. If g € Cy and if there is a constant ¢ > 0 such that

loe| (T —1)"2W, as, Vi €[0,T), (3.5.1)

then the following assertions are equivalent:

(1) There is a constant ¢ > 0 such that || E(g; r)||BMOg>([0 ) SCV Izllg for any t € Tqer.



3.5. APPROXIMATION IN THE BROWNIAN SETTING VIA GRADIENT ESTIMATES 19

(2) One has for Z .= @o that 5% 7 - Zy € BMO;D([O, T)) and there exists a constant ¢ > 0
such that

| <c(T—0)"2", as, Vte[0.T).

1-6 1=6
If the conditions (1) and (2) are satisfied and ® € SMy([0.T)), then T> Z :=limppr I, > Z
exists in Ly(IP) and a.s.

PROOF. See the proof of [29, Theorem 6.5]. ]
By an argument using conditional Itd’s isometry, it holds that
. 2 _ .10
|| E(g’ f) ”BMO‘ZD([O,T)) - ” [(p’ ‘C] ||BMO§I>2 ([O,T))’

where T(w,du) = 02(w)du and [p; 7], which is equal to [p;7]%, is given in (3.2.3). In item
(2) of Theorem 3.5.4, if the condition Z'2" Z — Zo € BMOZL ([0, T)) is replaced by 72" M €
BMOg> ([0,T)), then the obtained statement is equivalent to item (1) without requiring (3.5.1).
This observation can be verified by Lemma 3.5.1 and Theorem 3.3.3. Notice that M has contin-
uous paths so that one can use BMO;I> ([0,T)) instead of bmog> ([0,T)). However, since we want
to characterize the approximation statement in item (1) by means of the gradient process Z, the
a priori estimate (3.5.1) enables to switch between Z and M in item (2).

Theorems 3.5.3 and 3.5.4 above are versions of the equivalence Theorem 3.1.1((1)<(2))
in the weighted BMO-setting where the approximation error estimates can be described via the
Riemann-Liouville type operator. The next result provides a situation in which Theorem 3.5.4(2)
is satisfied. In particular, Theorem 3.5.5(3) proves the implication (3) = (2) of Theorem 3.1.1 in
the BMO-context.

Theorem 3.5.5. Let (0,q) € [0,1] x[2,00) and ® = (0:V¢);e[0,T) With
Uy = Supse[o,t](%e_l)-

Then the following assertions hold:

(1) (Weight regularity) ® € SMy([0,7)).
(2) (Gradient estimates) If g € Holg(R), then there is a constant ¢ > 0 such that

0| <e(T—0)T" W, as., Vi e[0,T).
3) Ifge Hélgiz(R)for some 6 € (0,1), then 15%7 - Zo € BMO?([O, T)).
PROOF. See the proof of [29, Theorem 6.6]. O



CHAPTER 4

Approximation in models with jumps: Jump adjusted method

Convention. From now until the end of this thesis, we only consider the time interval [0, 7], and
the quantities | - [| gy ;0@ ([o.77) and I - sA1, (f0,77) computed under I’ will be denoted respectively
> ([0,

by || - ||BMO¢(P) and [| - [ s a1, (p) to indicate explicitly the reference measure.
97

4.1. Introduction

This chapter is concerned with discrete-time approximation problems for stochastic integrals
and studies the error process £ = (E¢);c[o,1] defined by

t
E[ Z:/ ﬂu—dsu_At’
0

where T € (0,00) is fixed, ¥ is an admissible integrand, S is a semimartingale on a complete
filtered probability space (£2,F,P, (F;);e[0,77) and A is an approximation scheme for the sto-
chastic integral.

The error represented by the difference between a stochastic integral and its discretisation
has been extensively analysed in various contexts. It is usually studied in L, for which one
can exploit the orthogonality to reduce the probabilistic setting to a “more deterministic” setting
where the corresponding quadratic variation is employed instead of the original error. In the
Wiener space, we refer to C. Geiss and S. Geiss [21], Gobet and Temam [31], Zhang [62], where
the error along with its convergence rates was examined. The weak convergence of the error
was treated in S. Geiss and Toivola [28], Gobet and Temam [31]. When the driving process is a
continuous semimartingale, the convergence in the L,-sense was studied by Fukasawa [20], and
in the almost sure sense it was considered by Gobet and Landon [30].

In this chapter, we allow the semimartingale to jump since many important processes used
in financial modelling are not continuous (see Cont and Tankov [13], Schoutens [53]), and the
presence of jumps has a significant effect on the hedging errors. Moreover, models with jumps
typically correspond to incomplete markets. This means that beside the error resulting from the
impossibility of continuously rebalancing a portfolio, there is another hedging error due to the
incompleteness of the market. The latter problem was studied in many works (see an overview
in Schweizer [56] and the references therein), and it will be revisited in Chapters 6 and 7. The
present chapter focuses on the first type of hedging error only. The discretisation error was
studied within Lévy models in the weak convergence sense by Tankov and Voltchkova [59], in
the L,-sense by Brodén and Tankov [9], C. Geiss, S. Geiss and Laukkarinen [22], and for a more
general jump model under the L;-setting by Rosenbaum and Tankov [48].

In Section 3.5, the Riemann approximation errors with deterministic time-nets measured in
weighted BMO are upper bounded by certain mesh sizes of the time-nets. In those results the
continuity of the driving processes is crucial to obtain estimates. However, if the driving process
has jumps, then such results might fail as asserted in the following example. Namely, it shows
that the Riemann approximation error with respect to deterministic time-nets does in general not
converge to zero if measured in weighted BMO.

21
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Example 4.1.1 ([60], Example 3.7). Let J := (J; — rt)tefo,1] be a compensated Poisson process
with intensity r > 0. Let f:(0,7] x N — R be a Borel function with

[/ lloo := sup( kyeo,rxn |/ (1, k)| < oo and & :=inf;eo, 1]/ (2,0)] > 0.
Assume that
§:=e—rT| flloo>0.
Denote p; :=inf{t > 0: AJ; =1} AT and pp :=inf{t > p1 : AJ; = 1} AT. Let ¥y € R and
define
B = Vo + / f(s, Js_)dJg, te(0,T].
(0,27 p2]

It is not difficult to check that & = (¥;);¢[o, 7] is a cadlag martingale with |[d7]|z_ ) < o0.
Let ERM (9, 7) = (ER™(¥, 7)) ¢e[o,T] be the error resulting from the Riemann approximation

of fOT ®;—dJ; with the deterministic time-net T = (ti)7—¢ € Taer- Namely,

t n
E?m(ﬁ’ T) = / ﬁu_d.]u _Zﬁtifl_(‘]ti/\t _Jtiflf\t)’ te [O,T]
0

i=1

On the set {0 < p; < pa < t1} we have

n
IAERM @) =D 19— =4y~ 01 (p2)| AT |
i=1
= [Dp,— — ol = ‘f(m,Jpl—)—r/ f(s,Js—)ds
(0,02)
2| f(p1.0)|=rT| flloo = 6.

Since P(0 < p; < p2 < t1) > 0, it implies that infr ey, ||AE§2"‘(19, 7). (p) = 8. Then it follows
from Proposition 2.2.2 that

infe7, |ER™(9.7) Mo, @) > 0. Vp € (0.00).

Therefore, we need to look for another approximation scheme in jump models to exploit
benefits of weighted BMO. Before we do that, let us give the family of stochastic integrals used
for approximation.

4.1.1. Stochastic integrals to be approximated. The stochastic integrals we are going to ap-
proximate are of the form
T
/ 191_(15 ts
Jo

where the assumptions for S and ¢ are as follows.
(1) S € CL([0, T)) satisfies the SDE!

dS; =0(S;-)dZ;, So € Rs,

where 0:Rs — (0,00) is a Lipschitz function on Rg € R where R is an open set and
satisfies that S; (@), S;—(w) € Rs for all (w,1) € Q x[0,T].

1See, for example, Protter [47, Ch.V, Sec.3], for the existence and uniqueness of S
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(2) Z € CL(]0,T]) is a square integrable semimartingale with the representation

¢ ¢
Z; = Zo—l—Zf—i—// Z(Nz—nz)(du,dz)—i—/ Vudu, t€]0,T],
0 JRg 0

where Zy € R, V is a progressively measurable process, Z¢ is a pathwise continuous square
integrable martingale with Z5 = 0, Nz is the jump random measure® of Z and 7z is the
predictable compensator® of Nz. Assumptions for Z are the following:
(a) Forall w € 2,
wz(w,dt,dz) = v¢(w,dz)dt, 4.1.1)
where the transition kernel v;(w,-) is a Lévy measure, i.e. a Borel measure on B(R)
satisfying v;(w, {0}) := 0 and fR(ZZ A (w,dz) < oo.
(b) There is a progressively measurable process C such that (Z¢, Z¢) = fo C2du.
(c) The processes V and K, where K; := (C2 + f]R z2v,(dz))/2, satisfy that

NV Iz, 0,110 1 Lee@) <00 IKILo@x[0,T],Po1) < OO

(3) ¥ belongs to the family Egdm of admissible integrands, where

T
Tim.= 19 e CL([0,7)) : E / 82 0(S;—)?dt <oo and A¥; =0as., Vi e€[0,T);.
0

For t € [0, T1], it follows from (4.1.1) that Nz ({t} x Rg) = 0 a.s., which verifies AZ; =0
a.s., and hence, AS; = 0 a.s. In other words, Z and S have no fixed-time discontinuity. Thus, it
is natural to assume A, = 0 a.s. for admissible integrands.

In particular, when Z is a square integrable Lévy process (we will consider this case in
Sections 6 and 7), then the assumptions for Z in item (2) are satisfied in the view of the Lévy—Ito
decomposition of Z (see (5.1.1)).

4.2. Approximation scheme with jump adjustment

As we have already seen in Example 4.1.1 that, in models with jumps, deterministic time-
nets are not suitable for the Riemann approximation measured in weighted BMO because of
the possibly large jumps of the driving process. To overcome this problem, we exploit an idea
of Dereich and Heidenreich [18] and propose an approximation scheme based on a correction
of the Riemann approximation. The time-net for this scheme is obtained by combining a given
deterministic time-net, which is used in the Riemann sum of the stochastic integral, and a suitable
sequence of random times which captures the (relative) large jumps of the driving process. With
this scheme, we not only can utilize the features of weighted BMO, but can also control the
cardinality of the combined time-nets.

Let us begin with the random times. Because of the assumptions imposed on S in Subsec-
tion 4.1.1, one has o (S—) > 0 and

AS =0(S-)AZ
from which we can see that jumps of S can be determined from knowing jumps of Z. However,

if we would use S to model the stock price process, then it is more realistic to track the jumps

2NZ((s,l‘] xXB):=#ue(s,t]:AZyeByand Nz({0} x B) :=0for0<s <t < T, B eB(Ryp).
3 See Jacod and Shiryaev [37, Ch.II, Sec.1] for more details.
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of S rather than of Z. Therefore, we define the random times p(e,k) = (p; (¢,k))i>0 based on
tracking the jumps of S as follows (recall that inf@ := 00).

Definition 4.2.1. For ¢ > 0 and x > 0, let pg(e,x) := 0 and
pi(e, k) :=inf{T >t > pi—1(e.,k) 1 |AS;| > 0(S;=)e(T —t)IAT, i > 1.

The quantity (7 —1)* above is the level at time r where we decide which jumps of S are
(relatively) large, and moreover, this level shrinks when ¢ approaches the terminal time 7" in the
case k > 0. Hence, k describes the jump size decay rate. The idea for using the decay function
(T —1)* is to compensate the growth of integrands. By specializing ¥ = 0, the control parameter
& can be interpreted as the jump size threshold.

Definition 4.2.2 (Jump adjusted approximation). Let e > 0, k € [0, %), and T = (;)7_ € Tet-

(1) Denote by © U p(g,k) the (random) discretisation times of [0,7'] by combining t with
p(g,x) and re-ordering their time-knots.

(2) The discretised strategy ¢*, the Riemann appoximation AR™ the approximation with cor-
rections 424 and the corresponding error E2% are defined as follows: For ¢ € [0, 7],

n n
97 = O L1, AT =) B4 —(Stiar— Sty an)s

i=1 i=1

p
AN, le,k) 1= ARN(D, 7) + 3 (ﬁpi ew)—— 0% (E,K)) AS, ). (42.1)
p;i (e,6)€[0,6]1N[0,T)

. t .
E?dj(z?,rls,lc):/ z?u_dSu—A?dJ(l?,ﬂs,K).
0

As verified in [60, Subsection 5.2], each p; (¢, k) is a stopping time. Moreover, in our setting
the sum on the right-hand side of (4.2.1) is a finite sum a.s. as a consequence of [60, Proposition
5.3]. Besides, we also restrict the sum over the stopping times taking values in [0, T') instead
of [0, T] because of two technical reasons: first, the strategy ©# does not necessarily have the
left-limit at 7', and secondly, since AS7 = 0 a.s. as mentioned in Subsection 4.1.1, any value
of the form a ASt (a € R) added to the correction term does not affect the approximation in our
context.

4.3. Approximation with corrections in weighted BMO

We now use the jump adjusted approximation and apply the results in Section 3.2 to obtain
the main results in this part. First, for reader’s convenience, let us adapt Assumption 3.2.1 to
this section. Since we are only interested in upper estimates for the approximation error and the
random measure [T we are going to choose is

(w,dt) := 0(S; (w))?dr,
Assumption 3.2.1 becomes the following form:
Assumption 4.3.1. For 9 € Ef‘gdm, we assume that there exists a random measure
T:QxB((0,7)) — [0,00]
such that
T(w,(0,7]) <oo, V(w,t)eQ2x(0,T),
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and such that there exists a constant ¢ > 0 such that forany 0 <a <b < T,
Ex, [/ [0 —ﬁa|20(5t)2dt} <c’Ex, [/ (b—t)T(-,dt)} a.s. (4.3.1)
(a,b] (a,b]

We now provide the formula for Y which is used in the (exponential) Lévy setting later.

Example 4.3.2 ([60], Example 3.2). Assume that M := ¢ 0 (S) € CL([0,T)) is an L, (P)-martingale.
Then (4.3.1) is satisfied for the random measure Y defined by

Y (w,d) := d(M, M) (o) + 0|3, M: (w)[*dt,

o lo(x)—a ()|
where |G|L1p ‘= SUPy yeRg,x#y x—y]

In view of Theorem 3.2.2, the following assumption enables approximation results.

Assumption 4.3.3. Let 6 € (0, 1]. Assume that Assumption 4.3.1 is satisfied and there is an a.s.
non-decreasing process ® € CL™ ([0, T]) such that the following two conditions hold:

(1) (Growth condition) There is a constant ¢ > 0 such that
19| <c(T—a)= ©, as.,Vacl0,T). 4.3.2)

(2) (Curvature condition) For @ := @a (S), there is a constant ¢ > 0 such that
Er, [/ (T —t)l_eT(~,dt)] <c2®? as.,Vael0,T). (4.3.3)
(a,T)

The parameter 6 in Assumption 4.3.3 describes the growth (pathwise and relative to ®) of
when the time variable a approaches the terminal time 7'. For the Black—Scholes model with the
delta-hedging strategy ¢, the parameter 6 can be interpreted as the fractional smoothness of the
payoff in the sense of [21, 27].

To formulate main results, we need to modify the weight processes. For ® € CL* ([0, T])
and ¢ € [0, T], we define

q_)t = d; + supse[o,t] |ACDS|

The reason to consider ® is that in the proof of main results we will end up with ®_ which is not
cadlag, and therefore is not a candidate for a weight process. For ®, it is straightforward to check
that ® € CL™ ([0, T']) with ® v ®_ < ®, and ® = ® if and only if ® is continuous. Moreover,
® € SM,(P) implies ® € SM,(P) (see [60, Propostion 7.1]).

Theorem 4.3.4. Assume that Assumption 4.3.3 holds for some 0 € (0,1] and ® € SM,(P).
(1) If there is some a € [1,2] such that

[@.0) > [y 1210 (@.2)|
then a constant c(43 5y > 0 exists such that for all T € Tger, € > 0,
HEadj (ﬁ,r g, %) HBMO?P) < C@43.5 Max {81_av Izl Vlzle, 6}- (4.3.5)
(2) Ifthere is a constant c4.3.6) > 0 such that for P ® A-a.e. (w,t) € Q x[0,T],

Jizi>r ZVt(a)’dZ)‘ < C4.3.6)s (4.3.6)

< 00, (4.3.4)
Loo(2%[0,T],PQA)

SUP,~¢
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then a constant c437) > 0 exists such that for all T € Tger, € > 0,
Ei (z‘},t g, 5 “ 437 max{\/ 7|9, 8}. (4.3.7)
H 2 /) liBMO2 (P) S s Izl

PROOF. See the proof of [60, Theorem 3.10]. [l

Minimizing the right-hand side of (4.3.5) (resp. (4.3.7)) over ¢ > 0 leads us to the selection
e= 2/|Itllg (resp. e = /||tllg). Then we have the following:

Corollary 4.3.5. Assume that Assumption 4.3.3 holds for some 0 € (0,1] and © € SM,(P).
(1) If (4.3.4) is satisfied for some o € [1,2], then

HE“dJ (19 T ZW,

(2) If (4.3.6) is satisfied, then

N

The time-net used in Theorem 4.3.4 is 7 U p(e, ﬂ). Due to the randomness, a simple way
to quantify the cardinality of this combined time-net is to compute its expected cardinality, i.e.

0(1_1
<T20Deyss g,

) H BMOP ®

_ < T|lg-
Mooz < cesnViels

E [#T U p(e, %)] (see, e.g., Fukasawa [19]). We provide in the next result an estimate for

certain moments of the cardinality. Since we aim to apply Proposition 2.2.4(3) later, changes of
the underlying measure are also taken into account.

Proposition 4.3.6. Let g € [1,2], r € [2,00] with %—F% = 1. Assume that Q is a probabil-
ity measure absolutely continuous with respect to P and dQ/dP € L,(P). For 6 € (0,1] and
(en)n>1 C (0,00) with infy>1 /ne, > 0, there is a constant ¢33y > 0 such that for any n > 1,
Ty € Taget With #1, = n +1,

H#tnu,o(sn, > HL @ ~cusg M- (4.3.8)

PROOF. See the proof of [60, Proposition 3.13]. 0

Using the adapted time-nets r,? given in (2.5.1), we have the following:

Theorem 4.3.7. Assume that Assumption 4.3.3 holds for some 0 € (0,1] and ® € SM,(P).
(1) If (4.3.4) is satisfied for some o € [1,2], then

EX (19, 7! ‘n_ﬁ,—l_e

1
sup n 2« )H <X
P 2 /JliBMO2 ()

n>1

(2) If (4.3.6) is satisfied, then

1
supn?2
n>1

(3) If in addition ® € SMy(P) for some p € (2,00), then the conclusions of items (1)—(2)
hold for the Ly (P)-norm in place of the BMO? (P)-norm.

@) Ifin addition Q € RHs(P) for some s € (1,00) and ® € SM2(Q), then the conclusions
of items (1), (2) hold for the BMOE6 (Q)-norm in place of the BMO? (P)-norm.

PROOF. Items (1), (2) follow directly from co_mbining Theorem 4.3.4 with (2.5.2). Items (3), (4)
are due to Proposition 2.2.4 and the fact that ® € SM,(IP) (see [60, Proposition 7.1]). O

E2i (29, r,? n-

- <
“BMO?(P) o
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In Theorem 4.3.7, applying Proposition 4.3.6 with ¢ = 2,r = co and Q = P implies that the
L»(P)-norm of the cardinality of the combined time-net used in the corresponding approximation
schemes is comparable to n up to a multiplicative constant. In item (4), if s € [2,00), then
applying Proposition 4.3.6 with ¢ = 1,r = 2 yields that the L;(Q)-norm of the combined time-
net is comparable to 7.

We derive from Theorem 4.3.7(2) the convergence rate of order n~1/2 which is asymptot-
ically optimal in general (e.g., see C. Geiss, S. Geiss and Laukkarinen [22, Theorem 5] in the
Lévy case), while this rate is achieved in item (1) for « = 1. Obviously, the convergence rate in
item (1) depends on the small jumps intensity of the underlying process Z, which is characterised
by «. If we define

zZ .__: . o
p* = mf{a €10.2): H (@)~ f|Z|<1 2%y (@.d2) HLOO(QX[O,T],P@)A) = oo}’
then it follows from Theorem 4.3.7(1) that
EX (19, 7! ‘n_ﬁ%)

<oob <1V %,

n>1 HBMO‘ZP(IP’)

inf{(x €[1,2]: supnﬁ

Note that when Z is a Lévy process, then BZ is the Blumenthal-Getoor index of Z (see Blumen-
thal and Getoor [8]).



CHAPTER 5

Gradient type estimates in the Lévy-Ito space

Before proceeding to apply the results in Chapter 4 for the (exponential) Lévy setting, in
view of (4.3.2), we need some gradient type estimates in the Lévy-Itd space.

5.1. Lévy process and It6’s chaos expansion

5.1.1. Lévy process. Let T > 0 be a fixed finite time horizon. Let X = (X;);¢[o,7] be a real-
valued Lévy process on a complete probability space (2, F,P), i.e. Xo =0, X has independent
and stationary increments and X has cadlag paths. Assume that F = (F7);¢[o,7] is the augmented
natural filtration of X. According to the Lévy—Khintchine formula (see, e.g., Sato [51, Theorem
8.1]), the characteristic exponent Y of X, which is defined by

EeiuXt =e_”p(u)’ u GR,t 2 Oa

is of the form
2.2

Y(u) = —iyu + g —/R(ei”x —l—iuxlgy<iy)v(dx), ueR.

Here, y € R, while o > 0 is the coefficient of the Brownian component, and v: B(R) — [0, 00] is
a Lévy measure (i.e. v({0}) := 0 and fR(x2 A 1)v(dx) < c0). The triplet (y,o,v) is also called
the characteristics of X. To indicate explicitly the characteristics of X under IP, we write

(X|P) ~ (y,0,v) or (X|P)~ .

It is known that paths of X can be described by the following Lévy—Ité decomposition

t t
Xt =yt+oW; +/ / xN(ds,dx)+/ / xN(ds,dx), =0, (5.1.1)
0 J|x|<1 0 J|x|>1

where W is a standard Brownian motion, N is the Poisson ragdom measure of X, i.e. N((s,?]x
B):=#{ue(s,t]: AX, e B}forO<s <t, BeB(Ry),and N (ds,dx) := N(ds,dx) —dsv(dx).

5.1.2. It6’s chaos expansion. We present briefly the Malliavin calculus for Lévy processes by
means of [td’s chaos expansion which is the main tool to establish an explicit form for the gradient
process (Proposition 5.2.2 and Theorem 6.2.3) and to prove the martingale representation formula
(Proposition 7.2.2) later. For further details, we refer to [57, 45, 46, 1].

We assume the Lévy process X as in Subsection 5.1.1 and assume that 7 = F7. Define the
o-finite measures p on B(R) and m on B([0, T'] x R) by setting

w(dx) ;= 028p(dx) +x%v(dx) and m:=AQu,

where 8¢ is the Dirac measure at zero. For B € B([0,T] x R) with m(B) < oo, the random
measure M is defined by

M(B) := o/ dW; + Lo (P)- lim x N (dr,dx).
J{t€[0,T]:(¢,0)€ B} =00 JBN([0,T1x{x: <|x|<n})

29
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Set Lo (1) = L(mP) := R. For n > 1, we denote
La(u®") := Ly(R". B(R"), u®"),
Ly(m®") := Lo(([0, T]xR)", B(([0, T] x R)"), m®").

The multiple integral /,: L(m®”") — L,(P) is defined in the sense of Itd [35] by using an
approximation argument, where it is given for simple functions as follows: For

m
E;ln:: ZakﬂB{CXXB,];’
k=1
where ar € R, BF € B([0, T] xR) with m(Bf) <ooand Bf N B¥ =@ fork =1,....m,i,j =
1,...,n,i # j and m > 1, we define

m
L€ ==Y axM(Bf) - M(B)).
k=1
Then [35, Theorem 2] asserts the following Itd chaos expansion

Ly(P) = @ {Un(En) : £n € La(m®")},

n=0

where 1y(&p) := &0 € R. For n > 1, the symmetrization §n of a &, € Lo(m®") is

- 1
En((t1,x1),- .., (tn, X)) 1= pr} Zén ((tr1)s X2 (1) -+ +» U (m)s Xz ()

where the sum is taken over all permutations 7 of {1,...,n}, so that [,,(§,) = I, (£,) a.s. The
Itd chaos decomposition verifies that £ € L, (P) if and only if there are £, € L,(m®") such
that § = > 72 o In(£x) a.s., and this expansion is unique if every &, is symmetric, i.e. & = &,.

Furthermore, 1§12 o) =302 o n!1€ 12 . a)-

Definition 5.1.1. Let D, be the Malliavin—Sobolev space of all § = Y77 I, (£,) € L2 (P) with

o0
€12, , == 30+ DUENZ, om, < 0.
n=0
The Malliavin derivative operator D:D1 » — L>(P®m), where Lo(P®m) := L,(2x [0, T] x
R,F ® B([0,T] xR),P®m), is defined for § =Y ;2 I (£x) € D12 by

o0
Disti= Y nlp-1En((6.%).)), (@.1.x) € Qx[0,T]xE.
n=1
Proposition 5.1.2 below was obtained by Laukkarinen [39, Corollary 3.1 in the second article
of this thesis] and it provides an equivalent condition such that a functional of X; belongs to
D1,2. We refer to Malliavin, Airault, Kay and Letac [43, Proposition V.2.3.1] when X is a
Brownian motion, and refer to C. Geiss and Steinicke [23, Lemma 3.2] when X has no Brownian
component.

Proposition 5.1.2 ([39]). Let t € (0,T] and a Borel function f:R — R with f(X;) € Lo(P).
Then f(X;) € D12 if and only if the following two assertions hold:
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(a) when o > 0, f has a weak derivative' f) on R with £, (X;) € La(P),
(b) the map (s,x) Mﬂ[oﬂxﬂ% (s,x) belongs to L (P ® m).
Furthermore, if f(X;) € D12, then for P@m-a.e. (w,s,x) € Q2 x[0,T] xR one has

X — (X,
Dsx f(Xe) = fu/J(Xl‘)]l[O,t]x{()}(S,x) + S z+x)3 f(Xy)

where we set, by convention, fu’) =0 wheno =0.

1[0,t]X1R0 (S,X),

The first item in the following result verifies that the kernels in the chaos expansion of f(X7)
do not depend on time variables, and this is a key observation for us to establish some gradient
processes in Proposition 5.2.2 and Theorem 6.2.3.

Lemma 5.1.3. If a Borel function f:R — R satisfies f(X1) € L2(IP), then there exist symmetric
fn € Lo(u®") such that the following holds:

(1) One has f(X7) =Ef(X7) 4+ 352 Li(fu 1877) a.s.
(2) For any t € [0,T) one has Ex,[f(X7)]| =Ef(X7)+ > 70y In(fnﬂ%'ft]) a.s. Conse-
quently, Ex,[ f(XT)] € D12 forany t € [0,T).

PRrROOF. (1) follows from [5, Theorem 4]. (2) The first claim is known. For the latter consequence
we use the isometry to obtain

o0 o0

YA DIl )7, = D+ D full7 e

n=1 n=1

o0 tn ~
=+ D (Il ) < o,
n=1

which verifies Ex,[ f(X7)] € D1 fort €[0,7). O

5.1.3. Exponential Lévy process. We present here the relation between two exponential pro-
cesses induced by a Lévy process, the ordinary exponential process and the stochastic exponential
process, which will be exploited later.

Let X be a Lévy process with (X |P) ~ (y,0,v). The stochastic exponential of X, denoted
by £(X), is the cadlag process that satisfies the stochastic differential equation (SDE)

dE(X) = E(X)_dX, EX)o= 1.

We apply [1, Theorem 5.1.6] with the truncation function x 1 |<1} instead of x T || <1} to obtain
that, if £(X) > 0, then there exists a Lévy process Y with (Y|P) ~ (yy,oy,vy) such that £(X) =
e¥ | where oy = o and

I)Y(B) = /R]l{ln(l—i—x)eB}V(dx)a B e B(R),

2

o
yy=y—o+ /R (L@ +x1<y (1 +x) = x Ly <ay) v(dx).

A locally integrable function / is called a weak derivative of alocally integrable funtion f on R if for all smooth
functions ¢ with compact support in R one has [ f(x)¢’(x)dx = — [ h(x)¢ (x)dx. When such an / exists (unique
up to a A-null set), then we denote f,, := /.
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Conversely, there is a Lévy process Z with (Z|P) ~ (yz,0z,vz) such that eX = £(Z). More-
over, one has 0z = o and

v2(B) = [ Toremp(@n), B <BR)
2

o
Yz =Y + 7 + /R((ex — 1)1{|ex_1|<1} —Xﬂ{|x|<1}) v(dx).

5.2. Lévy setting: Directional gradient estimates

Let X = (X¢)e[0,7] be a Lévy process as in Subsection 5.1.1 with (X |P) ~ (y,0,v). We
recall the Borel measure

p(dx) = 0280(dx) + x2v(dx).

To avoid the degenerate case we assume that ((RR) € (0, oc].

Definition 5.2.1. A Borel function f:R — R belongs to Dy if E| f(x + X)| < oo forall (s,x) €
[0,T] xR. For f € Dy we define F:[0,T] xR — R by

F(t,x):=Ef(x+ X7r—). (5.2.1)

5.2.1. Galtchouk—Kunita—Watanabe (GKW) projection. We additionally assume that X =
(Xt)sef0,17 1s an Lo (P)-martingale so that u(R) € (0, 00) and assume that f € L (R,Px,).
Let D € La(R, i) such that D > 0 and [ D?(z)pu(dz) > 0, and define
Ddu
dp:i= ——.
Jz Ddu
According to Lemma 5.1.3(1), the chaos expansion of f(X7) € L, (P) is of the form

fXP) =Ef(X7)+ ) I/l as.

n=1

where f; € L,(u®") are symmetric. Then we define?

h0:=/fl(z),o(dz) and hn(xl,...,xn):=/ﬁ,+1(x1,...,xn,z)p(dz), n>l,
R R

and define the cadlag L (IP)-martingale ¢( f, p) = (¢:( f.p))se[0,1) by the chaos expansion

o0
et (fop) = Z (n+ 1) In(hy 1%’;])’
n=0
and the cadlag martingale X P = (XtD)te[o,T] by Xé) =(0and XtD =11 (1, ® D) as., where
the integral /; is introduced in Subsection 5.1.2.
Denote by Py p:Lo(P) — I(XP) C L,(P) the orthogonal projection onto the closed sub-
space

T
1(xP):= { / 9:dXP : 9 is predictable with E / 92dt < oo}.
(0,7) 0

2There might be a symmetric ©£®”-null-set in (x1,..., X ) on which the integral does not exist. On this set we
set /1, to be 0.
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Then

Dd
Pxo(f(X7)) = Jp D /O T)(pt_(f,p)dX,D as.

Je D2dp J
For D =1 this was shown by S. Geiss, C. Geiss and Laukkarinen [22, (8), (10), Example (c1)

on. p. 209, Lemma 4]. We omit the proof of this extension. The following statement is one
motivation of Section 5.2 and will be used in Subsection 5.2.4.

Proposition 5.2.2 (Gradient of GKW-projection). Assume that the Lévy process X is an L, (IP)-
martingale, that f € Dy N Ly(R,Px,.) and F is given by (5.2.1), that dp = Ddu/ [, Ddu as
above, and that t € (0, T). Then there is a null-set N; € F such that for € N; one has®

R )

dz). (522)

Proposition 5.2.2 is proved in [29, Appendix D] by using Malliavin calculus. Results related
to Proposition 5.2.2 are provided in Jacob, Méléard and Protter [36, Theorem 2.4], Benth et al. [6,
Theorems 2.1, 3.11, 4.1], Cont, Tankov and Voltchkova [14, Proposition 2], and Theorem 6.2.3.
Other techniques use the Fourier transform (see, e.g., Brodén and Tankov [9]).

5.2.2. Upper bounds for the gradient process. Gradient estimates in the Lévy setting are stud-
ied in different ways in the literature. In [10, Theorem 1.1 and Remark 2.4], Holder regularities
are studied, where one looks for an improvement of the Holder regularity caused by the transition
group. In a way, this is opposite to our question. The result from the literature we contribute to
is [52, Theorem 1.3] (see Remark 5.2.21 below). Finally, Laukkarinen [40] investigates when
f(X7) belongs to Dy 2 or (L2(P),D1,2)p,00 in dependence on f € HOI?I’OO(R) and properties of
the underlying Lévy process X. In our context, we look for Ls,- and BMO-bounds for vector-
valued gradient processes generated by an f(X7) when [ € Hﬁlg,z(R), where we do not need
and consider any Malliavin smoothness of f(X7) itself. Moreover, for a given f(X7) the frac-
tional smoothness of the gradient process depends on the direction in which the gradient process
is tested. So far, we do not see a way to exploit the results from [40] for our purpose, but it would
be worthy to understand connections.

For this section we assume the following setting:

(1) X = (X¢)sefo,] is a Lévy process with 1 (R) € (0, o0].
(2) pis a probability measure on B(R).
Let us start by formalizing the right-hand side of (5.2.2):

Definition 5.2.3. Foran F' : [0,7) xR — R, such that x — F(z, x) is measurable for all z € [0, T'),
and for (¢,x) € [0, T) x R we define

F(t, —F(t, . F(, — F(t,
DpF(t,x)::/ (t.x+7) ( x)p(dz) if / [F(t,x+2) @)
JRo z JRo |Z|
If additionally we have that F(¢,-) € C 1 (R), then we let
F(t,x+z)—F(t,x)
0
z

o(dz) < oo.

D,yF(t,x):= p({0})dx F(t,x) + / (dz).

IRy

3The integral with respect to p(dz) exists for ® € Ny and we omit p({0})dx F (¢, X; (w)) if p({0}) = 0.
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One point of this definition is that the measure p is general. This allows us to capture differ-
ent aspects: If p is as in Proposition 5.2.2, then we can study GKW projections, if p is a Dirac
measure at z € Rg, then we study the point-wise behaviour of (F(¢,x +z)— F(t,x))/z. A gen-
eral background is provided in [29, Appendix D.3] in terms of a vector-valued gradient process
associated to a functional f(Xr).

‘We recall a class of functions that are of local bounded variation:

Definition 5.2.4. A Borel function f:R — R belongs to BV,.(R) provided that f is right
continuous and there are Borel measures £ and 1~ on B(R), finite on each compact interval,
and disjoint ST, S~ € B(R) with STUS™ =R and T (S7) = = (ST) = 0, such that

f(b)— fla) = put((a,b])—pu ((a,b]) forall —oo<a<b < oo.
We let | f/| := ut + 1~ and, for a Borel function g: R — R with Jr g1 f(dx) < oo,

/ () f(dx) = / gt (dn) — / () (dx).
JR JR JR

The pair of measures (1™, ;™) is unique and we will identify f” with (™, ™). The space
BVioc(R) consists of functions that are of bounded variation of on each compact interval (see
Rudin [50, Chapter 8]). The next definition is the key for what follows and defines two function-
als to obtain D, F (¢, x), the second term on the right-hand side of (5.2.2), from a given terminal
condition f. The first functional simply rephrases D, F', the second one uses some kind of partial
integration.

Definition 5.2.5. (1) For ¢ € [0,T) we define F?’p : Dom(Fg) — R by

Dom(I'p) := {feDXandvse[o,T)v0<5<s<TVxeR:

!
Ro
(f.T7,) = D,F(t.0).
(2) Fort € [0,T) we define the Borel function y; , : R — [0, 00] and F,{p : Dom(Fg) — R by

F(s,.x+Xsg+2z)—F(s,x+ Xs)
zZ

p(dz) < oo},

yt,p(v)r=/R IP}(XT_I}ZJ(v;z))pwlz) with J(v:2) = v+ [-z*.27),

Dom(Fé) = {f €Dy NBVjoc(R) and VO LI <s < T Vx eR:

E/Vs,p(v—x—Xa)lf'l(dv)<oo ,
JR

Ty = yp) 1= /R V1p(0) £ (dv).

In Definition 5.2.5 we use Lj-conditions instead of L,-conditions which is sufficient at
this point. The L1-conditions are chosen to guarantee a point-wise definition of D, F and the
properties stated in Remark 5.2.6 below.
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In Theorem 5.2.10 we prove [, ¥1,0(v)dv = p(Ro), Dom(F},) C Dom(Fg), and that

(f' . vip) = (fT7,) for f eDom(T,).

If D(R) is the test function space that consists of all f € C°°(R) with compact support, then
D(R) C Dom(F;) (for f € D(R) we have f/(dv) = f’/(v)dv and | f’|(dv) = | f/(v)|dv, where
S on the right-hand sides is the classical derivative). If we consider y; , € L1(R) as distribution
Y.0 € D'(R) (see Rudin [49, Section 6.11]), then we have the interpretation

Dy;p=—T?

. (5.2.3)

see [49, Section 6.12] and F?’ p can be seen as distributional derivative of a distribution of L1-
type.
Before we continue, let us list some facts we exploit later:

Remark 5.2.6. For f € Dom(I‘g) the following holds:

(1) DpF(t.x) = (f(x+-).T7,).

(2) One has that  +— d(t) := | Do F (¢.")|| B, (r) € [0.00] is non-decreasing.

(3) The process (D, F'(t, Xt)):e[o,1) 1s @ martingale.

(4) There exists a cadlag modification ¢ = (¢¢);e[o0,1) of (Do F (2. X¢))sel0,1) such that

lpe] <d(t+) on [0,T)xQ.
It will be useful to consider Fg p as linear functional on semi-normed spaces:

Definition 5.2.7. For ¢ € [0,T) and a linear space E C Dom(Fg) equipped with a semi-norm

0

t.pll Ex := infc, where the infimum is taken over all ¢ > 0 such that

(fTEp) <clflg forall feE.

In this section we aim for estimates of type

IDoF(t.)|lB,®) < cis524@)|f|lg forall fe€kE. (5.2.4)

If E contains only functions f such that f(0) = 0 (to have a norm || - || g rather than a semi-norm
|-| g later) and are “translation invariant” in the sense that || f ||g = ||x — f(xo+x)— f(x0)| E
for any xo € R, then the estimate (5.2.4) is equivalent to

|DoF(1.0)] = (£ TY ) < csoa@ fllg forall f eE.

This is the reasoning for the definition of ( f, I‘g p)s 1.€. for the estimates (5.2.4) one does not
need to work with the Banach space By (R). One application of the results of this section are
the upper gradient estimates provided by Corollary 5.2.13 that can be seen as a counterpart to
Theorem 3.5.5 proved on the Wiener space. To prove Corollary 5.2.13 we use the interpola-
tion result [29, Theorem 7.1] with end-point estimates derived by Theorem 5.2.9 and Theo-
rem 5.2.12. As an application, inequality (5.2.11) of Corollary 5.2.13 allows for BMO-estimates
of (D F(t, X¢))tefo,1) after applying our Riemann—Liouville type operators to its cadlag version
by exploiting Theorem 5.2.11.

To start with, we introduce a variational quantity that is one key for us to obtain upper bounds
for gradient processes:

|-|g, welet ||T
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Definition 5.2.8. For n € [0,1] and 5 € [0,T], we let

1 X lhvion = inf{ / P(z)l—"p(dz)} € [0.09],
P Ro

where the infimum is taken over all measurable P : Ry — [0, 00) such that

B < P(z) for zeRy.
z

We use the potentials P to avoid a discussion about the measurability of the map z +—
[P+ x, —Px,|ITv (Which would not be necessary for us). We have the following special cases:

(D) 1 Xsllrvp,1) = p(Ro) < oo for s € [0, T].
@) 1 Xolltvip.m = 27" [g, 121"  p(dz) for n € [0, 1].

- ]
3) 1 Xslltves..n = (W) < 00,1 €0,1],if §, is the Dirac measure at z € Ry.

We will not use || XollTv(p,y), Whereas our idea is to use || Xs|[tv(p,y) for s € (0,T], where
we exploit the behaviour of ||P,4 x, —Px, |Tv. This enables us to obtain the correct blow-up of
gradient processes when considering B-stable-like processes. Upper bounds for || X || tv(s,,5) can
be found in the literature, see Schilling, Sztonyk and Wang [52, Theorem 3.1], Theorem 5.2.9(2)
is a variant for our setting.

In Theorem 5.2.9 and Theorem 5.2.10 below we provide basic properties of F?’ p and Ftl’ o
We will use Theorem 5.2.9 to deduce upper and Theorem 5.2.10 to deduce lower bounds for our
gradient processes. Moreover, Theorem 5.2.10 gives the interpretation (5.2.3) of Fg p and Ftl’ P
as distributions.

Theorem 5.2.9 (Properties of the functional Fg p)- Assume n € [0,1] and (Xt)sef0,17 S Ly(P).
(1) If||Xs||TV(p’,,) < oo fors € (0,T], then Hol,(R) Dom(Fg) and

TPl o, @y < 1 X7—¢ ll1v(om)- (5.2.5)
where Holy (R) is equipped with the semi-norm
F o =1 = FOllggo_y i 1.1,
(2) Ift €[0,T) and X7—; has a C'(R)-density y + pr—;(y), then

(2 1=
X7t v < /R (mm{m,||aym_t||mm}) p(d:).

0

In particular, if & > 0, then pr—; € C1(R) with ||dy pr— Iz, @) < 2(T —t)_%.

no2
PROOF. (1) First we remark that (X¢);c[o,7] € Ly(IP) implies that Hol, (R) € Dx. Moreover,
for fixed z € Ry, t € [0,7), and f € Hol; (R) we obtain the estimate
‘F(t,x—{—z)—F(t,x)

< S ot ®) (5.2.6)
and, for /' € Bp(R) and x’ € R,

F(t.x +2)— F(t.x)| = /R (G4 3) = F)Pasxy, (dy) — /R (Gt )= F( )Py, )
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< / Gt 9) = £ Basxr_, —Pxy, (@)
R

<N f = feN B, ®IPz4x7—, —Pxr_, Iv.

Therefore,
F(t,x+z)—F(t,x) .

~

“PZ'FXT—t _PXT—t ”TV
€(5.2.7)
||
for c52.7) 1= ||f||C£(R) if f e Cl? (R) (take x" = 0) and ¢(5.2.7) := | f]o if f € Holp(R) (take the
supremum over x” € R on the right-hand side). Moreover, real interpolation between (5.2.7) for
C l? (R) and (5.2.6) for Hé')l(l) (R) (for fixed x and z) implies that

1—
||]P>Z+XT7[ _PXT,t ||TV:| 7

E

(5.2.7)
z

‘F(z,x+z)—F(t,X) (5.2.8)

Z

< .
X ||f||H01(r)z.oo(R) |:

forn € (0,1) by (2.4.1). From (5.2.7) and (5.2.6) we deduce Hol, (R) < Dom(I‘g) and (5.2.5) for
n €{0,1}. If n € (0,1), then (5.2.8) implies Hélg,oo(R) C Dom(I‘g) and (5.2.5) with Hol, (R)
replaced by Hdl?,’oo(]R). Butif f € Hol, (R), then we replace f by fo:= f— f(0) € Hélg,oo(R)
and get (5.2.8) with constant || f — f (O)||H6197’0o (r)- This concludes the proof of (1).

(2) We observe that

dx

p
/ dy pr—:(y)dy
X—Z

IPz4x7 —Pxr_ lltv = pr—(=2) = pr—tlL, ) = /R
X
gsign(z)/ / |8ypT—t(y)|dydx
JRJS x—2z

— 2| / 13y pr—e ()] dy.
JR

As we have [|P;4x,_, —Px,_,|ltv < 2 as well, we obtain the first part of item (2). If 0 > 0
and s € (0, 7], then the density of X; is given by ps(y) := Epsw, (¥ — J5) where psw, is the
C*°-density of o W and satisfies

2 1
19y psllL, ) = IEdy pow, (- = I) L, @) < 19y pow; L, ®) = 4/ a2t O
Theorem 5.2.10 (Properties of the functional I‘tl, p) Lett € [0,7).
(1) One has [ yi,p(v)dv = p(Ro).
(2) One has Dom(F;) c Dom(Fg) and for f € Dom(FtI’p) and x € R that
DpF(t.x) = (f*.T1,) = (f*.T2,) if [*():= f(+x).
(3) Ifq,r € [1,00], X7—¢ has a density pr—; € L, (R), and s :=r Aq, then
1_1
Prollge < lpr=iliago [, 12157 pd2).
0
PROOF. See the proof of [29, Theorem 8.10]. ]

We return to the Riemann—Liouville type operators and aim for correct upper bounds for
(say) [IZ%¢ —ollgmo,(0,7))- Point-wise bounds for || D, F(t,-)||B,(r). in the sense that 7 €
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[0,7) is fixed, will not yield to optimal results. Instead, we exploit integral bounds expressed by
A Ml e BelOW.

Theorem 5.2.11. Assume thato >0, f € Dom(Fg), and

20 T _
A2 o= [ (T =0?* Do F(t. )5, ydt < oo,
T2 |/, »(R)

and define

200 r _
(@2 = g [ (T =P D F N, ot < 11
a

so that e(a) | 0 ifa 1 T. For a cadlag modification ¢ = (¢¢):efo,1) of (DpF (1, X¢))te[o,T) One
has

() (F2) %D F(a, ) 1B, @) < £(@) fora € [0,T),

(2) Efa[|I;"<p —Zg‘(p|2] <e(@)?as. for0<a<t <T,

(3) ” o —Zi¢)iela,T) HBMOZ([Q,T)) < 3e(a) fora €[0,7).
PROOF. (1) follows from

(T _a)Za
2«

T
1D P(@ 0= [ (=02 IDoF (@)l ol

2a

" e(a)?.

(2) We assume B € F, of positive measure and apply Proposition 2.3.2, formula (2.3.2), to get

d 2 1 2 T
< [ @02 D F e g =
a

T
/ T2 — TogPdPp = 2y T2 / / (T =1/ | gt — pal® dudPp
B BJa
T
<2aT / / (T —)> | gyuns > dudPp
BJa

T
<272 [ Do F () I, oy
a

=e(a).

(3) Because the BMO»([a, T'))-norm is invariant when passing to cadlag modifications, we may
assume the bound from Remark 5.2.6(4) for ¢ in order to get

T—t\“
|AZ;1‘/’|=(T) |[Aps| <2e(t) on [0,T)x K.

The statement follows from item (2), (2.2.1), and Proposition 2.2.2(1) (applied to the time interval
[a,T)). O

Theorem 5.2.12 (End-point estimate). Let X = (X;);e[0,7] be a Lévy process. If there are
e €(0,1) and B € (0,00] such that

€529 1= SUp 25 (27" < Jz] < 27T < o0, (5.2.9)
ne

P —-P
S% ” Z+Xs Xs ”TV <

€(5.2.10) := Sup sup 00, (5.2.10)

5€(0,T] z€supp(p)\{0} |z|
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then, for n € 0,1 —¢) there is a constant ¢ = c (&, B,1,¢(5.2.9),¢(5.2.10)) > 0 such that
et+n—1
IXsltviomy <es # for s€(0,T].
PROOF. See the proof of [29, Theorem 8.12]. ]

By using the interpolation technique and end-point estimates, we deduce the following result
(see [29, Corollary 8.3] for the detailed proof):

Corollary 5.2.13. Assume that (X;)se[0,1] € L1(P) and either that

(1) 0 >0, (¢,8) =(0,2), or

(2) 0 =0, (g,6) € (0,1)x (1,2), and that (5.2.9) and (5.2.10) hold.
Then one has forne (0,1—e¢), o := # € (0, %) and q € [1,00] that Ht’)lg,q R) < Dom(I‘g)
and

¢ (T =0 UDF @) 3, | .79, 27y < 2101 Tty (5.2.11)

2T —t

for f € Hél?], q(R), where cg ;_11) > 0 is a constant independent from f. In particular, for ¢ =2

we obtain
< V20[ (2)
|||f”|p,oz = To C(S.Z.ll)”f”H@]g‘z(R)?

for g = oo we obtain
e+n—1
1D, F )8, < Sl luso (T =D # . 1€[0.7),

5.2.3. Lower bounds for the oscillation of gradient processes. Theorem 5.2.18 and Theo-
rem 5.2.19 are the main results of this subsection. Their background is from Proposition 5.2.2
where we compute the gradient process of the GKW projection. Theorem 5.2.18 proves the max-
imal oscillation of these gradients and Theorem 5.2.19 determines the quantitative behaviour of
the maximal oscillation as a counterpart to Corollary 5.2.13.

To handle the oscillation we exploit the supports of the laws Py, and transform the Lévy
process (X¢)se[o,7] into the process (Y;);e[o,7] below which has independent and stationary
increments as well. The statements Theorem 5.2.15, Example 5.2.16, and Example 5.2.17, are
formulated for the Y -process, before we return to the X-process. Let us start with the basic
setting of this subsection:

Assumption 5.2.14. (1) In the notation of Example 3.4.6 we use
supp(Xz) = Q +4t,t €(0,T], and Y;=(X; _Et)]l{XtESUpp(X;)} for t €[0,T].
(2) The function H:[0,7) x Q — R is Y -consistent, which means
(a) H(t,-) is continuous on Q forall ¢t € [0,7T),
) E|H(t,y+Yi—s)| <ooforall0<s <t <Tand y € 0,
() EH(t,y+Y;—s)=H(s,y)forall0<s<t<TandyeQ.
(3) pis a probability measure on B(R).
The reason for this definition is the following statement, where we recall Definition 3.4.1.

Theorem 5.2.15. Let H be Y -consistent and ¢; := H(t,Y;), t € [0,T). Then ¢ = (¢1)sefo,T)
is a martingale of maximal oscillation with constant 2. Moreover, if for all t € [0,T) there is an
t € (t,T) such that H(t,Y7) € Lo(IP), then the following assertions are equivalent:



40 5. GRADIENT TYPE ESTIMATES IN THE LEVY-ITO SPACE

(1) inf;e(o,7) Osc, (¢) = 0.
(2) ¢r = o a.s. forallt € (0,T).

Item (2) in Theorem 5.2.15 implies a forward uniqueness: If there is an s € (0, T') such that
@0 = @5 a.s., then the martingale is constant a.s.

PROOF OF THEOREM 5.2.15. The martingale property follows by the definition and the maxi-
mal oscillation with constant 2 follows from Example 3.4.6. Regarding the equivalence we only
need to show (1)=>(2). For0 <s <7 < T, y},y5 € O and w € (Y; — Y5)"1(Q) we obtain that

lo: —@sllo@ = sup |H(t,y+y")—H(s.y")l
y,y'€Q

> |H(t,y+ (Vi = Ys) (@) + y5 + Ys(@) — H(s.y5 + Ys(0))]
= [H(t.y1 +y3+Yi(@)) = H(s.y3 + Ys(@))].

where the first inequality comes from ¢; —@ps = H(t, Y —Ys+ Ys)— H(s,Ys), supp(Y; — Y, Ys) =
0 x Q, and from the continuity of Q x Q 3 (y,y’)— H(t,y +y')— H(s,y’). This implies

lo: —@sllLo@ = sup |EH(t,y+y +Y:)—EH(s.y +Yy)|

»,y'€0

= sup |H(0.y+y")—H(0,y")]
y,y'€0

> sup |H(0,y)— H(0,0)].
yeQ

For s = 0 we use the same idea with y" = y; = 0 to get [[¢; — ¢ollL . p) = sup,ep |H(0,y) —
H(0,0)|. So (1) yields to C := H(0,0) = H(0,y) forall y € Q. Fix 0<¢ <7 < T as in our
assumption. According to Lemma 5.1.3, we have a chaos expansion

o
H(t.Y) =EH®Y) + Y Iy (h,,]l[@g}])
n=1

with ﬁ,, € Ly(u®m). Let Y be an independent copy of Y with the corresponding expectation E.
For At :=1—1t > 0 this implies Ex,,[H(¢,Y?))| =EH(t,Ya; + Y ) = H(0,Ya;) = C as. and

o
C =Er [H.Y) =EH@.Y)+ Y I (h,,]lf?fm]) as.
n=1

Therefore, /i, = 0 in Lo(u®") for all n > 1, which yields H(t,Ys) = C a.s. Since supp(Ys) =
0O = supp(Y;), together with the continuity of H(¢,-) on Q, we derive that H(z,y) = C for all
y € Q. Therefore ¢, = H(t,Y;) = C a.s. O

The next two results provide the fundamental examples of Y -consistent functions:

Example 5.2.16 ([29], Example 8.17). We assume

(1) that k: O — R is a Borel function with E|k(y + Y;)| < oo for (s,y) € [0,T] x Q and that
K:[0,T)x Q — R with K(t,y) := Ek(y + Yr_;) satisfies

IE/ K(t,y+Ys+z)—K(t,y+7Ys)
o\{0}

z
(2) that y — K(¢, y) is continuous on Q for ¢ € [0,T),

p(dz) <oo for 0<8<t<T,
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(3) that for all (¢, y) € [0,T) x Q there is an & > 0 such that the family of functions

K([,y,+2)—K([,y/)
Z > )
z
indexed by y’ € Q with |y — y’| < &, is uniformly integrable on (Q\{0}, p).

Then we obtain a Y -consistent function by

H(t,y):= / K@,y +Z)_K([’y),o(dz) for (t,y)€[0,T)x Q.
-+ Q\{0} z

Example 5.2.17 ([29], Example 8.18). Let 0 > 0. Then Q = R and the following holds:
(1) If k:R — R is a Borel function with E|k(Y7)|? < oo for some ¢ € (1,00), then

Elk(y +Yr—)| <oo for (t,y)€[0,T]xR.

If K(t,y) :=Ek(y +Yr—;) on [0,T] xR, then K(t,) € C*°(R) for ¢t € [0,T) and we
obtain a Y -consistent function H : [0,7) xR — R by

1 Wr_
H(t,y):=0yK(t,y) with H(t,y)= EE |:k(y +Yr_r) TT_;:|
(2) If k € Hol, (R) for some 1 € [0,1] (and E|k(Y7)|? < oo as above if 1 € (0,1]), then

-1 21 41 -2 dx
VHE gy < Ko, @o™ (T -1 /R e

Now we are in a position to return to the setting of Proposition 5.2.2:

Theorem 5.2.18 (Maximal oscillation). Suppose that

(a) the Lévy process (X¢)telo,1] is an La(IP)-martingale and p := ju/ uw(R),

(b) ne€0,1] and || Xs|ltv(p,y) <00 forall s € (0,T]ifne€l0,1),

(c) f € Hol,(R), where we additionally assume that y — f(y +{T) is continuous on Q if

n=o=0.

Then f € Dom(Fg) and, additionally, F(t,") € C*®°(R) fort € [0,T) if o > 0. Letting ¢; :=
D,yF(t,X;) fort €[0,T), the following holds:

(1) ”gpt”Loo(IP) = supx€supp(Xt) |50F([,X)|f07'l € [O’ T)

(2) (¢1)refo,1) is an Lo(P)-martingale of maximal oscillation with constant 2.

(3) Unless o1 = @g a.s. forall t € [0,T), one has inf;¢(o,1) Osc, (¢) > 0.
PROOF. See the proof of [29, Theorem 8.19]. O

Now we provide in Theorem 5.2.19 the corresponding lower bounds for Corollary 5.2.13.
The conditions (5.2.12) and (5.2.13) are a counterpart to (5.2.9) and (5.2.10) assumed in Corol-
lary 5.2.13. The proof of this result is given in [29, Theorem 8.20].

Theorem 5.2.19 (Size of maximal oscillation). Suppose that

(a) the Lévy process (X¢)telo,1] is an La(IP)-martingale and p := ju/u(R),

(b) n€l0,1) and || Xs|ltv(p,y) < oo foralls € (0,T],

©) fy:R—ReHol,(R)is given by fy(x):= (xV0)Tifne(0,1)and fo(x):= Ljp,c0)(X).
If Fy(t,x) :=Ef(x + X7_;) for (t,x) € [0,T) xR, then one has
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(1) infrepo.ry (T =)= 2 0, Fy(t.0) >0 ifo >0,
+
@) infrejor) (T =)' " 5" DpFy(t.0)>0 ifo =0and f € [1+n.2), and if

p([—d.d]) = cs5210d*> P for de(0,ds212), (5.2.12)
P(Xs € J(v:z))

H 20(5.2.13)5_% for s€(0,T], (5.2.13)
z

inf
1
[vIV]z]|<E52.13)8 B ,z#0

for some constants c(52.12), d(52.12), €(5.2.13), €(5.2.13) > 0 and where J(v;z) = v+ [—zF,z7).

5.2.4. Sharpness of the results - S-stable-like processes. In this section we assume a Lévy
process X = (X¢);e[o,7] With 0 = 0, which is an L (P)-martingale, and 8 € (1,2) such that the
Lévy measure satisfies v(dz) = p,(z)dz, where p,, is symmetric and

|1+ﬂ |1+ﬂ

py(z) <limsup |z

|z|]—>0

0 < liminf|z pv(z) < oo.
|z|—0

We consider a D € La(R, ) with D >0 and [, D?dp > 0, and set
_ Ddu

= m.

Given ¢ € (0, 1), the small-ball assumption (5.2.9) reads as

dp:

(/ Ddu) sup 25" p({27" < |z| < 27" 1Y) = sup 28" / Ddp <oo.  (5.2.14)
Jr neN Jl2=n 2y

neN

Given f € Dx N L>(R,Px, ), we also discuss the Riemann approximation of the stochastic
integral

/ o (f.p)dXP
0,7)

that represents by Proposition 5.2.2 the GKW projection of f(X7) on I(X?) up to a factor. The
corresponding error process with respect to the time-net © = (£;)7_, € Tget is

n
E/((f:t.D):= /(O ]sos_(f,p)dXsD—szi_l_(ﬁp)(X,?A,—X,?,M,), 1€[0.7).
ot i=1

Theorem 5.2.20. Letn € (0,1—¢), o := # 0 := 1—2a«, and assume that the functional
D satisfies the e-small ball property (5.2.14). Then Hélgaz(R) - Dom(Fg) and the following
holds:
UPPER BOUNDS: For f € H(’)lg,z(]R) and the parameters © := (B,v,e,D,n,T) the following
holds:

(1) There is a c(52.15) = c¢(®) > 0 such that one has
s[upT)(T =@ ([ Loo®) + 1Z%0(f.0) =00 (f: P IB702 (0.7 S €219 1S 0, gy
relo, .
(5.2.15)

li H Teo(f.0)—T%0( f H —0. 52.16
lim (ZFe(f.p) =I5 0(f.P)) ea.r) MOS0 T) ( )
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(2) There is a c¢(52.17) = ¢(©) > 0 such that one has

IECS 22 D)llomos fo,7) < €21V ITllo | o0, y- (5.2.17)

(3) @(f.p) has maximal oscillation with constant 2.
(4) Unless ¢( f.p) is almost surely constant, one has inf;¢[o, 1) Osc, (¢( f.p)) > 0.

(5) If p €[2.00), then there is a c5.2.18) > 0 such that for0 <a <t <T, ® € CL*([0,¢]) with
1V[AXs| < @5 0n [0,1], supyefo,.] Pu € Lp(P), and A > 0 one has

L Efa[supue[a,t] CD5]
nA2" " AP(T —1)pe

P]:a (|Et(f;T3,D) —Ea(f;‘fr?,DN > A) < c(5,2_1g)min§ a.s.
(5.2.18)

LOWER BOUNDS: For D = 1 we can take ¢ =2 — 8 and there is an f, € Hol, (R) such that for
@t = ¢t (fy.p) one has:

(6) infseo,1) (T —1)*Osc,(¢) > 0.

(7) There is a c(52.19) > 0 such that for all T = (;)"_, € Taet with ||T|g = T —Tk—1

=0 (T—tx—1)'=%"
2
E]:a / du
(a,T)

@) IEC37 Dllomos (0,7 = VAR cs2.19) v/ [Tl for all T € Tge.

Remark 5.2.21. From the above theorem we get that

n
Yu— Z Vi1 Ly ()

i=1

. 2
inf sup > 0(5.2419)||T||0~

i—1€Lo(Fr;_) aefty—1,tx)

Leo(P)
(5.2.19)

_1=(e+n)
llee (S Lo < cs215(T =077 M f o0 , ry-

Let us take a sequence of real numbers |z;| = 27!, 1 €N, and consider the corresponding Dirac-
measures p; = 6,. Suppose that the small ball condition

pr({27" <z < 27" < 52927

holds uniformly in / and 7. Because p; ({27! < |z| <27!+1}) = I this implies that 1 < ¢(5.2.9)27%"
for all n € N and finally e = 0. If we interpret f € By (R) as n = 0, then we would get an exponent

i G 7)) _1
(IT'—=t)y F =({T—-1)"s

which is the upper bound of [52, Theorem 1.3].

5.3. Gradient type estimates in the exponential Lévy setting

Because of the weighted setting which is caused by the usage of exponential Lévy processes,
it seems that we cannot use the interpolation method as in Section 5.2 to derive gradient estimates,
at least in a straightforward way.

We first introduce some sub-classes of Holder continuous functions and bounded Borel func-
tions, where the payoff functions are contained in.
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Definition 5.3.1 ([60]). For n € [0,1] and ¢ € [1, c0], and for a non-empty open interval U C R,
we define

Hol,(U) := {f:U — R Borel : | f|ns1,(v) :=  sup w < oo},
x,yeU,x#y |x_y|

V([)/I’q(U) = {f:U —-R:3kely;U), f(y)—f(x)= /yk(u)du,‘v’x,y elUx< y},

and let | /1, gy = IKllz, @)
For n € [0, 1], Holder’s inequality implies that

1 . . °q1, L
P U) SRl U) with | Sl ) <l o0 Y EWRTI).

In particular, Vc[>/'1’°°(U ) = Holy (U), which is the space of Lipschitz functions on U'.

Definition 5.3.2 ([60], a-stable-like Lévy measures). Let v be a Lévy measure and « € (0,2).

(1) We let v € 81() if one can decompose v = v + v, where vy, v, are Lévy measures that

satisfy
limsup — /(1 —cos(ux))va(dx) < oo, (5.3.1)
lul—>oo [U|%
k(x)
vi(dx) = x |a+1]l{x¢0}dx (5.3.2)
k(x) .

where 0 < liminfy_,k(x) < limsup,_,ok(x) < oo, and the function x — ™ is non-

decreasing on (—o0,0) and non-increasing on (0, 00).
(2) Weletv € 83() if

1
0 < liminf — (1 —cos(ux))v(dx) < hmsup — (1 —cos(ux))v(dx) < oco.
|u|—>o0 |u| |u|—>oo

Remark 5.3.3. Let @ € (0,2).
(1) One has 81(x) € S83(«). Indeed, for v € 81(a) with the decomposition v = vi + vy,
a computation shows that v; € 8;(«). Hence, v € 8(«). Moreover, since v(dx) :=
x_l_“ll(o’l)(x)dx belongs to 87 (a)\81 (), the inclusion 8 () C Sa(w) is strict.
(2) According to [8, Theorem 3.2], if v € 85(«) for some « € (0,2), then « is equal to the
Blumenthal-Getoor index of v, i.e. o = inf{r € [0,2] : fIXKI |x]"v(dx) < oo}.

We provide a sufficient condition for a Lévy measure in 81 («).

v(dx)

Lemma 5.3.4. If a Lévy measure v has a density p(x) := which satisfies

14+a 1+a
| |

0< linllinf|x p(x) <limsup|x p(x) < oo
-0

|x |x]—0
for some a € (0,2), then v € §1 ().
PROOF. By assumption, there exist constants 0 < ¢ < C < oo and € > 0 such that

clx] T < p() <CIx|TITY Vx| <e
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We let
N —1—-«a -
v1(dx) := clyo<|x|<e}|X| dx and vy(dx):=v(dx)—vi(dx).

Then vy satisfies (5.3.2). For v,, we have

1—
/(1 —cos(ux))va(dx) < (C —c) de +2/ v(dx),
R Ixl<e  Ix|tTe Ix|>¢
which implies that (5.3.1) holds for v,. Hence, v € 81 (). O

Example 5.3.5. Let us provide some examples for those classes of Holder functions and of «-
stable-like processes used in financial modelling.

(1) The European call and put are Lipschitz, hence they belong to Ij)/l’OO(R+).
The power call g(y) := ((y — K) v 0)" with K > 0 and 5 € (0, 1) belongs to C%"(R),
but g ¢ W4 (R.) for any g € (1,00). However, we can decompose g = g1 + g2, Where
1) =((y—K)Vv0)"Aland g5 := g—g1,sothat g; € ﬂl<q<¢W1’q(R+) and g,

1—
is Lipschitz. This decomposition of g fits well with the quadratic hendging approach we
choose later, which asserts that the hedging strategy of g is the sum of that of g; and g».

The binary option g(y) := 1k «)(y) belongs to C%%(R) obviously.
(2) The CGMY process with parameters C,G,M > 0 and Y € (0,2) (see Schoutens [53, Sec-
tion 5.3.9]) has the Lévy measure

Gx —Mx
c 1 0 +e 1 0
vegmy (dx) = C bre |}x|1+Y b }l{xaéo}dx

which belongs to §1(Y) due to Lemma 5.3.4.
The Normal Inverse Gaussian (NIG) process (see Schoutens [53, Section 5.3.8]) has the
Lévy density pNig(x) := vnig(dx)/dx that satisfies

0 < liminfjyx ¢ x2 paig(x) < limsup)y| ¢ x2 pnig(x) < o0.
Hence, Lemma 5.3.4 verifies that vnig € S1(1).

Let X = (X¢);e[0,7] be a Lévy process with (X |P) ~ (y,0,v). Proposition 5.3.6 below is a
variant of Theorem 5.2.9 in the exponential Lévy setting.

Proposition 5.3.6 (Holder estimates). Let g € C%7(R4.) with n € [0, 1]. Define
Pg(y):=Eg(ye*), y>0,1€(0,T].
Then there exists a constant c(533) > 0 such that for any z > 0,y > 0 and any t € (0,T] one has

|Pig(z) — Pig(y)| < c533)Ui(y.2), (5.3.3)
where the cases for U (y, z) are provided as follows:
(1) Ifo >0 and [,_, e**v(dx) < oo, then Uy (y.z) = (;’%‘M) Alz =yl
(2) When o =0 and f|x|>1 e*v(dx) < oo:
—1
(@) Ifv € 81() for some a € (0,2), then Us(y,z) = (IWTM) Alz=y|™
(b) If v € 82() for some a € (0,2) and g € Vf/I’ITIVI(RJr), then

n—1 _
Us(y.z2)=(t @ [Inz—Iny|""|z—y|") Az —y|".
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120—y°] |z =y

Here, we set 0° := 1 and = limy, = |Inz —Iny| by convention.

PROOF. See the proof of [60, Proposition 8.5]. O

Motivated by the hedging strategies established later in (6.2.2) and (7.2.1), we write symbol-
ically for a Lévy measure £ and a Borel function g the formula

Ie(t.y) =00y Pg(y) + /R Pigle y>y—Ptg<y>

(e* —1)£(dx) (5.3.4)

for (t,y) € (0,T] x Ry, where P;g(y) = Eg(yeXt), and we set dy Pig(y):=0ifo =0.

Theorem 5.3.7 (Gradient type estimates). Let £ be a Lévy measure and g € Hol,(Ry) with n €
[0,1]. Assume f|x|>1 et DX ¢ (dx) < oo. Then I'y(t,y) is well-defined for all (t,y) € (0, T] xR,
and there is a constant ¢(s 35, > 0 such that

[Te(t. )| < es3sVey™™ ', V(E,y) € (0.T] xRy, (5.3.5)
where the cases for V; are provided as follows:
(1) If o > 0 and f|x|>162xv(dx) < o0, then Vy = —a

(2) Ifo =0, f|x|>1e’7xv(dx) < oo and f|x|<1 |x[7F1e(dx) < oo, then V; = 1.

(3) If o = 0 and if the following two conditions hold:
(@) v € 81(x) for some a € (0,2) and f|x|>1 e*v(dx) < oo,
(b) thereis a B € (14 n,2] such that

2 n+1
0< sup rﬂ/ (‘f) /\‘f’ )(Z(dx)<oo, (5.3.6)
re(0,1] lx|<1 \''T r

then one has Vy =t n+gz_ﬁ.
@) Ifo =0and g € V?/lllin (R4), and if the following two conditions hold:
(@) v € 8>(a) for some a € (0,2) and f|x|>1 e*v(dx) < oo,

(b) thereis a B € (14 n,2] such that (5.3.6) is satisfied,
then one has Vy =t n+rl_6.

Here, the constant ¢ s 3.5y may depend on B in items (3) and (4).

Remark 5.3.8. Since [£]? A [£]71] < |§|B for B € (1+ n,2], a sufficient condition for (5.3.6)
isthat 0 < [ o |x|A€(dx) < co.

x|<

Remark 5.3.9. Let us discuss the connection between item (2) in Corollary 5.2.13 and item (3)
in Theorem 5.3.7. Let n € (0, 1) and let v(dx) = p,(x)dx be a Lévy measure satisfying

0 < liminfjy ¢ |x| 1% py (x) < limsup| | |x|1F¢ p,(x) < oo forsome k € (1417,2).

In Corollary 5.2.13(2), we let p(dx) := x?v(dx), and choose € = 2—«, B = « to obtain that the
growth rate in time of the gradient process is "TH — 1. On the other hand, in Theorem 5.3.7(3),
we choose £ = v and o = 8 =« to get V; = Sl Therefore, the growth in time of both

gradient processes coincides.
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PROOF OF THEOREM 5.3.7. In the sequel, we use the following inequality without mentioning
it again:

e™ —1
| | <elllx], Vx| <1,pe]0,1],

01 e 1] _

where

= limy o |x].

(1) Since o > 0 and f|x|>1 e?*v(dx) < oo, Proposition 5.3.6(1) implies that

n=1 |27 —y7| n
|Prg(z)—Prg(y) <ciszz| |t 2 e Alz—=y| (5.3.7)

forall z>0, y >0, t € (0,T]. Moreover, since P;g € C*®(R4) due to o > 0, we divide both
side of (5.3.7) by |z — y| and then let z — y to obtain that

n—1 .
0y Prg(0)| < csamt = " V(t.y) € (0.T] xRy
Hence, we separate [, = flx|<1 + f|x|>1 and apply (5.3.7) with z = ye* to obtain
e —1]

I<1

Tt )] < 53 (oz +f e — 1|e(dx>) 5yt
Jlx

+c<53.3)y”‘1/|| le* —1)7T1e(dx).  (5.3.8)
x|[>1

. nx__
Since 0 < 02+ [, e —1]6(dx) <o+ e [ [x]20(dx) < oo and [, |e¥ —

1|7T1¢(dx) < oo, together with inf;e(0,7] 1" > 0, the second term on the right-hand side of
(5.3.8) can be upper bounded by the first term up to a positive constant. Hence, the desired
conclusion follows.

(2) One has e ¥ (1) = Ee"X1 < oo for 1 > 0. The Holder continuity of g implies that
|Prg(ey) = Prg(y)| < Iglcong, yEe"  |e¥ — 1|7y, and hence

Tt 9)] < [l cona, yEe iy =1 /R % — 17+ L¢(dx)

< |g|co,n(R+)eT|'f’(_"i)‘ (Cn+1/ |X|n+1£(d)€)+/
IxI<1

[x]>1

eF— 1|"+16(dx))y"—1,

which implies the assertion.

(3) Lett € (0,7] and y > 0. We separate [, = flx|<1 —|—f|x|>1, and then apply Proposi-
tion 5.3.6(2a) with z = ye* to obtain

1 e
T, y)| <c<5,3,3>y"—1(/ ((z"a‘u) /\|ex—1|") le* — 1]¢(dx)
lx|<1 n
+/ |ex—1|”+1€(dx))
Jx|>1
X

n+1
m )g(dX)

+/ le¥ — 1|"+1£(dx))
[x|>1

2
X

n+1
AN A
xj<1 \ |21/
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_ nt+1-8
< 533" 1(C<5.3.9)l @ +/|

x|>1

le® — 1|"+1e(dx)), (5.3.9)

B2 B=n—1
where ¢(s39) ;= "W (T & VT @ )supre(o’l]rﬂ f\xlgl“%lz A |’r—‘|’7+1)£(dx) € (0,00) by

n+1—
o

(5.3.6). Since inf(; gye(0,7]x(147,2] ¢ £ > 0, the desired conclusion follows from (5.3.9).

(4)Lett € (0,7] and y > 0. We apply Proposition 5.3.6(2b) with z = ye* and use the same
argument as in the proof of item (3) to obtain

n—1 —
IFz(t,y)|<c<5_3_3>y"‘1(/ (% W= =17 Ale® = 117) Je* — 1]e(dx)
[x|<1

+/ le® — 1|”+1€(dx))
[x|>1

_ n+1—-p
<esany™! (0(5.3.9)l o +/| |€x—1|"+1€(dx))~

x|>1

Again, a similar argument as in the one after inequality (5.3.9) yields the assertion. O



CHAPTER 6

Hedging in exponential Lévy models: The martingale setting

6.1. Introduction

We consider two types of risk for hedging an option in exponential Lévy models. The first
type comes from the incompleteness of the market and the second one is due to the impossibility
of continuously rebalancing a hedging portfolio. We now briefly discuss the first type of hedging
error.

It is known that exponential Lévy models correspond to incomplete markets in general, there
is no hedging strategy which is self-financing and replicates an option at maturity. Therefore,
one has to look for certain strategies that minimize some types of risk. In this thesis (Chapters
6 and 7), we choose the quadratic hedging approach which is a popular method to deal with the
problem in models with jumps. We refer the reader to the survey article of Schweizer [56] for
this approach.

Two typical types of quadratic hedging strategies are the mean-variance hedging (MVH)
strategies and the local risk-minimizing (LRM) strategies. Roughly speaking, the MVH strategy
is self-financing and minimizes the global hedging error in the mean square sense, while the LRM
strategy is mean-self-financing, replicates an option at maturity and minimizes the riskiness of
the cost process locally in time.

Two cases are considered:

e The martingale setting: The driving process is assumed to be a (local) martingale. In this
case, the MVH strategy and the LRM strategy can be determined via the Galtchouk—Kunita—
Watanabe (GKW) decomposition. We deal with the martingale case in Chapter 6 and establish
an explicit form for the GKW decomposition.

e The semimartingale setting: The driving process is assumed to be a semimartingale. Both
types of those strategies are intimately related to the so-called Follmer—Schweizer (FS) decom-
position, which is an extension of the GKW decomposition in the semimartingale framework.
Namely, in our (exponential Lévy) setting, the FS decomposition gives directly the LRM strat-
egy, and the MVH strategy can be determined in a feedback form based on this decomposition
(see Schweizer [54, Theorem 3]). We discuss in Chapter 7 the semimartingale case and provide
an explicit form for the FS decomposition.

6.2. Galtchouk—Kunita—Watanabe (GKW) decomposition and explicit MVH strategies
Let X = (X¢);e[o0,7] be a Lévy process on a complete filtered probability space (2, F,P,[F),

where IF = (F7);e[o,1] is the augmented natural filtration of X. We let ' = Fr and (X|P) ~
(y,0,v). The following assumption is imposed in this section:

Assumption 6.2.1. Assume that the exponential S = eX is a square integrable P-martingale. To

prevent the triviality, let us assume in addition that X is not a.s. deterministic.

Let us define the family of admissible strategies as
T
AS(P) := {19 predictable :]E/ ﬁtzStz_dt < oo} .
Jo

49
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Definition 6.2.2 (Schweizer [56], p.546).
(1) The GKW decomposition of an H € L, (IP) is of the form

T
H=EH + / SV (H)dS, + LKV, (6.2.1)
0

where 39KV (H) € AS(P), L%V is an L, (P)-martingale with zero mean and is strongly
orthogonal to S, i.e. the product SLOKW is a local martingale.

(2) The integrand ¥9¥V (H) is called the MVH strategy of H .

According to the GKW decomposition, it turns out that the MVH strategy 9KV (H) is the
minimizer, which is unique up to a P ® A-null set, for the problem

2

min E

T
H—IEH—/ 0,dS;
PEAS(P) 0

Our aim is to apply the approximation results obtained in Chapter 4 for the stochastic integral
term in (6.2.1), which can be interpreted in mathematical finance as the hedgeable part of H. To
do that, one of the main tasks for us is to find a representation of 9%V (H) which is convenient
for verifying the conditions in Assumption 4.3.3. This issue is handled in the next subsection in
which we focus on the European type options H = g(ST).

In the literature, there are several methods to determine an explicit form for the MVH strategy
of a European type option H = g(ST). Let us briefly discuss some typical approaches for which
the martingale representation of g(S7) plays the key role. A classical method is by using directly
1t6’s formula (e.g., Jacob, Méléard and Protter [36], Cont, Tankov and Voltchkova [14]) which
requires a certain smoothness of (¢,y) — Eg(yST—_;). Another idea is based on Fourier analysis
to separate the payoff function g and the underlying process S (e.g., Brodén and Tankov [9],
Tankov [58]). To do that, some regularity for g and S is assumed. As a third method, one can use
Malliavin calculus to determine the MVH strategy (e.g., Benth et al. [6], Lakka [41]), however
the payoff g(S7) is assumed to be differentiable in the Malliavin sense so that the Clark—Ocone
formula is applicable.

To the best of our knowledge, the result below is new and it provides an explicit formula for
the MVH strategy of g(S7) without requiring any regularity from the payoff function g nor any
specific structure of the underlying process S.

Theorem 6.2.3 (Explicit MVH strategies). For a Borel function g: R4 — R with g(St) € L2(P),
there is a 9%V (g) € CL([0, T)) such that the following assertions hold:

(1) 1~9£’Kw(g) is a MVH strategy of g(ST).
2) 15GKW(g)S is an Lo (P)-martingale and Al§tGKW(g) =0a.s. foreacht €[0,T).
(3) Foranyt €(0,7T), a.s.,
~ 1 G(t,exSt)—G(t,St)
DKV (g) = (028 G(t,S —I-/
A Ty TR & s:

where ||(0,v)| := 0% + NG 1)?v(dx) € (0,00), and G(t,-):R4 — R is as follows:

(@) If 0 > 0, then we choose G(t,y) :=Eg(yST—);

(b) If 0 = 0, then we choose G(t,-) such that it is Borel measurable and G(t,Sy) =
Er,[g(ST)] a.s., and we set 0, G(t,-) := 0 by convention.

(e* — l)v(dx)), (6.2.2)
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Formula (6.2.2) was also given in [14, Section 4] and in [58, Proposition 7] under some extra
conditions for g and S. A similar formula as (6.2.2) in a general framework can be found in [36,
Theorem 2.4].

PROOF OF THEOREM 6.2.3. We only sketch here the main idea of the proof, and the reader is
referred to [60, Section 6] for more details.
Step 1. According to Subsection 5.1.3, the exponential S = e¥ satisfies the SDE

dSt:St_dZt, S():l,

where Z is another Lévy process. Since S is an L, (IP)-martingale due to assumption, it implies
that Z is also an L, (IP)-martingale with zero mean.

Step 2. For each t € (0,T) one determines the chaos expansion of #5XWV(g)S, with respect
to the Lévy process Z in the way introduced by C. Geiss, S. Geiss and Laukkarinen [22].

Step 3. We translate this chaos expansion (with respect to Z) to an expansion with respect to
X from which one can use Proposition 5.1.2. U

6.3. Weight regularity

Let X = (X¢)¢e[o,7] be a Lévy process with (X |IP) ~ (y,0,v) and ¥ the characteristic ex-
ponent. One also remarks that Assumption 6.2.1 is not necessarily satisfied in this section.
For n € [0, 1], we define the processes ®(7) and ®(n) by setting

Om: = Supue[O,t](Slz]_l)7 @) =0Om):S:, t€]0,T]. (6.3.1)

We will see later that ®(n) and ®(n) appear as the weight processes in the discrete-time approxi-
mation using the mean-variance hedging strategies (Theorem 6.4.1) or the local risk-minimizing
strategies (Theorem 7.3.1).

Proposition 6.3.1. If |,
n € [0,1]. Moreover,

2q
i _ q
”q)(”)”%/\/tq(ﬁﬂ) < T (=D1(2g+1)y1-n (qu) ||ST||}q,q(IP>)'

PROOF. The first step considers the particular case when S is a martingale, and the general case
is handled in the second step.

Step 1. Assume that S is a P-martingale. Due to Sato [51, Theorem 25.3], the assumption
flx\>l e?*v(dx) < oo implies that eX’ € L4(P) for all ¢ > 0. Denote ¢4 := (qul)q and define

M = (M;);e[0,T] by

L€7*v(dx) < oo for some q € (1,00), then ®(n) € SMy(P) for all

x|>

M; = SUPye[0,] eXi—Xu,

We show that M is a positive L, (IP)-submartingale. The adaptedness and positivity are clear.
Pick a t € (0,T]. Since (X; — Xt—u)uefo,] is caglad (left-continuous with right limits) and
(Xu)uelo,] is cadlag, and both processes have the same finite-dimensional distribution, applying
Doob’s maximal inequality yields

EM! =E [supue[o,t] eq(X’_X“)] =E [supue[o,t] eq(Xf_Xt—“)] (6.3.2)
=E [sup,ejo.e9%" | < cqEedX < oo.
For 0 <s <t < T onehas, a.s.,
Ex[M] > Ex,[sup,cpo s &' "] = sup,epo s e T EeX ™ = M,
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where we use EeX'—Xs = ES,_; = 1.
We observe that the process ®(7) can be re-written as

(), = enX: SUPse(0.] e(I-M (X —Xs) _ onX; Mtl_n-

Letus fix 7 € (0,1) and a € [0, T]. Fore"X = (e"X’),e[o,T], applying Doob’s maximal inequality
and Jensen’s inequality we obtain that, a.s.,

E]:a [Supte[a,T] (eﬂXt)%:I = eunE [Supte[a,T] eq(Xt_Xa)] g cqearEeq(XT_Xa)
— cqear]EeqXT—a g quar}EeqXT’
which implies
n
€™ s pn,,, @) < (cqBedXT)a.
For M177 = (Mtl_"),E[O,T], one has that, a.s.,
1—p\ -4
Ex, [Supte[a,T] (M, ™) l_n] - E]Ea[s"lpte[aﬂ"] Ml‘q] < Cqua[M;{]
S cqEr, [Supse[o,a] eq(XT_XS)] +cqEr, [Supse[a,T] eq(XT_XS)]
= Cq SUPgepo g ¢4 Ko T HIE! KT Xa) 4 g [Supse[a,T] eq(XT_XS)]
< 2¢4 Upgefo.q) I K XIE [supse[a, - eQ(XT—X.s-):I
R
2m g X
< <2cheq T)Maq,
where the conditional Doob maximal inequality is applied for the positive sub-martingale M to
obtain the first inequality, and the last one comes from (6.3.2). Hence,
1-n 2 9XT Lo
M sy @) S 2cgEe??T) 7.

Applying a version of Holder’s inequality for || - [|saq, ) given in [29, Proposition A.2] with
1_ 1 1 .
7 = a/m T g7di=y> We obtain
nX 1-n = q 2
[P lsrg@) < e lsay @ M sy q—m@ <2 1 STz, @) < oo,

which asserts ®(n) € SM,(P). When n = 0 or n = 1, the desired conclusion is straightforward
as ®(0) = M, (1) = eX.
Step 2. In the general case, we define

’S:t = Ct‘W(_i)St.
Then it is known that S is a martingale under P. Some standard calculations yield

e TV, <o), <eTVB(n),,

where 5(17); =75, SUPy,e[0,¢] (§Z_1). Applying Step 1 for P-martingale S we derive that 5(7}) €
SM4(P). Hence, for a € [0, T], one has, a.s.,

Ez, [SuPte[a,T] q’(’?)?] < eqTW(_mEFa [Supze[a,T] 5(’7)?]
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<e TV )%, o B
2q
iy (4 3
< 24T (=1 n(qj) ST, @ @4

2q
<eTlWEDla+ny1-n (4 ) " yg 14 e
€ g—1 ” T”Lq([p) (77)(1’
which proves the desired conclusion. U

6.4. Discretisation of MVH strategies in the martingale setting

As mentioned earlier, Assumption 4.3.3 is crucial to obtain approximation results for the
jump adjusted method in weighted BMO spaces. We now provide examples for Assumption 4.3.3
in the exponential Lévy model using the MVH strategies given in Theorem 6.2.3. Once Assump-
tion 4.3.3 is satisfied, one may apply Theorems 4.3.4 and 4.3.7 to derive the results accordingly.

We recall W14 (R4) from Definition 5.3.1, 81 (), 82 («) from Definition 5.3.2, and ®(n), ®(n)
from (6.3.1).

Theorem 6.4.1. Assume Assumption 6.2.1. Let n € [0, 1]. Then the following assertions hold:

(1) (MVH strategy growth) If g € C%"(Ry.), then there exist a g e [0,1] and a constant
C4.1) > 0, which might depend on 0, such that for %°*W (g) given in (6.2.2) one has

~ o-1
19KV (9)| < ceany(T—1) 2 O(); as., ¥t €]0,T), (6.4.1)

where 0 is provided in Table 6.1:

Table 6.1: Values of 6

o andn Small jump condition for X | Regularity of g Conclusion for 6

o>0 )
cl € COM(R 0=
neo.1] g (R+4) n
o=0 H
Cc2 x|y (dx) < oo e CO"R =1
o) | e i@ geCOUI(Ry)
=0 S A
3 o Ve 1(06) g€ CO,n(R_I_) Vo e (0’2(1_“"7)_ 1)
nel0,1) | forsomea €[1+n,2) ¢
=0 S o A
o[ 7=0 [ ve e | vie (020

ne€l0,1) | forsomea €[l+n,2)

(2) Denote M := 95KV (g)S. Then Assumption 4.3.3 is satisfied for
9 =0 Y(g), T(.di)=d(M, M), +M}d;, ©=0(y), ®=o(n):=06S,
and for 0 =1 lfé =1, and for any 0 € (O,é) lfé €(0,1).

Remark 6.4.2. In Table 6.1, the larger 6 is, the better estimate one can get for f’GKW(g). More-
over, the parameter 6 comes from the interplay between the small jump intensity of the underly-
ing Lévy process and the regularity of the payoff function which affects the convergence rate of
the approximation error.



54 6. HEDGING IN EXPONENTIAL LEVY MODELS: THE MARTINGALE SETTING

PROOF OF THEOREM 6.4.1. We recall from Assumption 6.2.1 that fIX\>1 e?*v(dx) < oco.
(1) We let £ := v in (5.3.4) and obtain from (6.2.2) that

PN (@) = @I (T =1.80) as, Vi [0.7).

We consider each case in Table 6.1 as follows. We apply Theorem 5.3.7(1) to get C1. The
case C2 follows from Theorem 5.3.7(2). For C3, since v € 81 (), Remark 5.3.3(2) implies that
0< f|x|<1 |x|*T€1(dx) < oo for any € € (0,2 —a]. Moreover, applying Theorem 5.3.7(3) and
Remark 5.3.8 with § = « + ¢ yields

~ e 1((2m+D _q_26)_
BSKY ()] < (o) (T —0) 515 577 < c(ey T = (F=E) o), as, ve e 0.7),

where c(g) > 0 is a constant depending on ¢. Since ¢ > 0 can be arbitrarily small, C3 follows.
The case C4 is similar to C3 where we use Theorem 5.3.7(4) and Remark 5.3.8.

(2) According to Theorem 6.2.3(2), M is an L, (IP)-martingale. Then Assumption 4.3.1 holds
because of Example 4.3.2. We now only need to check (4.3.3). If 6 = 1, then the martingale M
is closed by M7 := L5 (IP)-lims47 M; due to (6.4.1) and ®(n) € SM>(P). Then for € = 1 and
for any a € [0,T) one has, a.s.,

E;a[/ T(-,dz)} :]E;a[/ d(M, M), + M,zdt}
J(a,T) J(a,T) J(a,T)

<H*:fa|:|MT_Ma|2‘|‘C(26.4_1)(T—Cl) sup ‘D(U)%i|

te(a,T)
< Ban (T + DIy, ) @2
Ifh e (0,1), then for any 8 < (0, é) and any a € [0, T) one has, a.s.,

Ex, |:/( T)(T —t)l—OMfdt} < 6(26_4,1)T9_9+1 ||®(n)||§M2(P)¢(U)§- 6.4.2)
a,

We apply conditional Itd’s isometry and Proposition 2.3.2(2.3.1) to obtain that, a.s.,
1—6

2
/ (T —1)'2"dM, }
(@.b]

<U=0Bs| [ =0 i | <=0 00 @03 [ (=0l
J(a, J(a,

AT

Er, [/ (T —t)l_ed(M,M),] = limEx,
@.T)

Té—e
< m(l _9)‘7(26.4.1)”q>(77)||§M2(1p>)q>(77)521- (6.4.3)

Combining (6.4.2) with (6.4.3) yields the desired conclusion. ]



CHAPTER 7

Hedging in exponential Lévy models: The semimartingale setting

7.1. Follmer-Schweizer (FS) decomposition

Let X = (X¢):e[o0,7] be a Lévy process on a complete filtered probability space (§2, F,P,[F),
where F = (F¢);¢[o,7] is the augmented natural filtration of X'. We assume that 7 = F7 and let
(X[P) ~ (.0,v).

Assume that X is not a.s. deterministic and that § = e“ is square integrable under . Then
S is a semimartingale with the representation (due to It6’s formula)

S=1+ (/ oS;—dW; +/ St_(ex— l)ﬁ(dl‘,dX)) +/ ys Sy—dt
0 0 JRo 0
= 14+8"+S",

X

where S™ and S™ respectively denote the martingale part and the predictable finite variation part
in the representation of S. We denote

2
o
Ys = y+7+/(ex—1—x]l{|x<1})v(dx), (7.1.1)
R
and use again the notation
(o, v)|| ;=02 + /(ex—l)zv(dx) € (0,00). (7.1.2)
JR
7.1.1. FS decomposition. We briefly present the FS decomposition of a random variable and
the notion of minimal local martingale measure which is the key tool to determine the FS decom-
position. The reader is referred to Schweizer [56] for more information about these objects.

In the exponential Lévy setting, we follow Hubalek, Kallsen and Krawczyk [34, p.863] and
use the family of admissible strategies as

T
AS(P) := {19 predictable : E/ 9282 dt < oo} .
0
It turns out that if % € AS(P), then
T T
E/ 92d[S, S], =IE/ 92d[S™, S™],
0 0
T T
=IE/ §2d(s™, s™), = ||(o,v)||E/ #2852 dt < oo. (7.1.3)
0 0

Definition 7.1.1 (Schweizer [56], F'S decomposition and LRM strategy).
(1) An H € L,(P) admits a FS decomposition if H can be written as

T
H = Hy+ / OFS(H)dS, + LS,
0

55
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where Hy € R, ¥'S(H) € AS(P), and where L' is a square integrable P-martingale
starting at zero and LS is P-orthogonal to the martingale part S™ of S.

(2) The integrand 975 (H) is called the local risk-minimizing strategy of H .

We remark that in the exponential Lévy setting, S satisfies the structure condition, and the
mean-variance trade-off process K of S in the sense of [56, p.553] is
~ V3
RN TCXOT
which is uniformly bounded in (w,?) € Q x [0,T]. Hence, any H € L,(PP) admits a unique FS
decomposition (see Monat and Stricker [44, Theorem 3.4]).
The original definition of LRM strategies is quite involved and it was shown in [56, Theorem
3.3 and Proposition 3.4] that the LRM strategy of an H € L, (IP) can be determined via the FS
decomposition of H. In fact, the LRM strategy of H is the pair (97S(H),nf) (see [56, p.553]),
where 97 (H) is the integrand of the integral term in the FS decomposition of H, and n# is
determined by nff = Hy + Jo OFS(H)dS, + LFS —9FS(H)S. Since nff can be computed by
knowing 9FS(H ), we identify S (H) with the LRM strategy of H.
We continue with the notion of minimal local martingale measure.

ls

Definition 7.1.2 (Schweizer [55], Section 2). Let £(U) € CL([0, T]) be the stochastic exponen-
tial of U, i.e. d€(U) = E(U)-dU with E(U)y = 1, where

U=—__78 (0W+// (eX—l)N(ds,dx)). (7.1.4)
(o, )l 0 J/Ro
If £(U) > 0, then the probability measure P* defined by

dP* = E(U)7dP

is called the minimal local martingale measure for S.

The following assumption, which is imposed on the characteristics of X, ensures that £(U') >
0, and hence P* exists:

Assumption 7.1.3. ys(e* —1) < ||(a,v)|| for all x € supp(v).
Remark that a sufficient condition for Assumption 7.1.3 is

0>ys = —[(v)].

Assume that Assumption 7.1.3 holds true. Then by an application of Girsanov’s theorem
(see, e.g., Esche and Schweizer [17, Propositions 2 and 3]), X is also a Lévy process under P*
with (X |P*) ~ (y*,0™,v™), where

L rsE =D
l(o )

Moreover, if W* and N* are the standard Brownian motion and the compensated Poisson ran-
dom measure of X under P*, then

yso

wr=w,+- 157 4 7.15

O TP0T 712

N*(dt,dx) = N (dr,dx) + ”(V—S)”(ex ~ Dw(dx)dr. (7.1.6)
o,V

oc*=0 and v*(dx)= ( )v(dx).
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7.2. Explicit LRM strategies

There are many works interested in finding an explicit representation for the FS decompo-
sition and for the LRM strategy in the semimartingale framework, for example, see Hubalek,
Kallsen and Krawczyk [34], Goutte, Oudjane and Russo [32], Kallsen and Pauwels [38], Tankov
[58].

In the exponential Lévy setting and in the case of a European type option H = g(Sr),
Hubalek, Kallsen and Krawczyk [34] assumed that the function g can be represented as an inte-
gral transform of finite complex measures from which one can determine a closed form expres-
sion for the LRM strategy ([34, Proposition 3.1]). The key idea of this approach is the separation
of the function g and the underlying price process S by using a kind of inverse Fourier transform.
An advantage of this method is that one gains much flexibility for choosing the underlying Lévy
process where there is no extra regularity required for the driving process S except some mild
integrability.

As our first main result, Theorem 7.2.1 below provides a closed form for the LRM strategy
OFS(H) of an H = g(S7). To obtain this result, except of some mild integrability conditions,
we neither assume any regularity for the payoff function g nor require any extra condition for the
small jump behavior of X. However, the price one has to pay is the condition that P* exists as a
true probability measure (see Assumption 7.1.3) which leads to a constraint for the characteristics
of X. This result might be regarded as a counterpart of [34, Proposition 3.1] in which only
the square integrability is required for S while the function g are supposed to be the integral
transform of finite complex measures. The notation E* below means the expectation with respect
to P*.

Theorem 7.2.1 (Explicit LRM strategies). Under Assumption 7.1.3, if g:(0,00) — R is a Borel
Sunction with E*|g(yS;)| < oo forall (t,y) €[0,T]x (0,00) and g(St) € Lo(P) N Lo (P*), then
the following assertions hold:

(1) The LRM strategy 9FS(H) corresponding to H = g(St) is of the form

G*(t,e*S;_)—G™*(t,S;_
azayG*(t,St_)—i-/ t.e75i-) (¢ 5:-)

FS
H) =
0> (H) . S,

(e*— l)v(dx))
(7.2.1)

i
([CAR)

for P® A-a.e. (w,t) € Q x[0,T], where ||(0,v)]| is provided in (7.1.2), G*(t,y) :=
E*g(ySt—¢), and we set 9,G* := 0 when o = 0 by convention.

(2) There exists a process 9¥5(g) € CL([0,T)) such that 9F5(g) = 9FS(H) for P® A-a.e.
(w,1) € Qx[0,T), and ¥55(g)S is a P*-martingale.

Before proving this theorem, let us comment on it. According to Theorem 7.2.1(2), HES (g)is
also a LRM strategy of H = g(ST1). Moreover, the cadlag property of 9Fs (g) is useful to design
some Riemann-type approximations for |, OT ﬁf S (g)dS;. For example, an approximation scheme
based on tracking jumps of 9FS (g) has been constructed in Rosenbaum and Tankov [48]. We
also use this cadlag version for the discrete-time hedging problem in the next subsection. Such
a path regularity for the integrand in the martingale setting was also studied in Ma, Protter and
Zhang [42].

The main tool to prove Theorem 7.2.1 is the following martingale representation:
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Proposition 7.2.2. Assume that f:R — R is a Borel function such that E| f (x + X;)| < oo for
all (t,x) € [0, TIxR. If f(XT) € L2(IP), then

T T
E/ lodx F(t,X;_)|?dr —HE/ / |F(t,Xs— 4+ x)— F(t, X;—)|*v(dx)dt < 0o
0 0 JR

and, a.s.,
T T "
fXt)=Ef(X7)+ / 00x F(t, X;—)dW; + / (F(t,X(—+x)—F(t,X;~))N (dt,dx),
Jo Jo JRr
’ (7.2.2)
where F(t,x) :=E f(x + X7—;) for (t,x) € [0,T] xR, and we set 0x F :=0ifo = 0.
PROOF. See the proof of [61, Proposition 1.2]. O

Proposition 7.2.2 extends [14, Proposition 7] in which the function f has a polynomial
growth and X satisfies a certain condition. A similar representation to (7.2.2) in a general frame-
work (with different assumptions from ours) can be found in the proof of [36, Theorem 2.4]. On
the other hand, when f(X7) is Malliavin differentiable then one can use the Clark—Ocone for-
mula (e.g., see Arai and Suzuki [4], Benth et al. [6], Lgkka [41]) to obtain its explicit martingale
representation. However, the Malliavin differentiability of f(X7) fails to hold in many contexts.
For example, if f(x) = l[g o0)(x) for some K € R, X is of infinite variation and X7 has a
density satisfying a mild condition, then f(X7) is not Malliavin differentiable (see Laukkarinen
[40, Theorem 6(b)]).

PROOF OF THEOREM 7.2.1. Let f(x) := g(e*) and F*(¢,x) := E* f(x + X7—;). Then we
have G*(t,e*) = F*(¢,x) for (t,x) € [0,T] x R. Define
AyG*(t,x):=G*(t,e*S;—)—G*(t,S5;—), (t,x)€[0,T]xR.

(1) We present here a direct proof for this assertion, an alternative argument for more general
settings can be found in [12, Proof of Theorem 4.3]. By assumption, f(X7) = g(S1) € Lo(P*)
and E*| f(x + X;)| = E*|g(e*S;)| < oo for any (£,x) € [0, T] xR, we apply Proposition 7.2.2
to obtain

K*:]E*g(ST)+/GSt_ayG*(l‘,S,_)th*—l—// AJG*(I,X)N*(dt,dX), (7.2.3)
0 0 JRo

where K* = (K[)e[0,7] is the cadlag version of the L (P*)-martingale (E;‘t[g(ST)])te[O,T]s
and where W* and N* are introduced in (7.1.5) and (7.1.6). Then it holds that EWU)K* is a
martingale under P. Since the P-martingale U given in (7.1.4) satisfies that

2t
KOl = 725 (02 T /R (o 1>2v(dx>) < oo,

it implies that £(U) is regular and satisfies (R3) in the sense of Choulli, Krawczyk and Stricker
[11, Proposition 3.7]. Since K7 = g(S7) € L»(IP) by assumption, we apply [11, Theorem
4.9((1)<>(i1))] to obtain

E[K*,K*|r < oo.
Combining this with (7.2.3) yields

T T
]E/ 02|S,_8yG*(t,St_)|2dt+E/ / |A;G*(t,x)|>N(dt,dx) = E[K*, K*|7 < oo.
0 0 JRo
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Since dfv(dx) is the predictable P-compensator of N(d¢,dx), it implies that

T T
E/ 02|S,_ayG*(z,S,_)|2dt+E/ /|AJG*(t,x)|2v(dx)dt<oo. (7.2.4)
0 0 JR

Using Cauchy—Schwarz’s inequality yields

T
IE/ 0?S% [0,G*(t, S, )|dt+IE/ /|AJG (t,x)S;—(e* —1)|v(dx)dr

\/ / S2. dz\/ / |028,-03, G*(t, S;—)|2dt
X _1)2 2 * 2
+\//R(e 1) v(dx)\/E/O St_dt\/]E/O /R|AJG (t,x)|?v(dx)dt

On the other hand, the FS decomposition of H = g(S7) is

(7.2.5)

T
g(St) = Ho+ / OFS(H)dS, + LD (7.2.6)
0
where Hy € R, 97 (H) € AS(P) and LS € Mg(P) is P-orthogonal to the martingale component

S™of S. According to [56, Eq. (3.10)], it holds that L is a local P*-martingale. We remark that
Jo S (H)dS; is also a local P*-martingale. Using Cauchy—Schwarz’s inequality and (7.1.3), we

obtain
E* \JILFS, LFS]r < EWU) 7 |l )  EILFS, LFS]7 < 00,

T T
E* \// (95 (H)[2d[S, S]: < IEWU)TlIL @) \/E/ (975 (H)[2d[S. S < 0.
0 0

Hence, the Burkholder—Davis—Gundy inequality verifies that both LFS and Jo S (H)dS, are
P*-martingales. Combining (7.2.3) with (7.2.6), we derive Hy = E*g(S7) and

/ﬁfS(H)dSt—l—LFS:/ aS,_ayG*(z,S,_)dW,*+// AyG*(t,x)N*(dt,dx).
0 0 0JR
’ (1.2.7)

Recall that the martingale part of S is S™ = [0 S;—dW; + [g [, Se—(e* — 1)N (dt,dx). Since
(LFS,S™¥ = 0 by the definition of the FS decomposition, we take the predictable quadratic

covariation on both sides of (7.2.7) with S™ under P and notice that the integrability condition
(7.2.5) holds to obtain

(o, v)| / OFS(H)S? dt = / 0282 0,G*(t,S;—)dt + / / AyG*(t,x)S;—(e* — 1)v(dx)dz,
Jo Jo Jo Jr
which yields (7.2.1) as desired.
(2) It follows from Cauchy—Schwarz’s inequality and (7.2.4) that

T T
IE*/ |ozSt_8yG*(t,St_)|dt+]E*/ /|AJG*(t,x)(ex—1)|v(dx)dt
0 0o Jr
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T
SVTIEW)T L) \/E/O l028:-0y G*(t, S;-) |2t

T
HIED) T e \/T /R (ex—l)zv(dx)\/E /0 /R 1A G*(t.x)[2v(dx)dr
< 0. (7.2.8)

By assumption, it is clear that (G*(¢,e*S;) —G* (¢, St))¢e[o,1] is a P*-martingale for each x € R.
In the case o > 0, due to g(S7) € L2 (IP*) and [61, Lemma 3.1], (S;:d, G*(t,St))s¢0,T) is also
a P*-martingale. Hence, the function

[0,T) 3¢+ E*|0?S:0,G*(t,S;)| + E* / |G*(t,e*Sy)—G*(t,S;)|]e*¥ —1|v(dx)
JR

is non-decreasing by the martingale property. In addition, noticing that S;— = S; a.s. for each
t € [0, T], we infer from (7.2.8) and Fubini’s theorem that

E*|025t8yG*(t,St)|+]E*/ |G*(t.e*S;) —G*(t,S:)||e* — 1|v(dx) < oo
R
for all t € [0, T'). Therefore,
1
( (aZS,ayG*(z,S,)+/(G*(z,exs,)—G*(z,S,))(ex—1)v(dx)))
(o, v)]| R t€[0,T)

isa P*-martingale for which one can find a cadlag modification, denoted by ¢&. Then the process
¥F8(g) defined by

58(g) = < (7.2.9)
satisfies the desired requirements. g

It turns out that any cadlag version of the LRM strategy 9> (H) of H = g(St) can be
determined as follows:

Remark 7.2.3. Let & € CL([0. 7)) be such that & = 9™5(g) for P® A-a.e. (w.1) € 2 x[0,T),
where #5(g) given in (7.2.9). Then P(¢, = #F5(g), Vt €[0,T)) = 1 due to the cadlag property.
Hence, ¥_ is also a LRM strategy of H = g(S7), and it holds that, for any ¢ € [0, T),
(UZS,B),G*(Z, Sy + / (G*(t,e*S;)—G™*(t,S:))(e* — 1)v(dx)) a.s.

R

o
GO

t

7.3. Discretisation of LRM strategies

The results about approximation using the LRM strategy HES (g) are given in items (4)—(6)
of Theorem 7.3.1 below. In fact, 975 (g) is quite difficult to investigate directly under the original
measure P but it fits well the main assumption Assumption 4.3.3 under the minimal martingale
measure P*. Therefore, our idea is to switch between the original measure P and the minimal
martingale measure P* and use the fact that weighted BMO-norms allow a change of measure as
given in Proposition 2.2.4(3). Here, we focus on the case ys # 0 (ys given in (7.1.1)) since the
case ys = 0, which corresponds to the martingale setting, is investigated in Chapter 6.

For 7 € [0, 1], we recall the processes ®(n), ®(n) from (6.3.1), and define ®(n) as follows:

D()s := D) +SUpyefo. | APMul. 1 €[0.T].
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We also recall W14 (R4) from Definition 5.3.1, and 8;(«), S () from Definition 5.3.2.
Theorem 7.3.1. Assume Assumption 7.1.3, ys # 0 and fl |>1 e3*v(dx) < co. Let g € Hol,(R4)
with 1 € [0, 1]. Then the following assertions hold:

(1) Both ®(n) and ®(n) belong to SM3(P) N SM, (P*).

(2) P* € RH3(P) and there is a constant ¢ > 0 such that

I D20 ey < €1 Iy
3) Set M := HFs (2)S. Then Assumption 4.3.3 is satisfied under P* for the selection
ox)=x. 0=05(), Y(.d)y=d(M M) + M2, ©=0()
and for the parameter 6 provided in Table 7.1.
(4) With the adapted time-nets r,? given in (2.5.1), one has
E5 (37 (g). 7

1
—-L 1-9
n 2r’—

2 )”BMO?(")(}P*) <00, (7.3.1)

1
supn?2r
n>1

where the parameters r and 0 are provided in Table 7.1.

(5) Lets € (1,00). Assume in addition when w €[~1,00) thatfl
Then there is a constant ¢ > 1 such that

x|>1 e(179)% ) (dx) < oc.

[ ||BMO§(n>(P*) ~c |- ”BMO?(”)(P)’

and hence

supn% 00, (7.3.2)

n>1

o (750608

) ”BMO2 $m (1?)
where the parameters r and 0 are provided in Table 7.1. Moreover, (7.3.2) holds true for
the L3(IP)-norm in place of the BMO;T)(")(]P’)-norm.

(6) If in addition -f|x|>1 eP*v(dx) < oo for some p € (3,00), then (7.3.1) (resp. (7.3.2)) is
satisfied for the Lp_1(IP*)-norm (resp. L,(P)-norm) in place of the BMO? (m (P*)-norm
(resp. BMO? (m (P)-norm).

Table 7.1: Values of parameters r and 6

o andn Small jump condition Regularity of g Conclusions for r and 6
Vrela,?2
o>0 ixj<1 X[V (dx) < 00 . re el .
ci Tl g €Hol,(Ry) | VO e (0. ifne (1)
ne(0,1] | for some o €[1,2] .
0=1ifn=1
o oc=0 f|x|<1|x|°‘v(dx)<oo ¢ € Holy (R+) Vr € [a,2]
nel0,1] | for some o €[1,n+1] 0=1
oc=0 veESi(a) . Vre (a.2]
c3 g € Hol,(R4) 2(1+n)
ne€l0,1) | forsome o €[l+n,2) VQE(O,T—I)
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=0 c S o1 1 Vr e (05,2]
cal® v e 8y (a) g e WhT(R,) )
n€l0,1) | forsomea €[l+n,2) Vo e (O,T—l)
PROOF. See the proof of [61, Theorem 5.12]. ]

Remark 7.3.2. (1) Let us comment on the parameters r and 6 in Table 7.1. First, since we use

2)

the adapted time-net r,? which leads to better estimates, it implies that the parameter r only
depends on the behavior of v around zero. Moreover, the smaller r is, the better approxi-
mation accuracy one achieves. The parameter 6 is the outcome of the interplay between the
behavior of v around zero and the Holder regularity of the payoff function.

Since X is a Lévy process under both measures P and P*, we apply [60, Proposition 5.3]
(with « = 2 and k = %, &= n_Tlr) to conclude that the parameter n in front of the
BMOf(")(P*)-norm in (7.3.1) can be regarded as the L;(P)-norm and also the L, (P*)-

— . . 1 q- .
norm of the cardinality of the combined time-net t,? Up(n=2r, L 29). The parameter n in

front of the BMOf(") (P)-norm in (7.3.2) can be interpreted in a similar manner.
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ON RIEMANN-LIOUVILLE OPERATORS, BMO, GRADIENT ESTIMATES IN
THE LEVY-ITO SPACE, AND APPROXIMATION

STEFAN GEISS AND NGUYEN TRAN THUAN

ABSTRACT. In this article we discuss in a stochastic framework the interplay between Riemann-
Liouville operators applied to cadlag processes, real interpolation, weighted bounded mean os-
cillation, estimates for gradient processes on the Lévy-Ito space, and the connection to an ap-
proximation problem for stochastic integrals. We prove upper and lower bounds for gradient
processes appearing in a Brownian setting within the Feynman-Kac theory for parabolic PDEs
and in the setting of Lévy processes. The upper bounds are formulated by BMO-conditions
on the fractional integrated gradient, the lower bounds are formulated in terms of oscillatory
quantities. In the case of Lévy processes we are concerned with a gradient process with values in
a Hilbert space where the regularity of this process depends on the direction within this Hilbert
space. Moreover, it turns out that certain Holder properties of terminal functions transfer into
a singularity in time that can be compensated by Riemann-Liouville operators.
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1. Introduction 1
2. Preliminaries 8
3. Riemann-Liouville type operators 11
4. Riemann-Liouville type operators and approximation 15
5. Oscillation of stochastic processes and lower bounds 19
6. Brownian setting: Gradient estimates and approximation 22
7. An interpolation result 29
8. Lévy setting: Directional gradient estimates and applications 30

1. INTRODUCTION

This article investigates the interplay between Riemann-Liouville operators applied to cadlag
processes, gradient estimates for functionals on the Lévy-Itd space, bounded mean oscillation
(BMO), approximation theory, and the real interpolation method from Banach space theory.

To explain this, let us assume a stochastic basis (2, F, P, (F¢)¢e[o,r7) with finite time-horizon
T > 0. There are various applications in which stochastic processes ¢ = (¢¢)e[o,7) appear that
have a singularity when ¢ 1 T, for example in L, for some p € [1,00]. Examples are gradient
processes obtained from (semi-linear) parabolic backward PDEs within the Feynman-Kac theory,
where these processes appear as integrands in stochastic integral representations (see Section 6)
or in backward stochastic differential equations as gradient processes. The same type of processes
appear also as gradient processes originating from convolution semi-groups based on Lévy processes
and that are used, for example, in Galtchouk-Kunita-Watanabe projections (see Section 8).

If one analyzes these examples, then one realizes the following:
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2 STEFAN GEISS AND NGUYEN TRAN THUAN

— SELF-SIMILARITY: There is a Markovian structure behind that generates a self-similarity
in the sense that, given a € (0,7) and B € F, of positive measure, then (¢;)¢cja,1) Te-
stricted to B has similar properties as (¢¢)e(o,7). If one is interested in good distributional
estimates of (¢¢)sefo,7) or functionals of it, then it is useful to consider the BMO-setting:
the particular feature of BMO-estimates is that one uses conditional Lo-estimates, where
one might exploit conditional orthogonality, in order to deduce L,-estimates for p > 2 or
exponential estimates by John-Nirenberg type theorems.

— POLYNOMIAL BLOW-UP: In the problems mentioned above the size of the singularity of ¢
(or, again, a functional of it) increases polynomially in time with a rate (7T'—¢)~“ for some
a > 0. In particular, this often occurs in the presence of Holder functionals as terminal
conditions in backward problems.

The above observations lead to an interplay between RIEMANN-LIOUVILLE OPERATORS, BMO,
and the REAL INTERPOLATION METHOD. These components interact as follows: We realized that
the Riemann-Liouville operators allow for a transformation of a stochastic process with a certain
singularity when ¢ 1 T into a stochastic process without this singularity (but without loosing any
information about the process one is starting from). In particular, this is of interest for martin-
gales. By the obtained formulas this opens a link to real interpolation theory, which has a natural
explanation as we interpolate with a two-parametric scale between, for example, martingales with-
out singularity and martingales with a singularity. As a consequence of the self-similarity of the
singular process one is starting from, it is natural to think that the Riemann-Liouville operator
turns this process into a BMO-process by removing the singularity but keeping the self-similarity.
Therefore we consider the stochastic processes transformed by the Riemann-Liouville operator in
the BMO-setting. One starting point to investigate the connections between Riemann-Liouville
operators, BMO, and real interpolation is an approximation problem for stochastic integrals, so
that we will deal with four objects that interact with each other.

In the second part of this article we give two applications of the above methodology in Section 6
and Section 8. To explain this, let CY(R) be the bounded continuous functions and H51] (R) be the
Lipschitz functions, both defined on R and vanishing at zero. We define the two-parametric scale
of Holder functions by the real interpolation method as

HoIY ,(R) = (C(R), HOI(R)),., for (n.q) € (0,1) x [1,00]

Section 6: Let W = (Wy)epo,r) be a standard Brownian motion and Y = (Y});e[0,17 be the
geometric Brownian motion
Y, = et

and consider a Borel function g : (0,00) — R with ¢g(Y7) € Ly and

g(YT)=]E9(YT)+/( pdY;  as. (1.1)
0,7)

Here, for t € [0,T) we use
G(t,y) :=Eg(yYr_1), o1 :=(0G/0y)(t,Yr), and Z;:= @Yy,

so that g(Yr) = Eg(YT)Jrf(&T) ZdWy. For a deterministic time-net 7,0 =to < t; < --- <t, =T,
we define the approximation error for the Riemann approximation of the stochastic integral as

t n

Et(g;T) = /0 stdYs - Z‘Ptiq(YtiAt - }/ti,1/\t)~
i=1

One has [|[Er(g;7)|L, = ﬁ for some ¢ > 0 for all time-nets 7, 0 =ty < --- < t,, = T, provided
that there are no a,b € R such that g(Yr) = a + bY7r a.s. (see [16, Theorem 2.5]). To estimate
Er(g;7) from above usually the Lo-setting is used to exploit orthogonality (see, for example,
[19, 16, 22] for the Wiener space and [17] for the corresponding problem on the Lévy-Ito space).
The approximation in L,, for p € [2, c0) is considered in [24] on the Wiener space. A different route
is taken in [20] where it is shown by [20, Theorems 7 and 8] that
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[(E¢(g; 7)) eeo,mlIBMOY ([0,77) < C\/, sup ti —ti—a| forall 7={t;};_g €T

<= g is (equivalent to) a Lipschitz function, (1.2)

where 7 stands for the set of all deterministic time-nets 7 = {;}7,, 0 = top < -+ < t, =
T, and the weighted BMO-spaces BMOJ ([0,7]) are introduced in Definition 2.1. Note that
[(E¢(9; 7)) eefo,m|IBMOY ([0,77) Only requires local La-estimates that are more feasible than Lj-esti-

mates for p > 2. The importance of the Bl\/[O;P—spaces7 q € (0,00), comes from the fact that, for
example,

P < sup |A] > @MV||A||BMO§([O7T])> <e'"F+taP < sup P; > 1/)
te[0,T] te[0,T]

for p,v > 0, where a,« > 0 are constants depending at most on ¢ (this follows from [20, equation

(5), part (a) of the proof of Corollary 1]). Therefore, the moments of the weight ® determine the

moments of A. This BMO-approach is also used in the context of BSDEs in [25].

Our first main result is the extension of the equivalence (1.2). Firstly we show in Theorem 6.4
that the geometric Brownian motion in (1.2) can be replaced by a more general diffusion while
keeping the equivalence. However, this is still in the Lipschitz framework and gives the impression
that this approach is tight to Lipschitz functionals ¢(Y7). But our second contribution is to move
away from the Lipschitz framework, which is done in Theorem 6.5, where we prove for 6 € (0, 1)
that

137 — Zy € BMO2([0,7))

_ 1.3
(T —1t)F°|Z| < c®; as. (1.3)

vreT [[(Ew(g;7))ien,m) lIB7MOZ (0,1)) < ¢V ITllo <= {

under mild conditions on the weight-process ® and an a-priori condition on ¢, where the Riemann-
Liouwille operator Z¢ is defined in (1.10) and

ti —ti—1

Tllg:= sup —-—— for T={t;},€T. 1.4
Il = swp {ta)iso (1.4)
In particular, we consider the time-nets 7¢ := (T'— T(1 — (i/n))#)™_, which concentrate more

around t = T the smaller # is and which are therefore suitable to handle singularities at ¢ 1 T

Since we have
0

0 T

Inlle < 5
one obtains the optimal rate 1/4/n on the left-hand side in (1.3). The right-hand side in (1.3)
is a statement about fractional smoothness in the following sense: After removing a singularity
of order 15—6 from the process Z by applying the Riemann-Liouville operator of order % we
obtain an object in BMOZ ([0,7))). So one might think about a fractional smoothness of order
1150 =104y BMOZ ([0, T)). The next step is to investigate the right-hand side of (1.3) which
is of independent interest. For g € Hélg)Q(R) and the weight process ®; := Y sup¢jo (Y571 we

show in Theorem 6.5 and Theorem 6.6 for all ¢ € (0, 00) that
- 10 10
I 7~ Zy € BMO?([O,T)) and Z,° Z:= ltiTI%It > 7 in Lg and a.s.,

and that ® satisfies a generalized reverse Holder inequality (denoted by ® € SM,([0,T)) in
Definition 2.2).

Section 8: The second application concerns gradient estimates for functionals of Lévy processes.
Let us assume a pure jump Lévy process X = (X¢);c[o,r] which is an Lo-martingale with a non-zero
Lévy measure v. Given a functional f(Xp) € Lo, where f : R — R is a Borel function, we consider
a gradient process

M;:Q — H = Ly(R,2%v(dz)), te€][0,T),
associated to f(Xr), which naturally replaces the process Z = (Z;)co,1), obtained from (1.1) by
Z = Y, and satisfies (for the precise interpretation see Appendix D.2 and Appendix D.3)

1 t
Mtzf/ D, EF(f(Xp)]ds for te(0,T), (1.5)
t Jo
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where D . is the Malliavin derivative. Assume that the Lévy process satisfies

P -P
sup sup 5P IP-+x. XMV < 50 (1.6)

5€(0,T] z€supp(»)\ {0} 2|

for some 8 € (1,2), where P, x. and Px_  are the laws of z + X, and Xj, respectively, and
|| - ||rv stands for the total variation. Upper bounds for ||P,;x. —Px_|rv are already investigated
in the literature (see [39, Theorem 3.1]). We measure the fractional smoothness of f(Xr) in the
direction D € Ly(R, 2%v(dz)), D > 0, by determining the regularity of the “directional” martingales
((M, D) g (t))iefo,r) in dependence on D. It turns out that, for € € (0, 1), the e-small ball condition,

sup 25”/ D(2)2*v(dz) < oo, (1.7)
{27m<zl <2741}

n>1

plays a central role. A second main result of the article is
1—(e+
2 (131,210 - (31.0)(0) e

for (¢,8) € (0,1) x (1,2),n € (0,1 —¢), and f € Hélgz(R). To check this, we define the measure

) € BMOy([0,T)) with «:= (1.8)

te[0,T)

p(dz) = D(z)zzy(dz)//RD(z)z2y(dz) on B(R)

so that (1.7) turns into sup,,5; 2"p({27" < |2| < 27""!}) < oo, use equation (D.4), and apply to
D,F(t,X¢) from (D.4) the statements Theorem 8.11 and Corollary 8.13. The relation (1.8) is the
counterpart to (1.3), however a depends on the direction D via the small ball condition (1.7). An
application, we discuss, is the approximation of the stochastic integral appearing in the Galtchouk-

Kunita-Watanabe projection of f(Xr) if one projects on the space of stochastic integrals driven
by

xP .= / D(z)zN(ds, dz),
(0,t] xR

where N is the compensated Poisson random measure of X. By Proposition 8.2 and equation
(D.4) we have for f € Dx N Ly(R,Px,.) (Dx is given in Definition 8.1) the explicit representation
of the Galtchouk-Kunita-Watanabe projection

1

D D\w Vv D
(D, D) /(O,T)<M’D>H(t )Xy

In our later notation we will have ¢.(f,p) = (M,D)g(t)/ [ D(2)z*v(dz) and define the corre-
sponding error process of the Riemann approximation of the stochastic integral with respect to the
time-net 7 = {t;}1* € T as

Eu(f;7.D) = / o (:0)AXP =S oo\ (F )X — XP ), te[0,T).
=1

Let us additionally assume that the Lévy measure satisfies v(dz) = p, (z)dz, where p, is symmetric
and

0 < liminf [2|*™p, (2) <limsup |z|*p,(2) < 0o
|z[—0 |z|—0

which ensures that (1.6) is satisfied. Assume also that the functional D satisfies the e-small ball
condition (1.7). Then, in Theorem 8.21 we prove that for p € [2,00), 6 := 1 — 2a (« is given by
(1.8)), and f € Hdl, »(R) one has

1 E7e [Supue[a,t] q)g
nA2’ €\ (T —t)re

Pr, (\Et(f;Tg,D)—Ea(f;Tg,Dﬂ > A) < cmin a.s. (1.9)

for 0 < a <t < T and A > 0 and any non-negative adapted cadlag process (®)uejo with
1V [AX,| < @ for all s € [0,¢] and sup,¢jg, Pu € Lp. Inequality (1.9) corresponds to the left-
hand side of (1.3). Here 1/(n)?) is achieved by using the adapted time-nets 7. If p > 2, then we
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have a higher integrability by the term 1/AP that goes back to the self-improving properties of the
BMO-spaces. For example, this term leads to the large deviation inequality

1 Esup 27
0 1 Esubucpo P4
]P) (|Et(faTn7‘D)| > )\) < CAp (T _ t)poc

that gives a better upper bound than ﬁ for large A.

In order to treat the applications described so far we deal with some general results about the
interaction of Riemann-Liouville operators, interpolation, BMO, and approximation theory:

Section 3: We study general properties of Riemann-Liouville operators applied to martingales
and the relation to real interpolation and an integrated square function. In Definition 3.1 for a > 0
and a cadlag function K : [0,7) — R we define 7K := (Z{ K )ycjo,1) by

T

® (T - wo ' Kyndu and I0K = K. (1.10)

Ta Jo
Furthermore, in Definition 3.5 we define for a cadlag process ¢ = (¢¢)icjo,r), @ € [0,T], and a
deterministic time-net 7 = {t;}7, 0 = to < --- < t, = T, the following integrated square-function

a 2
(05 7]a ::/0

n
Pu — Z Pt 4 ]]'(tifl,ti] (U) du.
i=1
In Theorem 3.6 we prove for 6 € (0,1) and a cadlag martingale ¢ = (¢¢)¢cjo,1) € L2 the equivalence

YK =

(Z; ® ¥)icpo,1) is a martingale closable in Ly <= 3¢ > 0 V7 € T E[p;7]r < ¢|7]lo (1.11)
where || - ||g is defined in (1.4). Theorem 3.6 also includes an equivalence to interpolation spaces
of type (Ey, E1)g2. Theorem 3.6 enables us to connect the Riemann-Liouville operators and the

Holder spaces Hélg’z (R) to our approximation problem. Independently from the above connections,
the functional [¢; 7] can be interpreted as a square-function adapted to non-closable martingales.

Section 4 transfers (1.11) to the setting of weighted BMO, the setting we exploit for our estimates
later. A special case of Theorem 4.8 is the following:

Theorem 1.1. Assume a cadlag martingale ¢ = (pt)icjo,r)y S L2. Then for 0 € (0,1] and
o= 1;29 the following assertions are equivalent:
(1) One has I% — o € bmoy([0,T)) and there is a c(1.12) > 0 such that one has

ARAY
|<pa<p5|<c(1.12)ETs))? for 0<s<a<T as. (1.12)
—a)?

(2) There is a constant c(1.13y > 0 such that, for all time-nets T € T,
lls2; T]lBMOL (0, 7)) < c(1.13)lI7]l0- (1.13)

In (1) the bmoy(]0,T))-spaces are defined in Definition 2.1. Moreover, in no direction the
conditions Z%p — ¢y € bmoy([0,7")) and (1.12) imply each other in general (see [21]).

Section 5: We find lower bounds for (1.13) by using a concept of lower oscillation of stochastic
processes. In Definition 5.1 we define for a stochastic process ¢ = (¢¢)icjo,r) and t € (0,T) the
oscillatory quantity

Oscy () := séféft) llor — osllia

and call ¢ of mazimal oscillation with constant ¢ > 1 if for all ¢ € (0,7) one has

1
Osc,(p) > ;II% — @0l Lo -

For us the maximal oscillation is of interest for martingales as it says that for all 0 < s < t one
has |l — wslle ~ ller — wollL., up to some factor. The corresponding lower bounds for (1.13)
are summarized in the following statement (see Theorem 5.7):

Theorem 1.2. Assume 0 € (0,1] and a martingale (p¢)icjo,ry S L2. Assume that one has
oo > |l[¢; 7]llBMmoO, (jo, 1)) — O whenever ||T||y — 0. Then the following assertions are equivalent:
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(1) infye o) (T — )2 Osc, () > 0.
(2) There is a ¢ > 0 such that for all time-nets 7 = {t;}7_y € T one has ||[; T]|[B7mO, (0,7)) =
clirllo-

Section 7: We provide with Theorem 7.1 an interpolation theorem adapted to gradient esti-
mates in the Lévy setting which is formulated in a general context and for this reason of possible
independent interest.

Section 8: We return to a Lévy processes X = (X;);c[o,r] that is a pure jump Lp-martingale
with a non-zero Lévy measure v and fix a probability measure p on B(R). In Definition 8.5 we
introduce a linear space Dom(Fg) of Borel functions f : R — R and the operator

9 :Dom(I9) R with (f,T0):= / Bz XT‘ti —EfXr-) a2,
R\{0}

In the special case p < v with p(dz) = D(2)z*v(dz)/ [ D(2)z°v(dz), where D € Lo(R, 2°v(dz))
is non-negative with [, D(z)z%v(dz) > 0, these operators satisfy (formally)

e+ s = [ [} [ ommiicen) ] pevian) [ bt

for t € (0,T), see (D.3), that takes us back to (1.5). The deterministic operators T'¢ , will be the
main tool to obtain estimates on stochastic gradients where we use that the operators I'Y , are
linear and deterministic and allow therefore for the application of interpolation techniques from
Banach space theory. To understand 1"?’ , as mathematical object we associate to the probability
measure p (that was arbitrary) and to the process X a probability density ., € Li(R) for which
it follows from Theorem 8.10 that in a distributional sense

F(t),p = =Di,p,
i.e. T ) can be seen as a derivative of a distribution of L;-type. Because ((f(-+z),T? )|z=x,)ie(0.1)
will be a martingale under our assumptions, we let
(pe(f, P))te[o,T) be a cadlag version of ({f(- + x), ng>|z:Xt)te[07T). (1.14)
Section 8.3 (UPPER BOUNDS FOR GRADIENTS): We introduce
2 22 [T 20-1 0 \|2
A1 o i= s [T =7 sup (7 +.2).12 ) Pl

for & > 0 and obtain as a corollary of Theorem 8.11:

Theorem 1.3. Foraa> 0 and f € Dom(Fg) one has

T—a\" o
aes[%%)< 7 ) lea(f Pl + 1220 (f,0) = 20 (£, )| satono.ryy < A0 (1.15)

To estimate || ][, , in the next step, for n € [0, 1] and s € [0,T] we introduce

||XS||TV(p,77) = l%f{/ P(z)lnp(dz)} c [0,00],
R\{0}

where the infimum is taken over all measurable P : R\{0} — [0, 00) such that

IP.+x, — Px,
|2

V< P(z) for zeR\{0}.

Then Theorem 8.9 verifies

0
I(f,Te 0| < Hf”Halgm(]R)||XT—t||TV(p,n)
which serves as end-point estimates in the interpolation Theorem 7.1 to get in Corollary 8.13 that

1—(e+n
Ml < ol gy Tor aim 250 (1.16)

1
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under the assumptions

et IPovx, —Px.|Tv

sup2°"p({27" < 2| < 27" <00 and  sup sup < oo

n>1 s€(0,T] zesupp(v)\{0} ‘Z|
(1.17)
for (¢,8) € (0,1) x (1,2) and € (0,1 — ). Combining (1.16) and (1.15) gives

T—a\" o
Jup (T> lea(f, P)le + [Z(f. 2) = 20(f, )l grton 0.1y < 416 flluio ,m)- (1.18)

This estimate develops further the result [39, Theorem 1.3] as explained in Remark 8.22. One
application of (1.18) is that we are now in a position to apply Theorem 4.7 (which corresponds to
(1)= (2) in Theorem 1.1).

Section 8.4 (LOWER BOUNDS FOR GRADIENTS): We consider the case

p(dz) == z2l/(dz)//Rz21/(dz) (1.19)

where v is the Lévy measure. This case yields to the gradients appearing in the classical Galtchouk-
Kunita-Watanabe projection. We assume the following bounds that are the counterpart to the
upper bounds in (1.17):

ot o
PXs cvt[=2027)) o -3 (1.20)

p([—d,d]) > cd* P and inf

1
|[v|V]z|<c's B ,z#£0 |Z‘

for d € (0,do] and s € (0,77, respectively, where ¢, ¢, ¢”,dy > 0 are constants and z* and 2~ are
the positive and negative part of z. In the case of S-stable like processes as in Section 8.5 we have
that (1.17) is satisfied with € := 2 — 8 and (1.20) is satisfied. For the fractional smoothness « in
the upper bound we get then

:1—(s+n):1—(275+n):171+n
B B B

This coincides with the lower bound we get for n-Hdélder continuous functions from Theorem 8.20:

Qv

Theorem 1.4. Let n € (0,1) and B € [1 +1,2) and assume || X|Tv(py < oo for s € (0,T].
Suppose that (1.19) and (1.20) are satisfied. If f(x) := (x Vv 0)" € H6L,(R), then

s 1— 147 0
c1.4) = tel[IOl,fT)(T —t) 7 (f,I},) >0.

Now we combine the maximal oscillation of (¢¢)icjo,7y (Theorem 8.19(2)) and Theorem 1.4 to
deduce that, for ¢ = ¢(f, p) given in (1.14) ,

1 1 1
Oscy(¢) 2 5llee = wollze. = 5 (et 2o — leol] = 5

C(1.4)
m — |eol | -

Section 8.5 discusses the application of the results to -stable like processes.

The sections of the article interact as follows:

2. Preliminaries

— I~

5. Oscillation 7. Interpolation

3. Riemann-Liouville operators
4. Riemann-Liouville op’s & approximation

) ~ b

6. Gradient estimates: Brownian setting 8. Gradient estimates: Lévy setting




8 STEFAN GEISS AND NGUYEN TRAN THUAN

2. PRELIMINARIES

2.1. General notation. We let N := {1,2,...} and Ny := {0,1,2,...}. For a,b € R we use

a Vb := max{a,b}, a Ab:= min{a,b}, a* :=a V0, a” :=(—a) V0, and for A,B>0andc>1
the notation A ~. B for %B < A < ¢B. The corresponding one-sided inequalities are abbreviated
by A ». B and A <. B. Given z € R, sign(z) := 1 for > 0 and sign(z) := —1 for < 0 is

the standard sign function, and we agree about 0° := 1. For a probability space (2, F,P) and a
measurable map X : Q — R?, where R? is equipped with the Borel o-algebra B(R?) generated by
the open sets, the law of X is denoted by Px. Given p € (0, c0] and a measure space (£, F, ), we
use the standard Lebesgue spaces L, (€2, F, 1) and denote by Lo (2, G) the space of all G-measurable
maps X : 2 — R. We drop the corresponding measure space in the notation if there is no risk
of confusion. Given a (finite) signed measure p on (R, B(R)), we denote by |u| := pu* + p= its
variation and by ||u|lTv := |u|(R) its total variation. The Lebesgue measure on (R, B(R)) will be
denoted by A. For two measures ;1 and v on a measurable space (2, F) we write v < p if v is
absolutely continuous with respect to p. For a set A € F with pu(A) € (0,00) we let uag be the
normalized restriction of p to the trace o-algebra F|4. For 0 < p < ¢ < 00, o-finite measure spaces
(M,%, ) and (N, N,v), and a measurable map f: M x N — [0,00) we use the inequality

(2.1)

e (S 5 P W

2.2. Support of a measure. Let i be a measure on B(R?), then supp() denotes the closed set
{z € R?: u(U.(x)) > 0 for all e > 0}, where U.(x) is the open euclidean ball centered at z with
radius € > 0. Given a random variable X : Q — R? we let supp(X) := supp(Px). One knows that
P({X € supp(X)}) = 1 and that for independent random variables X : Q@ — R™ and Y : Q — R™ it
holds supp((X,Y’)) = supp(X) x supp(Y). Finally, for a random variable X :  — R? and a Borel
measurable H : R? — R that is continuous on supp(X) (with respect to the induced topology) it
holds that || H (X)L (o.7F) = SUPsesupp(x) [H (7)].

2.3. Interpolation spaces. We will only consider Banach spaces over R. Let (Ey, E7) be a couple
of Banach spaces such that Ey and F; are continuously embedding into some topological Hausdorff
space X ((Eo, Fy) is called an interpolation couple). We equip Ey+ Fy := {z = zo+ 1 : 2; € E;}
with the norm ||2]|g,+5, = inf{||zo||g, + ||71llE, : i € Eiyx = 20 + 21} and Ey N Eq with the
norm ||z|| g,nE, = max{||z|| g,, ||z]|E, } to get Banach spaces EgNEy C Ey+ Ey. For x € By + Ey
and v € (0,00) we define the K-functional

K(v,z; By, Ey) := inf{||zo|| g, + vl|21]|E, : 2 = 20 + 21}
Given (6,q) € (0,1) x [1, 0] we set

(EO»El)O,q = {fE € E() + E1 : ||x||(EO7E1)9,q = H'U — U_OK(v’x;EO’El)HLq((O,oo M) < OO} .

We obtain a family of Banach spaces ((Eo, E1)o,9; || - l(£0,21)s.,) With the lexicographical ordering
(Eo, Er)o.q0 € (B0, E1)p,q, forall €€ (0,1) and 1< gy < ¢1 < 00,
and, under the additional assumption that Fy C Ey with ||z||g, < ¢||z| g, for some ¢ > 0,
(Eo, E1)oy,q0 € (Eo, Ev)o,,q, forall 0<6; <6y <1 and go,q1 € [1,00].
Given a linear operator T : By + E1 — Fy + Fy with T : E; — F; for i = 0,1, we use that the real

interpolation method is an exact interpolation functor, i.e.

T : (Eo, E1)o.q — (Fo, Fi)oqll < ||T: Eo — Fo|||T : By — Fy||*~°. (2.2)

For more information about the real interpolation method the reader is referred to [5, 7, 43]. Given
a Banach space E and (g, s) € [1,00] x R, we will use the Banach spaces

C(E) :=A{(zx)iZo € B [[(z1)7Z0

and the notation (,(E) := ES(E). For qo,q1,q € [1,00] and sg,s1 € R with sg # s1, and 6 € (0,1),
one has according to [7, Theorem 5.6.1] that

(Lo (E), 051 (E))o.q = €5(E)  where s:= (1 —0)so+ 0s1 (2.3)

7 g1

@) = 1@ lzrl B)iZolle, < oo}
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and there is a ¢(, 4y > 1 that depends at most on (sg, 51,90, q1,0, ) such that

1 Mles () ~en I lezo (.65 (B))o.0- (2.4)

2.4. Function spaces. We let B,(R) be the Banach space of bounded Borel functions f: R — R
with ||| 5, ) = sup,cg |f(z)], C{(R) be the closed subspace of By(R) of continuous functions
vanishing at zero, and C;°(R) C By(R) the infinitely often differentiable functions such that the
derivatives satisfy f*) € By(R), k > 1. The space C'(R) consists of differentiable functions
with continuous derivative and C*°(R) of the functions that are infinitely often differentiable. For
n € [0,1] we use the Holder spaces

Hol, (R) = {f: R RBorel; |fl, = sup HLEH=IWI_ oo},
—oo<r<Yy< 00 |1' - y|’7

HoI) (R) == {f € HoL,(R) : £(0) = 0},
Hol) ,(R) == (Cy(R),H8I)(R)), 4 for (n,q) € (0,1) x [1,00].

Note that we can define the Banach space CP(R) + H61)(R), so that (C?(R), Hol)(R)) forms an
interpolation pair. If we use on Cp(R) the equivalent norm Hf”OCO(R) =sup{|f(z) — fy)| : z,y €
b

R}, then %Hf”%l?(R) < flleom < Hf||ocg(R) and build with this norm the interpolation spaces

Hélg’q(R) and denote the norms by || f||%0 (ry> then we get the ’translation invariance’ (useful
.9

later for us)
£l oy = @+ ) = F@) G e forall zeR
By the reiteration theorem (see [7, Theorem 3.5.3] or [5, Theorem 5.2.4]) it follows

(H8L), . (R),HBL) . (R))g,q = HEL)  (R) (2.5)

70,490 1,491

for 6,m0,m € (0,1) with no # 01, ¢,q0,q1 € [1,00], 7 := (1 — 0)no + On1, where the norms are
equivalent up to a multiplicative constant. By the above definitions we obtain Banach space by
(H('jl?7 (R),|-|,) and for n € (0,1) we have that H'(')lgyoo(R) = Hélg(R) with equivalent norms up to
a multiplicative constant (a direct proof can be obtained by an adaptation of [33, Lemma A.3], see
also [43, Theorem 2.7.2/1]).

2.5. Stochastic basis. We fix a time horizon T € (0, 00), let (2, F,P) be a complete probability
space equipped with a right continuous filtration F = (F;);cjo,7) such that Fq is generated by the
P-null sets and F = Fr. For
I=[0,7] or I=1]0,T)

we denote by CL(I) the set of F-adapted cadlag (right continuous with left limits) processes Y =
(Y1)¢er, by CLT(I) the sub-set of Y € CL(I) with Y;(w) = 0 on I x ©, and by CLg(I) the sub-set
of Y € CL(I) with Yy = 0. For Y € CL(I) we use

(1) Y™ = (V" )rer with V" = SUPse0,t] Ysl,

(2) AY = (AY})ser with AY; :=Y; —Y,_, where Yyo_ :=Y) and Y;_ = lim,y, 544 Y for ¢ > 0.

The collection of all stopping times p: Q@ — [0,#] is denoted by S;. We write EY[X] for the

conditional expectation of X given G. The usual conditions imposed on F allow us to assume
that every martingale adapted to this filtration is cadlag. Given a cadlag Lo-martingale X =
(X¢)ten, the sharp bracket process is denoted by (X) = ((X)¢)er and the square bracket process
by [X] = ([X]¢)ter (see [14, Chapter VII]). In particular, the process (X) = ({X)¢)+er is the unique
(up to indistinguishability) non-decreasing, predictable, cadlag process with (X)o = 0 such that
(X? — (X)¢)ier is a martingale.

2.6. Bounded mean oscillation and regular weights. We use the following weighted BMO

spaces, where we agree about inf () := co in this subsection.

Definition 2.1. Let p € (0,00).

(1) For Y € CLg(I) and ® € CL*(I) we let 1Y [lgmos 1y := inf ¢, where the infimum is taken over
all ¢ € [0,00) such that, for all t € T and p € S,

E77[|Y; = Y,_|P] < P®P aus. (2.6)
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(2) For Y € CLy(I) and ® € CL™(I) we let 1Y lbmos () := inf ¢, where the infimum is taken over
all ¢ € [0,00) such that, for all t € I and p € S,

E7*[|Y; — Y, [P] < PP aus. (2.7)

For ||Y|le < oo we write Y € © with © € {BMO? (), bmog) (I)}. If ® = 1, then we use the notation
BMO,(I) and bmo,(I), respectively.

If Yo = 0 is not necessarily satisfied, then we use the notation [|[Y — Yo|gmoe for [[(Y: —
Yo)tetllsmoer@y- If Y € CLo(I) has continuous paths a.s., then ||Y||BMOZ>(H) = ||Y||bm0§(]1). The
theory of classical non-weighted BMO-martingales can be found in [14, Ch.VII] or [35, Ch.IV];
non-weighted bmo-martingales were mentioned in [14, Ch.VII, Remark 87] and used after that in
[11, 13]. The BMOg’ space was introduced and discussed in [20]. Some relations between bmo;f’
and BMOE, that are necessary for us, are discussed in the appendix below. Next we recall (and

adapt) the class SM,, introduced in [20, Definition 3]:

Definition 2.2. For p € (0,00) and ® € CL™(I) we let [®lsat, @ = infe, where the infimum is
taken over all ¢ € [1,00) such that for all stopping times p : @ — I one has

E}—P[ sup @f} < POD as.
p<tel
If | @]l sa, @ < 00, then we write ® € SM,,(T).

By choosing p = 0, ® € SM,,(I) implies that Esup,c; 7 < oco. Moreover, it follows directly from
the definition that SM,(I) € SM,(I) whenever 0 < r < p < oco. Simplifications in Definition 2.1
and Definition 2.2 and relations between the BMO- and bmo-spaces are recalled in Appendix A.

If p € (1,00) and @ is a martingale, then ® € CL™(I) is equivalent to the standard reverse Holder
condition EF«[®V] < dP®P as. for 0 <a <t < T.

2.7. Uniform quantization and time-nets. For 6 € (0,1] we introduce the non-uniform time-
nets 70 = {tz‘?’n}?:o with
1
0, =T-T(1-4%)7 (2.8)

for i = 0,...,n, that are characterized by the uniform quantization property

o [t 1
ﬁ/ (T —w)f?'du== for i=1,...,n.
J 0 n

i—1,n
We define the set of all deterministic time-nets
T={r={titisg: 0=to<ti <---<t, =T,neN}

and, for 6 € (0,1] and 7 = {t;}I- € T,

Il it
T = su —_——.
o z‘:l,.].p.,n (T — ;1)
Note that
0
I < = and el < o (2.9
and
t— oty
“ L for we [ti1,t:]N[0,T). (2.10)

(T — u)l—(’ = (T — ti_l)l_g
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3. RIEMANN-LIOUVILLE TYPE OPERATORS

Riemann-Liouville operators are a central object and tool in fractional calculus. It is natural
and useful to extend them to random frameworks. There are two principal approaches: Directly
translating the approach from fractional calculus, that uses Volterra kernels, leads to the notion
of fractional processes, in particular fractional martingales. In our setting one would take a cadlag
process K and would consider

t
t— / (t —u)* 'K, du.
0

This yields to an approach natural for path-wise fractional calculus of stochastic processes and is
used, for example, for Gaussian processes [26]. For our purpose we use the different approach

T
t s / (T — u)* ' Kynidu
J0

to define Zf* K in Definition 3.1 below. The idea behind the operator Z¢ is to remove or reduce
singularities of a cadlag process (K¢)icjo,r) when ¢ 1+ 7. As we see in Theorem 3.6 below, this
approach is the right one to handle fractional smoothness in the Malliavin sense and in the sense of
interpolation theory. One basic difference to the Volterra-kernel approach is that, starting with a
(sub-, super-) martingale ¢, we again obtain a (sub-, super-) martingale Z;*¢. This second approach
was used in [23, Definition 4.2], [24, Section 4], and [2], and relates to fractional integral transforms
of martingales (see, for example, [3]). This corresponds to equation (3.3) of our Proposition 3.8.

Definition 3.1. For a > 0 and a cadlag function K : [0,T) — R we define Z®K := (Z{K)c(o,1)
by

TOK = —
TO(

Moreover, for a = 0 we let Z)K := K.

T
/ (T —u)* ' Kyprdu.
0

The cadlag property implies the boundedness of K on any compact interval of [0, 7). Therefore,
Z°K is well-defined and cadlag on [0,7"). The above definition can be re-formulated in terms of
the classical Riemann-Liouville operator R%(f) := ﬁ Jo (@ —u)=1 f(u)du by

TOé

R = a5

TeK  with KU = K,

where we compute the Riemann-Liouville operator, applied to the function u Kz(f), ata=T. We
use a different normalisation as we want to interpret the kernel in the Riemann-Liouville integral
as density of a probability measure. It follows directly from the definition that we have, for a > 0,

a [1 T—t\"
ItaK = ﬁA (T — u)ailKudu + (T) Kt. (3.1)
In the following we only need Z*K for o > 0. However, to derive an inversion formula we extend
the definition to the case o < 0 and prove that there is a group structure behind:
Proposition 3.2. Define for a < 0, a cadlag function K : [0,T) = R, and t € [0,T), ZF'K by
formula (3.1). Then
(1) I8(Z°K) = 7P K for dll a, B € R,
(2) I, “(I°K) = K, for all a € R.
Proof. As (2) follows from (1), we only need to check (1). Here we get that

t

t T o o7
INIPK) = Tﬂ/o (T — u)* TP K du + (T> 'K

t u B
_“ a1 [ B _ 61 T—u
=7a |, (T —u) (Tﬁ -/0 (T —v)" " K,dv + ( T ) Ku> du

- (TT_t)a (TBB /Ot(T— w) T K du + (TT_t)ﬁKt>
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O‘ﬂ t a- ' - @ ! a+B—
— TOH‘B . (T*U) 1/0 (T*v)ﬁ 1Kq)d’l}du+m/0 (T*U) +5 lKud’lL
BT =t [ o1 T -\
+W/(; (T—U) Kudu—i— T Kt
6 ! 1 « t 1
= W Jo (T — ’U)B_ Ky ((T— U)a — (T— t)a) dv + m /0 (T — ’U/)OH_B_ Kudu
B(Tit)a ¢ B—1 T—1t ath
+W/O (T—u) Kudu+ T Kt
B[ B BT —t)* [ -
= Tath J, (T —v)**? 1K“dU_W/O (T — )" ' K,dv

t o pt a+p
@ _ a+pB—1 ﬁ(T_t) - B—1 T—1
+ Tatp /0 (T —u) K,du+ Tt ), (T —u)’ " K,du + 5 K,

="K, O

We continue with some more structural properties:

Proposition 3.3. For a cadlig function K : [0,T) = R and t € [0,T) one has:
(1) limayo I8 K = K.

(2) limgroo Z8K = K.

(3) AZPK = (L))" AK, for a € R.

Proof. (1) and (3) follow from (3.1), and (2) from the cadlag property of K. O

The particular case that the function K is a path of a cadlag martingale ¢ is of our interest.
The following statement is obvious, but useful:

Proposition 3.4. If a > 0 and ¢ = (¢)iejo,1) s a cadlag martingale (cadlag super-, or sub-
martingale), then (I )0,y 15 a cadlag martingale (cadlag super-, or sub-martingale).

The following functional [p; 7] measures the oscillation of a martingale along a time-net in terms
of an area and can be considered as a square function. Besides this functional occurs in various
approximation problems for stochastic integrals, the functional is particularly designed to deal
with martingales non-closable in a certain sense. In Theorem 3.6 we characterize by the behaviour
of this functional the degree of singularity of a martingale not closable in Ly. Moreover, under a
certain regularity of the martingale we prove in Proposition 3.9 that this functional converges to
a classical square function as the time-nets refine.

Definition 3.5. For a deterministic time-net 7 = {t;}7,, 0 =ty < --- <t, =T, a € [0,T), and
a cadlag process ¢ = (p1)icjo, 1) We let

[p; 7] = /Oa

Moreover, we define [@; 7] := limgr[p; 7]q € [0, 00].

2
du € [0, 00).

Py — Z Pt ]l(ti—lati] (u)
i=1

Now we give in Theorem 3.6 a first link between the Riemann-Liouville type operators Z;*,
real interpolation, and the square function [¢;7]. To do this as simple as possible, we replace a
martingale ¢ = (¢¢):e[0,7) Dy its discrete time version

. 1
ol i=(p1,), with t,:=T (1 — 21@) .
For the vector-valued interpolation we use H := Lo(€2, F,P) and the end-point spaces
d - ;=3 g 2
et = [ feilh,d <o
0

! € loo(H) = 0 ey = sup_ el < o0,
t€[0,7T)
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where the first equivalence follows from (3.6) below and the spaces £;(H) and (o (H) were intro-

duced in Section 2.3. The first condition, fOT Hcpt||%2 dt < o0, is a typical condition on martingales
that appear as gradient processes. The other end-point, sup,c(o 1y [l¢tl/r, < oo, consists of the
martingales ¢ that are closable in Lo. We will interpolate between these two end-points by the
real interpolation method:

Theorem 3.6. For 0 € (0,1), a := 1;29, and a cadlag martingale ¢ = (pt)icio,r) € Lo the
following assertions are equivalent:

1
(1) ¢ € (ly* (H), loo(H))p,2-

(2) (Zf¢)teio,) is closable in L.

(3) There is a ¢ > 0 such that E[p; T|r < c||T|lg for all T € T.

Before we prove Theorem 3.6 let us comment on it:

Remark 3.7. From Item (2) we get for all ¢ > 0 a t(¢) € [0,T) such that for s € [t(¢),T) one has
2

LY qu| <e. (3.2)

E
sup Ta

tels,T)

/s punt — o) (T — )

Without the supremum the left-hand side is equal to E|[Zf¢ — Z8¢|?, the statement including the
supremum follows from Doob’s maximal inequality. The convergence in (3.2) is the replacement
of the Lo- and a.s. convergence of ¢ in the case ¢ would be closable in Ls.

For the proof of Theorem 3.6 and later in the article we need the following Proposition 3.8.
We remark that Proposition 3.2(1) for o, 8 > 0 can be also understood from equation (3.3) of
Proposition 3.8 in the martingale setting.

Proposition 3.8. For a > 0, a cadlag martingale ¢ = (¢1)iejo,r) € L2 and 0 < a <t < T one

has, a.s.,
T—u\"
o=t [ (T2 deu (33)
(0,1]

T 2a—1

o o T—-u du
B7(1200 - Z2ol?] = 20E7| [ lgunt = ul S0 JRE

. T T

o o T—a\>" T T—u\**"" du
EF‘I“L @ —Ia'<p|2] + ( 7 ) lpal? = 2aE7 M lunt|? ( 7 ) i (3.5)
Proof. (3.3) We apply partial integration to ((%)a <pt) o) and obtain, for t € [0,T), that
tefo,T

T—t\" T -0\ T—u\" o 1
o = @*/ < > dy 7—/ T —u)* “pudu as.
(571) o= (F5°) w ) g [ o

Taking the last term to the left side, we obtain (3.3). For (3.4) we use It0’s isometry to get, a.s.,

T _u 2c
dlp]u
~/(a,t] < T ) [ } ]
! R« -/ / (T —v)** dvd[yp]
u
2a1% | Jiag Jur)

: -
= E7e / / d[e] (T —v)** tdv
2a7%  |Jam) J@awny el )

1
— 5B [ o = P - o).
QCKTQO‘ (a,T) A

]Ef“[llf‘so 71350\2] =E%

(3.5) follows directly from (3.4) and the orthogonality of w, it — v, and ¢,. O
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Proof of Theorem 3.6. Because (||¢¢, || #)52, is non-decreasing we observe for s € R that

()R

o] T
s = ST =) e~ tllenl ~er, | (T =07 Haldt (6)

k=0
for some crs > 1. For s := (1 —6) (—3) + 60 (so that —1 — 2s = —6) we use Proposition 3.8
(equation (3.5)) with a = 0 to get

200

T
_ T2 T4
[ @ =0 lodbat = swp BT - o + looll = sup BTl
Jo telo,T) 2« telo,T) 20

Now the equivalence (1) < (2) follows from (2.3) and (3.6). The equivalence (2

(2)
from Theorem 4.7, equation (4.5), applied to M := ¢, 0 =1, a:=0, and G := {0, Q

< (3) follows
}. O

We close this section with the connection between the square function [Z = ¢] and [p; T):

Proposition 3.9. Let § € (0,1] and ¢ = (©¢)tejo,1) be a path-wise continuous martingale such that
we can choose d[pl; = Kidt on [0,T) x Q, where (Kt)iepo,1) 5 continuous, adapted, and satisfies
Co = 8UP(,, y)caxo,a [ Kt (W)| < 00 for all a € [0,T). Then, with the time-nets 70 from (2.8), one
has

20 =
T 1i7rln (n [<p;7,€]a> = [ITQQOL in L, forall (p,a)€ (0,00)x[0,T).

Proof. Let 7= {t;}' o € T, a € [0,T), s, :=t; A a, and define My =0 and, fori=1,...n
= [ e Plus [ (s udigl
(57, I;SL] (51 1757,]
We obtain a martingale difference sequence (dM;); C Lo with respect to (Fs,)i . It is sufficient

to consider p € [2,00). By the Burkholder-Davis-Gundy inequalities (with constant 8, > 0) and
exploiting (2.1) we get

1
n 2
2
< (Z ||dMi||Lp>
=1

. o, 2\ b
<X/ m—wdu X)) e wdi,
i—1 J(8i-1,54) i=1 J(si—1,8i] L,
1 1
n 2 n 2 2
<[ / lou— o2, dul |+ [S0 / (s; — w)dlgl.
i=1 (Si—l,si] i=1 (Si—l,Si] Lp
E

< <Z ”9051 _stiflnigp‘ i_Si*1| > < H 51*1||Lp |sl _si1|2>
i=1 i=1

<341 (= b |>

Using |[[¢]s, = [#]s, .||z, < Calsi — si—1], this implies

N

26n Zsz‘ 2Gﬁp(52p+1)C VT {n sup |s-—sz 1] }
i=1 L, b=
and
lim 20n ||[p: 70, — / (e —u)dgl| =0
(O’a]

n—oo

Ly
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with @, = t{, for u e (t{_, .t/ ] (here we use the boundedness assumptions on (Ky).ef0,7) to

replace t?,n A a by tﬁn). At the same time we have

20n / T —u 1-0
2 g [ ( ) el
T Joa ©a \ T

which proves our statement. Regarding the last limit, we first observe that 202 [ ©0,a] (Uro —u)d[p]u

lim =0
n— 00

Ly

converges point-wise to f(o al (%)1_9 d[p]y as d[p]i(w) = Ki(w)dt and t — Ki(w) is continuous
and because the measures pi,, g on B([0,T)) with p, o(du) := [Qﬂ S Lo g0 q(w)(Wre — u)} du

T —1,n'tin

converges weakly to pg(du) := (%)1_9 du on each interval [0, a] C [0,T") (one has lim,, ., ([0, a])

= up([0,a)) for a € [0,T) which follows from lim,, 1, ¢([0, a]) = lim,, %” Z@M?mga(tf’n — tf_17n)2

and t!, —t! | = Z:—;(T — &0 )10 for some &f; € [t?_, .7 ]). To apply dominated convergence

in order to get the L,-limit we use nf(o ol (tUro —u)d[ply < aCun||72|l1 < aC,T/0 (see (2.9)). O

4. RIEMANN-LIOUVILLE TYPE OPERATORS AND APPROXIMATION

Various L,-approximation problems in stochastic integration theory can be translated by the
Burkholder-Davis-Gundy inequalities into problems about quadratic variation processes. In the
special case of Lo-approximations this is particularly useful as there is a chance to turn the ap-
proximation problem into -in a sense- more deterministic problem by Fubini’s theorem when the
interchange of the integration in time and in w is possible. When p # 2 this does not work (at least)
in this straight way, see for example [24]. However, passing from global Lo-estimates to weighted
local Lo-estimates, i.e. weighted bounded mean oscillation estimates, and exploiting a weighted
John-Nirenberg type theorem, gives a natural approach to L,- and exponential estimates.

Theorem 4.3 and Theorem 4.4 below are the key to exploit these local Ls-estimates in our
article later. It turned out that one can naturally formulate these theorems in the general setting
of random measures (I, T). Later, the measure II will describe the quadratic variation of the
driving process of the stochastic integral to be approximated and Y will describe some kind of
curvature of the stochastic integral. For this one needs a replacement of orthogonality. For us, this
replacement is the relation given in (4.1) below.

So let us start by introducing the random measures and the quasi-orthogonality where we use
extended conditional expectations for non-negative random variables.

Assumption 4.1. We assume random measures
IL,T: Qx B((0,7)) — [0, 0],
a progressively measurable process (¢¢)¢cjo,1), and a constant & > 1, such that

II(w, (0,0]) + T(w, (0,b]) + sup |pi(w)] < oo
te[0,b]

for (w,b) € @ x (0,T) and such that, for 0 < s <a<b< T,

E]:a |:/( . |90u - <Ps|2 H('a du)

~k E]:a [|@a - WS‘Q H(7 (a7 b]) + / (b - U)T(, d’U/)‘| a.s. (41)
(aVb]
When (4.1) holds with <., then we denote the inequality by (4.1)S, in case of =, by (4.1)7.

To simplify the notation in some situations we extend IT and T to II, T: © x B((0,T]) — [0, <]
by II(w,{T}) = T(w,{T}) =0 for all w € Q.

Definition 4.2. Under the Assumption 4.1 we define for 7 = {¢;}?", € 7 the non-negative,
non-decreasing, and cadlag process [¢; 7™ = ([¢; 7|7 )acjo, ) bY

[ps7]a = /
(0.a]

and let [p; 7]T. = limgq47[p; 7|7 € [0, 00].

2
n
Spu - Z@tifl]l(tifl,ti](u) H(?du) S [O?OO)
=1
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The next two statements, Theorems 4.3 and 4.4, develop further ideas from [22, Lemma 3.8] and
[24, Lemma 5.6] to a general conditional setting using random measures we exploit in the sequel.
For 7 = {t;}', € T and a € [tj_1,t;) we let

a(t) :==tp—1 and  a(r) := ty.
Theorem 4.3 (Upper bounds). Suppose Assumption 4.1 with (4.1)S. If (6,a) € (0,1] x [0,T),
T €T, and (a,a] := (a(r),a(r)], then
—a 1—-6 .
E(oirlg — lrrlz] _ B Sy (T =) 00 du) + S22 [0 = aPTIC (0, )

<K
I7llo E%e| [ (T = u)lfer(.,du)] if acr

a.s.

Theorem 4.4 (Lower bounds). Suppose Assumption 4.1 with (4.1)7 and (8,a) € (0,1] x [0,T).
(1) If7 €T, (a.a = (a(r),a(r)], and ||7]lo = z"55t=s . then

Bl 7l — [ei7la] o 1E;a[(T —a)'?

Ille G a-a

la — al TI(, (a,a])] a.s.

(2) There exist T, € T, n € N, with a € 7, and lim,, ||7,|l¢ = 0 such that

1
lim ing =83 TlF — [pi7a]d] > e (T —u)'=07(,du)| a.s.
n 7 lo k2012 (a.T)

Proof of Theorem 4.3. To simplify the notation we set ¢ := 0. It is obvious that we only need to
show the first inequality. For 7 = {t;}'_, € T, (tx—1,tk] = (a(7),a(7)], and s; := t; V a one has,
a.s.,

EZe / Pu — Z‘pti711(ti_1,ti](u) H(,du)
7 (a,T] i=1
n
2 2
= E]:a / |<)0u - gptk71| H(7du) + Z / |<Pu - ‘Pti,1| H(7du)‘|
(a,tr] imkt1 7 (tim1sti]
< kEFa l|¢a — SOtk,l‘ (a,tg]) + Z/ u) Y (-, du)]
(si— 1,81]
b — b ! 2 (T —tpq)'"°
<kE o | S —TI(-, (a,t
: (T — t—1) |% Pt Uy — -1 (@ t])
= Si—u
+ / (T —w)'707(-, du)
; (si_l,si] (T - u)l*e
F 2 (T —tp1)'"° 1-6
< KTlET™ | [0a — ¢ty | —————11(, (a, tx]) + (T = u)"0(, du)
Uy — th—1 J(a,1)
where we use (2.10). O

Proof of Theorem 4.4. (1) Beginning the proof as for Theorem 4.3 with (tx_1,tx] = (a(7),a(7)],
we get, a.s.,

E7« /
- (a7tk']

2
2
Z‘ptz 1 (ti— 1t] ) H(adu) :Efal/ |(pu_90tk—1| H(>du)‘|
- (avtk]

K

Pa = Ptr_1 ’2 H('7 (a7tk])} :

Dividing by ||7]le = % we obtain the desired statement.

(2) We partition the interval [a, T with
1
W= a+ (T - a) [1— (1- 7)6} Ci=0,....m,

i,n
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i,n 2n

RPNt

P = a4+ (T — a) [1— (1—b)9} L i=1,....n,

and add rg:fl :=a and Tf{il,n :=T. Choosing for both nets the remaining time-knots on [0, a] fine
enough, we obtain nets 70:% and 79:¢ satisfying

O,a _ 0,a 0,a _ b
0.a i,mn i—1,n ~0.a i+1,n i,
7.% = sup —————— and |7,%le= sup —W——.
7ol i=1,n (T — uf’_“lm)l*@ 1771 i=0,1,...,n (T — rfﬁ)ke
By a computation, we have for i =1,...,n and u € (uf’_alm, rf;ﬂ that
0, 0, 0, 0, 0,
(T B a)@ ui,s - ri,s ui,s —u < ui,s - uifal,n < (T B a)@ (4 2)
D N N O
andfori=1,...,n—1and u € (rfﬁ,ui’s} that
0, 0, 0, 0, o,
(T —a)? 7”¢+a1,n - uzr? 7"z‘+a1,n —u 7'z'+a1,n - ri,'s < (T —a)® (4.3)
025+ (T—ufﬂ)ke S (T -t (T—rf,’;:)lfe S on

where the last inequality holds for ¢ € {0,n} as well. By the above relations we obtain, a.s.,

B /( e,a](T—u)19T<-7du>]

n—1
n Z FFa / (T — u)' =97 ( ,du)]
=1 (r'?,ﬁ’ u?,’s]
025+ 1n | —
]E]:a / (uf’s — U)T(~, du)
(T - a)9 ; l (uf;aLna Tf,Y:]

n—1
+ Z ]Efa
i=1
los )7 — s ala | les 71T — [os ?fu“]g]

I lo 7 lo

/(Veya S,a](rfjl’al,n - U)T(,du)‘| ]

i,m? Vi,n

< (k25 TH)ETe

where for the last inequality we first use (4.1), that gives the factor x, and then (4.2) and (4.3)
that give [|[72%]s < (T — @)?)/(6n) and |74y < ((T — a)?)/(0n). For each n we choose the
time-net that gives the larger quotient and obtain the desired nets. To obtain the final statement
we observe that %% 1 T O

n,n

Now we specialize Assumption 4.1 to the settings that will be used in Sections 6 and 8:

Assumption 4.5. We assume that there are

a positive continuous and adapted process (o¢)icio.7 Suc at o € Lo and suc a
1 iti ti d adapted cfo,r] such that ¢} € Ly and such that
there is a ¢, > 1 with

E—Fa,
b—a e

1 b
—/ aidu] ~ey o2 as. forall 0<a<b< T,

(2) a square integrable martingale M = (M;)¢cjo,7y with Mo =0,

(3) a ¢ € CL([0,T)) with Esup,,¢(q 1) |¥acul* < oo for all a € [0,T),

(4) let I(w,du) := 02(w)du and Y(w,du) := d(M),(w) for u € [0,T), where (M) is the
conditional square-function (see Section 2.5),

(5) assume that (4.1) is satisfied, and

(6) let [p;7]7 =[5 7]".
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Remark 4.6. Assumption 4.5, the equality

EfaM ]|MufMa|2du /( ](bu)d<M>u] a.s.
a,b a,b

for 0 <a<b<Tyield, for 0 < s <a<b<T and with & := k¢, to

= ]E]'—a

b b
Ee l/ lou — @s|? aidu] ~w (b= a)|pa — @s|? 02 + BT / | M, — Ma2du] a.s. (4.4)
Ja Ja

From Theorem 4.3 and Theorem 4.4 we immediately deduce:

Theorem 4.7. Assume Assumption 4.5, (6,a) € (0,1] x [0,T), and a c-algebra G C F,. Then
there are constants c(4.5), 1.6y = 1 depending at most on (0, K, c,) such that one has, a.s.,

Eg . g _ . e 1-6 1-6
ess sup lipi 7l = Los 7a) cra) RY [ sup |Z,2 M —1Z,2 M|2} , (4.5)
Te€T,m3a 7o ) tela,T)
EFa[[p: 712, — [o: 717 10 1-0 T —
€Sssup [[907 T]T [SO’ T]a] ~ee) E]:a |: sup |It *M—-1,* M|2]+ Sup 7a9|§0a - 305|20-2'
reT 7o tela,T) sef,a) (T'—5)
(4.6)

In order to prove Theorem 3.6 the inequality (4.5) is formulated for a more general o-algebra
G. In (4.6) such a formulation is not necessary for us.

Proof of Theorem /.7. Relation (4.6): For 0 < a < a <@ < T Assumption 4.5 implies that

T — a)t—* B T—a)? ,
E”e [(a)a|@a - @QPH(" (a7a]>:| ~e, |Pa — @QP%O’(%(G —a) as.

202 a.s. Moreover, by Proposition 3.8,

[ (% u)l‘”dm]
~oy BT V(G’T) <TT “> o d<M>u]

by Doob’s maximal inequality. Now we use Theorem 4.3 and Theorem 4.4.
Relation (4.5) for G = F, follows again from Theorem 4.3 and Theorem 4.4. In the case of
G C Fa we argue as follows: let c¢(;.5) > 1 be the constant in (4.5) for F,, then we get

Maximizing the right-hand side over @ gives (7{%“)9@@ —Pa
equation (3.3), we have, a.s.,

Lo e 2 T\ 10
I,” M—1T,” M ]:Ef"' / ( “) d[M],,
@y \ T

for 0 <a <t <T so that

= E}-"'

E7e {

1-06 1—0 2
EZ| sup |7, M —T,> M

t€la,T)

Eg PP o B PO o 1-6 1-60

[[@aT]T [90’ T]a] < 6(4_5)Eg|: sup |It M -1T,° M|2:|
I7llo t€la,T)

as well for all 7 with a € 7 which implies the general inequality < in (4.5). Regarding the remaining

inequality we choose the time-nets from Theorem 4.4(2) to get by Fatou’s lemma that, a.s.,

1-9 1-6 . o [n o
]Eg[ sup |7, M —1T,7 MIQ] < K29 H2RS {limianEfa[[%T"}T [@’T"]a”
tea,T) n 17 llo

< k272 Jim inf B9 {IEF“[[%T"}E _”[@;T"]Z”
n Tn|l6

= k272 liminf B9 L9 )7 — 3 Tl . (|
n [I7nllo

The next theorem gives a complete characterization of ||[p; T]U”BMO‘II’?‘([O,T)) < A2|7lle:
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Theorem 4.8. Assume that Assumption 4.5 is satisfied. Then for 0 € (0,1] and ® € CL*([0,T))
the following assertions are equivalent:

1) One has T°7° M € bmo? 0,7)) and there is a c(4.7y > 0 such that one has
2 (4.7)

T-35)% @,
loa — ps| < 0(4'7)&#320 for 0<s<a<T as. (4.7
- a

(2) There is a constant c(y.g) > 0 such that, for all time-nets T € T,
H[QD;T]U”BMQ?Z([QT)) < C%4.8)||TH0~ (4'8)

If ® = (04Vy)ejo,r), where ¥ € CLT([0,T)) is non-decreasing, then (4.7) is equivalent to the
existence of ¢(4.9), C(a.10) > 0 such that

|00 — 0| < ca0)(T —a) = ¥, for 0<a<T as. if 0€(0,1), (4.9

T_
la — @s| < ca.10 <1+1ogT_Z>\I'a for 0<s<a<Tas if 6=1. (4.10)

Proof. The equivalence between (1) and (2) follows directly from the second equivalence in The-
orem 4.7 and Proposition A.4. The equivalence between (4.7) and (4.9)-(4.10) follows from
Lemma C.1 below. ]

5. OSCILLATION OF STOCHASTIC PROCESSES AND LOWER BOUNDS

In this section we consider lower bounds for the oscillation of stochastic processes and use them
in Section 6 (Case (C1)) and Section 8. As such, the approach is intended for stochastic processes
(0t)teo,r) € Loo with a blow-up of |l¢¢||r., if ¢ T 7. This is a typical case for the gradient
processes we consider. The quantities, we are interested in, concern the degree of the oscillation of
the process measured in Lo, here denoted by Osc, () and Osc(¢). In order to get lower bounds
for these oscillatory quantities, we use the concept of mazimal oscillation. The above mentioned
concepts are introduced in Definition 5.1 below. The maximal oscillation is verified in Example 5.5
and Example 5.6 below. The application to [p;7] is given in Theorem 5.7. Example 5.5 and
Theorem 5.7 will be used in Section 6, and Example 5.6 and Theorem 5.7 will be used in the Lévy
case in Section 8. Let us start to introduce our concept:

Definition 5.1. If ¢ = (¢t):e0,1) i a stochastic process and ¢ € (0,T), then we let

Osc, () == 1{1f lor — sl €10,00] and  Oscy(p) := lr[})f) m{lplllsot PullL.. € [0,00].
)t uels,t

The process is called of mazimal oscillation with constant ¢ > 1 if for all ¢ € (0,7) one has

Osc,(p) = EII% —¢ollL
If both sides equal infinity, then we use ¢ = 1 (however, this case is not of relevance for us).
Lemma 5.2. For a stochastic process ¢ = (¢t)iepo,) the following holds:
(1) One has Osc,(p) < Oscy(p) fort € (0,T).
(2) One has Osci(p) < 20sc,(p) fort € (0,T) if ¢ is a martingale.
(3) If wa = Lgno,r)(a) for a € [0,T), then 0 = Osc,(¢) < Osci(p) =1 for all t € (0,T).

Proof. (1) follows from the definition. (2) If ¢ is a martingale and 0 < s < ¢ < T, then we have

<
sup [0t — @ullLe <0t — @sllie, + sup |low — sl < 2[lpr — sl
wE(s,t] u€ls,t]

Taking the infimum on both sides over s € [0,¢) yields the assertion. Item (3) is obvious. O
Remark 5.3. In the sequel we do not need the following two statements, so that we state them
without proof:

(1) Tt is possible to construct examples such that for a given ¢ € [1,00) the constant ¢ is
optimal in the definition of maximal oscillation.
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(2) Again by examples one can see that the constant 2 in Lemma 5.2(2) is optimal.
To verify a maximal oscillation we make use of the following observation:

Lemma 5.4. Assume two random variables A,B : Q@ — R on (2, F,P). Assume a probability
measure Q < P such that E?|B| < oo and E¥B = 0. Then

. . . 1
1B~ AllL.@ = clfelnfe |B—allL_m@ implies |B—Al|L_m®) > §||B|\LN(P)~

Proof. We may assume that |[B — A||;__ ) < 0o, otherwise there is nothing to prove. Because of
our assumption, for all £ > 0 there is an a. € R such that we have

IB=Alpo e > Bl ~lac— and [|B—All;_@) > E%B—a.|-¢ > [E°B—a.|— = |a.| <.
The combination of the inequalities implies

1B — Al 2 Blloe) — lacl —e 2 | Blloo@) — 1B — All L) — 2¢
so that 2||B — Al _ ) = Bl @) —2¢. By ¢ ] 0 we get our statement. O

Now we consider two examples relevant for us:

Example 5.5 (Markov type processes, Section 6). Let (Y}):c[o,7] be a process with values in Ry,
where Ry = R or Ry = (0,00), and Yy = yo € Ry. Assume continuous transition densities
Ty :{(s,t):0< s <t<T} xRy X Ry — (0,00) such that

P(Y; € B|Y;) = / Ty (s, t;Ys,y)dy as. (5.1)
B

for Be B(Ry)and 0 < s <t <T. Then, for 0 < s <t < T and continuous H,ﬁ : Ry — R, one
has

H(Ye) — H(YS)||.. = 1H(Y:) — H(yo)ll oo -
This follows from the fact that the density Ds; : Ry X Ry — [0,00) of law(Ys,Y;) with respect
to the Lebesgue measure A ® A|r, xR, is the positive and continuous function

D, (y1,92) =Ty (0,590, y1)Ly (s, 8591, y2).

Consequently, if there is a probability measure Q < P and if for all ¢ € [0,7) one has that
H(t,-) : Ry — Ris continuous, EQ|H (t,Y;)| < oo, and EQ(H (t,Y;)—H(0,y0)) = 0, then (H (t,Y;)—
H(0,%0))tefo,1) is of maximal oscillation with constant 2 according to Lemma 5.4.

Example 5.6 (Lévy processes, Section 8). Let (Xi¢)iepo, 1), Xt : € — R, be a Lévy process. By
[38, Theorem 61.2] there are ¢ € R and a closed non-empty @ C R such that 0 € Q, Q + Q = Q,
and supp(X;) = Q + ¢t for t € (0,T]. Define

Yy o= (Xi — €8)1(x, esupp(x1))
so that Y;(2) C Q and supp(Y;) = Q for all t € (0,T]. Let 0 < s <t < T and H,H:Q — R be
continuous on @ . Then

|H(Y:) = H(Y:) Lo = [1H(Y:) = H(0)] 1. -
This can be seen from
[H(Y:) = HY:) b = [H(Ys + (Vi = Y3)) = HY)) | 1o = sup H(y' +y) — H(y)|
Y5y’
> sup |H(y) — H(0)| = |[H(Y:) = H(0)||z...
ye

Consequently, if there is a probability measure Q < P and if for all ¢ € [0,7) one has that
H(t,-) : Q — R is continuous, EQ|H(t,Y;)| < oo, and EQ(H (¢,Y;) — H(0,0)) = 0, then (H(t,Y;) —
H(0,0)):e[o,1) is of maximal oscillation with constant 2 according to Lemma 5.4.

Now we connect the notion of oscillation to the behavior of [¢;7], where we use extended
conditional expectations for non-negative random variables.
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Theorem 5.7. Assume 0 € (0,1], c5.2) > 0, and an adapted cadlag process (¢t)iefo,r) such that

1 b
m/ pu — Z*du

for all0 < a<b<T and all Fy-measurable Z : Q0 — R. Consider the following assertions:
(1) infre(o,r)(T — )7 Osc, (i) > 0.

1

|§0a - Z|2 < E7e
C(5.2)

a.s. (5.2)

(2) There is a c(5.3) > 0 such that for all T = {t;}]-y € T with ||7|le = % one has
T n 2
inf su Ee / — Gi—1lp. - p(w)| du > a7l 5.3
ﬂi—leLO(Fti—l)aE[tk—I:l)atk) Ja v ; ! (tz_htl]( ) (Od)H ”9 ( )
Lo

(3) There is a constant c(5.4) > 0 such that for all time-nets T € T one has

s Tlllmmos o,y = ¢t lI7lle- (5.4)
(4) infee o, (T — t)l;f’@t(w) > 0.
Then we have (1) = (2) = (3). If ||[; T]llBMO, (0,7)) < 00 for allT € T and ||[; 7]|lBMO, ([0,7)) — O
for ||T|l1 = 0, then (3) = (4).

Proof. (1) = (2) If 6 := inf,c (o, (T — t)¥@t(g@) >0 and a € [tx_1,tx), then, a.s.,

2 2
T n tr n
E7e / Pu Zﬁi_l]l(tphti](u) du| > E7« / Pu — Zﬁi_ll(ti—hti](u) du
a i=1 a i=1
tr
_Efa{/ gpuﬁk_1|2du]
1 2
> ;(tk —a)|pa — Ig-1]".
We apply this inequality to a = t,_1 and a = ag := %(tk,l + 1), observe that
1 ty — ag
5 [tk = te-0)llpe, s — Ou—allT + (te — a0)llpay — Pr-ll7 ] = T Pa0 — Pt I7..
Ty — -1
= T@i(@)a
and deduce
T 2 ’ 2 2
- 162 tp—t_ 16
F k k—1
sup ||[Ee / fu— D Vil e (u)| du z2—— 5= -l
ae[tkfl,tk) a ; (t t] K 8 (T_tk?—l)l 0 ot 8
Loo

(2) = (3) with ¢(5.4) := c(5.3) is obvious because we can choose ¥;_1 := ¢y,_,.

3)= (4) Fora e |0,T) and 0 < s <t < T, a time-net 7 = {t;}"_, such that s =t,_1 <t =1
1=0

and
t—s

m = [|I7{lo (5.5)

we get

E7« /
J(a, T)N(s,t]

2
du = [|ET-

Lo

[ o — sos|2du]
J(a, T)N(s,t]

<(t—s) sup [lou—psll7_
we(s,t]

Py, — Z Pt ]l(ti—lati] (u)
i=1 froe

and

t—s 5 E]: ’
5 _— = g a
e Ty — el JSup /a

[N

2

Pu — Z Pti—a ]]'(t'iflyt'i](u) du
=1
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< sup E”- / Pu — Pt Lty (w)] du
a€l0,T) (a,T)N(s,t] ; e
Lo
1
n 2 2
+ E}—a / @U_Zwti—ll(ti—hti](u) du ]
(a,T)\(s,1] i=1
Lo
<Vt—s sup o —psllzo
we(s,t]
n 2 %
+ sup ||ET= / DO — Ot L,y ()] du
acl0.T) (a,T)\(s1] Z; . .

Assume a time-net 7 that coincides with 7 outside the interval (s,t). Then

t—s L
C(5.4) T a0 SVi—s sup lpu —psllize + e; 7lligno, (o.1))-

wE(s,t]

Choosing a sequence (7,,,7,) of (7,7) with (5.5) as above, such that ||7,]1 — 0, we conclude with

t—s _
| T ims SVE—S s llou = @slle. and  sup lpu = @ullT > el (T = 8)" 7
( 5) u€(s,t] u€(s,t]

For s € [(2t — T)*, ) this gives sup, ¢ 4 lou — osll2_ = 0(25.4)20_1(T —1)%=1 and therefore

o—1 o—1
c52 2 (T—1) 2 <oy — sl + Sl(lp] e — pullL., <2 m{lp] et — pull Lo, -
ue(s,t u€e|s,t

6—1
2 .

P . ~ 6—3
This implies Osci(p) > ¢5.4272 (T —1t)
6. BROWNIAN SETTING: GRADIENT ESTIMATES AND APPROXIMATION

We suppose additionally that 7 = Fr and that (F;)¢cjo,7] is the augmentation of the natural
filtration of a standard one-dimensional Brownian motion W = (W}),c[o,7] with continuous paths
and starting in zero for all w € Q. We recall the setting from [16] and start with the stochastic
differential equation (SDE)

dX, = 6(X)dW, + b(X,)dt with Xo=zp€eR (6.1)

where 0 < g9 < 6 € C;°(R) for some constant ¢ and be Cp°(R) and where all paths of X are
assumed to be continuous. From this equation we derive the SDE
dY; = U(}/,g)th with Yy = Yo € R
where two settings are used simultaneously:
Case (C1): Y := X with 0 =6, b= 0, and Ry := R.
Case (C2): YV :=e* with o(y) := y6(logy), b(z) := —36°(z), and Ry := (0,00).
In both cases, we let Cy be the set of all Borel functions g: Ry — R such that
sup e~ ™| / lg(a(x + ty))? eV’ dy <oo forall t>0
z€R R
for some m > 0, where a(z) = z in the case (C1) and «(z) = e” in the case (C2). Let us denote by
(YY) s, be the diffusion Y started at time ¢ € [0,7] in y € Ry and let us define, for g € Cy,
G(t,y) :=Eg(YY) for (t,y) €[0,T] x Ry.
Remark 6.1. We collect some facts we shall use and that hold in both cases, (C1) and (C2):

(A) llo"l| B, (ry) + [l00” || B,(Ry) < 00
B) In the case (C2) we have o(y) ~. y for y € Ry and some ¢ > 1.

(B)
(C) One has G € C([0,T) x Ry) and 2% + 226 = 0 on [0,T) x Ry
(D) Esupyepop ‘(U%> (t, Y1)

2
< oo forallbe[0,T).
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(E) The process <<0'2 8627!?) (t, Yt))te[o - is an Lo-martingale.

)

(F) The process X has a transition density I'x in the sense of Theorem B.1.
Ttems (A) and (B) are obvious, (C) is contained in [16, Preliminaries|, (D) is [16, Lemma 5.2], and

(E) is [16, Lemma 5.3].
This yields to the following setting:

Setting 6.2. In the notation of Assumption 4.5 we set
(1) o:= (U(Yt))te[o,T],
¢ 2
2) M= (fy (*5:%) (u, Yo)awW,, )

®) = (550Y0) .

Lemma 6.8 and [19, Corollary 3.3] imply that Assumption 4.5 is fulfilled. To shorten the notation
at some places we use

tefo,1)’

, 0°G
Oy

0y?

Denote by E(g;7) = (E¢(g;7))tejo,r) the error process resulting from the difference between the

stochastic integral and its Riemann approximation associated with the time-net 7 = {¢;}., € T,
ie.

oG
Zy = o, p(tyy) = 8—y(t,y), and Hy:= (t,Y;) for (t,y)€]0,T)x Ry.

Et(g;T) = /( ] @SdYS - Z()Otifl(}/ti/\t - }/131'71/\t) fOI" t S [07T]'
0,t

i=1

For any 0 < a <t < T, we apply the conditional It6’s isometry to obtain that, a.s.,

n 2
E7[|Ei(g;7) — Ea(g;7)[?] =B /: u— Y 0t Lty ()| ordu| =E[p;7]7 — ;73]
o (6.2)
Using Proposition A.4 this implies, for ® € CL*([0,T)), that
2
H(Et(g;T))te[&T)Hbmog’([o,T)) - H([@; T]U)tE[O’T)Hbmo‘fQ([O,T))7 (6:3)

where [; 7] is given in Assumption 4.5. Moreover, bmoy ([0, 7)) and bmo‘lI>2 ([0,T)) above can be

replaced by BMO3 ([0, 7)) and BMOII)Q([O7 T)), respectively, due to the path continuity of E(g;7)
and [p;7]7. To be in accordance with the previous sections we use in (6.3) the time interval [0, T)
instead of [0, T7.

6.1. The results. In this section we formulate the results, they are verified in Section 6.2. The
first result shows that all gradient processes (¢(t,Y?)):e[o,r) have a large oscillation:

Theorem 6.3. For g € Cy the process (¢(t,Y:))ieio, 1) s of mazimal oscillation with constant 2
in the sense of Definition 5.1.

Now we discuss cases in which we get equivalences by choosing the weight ® accordingly. For
0 = 1 we obtain a characterization in terms of Lipschitz functions that extends [20, Theorem 8]:

Theorem 6.4. For g € Cy and ® = o the following assertions are equivalent:

(1) There exists a Lipschitz function §: Ry — R such that g = § a.e. on Ry with respect to the
Lebesgue measure.

(2) There is a constant ¢ > 0 such that ||[E(g; 7)llsmog 0,1y < e/ 7l for all 7 €T

In the case 6 € (0,1) we obtain an equivalence in terms of the Riemann-Liouville type integral
(introduced in Section 3) of the gradient process:
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Theorem 6.5. Let (0,q) € (0,1) x [2,00) and ® = (0,W¥;),e(0,7) where ¥ € CLT([0,T)) is path-
wise non-decreasing. If g € Cy and if there is a constant c(g.4y > 0 such that, for t € [0,T),

(T — 1) |pe] < co.n) ¥t aus., (6.4)
then the following assertions are equivalent:
(1) One has 13727y € BMOZ ([0,T)) and there is a constant ¢ > 0 such that, for allt € [0,T),
(T — )7 || < ¥y as. (6.5)
(2) There is a constant ¢ > 0 such that ||[E(g; 7)|lsmog 0,1y < e/ [ITlle for all 7 €T

1—6 1-6
If the conditions (1) and (2) are satisfied and ® € SMy([0,T)), then I,? Z := limpurZ,* Z
exists in Ly and a.s.

Theorem 6.6. Let (0,q) € (0,1) x [2,00), g € Hélgz(R), and ® = (0Wt)iepo,r) with ¥y =
SUPe(0,4] (c971). Then one has g|r, € Cy and the following holds:

(1) @ € SMy([0,T)).

(2) There is a constant ¢ > 0 such that (T — t)¥ lor] < Wy a.s. forallt €[0,T).

(3) T2°Z — Zy € BMOZ([0,T)).
6.2. Preparations to prove the results of Section 6.1. We collect some lemmas we need.
1—-0
Lemma 6.7. Assume that 0 € (0,1], g € Cy, that (ItTM) o) is closable in Lo, and ® €
telo,
CL™([0,7)) such that

a
sup o ot + B

iy
——— |¢a
s€[0,a] (T - 8)0

1-0 1-0 |2
sup ‘If M—-T,” M ]g@i a.s. for a€0,T).
t€la,T)

Then there is a constant ¢ > 0 such that [|E(g; 7)lsmog (jo,1)) < e/ [ITllo for all 7€ T.
Proof. The statement follows directly from the equivalence (4.6) in Theorem 4.7 and (6.3). O

Lemma 6.8. The following assertions hold true:

(1) In the case (C2) one has (Y, (Y )epo,r) € SMp([0,T]) for p € (0,00) and Bo, 51 € R.
(2) There is a constant c(g.6) > 0 such that, for all0 < a <b < T,

1 b
m/a aZdu] ~er o2 as. (6.6)

(3) For g € Cy one has Esup,c(, 1y |Pa0u|? < 0o fora € 0,T).

Ee

Proof. (1) Because 6 € By(R) for all a € R there is a constant ¢(.7) = ¢(.7)(o, T, 5) > 0 such that

sup @ e #(X)AW.

t€la,T]

E]:a < C(6.7) a.s. (67)

for a € [0,T]. Because b is bounded this implies that (Yt'@)te[o,T] € SM,(]0,77) for all p € (0,00)
and 8 € R by Proposition A.1. Therefore we may conclude by items (2) and (3) of Proposition A.2.

(2) We only need to check the case (C2) where we replace o by Y by (B). As Y is a martingale
we get E/e [fab Yugdu} > (b—a)Y? as., otherwise E7« [fab Yugdu} <Y py 0.1 (0 — @)Y as.
(3) Because of (D) we only need to check (C2), use again (B) to replace o by Y, and obtain

E sup ] loaYul? = E | |@q)*ETe supT Y2 < ||Y||§M2([O’T]E|¢GYG|2 < o0. O
ue|a,

u€la,T
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Lemma 6.9. For 6 c (0,1], a:= 152, and t € [0,T) one has, a.s.,

(T —t)*Z, =T Zy + /

(T —u)*H,dW, + / (T —u)*o'(Yy) ZudW,,
(0,4]

(0,2]

1
_ a/ (T — u)o= Zydu + / (T — w)® (00" ) (V) Zudu.
0.4 2 Jw,y

Proof. The assertion follows by Itd’s formula applied to the function (¢,y) — (T —t)“ (Ua—c) (t,y)
with Y; inserted into the y-component, where we use the PDE from (C). ]

Lemma 6.10. For 6 € [0,1] there exists a constant c(6.8) > 0 such that for all g € Holp(R) one
has

0G 6_1
\ayw,y)\ <o lglo o (@) (T =)™ for (uy) € Ry x [0,T). (6.8)

Proof. Set f := g and F := G in case (Cl) and f(x) := g(e”) and F(u,z) = G(u,e") for
(u,z) € [0,T) x R in case (C2) and let us fix u € [0,7). In both cases, (C1) and (C2), we have
OF or or
Grtwa) = [ GEC —wn s = [ FET w6 - Fa)e

where we use (F) with the transition density I'x from Theorem B.1. For ¢ > 0 denote v;(z) =

\/% e_%f. In the case (C1) we derive that
oG or
‘ |Q\0/ ‘ X u,m,f)‘ |€ — x\edg

|9\9/ c.1) (T — u)_%’YC(B_l)(Tfu)(x — )¢ —x|’dg
R

N

N

-1
= lglo(T —u)*z / e(B.1) Yegon, (Ml

where we use [, ZX(T —u,z,£)d¢ = 2 [ Tx (T —u,z,£)d¢ = 0. For y = e® we get for (C2) that

oG oF GFX
< & x |0
)| = |G| < ol [ |GET w0 6 e Pag
— 60 AT — E—x 1 0
oloe? [ | w29 167> 110
< gloe™ /RC(BJ)(T_u)_%%(B,U(T—u)(x—f)‘eg_w —1/%de.

We conclude by
/R%m.])(T—u) (z— &) et " —1)%d¢ < /]R'Yc(B_U(T—u)(f”ﬂe69‘5‘ d¢

0
< (T —u)® / Yeew.s, () n]? VT dy < oo O
JR

Lemma 6.11. Let dP := LdP with L := exp (f(o 20 (Y)dWe =L [0 0 \a’(Yt)|2dt) and g € Cy.
Then the process (¢(t,Y:))epo,) 5 @ P-martingale.
Proof. Applying the PDE from (C) we get that

2+ 050 + TR0 = 2 [T e + TS ] ~o

on [0,T) x Ry. By It&’s formula this implies that

o) = p0m) + [ (o5 ) (X)W~ ()] s
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for t € [0, T). Because of (A) and Girsanov’s theorem we obtain a PP standard Brownian motion
W, =W, — f(o 1 o' (Y,)du, t € [0,T]. Moreover, for ¢ € [0,7) we have that

[l efa < [ o

As by the Burkholder-Davis-Gundy inequalities applied to continuous local martingales we also
EP

have
ole5) foa (o) vt
o— | (u,Y, o— | (u, Y,)dW,
/(o,t] < Jy ( ) 0,5 \ 9y ( )

for some absolute constant ¢ > 1 and ¢ € [0,7"), we get that (¢(t, Y?))epo,1) is a P-martingale. [

1 1
2 2 2

du

2

EP < (EPL?)2 du| < o.

1
2 2

du| ~.EF sup

s€0,t]

6.3. Proof of Theorem 6.3. According to Lemma 6.11 there is an equivalent measure P~P
such that (¢(,Y:))ieo,7) is a P-martingale. The transition density of ¥ under P computes as

1
Ly (s, t;y1,12) = in(s,t; log(y1),log(y2)) (6.9)

in the case (C2), otherwise I'y = I'x, where I'x is taken from Theorem B.1 in both cases. We
conclude by Example 5.5, where relation (5.1) follows from Theorem B.1, the uniqueness in law of
the SDE (6.1), and the theory of Markov processes. O

6.4. Proof of Theorem 6.4. (1) = (2) We may assume that g: Ry — R is Lipschitz. By
Lemma 6.10 we have
oG
1wl < camlols and 121 < coslalion
Let 0 <a <t <T. From Lemma 6.9 we get that
1
Ty =Zo+ H,dW, + / o' (V) ZydW,, + = / (00")(Yy)Zydu  a.s.
J (a,t] J(a,t] 2. (a,t]

Then one has, a.s.,

t
E]:a[/ Hgdu]
t
1
<8R 12 = 2]+ 1 o[8[ 2200 + G100 laucay | B
Ja

t
E7e [ / ngu]

t
/ | Z.|du
Ja

T

VT
< E}_‘L“Zt - Za|2] + HJI”Bb('Ry) + THUO—//”BI,(R;/)

I VT

< ci.9)l9h \/]EF“[U?] + Ua] + c(6.8)l9/1 [|0I||Bb(Ry) + THUUHHBI,(RY) VT, |Ea S‘(JPT] o2
L ue(a,
[ ! T 1

< canlah |24 VI lmcmy) + 5o lauces |
[ f / T "

< 0(6.8)|9|1 2+ VT ||Bb(72y) + gHUU ||Bb(Ry) ||U||$M2([O,T])Ua

and hence
E]‘—H,HMt — Ma|2] = |Efa /( ]Hﬁdu] < c(6.10)|g|1||U||SM2([O,T])U(L a.s., (610)
a,t

for some c(5.10y > 0. Applying Lemma 6.10 for § = 1 and (6.10) (together with Doob’s maximal
inequality) to Lemma 6.7 for ®, = co, for some appropriate ¢ > 0 and 6 = 1, we derive (2).
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(2) = (1) Given a € (0,T), exploiting the last term in the relation (4.6) of Theorem 4.7 and
(6.2) give
sip L — P < R as (6.11)

T—a
T—s

For a € (£,T) we choose s € [0,a) such that

oG
‘ay(a7 ya)

= . Therefore we may continue to

+ \/50(6'11) for all y,,ys € Ry

<% s,40)
XX ay y Ys

where we use the positivity and continuity of the transition density I'y (for (C2) see (6.9)) and the
continuity of %(t, ) : Ry — Rfort € [0,T). Applying Lemma 6.11, we have ]Epgg(s, Yy) = .cp(O, Yo)
for s € [0, 7). Therefore, for each s € [0,T) there are w?, w! € Q such that for y := Y, (w!) € Ry
we have ¢(s,3%) < ¢(0,Yy) < ¢(s,yl). Because y — %(s,y) is continuous on Ry we find an
ys € Ry such that o(s,ys) = ¢(0,40). Therefore,

a6 e

a9 (a,y)‘ < ‘ay(o, yo)| + \/50(6,11) =:c@az) forall yeRy. (6.12)

Let €, € F be of measure one such that for all w € 2, one has
lim G(t,Yi(w)) = g(Yr(w)).

Let I, := Y7(2y) € Ry. Then g is Lipschitz on I, with Lipschitz constant ¢ 12y, and since I is
dense in Ry, the function g|;, can be extended to g: Ry — R to a Lipschitz function. Moreover,
P{w e Q:g(Yr(w)) = g(Yr(w))}) = P(Qy) = 1. O

6.5. Proof of Theorem 6.5. Let o := %. Observe that with

T t
a/ (T —u)® ' Zypnedu = a/ (T —w)* ' Z,du+ (T — t)*Z,
0 0
Lemma 6.9 implies that

a/ (T — u)("*lZuMdu =T“Zy + /
(0,7]

(T — w)*H,dW, + / (T — )0’ (Vo) Zud W,
0.1]

(0,4]

1

+= / (T —u)*(o0")(Yy) Zydu as.
2 J o

Denote by (w) := 3(00”)(Y,(w)) and B := $|loc”|| g, (ry) < co. Dividing both sides of the equality

above by T gives

T —u\® T—u\®
1°7 = 7, +/ ( “) H,dW, +/ < “) Zo (0! (V) AW, + bydu).
g\ T g\ T

Next we observe that, for 0 <a <t < T, a.s.,

2
T—u\" T—u\"
Zyo' (Yy)dW, / ( ) Zuby|du
~/(‘a,t] ( T ) ) (a,t] T | ‘
T—u 2o :
e
@i\ T

T _u 2a %
sup @i/ ( ) (T —u)"'du
ue[a,T) E (avt] T
< c.a) (o'l By (ry) + B\/T)

T—a\"
< o D,.
e lssscory (1)

We conclude that the martingale (f(o " (%)a Zy0' (Yy)dWy)iepo,1) converges in Ly and a.s. be-

cause of & € SM,([0,T)) and Proposition A.6(2). Again by Proposition A.6(2), the non-negative

N|=

2

E7- + [ E-

< (o'l B, (ry) +BVT) (Ef“

< (10’ lycry) + BVT) (En
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and non-decreasing process ( f(f (T;“)a |Zubu|du> 0.1 converges in L, and a.s. For this reason
tefo,T

s

(fot (T;“)a Zubudu)te[O’T) converges in L, and a.s. as well. If we set

M = (/ (T_“) Huqu> ,
CURN e

[O7T)

then we can summarize as follows:

() (ZI8Z — Zo)iejo,ry € BMOZ ([0,7)) if and only if M € BMOZ ([0,T)).
(b) Z*Z converges (is bounded) in L, if and only if M does (is).
(¢) I*Z converges a.s. if and only if M* does.

(1) = (2) By (a) we get M™ € BMOZ([0,T)). Because the Setting 6.2 and (6.5) hold we may
use Theorem 4.8((1) = (2)) and conclude by (6.3).

(2) = (1) follows from (6.3), the validity of Setting 6.2, Theorem 4.8((2) = (1)), and (a).

Regarding the final part we deduce from (1), ® € SM,([0,T)), and Proposition A.6(2) that
supycpo, 1y 12§ Z| € Lg, conclude sup,¢jo 1 ||Mf‘||Lq < oo by (b), and obtain from the martingale
property the L,- and a.s. convergence of M®. We may finish by (b) and (c). O

6.6. Proof of Theorem 6.6. (1) We only need to check the case (C2) and this case follows from
Lemma 6.8(1). Item (2) follows directly from Lemma 6.10.

(3) We fix a € [0,T), a set A € F, of positive measure. First we observe that by (4.1) (applied
to s = a and with b1 T, Lemma 6.10 for § = 0, and Lemma 6.8,

T T
\// / (T — u)H2dudP ~ \// / | — @al® o2dudP
JAJa JAJa
T T
< / / Z2dudP + / @3/ o2dudP
AJa A a

< \/ /A g(Yr)?dP + \/ /A [c?ﬁ_g)lgléogz(T — a)—l}[c‘fﬁ_ﬁ) (T — a)ag] dudP

< collgll B, (ry) VP(A).
On the other hand (6.10) gives

T
[ [ Hiaup < camlohlolssqoryy) [ ot

For the linear map T': g = (Hu) e[, ) We get

|7 : C2(R) = La([a, T) x A, (T — )N @ Pa))|| < co, (6.13)

|7 : H8IY(R) — La([a,T) x A,A@P4)|| < 1y // 02dPy, (6.14)
A

where P4 is the normalized restriction of P to A. Applying the Stein-Weiss interpolation theorem
[7, Theorem 5.4.1] to (6.13) and (6.14) yields

|IT: (C(R), HEI(R))s,2 — La([a, T) x A, (T =)' *A@ Pa))|| < co15) (/A UidPA) L (615)

with c(6.15) 1= C’c(l)_ec(f. In other words, we did prove

1
t 2 2
(A/ (T— u)19H3dudIF’A> < 6(615) <[4 O'gdPA> HgHHE)lg,Q(]R)'

I
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For § € (0,1) and | € Z define A; := {6”‘1 < 02 < 4'}. Then

a

// P H2dudPy = (/ / )= (’szud[P’AmAl)IP’A(AﬂAl)
AﬁA ANA; Ja

0
<y X ([ odPana) BANA) 9l o
P(ANA)>0 N ANA "

Scfoasy D, T'Pa(ANA) ||g||%1618 »(R)
P(ANA;)>0 ’

) 0
< 0%6.15)5 /Aag dPs ||g||12%1g,2(R)'

As § € (0,1) was arbitrary, we conclude

/ / )P H dudPy < C(() 15) /AJEGdE"A ”g”%{élga(R)'
and .
E7e [/ (T - u)leHidu] < 6%6_15)050 < 0?6_15)@2 a.s.
We use item (a) from the proof of Theorem 6.5 to conclude that (I Z — Zo) 01 € BMO3 ([0,T))
teo,
and finish by ® € SM,([0,T)) and Proposition A.6(1). O

7. AN INTERPOLATION RESULT

The following interpolation result is adapted to prove Corollary 8.13, but of independent interest.
For this section we assume
(1) Ko,k1 € (0,1) and 0 < 9 < 71 < 00,
(2) a probability space (R, R, p),
(3) an interpolation pair of Banach spaces (Ep, F1) and a Banach space F,
(4) random variables Ay, A1 : R — [0, 00) with p({2" < A; < 2""1}) < cq,27%" for n € Ny,
(5) for (t,r) € [0,T) x R linear operators T} ,, T}, : Eog + E1 — F such that
(a) | Tyrxllp < ¢;min{A;(r), (T —t) " }||f||g, for f € E; and r € R,
(b) if | T}, .z||r < P(: ) on R, where P : R — [0,00) is measurable and = € Ey 4+ E1, then
I Tyl < [ P(r)p(dr),
(6) ||Ts,pxl|r < || Tt px|| P for all0<s<t<T and x € Ey+ Ey,
where ca,,ca,,co,c1 > 0 are constants. Note that the map [0,7) > t — ||T} ,z| r is measurable
by assumption (6). Under the above assumptions the following statement holds:

Theorem 7.1. For all (0,q) € (0,1) x [1,00] there is a c(7.1)(d,q, cay, ca,, o, €1, Ko, K1, Y0, 71, T) >
0 such that, for a:= (1 —)(1 — ko)yo + (1 — K1)71,

H(T - t)aHTt,Px”FHLq([o,T),Td_ ) < 0(7-1)||f||(E0,E1)5,q for x € (E07E1)5,Q' (71)

Proof. First we observe that

ITs pallr < e / min{A;(r), (T — )~ } p(dr)|| ]|,
R

<ei |1+ / min{2"+ (T — 1)~} p(dr) | |1z e,
{2n<A;L2nt+1}

L ea, Y027 min{2" (T — )7 }] e

n=0

< ¢i(2c4, V1)

1+ i 27 min{2" (T —t)~ }1

n=0
< ci(2ca, V 1) e, (T — )i
= d;(T — t)(m—l)%
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For t, :=T(1 — 55), k € Ny, and «; := (1 — k;)7; this gives
”(Ttk,P‘r)keNo H@;Qz‘ (F) < diT_ai

Using real interpolation, (2.4), and (2.2), we derive

Y
H(Ttmp‘r)kENo”Z;a(F) < Cag,a1,0,q d(lJ le a”fH(Eo,El)e,q'

The assertion follows, because assumption (6) implies that
1T = )N Tzl ll i, o1y, 2,y ~e TN (Ttwp@Inenollgz iy

where ¢ > 1 depends at most on («, q). O

8. LEVY SETTING: DIRECTIONAL GRADIENT ESTIMATES AND APPLICATIONS

8.1. Setting. Let X = (X¢)icjo,7] be a Lévy process defined on a complete probability space
(Q,F,P), i.e. Xg = 0, X has stationary and independent increments, and cadlag trajectories.
Assume that F = (F;).c[o,r] is the augmented natural filtration of X and F = Fr. The Poisson
random measure N associated to X is defined by N(E) := #{t € (0,7] : (t,AX;) € E} for
E € B((0,7] x R\{0}), the Lévy measure v is the unique o-finite Borel measure on R such that
v({0}) = 0 and v(B) := +EN((0,T] x B) for Borel sets B with 0 ¢ B. Let o > 0 be the coefficient
of the standard Brownian motion W in the Lévy—Itd decomposition of X (see, e.g., [38, Theorem
19.2]). We define the o-finite measure p on B(R) by

p(dz) == o250(dz) + 2?v(dx). (8.1)

To avoid degenerate settlngs we always assume that p(R) € (0,00]. The compensated random
measure N of N is given by N := N—A®v on the ring of E € B((0, T]xR) such that (A@u)(E) < cc.
In the sequel we use of the following notation:

Definition 8.1. A Borel function f: R — R belongs to Dx if E|f(z + X,)| < oo for all (s,z) €
[0,T] x R. For f € Dx we define F': [0,7] x R — R by

F(t,z) =Ef(z + Xr_y). (8.2)

8.2. Galtchouk-Kunita-Watanabe projection. We additionally assume that X = (X¢)ie[o,7]
is an Lo-martingale so that u(R) € (0,00) and assume that f € Lo(R,Px,.). Let D € La(R, u)
such that D > 0 and [, D*(z)p(dz) > 0 and define dp := Ddp/ [ Ddp. If £ = f(Xr) has a
chaos decomposition as in Lemma D.1(1) (the notion of the chaos decomposition is recalled in
Appendix D as well), then we let!

ho —/f1 p(dz) and ho(er,... ) :=/f$+1(w1,---,me)p(dZ)

for n € N, define the cadlag Lo-martingale ¢(f, p) = (@:(f,p))iejo,r) by the chaos expansion

oo

oi(fp) =Y (n+ DIn(ha13), (8:3)

n=0
and the cadlag martingale X? = (X{);e0,7) by X§ =0 and X := I1(1 (0,4 ® D) a.s. Denote by
Pxp: Ly — I(XP) C Ly the orthogonal projection onto the closed subspace

T
I(XP) .= {/ 9:dXP 9 is predictable with E/ |0¢)2dt < oo} .
(0,7) 0

Then

Jg Ddp / D
— o (f, p)d X, a.s.
fR DZdILL 0.1) t ( ) t

For D = 1 this was shown in [17, (8), (10), Example (c1) on. p. 209, Lemma 4]. We omit the
proof of this extension. The following statement is one motivation of Section 8 and will be used in
Section 8.5.

Pxo(f(X1)) =

IThere might be a symmetric 4®"-null-set in (x1,...,Z,) on which the integral does not exist. On this set we
set hp, to be 0.
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Proposition 8.2 (Gradient of GKW-projection). Assume that the Lévy process X is an Ls-
martingale, that f € Dx N Ly(R,Px.,.) and F is given by (8.2), that dp = Ddp/ [, Ddp as above,
and that t € (0,T). Then there is a null-set N; € F such that for w ¢ Ny one has®

eul1,9)(@) = pU{ON I (1, X, () + / F(t, Xi(w) +2) = F(t, Xo(w))
x R\ {0} z

p(dz). (8.4)

We prove Proposition 8.2 in Appendix D for the convenience of the reader. Results related to
Proposition 8.2 are provided in [28, Theorem 2.4], [6, Theorems 2.1, 3.11, 4.1], and [12, Proposition
2]. Other techniques use the Fourier transform (see, e.g., [9]).

8.3. Upper bounds for the gradient process. Gradient estimates in the Lévy setting are
studied in different ways in the literature. In [10, Theorem 1.1 and Remark 2.4] Holder regularities
are studied, where one looks for an improvement of the Holder regularity caused by the transition
group. In a way, this is opposite to our question. The result from the literature we contribute to is
[39, Theorem 1.3] (see Remark 8.22 below). Finally, [33] investigates when f(Xr) belongs to Dy o
or (L2,D1 2)p,00 in dependence on f € Hél?%oo(]R) and properties of the underlying Lévy process
X. In our article we look for L., and BMO bounds for vector-valued gradient processes generated
by an f(Xr) when f € H619772 (R), where we do not need and consider any Malliavin smoothness
of f(Xr) itself. Moreover, for a given f(Xyp) the fractional smoothness of the gradient process
depends on the direction in which the gradient process is tested. So far, we do not see a way to
exploit the results from [33] for our purpose, but it would be worthy to understand connections.

For this section we assume the following setting:
(1) X = (Xt)eefo, 1) is a Lévy process with u(R) € (0, oc].
(2) p is a probability measure on B(R).
Let us start by formalizing the right-hand side of (8.4):
Definition 8.3. For an F': [0,7) x R — R, such that  — F(¢,z) is measurable for all ¢ € [0,T),
and (¢,2) € [0,T) x R we define
F(t —F(t F(t —F(t
D,F(t,x) ;:/ (hot2) = Fo) gy [Ft,z+2) = F(t, o)
R\ {0} 2 R\{0} E
If additionally we have that F(t,-) € C*(R), then we let

D,F(t,x) := p({O})%(t,m) + /R\{O} F(t,z+ zz - F(t,m)p

One point of this definition is that the measure p is general. This allows us to capture different
aspects: If p is as in Proposition 8.2, then we can study Galtchouk-Kunita-Watanabe projections,
if p is a Dirac measure in z € R\{0}, then we study the point-wise behaviour of (F(t,z + z) —
F(t,z))/z. A general background is provided in Appendix D.3 in terms of a vector-valued gradient
process associated to a functional f(Xr).

p(dz) < oo.

(dz).

We recall a class of functions that are of local bounded variation:

Definition 8.4. A Borel function f : R — R belongs to BVj,.(R) provided that f is right-
continuous and there are Borel measures ™ and g~ on B(R), finite on each compact interval, and
disjoint ST, 57 € B(R) with STUS™ =R and p™(S7) = = (ST) = 0, such that

f(b) — f(a) = p*((a,b]) — p~ ((a,b]) forall —oo<a<b<oo.
Furthermore, we let | f'| := p* +u~ and, for a Borel function g : R — R with [, |g(z)||f'|(dz) < oo,

[ o) @)= [ atent @)~ [ gl (@),

The pair of measures (u", ) is unique and we will identify f’ with (u*, ). The space
BVioc(R) consists of functions that are of bounded variation of on each compact interval (cf. [37,
Chapter 8]). The next definition is the key for what follows and defines two functionals to obtain
D,F(t,x), the second term on the right-hand side of (8.4), from a given terminal condition f. The
first functional simply rephrases D, [, the second one uses some kind of partial integration.

2The integral with respect to p(dz) exists for w & Ny and we omit p({0})(dF/dz)(t, Xt (w)) if p({0}) = 0.
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Definition 8.5. (1) For t € [0,T) we define I'? , : Dom(I")) — R by

Dom(Fg):: {féDX and Vs € [0,T)VO<I<s<TVreR:

)
R\{0}
(f.T7,) := D,F(t,0).
(2) For t € [0,T) we define the Borel function 7, : R = [0,00] and I'; , : Dom(T'}) — R by

spto)i= [ P EIOD ) i g2 =k -2t 2,
R\{0} |2

F(s,x+ Xs+2)— F(s,z+ X5s)
z

p(dz) < OO},

Dom(F;) = {fEDXﬂBVbC(R) and VO<I<s<TVreR:

E./R'ysyp(v —x— Xs)|f'|(dv) < oo},

@m»=www:4wmwmw

In Definition 8.5 we use Li-conditions instead of Lo-conditions which is sufficient at this point.
The L;-conditions are chosen to guarantee a point-wise definition of D,F' and the properties stated
in Remark 8.6 below.

In Theorem 8.10 we prove [ y:,,(v)dv = p(R\{0}), Dom(T'}) € Dom(I")), and that

<f/a ’Yt,P> = <f7 Fg,p> fOI‘ f S Dom(r;lj)
If D(R) is the test function space that consists of f € C°°(R) with compact support, then D(R) C
Dom(T'}) (for f € D(R) we have f'(dv) = f’(v)dv and |f’|(dv) = |f'(v)|dv, where f’ on the right-
hand sides is the classical derivative). If we consider v, € Li(R) as distribution v, € D’(R) (see
[36, Section 6.11]), then we have the interpretation

D"}/t)p = _Fg,p’

(8.5)

see [36, Section 6.12] and I‘g , can be seen as distributional derivative of a distribution of L;-type.

Before we continue, let us list some facts we exploit later:

Remark 8.6. For f € Dom(Fg) the following holds:

(1) DyF(t, ) = (f(x+),I¢,).

(2) One has that t +— d(t) := || D,F(t,-)||g,(r) € [0,00] is non-decreasing.

(3) The process (D, F'(t, X¢))iepo,r) is a martingale.

(4) There exists a cadlag modification ¢ = (¢)iecjo, 1) of (D, F(t, Xt))te[o,r) such that

lp¢| <d(t+) on [0,T) x Q.
It will be useful to consider Fg , s linear functional on semi-normed spaces:

Definition 8.7. For t € [0,T) and a linear space E C Dom(I")) equipped with a semi-norm |- |
we let [|T? || g+ := inf ¢, where the infimum is taken over all ¢ > 0 such that

|<f,I‘2p>|<c|f|E forall feE.

In this article we aim for estimates of type

Do, ) Bym) < cs.6) ()| fle forall f € E. (8.6)
If E contains only functions f such that f(0) = 0 (to have a norm || - || g rather than a semi-norm
| - |& later) and are ’translation invariant’ in the sense that || f||g = || — f(zo + 2) — f(x0)|| £ for

any xo € R, then the estimate (8.6) is equivalent to
ID,F(t,0)] = [(f,T )| < cwey (D)l flle forall feE.
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This is the reasoning for the definition of (f,T? ), i.e. for the estimates (8.6) one does not need
to work with the Banach space By(R). One application of the results of this section are the upper
gradient estimates provided by Corollary 8.13 that can be seen as a counterpart to Theorem 6.6
proved on the Wiener space. To prove Corollary 8.13 we use the interpolation result Theorem 7.1
with end-point estimates derived by Theorem 8.9 and Theorem 8.12. As an application, inequal-
ity (8.15) of Corollary 8.13 allows for BMO-estimates of (D,F(t, Xt))icjo,r) after applying our
Riemann-Liouville operators to its cadlag version by exploiting Theorem 8.11.

To start with, we introduce a variational quantity that is one key for us to obtain upper bounds
for gradient processes:

Definition 8.8. For n € [0,1] and s € [0,7] we let

1, v = it { / P<z>1—"p<dz>} € 0,00,
R\{0}

where the infimum is taken over all measurable P : R\{0} — [0, c0) such that

IP.+x, — Px,
|2|

IV < P(z) for zeR\{0}.

We use the potentials P to avoid a discussion about the measurability of the map z — ||P,4x_ —
Px_|l7v (which would not be necessary for us). We have the following special cases:

(1) 1 Xsllrvip,) = p(R\{0}) < oo for s € [0, T].
(2) ”XOHTV(p,n) = 21777 f]R\{O} |Z|n71p(dz) for n € [Oa 1]
(3

_ 1-n
) N1 Xsllrvs.,m = (M) < oo, n € [0,1], if §, is the Dirac measure in z €

2|

R\{0}.

We will not use || Xo||l1rv(p,,), whereas our idea is to use || X|1v () for s € (0,T], where we
exploit the behaviour of |P.4x, — Px_|rv. This enables us to obtain the correct blow-up of
gradient processes when considering -stable-like processes. Upper bounds for || X,|tv(s, ) can
be found in the literature, see [39, Theorem 3.1], Theorem 8.9(2) is a variant for our setting.

In Theorem 8.9 and Theorem 8.10 below we provide basic properties of Fg , and F,}, p- We will
use Theorem 8.9 to deduce upper and Theorem 8.10 to deduce lower bounds for our gradient
processes. Moreover, Theorem 8.10 gives the interpretation (8.5) of F?ﬁ , and I‘tlv p as distributions.
Theorem 8.9 (Properties of the functional ng). Suppose that 1 € [0,1] and (Xt)iepo,17 € Ly
(1) If | Xsl|rv(py < 00 fors € (0,T], then Hol,(R) C Dom(Fg) and

0
Hrt,pH(Haln(R))* S HXT—t”TV(p,n)v (8.7)

where Hol, (R) is equipped with the semi-norm |f|, oo == || f — f(0)||H613.QO(R) ifne(0,1).
(2) Ift € [0,T) and Xr—_; has a density pr—; € CY(R), then

1-n
. 2 ||Opr—¢
1 X7 —tllTv(p, S/ min ¢ —, p(dz).
(pm) R\{0} |2 dy L1 (R)
In particular, if ¢ > 0, then pr—, € C'(R) with ’ Ot e S 2 (T — 1)~

Proof. (1) First we remark that (X;),ej0,7) € Ly, implies that Hol,(R) € Dx. Moreover, for fixed
z € R\{0}, t € 0,T), and f € Hol;(R) we obtain the estimate

F(t,x+z) — F(t,x)

<Ifh (8.8)

and, for f € By(R) and 2’ € R,

/R (F@+1) — &) Parxy, (dy) - / (f(z+ 1) — F@)Px,_,(dy)

R

|F(t,z+ z) — F(t,x)| =

< / @+ 1) — F@)] Parxr_, — Py |(dy)
R
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<|If = @) By @) IPetxrm, — Pxr [TV
Therefore,

’F(t,l‘ + Z) - F(tax) ||]P>Z+XT71: - ]P)XT—tHTV (8 9)

z 2|
for ¢s.0) = [Ifllcom) if f € CY(R) (take o' = 0) and ¢s9) := |flo if f € Holp(R) (take the
supremum over ' € R on the right-hand side). Moreover, real interpolation between (8.9) for
CY(R) and (8.8) for Ho1(R) (for fixed  and z) implies that

‘F(t,m—i—z)—F(t,x)

X €(8.9

1-n

1/ e

r)oo

(8.10)

[]P’erXTt —Px;Jlrv
||
for n € (0,1) by (2.2). From (8.9) and (8.8) we deduce Hél,(R) € Dom(I')) and (8.7) for n € {0,1}.
If n € (0,1), then (8.10) implies Hélg’oo(R) C Dom(TY9) and (8.7) with Hol,(R) replaced by
Hol) . (R). But if f € Hol,(R), then we replace f by fo := f — f(0) € Hal)) (R) and get (8.10)
with constant ||f — f(O)HHélg’oo(R). This concludes the proof of (1).
(2) We observe that

z 8pT,
IPetxr . = Pxo_illvv = lpr—e(- = 2) = pr—ill 1, r) = /R‘ ay “(y)dy

gsign(z)//
RJx—2z
Opr—
=4 [ |2t ay
R

As we have ||P.+x,_, — Px,_,|lTv < 2 as well, we obtain the first part of item (2). If o > 0 and
s € (0,T], then the density of X, is given by ps(y) := Epsw. (y — Js) where p,w, is the C*°-density
of oW, and satisfies

dx

Opr—¢ (

y)’ dydx

(8.11)

Haps H aPaW ( 7(]3) < HapUWs _ %87% 0
Li(®) 0y Li(®) 0y Npyw Vo
Theorem 8.10 (Properties of the functional T'} ). Let t € [0,T).
(1) One has [ vi,0(v)dv = p(R\{0}).
(2) One has Dom(Fl) C Dom(T) and for f € Dom(T; ,) and x € R that
DyF(t,x) = (f*,Ty,) = (f*.I7,) if f°():=f(+a).
(3) If g, € [1,00], X7—¢ has a density pr—¢ € L.(R), and s :== min{r, q}, then
11
Follzae < ol [ 115 p(do).
R\{0}

Proof. Recall the notation J(v;z) =v + [—2z1,27). (1) follows from

/ o p(0)dw = / / { / {XTteJ(v;z)}dv} dPp(dz) = / dPp(dz) = p(R\{0}).

R\{0} J |2 R\{0} JQ
(2) For f € Dom(T'}) and x € R we observe that
F(t,x+z2)— F(t,x z+z+4+y) — flz+
/ ( )~ F(t,x) p(dz)</ [/ S y) — S y)‘PXTt(dy)]p(dz)
R\{0} c R\{o} L/R c
1
<[ =] 1), (d)p(d2)
R\{0} /R ‘Z| (z+y—z—,xz+y+zt]
1
~ [ [t w00 (dp(d)
R | JR\{0} 2| Jr
[f'|(dv)

) / / PXr—e €I =2:2) ] 1 1(dv)
R [/R\{0} 12
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- / Yo p(v — )| ] (dv)

which implies Dom(I'}) € Dom(I')) and also enables us to compute, exactly along the previous
computation,

R\{0} R [ /R\{0}

z K

(3) Let z # 0. Then the assertion follows from

1
Bt € T2l = | o LY
J(,Z) Lq(R)
<ot
Lq(R)

<3

52 (W)Pr—( HL (]R)HL ®)
|1_7 HZJH L0y ||L (&) PT- t(y)HLS(R)

S

where we use Holder’s inequality for the first inequality and (2.1) in the second one. (I

We return to the Riemann-Liouville type operators and aim for correct upper bounds for (say)
IZ%¢ — ollpnmos o,y Point-wise bounds for | D,F (¢, )| 5, (), in the sense that ¢ € [0,T) is fizved,
will not yield to optimal results. Instead, we exploit integral bounds expressed by ||, below.

Theorem 8.11. Assume that o > 0, f € Dom(T'%), and

2 20 T a—
o0 = 72 ; (T = t)** YDy (t, ) I, m)dt < oo,
and define

2cv T a— 2
e(0)’ =g | (T = D F ()5, mdt < I£ll;.q

so that e(a) L 0 if a T T. For a cadlag modification ¢ = (¢¢)icio, ) of (DpF(t, X¢))ecjo,r) one has
(1) (F74)" 1Dy F(a, )|, m) < £(a) fora €[0,T),

(2) EX[|Z¢¢ — I8 ¢?] <e(a)? as. for0<a<t<T,

3) [|(Zre - Ig@)te[a,T)|‘BMoz([a7T)) < 3e(a) fora €[0,T).
Proof. (1) follows from

(T - a)Qa 2 4 200—1 2
THDPF(av')HBb(R) =/ (I'-¢) 1D, F(a, )5, ®dt

T2a

T
< [ @0 D eyt = o ela)

(2) We assume B € F, of positive measure and apply Proposition 3.8, formula (3.4), to get

[ 1z~ Trofas = 2 | / 0 [ @uns — pul? dudPs
2aT_2°‘// 20‘ 1|<puAt| dudPg
< 20720 / (T — " [D,F (. )|, gy s

= e(a).
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(3) Because the BMOx([a,T'))-norm is invariant when passing to cadlag modifications, we may
assume the bound from Remark 8.6(4) for ¢ and use Proposition 3.3(3) in order to get
N T—t\"
|AZY | = T [Ap:| < 2e(t) on [0,T) x Q.

The statement follows from item (2), Proposition A.4, and Proposition A.5(1) (applied to the time
interval [a,T)). O

Theorem 8.12 (End point estimate). Let X = (X;)icjo,7) be a Lévy process. If there are e € (0,1)
and B € (0,00] such that

C(s.12) 1= sug 25 p({27" < 2] < 27"} < oo, (8.12)
ne
1 ||P, —P
€(8.13) = Sup sup 57 IP-x. X < 00, (8.13)
5€(0,T] z€supp(p)\ {0} 2]

then, forn € [0,1 — ¢) there is a constant ¢ = ¢(g, 3,1, C(8.12), C(s.13)) > 0 such that

e+n—1
[ Xsllrvipm Ses™ 7 for s€(0,T].

Proof. With A(z) := (2/]z|)!™" and v := 1_7” € [0,00) we get

2 N\
Xolleviom < [ (mm{wqm)s }) pla2) = [ minfAGz), el d2)
supp(p)\{0} supp(p)\{0}

Moreover, for k :=

-

€ (0,1), our assumption implies

p({2" < A< 2"} < ¢g14)27"" for n € Ny (8.14)
with some c(s.14) = ¢(c(s.12),€) > 0. Then we use the first step of the proof of Theorem 7.1 and
the relation (k — 1)y = {15, — 1) 177’7 = HZ% O

Corollary 8.13. Assume that (X¢)icj0,r) € L1 and either that
(1) ¢>0,8=2, or
(2) =0, (¢,8) € (0,1) x (1,2), and that (8.12) and (8.13) hold.

Then one has forn € (0,1 —¢), a := # € (O l), and g € [1,00] that H6127Q(R) C Dom(T9)

B
and
Ht '_> ) ”D F( )”Bb(R)HLq([O,T),Ttt X C(g 15 )Hf”HolO (R) (815)
for f € Hélg,q(R), where CE?LG) > 0 is a constant independent from f. In particular, for ¢ = 2 we
obtain
vV 2 2
110 < e o 1 o, ) (8.16)

Proof. In case of (1) we have Hél?wo(R) C Dom(I"Y) for all n € (0,1) by Theorem 8.9. In case
of (2) we have Hélg’m(R) C Dom(I")) for n € (0,1 — &) by Theorem 8.12 and Theorem 8.9. To
interpolate we choose 0 < 79 < <m < 1—¢cand find ad € (0,1) with n = (1—9)no+n1. Then,
by (8.10),

F(t,z+2) — F(t, ) b

sup ||fHHol oo
z€eR z |Z|

< ||f\|ng,i,m oy min{A(2), ¢l 7% (T — 1))

with v; = % and A;(2) := (2/]z|)17". Let k; := T+ As in the proof of Theorem 8.12 we get

||]P)z+XT_t - PXT—t HTV

sup 2" p({2" < A; < 2"} < 0.
neNy
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Now the statement follows from Theorem 7.1, where we note that
(1 =0)(1 —ko)yo + (L —K1)n = @,

and the reiteration theorem in the form of (2.5). O

Remark 8.14. The assumption on the existence of the density pp_; of a Lévy process is a time
dependent distributional property (see, e.g., [38, Ch.5]). In Theorem 8.9 and Theorem 8.10 we used
|0pr—1/02|| 1, r) and |[pr—¢|[z,(®)- Results for Op;/dx and p, for a Lévy process can be found, for
example, in [29, 31, 39, 42].

8.4. Lower bounds for the oscillation of gradient processes. Theorem 8.19 and Theo-
rem 8.20 are the main results of this section. Their background is Proposition 8.2 where we
compute the gradient of the Galtchouk-Kunita-Watanabe projection. Theorem 8.19 proves the
maximal oscillation of these gradients and Theorem 8.20 determines the quantitative behaviour of
the maximal oscillation as a counterpart to Corollary 8.13.

To handle the oscillation we exploit the supports of the laws Px, and transform the Lévy process
(Xt)te[o,r) into the process (Y);e0,r) below which has independent and stationary increments as
well. The statements Theorem 8.16, Example 8.17, and Example 8.18, are formulated for the
Y -process, before we return to the X-process. Let us start with the basic setting of this section:

Assumption 8.15. (1) In the notation of Example 5.6 we use supp(X;) = Q + ¢, t € (0,7, and
Y, = (Xt — Et)l{XtESupp(Xt)} for t € [O,T]

a) H(t,-) is continuous on @ for all t € [0,T),

b) E|H(t,y+ Yi—s)| < oo forall 0 < s <t < T and y € Q,

(¢) EH(t,y+Y;—s) = H(s,y) forall 0 < s <t < T and y € Q.
(3) p is a probability measure on B(R).

(2) The function H: [0,T) x Q — R is Y-consistent, which means
(
(

The reason for this definition is the following statement:

Theorem 8.16. Let H be Y-consistent and ¢ := H(t,Y;), t € [0,T). Then ¢ = (¢t)efo,1) 5
a martingale of maximal oscillation with constant 2 in the sense of Definition 5.1. Moreover, if
for allt € [0,T) there is an t € (t,T) such that H(t,Y;) € Lo, then the following assertions are
equivalent:

(1) infieo,m) Osc, (@) = 0.
(2) ©r = o a.s. for allt € (0,T).

Ttem 2 of Theorem 8.16 implies a forward uniqueness: If there is an s € (0,T') such that ¢ = ¢
a.s., then the martingale is constant a.s.

Proof of Theorem 8.16. The martingale property follows by the definition and the maximal oscil-
lation with constant 2 follows from Example 5.6. Regarding the equivalence we only need to show
(1)=(2). For 0 <s<t<T,y},yh € Qand w € (V; — Y;)~}(Q) we obtain that

ot — @sllo. = sup [H(t,y+vy') — H(s,y')|
Y,y €Q
> [H(t,y; + (Y — Yo)(w) + 95 + Yi(w)) — H(s,y5 + Ys(w))|
= [H(t, vy +y5 + Yi(w)) — H(s,y5 + Yi(w))|,

where the first inequality comes from p; — ps = H(t,Y; — Yy +Y,) — H(s,Ys), supp(Y; — Y, Ys) =
Q x @, and from the continuity of @ x Q 3 (y,vy') — H(t,y +y') — H(s,y’). This implies

lor — ¢sllze. = sup [EH(t,y+y +Y,) —EH(s,y +Y5)| = sup [H(0,y+y') — H(0,y)]
Y,y €Q v,y €Q
> sup |H(0,y) — H(0,0)].
yeER
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For s = 0 we use the same idea with y' = y5 = 0 to get [|v: — @ol|L.. = sup,ecq [H(0,y) — H(0,0)].
So (1) yields to C' := H(0,0) = H(0,y) for all y € Q. Fix 0 <t <t < T as in our assumption.
According to Lemma D.1, we have a chaos expansion

o
H(t,Yy) = BH (Y + > Ly (ha150)
n=1
with h, € Lo (u®m). Let Y be an independent copy of Y with the corresponding expectation E.
For At :=# —t > 0 this implies E72(H (¢, Y5)] “© EH(t,Ya¢ +Y:) = H(0,Ya;) = C and

C = EP>(H(1LY;)] =EH(LY) + Y I, (Bnn[%fm}) as.
n=1

Therefore, h, = 0 in Ly(u®") for all n > 1, which yields H(t,Y;) = C a.s. Since supp(¥;) = Q =
supp(Y;), together with the continuity of H(t,-) on @, we derive that H(t,y) = C for all y € Q.
Therefore ¢ = H(t,Y;) = C ass. O

The next two results provide the fundamental examples of Y-consistent functions:

Example 8.17. We assume
(1) that k: @ — R is a Borel function with E|k(y + Y)| < oo for (s,y) € [0,7] x Q and that
K:[0,T) x Q — R with K(t,y) := Ek(y + Yr_,) satisfies

E/ K(tvy‘i’}fé‘i’z)*K(tay‘FYé) p
Q\{0}

z

(2) that y — K(t,y) is continuous on @ for ¢t € [0,T),

(3) that for all (¢t,y) € [0,T) x @ there is an ¢ > 0 such that the family of functions z
K(ty'+2) = K(ty")

Then we obtain a Y -consistent function by

K(t,y+2z)— K(t,
Hit.y) ::/ (t,y+2) — K( y)p
Jo\{0y z

Proof. (2b) Taking § = 0 in assumption (1), we see that H(¢,y) is well-defined, and for 6 :=¢ — s
we obtain that

BJH(y +Yio)] <E [
7 Q\{0}

(2¢) Because of (8.17) we can apply Fubini’s theorem to get

(dz) < oo for 0<0<t<T,

, indexed by ¢’ € Q with |y — y/| < e, is uniformly integrable on (Q\{0}, p).

(dz) for (t,y)€[0,T)x Q.

K(t7y+y;ffs+z)_K(tvy+Y%78) p
z

(dz) < oo. (8.17)

K(t Yi s — K(t, Y
BH(y + Yo =B [ SRt Ry
Jo\{o} z
EK(t Yi s —EK(t, Yi s
:/ (’y+ t +Z) ( y+ t )p(dz)
JQ\{0} z

p(dz)

_/ K(s,y+2) — K(s,y)
Q\{0} z

= H(S7y)

where we use EK(t,y + Y;—s) = K(s,y). (2a) If we have y,,,y € @ with y, — y, then we take
e = ¢(t,y) > 0 from assumption (3) and obtain lim,, H (¢, y,) = H(t,y) by the uniform integrability
imposed in (3) and assumption (2). O

Example 8.18. Let ¢ > 0. Then @ = R and the following holds:

(1) If k: R — Ris a Borel function with E|k(Y7)|? < oo for some ¢ € (1, 00), then E|k(y+Yr_¢)| <
oo for (t,y) € [0,T] x R. If K(t,y) := Ek(y + Yr_¢) on [0,T] x R, then K(t,-) € C*°(R) for
t € [0,T) and we obtain a Y-consistent function H : [0,7) x R — R by

0K . 1 Wr_y
Hity) = -(ty) with H(ty) = 2B |k(y + Y- 7




RIEMANN-LIOUVILLE OPERATORS 39

(2) If k € Hol,(R) for some n € [0,1] (and E|k(Y7)|? < oo as above if n € (0,1]), then
- 2 dz
H{t,- < |k ’HTft"Tl/x"“e*T—. 8.18
P W (5.18)

Proof. @ =R follows from [38, Theorem 24.10].
(1) Let k>0, J:=Y —oW, and fix t € [0,T).
(a) Since E|k(cWr + J; + (Jr — Ji))|? = E|k(Y7)|? < o0, independence and Fubini’s theorem
yield to E|k(cWr + ar + (Jpr — J3))|9 < oo for some a; € R. If
N® = {z e R: Elk(oz + a; + (Jr — J;))|? = o0},
then N is a Borel set of Lebesgue measure zero. We define
O (2) == Ine(z) Ek(ox + ar + (Jr — J4))

so that E|f)(Wr)|? < co. Now we can apply [19, Lemma A.2] to f®) and get for (s,z) € [0,T) xR
and F®) (s, 2) := Ef®(x + Wr_,) that

OF®) Wr_s
F®(s,-) € C*(R) and 5 (s,2) = Ef®(z+ Wrp_ S)TT—S

(b) Because k > 0, N® has Lebesgue measure zero, and T'— ¢ > 0, we verify by Fubini’s theorem
(regardless of the finiteness of the integrals) that

K(t,y)=F" (t, M) < oo sothat K(t,-) € C*(R).
o

(c) We choose ¢ € (1,q) so that Ek(y+ Yy —Ys)|Wr —Wi| < cgr—¢||k(y+Yr —Ys)||L, < oo where
the finiteness of the last term is obtained as in (a-b) by starting with the function y +— k(y)?. This
moment estimate enables us to apply Fubini’s theorem in the sequel.

(d) Using [19, Lemma A.2] we deduce that

(t) _
o 1y = 2L (L Y at) Ef® < L Wi t) Wr
dy o o

ox T—t

Wr_y Wr_y
Ek W J =Ek Y,
E(Ek(y + cWr_; + Tt))T / (y+ Tt)T ;
(e) To check E%(t,y+n—s):%y (s,y) for s € [0,t] we have to verify
WT—Wt WT_WS
E|k(y+Yr — YOl R k(y + Y — Vi) 25|
[k v = V)R < B k4 v - V) T

AS W;—Wt _ W’;—WS
—t —s
conclude the proof of (1) we remove the assumption k > 0 by considering the positive and negative

parts separately.

(2) Now we additionally assume that k£ € Hol, (R). Assume that t € [0,T") and y = oz + a; with
z ¢ N® and N defined as in step (a). Then E|k(y + Jr_¢)| = E|k(ox + a; + Jr_4)| < oo and

is of mean zero and independent of Y — Y, the last equality is true. To

0K 1 Wy 1 Wy
—(t,y)|=|-E |k Y, =—E||(k Yr_.) —k _
S 6| = |2 [kt + V05| = 22kt Yoo bt + - |
k _ _
< [Fly |"E [|0WT_t|" [Wr | ;'] = |k|,o" (T — )™= E|g|"*".
Because A(N®) =0 and y + Z (t y) continuous, the estimate is true for all y € R. O

Now we are in a position to return to the setting of Proposition 8.2:

Theorem 8.19 (Maximal oscillation). Suppose that

(a) the Lévy process (Xt)iepo,r) 45 an Lo-martingale and p := p/p(R),

(b) n€[0,1] and || Xs|lrv(py < oo for all s € (0,T] ifn € [0,1),

(c) f € Hol,(R), where we additionally assume thaty — f(y+LT') is continuous on Q ifn = o = 0.
Then f € Dom(I') and, additionally, F(t,-) € C*(R) for t € [0,T) if o > 0. Letting ¢; :=
D, F(t,X;) fort €[0,T), the following holds:
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(1) ||90t||Loo = Supm€supp(Xt) |ﬁPF(t7$)| fOT te [O’T)
(2) (¢t)ieo. 1) is an La-martingale of mazximal oscillation with constant 2.
(3) Unless oy = @o a.s. for allt € [0,T), one has infyc (o 1) Osc, () > 0.

Proof. Theorem 8.9 implies that f € Dom(T'). Now we let k(y) := f(y + (T) and K(t,y) :=
Ek(y + Yr_y) for (t,y) € [0,T) x Q, so that
K(t,y) =F(t,y+t) for (t,y) €[0,T) x Q. (8.19)

Let
K(t,y+2)— K(t,y)
z

Hit.) = p(O) G () + p(d2) for (hy) € [0,7) x @
Q\{o}

(a) H is Y-consistent: By Example 8.18 and E|k(Y7)|? < oo the first term p({O}) is well-defined

and Y-consistent given p({0}) > 0. For the second term we verify the assumptions of Example 8.17:

Assumption (1) follows by (8.19) and f € Dom(I")).

Assumption (2) follows by Example 8.18 if 0 > 0. If 0 = 0, then k : @ — R is continuous
by assumption. Then we use k € Hol,(R) and Yr_; € Ly to deduce the uniform integrability of
(k(yn + Yr—¢))nen if Yy, — vy in @ which implies the continuity of K (¢,-) on @ for t € [0,T).

Assumption (3) follows from the proof of Theorem 8.9(1) that gives

K(t,y+z) — K(t,y)
z
(b) We have sup, cq |H(t,y)| < oo for all t € [0,T) because of (8.18) and (8.20).

Now assertion (1) follows from the continuity of H(t,-) on @, which implies the continuity of
D,F(t,-) on supp(X;). Assertions (2) and (3) follow from Theorem 8.16 and again by D, F(t,x) =
H(t,z — ¢t) for x € supp(X;) (supp(Xo) = {0} C Q) which implies D,F (¢, X;) = H(t,Y;) a.s. O

< (NPt xr, = Pxro, Iy 21" " (8.20)

Now we provide the corresponding lower bounds for Corollary 8.13. The conditions (8.21) and
(8.22) are a counterpart to (8.12) and (8.13) assumed in Corollary 8.13.

Theorem 8.20 (Size of maximal oscillation). Suppose that

(a) the Lévy process (Xt)icpo,1) 45 an Lo-martingale and p := p/pu(R),

(b) n€[0,1) and || Xs|lrv(p,m < oo for all s € (0,T],

(¢) fy:R—=ReHol,(R) is given by fy(x) := (xV0)" if n € (0,1) and fo(z) := 1jg,00) ().

If Fy(t,x) .= Ef,(x + Xp_y) for (t,z) € [0,T) x R, then one has
(1) infye (T -8 2n@0)>0  ifo>0,
(2) infyeo,r)(T — t)lfTD,,Fn(t, 0)>0 ifc=0andp€[l+n,2), and if

p([*E,E]) = C(8A21)527B fOT S (0,8(8.21)], (821)
P(X, ; 1
inf PIX; € J(v;2)) €|‘|](” ) 5 Csans P for s€(0,T), (8.22)
z

1
[v|V]2|<E(s.22)5 P ,27#0

for some constants c(s 21y, €(s.21), C(8.22), C(s.22) > 0 and where J(v;z) = v + [—zF,27).

Proof. (1) For s € (0,T] we let ps = pow. * P;. be the continuous density of the law of X (see
Theorem 8.9(2)). Then we have

_ (== Z) 1 22

1 1 _a?
ps(x): O’\/% 20%s Py, (dz) a'\/i e GSIPJ dZ)/ C(.23)8 2€ o7s (823)

with ¢s 03y := (ov2m) e 7? [z #*7(d2) hecause by Jensen's inequality,

22 o~ 25 1EJ2 -2 2
/e_% Py (dz) > e BIS = gm0 T femn(da) 5 g
R
Moreover, for x = 0 and £ > 0 we have

O0F, >
t,0 "o (v)dv > f "
8x( ) = /0 " pr_¢(v)dv Leﬂﬁ)s]pT (v )}8
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for n € (0,1), where the first equality follows by a direct computation, and (1) follows with
ei= VT — 1. If =0, then 22(£,0) = pr_¢(0) > c(g.0m (T — )2

(2) Let e = d(T—t)% = min{é(gzg),5(8‘21)T7%}(T—t)%. We observe that w >0
for all z € R\{0} and that f’ in the sense of measure is a non-negative measure. For this reason
we can use the proof of item (2) of Theorem 8.10 without checking integrability assumptions to get

/ Fn(t,z)an(t,O)p(dz) :// ]:P>()(T—t|6 J(U’Z))p(dz)ﬂ,(dv)
R\{0} z R\{0} z

/||< /O<| ) XT—t|§| J(U;Z))P(dZ)f;](dv)
P(X7_¢ € J(v;2))

f ) ([—

0<| |<ne lv|<e |z e'pll=2.el)
> c(g.22) (T — t)fé(d(T t)%)nc(&zl)(d(T - t)%)Q_B
=d(T—t) =\ O

8.5. Sharpness of the results - f-stable-like processes. In this section we assume a Lévy
process X = (X¢)e[o,r] With o = 0, which is an Ly-martingale, and 3 € (1,2) such that the Lévy
measure satisfies v(dz) = p,(2)dz, where p, is symmetric and
0 < liminf |2|*™p, (2) < limsup |2|*Pp,(2) < 0. (8.24)
z|—0

] |z|—0

We consider a functional D € Ly(R, p) with D > 0 and [; D*dp > 0, and set

d Ddpu.

a fR Ddp

Given ¢ € (0,1), the small-ball assumption (8.12) on the functional D : Ly(R\{0}, ) — R reads
as

(/ Dd,u) sup 25" p({27" < |2 < 27" }) = sup 2°" / Ddy < cc. (8.25)
JR [2—n,2-n+1)

neN neN
Given f € Dx N Ly(R,Px,.), we also discuss the Riemann approximation of the stochastic integral

/ oi—(f, p)dXP
(0.7)

that represents by Proposition 8.2 the Galtchouk-Kunita-Watanabe projection of f(X7) on I(XP)
up to a factor. The corresponding error process with respect to the time-net 7 = {t;}7., € T is

Et(f;TvD) = [0 ]303 (fa dXD Z@tz 1— f7 )( t/\t Xt[:,l/\t)7 te [O’T)

Theorem 8.21. Letn € (0,1 —¢), o := #, 0 :=1—2a, and assume that the functional D
satisfies the e-small ball property (8.25). Then Hél?ﬂ(]R) C Dom(T"Y) and the following holds:

UPPER BOUNDS: For f € H61272(R) and the parameters © := (58,v,e,D,n,T) the following holds:
(1) There is a c(s.26) = c(©) > 0 such that one has

tESBI;)(T—t)aH(Pt(f» P)llce. +1Z%(f, p) — ¢o(f, )||131\/102([0,T))< 826)||f||H0102(1R<)a (8.26)

tim | @207 0) = T2 Do oy = (8.27)

(2) There is a c(s.28) = ¢(©) > 0 such that one has
LE(5 7 D) lbmos o.1)) < Cs28)V ITllo [1f lmsro , r)- (8.28)

(3) @(f,p) has mazimal oscillation with constant 2.
(4) Unless o(f,p) is almost surely constant, one has inf,co 1y Osc, ((f, p)) >0
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(5) If p € [2,00), then there is a c(s.29) > 0 such that for 0 < a <t < T, ® ¢ CL*([0,t]) with
LV [AXs| < @5 on [0,t], sup,ejo, Pu € Ly, and A > 0 one has

1 E7e|supyepay ‘I’ﬁ}

.0
Pr, (|E(f;70,D) — E,(f;78,D)| > A) < ¢(s.29) min W (T = e a.s.  (8.29)

LOWER BOUNDS: For D = 1 we can take ¢ = 2 — 3 and there is an f, € Hol,(R) such that for
0t = @i(fy, p) one has:

(6) infico,r) (T —t)*Osc,(¢) > 0.

(7) There is a c(s.30) > 0 such that for all T = {t;}j_y € T with ||T]lg = % one has

n 2
inf sup E”- / Oy — Vi 1le, 4w
Vi—1€L0(Ft;_1) a€ltn_1,t1) (@) ; (tioa ) (W)

du > cfsanylTlle. (8.30)
®) 1B 7 D lomos oy = VAR @300y 7]l for all 7€ T

LOO

Remark 8.22. From the above theorem we get that

e (fs P Lo < e(s.26)(T — 1)

Let us take a sequence of real numbers |z| = 27!, [ € N, and consider the corresponding Dirac-
measures p; = J,,. Suppose that the small ball condition

p({27" <zl <27} < <122 °

holds uniformly in I and n. Because p;({27! < |z| < 27!71}) = 1 this implies that 1 < ¢(5.12)27°"
for all n € N and finally ¢ = 0. If we interpret f € By(R) as n = 0, then we would get an exponent

(e4n)

-ty 7 = (-t
which is the upper bound of [39, Theorem 1.3].

For the proof of the theorem we first need the following Lemma:

Lemma 8.23. For0<a<tel,0<r <p<oo, Y € CLy(), ®,® € CLY([0,1]) with &, < O
for s €0,t] and Supyc(o,4] Pu € Lp, and for A > 0 one has, a.s.,

Pr, (1Y = Yol > A)

=P
ccommind B o L e s )
" moy ([0,t]) AP bmo? ([0,t]) ®,[0,t]
where c(s.31y > 0 depends at most on (r,p).
Proof. First we observe that
Pr (Y = Ya| > A) < %HY”;mO? a.s. (8.32)

Moreover, from Proposition A.5(1) we know that

1_q +
¥ levozqom < 257 (1Y oz o) + 1A 50,0 (8.33)

Using Proposition A.6(2) this yields to
1
. ) ’
u a.s.

sup .
u€la,t]

1
(Efa“yt YalP]) P < (A.2)||Y||BMO§([0¢]) (ER

which implies

&
Pr, (Y - Yal > %) < <52

HYHBMO@ . t])IEfal sup @51 : (8.34)

u€la,t]
Combining (8.32), (8.34), and (8.33) implies our statement. O
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Proof of Theorem 8.21. (a) ESTIMATES ON THE DENSITY OF X,. Let ¢ be the characteristic ex-
ponent of X, i.e. Eel*Xs = e~ (see [38, Theorem 8.1]) for s € [0, T]. By (8.24) we obtain
0 < liminf Rey(u) < limsu Rey(u)
ulmoe [ulf T e Jul?
If s € (0,77, then X, has a density p, € C*(R) with lim|,|_,o(0™ps/02™)(x) = 0 for m € Ny by
[34] (see [38, Proposition 28.3]). We combine (8.35) with [39, Theorem 1.3] and [31, Lemma 4.1]
and obtain so € (0,77 and ¢ > 0 such that ||0ps/9z|;, @) < cos™F for s € (0, s0]. If s € (80,77,

< 00. (8.35)

1
then [|0ps/0z|| 1, ) = [1(OPse/0%) * Ps—sol 1, (r) < 0o ”, S0 that
Haps

Cssys P for s € (0,T) (8.36)

Ly (R)

with ¢(s.36) 1= co V co( 0) On the other hand, by (8.35) there is a ¢(s.37) = ¢(8,p,) > 0 such

that, for s € (0,77,
1

€(8.37)

§7F < / e sRev(W) qy,  and /e*SRew(“) |u|du < 0(8_37>3_%. (8.37)
R R

When p,, is symmetric, then p, is symmetric and 0 € supp(X;) for s € (0,7]. Combining (8.37)
with the proof of [30, Lemma 7] yields c(s ss), €(s.38) > 0, not depending on (,x), such that

1 1
ps(x) = cs3s)s 7 for |z| < Esss)s? and se (0,T]. (8.38)
(b) UPPER BOUNDS: (8.13) follows from (8.36) and (8.11). Theorem 8.12 gives || Xs|1v(pn) < 00

for s € (0,7] and n € (0,1 —¢) and Hélng(R) C Dom(T'9) by Theorem 8.9. Now let us check our
assertions:

(1) follows from Corollary 8.13 and Theorem 8.11.

(2) For 0 < a <t < T we use Ito’s isometry and and choose d(X ), = (fR Dzd,u) du to get,
a.s.,

2

¢ n
E-FaHEt(f;T?D) —Ea(f;’ED)P] :E]:a / Pu— _Z@tiflf(f7p>1(t7‘,_1,ti](u) d<XD>U
va =1

= (/R D2du> E7([o(f, p), 7]t — le(f, p), T]a]

where we use ¢, (f, p) = ¢u—(f,p) a.s., u € [0,T), which follows from the chaos expansion. Hence

1
m ||E(f;T7D>||12)m02([O,T)) = |lle(f, p)’T]Hmel([O,T)) = [l[eo(f, p)aT]HBMol([O,T))' (8.39)
R

Next we use inequality (8.16) and observe that
w 2 _ 2 T — 204—1d < T — 2c0—1 D F 2 d
lee(f, Iz = llee(fPIL (T —u) u < (T = u)™ D, F(u, ) ||, (rydu
2a [t,T) [0,T)
< 0%8.16)||fH%1519,,2(R) <0
which implies
lee(f,0) = o(fs Pl Lo < 2¢(3.06) V20T = 1)~ f 10, (m)
and [|D,F(t,-)||p,r) < V2acs.16)(T —1)~ ”fHHolo ,(r)- From this, for 0 < s < a <7 the proof of
Lemma C.1 gives

s)%

T —
lea(fsp) = @s(frP)lLo < 40(8.16) \ 2a§1||f|H6197)2(]R)-

T—a)2
Now (2) follows from last inequality, (8.26), and Theorem 4.7 (equation (4.6)). Assertions (3) and
(4) are a consequence of Theorem 8.19. Regarding (5) we first observe that

HE(f;Tr‘??D)Hbm%([(),T)) < C(8.28) HT ”9 ||f||Hol° C(8 28) \/ Hf”Hol (8'40)
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Moreover, one has a.s. that
|AE(f; 78, D)| < 2v 2acc(s.16) (T — 3)_Q|AX£|||fHH519L2(R) for s €0,1]
where we use ||D,F(s,")| ,m®) < V2acs.16) (T — s)*o‘||f||H619] ,(®) and Remark 8.6(4). Hence

|AE(f;78, D)oo, < 2V2acis.16)(T — t)ioé”f”Htil‘;’Q(]R)- (8.41)

Now the statement follows from (8.40), (8.41), and Lemma 8.23.

(c) LOWER BOUNDS: We take the function f, from Theorem 8.20. By (8.24) we derive (8.25)
for e = 2 — 8. Regarding Theorem 8.20 assumption (8.21) follows from (8.24) and assumption
(8.22) from (8.38). (6) Theorem 8.19(1) and Theorem 8.20(2) imply

]. 1+m _q ]. —a
letllee = sup  [Dp(t,2)[ > (T —=t) 7 = = —(T - 1)
z€supp(Xy) ¢ ¢
for t € [0,7). By Theorem 8.19(3) this gives inf,c(o,1) Osc,(¢) > 0. To verify (6) it is sufficient
to prove for some ¢ € (0,T) that inf,cf. 1) (T —t)*Osc, () > 0. As by Theorem 8.19(2) we know
that (¢¢)iepo,r) is of maximal oscillation with constant 2 we get, for t € [¢,T'),

1 1 1 1 1
Osc,(p) > 5\\% — oL, = §H<pt||Loo - §Ilwo||Lm > %(T—t) ¢ - §H<po||Loo~

Choosing ¢ appropriate, (6) follows. Items (7)-(8) follow from Theorem 5.7 and (8.39). O

APPENDIX A. THE cLASS SM,(I) AND BMO-SPACES

We summarize some basic facts about the class SM,,(I) and BMO-spaces that are used in the
article. For this we assume a stochastic basis (2, F, P, (F;):epo,r7) with T" € (0,00) such that
(Q, F,P) is complete, Fy contains all null-sets, and such that F; = msE(LT] Fs for all t € [0,7T).
We do not assume that Fj is generated by the null-sets only. In the computations below we exploit
the following fact: given stopping times o, 7 : 2 — I and an integrable random variable Z : Q — R,
we have {0 =7} € Foar and

B [1{o=ryZ] = BT 7 [Loory Z] = BT [1{o=r} Z] aus.
Moreover, we again use inf () := oo.

A.1. Properties of the class SM,. We start by a convenient reduction. Since F does not need
to be trivial we add the assumption ®¢ € L, to the definition of SM,(I) in Definition 2.2.

Proposition A.1. Forp € (0,00) and ® € CL™(I) with ® € L, one has 1@lsat,m = [I®llsa, @)
where |®|saq, 1) = inf ¢ is the infimum over ¢ € [1,00) such that for all a € T one has

IEF“[ sup @f} < PPP as.
atel
Proof. 1t is clear that [®[saq, @) < [|®[lsa, @), S0 that we assume that ¢ := [®|srq, @) < 00. Let
p: Q — I be a stopping time, & : [0,T) — [0,00) be given by h(t) := =~ — £. For k, N € Ny set
N N [k kE+1 N - N
[ak 7bk ) = h 27]\7’ 2T g [O,T) and 1et H (t) = ]].{T}(t)T =+ Z ]].[alk\fwbi\f)(t)bk .
k=0

Then HY () | t for all t € [0,T] and p" := HN(p) : Q — I is a stopping time as well. Then, a.s.,

EoN

sup OF
pN <tel

= E]:PN []]_{pN:T} <I>’H + ZE'FPN [ﬂ{prg} sup (I)f
=0 by <tel

o
F,
= l{pN:T}‘I)I;« + Z ]l{pN:ka}E oy [l{pN_bg} J\?up @f]
k=0 by St€l

SLiprary @+ 3 Lpngyy 'Oy
k=0
< CP<I>§N
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where we omit 1y~ _p®} if I = [0,7). This implies that E"¢[sup,v,c; ®F] < ’E7» [<I>p ] a.s.
By N — 0o, monotone convergence on the left-hand side and because @ is cadlag, and dominated
convergence on the right-hand side (® is cadlag and Esup,¢; P < 0o) we obtain the assertion. [

We continue with structural properties of the class SM,:

Proposition A.2. For 0 < p,pg,p1 < oo with 1% = pio + p% the following holds:
(1) SMy(I) € SM,(I) and [|®[|spq, @) < [[Pllsat, @ whenever 0 < p < q < oo,

(2) If @ € SMp(I), then ®* € SM,(I) and [|[®*|sr, @) < </1 + ||<I>||gMp(H).

or &' € , 1= an = aclo.) wit = one has
(3) For & € SM,,(I), 0,1, and ® = (®y)acio,1) h &, = PVP! h

1@/l 51,0 < 19°]sp,, @ 19 l5.01,, 1)
Proof. (1) follows from the definition. Now let a € I. To check (2) we observe ®f = ®, € L, and
7| sup 87| = E7 sup 8] < 10217 4 191000082 < (14 [015 00, 0010317 05
(3) We get ®J®} € L, and by the conditional Hélder inequality that, a.s.,

Efa{ sup @f} = p|EF«| sup (fb?@%)?} < Efa[ sup (®9)? sup (‘IJ%)P}
a<tel La<tel a<stel a<tel

< PQ/E}—G[ sup (@?)PO] P(/Efa{ sup (@%)Pl}
a<tel a<tel
<N lsmyp, 0 19 s 0, (1) PO P

= [19°]| s M, 0 19 | 5201, (1) P O

A.2. Simplifications in the definitions of BMO-spaces. The first simplification concerns the
case I =1[0,T7:

Proposition A.3. Forp € (0,00), Y € CLo([0,7T]), and ® € CL([0,T]) define \Y|BMO¢ (0,1]) =
inf ¢ and |Y|bmo o (10,7]) ‘= inf ¢, respectively, to be the infimum over all ¢ € [0,00) such that for all

pE ST;
EZ[|Yr — Y,_|F] < PP a.s. and EZ[|Yr — Y,|P] < O a.s.,

respectively. Then one has
1oyt
Ylsmoz (o,71) < 1Y [lBMoz (0,77 < 26771 + 1], (0,7 )1Y TBMO® (0,7]) 5
1_ 1\t
Y omoz (f0,71) < 1Y lbmo? (j0,77) < 2671+ @1l s, (0. 7D]1Y Tomoz (f0,71)
where we additionally assume for the right-hand side inequalities that ® € SM,,(]0,T1]).
Y g q p\LY;

Proof. The inequalities on the left are obvious. To check the inequalities on the right we may
assume that ¢ := |Y|BMO§([0,T]) orc:= |Y|bmo§([07T]) are finite. To treat both cases simultaneously,

we let t € [0,T], p € S, and A=Y,_ or A=Y, respectively. Then, a.s.,
(B71Y; — AP))* <2370 [(B71Yr - AP])” + (B {ve - ¥il"))” |
<27 [, + (BT (Ve ~ Vi) ¥

To estimate the second term we may assume ¢ € [0,7"). In case of bmo-spaces this term can be
estimated by

1

1 1 1
(EFe[|Yr — Y3 |P]) " = (BEP[E7[|Yr — Vi|*]]) " < e (BPe[@F]) 7" < cf| @l sm, (o, Pp  as.

In case of BMO-spaces we find a sequence ¢, € (t,7] with ¢, | t. Using Fatou’s Lemma for
conditional expectations we get, a.s.,

=

1
(E7[|Yr — mp]) <liminf (B77[|Y7 — ¥, —|”])” < liminf e (E7 [} ])" < c|[@lls, (o.r1) Pp-
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(]

The second simplification concerns the bmo-spaces. For p € (0,00), Y € CLo(I), and ® € CL™(I)
we let |Y|§f§o¢(ﬂ) := inf ¢ be the infimum over all ¢ € [0, c0) such that
E7[|Y; — Yo|P] < P®P as. forall t€l and a € [0,
With this definition we obtain:

det

Proposition A.4. One has | - brmo® (I) = Il - Hbmog(ﬂ) for all p € (0, 00).

Proof. Tt is obvious that |V ifﬁog(ﬂ) < ||Y||bmo§(11)~ To show ||Y||bmo§(11) <Y ﬁf;og,(ﬂ) we assume

that ¢ := |V gf;og(ﬂ) < 00, otherwise there is nothing to prove. For t € I, p € §;, and L € Ny

we define the new stopping times pr(w) := ¢ (p(w)) where ¥, (0) := 0 and 1 (s) = sF = £275¢
when s € (sk_, sk] for ¢ € {1,...,25}. By definition, pr,(w) | p(w) for allw € Q as L — co. Then
o3 “Yt ~ Yy \P} < PP, as.
14

L

for ¢ = 0,...,2F. Multiplying both sides with ]l{pL:s[L} and summing over £ = 0,...,2%, we get

that
E7oL[|Y; = Y, |P] < P®P as.
For any M > 0 this implies
E7eL]|Yy = Y, [P A M] < (PP ) A M as.

and
E7e[|Y; — Y, [P A M] < EP?[(cP®P ) A M] as.
The cadlag properties of Y and ® imply
E77(|Y; — Y, [P A M] < EP#[(P®8) A M] as.
By M 1 oo it follows that ||Y||bmog>(ﬂ) < ¢ as desired. O

A.3. The relation between BMOg> and bmo;f. The BMO- and bmo-spaces are related to each
other as follows:

Proposition A.5. For ® € CL™(I), Y € CLo(I),
|AY g1 :=inf{c > 0: |AY}| < c®; for allt €1 a.s.},
and p € (0,00) the following assertions are true:
() 1Y llpsopa < 25707 [IY oz + 1AY Lo g
(2) IfE|®}|P < oo for allt €1, then ||Y||bmog’(11) < ||Y||BMO;§)(H) and |AY |g1 < Q%WHYHBMog(JI)-

Proof. For the proof we set ¢, := 217, (1) For t € T and p € S; we have, a.s.,
1 1
[EZY: = Yo 1| < [[E7AY: = Y17 + 1AY,1] < cp@ [I1Y lomaz ) + 1A Lo
so that HYHBMOS(H) < ¢ [||Y||bmo§(ﬂ) + |AY|,M]. (2) For t € T and p € S; we have, a.s.,

1
P

1
[EZY: = Y7 )l* = [E7 1oy lan ¥ = Y4100

=

<liminf [E7 [ 1< ¥ = Yior 1700 17]

==

= limninf ‘Ef” [E}-(”Jf%)“[]l{pd}m& - Y((er%)/\t)f ‘p”

1

P

lim inf [|Y || paros ‘]Efo {@
n P

P
S (p+%)/\t}
<

1Y lsmoz a1y ®p
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where we used E|®F|P < co. Hence ||Y||bmog>(ﬂ) < HYHBMoﬁ(H). Moreover, for p € §; with ¢ € I we
get that, a.s.,

1 1
IAY] < ¢ [[BP(1Y; = Y, 1|7 + [B7(1Y: = V171 7] < 26,]1Y oz -
Now we show that this implies
|AY;] < [QCpHYHBMog(]I)]‘I)s for all s € I a.s. (A1)

which yields to |AY g1 < 20,,||YHBMO§>(H). It is sufficient to check (A.1) for s € [0,¢] for 0 < ¢t € .
So we define for k£ € N that

pf i=inf {s € (0,4 : |AY,] > £} A,

pk = inf {s € (pk_ 1] |AY,] > TIAt, n>2

Since the stochastic basis satisfies the usual conditions and Y is adapted and cadlag, each p: Q —
[0,¢] is a stopping time (this is known and can be checked with [8, Lemma 1, Chapter 3]). Hence

[AY i | < 26 [[Y [lpmor 1y o a8,

and we denote by QF the set in which the above inequality holds. Set Q* = N2, N, QF then
P(Q2*) =1 and
|AY (W) < 26[[Y [[Bmos (1 @e(w)  for all (w, s) € Q7 < [0,1],

which gives the desired statement. O

A 4. Distributional estimates. The BMO-spaces allow for John-Nirenberg theorems. One con-
sequence of the following equivalence of moments:

Proposition A.6. Let 0 < p < g < oo, 7 € (0,00), and ® € CLT(I).
(1) If ® € SM(I) with || @ sr, @ < d < oo, then there is a ¢y = c(p,q,d) > 1 such that

I lsnos @) ~ew I+ Isaoz -

(2) There is a constant c(z) = c(p,r) > 0 such that, for 0 <a <t €l andY € CLo(I),

< Cp E]'-a

(A.2) (A.2)

sup OF

E7e| sup |Y, — Ya |
u€la,t]

u€la,t]

P
¥ Tsmos 0.

Proof. (1a) For T = [0,7] and ® > 0 on [0,7] x © the result follows from [20, Corollary 1(i)],
where we use Proposition A.3 to relate the formally different BMO-definitions to each other and
Proposition A.2(1).

(Ib) For I =[0,T) and ® > 0 on [0,7") x © this follows from (1a) by considering the restrictions
of the processes to [0,¢] for ¢t € [0,T).

(Ic) ForT=10,T] or I =1[0,T), and ® > 0 on I x Q we proceed as follows: For £ > 0 we consider
®f := @, + ¢ and observe that [[®%[|saq,m < ¢pl[®llsa, @) and sup.so || - [Bmoze @) = I+ IBvor )

(2) Again we replace ® by ®°. Then we use the proof of [20, (6)] and [20, step (a) of the proof of
Corollary 1] to derive the statement with ®, where the corresponding constant does not depend
on € > 0. By € | 0 we arrive at our statement. (]

APPENDIX B. TRANSITION DENSITY

Theorem B.1 ([15, p. 263, p. 44]). For b6 € Cp° with @ > €9 > 0 there is a jointly continuous
transition density T'x : (0,T] x R x R — (0,00) such that P(X} € B) = [, Tx(t,x,£)d¢ for
t € (0,T] and B € B(R), where (X{)icjo,1) is the solution to the SDE (6.1) starting in x € R, such
that the following is satisfied:

(1) One has T'x(s,-, &) € C=(R) for (s,&) € (0,T] x R.

(2) For k € Ny there is a ¢ = c(k) > 0 such that for (s,z,£) € (0,T] x R x R one has that

OFT x _k 1 22
i (5:0.6)] < s 0= ©) where ()= AeF (B
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(3) For ke N and f € Cx (the set Cy from Section ¢ in the case (C1)) one has

k
aak/rx(s z, &) f(£)d¢ = /6 Lx (s,2,8) ()¢ for (s,z) € (0,T] xR

APPENDIX C. A TECHNICAL LEMMA

Lemma C.1. For 0 € [0,1], a function ¢ : [0,T) — R, and a non-decreasing function ¥ : [0,T) —
[0,00) the following assertions are equivalent:

(1) There is a c(c.1y > 0 such that for any 0 < s < a < T one has

(T — s)g
a S<C*' 1\I]a- Cl
[Pa — @s| O )l (C.1)
(2) (a) 0 €[0,1): There is a c(c.2) > 0 such that for a € [0,T) one has
la — ol < cc.o)(T — a)%‘l’a- (C.2)
(b) 6 =1: There is a c(c.3) > 0 such that for 0 < s < a <T one has

T—s
la — @s| < c(c.3) (1 +10gTa> . (C.3)

Proof. (1) = (2) We let t, :=T — 2% forn > 0. If s,a € [th—1,tn], n = 1, then (C.1) implies

[1-(1-5)]8 o1 _
<oV 7 (V2) -0,
TP (C.1) (V2)

We now let s € [tn,—1,tn) and a € [tnym—1,tntm) for n =1, m > 0 arbitrarily. If 6 € [0,1), then
the triangle inequality and the monotonicity of ¥ give

6 _ 1
0o — ps| < cc1)VaT2 72

n+m

-1 ; v,
|<,0 4,00| c. 1)\11 T Z (\/5)1+(1—9)k < C(C'DCQ\IJQTQT(\/5)(1_9)(”+m_1) < %
k=1 (T —a)=
for some ¢y > 0 depending on 6 only. When 6 = 1, similarly as above we get
T—s
|90a - @s' < C(C.l)\pa\/ﬁ(l + m) < 2\/56((3.1)\1/(1 (1 + log T _ a) .
(2) = (1) If @ € [0,1), then (C.2) implies for any 0 < s < a < T that
6—1 o—1
[Pa = @s| <la = w0l + s — pol < e [ o(T—a) 7 + (T —s) > ]
1 0 0
T—-a T—a\?| (T —s)z (T —s)z
< ¥, <2 W,
c(c.2) (T— 8> (T s> (T—a) % €(C.2) (T—a I
The case 6 = 1 is derived from the inequality 1 + logz < 2/z, z > 1. |

APPENDIX D. MALLIAVIN CALCULUS

D.1. 1t6’s chaos decomposition. We assume the setting from Section 8.1. The random measure
M is defined for sets E € B((0,7] x R) with (A ® u)(E) < oo by

M(E) = O'/ dW; 4+ lim ZN(dt, dz),
{t:(t,0)€E} N0 S BN((0,T)x {1 <|z|<n})
where the limit is taken in Ly. For n > 1, set
Ly == Lo (0.1 x R)", B((0,T] x R)"), (A @ p)®").

Let I,,(f») denote the multiple integral of an f,, € L% with respect to the random measure M in the

sense of [27] and let I, (Ly) := {In(fn) : fo € L5} I fi(z1, - 20) = 25 Don fa(Zn(1)s -+ Zn(my) for
zi = (ti,z;) € [0,T] x R is the symmetrization of f,, where the sum is taken over all permutations
of {1,...,n}, then I,,(f,) = L.(f) a.s. For n = 0 we agree about L9 = R and that Ip : R — R is
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the identity, so that Io(L9) = R. We also use f$ = f; for f; € Ly, i = 0,1. The orthogonal chaos
expansion Ly = @, I,,(L%) is due to Itd [27]: given £ € Ly there are f, € L% such that

&= Z I,(fn) as.,
n=0

so that Io(fo) = E€. By orthogonality one has [[€]|7, = 3272, [T.(f2)[17, = X0Zo !l fill7,- The
Malliavin-Sobolev space Dy 5 consists of all € =Y I,,(fn) € Lo such that

(o]

1113, , == D> (n+ Dl Lu(f)]1Z, < oo

n=0
Given £ € Dy 5, the Malliavin derivative D.£ : (0,7] x R x Q@ — R € Ly(A ® p ® PP) satisfies

/ / D, 6L (gm)h(s. 2) ) dspu(d2)

T
= (m+ 1) / [ [ Gt e, Dm0 o))
dtyp(day) - - - At p(day, )dsp(dz)  (D.1)

for h € LY, m € Ny, and symmetric g,, € L5

Lemma D.1. If a Borel function f: R — R satisfies f(X1) € Lo, then there exist symmetric
I2€ Lo(pu®m) := Lay(R™, B(R™), u®™) such that the following holds:

(1) One has f(Xr) = Ef(Xz) + S50 (3150 a.s

(2) For any t € [0,T) one has E”[f(Xr)] = Ef(Xr) + Y or I (fS]l®"

0y) a-s. Consequently,
EZt[f(X7)] € D15 for any t € [0,T).

Proof. (1) follows from [4, Theorem 4]. (2) The first claim is known. For the latter consequence
we use the isometry to obtain

oo (oo}

DA DL )IE, = D+ D IfI7, ey = Y (n+1) TnIII (fal@mlii, < oo,
n=1

n=1 n=1

which verifies E*¢[f(X7)] € D 5 for t € [0,T). O

D.2. Proof of Proposition 8.2. We fixt € (0,7'). Lemma D.1(2) implies F (¢, X;) € Dy 5 so that

OF F(t,X; +2) — F(t, X
Ds,zF(t, Xt) - %(taXt)]l(O,t]x{O}(sa Z) + ( i 2): ( t) 1(0,t]><(]R\{O})(£7Z) (D2)

for A @ p @ P-a.e. (s,z,w) € (0,T] x R x Q by [32, Corollary 3.1 of the second article] (see also
[40, 1, 41, 18)); if ¢ > 0, then F(¢,-) := Ef(- + Xr—¢) € C*°(R) by Example 8.18 for ¢ = 2, and if
o = 0, then the first term on the right-hand side is omitted. As both sides are square-integrable
in (s, z,w) with respect to A ® p ® P we apply Fubini’s theorem to get

/ / Dy F(t, X1)) (w)pl(dz)ds

F(t, Xi(w) + 2) — F(t, X4 (w)) -

8 (t Xi(w))p({0}) + / : L p(dz) = DpF(t, Xy (w))  (D.3)
R\{0} z

for w € Q\ NV, for some null-set N;, where the integrals on the left-hand side and on the right-hand

side (with respect to p(dz)ds and p(dz), respectively) exist for w ¢ N;. Then, for m € Ny and a

symmetric g, € L3' we obtain from (D.1) with h(s,z) := 1(g4(s)(dp/du)(2) that

]E( //DsttXt) (dz)ds>1 (gm)
_ m“ /// / / /fm+1 ((t121)s -ty ), (5. 2))

Im((t1,21), .oy (bn, 2p) ) u(day )dty - - - p(day, )dt, p(dz)ds
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st [ [ [ [ ftrinn

gm((t1,21), .oy (bn, xp))p(day )dty - - - p(da,y, )dt,p(dz)

m!/OT/R,../OT/R[(m+1)hm(x1,...,xn)n%’jﬂ(tl,...,tn) G ((t1,21),s -+, (tns )
p(dzy)dty - - p(da, )dt,

=Eo:(f, 0) I (gm)-

Th

is implies that D,F(t, X;) = ¢:(f,p) a.s. O

D.3. Interpretation as vector-valued gradient. Assume that f € Dx N Ly(Px,), dp =
Ddy/ [, Ddp, and fix an orthonormal basis (D;)ie; € Lo(R,p) with J = {1,...,L} or J = N
(note that Lo(R, i) is separable). For (t,w, z) € (0,T) x Q x R we let M (t,w, z) be the right-hand
side of (D.2) define the null-sets P, := {w € Q: [ |[M(t,w, z)|*1u(dz) = oo} and

Mt(l)(w) = ]l{wgpt}/RM(t,w,z)Dl(z)u(dz) for leJ.

We obtain random variables Mt(l) : Q — R such that ), |Mt(l)(w)|2 < oo for all w € €. This
yields to the map M, := (Mt(l))le,] 1 — 0 =2 Ly(R, ). For w & P, this gives

(My(w), Dy = /R M(t,w, 2)D()u(d2),

where D is D considered in £, so that

[ed]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

(M¢, D)yg
Jz Ddu

1 t
=D, F(t,X;) = n /0 /RDS,ZF(t,Xt)p(dz)ds as. for te(0,7). (D.4)
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APPROXIMATION OF STOCHASTIC INTEGRALS WITH JUMPS IN
WEIGHTED BOUNDED MEAN OSCILLATION SPACES

NGUYEN TRAN THUAN

ABsTRACT. This article investigates discrete-time approximation methods of stochas-
tic integrals driven by semimartingales with jumps. The error process is measured with
two weighted bounded mean oscillation norms (which coincide in the case of no jumps)
and lead especially to L,-estimates. Besides, this approach also allows a change of the
underlying measure which leaves the error estimates unchanged if the change of mea-
sure satisfies a reverse Holder inequality. We propose a new approximation scheme
and discuss a way to optimise the approximation rate by adapting the discretization
times to the setting, especially to the jump behavior of the considered semimartin-
gale. The research was inspired by Mathematical Finance: We apply the methods
in the special case where the semimartingale is an exponential Lévy process to mean
variance hedging of European type options. To do this, an explicit representation for
the hedging strategy is shown under a general condition using Malliavin calculus. The
results reveal the interplay between properties of the Lévy measure, the regularity of
the pay-off function and the approximation rate.

1. INTRODUCTION

1.1. The problem. This article is concerned with discrete-time approximation prob-
lems for stochastic integrals and studies the error process E = (Et)te[o,T] defined by

t
Et 32/ ﬂu,dSqut, (11)
0

where T' € (0,00) is fixed, ¢ is an admissible integrand, S is a semimartingale on
a complete filtered probability space (Q,F,P, (F¢)ieo,r)) and A is an approximation
scheme for the stochastic integral.

We will consider two approximation methods, where the second builds on the first one.
For the first method, the basic approximation method, we assume that 4 = AR™ is
the Riemann approximation process of the above integral,

n
A{-{m = Zﬁti—l—(sti/\t - Sti—l/\t)

i=1
for the deterministic time-net 7 = {0 =ty < t; < --- < t,, = T'}. We will study the
corresponding error E®™ in Ly, but locally in time, which means that for any stopping
time p with values in [0, 7] we measure the error which accumulates within [p, T']. The
term locally in time also includes that at the random time p we restrict our problem to all
sets B € F, of positive measure, which leads to the notion of Bounded Mean Oscillation
(there are two abbreviations for it used in this article, bmo and BMO, which express
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2 NGUYEN TRAN THUAN

two different spaces). More precisely, we will work with weighted bmo-norms introduced
in [17, 18], because we consider

E”» [|ETRm - E§m|2] < C%I_Q)CID,% a.s., Vp. (1.2)

Here, E7» stands for the conditional expectation with respect to F,, and the weight

function ® = (®¢)cpo,) Will be specified later. We will denote the infimum of the
c(1.2y > 0 by [[ER™||, &5 In Theorem 3.5 we state that under certain conditions it
(1.2) bmoj'(P)

holds that
IER™ e 2y < /117 o,

where 6 € (0, 1] is related to the growth property of the integrand o). Here, ||7||g denotes
a nonlinear mesh size, and in Subsection 3.3 we discuss that 7 can be chosen such that
[|7]le < &, implying the optimal approximation rate

c
T
Roughly speaking, the faster the integrand grows as ¢ T T, the more the time-net should
be concentrated near T' to compensate the growth.

If the semimartingale S has jumps, replacing E, by E,_ in (1.2) leads to different
norms, the BMOZ (P)-norms. We will see in Subsection 1.3 and Proposition 2.5 that the
BMOZ (P)-norm gives us a way to achieve good distributional tail estimates for the error
FE such as polynomial or exponential tail decay depending on the weight. Moreover,
this approach allows us to switch the underlying measure P to an equivalent measure
Q, provided the change of measure satisfies a reverse Holder inequality, so that the
BMOZ2 (Q)-norm is equivalent to the BMOZ (P)-norm.

However, Example 3.7 below shows that if S has jumps, then the Riemann approxima-
tion error E®™ does in general not converge to zero if measured in the BMOS (P)-norm.
The reason for this fact is the existence of possibly large jumps of S, which is in con-
trast to the geometric Brownian setting in [17]. To overcome this difficulty, we adapt
and develop further the idea using a small-large jump decomposition of S presented in
Dereich and Heidenreich [9] to our problem. This lets us design a new approximation
scheme based on an adjustment of the Riemann sum which approximates the stochastic
integral. This will be our second method, the jump adjusted method. The time-net
used in this approximation method is a combination of the given deterministic time-net
in the Riemann sum and random times of carefully chosen large jumps of S. One also
stresses that this method is different from that in Rosenbaum and Tankov 32|, where the
authors track jumps of the integrand of the approximated stochastic integral, while here
we only observe the jumps of the integrator which is less expensive (in computation).

Let E24 denote the error caused from the approximation with the jump adjustment
scheme. To formulate the result, we assume that S is given as the solution of

dSt = O'(Stf)dZt,

with o specified later, where Z is a square integrable semimartingale (defined in Sub-
section 2.3). We also use the weight ®, which is a variant of ®, given in (3.9). Then,
Theorem 3.14 implies that for suitably chosen time-nets and corrections it holds that

adj _ c
15" oz @) < 77

under the condition that the random measure v of the characteristics of Z satisfies

/ 2z (w, dz)
|z|>r

R
||E m”bmog)(P) <

sup <c

r>0
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almost everywhere with respect to P ® A\, where A is the Lebesgue measure, and

adj ¢
1B o8 @) < =77
provided that
(w7t> = |Z|ayt(w>dz)

J2l<1

has a finite essential supremum with respect to P ® .

As an application, we choose S to be an exponential Lévy process and measure the
discretization error in mean-variance hedging of a European payoff. To measure the
hedging error we provide in Theorem 4.2 using Malliavin calculus an explicit represen-
tation of the mean-variance hedging strategy for a European payoff which is to the best
of our knowledge new in this generality.

1.2. Background. Besides its own mathematical interest and its application to nu-
merical methods, the approximation of a stochastic integral has a direct motivation
in mathematical finance. Let us briefly discuss this for the Black—Scholes model. As-
sume that the (discounted) price of a risky asset is modelled by a stochastic process S
which solves the stochastic differential equation (SDE) dS; = o(S;)dW;, where W is the
standard Brownian motion and the function o satisfies some suitable conditions. For a
European type payoff g(St) satisfying an integrability condition, it is known that

T
g9(St) =Eg(ST) —i—/ 0yG(t, Sy)dSy,
0

where G(t,y) := E(g(St)|[St = y) is the option price function and (9,G(t, St))se(o,r)
is the so-called delta-hedging strategy. The stochastic integral in the representation of
g(ST) above can be interpreted as the theoretical hedging portfolio which is rebalanced
continuously. However, it is not feasible in practice because one can only readjust the
portfolio finitely many times. This leads to a replacement of the stochastic integral by
a discretized version, and this substitution causes the discretization error.

The error represented by the difference between a stochastic integral and its discretiza-
tion has been extensively analysed in various contexts. It is usually studied in Lo for
which one can exploit the orthogonality to reduce the probabilistic setting to a “more
deterministic” setting where the corresponding quadratic variation is employed instead
of the original error. In the Wiener space, we refer to [14, 21, 39], where the error along
with its convergence rates was examined. The weak convergence of the error was treated
in [20, 21]. When the driving process is a continuous semimartingale, the convergence in
the Lo-sense was studied in [13], and in the almost sure sense it was considered in [22].

In this article, we allow the semimartingale to jump since many important processes
used in financial modelling are not continuous (see |7]), and the presence of jumps
has a significant effect on the hedging errors. Moreover, models with jumps typically
correspond to incomplete markets. This means that beside the error resulting from the
impossibility of continuously rebalancing a portfolio, there is another hedging error due
to the incompleteness of the market. The latter problem was studied in many works (see
an overview in [34| and the references therein). The present article focuses on the first
type of hedging error only. The discretization error was studied within Lévy models in
the weak convergence sense in [37], in the La-sense in [5, 15|, and for a more general
jump model under the Ly-setting in [32].
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1.3. Why a weighted BMO-approach? In general, the classical Lo-approach for the
error yields a second-order polynomial decay for its distributional tail by Markov’s in-
equality. If higher-order decays are needed, then the Lj,-approach (2 < p < o0) is
considered as a natural choice, and this direction has been investigated in the Wiener
space in [19]. A remarkably different route given in [17] is that one can study the er-
ror in weighted BMO spaces. The main benefit of the weighted BMO-approach is a
John—Nirenberg type inequality (|17, Corollary 1(ii)]): If the error process E belongs to
BMO?(P) for some p € (0,00), where ® is some weight function specified in Defini-
tion 2.1, then there are constants c,d > 0 such that for any stopping time p: Q — [0,T]
and any o, B > 0,

P (supue[pﬂ |Ey — E,—| > caﬁ’]—},) <el™@ 4 dP (Supue[p,T] o, > B‘fp) .

Obviously, if ® has a good distributional tail estimate, for example, if it has a polynomial

or exponential tail decay, then by adjusting o and 8 one can derive a tail estimate for
E accordingly. Especially, one can then derive L,-estimates (p € (2,00)) for the error.
Moreover, as a benefit to further applications in mathematical finance, the weighted
BMO-approach also allows a change of the underlying measure which leaves the error
estimates unchanged if the change of measure satisfies a reverse Holder inequality (see
Proposition 2.5).

1.4. Structure of the article. Some standard notions and notations are contained in
Section 2. The main results are provided in Section 3 and theirs proofs are given in
Section 5. In Section 4, we give some applications of those main results in exponential
Lévy models. Section 6 presents briefly Malliavin calculus for Lévy processes which
is the main tool to obtain an explicit mean-variance hedging strategy for a European
type option in Theorem 4.2. The regularity of weight processes used in this article is
shown in Section 7. In Section 8, we establish some gradient type estimates for a Lévy
semigroup on Hoélder spaces, which are used to verify the main results in the Lévy setting
(Theorem 4.6).

2. PRELIMINARIES

2.1. Notations and conventions.

General notations. Denote Ry := (0,00) and Ry := R\{0}. For a,b € R, we set a Vb :=
max{a,b} and a A b:= min{a,b}. For A, B > 0 and ¢ > 1, the notation A ~. B stands
for %A < B < cA. Subindexing a symbol by a label means the place where that symbol
appears (e.g., (2.9 refers to the relation (2.2)).

The Lebesgue measure on the Borel o-algebra B(R) is denoted by A, and we also write
dz instead of A(dz) for simplicity. For p € [1,00] and A € B(R), the notation L,(A)
means the space of all p-order integrable Borel functions on A with respect to A\, where
the essential supremum is taken when p = oco.

Let € be a random variable defined on a probability space (£, F,P). The push-forward
measure of P with respect to ¢ is denoted by Pg. If £ is integrable (non-negative), then
the (generalized) conditional expectation of £ given a sub-c-algebra G C F is denoted

by E9[¢]. We also agree on the notation L, (P) := L,(Q, F,P).

Notations for stochastic processes. Let T € (0,00) be fixed and (€2, F,P) a complete
probability space equipped with a right continuous filtration F = (]:t)te[O,T]- Assume
that Fo is generated by P-null sets only. Because of the conditions imposed on F, we
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may assume that every martingale adapted to this filtration is cadlag (right-continuous

with left limits). For I =[0,7] or I =[0,T"), we use the following notations:

— For two processes X = (Xi)ier, Y = (Yi)ter, by writing X =Y we mean that X; =Y,
for all ¢ € T a.s., and similarly when the relation “=" is replaced by some standard
relations such as “>”, “<”, etc.

— For a cadlag process X = (X¢)ter, we define the process X = (X;_ )1 by setting
Xo— = Xg and X;_ := limg<sp¢ X for t € I\{0}. In addition, set AX =X — X_.

— CL(I) denotes the family of all cadlag and F-adapted processes X = (X¢)¢er.

— CLo(T) (resp. CL*(I)) consists of all X € CL(I) with Xy =0 a.s. (resp. X > 0);

— Let M = (My)ie1 and N = (Ny)ier be Lo(P)-martingales adapted to F. The predictable
quadratic covariation of M and N is denoted by (M, N). If M = N, then we simply
write (M) instead of (M, M).

— For p € [1,00] and X € CL([0,7]), we denote ||X||Lp(]p) = SUPyeo,7] |Xt|||Lp(]p).

2.2. Weighted bounded mean oscillation and regular weight. We recall the no-

tions of weighted bounded mean oscillation and the space SM,,(P) of regular weight pro-

cesses (the abbreviation SM indicates that the property resembles a supermartingale).
Let 8([0,77]) denote the family of all stopping times p: Q — [0, 7] and set inf () := oo.

Definition 2.1 ([17, 18]). For p € (0,00), Y € CLy([0,77]) and ® € CL* ([0, T]), define
1Y lgmos ) = inf {c>0:EP[|Yr —Y,_|P] < @5 as., Vp e S([0,T])},
1Y o 2y = inf {c > 0: E72[[Yr — Y|?] < P®F as., ¥pe S([0,T])},
H‘p”SMp(P) := inf {c >0:E> [suppgth (IJf] < cp<I>g a.s., Vp € S([O,T])} .

For I' € {BMO;{:(IP’),bmog)(]P’)}, if [[Ylr < oo (resp. [|®[lsaq, ) < o0), then we write
Y €T (resp. ® € SMp(P)). In the non-weighted case, i.e. ® =1, we drop ® and simply
use the notation BMO,(P) or bmo,(P).

Remark 2.2. Thanks to [18, Propositions A.4 and A.1], the definitions of || - [|;,,2 )

P
and || - ||sa, ) can be simplified by using deterministic times a € [0, 7] instead of
stopping times p, i.e.
1Y oy = inf {c >0 E7[|Yr — Yo[P] < P®P  as., Va € [0,T]},

a
@] sp1, () = inf {c >0 E7 [supcicr @] < PP as., Va € [0,T]}.

The theory of classical non-weighted BMO /bmo-martingales can be found in [11,
Ch.VII] or [31, Ch.IV], and they were used later in different contexts (see, e.g., [6, 10]).
The notion of weighted BMO space above was introduced and discussed in |17] where it
was developed for general cadlag processes which are not necessarily martingales.

It is clear from the definition that if Y € CL(]0,7) is continuous, then \|YHmeg>(P) =

HYHBMO@(IP). If Y has jumps, then the relation between weighted BMO and weighted
p
bmo is as follows.

Lemma 2.3 ([18|, Propositions A.5 and A.3). If ® € SM,(P) for some p € (0,00),
then there is a constant ¢ = c(p, || @[ sm, ) > 0 such that for all Y € CLo([0,T7),

Y lgpoz @) ~e 1Y lomo? p) + 1AY [e,
where
|AY |¢ :=1inf{c > 0: |AY;| < c®; for allt €[0,T] a.s.}. (2.1)
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Definition 2.4 ([17]). Let Q be an equivalent probability measure to P so that U :=
dQ/dP > 0. Then Q € RHs(P) for some s € (1,00) if U € Ly4(P) and if there is a
constant ¢(;7) > 0 such that U satisfies the following reverse Holder inequality

\VEFe[Us] < C(Q,Z)EE’ [U] as., VpeS([0,T]), (2.2)
where the conditional expectation E7# is computed under P.

We recall in Proposition 2.5 some features of weighted BMO which play a key role in
our applications. Notice that Proposition 2.5 is not valid for weighted bmo in general.
Proposition 2.5 ([17]). Let p € (0,00).

(1) There exists a constant ¢; = c1(p) > 0 such that || - ”Lp(IP’) < ClH‘I)”Lp(IP’)H . HBMO;?(P).

(2) If @ € SMp(P), then for any r € (0,p] there is a constant cy = ca(r, p, [|®[|sr1,(p)) >
0 such that || - [[gyop e) ~er | - lBpor @)

(3) If Q € RHs(P) for some s € (1,00) and & € SMy(Q), then there is a constant
c3 = c(s,p) > 0 such that || - |lgyor () < el - [lBmoz #)-

Proof. Ttems (1) and (2) are due to [18, Proposition A.6|. For item (3), we apply [17,
combine Corollary 1(i) with Theorem 3| to the weight ® +& > 0 and then let £ | 0. O

2.3. The class of approximated stochastic integrals. Throughout this article, the
assumptions for the stochastic integral in (1.1) are the following.
e S € CL([0,T]) satisfies the SDE*

dSt = O-(Stf)dZty SO € RSa (23)

where o: Rg — (0,00) is a Lipschitz function on an open set Rg C R with S;(w), S;— (w) €
Rs for all (w,t) € Q x [0,T]. We denote

o(y) —o(x
lo|rip == sup oy) = o) < 0.

x:yER57 :B?éy y—x

e Z € CL([0,T]) is a square integrable semimartingale defined on (€2, F, P, (F):ej0,17)
with the representation

t t
Zy=Zo+ Zi + // 2(Nz — wz)(du,dz) —I—/ Vodu, t€]0,T], (2.4)
0JRy 0

where Zy € R, V is a progressively measurable process, Z¢ is a pathwise continuous
square integrable martingale with Z§ = 0, Nz is the jump random measure’ of Z and
7z is the predictable compensator® of N. Assumptions for Z are the following:

(Z1) For all w € Q,
z(w,dt,dz) = v (w,dz)dt, (2.5)

where the transition kernel v4(w,-) is a Lévy measure, i.e. a Borel measure on
B(R) satisfying v¢(w,{0}) := 0 and [ (z* A 1)y(w, dz) < oco.
(Z2) There is a progressively measurable process C' such that (Z¢) = [; Cidu.

1See, for example, [31, Ch.V, Sec.3], for the existence and uniqueness of S.

2Nz((s,t] X B) := #{u € (s,1] : AZ, € B} and Nz({0} x B) :=0for 0 < s <t < T, B € B(Ro).

374 is such that: (i) for any w € Q, 7z (w, -) is a measure on B([0, T] x R) with 7z (w, {0} x R) = 0; (ii)
for any P ® B(R)-measurable and non-negative f, the process fo Jo f(u, 2)mz(du,dz) is P-measurable
satisfying ]EfOTfR flu,2)Nz(du,dz) = EfOTfRf(u, z)wz(du,dz), where P is the predictable o-algebra
on Q x [0,7] (see [26, Ch.II, Sec.1] for more details).
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(Z3) The processes V and K, where K; := (C? + [, 2%14(d2))"/?, satisfy that

Vios) = IV ool @ <000 Keg = 1K L (ox[o,r]per < 00 (2.6)

e 1) belongs to the family Egdm of admissible integrands, where
T
yadm . — {19 € CL([0,7)) : IE/ 97 0(S;_)%dt < oo and AW =0as., Vi€ [O,T)} .
0

Remark 2.6. (a) By a standard stopping argument and Gronwall’s lemma, (2.3) im-
plies that S is an Lo (PP)-semimartingale and

T T
2 = ag _2u Q. .
IE/O J(Su)du_E/O (Su_)2du < (2.7)

(b) For each t € [0,T], it follows from (2.5) that Nz({t} x Rg) = 0 a.s., which verifies
AZ; = 0 a.s., and hence, AS; = 0 a.s. In other words, Z and S have no fixed-time
discontinuity. Thus, it is natural to assume Av; = 0 a.s. for admissible integrands.

3. MAIN RESULTS

To examine the discrete-time approximation problem in weighted bmo or weighted
BMO, further structure of the integrand is required. We begin with the following as-
sumption which is an adaptation of |18, Assumption 4.1].

Assumption 3.1. For v € E%dm, we assume that there exists a random measure
T:QxB((0,T)) — [0, 0]
such that
T(w, (0,t]) < oo, Y(w,t)eQx(0,T),

and such that there exists a constant c(3 1) > 0 such that for any 0 <a <0 < T,

E7a [ /( ) |0 — Dal*0(Sp)7dt | <y yET

/ (b—1)Y(, dt)] a.s. (3.1)
(]

Examples for Assumption 3.1 when S is a diffusion on the Wiener space are discussed
in [18, Section 6|, and in that context the random measure Y describes some kind of
curvature of the stochastic integral. In the Lévy setting when .S is a Lévy process and
o =1, an example for T is also given in |18, Section 8]. We now provide in Example 3.2
another formula for Y which is used in the exponential Lévy setting in Section 4.

Example 3.2. Assume that M := J0(S) € CL([0,7)) is an La(P)-martingale. Then,
the random measure Y defined by

T(w, dt) := d(M)¢(w) + |03, | M (w)|*dt
satisfies (3.1) with ¢, ) = 2 + 8(K% o) + V3 o) )e* 7 (Ko TG0,
0 <a < b< T, using the triangle inequality and Lemma 5.1 we have

Indeed, for any

1Efa/ 10 — 04)?0(S;)2dt

2 (a,0]

< Ee /( ]\Mt—Ma\th + E7- /( ]ﬁgya(st)—a(sa)ﬁdt
a,b a,b
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/ / (M), dt
(a,b] J (a,t]

/ (b— w)d(M),
(a,b]

< ESe + s oy (b—a)* M

/ (b— u)Mgdu] ,
(a,b]

where in the last inequality, we apply Fubini’s theorem for first term and use the mar-
tingale property of M for the second term. Hence, the assertion follows from (5.5) and

(5.4).

Fa 2 Fa
<E + 26(5'2)E

The key assumption which enables to derive the approximation results is as follows.

Assumption 3.3. Let 6 € (0, 1]. Assume that Assumption 3.1 is satisfied and there is

an a.s. non-decreasing process © € CL™(]0,T]) such that the following two conditions
hold:

(1) (Growth condition) There is a constant c(32) > 0 such that

00| < c30)(T —a)7 O, as., Ya € [0,T). (3.2)

(2) (Curvature condition) There is a constant c(3 3y > 0 such that

Efa/ (T =)0, dt) | < fyP0 as, Vae[0,T), (3.3)
(a,T)

where
® = 00(9).

The parameter 6 in Assumption 3.3 describes the growth (pathwise and relatively
to ©) of ¥ when the time variable a approaches the terminal time 7. For the Black—
Scholes model with the delta-hedging strategy ¢, the parameter 8 can be interpreted as
the fractional smoothness of the payoff in the sense of [14, 19].

Various specifications of Assumption 3.3 in the Brownian setting or in the Lévy setting
are provided in [18|. In Section 4, we use Assumption 3.3 in the exponential Lévy setting
which extends [18].

3.1. The basic method: Riemann approximation.

Definition 3.4. (1) Let Tger be the family of all deterministic time-nets T = (¢;)I"_, on
0,7) with 0 =tg <t; <--- <t, =T, n > 1. The mesh size of 7 = (£;)}'_; € Tget is
measured with respect to a parameter 6 € (0,1] by

Il o= max
o i=1,..,n (T — ti_l)l_a‘

(2) For 9 € 3™ 7 = ()" € Taer and t € [0, 7], we let
n t
A?m(ﬂ’ T) = Zﬂti—l—(sti/\t - Sti—l/\t)7 EtRm(ﬁﬂ T) = / ﬁu—dsu - A{{m(ﬁa T)'
i=1 0
Below is the main result in this subsection.

Theorem 3.5. Let Assumption 3.3 hold for some 6 € (0,1]. Then, there exists a
constant ¢(3.4) > 0 such that for any T € Tget,

1B (9, 7)ot ey < eV 7. (3.4)
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Since the weighted bmo and weighted BMO-norms of E®™ (1), 7) coincide when the
driving process S is continuous, we derive directly from Theorem 3.5 and Proposition 2.5
the following result.

Corollary 3.6. Let Assumption 3.3 hold for some 6 € (0,1]. If S is continuous, then
the following assertions hold, where the constants c1,ca,c3 > 0 do not depend on T.

(1) One has HEme?T)HBMOQ‘I’(IP) < av/||Tlle for any T € Tget-
Furthermore, if ® € SM,(P) for some p € [2,00), then for any T € Tqet,

IE®2(9, )|, ) < c2v/[I7llo-
(2) If Q € RHs(P) for some s € (1,00) and & € SM2(Q), then for any T € Tiet,

HERm(ﬂJ)HBMog(Q) < e/ || 7lo-

In particular, when S is a geometric Brownian motion and ¢ is the delta-hedging
strategy of a Lipschitz functional of St, then Corollary 3.6 gives the upper bound part
in |17, Theorem 7|.

3.2. The jump adjusted method. In Corollary 3.6, the continuity of S is crucial to
derive the conclusions. If S has jumps, then those results may fail as shown in the
following example.

Example 3.7. In the notations of Subsection 2.3, we let Z = j, where J; := J; — rt
is a compensated Poisson process with intensity r > 0. Let 0 = 1 (i.e. S = Z). Let
f:(0,T] x N = R be a Borel function with || f|lec := sup x)e(o,r1xn |f (¢ k)| < 0o and
e = infyco.17 | f(£,0)] > 0. Assume that

d:=e—rT|f|loc > 0.

Let p1 := inf{t > 0: AJy = 1} AT and py := inf{t > p; : AJ, = 1} AT. Let
Y9 € R and define ¥ = Y9 + f(O,t/\pz] f(s,Js—)dJs, t € (0,7]. It is not difficult to
check that ¥ € £21™ is a martingale with |97 Lo @) < 0o. Then, Assumption 3.1 is
satisfied with the selection Y(-,dt) := d(¥); as showed in Example 3.2. In addition, it
is straightforward to check that Assumption 3.3 holds true for © = & = 1 and for any
6 € (0,1].

Take 7 = (t;)I"_y € Taet arbitrarily. On the set {0 < p1 < p2 < t1} we have

|AE§2H1(19’ T)| = Z |19P2* - 19151'71*“1(1&1-_17151-] (p2)|AJP2|
i=1

= [Vp— — Dol = ‘f(ﬂlajpl—) - 7“/ f(s, Js—)ds
(07:02)

2z [f(p1,0)] = 7T[| flloo = 0.

Since P(0 < p1 < p2 < t1) > 0, it implies that inf 7, HAEEQm(ﬁ,T)HLOO(P) > 0. Due to
Lemma 2.3, we obtain inf e, ||[E¥™ (Y, 7)llBmo, () > 0 for any p € (0, 00).

Therefore, in order to exploit benefits of weighted BMO to derive results as in Corol-
lary 3.6 for jump models, we propose another approximation scheme based on an adjust-
ment of the classical Riemann approximation. The time-net for this scheme is obtained
by combining a given deterministic time-net, which is used in the Riemann sum of the
stochastic integral, and a suitable sequence of random times which captures the (rel-
ative) large jumps of the driving process. With this scheme, we not only can utilize
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the features of weighted BMO, but can also control the cardinality of the combined
time-nets.

Let us begin with the random times. Due to the assumptions imposed on S in Sub-
section 2.3, one has o(S_) > 0 and

AS = o(S_)AZ (3.5)

from which we can see that jumps of S can be determined from knowing jumps of Z.
However, if we would use S to model the stock price process, then it is more realistic
to track the jumps of S rather than of Z. Therefore, we define the random times
p(e, k) = (pi(e, k))i=0 based on tracking the jumps of S as follows (recall that inf () := c0).

Definition 3.8. For ¢ > 0 and « > 0, let py(g, ) := 0 and
pi(e, k) :=nf{T >t > pi_1(e,k) : |AS| > o(Si—)e(T — )"} AT, i =1, (3.6)
Niry(e k) :=inf{i > 1: pi(e, ) = T}. (3.7)

The quantity (T —t)" above is the level at time ¢ where we decide which jumps of S
are (relatively) large, and moreover, this level shrinks when ¢ approaches the terminal
time T and k > 0. Hence, k describes the jump size decay rate. The idea for using
the decay function (7' — t)" is to compensate the growth of integrands. By specializing
k = 0, the control parameter € can be interpreted as the jump size threshold.

The scheme of Riemann approximation with correction is as follows.

Definition 3.9. Let € > 0, k € [0, 3) and 7 = (£;) € Taet-
(1) Let 7 U p(e, k) be the (random) discretization times of [0,7] by combining 7 with

p(g, k) and re-ordering their time-knots.
(2) For t € [0,T], we define

1974/— = Z,ﬁtifl_]l(tiflati](t)7
i=1

A?dj (19’ T’E, Ii) — Agim(ﬂ’ 7_) 4 Z (ﬂpi(&ﬂ)* — 19;1_(875)) ASpi(57/§)7 (38)
pi(e,r)€[0,]N[0,T)
) t .
0

where AR™ (¢, 1) is given in Definition 3.4.

As verified in Subsection 5.2, each p;(e,k) is a stopping time. Moreover, in our
setting the sum on the right-hand side of (3.8) is a finite sum a.s. as a consequence of
Proposition 5.3 below. Hence, by adjusting this sum on a set of probability zero, we
may assume that 423 (9, 7|, k) € CLo([0, T]). Besides, we also restrict the sum over the
stopping times taking values in [0,7") instead of [0, 7] because of two technical reasons:
first, the strategy ¥ does not necessarily have the left-limit at 7', and secondly, since
AS7t =0 a.s. as mentioned in Remark 2.6, any value of the form aASr (a € R) added
to the correction term does not affect the approximation in our context.

To formulate main results in this section, we need to modify the weight processes.
For ® € CL*([0,7]) and t € [0, T], we define

Dy := By + sup,efp 4 |ADs]. (3.9)

The reason to consider @ is that in the calculation below we will end up with ®_ which
is not cadlag and therefore is not a candidate for a weight process. For ®, it is clear that



APPROXIMATION OF STOCHASTIC INTEGRALS WITH JUMPS IN WEIGHTED BMO 11

® € CL*([0,7]) with @V ®_ < ®, and ® = ® if and only if ® is continuous. Moreover,
Proposition 7.1(2) shows that ® € SM,(P) implies ® € SM,(P).

Theorem 3.10. Let Assumption 3.3 hold for some 6 € (0,1] and let ® € SMs(P).
(1) If there is some « € [1,2] such that
H(w t) f 2l<1 || (w, d2) H (x0T < 00, (3.10)
then a constant c(3.11) > 0 exists such that for all 7 € Tget, € > 0,

<cgymax{=Vrlo, VIrlo, e} (3.11)

(2) If there is a constant c(312) > 0 such that for P @ A-a.e. (w,t) € Q x [0,T7,

adj 1-6
HE (9 7le. %3 )HBMof(P)

sup,~ “[|Z\>T ZVt(WadZ)‘ < €(3.12) (3.12)

then a constant c(313)y > 0 exists such that for all T € Taet, € > 0,

¢z max { V[, <. (3.13)

Minimizing the right-hand side of (3.11) (resp. (3.13)) over € > 0 leads us to the
selection € = *{/||7]|¢ (resp. € = \/||7||g). Then, we have the following:

HEadJ 19 T}E = H <
BMOZ (P)

Corollary 3.11. Let Assumption 3.3 hold for some 6 € (0,1] and let & € SMa(P).
(1) If (3.10) is satisfied for some o € [1,2], then

[ (9.7 /70, 52) | oy < 202 eaan V7Tl
2
(2) If (3.12) is satisfied, then
| B2 (9.7 |Vi7lle, 15 )HBMO@(P) < eVl

Remark 3.12. (a) The assumption K56y < oo implies that

H(t,w) = fg 22w, dz < 00, (3.14)

) HLOO(QX 0,7),P@X)

which means that (3.10) automatically holds for & = 2 in our context.

(b) Some obvious sufficient conditions for (3.12) are as follows: Since (3.14) holds in our
setting, condition (3.12) is satisfied if (3.10) holds for v = 1, or there is an rg > 0 such
that the measure 14 (w,+) is symmetric on (—rg,r9) for P® M-a.e. (w,t) € Q x [0,T].

3.3. Adapted time-nets and approximation accuracy. We discuss in this part how
to improve the approximation accuracy by using suitable time-nets.

Adapted time-net. The conclusions in Theorem 3.5, Corollaries 3.6 and 3.11 assert that
the errors measured in bm02 (P) or BMOZ (P) are up to multiplicative constants upper
bounded by |75 with r € [%, ]. Assume 7, € Tqer with #7, = n + 1, where n > 1 can
be regarded as a parameter that controls the complexity of the approximation schemes.
If one uses the equidistant nets 7, = (T%)?:O, then ||7,]s = 2—:, and thus 0 € (0,1]
describes the convergence rate in this situation.

In order to accelerate the convergence rate we need to employ other suitable time-nets.
First, it is straightforward to check that ||7,,[|g = %6 for any 7, € Tqet With #7,, = n+1.
Next, minimizing ||7,||lg over 7, € Tqet With #7,, = n+1 leads us to the following adapted
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time-nets, which were used in [14, 15, 17, 19, 20]: For 6 € (0,1] and n > 1, the adapted
time-net 79 = (tfm)?:o is defined by

t?}ﬂ;:T(1_M), i=1,...,n.

It is clear that the equidistant time-net corresponds to the case # = 1. By a computation,
one can show that

A 0 I
— Simallo < 5 (3.15)

Cardinality of the combined time-net. The time-net used in Theorem 3.10 is TLp(e, %)

Due to the randomness, a simple way to quantify the cardinality of this combined time-
net is to compute its expected cardinality, i.e. E[#T U p(e, %)] (see, e.g., [12]). We
provide in the next result an estimate for certain moments of the cardinality. Since we
aim to apply Proposition 2.5(3) later, changes of the underlying measure are also taken
into account.

Proposition 3.13. Let ¢ € [1,2], 7 € [2,00] with % —l—% = 1. Assume that Q is a
probability measure absolutely continuous with respect to P and dQ/dP € L,(P). For
0 € (0,1] and (en)n>1 C (0,00) with inf,>1+/ne, > 0, there is a constant c(316) > 0
such that for any n > 1, 7, € Taet with #1, =n + 1,

1-6
H#Tn Up (€n, T) HLq(Q) ~eae T (3'16>
Plugging the adapted time-nets 7¢ into previous results, we derive the following.

Theorem 3.14. Assume that Assumption 3.3 holds for some 6 € (0, 1].
1 m

(1) One has sup,,>1 n2 HER (ﬁ,Tg)Hbmog(P) < 00.

(2) If @ € SM3(P) and if (3.10) is satisfied for some a € [1,2], then

B
sup nza

Fadi (19 0, 1—9) <.
n>1 o |0 BMOF(®) -
(3) If ® € SMa(P) and if (3.12) is satisfied, then
1 s 1
) g
o ™5 vz ) T

(4) If in addition ® € SM,(P) for some p € (2,00), then the conclusions of items
(2)~(3) hold for the L,(IP)-norm in place of the BMO?(P)—norm,

(5) If in addition Q € RHs(P) for some s € (1,00) and ® € SM2(Q), then the conclu-
sions of items (2)—(3) hold for the BMO?(@)-norm in place of the BMO?(P)—norm.

Proof. Ttem (1) (resp. (2)—(3)) follows directly from combining Theorem 3.5 (resp.
Theorem 3.10) with (3.15). Items (4)—(5) are due to Proposition 2.5 and Proposi-
tion 7.1(2). O

In the estimates of Theorem 3.14(1)—(4), applying Proposition 3.13 with ¢ = 2, r =

oo and Q = P we find that the parameter n in front of the bmog (P), BMOZ(P) or
L,(P)-norms can be regarded as the Ly(IP)-norm of the cardinality of the time-net used
in the corresponding approximation schemes. Regarding Theorem 3.14(5), thanks to
Proposition 3.13 (choose ¢ = 1, r = 2), if s € [2,00), then this observation still holds

true after a change of measure: The parameter n in front of the BMOQ6 (Q)-norm can be
considered as the expected cardinality of the time-net under Q.
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We get from Theorem 3.14(1) and (3) the convergence rate of order n~/2 which is
asymptotically optimal in general (e.g., see [15, Theorem 5| in the Lévy case), while this
rate is achieved in (2) for @ = 1. Furthermore, the convergence rate in (2) depends on
the small jumps intensity of the underlying process Z, which is characterised by «. If
we define

A .
= inf EO,Q:H 1) a ,dH < ool
0 o {a 0.2+ (@, 8) = Jygja |17, d2) Lo @x0T1PSN)
then it follows from Theorem 3.14(2) that

Fadi (19, r,‘f

1 1
inf § @ € [1,2] : supnza n*%,l—fe)H _ <oo}<1\/ .
{ [1,2] n; 2 JliBmoZ () P
Notice that when Z is a Lévy process, then 5% is the Blumenthal-Getoor index of Z
(see [4]).

4. APPLICATIONS TO EXPONENTIAL LEVY MODELS

We provide several examples for Assumption 3.3 in the Lévy setting so that the main
results can be applied. As an important step to obtain them, we establish in Theorem 4.2
an explicit form for the mean-variance hedging strategy of a general European type
option, and this formula might also have an independent interest.

4.1. Lévy process. Let X = (Xt)te[o,T] be a one-dimensional Lévy process defined
on (Q,F,P), ie. Xop = 0, X has independent and stationary increments and X has
cadlag paths. Let FX = (FX )telo,r] denote the augmented natural filtration of X,
and we assume that F = .7:7)5 . According to the Lévy-Khintchine formula (see, e.g.,
[33, Theorem 8.1]), there is a characteristic triplet (v,o,v), where v € R, coefficient
of Brownian component o > 0, Lévy measure v: B(R) — [0,00] (i.e. v({0}) := 0
and fR(x2 A 1Dv(dx) < o0), such that the characteristic exponent 1 of X defined by
EeltXt = ¢~1(4) ig of the form

o?u?

2

P(u) = —iyu + - / (ei“x — 1 —iuxlyy<iy) v(dz), ueR.

R
4.2. Mean-variance hedging (MVH). Assume that the underlying price process is
modelled by the exponential S = eX. Since models with jumps correspond to incomplete
markets in general, there is no “optimal” hedging strategy which replicates a payoff at
maturity and eliminates risks completely. This leads to consider certain strategies that
minimize some types of risk. Here, we use quadratic hedging which is a common approach
(see [34]).

To simplify the quadratic hedging problem, we consider the martingale market. Ap-
plications of results in Section 3 for Lévy markets under the semimartingale setting are
studied in [38].

Assumption 4.1. S = e¥ is an Lo(P)-martingale and is not a.s. constant.

The SDE for S is dS; = S;—dZ; (eq. (6.1)), where Z is another Lévy process (under
P). Under Assumption 4.1, it is known that Z is also an Ls(P)-martingale with zero
mean (see |7, Proposition 8.20]), and hence all conditions in Subsection 2.3 are fulfilled.

Although results in Section 3 are stated in terms of the characteristic of Z (Theorems
3.10 and 3.14), main results in this section are formulated involving the characteristic of
the log price process X which is slightly more convenient to verify in practice. Thanks
to Remark 6.1, we can easily translate conditions imposed on X to Z (and vice versa).
Especially, the equivalence between small jump behavior of X and Z is given in (6.3).
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Galtchouk—Kunita—Watanabe (GKW) decomposition. We now turn to the quadratic hedg-
ing problem. Under Assumption 4.1, any £ € Lo(IP) admits the GKW decomposition

T
§:E§+/ 0°dS, + LS., (4.1)
0

where 6¢ is predictable, L& = (Lf)te[O’T] is an Lo(P)-martingale with zero mean and is
strongly orthogonal to S, i.e. (S,L¢) = 0. The integrand ¢ is called the MVH strategy
corresponding to &, which is unique in Lo(P ® A\, x [0,T]). The reader is referred to
[34] for further discussion.

Our aim is to apply the approximation results obtained in Section 3 for the stochastic
integral term in (4.1), which can be interpreted in mathematical finance as the hedgeable
part of £&. To do that, one of the main tasks for us is to find a representation of #¢ which
is convenient for verifying the conditions in Assumption 3.3. This issue is handled in
Subsection 4.3 in which we focus on the European type options & = g(Sr).

4.3. Explicit MVH strategy. In the literature, there are several methods to determine
an explicit form for the MVH strategy of a European type option g(S7). Let us mention
some typical approaches for which the martingale representation of g(Sr) plays the key
role. A classical method is by using directly Ito6’s formula (e.g., [25]) which requires a
certain smoothness of (¢,y) — Eg(ySt—_;). Another idea is based on Fourier analysis to
separate the payoff function g and the underlying process S (e.g., [5, 23, 36]). To do
that, some regularity for g and S is assumed. As a third method, one can use Malliavin
calculus to determine the MVH strategy (e.g., [3, 28]), however the payoff g(Sr) is
assumed to be differentiable in the Malliavin sense so that the Clark—Ocone formula is
applicable.

To the best of our knowledge, the result below is new and it provides an explicit
formula for the MVH strategy of g(S7) without requiring any regularity from the payoff
function g nor any specific structure of the underlying process S. The proof is given in
Section 6 by exploiting Malliavin calculus. Recall that ¢ and v are the coefficient of the
Brownian component and the Lévy measure of X respectively.

Theorem 4.2. Assume Assumption 4.1. For a Borel function g: Ry — R with g(St) €
Lo(P), there exists a 99 € CL([0,T)) such that the following assertions hold:

(1) 99 is a MVH strategy of g(St);

(2) ¥9S is an Lo(P)-martingale and 9] = 9{_ a.s. for each t € [0,T);

(3) For any t € (0,T), a.s.,

g _ 1 G(t,e“”St) — G(t, St) -
vy = 0%4.2) <U28yG(t,St) +/]R S (e¥ — 1)V(d$)> , (4.2)

where ¢(y 9y := (02 + [p(e” — 1)2v(dx))? and G(t,-): Ry — R is as follows:

(a) If o > 0, then we choose G(t,y) := Eg(ySt—t);

(b) If o =0, then we choose G(t,-) such that it is Borel measurable and G(t,S;) =
E”[g(S7)] a.s., and we set 9,G(t,-) := 0 by convention.

Formula (4.2) was also established in [8, Section 4] and in [36, Proposition 7| under
some extra conditions for g and S. A similar formula of (4.2) in a general setting can
be found in [25, Theorem 2.4].

Assumption 4.1 ensures that c(4.2) € (0,00). For the case (3a), due to the presence of
the Gaussian component of X, the function G(t,-) has derivatives of all orders on Ry
(see [18, Example 8.18]).
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4.4. Growth of the MVH strategy and weight process regularity.

Hélder spaces and a-stable-like processes. Let ) # U C R be an open interval.

Definition 4.3. (1) Let n € [0,1]. For a Borel function f: U — R, we define
|[flcon(y := inf{c € [0,00) : [f(z) = f(Y)| < c|z —y|" for all z,y,€ U,z # y},

where inf) := oo. For n € (0,1], the space C%7(U) of all n-Hélder continuous
functions on U is the set of all f with |f|conr) < oo. For =0, the space Co0(U)
consists of all bounded Borel functions on U.

(2) For q € [1,00], we define

Wl’q(U) = {f: U—=R:3keLyU), fly)— flz)= /y k(u)du,Ve,y € U,z < y},

and let |f‘W1»q(U) = ||kHLq(U)'

For g € [1,00], Holder’s inequality yields the embedding Wl’q(U) C CY"(U), where
n=1- %, with | f[con@y < ’f‘ﬁ/Lq(U) for f € WH(U). In particular, W (U) =
C%Y(U), which is the collection of Lipschitz functions on U.

We next introduce some classes of a-stable-like Lévy measures.

Definition 4.4. Let v be a Lévy measure and « € (0, 2).

(1) We let v € 81(«) if one can decompose v = vy + v, where v, 19 are Lévy measures
that satisfy

1
lim sup —— / (1 — cos(ux))re(de) < oo,
R

|u|—o00 ‘u’a
k(x)
Vl(dﬂf) = Wﬂ{x?ﬂ]}dx,
where 0 < liminf, ,ok(x) < limsup,_,ok(z) < oo, and the function z % is

non-decreasing on (—oo,0) and non-increasing on (0, co).

(2) We let v € 83() if

N | . 1
0 < liminf — /R(l — cos(uz))v(dr) < limsup —— /R(l — cos(uz))v(dr) < oco.

|u[—00 |u’a |u|—o00 ’u‘a

Remark 4.5. Let a € (0,2).

(a) One has 81(a) C 8a(a). Indeed, for v € 81(«) with the decomposition v = vy + vy,
a computation shows that v € 82(a). Hence, v € 82(a). Moreover, since v(dx) :=
7171 1)(x)dx belongs to 82(a)\S1(e), the inclusion 81(a) C 83(«) is strict.

(b) According to [4, Theorem 3.2|, if v € 8a(«) for some « € (0,2), then « is equal to
the Blumenthal-Getoor index of v, i.e. a = inf{r € [0,2] : fl$|<1 |z|"v(dz) < oco}.
For 1 € [0, 1], define processes ©(n), ®(n) € CL™ ([0, T]) by setting

On): == SuPue[O,t](Sg_l) and  ®(n); 1= O(n):St. (4.3)
As mentioned earlier, Assumption 3.3 is crucial to obtain the main results in Section 3,
and now we provide examples for Assumption 3.3 in the exponential Lévy setting.
Theorem 4.6. Assume Assumption 4.1. Let n € [0,1]. Then, the following assertions
hold:
(1) (Weight regularity) One has ®(n) € SMa(P).
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(2) (MVH strategy growth) If g € C%"(R,.), then there exist a 6 € [0,1] and a constant
c(4.4)y > 0, which might depend on 8, such that for 99 given in (4.2) one has

9] < (T =) T O as., ¥t € [0,T), (4.4)
where 0 is provided in Table 1:

Table 1: Values ofé

o and n | Small jump condition for X | Regularity of g | Conclusion for 0
oc>0 0 ;o

2|70 I eti(de) < o cCONR,)  |h=1
n € [0,1] | Jlzlst 9 +
o=0 ve S 0 A 2(14n)

3 n €[0,1) | for some a € [1 +1n,2) g€ CH(Ry) V9€<07 @ *1>
c=20 Ve 82(04) 1,1 ~ 2(141)

¢l n€[0,1) | for some a € [1 +1,2) ge W = (Ry) VGG(O, o _1>

(3) Denote M :=99S. Then, Assumption 3.3 is satisfied for
g=07, T(,dt) =d(M),+ MZdt, ©=0(y), ©=2(n)
and for 0 =1 if 6 = 1, and for any 0 € (0,6) if § € (0,1).

Proof. We recall from Assumption 4.1 that f‘x|>1 e?y(dr) < oo.
(1) follows from Proposition 7.2.

(2) We let £ := v in (8.12) and obtain from (4.2) that

W = c(—fQ)Fy(T —t,8;) as., Vtel0,T).

We consider each case in Table 1 as follows. We apply Proposition 8.6(1) to get CI.
The case C2 follows from Proposition 8.6(2). For C3, since v € 81(«), Remark 4.5(b)
implies that 0 < f|fv|<1 |z|*Ter(dz) < oo for any € € (0,2 — a]. Moreover, applying
Proposition 8.6(3) and Remark 8.7 with 8 = a + ¢ yields

ntl_q_ 1((@,1,275
«

|97 < e(e)(T —t) aSI L e(e) (T —)2\\U @ >71>®(n)t a.s., Vt € 0,7,

where ¢(g) > 0 is a constant depending on e. Since € > 0 can be arbitrarily small, C3
follows. The case C4 is similar to C3 where we use Proposition 8.6(4) and Remark 8.7,

(3) Due to Theorem 4.2(2), M is an Lo(P)-martingale. Then, Assumption 3.1 holds
because of Example 3.2. We now only need to check (3.3). If @ = 1, then the martingale
M is closed by My := Lo(PP)-limyq M; due to (4.4) and ®(n) € SMy(P). Then, for
0 =1 and for any a € [0,7T) one has, a.s.,

Efa[/ T(-,dt)]:ﬂafa[/ d(M); + Mfdt]
(a,T) (a,) (a,T)

< EFe [|MT — Mo|? + ¢}, 4)(T —a) sup ‘1)(77)?]
te(a,T)

< Gy (T + D@0 pg, 2y 2 (05
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If § € (0,1), then for any 0 € (0,6) and any a € [0,T) one has, a.s.,

EFa [/( ” (T — t)l—GMfdt] < 0%4-4)T9‘9+1I|©(”)‘|§M2(P)¢(n)2- (4.5)

We apply conditional It6’s isometry and [18, Proposition 3.8] to obtain that, a.s.,
2
E7e

T —)'a(M);| = limE”
/(G’T)( ) <>t] i

/ (T — )"z dM,
(]

/ (T —t)"M2at
(a,T)

< (1= )2,y | (0|2 pg, ) @ 1)2 /( o

Té—@
< m(l — 0)cly 120 1501, (2@ (1) (4.6)

< (1 - 0)E

Combining (4.5) with (4.6) yields the desired conclusion. O

Remark 4.7. The larger 0 is, the better estimate one can get for 99 in (4.4). Further-
more, the parameter 6 comes from the interplay between the small jump intensity of
the underlying Lévy process and the regularity of the payoff function which affects the
convergence rate of the approximation error.

5. PROOFS OF THE MAIN RESULTS
5.1. Proofs of results in Subsection 3.1. We need the following auxiliary result.

Lemma 5.1. There are constants c(s 1), ¢(5.2) > 0 such that for any 0 <a <b < T, a.s.,

B [ / ba(St)th] < )b — ) (Sa)?, (5.1)

b
B [ / (S - J(Sa)|2dt] < (- oS o)

Proof. Fix a € [0,T). For any b € (a,T], a.s.,

b b
E [ / |a<st>—a<sa>|2dt} < lof EF [ / |st—sa|2dt}

/ab /atU(Su—) (dZJ; - /RO 2(Ny — ﬂz)(dU,dz)) + /ata(su_)vudu th]
< 2lolt, BT Uab (/atg(su_)2KZdu+/at Vfdu/ata(Su_)zdu> dt}

bt
< 0%5.3)EF“ [/ / U(Su)2dUdt] ; (5.3)

where in order to obtain the second inequality we use the conditional 1t isometry for
the martingale term and apply Holder’s inequality for the finite variation term. The last
inequality comes from the fact that ¢ — o (.S;) has at most countable discontinuities, and

0%5.3) = 2|U|%ip(K(22_6) + V(%o)) (5.4)

- ‘U‘%ipE}—a
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Then, the triangle inequality implies that, a.s.,

E7a [/:o(St)2dt] <2(b—a)o(S,)? + 2E = [/ lo(S;) — (S, )]2dt]
<2(b—a)o(S,)? +2053Ef“[// zdudt}.

Now, for any A € Fg, it holds that
b bt
/ E140(S;)?dt < 2(b — a)ELa0(Sa)” + 2¢f; 5 / / Ela0(S,)*dudt.

Since E fO S.)%du < oo due to (2.7), using Gronwall’s inequality yields
b
/ E140(S)%dt < 2(b — a)ET 40(S,)2e* 50 =),

which verifies (5.1) with 0?5.1) .= 2¢%G»T. In order to obtain (5.2), we apply (5.1) to
the right-hand side of (5.3), and then we can let

2¢2. .\ T
C5.2) = %C%S 1) % 3) = 0%5.3)6 G (5.5)
O

Proof of Theorem 3.5. For 9 € E%dm and 7 = (t;)1 o € Tdet, we define the process (¥, 1),
which is adapted, has continuous and non-decreasing paths on [0, 7], by

(9, 7Y _Z/ » o (S,)2du. (5.6)

From (5.7) below we see that (¢, 7) is “nearly” the predictable quadratic variation of
ER™(19; 7) (this is the reason for (slightly abusively) using angle brackets in the notation
(9, 7)) which is known as a useful tool for studying E®™(1J;7) in the mean square sense.

For a € [0,T), applying conditional It6’s isometry and Holder’s inequality yields, a.s.,

B [|EF™(9,7) — B (9, 7))
2 T
o(Sy_)? <K5 + / vfdr> du

T
< 2E]:a /
a

1911— - Z 'lgti_1— l(tl;l,ti} ('U,)
i=1

T n 2
< 2K ) + Vi) E™ / Gue = Y Ot -,y iy (w)] o(Su-)?du
- . . )
- 2(K(22.6) + ‘/(22.6))E]:a / Vo — Z ﬂti—ljﬂ‘(ti—l,ti](u) U(Su)2du
@ i=1
=2(K% g + VA e )E (9, TV — (9, 7)4) (5.7)
(2.6) (2.6) »T)T »T)al s

where the first equality comes from the fact that the number of discontinuities of a
cadlag function is at most countable and ¥ € ngm has no fixed-time discontinuity. We
recall from Remark 2.2 that one can use deterministic times instead of stopping times
in the definition of || - ||bmo<21> (p)- Therefore, Theorem 3.5 is a direct consequence of (5.7)
and the following result.
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Proposition 5.2. Let Assumption 3.3 hold for some 6 € (0,1]. Then, there exists a
constant c(5 gy > 0 such that for any 7 € Taer and any a € [0,T), a.s

E7[(0, 7)1 — (0, 7)a] < cf5.5)lI7]l0 @5 (5.8)

Consequently, H<19,T>HBMO<1}2 ®) < C%S.S)HTHQ.

Proof. By the monotonicity of © and (3.2), we have that for c(5) = \@0(3'2) and for
any 0 < s<t<T, as.,

e — 0520 (51)? < ¢ ((T 0l (T - 3)9—1) o2, (5.9)

We aim to apply [18, Theorem 4.3] to obtain (5.8). To do this, let us define the
random measure

(w,dt) := o(Sy(w))?dt, we .

Then, it is clear that II(w, (0,t]) < oo for any (w,t) € 2x(0,7). For0 < s <a<b< T,
the triangle inequality yields, a.s.,

B / 10y — 9,2T1(-, )| = BT / 10y — 9,20 (S))2dt
(a,b] (a,b]
< 2B e | |9, — 195|2/ o (Sy)%dt +/ |0y — 19a|2a(5t)2dt]
(a,b] (a,b]
< 2B |9, — 0 |H1(-, (a,b]) + 0%3_1) /( b](b — )Y (-, dt)

Let 7 = (t;)7_y € Taet and a € [ty_1,t) for k € [1,n]. Applying [18, Theorem 4.3] yields
a constant ¢ > 0 independent of 7 and a such that, a.s.,

E]:a [<797 T>T - <197 T>a]
7 1-6 (T — ty_1)'? 2 2
<crllo (E ( )(T—t) T(,dt) + ~—— o — Uy, | : ]U(St) dt
a, T a,ty

tr — th—1
2 2 2
<dh%(%ﬁ@a+%m)

(T — tk_l)l_e
m(tk — a)|¥a — Oy, [P0 (Sa)’

T —tyy)'"
<c|7llg s 4y + ¢ o)™
7 llo ( (3.3) (5.-1)%(5.9) tr —tr_1

< el llo(cls 5 +2ck 1) )02,

(= a) (T = a4 (T - ) ) ) 2

which implies (5.8) with 0(5.8) = c(c?3.3)+20%, 1) % )) For the “Consequently” part, since
(9, 7) is continuous, it holds that H(’l9,7'>HBMOq>2 = [[(¥, 7'>Hbm0 ®) S C%S_S)HTHQ. O

5.2. Proofs of results in Subsections 3.2 and 3.3. We let ¢ > 0, k > 0 and recall
p(e, k) = (pi(e, K))i=o in Definition 3.8. Due to (3.5) and the assumption J(S',) >0, it
holds that

|AS| > o(S_)e(T — ) < |AZ] > (T — )"
Hence, we derive from (3.6) the relations

pile,k) =inf{T >t > pi_1(e, k) : |AZ| > (T — )"} AT, i > 1. (5.10)
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Since Z is cadlag and the underlying filtration satisfies the usual conditions (right conti-
nuity and completeness), it implies that p; (e, k) are stopping times satisfying p;—1(e, k) <
pi(e, k) for 1 <i < Nz7)(e, k).

For a non-negative Borel function A defined on R, denote

€ [0, co].
Lo (2%[0,T],PRN)

wtl—>/ 2 ) (w, dz)

12(2) * V| Lo (pon) ==

Then, condition (3.14) is re-written as
122 % V|| 1. pen) < 00 (5.11)
Proposition 5.3. Let ¢ > 0, k > 0 be real numbers. Then, for any a € |0, E)7 one has

NG (& 8 Loy < 1+ 1/Csa3) + Cs.13), (5.12)

where
1—ak

T
Cp13) = Tl z151) * Yl epon) + € gimar —7 e 2" * Vil o). (5:13)

Proof. We may assume that C'(513) < oo, otherwise the desired inequality is trivial.
Step 1. We show that, a.s.,

T
/0 /R]l{lzlx(T—t)H}WZ(dtadZ) < C5.13)-

One decomposes

T
//]l{|z>e(T—t)~}7Tz(dt,dz)
0 JRr
T T
:/o /R]1{|z>1v(a(T—t)n)}7rz(dt,dZ)—i—/o /R]1{12z|>a(T—t)n}7rz(dt,dz),

where the first term in the right-hand side is upper bounded by T'[|1y;>1} * V|| 1 (po))
a.s. The second term can be estimated as follows, a.s.,

//11{1>|z>5T pyrymz(dt, dz) //11{1>|z|>eT tyeyve(dz)dt

( 2n+1)
s Z /T( /R ]1{1>|Z|>€(T/2"+1)m}l/t(dz)dt

n=0 1_2%
o T(1-54r) |2| @
< ——— | (dz)dt
;:%/T(l;n /z|<1 <5<T/2”“)”>
00 ) T(1-z747)
— gma—ak Z(2n+ )04"@/ / |Z|a1/t(d2)dt
=0 T(1—5% |2<1
oo
< s—aTl—cm Z(Zn_‘—l)aﬁ_lH]l{|z|<1}|z|a*V||LOQ(IP’®>\)
n=0
:Efa Tl—om

WHH{\ZKI}‘Z‘Q * VHLOO(JP®,\)-

Step 2. Combining Step 1 with [26, Ch.II, Proposition 1.28| allows us to write, a.s.,
T T .
Jo Jg Lzser—ysy Nz (dt, dz) =[5 [z Lijzpser—iys} [(Nz — m2)(dt,dz) + 7z(dt, dz)]. Since
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T
Nan(e, k) <1+ [y [z Lijzse(r—iysy Nz (dt, dz) by (5.10), we have

T
N7y (e, m)llL,m) <1+ . Iz>e(r—t)3 Nz (dt, dz)

Lo(PP)

ﬂ{|z\>a(T—t)"~}7TZ(dta dz)

| Le>er-ny (Nz = mz)(dt, dz)

Lo(P) Lo (P)
=1+ ]1{|z\>a T—t)~ }Wz(dt dz ]1{| [>e(T—t)= }Wz(dt dz)
L1 LQ(]P)
<1+ \/0(5.13) + C5.13);
where one uses |26, Ch.II, Theorem 1.33(a)| to derive the equality. O

5.2.1. Proof of Proposition 3.13. Denote k := % € (o, %) We first consider the partic-
ular case when Q = P, r = oo and ¢ = 2. By Definition 3.9(1),
n+1=#n <H#nUp(en k) <n+1+Ngr)(en k).
Thus,
n+ 1< [|#mUp(en,k )||L2(P) sn+1l+ HN(3.7) (5m’i)HL2(p) .

In (5.13), substituting @ = 2 and using inf, 1 \/ne, > 0, we obtain
) Tl—QH, 9
Ca3) = T z1>1) * Yl roo@er) +en” groae — 1T 0a1<1y 2™ * Yl e poon) < cn

for a constant ¢ > 0 independent of n. Using (5.12) gives the desired conclusion.
In the next step we assume that Q < P is a probability measure with dQ/dP € L, (P).
Since T}q + % = 1, applying Holder’s inequality yields

1
1#70 U p (ens 8) | L) S I1#70 U p (s K)ll L, gy 14Q/ AP gy
and hence (3.16) follows. O
5.2.2. Proof of Theorem 3.10. Again, we denote k := 12;9 e [o, %)

(1) Step 1. We handle the correction term in (3.8) and the corresponding error process.
For € > 0, by the same arguments as in the proof of Step 1 of Proposition 5.3, one has

T
B[ [ 1l et tdz)de
0 JR

T T
= E/ / ‘Z|1{|Z|>E(T_t)n}l/t(dz)dt + E/ / ’Z’ﬂ{|z|>E(T_t)n}l/t(dZ>dt
0 J|z[>1 0 J)z|<1

1-2k
ST Lqsy 2l * vl L pon) + 5_2m“]1{|z|<1}22 * V|| Lo (Pan)

< 00,

where the finiteness holds due to (5.11). This allows us to decompose
/ #(Ny — 72)(du, d2) = Z5 + 2> — >,
Ro
where

Zs ::// 21z 1<e(r—u)sy (Nz — 77)(du, dz),
0JRg
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” ://Rzﬂ{z|>s(T_u)~}NZ(du,dZ),
0

://zﬂ{z|>E(Tu)m}yu(dz)du.
0JR

Recall 97 in Definition 3.9. Since (5.11) holds in our context, applying Proposition 5.3
with a = 2 yields /\/(37) (e,k) < o0 a.s. Hence, outside a set of probability zero, we have
that, for all ¢ € [0, T,

>, (%(w)— ~ e, @) ASpi(en)
pi(e,k)€[0,¢]N[0,T")

= Z (ﬁpi(&'f)* - 19;@,@) o (sz‘(&'f)*) AZPz‘(E:"v)
pi(e,k)€[0,¢]N[0,T")

= / (ﬂu— - ﬁZ)U(Su—>dZu>'
[0,¢)N[0,T)

By the representation of Z in (2.4), one can decompose

dSt = O'(St_>dZt = O'(St_) (dZtC + V;jdt + / Z(NZ — Wz)(dt, dZ))
Ro
=0 (S-) (dZf + Vidt + dZ5 +dZ7 — dv7) .

We derive from the arguments above, together with the fact AZ7 = AZp = 0 a.s., that

Eadj(ﬁ’ﬂg, K) = / (ﬁu_ — ﬁ;)dSu — Z (ﬁpi(&ﬁ)_ — 19;(5,;{)> ASpi(a,,{)
0 pi(e,R)€[0,-]N[0,T)

= / (D — 90)0(Sy ) (AZE + Vydu +dZs +dZ; —dvy,) — / (0 —90)0 (S, )dZ7
0 0

= / (D — 90)0(Sy ) (AZE + Vdu + dZY)
0

—/0(ﬁu_—19;)0’(5“_)/11%2]1{|Z|>5(Tu)n}Vu(dZ)du. (5.14)

Let us define the error processes ES(¥, 7|e, k) induced from the “small jumps” part and
EP (9, 7|e, k) involved with the “drift” part by

ES(, 7|e, k) = / (D — 90 (S )(AZE + Viedu + dZ5),
0

EP(0,7]e, k) ::/O(ﬁu —ﬁ;)a(Su)/Rz]l{|z>8(T_u)K}1/u(dz)du.
The triangle inequality applied to (5.14) gives

IE*S (@, 7le, )| < ES(@,7le, w)] )+ IEP @, 7le, w)] (5.15)

BMOZ (P BMOZ (P BMOZ (P)°

Step 2. We investigate the right-hand side of (5.15).

Step 2.1. We consider ES(0,7|e,s). Since ® € SMy(P) by assumption, Proposi-
tion 7.1(2) implies that ® € SMs(P). Then, Lemma 2.3 asserts

\\ES(§77\67H)!\BMO§(P) ~eae 1B (O, 7le, i)lyos e + IAES (9, 7le i)lg. (5.16)
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Since 9, o(S) and ® are cadlag on [0,7"), one can find an Qg with P(£) = 1 such that
(5.9) holds for all (w,t) € Qo x [0,7). This implies that, for all 0 < s < ¢t < T and
w € Q,

‘1915 - 195’0'(St) < \/50(5'9) (T - t)iH(I)t.
Due to (2.5), one has 7z (w, {t} x Rg) = 0 for any (w,t) € Q x [0,7]. Then, it holds that

AZS| = '/R 214 <e(r—try Nz ({1}, d2) —/R 2l cer—pryTz({t) d2) | < e(T —1)"
0 0

for all t € [0, 7] a.s. Moreover, since AES (9, 7|e, k) = (V_ —97)o(S_)AZS, we obtain
another € with P(Q;) = 1 (with keeping AZS = 0 a.s. in mind) such that for all
(w7t) €Oy x [O7T]7

A (9, 7le, k)| = [(9- = 07)o(Si-)AZE| < V2e(5.0)(T — ) @pe(T — )"
= V2¢(5.9)ePs— < V2¢(5.9)2
According to the definition of | - |5 given in (2.1), one then gets
\AES(ﬁ,T\E, r)|g < \/50(5.9)6. (5.17)

Let us continue with ||ES(9, 7]e, B o® ) We apply the conditional It6 isometry for
2

the martingale component and apply Holder’s inequality for the finite variation compo-
nent of E5(9,7|e, k) to derive that, for a € [0,T), a.s.,

E7e [| B3(9, 7le, k) — B3 (0, 7e, )]
T
< 2K [/ [ —I7 20 (S, )? (d(Z°>u +/ ]1{ZKE(T_U)K}szu(dz)du)]

T
+ 2K [/ 10— — 97 20(S, )Qdu/ Vfdu}
(K(z 6) T V(Q 6))E E7 (0, 7)1 — (3, 7)a]

2
Q(K( )+V(2 6)) %5.8)”7'\\052> (5.18)

NN

where (9, 7) is given in (5.6), and where we use the fact that a cadlag function has at
most countably many discontinuities to obtain the second inequality. Combining (5.16)
and (5.17) with (5.18) yields

1ES@,7le, 0 lpyio ) < 10 (Ve ope + 20K ) + VE g eVl - (5.19)

Step 2.2. We consider ED(19,T|6, k). Since EP (9, T|e, k) is continuous, it holds that

IEP(0,7le, 5| =|EP (9, 7le, ),

BMOZ (P mo? ()’

Now, for any a € [0,7T), we use Holder’s mequality to get, a.s.,
E”[|ER (9, T]E k) — E2(9,7le, k)%

< Ee [ 2du> (/aT [0 — 19;|2a(su_)2du>]
(5.

=: B [I(5.20)11(5.20)] - (5.20)

Zﬂ{\ |>e(T—u)r}Vu(d2)
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For the first factor I(5 20, since ||1q;<13]2|% * V|1 per) < o0 by (3.10), one has, a.s.,

1 T 2 T
51(5,20) é/ / 21y, (d2) du—|—/ / |z|°‘|z|1_auu(dz)
a |z|>1V(e(T—u)") a 12|z|>e(T—u)"

2
T
< (T—a)||ﬂ{|z>1}|z|*y|QLOO(P@))\)+€2(1_°‘)/ ‘/||<1 2]y (d2)

2
du

(T o u)Qn(l—a)du

(T a)Q,‘i(l—a)-‘rl
< (T—a)||1{|z\>1}\z|*VHLOO(H»@,\ + 11 gz1<ay 2] *V”LOO(IF@)\) 2l —a)+ 1

< cfyany(1+07%), (5.21)

2(1—a)

where ¢(521) = ¢(5.21)(, %, T, ) > 0 and one notices that 2x(1 — a) + 1 > 0. For the
second factor 115 o0), we apply Proposition 5.2 to obtain, a.s.,

E72 [1(5.00)] = EP[(0, 7)1 — (9, 7)al < s 5) I7l1o @2 < )17 165
Hence,
\|ED(T977\€7/‘6)HBMO§(]P>) < V258 ¢.21)V 1+ 2079/ 7]l
< \/50(5.8)0(5.21)(1 +e7N VI lo- (5.22)
Step 3. We plug (5.19) and (5.22) into (5.15) to derive (3.11).
(2) If (3.12) holds, then I(5 50y is upper bounded by Tc%&m). Hence,

HEDW Tle, H)HBMO@ ®) S \/TC(3.12)C(5‘8)\/ 7 l6- (5.23)
Combining (5.19), (5.23) with (5.15) yields (3.13). O

6. ITO’S CHAOS EXPANSION AND PROOF OF THEOREM 4.2

6.1. Exponential Lévy processes. Let X be a Lévy process with characteristics
(v,0,v) as in Subsection 4.1. It is known that the ordinary exponential S = eX can be
represented as the Doléans—Dade exponential (or stochastic exponential) £(Z) of another
Lévy process Z (see, e.g., [1, Theorem 5.1.6]). This means that S = £(Z) and

dS; = S¢-dZ;, Sp=1. (6.1)
Remark 6.1. (a) The path relation of X and Z is given by
O'Qt AX
Zy=Xo+ 5+ (% —1—-AX,), Vte[0,T] as., (6.2)
0<s<t

which implies AZ = e®X — 1.
(b) For the triplet (yz,0z7,vz) of Z, using [I, Theorem 5.1.6] (with the truncation
function z1 (<1} instead of ac]l{|$|<1}) yields that o7 = ¢ and

O'2 z
Vz = / ﬂ{exfle-}V(dCC)a Yz =7+t ) + /R ((e — D1fjee1<1y — i13]1{|x\<1}) v(dz).

Consequently, since lim, o €% = 1, it holds for any a € [0, 2] that

/|<1 |2|vz(dz) < o0 & |z|%v(dx) < oc. (6.3)

jal<1
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(c) Let FZ = (ftZ)te[()’T] be the augmented natural filtration induced by Z. Then, we
can deduce from (6.2) that FZ = F;X for all t € [0,T].

Let g € [0,00). Since vz((—oo, —1]) = 0, by change of variables we get

/Z|>1 |2|Tvz(dz) = /Z>1 21vz(dz) = /ew_1>1(ex —1)in(da).

Using |o + y|? < (1V2971)(J|? + |y|?) and applying [33, Theorem 25.3] yield

E|Z:|? < 00,Vt > 0 < |2|7vz(dz) < 00 < e’ v(dr) < oo
|z[>1 |z|>1

& Bel™ < 00,V > 0. (6.4)

6.2. Itd’s chaos expansion. We present briefly the Malliavin calculus for Lévy pro-
cesses by means of [t0’s chaos expansion. For further details, the reader can refer to
[35, 30, 1] and the references therein.

We define the o-finite measures p on B(R) and m on B([0,7] x R) by setting

p(dz) = 0%6p(dz) + 2?v(dz) and m:= Q@ p,
where dg is the Dirac measure at zero. For B € B([0,7] x R) with m(B) < oo, the

random measure M is defined by

M(B) := a/ dW; + La(P)- lim xﬁ(dt, dz),
{te[0,T):(t,0)e B} o0 ) BN([0,T)x{ L <|z|<n})

where W is the standard Brownian motion and N (dt,dz) := N(dt, dz) — dtv(dz) is the
compensated Poisson random measure appearing in the Lévy—Ité decomposition of X
(see [1, Theorem 2.4.16])

Set Lo(u) = Ly(m?) := R, and for n > 1 we denote

LQ(M ) = LQ(anB(Rn)7M®n)7
Lo(m®") := Lo(([0, T] x R)™, B(([0,T] x R)™), m®").

For n > 1, the multiple integral I,,: Lo(m®") — Ly(P) is defined by a standard ap-
proximation argument, where the multiple integral of a simple function is as follows:

For
m
m — ]1
E :ak Blix..xBk»
k=1

where aj, € R, B} € B([0,T] x R) with m(B}) < oo and Bf N B} =0 for k=1,...,m,
i,7=1,...,n,1# j and m > 1, we define

: ZakM (BF).-- M(BF).
According to [24, Theorem 2|, we have the following It6 chaos expansion
Ly(Q, 7, P) = é{fn(ﬁn) t€n € Lo(m®")},
where Ip(&p) := & € R. For n > 1, the symmetrlzatlon & ofag, € Lo(m®™) is

gn((tl,iﬂl), (tn7$n = ' Zgﬂ 7T(1)’ Lr(1) ) ( w(n)» ﬂ(n)))?
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where the sum is taken over all permutations 7 of {1,...,n}. It then turns out from
the definition of I,, that I,,(&,) = I,(&,) a.s. By the Ité chaos decomposition, & €
Ly(P) if and only if there are &, € Lo(m®™) so that & = Y 7 I,(&,) a.s., and this

expansion is unique if every &, is symmetric, i.e. if &, = &,. Furthermore, H£||%2(P) =
2o ! anH%Q(Im@n)-

Definition 6.2. The Malliavin-Sobolev space D 5 consists of all £ = >">° [ 1,,(&,) €
Ly (PP) satisfying
o0

1113, , == D (n+ DIEalIZ, en) < oo

n=0

The Malliavin derivative operator D: Dy o — Lo(P ® m), where Lo(P ® m) := La(£2 x
[0,7] x R, F ® B([0,T] x R),P®m), is defined for £ = > ; I,,(§,) € D12 by

Do =Y nl, 1(&((t),"), (w,t,z) €Qx[0,T] xR.

n=1

Proposition 6.3 ([27]). Lett € (0,T] and a Borel function f: R — R such that f(X;) €
Lo(P). Then, f(X;) € D1 if and only if the following two assertions hold:

(a) when o >0, f has a weak derivative® f! on R with f.,(X;) € La(P),

(b) the map (s,z) — —f(Xteri*f(Xt)

Furthermore, if f(X;) € D19, then for P®@ m-a.e. (w,s,z) € Qx[0,T] xR one has

f(Xi+ ) — f(Xy)
x

Lio,1 xR, (8 ) belongs to La(P @ m).

Ds o f(Xt) = fi,(Xe) L0910y (5, 2) + Ljo xR (5, T),

where we set, by convention, fl, := 0 whenever o = 0.

This proposition was established in [27, Corollary 3.1 in the second article of this
thesis| and it provides an equivalent condition such that a functional of X; belongs to
Dy 5. For X being the Brownian motion, see [29, Proposition V.2.3.1|, and for X without
a Brownian component, see [16, Lemma 3.2].

6.3. Preparation for the proof of Theorem 4.2. Since we shall work simultaneously
with the two Lévy processes X and Z (under P) for which it holds eX = £(Z) as
introduced in Subsection 6.1, we agree on the following convention to avoid confusions
and determine clearly the referred process.

Convention 6.4. For Y € {X, Z}, the notations vy, oy, vy, Ny, py, my, My, IV,
DY, ID)KQ introduced in Subsection 4.1 and Subsection 6.2 are assigned to Y.

The following lemma shows that X and Z generate the same Malliavin—Sobolev space.
Lemma 6.5. One has ]D){f2 = DfQ,
Proof. We define a bijection p: R — (—1,00) by
o(z):==e"—1, zeR
Az locally integrable function h is called a weak derivative (unique up to a A-null set) of a locally

integrable function f on Rif [, f(x)¢'(x)dx = — [, h(x)¢(x)dz for any smooth function ¢ with compact
support in R. If such an h exists, then we denote f,, := h.
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It is clear that o(x) = 0 < x = 0. In the sequel, we agree on the convention eoal =1
and % := 1. The relation between vy and vz (see Remark 6.1) implies that, for
any Borel function w > 0,

2

6@ (da). (6.5)

[ wemata) = [ wete) |2

Fix n > 1. Let us define the operator
Uy, Ly(m%") — Lo(m$™)
& o &7
by setting, for ((t1,21),..., (tn,2zn)) € ([0,T] x (—1,00))™, that

1

(1 21), - (t ) = EX (1,07 (21))s - (s 0 () HQ B (60)

and let £¢Z := 0 otherwise. We now show that W, is well-defined. Denote
m§"(dt, dz) := mx (dt1,dzq) - - - mx (dty,, dzy).

By an induction argument using (6.5), together with Fubini’s theorem, one has

n Q .
€212 o) = /( e [ (102 (o)) TT m&" (dt, dz)

m%"(dt, dx)

= 67‘2( t1,r1), tnyxn
/([OTlxR)” ({120 1;[

= IEXI2, mmy:

which ensures £Z € Ly(m$"), and thus IZ7(¢Z) exists as an element in Lo(P). Further-
more, as a by-product of the arguments above, the operator ¥,, is linear and bounded,
thus it is continuous.

We next show for any & € Lo(m%") that, a.s.,

LX(EN) = LH(Wa(&))) = (&) (6.7)
We prove (6.7) only for n = 1 since it follows for n > 2 in the same way. Let (a,b] C [0, T],

and let B € B((—1,00)) with 0 ¢ B. Then, 0 ¢ o=1(B). We derive from (6.2) that
AZ = o(AX), and hence, a.s.,

/ 1(ap)xB(8,7)rNx(ds,dr) Z AXg = Z o Y AZ,)
[0,T]xRo

a<s<b a<s<b
AXsEB AZseo(B)

~ [ N = [ W) (s 2): N (s, 02)
(a,b]xo(B) [0,T]xRo

As a consequence, the expected values of both sides are equal, and hence, a.s.,

X (Lapxn) = I (P1(LapxB))-
Recall that the Gaussian components of X and Z coincide pathwise. Hence, due to
the denseness in Lo(mx) of the linear hull of {1(44)x0}, L(ap)xn : (a,0] C [0,T], B €
B(R),0 ¢ B}, together with the continuity of I;{X, I¥ and ¥y, we deduce that, a.s.,

IN(EY) = IE (01 (&) = TZ (£9).
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Finally, let £ € ]D){fz and suppose that & = > Olf(fﬁf), where éi( € Lg(m?}”)
are symmetric. By the definition of ¥,,, the function \Iln(fn ) is also symmetric. Since
FZ = }":,)f as showed in Remark 6.1, the uniqueness of chaos expansion and (6.7) lead
to, a.s.,

=R+ > LNEN) =Ee+ > I1Z(ED). (6.8)

n=1 n=1

Since [|£X ||L () = = ||€7 ||2 , it implies that & € DY 9, and hence, ]D){f2 - DfQ.

By exchanging the role of 0 and 0!, together with the fact that vx = vz o (o71)7!,
the converse inclusion ]D)f 5 C ]D){fQ follows. Therefore, ]D){f2 = D{ 5 as desired. O

We use Assumption 4.1 from now until the end of this section. Recall that Z is an
Ly(PP)-martingale with zero mean, hence one can write dZ; = [, Mz(dt,dz).

We approach the GKW decomposition of g(St) € L2(P) by means of chaos expansion
with respect to the Lévy process Z in the way introduced in [15] as follows. First, it is
known that (see, e.g., [15, Definiton 1 and Lemma 1]), a.s

= (Lo«
ST:1+ZL%< [’n'}x >,

n=1

where the kernels in the chaos expansion of St do not depend on the time variables.
According to [2, Theorem 4], this property is preserved for g(Sr) € Lo(PP). Namely, a.s.,

ZIZ (90155 - (6.9)

where g, € I~/2( ™). For each n > 1, define the function hn 1 € LQ(M?("*”) by

N pz(dz)
hn—1(z1,. ..y 2pn1) := /Rgn(zl, ey Zn—1,Z) MZZ(R) . (6.10)

Definition 6.6. (1) Let ©? = (¢])icjo,r) be the cadlag version of the Ly(IP)-martingale

7 Z n
<ho +Y (n+ DI (h ]l[%t])> ,
n=1 tel0,7)
where the infinite sum is taken in Lg(P).
(2) Define the process 99 € CL([0,T)) by setting 99 := ¢9/S.
Lemma 6.7. Let g(S7) € La(P). Then 92 is a MVH strategy corresponding to g(St).

Proof. We use the functions §,, b, defined in (6.9)-(6.10). Since each element in Ly(m$")
is symmetric, we only need to define it on ((tl,zl), cooy(tpyzn)) With 0 < £ < -+ <
tn, < T. Thus, for n > 2, we define k, GLQ( )by

kn((tl,zl), RN (tn,Zn)) = hn,l(zl, L ,znfl) forO<ti <<ty < T,

and set ky(t,z) := hg. According to the argument in [15, Egs. (7)-(10)], it holds that
the stochastic integral fOT 0] dZ; is well-defined and

T o0 _
/ 0] dZy=> I7 (k)
0 n=1
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Let L9 = (L]);c(0,r) be the cadlag version of the martingale closed by

T
I = o(Sr) ~Ea(sr) - | ot az.

Then, g(S7) can be re-written as
T
g(St) = Eg(Sr) +/ o dZ; + LY = Eg(St) + ZIZ ) + LS.
0
We now show that LY is strongly orthogonal to Z. For t € (0 T] one has, a.s.,
g _ Z Xn Z ®n Z Rn
Lt—z_jfn( i) - ZI (Fnte) = ZI (80— F13y)
Since Z; = fo dZs = fO Jg Mz(ds,dz), one has for any t € (0,T] and n > 1 that, a.s.,
t
~ 7 n ~ 7 n—1
(17 (Gn — k1) . 2) = O/RL%l (@ 2) — Fule, 5 D50 paz(dz)ds
t ~
[ ([ ) = Rl (s a1 ) as

where one can see that the second equality holds by testing with multiple integrals.
Since the infinite sum in the chaos representation of L{ is taken in Lo(P), we conclude
that (L9,Z) = 0. Hence, it follows from ¥/ dS; = ¢] dZ; that g(Sr) = Eg(St) +

[T 09_dS, + L is the GKW decomposition of g(St). O

6.4. Proof of Theorem 4.2. We verify that the process 99 in Definition 6.6 satisfies
the requirements. The assertion (1) and the martingale property of 995 are clear by
the definition of 99 and Lemma 6.7. For the latter part of (2), since ¢9 and S are
martingales adapted to the quasi-left continuous filtration FX, it implies that o] =i
a.s. and S; = S;_ a.s. for each t € [0,T) (see |31]). Therefore, ¥y = ¥7_ a.s. for each
tel0,T).

(3) Recall from Lemma 6.5 that ]D)1 9 = f 5. We have in Definition 6.6 and Lemma 6.7
the strategy given as chaos expansion with respect to Z. In order to get the explicit
representation (4.2), we change it into a representation with respect to X where we can
use Proposition 6.3.

Step 1. Let € € Df 5 have the expansion (6.8). We first write the Malliavin derivative
of £ as the element in Ls(P ® my) and then integrate it with respect to my to obtain,

/T/ (Dsz,zf) my(ds,dz)
// <L2 P®my)- hm Zn (€2 ((s, 2), .))) 1y (ds, dz)

_ngnooz//nfz (EZ((s, 2), ))my(ds, dz) (6.11)
112
_]\}gnooZ//nIZ WEZ ((s,6" = 1),4)) ¢ . ! (ds,dz)
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‘]\}EHOOZ//”IX LEX (s, 2), -))exz_lmx(ds,dx) (6.12)

// <L2 (P®my)- lgnOOZn X ((s,2), ))) emx_llmx(ds,dx) (6.13)

:// (05,6) & Liny (ds, du), (6.14)
0 /R L

where one uses the fact that mz([0,7] x R) = f()TfR ‘ezx_l ‘me(ds, dz) < oo to derive
(6.11) and (6.13). In order to achieve (6.12), we apply the definition of ¥,_; in (6.6)
and then use (6.7) with the convention that Wy is the identical map on R as follows

55((Svem - 1)a (81, Zl)v SRR (Snfla anl))

n—1 ] "
= &X((s,2), (s, In(z1 + 1)), -, (su-1 Izt + 1) 1n(zj 1) e
i=1 v
= = (T (E5((52).)) (51,21 (501, 2000)) )

Step 2. For x € R, t € (0,T), we define
f(z):=g(e*) and F(t,x) = G(t,e").

It turns out that F(t, X;) = E7¢[f(X7)] a.s. We then derive from [18, Lemma D.1| that

F(t,X,) € D{fz. Applying Proposition 6.3, we obtain

F(t, X, + ) — F(t, X,)
x

Dfo(ta Xt) = 8mF(t7Xt)]1[o,t]x{o}(37$) + ﬂ[o,t]xRo(&ﬂ?)

(6.15)

for P ® my-a.e. (w,s,z) € Q x[0,7] x R. We multiply both sides of (6.15) with exT_l
and then integrate them with respect to mx to obtain, a.s.,

//( Pt X)) xx 1>1mX(ds,dx)

R
_ <J2St8yG(t, S,) + / (G(t,6"Sy) — Gt, Si))(e* — 1)1/X(dx)> . (6.16)
R

On the other hand, for the representation of g(S7) given in (6.9), taking the conditional
expectation of g(S7) with respect to F; yields, a.s.,

G(t,S;) = EF g Z 1z ( 15" ) .

Since G(t,S;) € ]DDIZQ, we write the chaos representation of the Malliavin derivative of
G(t, St) with respect to the underlying process Z as in Definition 6.2, and then, integrate
that with respect to the measure my to obtain, a.s.,

// G(t,5,)) mz(ds, dz) // (an an(, 210 1)11[(“](5))) mz(ds, dz)
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(0. ]
® 1
=D nli ( / / G (- )LV 10 g (5)m(ds, dz>>
n=1
o
~ ®(n—1
= thIf_l <</R gn(’z)uz(dz)> ]1[0’(3 ))

= tcfy 5y97 St (6.17)

where the last equality comes from (6.10), Definition 6.6, and puz(R) = c%“). Applying
Step 1 for € = F(t, X;) = G(t,S;), we derive from (6.14) that, a.s.,

/O/R<D§x X >mX (ds, dz) // G(t,S)) mz(ds,dz). (6.18)

Combining (6.16), (6.17) with (6.18), we get (4.2).

7. TECHNICAL RESULTS I: REGULARITY OF THE WEIGHT PROCESSES ® AND ®(n)
We recall @ from (3.9) and Definition 2.1.

Proposition 7.1. (1) Let p,q,r € (0,00) with % =
CL* ([0, T]),

+ Then for any ®,¥ €

1,1
p g

[2Y | sat, ) < 1@l sat, @) [P llsat,@)-
(2) If ® € SM,(P) for some p € (0,00), then & € SM,(P) with

_ 3”‘1’||8Mp +1 if p € [1,00)
[®llsa, ) < .
Bl121% 04 +1) ifp € (0,1).

Proof. Assertion (1) is given in [18, Proposition A.2|. We now prove (2). Let a € [0,7T)
be arbitrary. For p € [1,00), applying the conditional Minkovski inequality yields, a.s.,

(E]:a [SUpte[a,T} 55] ); < (Ef“ [SuPte[a,T] ‘I)ﬂ )113 + (Efa [SuPse[O,T} ‘A‘I)sﬂ )Zl}

1
< (1954, (21 + 5Dl AP + (B [supyiary |A2IP] )

3=

< (1954, (2)Pa + 5Dl 0 D] +2 (B [supy(ary ] )
< BlI®llsm, @) + 1)Pa-

For p € (0,1), we use the same argument as in the previous case where one applies
the inequality |z 4 y|P < |z|P + |y|P for z,y € R to obtain, a.s.,

E7* [subyerar) BF | < (B9, ) + DL
Hence, the desired conclusion follows. Il

Recall the Lévy process X with characteristic triplet (7,0, r) and exponent ¢ men-
tioned in Subsection 4.1. Recall ®(n) from (4.3) and S = e¥.

Proposition 7.2. If fl$|>1 ey (dz) < oo for some q € (1,00), then ®(n) € SM,(P)
for all n € [0,1]. Moreover,

2q
T (—1)](2 1- q
H‘I)(U)H?qu(p) < T (=DI(2g+1)gl-n <q_1> HSTHqu(lp)
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Proof. The first step considers the particular case when S is a martingale, and the
general case is handled in the second step.

Step 1. Assume that S is a P-martingale. By (6.4), the assumption fl$|>1 ety (dr) <
oo implies eXt € L,(P) for all t > 0. Denote ¢, := (7%7)? and define M = (Mj)sepo,1) by
M; = SUPye[o,4] eXt=Xu,

We show that M is a positive Ly(P)-submartingale. The adaptedness and positivity are
clear. Pick a t € (0,T]. Since (X; — Xi—u)uefo, is caglad (left-continuous with right
limits) and (Xu),e(o, is cadlag, and both processes have the same finite-dimensional
distribution, applying Doob’s maximal inequality yields

EM =E {Supue[o,t] eQ(Xt_X“)] =E {Supue[o,t] ed(Xe=Xi—u) (7.1)
=K |:Supu€[0,t} eun:| < Cquth < 0.
For 0 < s <t < T one has, a.s.,
]E]:S [Mt} 2 B [Supue[ovs} eXt_Xu} = SUPyg(o,s] o XuEeX— X = Ms,

where we use EeXt—Xs = ES,_, = 1.
We observe that the process ®(n) can be re-written as

q’(ﬂ)t = eUXt Supse[oyt] e(l_n)(Xt—Xs) — enXtMtl—n.

Let us fix n € (0,1) and a € [0,T]. For e"X = (e"Xt)tE[O,T], applying Doob’s maximal
inequality and Jensen’s inequality we obtain that, a.s.,

a
E7e [SuPte[a,T] (enxt)"] = et [Supte[aj] eq(thX“)} < cpetXaRet(Xr—Xa)
= quarEeqXTfu. < quar}EeqXT’
which implies
n
a,

X X
1€ [lsm, (@) < (cqBe®™T)

For M'=" = (Mtl_”)te[oﬂ, one has that, a.s.,

q

B [SuptG[a,T ] (Mtl_n)m} =B [Supte[a,T] My } < cgET [Mf]
< B [Supse[o,a} eq(XT_XS)} + ¢ Ee [supse[a’T] eq(XT_XS)}
= CqSUDg¢e[0,q] eTXa=Xs)pet(X1—Xa) 4 o F |:Sups€[a,T] eQ(XT—Xs)]
< 2€q SUPse0,q] oIXa=Xo)R [SuPse[aI] eq(XTiXS)}
< (26 [sup,epo.m e =X0) ) nad
< (2c2Ee?¥T) MY,

where the conditional Doob maximal inequality is applied for the positive sub-martingale
M to obtain the first inequality, and the last one comes from (7.1). Hence,

1-n
q

1M spn, o ) < (22Ee0YT)
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Applying Proposition 7.1(1) with ¢ = am sy e obtain

2
_ 1 (g
1) sty ) < 1™ 54, 20 1M st o0y <20 (q_l) 152112,y < o0,

which asserts ®(n) € SM,(P). When = 0 or n = 1, the desired conclusion is straight-
forward as ®(0) = M, ®(1) = e~.
Step 2. In the general case, we define

St = etw(*i)St.
Then, it is known that Sisa martingale under P. Some standard calculations yield
e—le(—i)@(n)t <P(n) < ele(—i)@(n)t’

where ®(n); := S supue[ovt](gﬂ_l). Applying Step 1 for P-martingale S we derive that
5(77) € SMy(P). Hence, for a € [0,T], one has, a.s.,

E/e [supte[a,;p] d(n)f| < et W (=DIp T [Supte[a,T] E)(n)?}

< NS, 5 B)S

2q
2qT|p(=1)[9l—n q g 14 q
e ey I AT

a’

2q
T (=1)[(2¢+1)91—n q q q
<e 2 <q_ 1> HSTHLq(P)(I)(n)

which proves the desired conclusion. O

8. TECHNICAL RESULTS II: GRADIENT TYPE ESTIMATES FOR A LEVY SEMIGROUP
ON HOLDER SPACES

This section provides some gradient type estimates in the Lévy setting for proving
Theorem 4.6, and they might also be of independent interest.

Let us introduce some notations. For a non-empty and open set U C R and forn > 1,
let C™(U) denote the family of n times continuously differentiable functions on U, and
set C°(U) := Np>1C™(U). The space C°(U) consists of all f € C°°(U) with compact
support in U. When U = R, we let C§°(R) denote the family of all f € C*°(R) with
im0 f)(z) =0 for all n > 0.

For s € R, we define the weighted Lebesgue measure \; on B(R) by setting

As(dzx) = e**dz,

and let Ao (dz) := Ag(dz) = dz be the usual Lebesgue measure.

8.1. Some integral estimates for Holder functions. For a Borel function g and a
random variable Y such that E|g(yeY)| < oo for all y > 0, we define

G(y) :=Eg(ye"), y>0.

For later use, we establish in this part some estimates for |G(z) — G(y)|, where ¢ is a
Holder continuous function or a bounded Borel function.
The first result deals with g € W14(R;) (see Definition 4.3).
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Proposition 8.1. Let g € [1,00] andn:=1— l €0,1]. If g e WH(Ry) and if Y has
a density p € L, (R, A\y) for some r € [1, ] then for any z,y > 0,

_1
1G(2) = GW)I < (I9lyiraguyy Pl @ag ) 2 = 9" nz = Iyl =7

where we set, by convention, 0¥ :== 1, and set nr :=1 ifn =0, r = co.

Proof. Absume that g = [Yh(u)du for h € Ly(Ry). Let ¢/,r’ € [1,00] be such
that 1 q— = 1 and 1 —|— L= 1 Since r € [1, ] [1,q], it 1mplies that 1 < ¢ <7 < 0.
Denote B : [O 1] and A :=1— B, Where B :=1if ¢ =1 = co. Then, with the

sign functlon sgn( )= Liz>0) — L{z<0}, we have that
/R (9(2¢%) — g(ye?))p(e)ds

< [ lotee®) = gloe) laze) = g(ue”) p(a)da
<ol = [ eMPlaee?) = glue”) Ppla)da

— [gldonz, |z =y /R A1 g(ze") — g(ye®) Pp(a)e™”da

<okl — o ([ e lg(ee") ~ ot |B7’dx> ([ 1nte e"wrdx)

1
ol ol = o7 ([ gtz /) = gaolran)

1
00 z g v’
A B A v
= Iglom g 1Pl i 82712 — 3l (/0 | hua)da du>
1

= 1| ( /0 sgn(z — y) / ’ rh<ua:>erxdu>T

A 1-1 L
= [9lgo @) IPl L @Atz =yl "¢ Iz = Iny|7 |glF

G(2) = Gy)| =

By —yAn

A
< |9|Co,n(R+)HPHLT(R,)\,,T)Z/

1-1
< |Q|W1,q(R+)||PHLT(R,>\7,T)|Z —y["nz —Iny[r,

where we apply Holder’s inequality for the third and fourth inequality, and the last one
comes from |9|COm(R+) < |g|W1,q(R+). O

The following result is formulated for a bounded or Hélder continuous g.

Proposition 8.2. Let n € [0,1] and g € C*"(Ry). If Y has a density p € CH(R) N
L1(R, \y) with the derivative p" € L1(R) N L1(R, \y), then for all z,y > 0,

— : T K |Z77 — yn’
66 - Gl < (Ialconge W1} iut | [ 1o = sl @i ) =22 sy
\zn—y | = = |lnz —Iny| when n = 0.

0_.0
where we set, by convention, 12 Oy L= = lim, o

Proof. The assumption p € L1 (R, ;) means that Ee"Y < oo, and hence E|g(ye¥ )| < oo
for all y > 0. Let us pick a constant " > 0 arbitrarily. By a change of variables,

G(z) — G(y) = Eg(ze") — Eg(ye")
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= [ s nu = 1nz) = pinu —1ng))

— [ ) = s pinu =10 2) — plinu ~ ny))

Since p € CY(R), the fundamental theorem of calculus gives

G(z) = G(y)
= /Ooo(g(u) —g(x") ((lny —1Inz) /Olpl(lnu —Iny+r(lny — lnz))dr)
= (Iny — Inz) /Ooo(g(u) —g(x)) </01p'(lnu —Iny+r(ny — lnz))dr>

Since |g(u) — g(k")| < |glcon(r,)lu — &', where 0° := 1, we have

G(2) = G(y)]

[e) 1
d
< lgleony) [nz —Iny| / u— /’J!"/ p'(Inu —Iny +r(lny —In Z))\drgu
0 0

[e.e]

1 d
= lglcone,,) “nz‘ln?ﬂ/ </ u—ﬁ’l"\p’(lnu—lny+r(1ny—1nz))|:‘) dr
0 0

1
- |Q|COW(R+) |In z — lny|/ (/ ‘exylfrzr _ R'\n|p'(x)\dx> dr.
0 R

e
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(8.2)

If n = 0, then (8.1) is obvious in the view of (8.2). Let us now consider n € (0, 1]. Thanks

o0 (8.2), G is locally Lipschitz on Ry, which implies the absolute continuity of G' on any
compact interval of Ry. Consequently, G is differentiable A-a.e. on Ry. Let y > 0 be
such that G'(y) exists and is finite. We divide both sides of (8.2) by |z — y| and then let
z — y, where the dominated convergence theorem is applicable on the right-hand side

due to p’ € L1(R) N L1(R, \,), to derive that, for all & > 0,
n

G/ ()] < lgloon, )y /R lye® — &7 (2)|da.

Hence, for any x > 0, we obtain by choosing k' = yx that

W) < I9leon@, ™! /R 6 — [y (z)dz.

Now, for z,y > 0, using the fundamental theorem of (Lebesgue integral) calculus yields

G(z) — Gly)| = / G (u)dul < sgn(z — y) / G ()| du
Y Y
< 19lcon,ysenz — v) / W du / o — ")y (2)|de

Yy
21—y
- rgrco,n@m‘n /R o — k]| (2)|da

/ o — || (2)|de
R

1

") B
77 )

1—
< (llooncan 19152

where one applies Holder’s inequality with 7177 + =y = 1 to obtain the last estimate.

By taking the infimum over x > 0, (8.1) follows.

g
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8.2. Holder estimates for a Lévy semigroup. Let X = (X;);>0 be a Lévy process
with characteristic triplet (v, o, ) and exponent 1 as in Subsection 4.1. Let us define

Dexp = {9: Ry — R Borel : E|g(ye™*)| < oo for all y > 0, > 0}.
251 ey(der) <

oo for some r € R, then any Borel function g with sup,-o(1+ ) "|g(y)| < oo belongs
to Dexp because of (6.4). For t > 0, define the mapping P;: Dexp — Dexp by

Pig(y) = Eg(ye™").

Since Pyys = P, o P, for any s,t > 0, the family (P;);>0 is a semigroup on Deyy.
To be able to estimate the integral term of the MVH strategy formula (4.2), we aim
to establish an estimate for

It is clear that Deyp depends on the distribution of X. For example, if f|

|Pig(z) — Pig(y)l,

where g is bounded or Holder continuous.
The following lemma provides an estimate for the L;(R)-norm of derivatives of tran-
sition densities.

Lemma 8.3. Let X be a Lévy process with characteristic exponent 1. If
0< 1|iITl inf |u|"*Ret(u) < limsup |u| " *Rey(u) < oo (8.3)
Uu|—o0

|u|—o00
for some o € (0,2), then X has transition densities (pt)i=0 C C5°(R) such that
1
supye (o, te [|0xptll Ly )y < 00, T > 0.
Proof. See the proof of [18, Theorem 8.21]. O

Since we aim to apply Proposition 8.2, and in order to handle the quantity involving
the infimum in (8.1), we provide in Lemma 8.4 below estimates under assumptions which
are typically satisfied in applications.

Lemma 8.4. For somet > 0 such that Xy has a differentiable density p; on R, we define
K, = inf / 1% — 1| |Dupe(z)] da € [0, 00)].
k>0 R

(1) If o > 0, then K; < %ﬁﬂext — Ul pypy for all t > 0.
(2) If there is an my € R such that py is non-decreasing on (—oo, my) and non-increasing
on (my, 0), then K; < EeXt.

Proof. (1) Denote J := X —oW. Let pf" be the density of cW;. Then, the independence
of oW and J implies p; = pf"V * P, for all t > 0. Choosing x = 1 yields

1
Kt</lex—1||3xpt(l‘)|dfv<2 //!ex—lllw—ylpfw(fv—y)IP’Jt(dy)dx
R ot Jr Jr

71 1

= + oW _ oWi+J,

= 52t /R/R |el“ y_ 1| |;p|pt (x)deP)Jt (dy) = —o_ztE ’g]/]/t (e e 1)‘
L X le™t — 1|, p)

(2) We may assume that EeX* < oo, otherwise the inequality is obvious. By the
monotonicity of p;, one has p;(x) — 0 as |z| — oo, and for z > m; + 1,

[e.9]

x
e“pr(x) < ex/ pr(u)du < ez/ pe(u)du — 0 as z — oo,
z—1 T
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where the limit holds due to Ee®X* < co. Now, choosing £ = €™ and using integration
by parts, together with lim,_, e"pi(2) = 0, we have

K < / 6 — ™| |Oppr()| da
R

_ / ™ — o)D) + / (e — ) (—Bapy())da

—00 me
= / ®pi(x)dz = Ee’t, O
R

Proposition 8.5 is an extension of [18, Theorem 8.9] to the exponential Lévy setting.
Because of the weighted setting caused by the exponential Lévy process, it seems that
the interpolation techniques using in |18, Theorem 8.9] cannot be applied, at least in
a straightforward way. We recall the classes 81(«), 82(a) of stable-like Lévy measures
from Definition 4.4.

Proposition 8.5. Let g € C*"(R,) with n € [0,1]. Then, for T € (0,00) there exists a
constant c(g4) > 0 such that for any z > 0,y > 0 and any t € (0,T) one has

1Pg(2) — Prg(y)] < c.a)Ut(y, 2), (8.4)
where the cases for Ui(y, z) are provided as follows:
(1) If o >0 and f\93|>1 e?y(dz) < oo, then Uy, z) = (tnTil %) Alz —y|m.
(2) When o =0 and f‘x|>1 e“v(dz) < oo:
1
(a) If v € 81(a) for some a € (0,2), then U(y, z) = (tnT %) Alz =yl
v € S2(a) for some a € (0,2) and g € b R.y), then
b) If v € 83(a) f 0,2) and g € W' N
Ui(y,2) = (t'5 [Inz — g7z — ") Az — y|".

B

0_,0
Here, we set 0¥ :=1 and % := lim,) |0 = |lnz — Iny| by convention.

Proof. Forr € R, since e ¥(=") = Ee™Xt < oo forall t > 0if and only if f‘x|>1 e r(dr) <
0, it follows from the integrability conditions for v in items (1) and (2) that C%"(R,) C
Dexp for any n € [0,1]. Let T' € (0,00). Then, the Holder continuity of g implies that,
for any t € [0,7] and z > 0, y > 0,
|Pg(2) — Pug(y)| < |glcomgm, Ee"™ |z — y|7 < |glcomm, e YTz —y[7. (8.5)
(1) Set J := X —oW. Let pf" (resp. p;) be the probability density of cW; (resp.
X;). For t € (0,T), since p; = pf" xPj,, one has

10:pell 2, @) = 10207 * P lln, @y < 10a07" I, ) = V/2/(w0?t).

It is clear that p; € Li(R, \;), and similar computations as in the proof of Lemma 8.4(1)
show 0;p; € Li(R, \,;). Hence, the assumptions for p; required in Proposition 8.2 are
satisfied. Furthermore, we have e (-1 = EeXt < 00 and e (-2 = Ee2Xt < oo for all
t € (0,T], and hence

EleXt — 12 = Ee?Xt — 2Be™t 41 = o772 _ 9o~ 0(=) 4,
which implies

C%&ﬁ) '= SUPyse(0,7] (t71EleXt — 1) < 0. (8.6)
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Then, for n € [0,1], t € (0,T], z > 0, y > 0, combining (8.1) with Lemma 8.4(1) yields

o) |27 = o)
o’ n
where ¢(g.7) := |g|con( R+)C(8 6)5 12 )A=m)/2_ Then, (8.5) and (8.7) imply the assertion.

|Pig(2) — Pig(y)| < \g\co,n(M)HaxptHZ("R) < 0(8.7)tTT, (8.7)

(2a) Let v = 11 + 1 for v1, 19 as in Definition 4.4. Assume that X1 and X? are inde-
pendent Lévy processes defined on ((2,]? , @) with characteristics (0,0,r1) and (7,0, 1)
respectively. Then, X and X'+ X? have the same finite-dimensional distribution. Since
flx|>1 e’v;(dz) < f‘x|>1 e"v(dz) < oo, i = 1,2, it implies that Ee™t < oo and Ee™? < oo
for all £ € (0,T.

Because of the conditions imposed on vy, it is straightforward to check that (8.3)
is satisfied for the characteristic exponent of X'. According to Lemma 8.3, X! has
transition densities (p})i~0 C C§°(R) with 97p} € NMi<s<ooLs(R) for all n > 0, t € (0,7
and there is a constant ¢z gy > 0 such that

_1
Haﬂ?pt1||L1(R) < C(S‘S)t a, te (O’T] (88)
Since X! is selfdecomposable (see [33, Sec.53]), applying [33, Theorem 53.1] yields that
Px1 is unimodal for all ¢ € (0,7]. Let my be a mode of Py1 so that the density p; of
X} is non-decreasing on (—oco,m;) and non-increasing on (my, 00). Lemma 8.4(2) gives

inf/ le% — k||Oupt (z)|dz < EeXi, te (0,77.
k>0 R

A similar argument as in the proof of Lemma 8.4(2) yields d,p; € L1(R, ;). Hence,
for t € (0,7] and z > 0, y > 0, using the independence of X! and X?, together with
Proposition 8.2, we get

|Pig(2) — Prg(y)| = [Eg(2¢**) — Eg(ye™)| = [Eg(ze¥7e*t) — Eg(ye™T et
. ) M |(zeXE)7 — (yeXP)n|
| [l wlonptla ) ]

<E

11l—n .
<‘g|00’"(R+) 10zp2 1|, ) n

x| 12" = axe
< (Iglonn 10 0oy B |7) F P e
L=y
n

nta

< ‘EeXt ’n‘g‘CO’U(R+)C(8 8)

n=1 |27 — y"|

< 0(8.9)tTTv (8.9)

where c(g gy 1= e”T|w(_i)||g|Co,n R,)C (8 8) Combining (8.9) with (8.5) yields the assertion.

(2b) The assumption v € 83(«) means that (8.3) is satisfied. Hence, X has transition
densities (p¢)e>0 C C§°(R) with

SUP¢e(0,7] te 102t || Ly (r) < 00

Since we aim to apply Proposition 8.1 with r = 5, let us first estimate ||p¢|z, & x,)
for r = l and n € [0,1]. For the case n € (0,1], we have

X, T
Il = [ o) ede < g B < O L
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Since p; € C§°(R), it holds that ||p¢|| 1. () < [|0zpellz, ). Hence, there exists a constant
¢(s.10) > 0 such that

1=1
Ipell 2, r2) < caot o, t€(0,T]. (8.10)
Since ||pelln.®x) = Pell Lo (r), inequality (8.10) also holds for the case n = 0, r = oo.

Now we apply Proposition 8.1 with r = % to obtain that, for t € (0,7], z > 0,y > 0,

1Pig(2) = Peg(y)l < gl ;111 R Ipell 2, a2 — 9" Inz — Iny| '~

n (R
n-1 1—
< |g|W1’ﬁ(R+)C(8'1O)t o |Inz —Iny[" "z — y[". (8.11)
Combining (8.11) with (8.5), we derive the desired conclusion. O

8.3. Estimate for the gradient in the GKW decomposition. Motivated by the
formula (4.2), for a Lévy measure ¢ and a Borel function g let us write symbolically

Ly(t,y) = 0”0, Prg(y) + /R Pw(exy)y— Pg(y)

for (t,y) € R%, where we set 9,P,g(y) := 0 if o = 0. Although we choose ¢ = v for
(4.2), it is useful to consider the general ¢ because it might have applications in various
contexts (e.g., see [38]).

Proposition 8.6(3)—(4) below are variants of [18, Theorem 8.12] in the exponential
Lévy setting. Here, the exponent of the time variable ¢ in the estimates we obtain is the
same as in [18, Theorem 8.12|. Again, we recall 8 (), 82(«) from Definition 4.4.

(e” — 1)¢(dz) (8.12)

Proposition 8.6. Let ¢ be a Lévy measure and g € CO"(R,) with n € [0,1]. Assume

that flzl>1 et D20(dz) < oo. Then, for any T € (0,00) there is a constant cig13) > 0

such that
’FK(LZ/)’ < 0(8.13)‘/15?/77717 V(t, y) € (OvT] X R-‘r? (813)
where the cases for Vi are provided as follows:
(1) If o > 0 and f‘x|>1 e?*y(dr) < oo, then V; = 5
(2) If o =0, flx\>1 e"v(dr) < oo and f|x\<1 |z|"(dz) < oo, then V; = 1.
(3) If o = 0 and if the following two conditions hold:

(a) v € 81(a) for some a € (0,2) and f‘x|>1 e’v(dz) < oo,
(b) there is a p € (1 +n,2] such that
2 +1
0 < sup 7"3/ < L " >€(d:ﬂ) < 00, (8.14)
re(0,1] |z|<1 r r

-8
then one has V; = tﬁi .

(4) Ifc=0and g € leﬁ(RJr), and if the following two conditions hold:
(a) v € 83(a) for some a € (0,2) and f‘x|>1 e’v(dzr) < oo,
(b) there is a p € (1 +n,2] such that (8.14) is satisfied,

+1-8
then one has V; = e,

Here, the constant c(g13) may depend on (3 in items (3) and (4).

Remark 8.7. Since |£[2 A [£[7T1 < |Z]P for B € (1 + 1,2], a sufficient condition for
(8.14) is that 0 < flfﬂKl |z|2¢(dx) < oo.
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Proof of Proposition 8.6. In the sequel, we use the following inequality without men-
tioning it again:

e — 1
= < emal, Vel <1,m€0,1],

where %7_1‘ := lim,, W = |z|. Let us fix T € (0, 00).

(1) Since o > 0 and f‘x|>1 e?*y(dx) < oo, Proposition 8.5(1) implies that

_ n _ N
Pug(=) — Prgw)] < e ((t ‘ny’) Ale— y\") (8.15)

for all z > 0,y > 0, t € (0,7]. Moreover, since P,g € C*°(R4) due to o > 0, we divide
both side of (8.15) by |z — y| and then let z — y to obtain that

n—1
|ayPt9(y)| < 6(8‘4)75 2 yn 1’ V(t, y) € (OvT] X R-‘r'
Hence, we separate [p = flx\<1 + flw\>1 and apply (8.15) with z = ye® to obtain

e —1
Tyt 9)] < e (02 + / e 1]

le” — 1]6(dz) | t"F 7!
z|<1 n

+esay’! /II ) e — 1|7 e(dz).  (8.16)
x>

. LT
Since 0 < U2+f| ™16z _1|¢(dz) < 02 + et flx|<1 |z|?4(dx) < oo andf|

:E_
z|<l  n x|>1 |e

1|714(dx) < oo, together with infie (0,77 ' > 0, the second term on the right-hand
side of (8.16) can be upper bounded by the first term up to a positive constant. Hence,
the desired conclusion follows.

(2) One has e~ (=" = et < 0o for t > 0. The Holder continuity of g implies that
|Pig(e™y) — Pig(y)| < lglcon, ) Ee™t|e” — 1|7y", and hence

ITe(t, )] < lglonn e, eyt / o — 17 e(de)
R

< ‘g|CO,n(R+)eTIw(_nl)‘ <e77+1/
|

z|<1

T e(dar) + /

e e — 1!’7“5(6196)) y
x|>

which implies the assertion.

(3) Let t € (0,7] and y > 0. We separate fR = f\x|<1+f\x|>1’ and then apply
Proposition 8.5(2a) with z = ye® to obtain

. n-1 |eT —1 1, -
Lot )| < ey 1</ <<t"a ||> Ale® — 1|’7> le® — 1|¢(dx)
lz|<1 n

+/ le* — 1|77+1£(d:n)>
|z|>1

1 11 n+1 T |2 T |n+1
< ey’ <e77 e |z|<1 <‘t1/a‘ Mza t(dz)

+/ le* — 1|”+1€(d:n)>
|z|>1

< 6(8.4)97771 <6(8.17)tn+iﬁ +/ " — 1’n+1€(dx)> ; (8.17)
|z|>1
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1

=2 B=n=1 z T
where ¢(g 17) = " (Ta VT ) sup,e(o Japa (5P ATE[TH)E(dz) € (0,00) by

n+1-8

(8.14). Since inf(; gye(0,1)x (149,21t > 0, the desired conclusion follows from (8.17).

(4) Let ¢t € (0, 7] and y > 0. We apply Proposition 8.5(2b) with z = ye” and use the
same argument as in the proof of item (3) to obtain

((t%‘lml—n\ex - 1\77) Ale® — 1\") e — 1]¢(dz)

+ / e — 1\’7+1€(dx)>
|z|>1
ntl=p

< ey [ eant™E + / o — 17 ¢(da)
|z|>1

[Le(t,y)| < 0(8.4)3/7_1(/'

z|<1

Again, a similar argument as in the one after inequality (8.17) yields the assertion. [
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EXPLICIT FOLLMER-SCHWEIZER DECOMPOSITION AND
DISCRETE-TIME HEDGING IN EXPONENTIAL LEVY MODELS

NGUYEN TRAN THUAN

ABSTRACT. In a financial market driven by an exponential Lévy process, an explicit
representation is shown for the Follmer—Schweizer decomposition of European type
options, implying a closed-form expression of the corresponding local risk-minimizing
strategies. Using a jump-adjusted approximation scheme, the error caused by dis-
cretizing the local risk-minimizing strategies is investigated in dependence of proper-
ties of the Lévy measure, the regularity of the pay-off function and the chosen random
discretization times. The rate of this error as the number of expected discretization
times increases is measured in weighted BMO spaces, implying also L,-estimates.
Moreover, the effect of a change of measure satisfying a reverse Holder inequality is
addressed.

1. INTRODUCTION

This article is concerned with hedging problems in financial markets driven by expo-
nential Lévy processes. We investigate two problems corresponding to two typical types
of risks for hedging an option. The first one comes from the incompleteness of the mar-
ket. We consider the semimartingale setting and aim to determine an explicit form for
the Follmer—Schweizer decomposition of European type options which provides directly
a closed form for the local risk-minimizing strategies (a similar closed form expression
in the martingale setting has been established in [8, 19, 36, 37]). The second type of risk
is due to the impossibility of continuously rebalancing a hedging portfolio which leads
to the discrete-time hedging. The discretization error we measure in weighted bounded
mean oscillation spaces from which one can achieve good distributional tail estimates
such as a pth-order polynomial decay, p € (2, 00).

Let us introduce some notations to state the main results. Let 7" € (0,00) be a
fixed time horizon and X = (X;)icpo,7) a Lévy process defined on a complete filtered
probability space (2, F,P,FF), where F = (F¢);c(0,7] is the augmented natural filtration
of X which satisfies the usual conditions (right continuity and completeness). Assume
that F = Fr. Let 0 > 0 be the coefficient of the standard Brownian component and
v the Lévy measure of X (see (2.1)). We assume that the underlying discounted price

process is modelled by the exponential S = e¥.

1.1. Explicit Féllmer—Schweizer (FS) decomposition. Because models with jumps
typically correspond to incomplete markets, in general there is no hedging strategy which
is self-financing and replicates an option at maturity. Hence, one has to look for cer-
tain strategies that minimize some types of risk. In the current work, we choose the
quadratic hedging approach which is a popular method to deal with the problem in
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models with jumps. We refer the reader to the survey article [34] for this approach.
Two typical types of quadratic hedging strategies are the local risk-minimizing (LRM)
strategies and the mean-variance hedging (MVH) strategies. Roughly speaking, the
LRM strategy is mean-self-financing, replicates an option at maturity and minimizes
the riskiness of the cost process locally in time, while the MVH strategy is self-financing
and minimizes the global hedging error in the mean square sense. Both types of those
strategies are intimately related to the so-called FS decomposition. Namely, in our (ex-
ponential Lévy) setting, the F'S decomposition gives directly the LRM strategy, and the
MVH strategy can be determined based on this decomposition. This article discusses
the FS decomposition and focuses on the LRM strategies only.

Assume that S is square integrable so that it is a semimartingale satisfying the
structure condition, and that the mean-variance trade-off process of S is deterministic
and bounded (see Remark 4.3). Then, the FS decomposition of an H € Ly(P) is of the
form

T
H:H0+/ O ds, + L4, (1.1)
0

where Hy € R, 9 is an admissible integrand (specified in (4.2)), and L is an Lo(P)-
martingale starting at zero which is orthogonal to the martingale part of S. The inte-
grand 9 is called the LRM strategy of H, and it is unique up to a P® A-null set where
A is the Lebesgue measure. A key tool to study the F'S decomposition is the minimal
(signed) local martingale measure for S (see [33]), and we denote this signed measure by
P* from now on. Recently, [6, Theorem 4.3] indicated that under a regularity condition
for P*, we can determine the LRM strategy ¥ based on the martingale representation
of H with respect to P*.

There are many works interested in finding an explicit representation for the FS
decomposition and the LRM strategy in the semimartingale framework (see, e.g., [2,
16, 17, 20, 36]). In the exponential Lévy setting and in the case of a European type
option H = ¢(St), Hubalek et al. [17] assumed that the function g can be represented
as an integral transform of finite complex measures from which one can determine a
closed form for the LRM strategy. The key idea of this approach is the separation of
the function g and the underlying price process S by using a kind of inverse Fourier
transform. An advantage of this method is that one gains much flexibility for choosing
the underlying Lévy process where there is no extra regularity required for the driving
process S except some mild integrability.

As our first main result, Theorem 1.1 below provides a closed form for the LRM
strategy 97 of an H = g(S7). To obtain this result, except of some mild integrability
conditions, we neither assume any regularity for the payoff function g nor require any
extra condition for the small jump behavior of X. However, the price one has to pay is
the condition that P* exists as a true probability measure (see Assumption 4.5) which
leads to a constraint for the characteristics of X. This result might be regarded as a
counterpart of [17, Proposition 3.1] in which only the square integrability is required
for S while the function g are supposed to be the integral transform of finite complex
measures. The notation [£* below means the expectation with respect to P*.

Theorem 1.1. Assume that X is not a.s. deterministic and S = eX is square P-

integrable. Under Assumption /.5, if g: (0,00) — R is a Borel function with E*|g(yS;)| <
oo for all (t,y) € [0,T] x (0,00) and g(St) € L2(P) N La(P*), then the following asser-
tions hold:
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(1) The LRM strategy 9" corresponding to H = g(St) is of the form

1 G*(t,e*S;—) — G*(t, S;-)
9 = <026G* t, S —I—/ ’ ’ e’ — 1v(dx 1.2
t H(O—v V)H Y ( t ) B S, ( ) ( ) ( )

for P& X-a.e. (w,t) € Qx[0,T], where ||(o,v)] := 0% + [R(e” —1)*v(dz) € (0,0),
G*(t,y) := E*g(ySt—1), and we set 0yG* := 0 when o = 0 by convention.

(2) There exists a process V9 which is adapted and cadlag on [0,T), satisfies 09 = 91
forP®@ A-a.e. (w,t) € Qx[0,T), and 99S is a P*-martingale.

According to Theorem 1.1(2), 9% is also a LRM strategy of H = g(St), and one
can determine it at every time ¢ € [0,7") as showed in Remark 4.6 below. Furthermore,
the cadlag property of 99 is useful to design some Riemann-type approximations for
fOT 1§tgfd5t. For example, an approximation scheme based on tracking jumps of 99 has
been constructed in [30]. We also employ the cadlag version of the LRM strategy for
the discrete-time hedging problem in Section 5. Such a path regularity for the integrand
in the martingale setting was also studied in [24].

Some formulas resembling (1.2) have been established in [19, Formula (2.12)], [8,
Formula (4.1)], [36, Formula (45)], or in [37, Formula (4.2)]. But in fact they are
different. The formulas in [19, 8, 36, 37] were obtained by projecting H orthogonally
down to the space of stochastic integrals driven by a (local) martingale, while the formula
(1.2) is derived from the F'S decomposition which is a different orthogonal decomposition
in the semimartingale framework.

The proof of Theorem 1.1 is provided in Section 4, and the main tool we use is
Proposition 1.2 where the square integrability of ef is not necessarily assumed. We
denote by W the standard Brownian motion and by N the compensated Poisson random
measure appearing in the Lévy—TItd decomposition of X (see, e.g., [1, Theorem 2.4.16]).

Proposition 1.2. Let f: R — R be a Borel function such that E|f(x + X¢)| < oo for
all (t,z) € [0,T) x R. If f(X7) € Lo(P), then

T T
IE/ |00, F(t, X;_)|?dt + E/ / |F(t, Xy +x) — F(t, X; ) Pv(dz)dt < oo
0 0 JR

and, a.s.,

T
f(XT) = Ef(XT) + /0 UaxF(t, Xt_)th

g ~
+/0 /R\{O}(F(t,Xt_ +x) — F(t, X;—))N(dt,dx), (1.3)

where F(t,x) :=Ef(x+ Xp_) for (t,z) € [0,T] x R, and we set 0, F :=0 if o = 0.

Proposition 1.2 provides a martingale representation for functionals of X7 in which
the integrands with respect to the Brownian part and the jump part are determined
explicitly. Its proof is given in Section 3 by using Malliavin calculus. We also remark
here that (1.3) is a Clark—Ocone type formula but f(X7) is not necessarily differentiable
in the Malliavin sense.

Proposition 1.2 extends [8, Proposition 7] in which the function f has a polynomial
growth and X satisfies a certain condition. A similar representation to (1.3) in a general
framework (with different assumptions from ours) can be found in the proof of [19,
Theorem 2.4]. On the other hand, when f(Xr) is Malliavin differentiable then one
can use the Clark—Ocone formula (see, e.g., [2, 3, 23]) to obtain its explicit martingale
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representation. However, the Malliavin differentiability of f(X7) fails to hold in many
contexts. For example, if f(z) = 1[g )(x) for some K € R, and if X is of infinite
variation and X7 has a density satisfying a mild condition, then f(X7) is not Malliavin
differentiable (see [22, Theorem 6(b)]).

1.2. Discrete-time hedging in weighted bounded mean oscillation (BMO)
spaces. We investigate the discrete-time approximation problem for stochastic inte-
grals driving by the exponential Lévy process S. Let £/ = (E¢).c(o,7) be the error given
by

t
E; = / y_dS, — Ay, t€ [O,T],
0

where 9 is an admissible integrand and A = (A);c[o,7) is an approximation scheme for
the stochastic integral. In mathematical finance, the stochastic integral can be inter-
preted as the theoretical hedging portfolio which is continuously readjusted. However,
in practice one can only rebalance the portfolio finitely many times, and this leads to a
discretization of the stochastic integral, represented by A.

In case that A = AR™ is the Riemann approximation process, the caused error
E = ER™ and its convergence rate have been investigated in the Lo-sense in several
works. When S is assumed to be a martingale, the error was examined in [5, 11]. The
error was also considered in a more general setting in [30] where the driving process
is a local martingale with jumps. In general, the Ls-approach for the error yields a
second-order polynomial decay for its distributional tail by Markov’s inequality.

In the second part of this article, we aim to improve the distributional tail estimate for
the approximation error by means of the weighted bounded mean oscillation (weighted
BMO) approach. Moreover, the driving process S is not necessarily a (local) martingale
but a semimartingale. To do this, we use the approximation scheme introduced in [37],
the so-called jump adjusted method which was constructed by tracking jumps of the
driving process S. Moreover, we show how the theory of weighted BMO spaces can be
used to obtain Ly-estimates, p € (2, 00), for the corresponding error. This approach also
allows a change of the underlying measure which leaves the error estimates unchanged
provided the change of measure satisfies a reverse Holder inequality (see Proposition 5.3).
The latter is frequently encountered in mathematical finance, and it is particularly
useful here to switch the approximation problem between the martingale setting and
the semimartingale setting.

The main results of the second part are Theorems 5.7 and 5.12 below. In Theorem 5.7,
we provide several estimates for the error measured in weighted BMO-norms and de-
scribe a situation so that the Ly-estimate can be achieved for p € (2, 00). Theorem 5.12
serves as an application of Theorem 5.7 where we consider the approximation problem
for the stochastic integral term in (1.1) and the chosen integrand is the LRM strategy
of a European type option. The results show how the interplay between the regularity
of payoff functions and the small jumps intensity of the underlying Lévy process affects
the convergence rate.

1.3. Structure of the article. We introduce the notation and recall Malliavin—Sobolev
spaces and exponential Lévy processes in Section 2. The proof of Proposition 1.2 is con-
tained in Section 3. Section 4 is devoted to prove Theorem 1.1. Section 5 presents the
discrete-time hedging problem with the weighted BMO-approach for exponential Lévy
models. Some technical results used in this article are given in Appendix A.
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2. PRELIMINARIES

2.1. General notations. Denote R, := (0,00) and Ry := R\{0}. For a,b € R, we set
aVb:=max{a,b} and a A b := min{a,b}. For A, B >0 and ¢ > 1, by A ~. B we mean
%A < B < ¢A. Subindexing a symbol by a label indicates the place where that symbol
appears (e.g., ¢(5.1) refers to formula (5.1)).

Let B(R) be the Borel o-algebra on R. The Lebesgue measure on B(R) is denoted by
A, and we also write dz instead of A\(dx) for simplicity. For p € [1,00] and A € B(R),
the space L,(A) consists of all p-order integrable Borel functions on A with respect to
A, where the essential supremum is taken when p = oo. For a measure p on B(R), its
support is defined by

suppp:={z € R: u((zx —e,z+¢)) > 0,Ve > 0}.

Let (92, F,P) be a probability space and £: 2 — R a random variable. Denote by P¢
the push-forward measure of P with respect to &. If £ is integrable (non-negative), then
the (generalized) conditional expectation of £ given a sub-o-algebra G C F is denoted
by Eg[¢]. We set L,(PP) := L,(Q, F,P).

For a non-empty and open interval U C R, let C°°(U) denote the family of all
functions f which have derivatives of all orders on U.

2.2. Notation for stochastic processes. Let T' > 0 be a fixed finite time horizon, and
let (€2, F,P) be a complete probability space equipped with a right continuous filtration
F= (]:t)te[07T]~ Assume that Fy is generated by P-null sets only. The conditions imposed
on [ allow us to assume that every martingale adapted to this filtration is cadlag (right
continuous with left limits). We use the following notations and conventions where

I=1[0,7] or I=][0,T).

— For processes X = (X¢)er and Y = (Y})ten, we write X =Y to indicate that X; =Y,
for all ¢ € I a.s., and similarly when the relation “=” is replaced by some other
standard relations such as “<”, “=”, etc.

— For a cadlag process X = (Xy)ier, the process X_ = (X;_)ser is defined by setting
Xo— = Xo and X;_ := limgcgpy X, for t € I\{0}. We set AX =X — X_.

— CL(I) denotes the family of all cadlag and F-adapted processes.

— CLo(I) (resp. CL™(I)) consists of all X € CL(I) with Xy = 0 a.s. (resp. X > 0).

— For p € [1,00] and X € CL([0,T7), we set | X||1, ) := [ suprejor [ XelllL, @)-

— P is the predictable o-algebra! on Q x [0,7] and P := P @ B(R).

We recall some notions regarding semimartingales on the finite time interval [0, 7.

— A process M € CL([0,T]) is called a local (resp. locally square integrable) martingale
if there is a sequence of non-decreasing stopping times (p,,)n>1 taking values in [0, 7]
such that P(p, < T) — 0 as n — oo and the stopped process M*" = (Minp, )ie(o,1|
is a martingale (resp. square integrable martingale) for all n > 1. Let MY(P) be the
space of all square integrable P-martingales M = (My)c[o,r] With Mo = 0 a.s.

— A process S € CL(]0,7]) is called a semimartingale if S can be written as a sum of
a local martingale and a process of finite variation a.s. The quadratic covariation of
two semimartingales S and R is denoted by [S, R]. The predictable Q-compensator
of [S, R], if it exists, is denoted by (S, R)?, where Q is a probability measure. We will
omit the reference measure if there is no risk of confusion.

1P is the o-algebra generated by {Ax{0}:AecFoU{AX (5t]: 0<s<t<T Ae F}.
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— Let M, N be locally square integrable martingales under a probability measure Q.
Then, M and N are said to be Q-orthogonal if [M, N] is a local martingale under Q,
or equivalently, (M, N)Q =

2.3. Lévy process and Itd’s chaos expansion. Let X = (Xi),c[0,7] be a real-valued
Lévy process on a complete probability space (2, F,P), i.e. Xg =0, X has independent
and stationary increments and X has cadlag paths. Let F = (F¢);cor) denote the
augmented natural filtration generated by X. From now on, we assume that F =
Fr. According to the Lévy—Khintchine formula (see, e.g., [31, Theorem 8.1]), the
characteristic exponent b of X, which is defined by

is of the form
o2u?

P(u) = —iyu+ - / (" — 1 —iuzlyy,cyy) v(dz), u€R. (2.1)
R

Here, v € R, while o > 0 is the coefficient of the Brownian component, and v: B(R) —
[0,00] is a Lévy measure (ie. v({0}) := 0 and [,(2® A 1)r(dz) < oo). The triplet
(v,0,v) is also called the characteristics of X. To indicate explicitly the characteristics
of X under P, we write

(X[P) ~ (v,0,v) or (X|P) ~ .

We present briefly the Malliavin calculus for Lévy processes by means of [t6’s chaos
expansion which is the main tool to prove Proposition 1.2. For further details, we refer
to [35, 27, 28, 1] and the references therein. Define the o-finite measures u on B(R) and
m on B([0,7T] x R) by setting

p(dz) = 0%6(dz) + z?v(dz) and m:= Q@ p,

where d¢ is the Dirac measure at zero. For B € B([0,7] x R) with m(B) < oo, the
random measure M is defined by

M(B):=o / dW; 4 Ly(P)- lim N (dt, dx),
{t€[0,T):(t,0)eB} 720 BN([0,T)x{ L <|z|<n})

where W is the standard Brownian motion and N is the compensated Poisson random
measure appearing in the Lévy—Itd decomposition of X (see, e.g., [1, Theorem 2.4.16]).
Set La(¥) = La(m”) := R. For n > 1, we denote

Lo(u®") := Ly(R", B(R™), "),
Lo(m®™) := Lo (([0, T] x R)™, B(([0,T] x R)™), m®").

The multiple integral I,,: Lo(m®™) — Lo(P) is defined in the sense of 1t6 [18] by using
an approximation argument, where it is given for simple functions as follows: For

m

mo.__

&= arlpr
k=1

where a;, € R, BF € B([0,T] x R) with m(BF) < oo and BfﬂBf:Q)forkzl,...,m,
i,7=1,...,n,1# j and m > 1, we define

Lo(&) ==Y axM(BY)--- M(By).
k=1
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Then, [18, Theorem 2] asserts the following It6 chaos expansion

= @{In@n) & € Loy(m®™)},
where Ip(&p) := & € R. For n > 1, the symmetrization Enofat,e Lo(m®™) is

gn((t1,$1), (tmwn = 'Zgn 7r(1)a 7r(1) (Tr(n) w(n)))a

where the sum is taken over all permutations 7 of {1,...,n}, so that I,,(§,) = In(é’n) a.s.
The It6 chaos decomposition verifies that & € Lo(P) if and only if there are &, € Lo(m®™)
such that £ = "7 [ I,(&,) a.s., and this expansion is unique if every &, is symmetric,

ie. & = &,. Furthermore, Hf”%wp) =30 n!HénH%Q(m@m).

Definition 2.1. Let Dy be the Malliavin—Sobolev space of all £ = >">° I,(&,) €
Lo (PP) such that

oo

€13, =D (n+ DUEnl7meny < 00

n=0
The Malliavin derivative operator D: Dy o — Lo(P ® m), where Lo(P ® m) := La(2 x
[0,7] x R, F ® B([0,T] x R),P ® m), is defined for £ =3 2 I,(&,) € D12 by

Digé =Y nly1(&a((t,2),"), (w,t,2) € QAx[0,T] x R.

2.4. Exponential Lévy processes. Let X be a Lévy process with (X|P) ~ (v, 0,v).
The stochastic exponential of X, denoted by £(X), is the cadlag process that satisfies
the stochastic differential equation (SDE)

dé(X) =&(X)_dX, &(X)y=1.
We apply [1, Theorem 5.1.6] with the truncation function z1 ;<1 instead of 1,1y

to obtain that if £(X) > 0, then there exists a Lévy process Y with (Y|P) ~ (yy, oy, vy)
such that £(X) = e¥, where oy = ¢ and

l/y(B) = /R ]l{ln(1+z)€B}V(d:IZ), B e B(R),
2

g
w=r-5+ /R (Lm@ray<ry In(1 + @) = 2Lgp<y) v(da).

Conversely, there is a Lévy process Z with (Z|P) ~ (yz,07,vz) such that eX = £(Z).
Moreover, one has oz = ¢ and

ve(B) = [ L repp(do). B e BR)
R
0.2
Yz =7+ 5 + /R ((e‘” — 1)]].{|ez_1|<1} — xﬂ{\xKl}) l/(dx).

3. MARTINGALE REPRESENTATION WITH EXPLICIT INTEGRANDS

This section is devoted to prove Proposition 1.2 by using Malliavin calculus. There
are two key observations: first, the kernels in the chaos expansion of f(Xr) € Lao(P)
do not depend on the time variables which implies the Malliavin differentiability of
Ez[f(X7)] for any ¢t € [0,7") (see Lemma 3.3); secondly, the Malliavin derivative of a
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functional of X;, provided it is Malliavin differentiable, can be expressed in an explicit
form (see Lemma 3.2).

In this section, we assume (X|P) ~ (7,0, v). The following lemma is taken from [15,
Example 8.18(1)].

Lemma 3.1 ([15]). Assume o > 0. Let f: R — R be a Borel function with E|f(X1)|? <
oo for some g > 1. Then, E|f(x+X7r_¢)| < oo forall (t,z) € [0,T] xR, and the function
x— F(t,z) == Ef(x + X7_¢) belongs to C*°(R) for any t € [0,T). Furthermore,

Er [0.F(t,Xy)] = 0. F(s, Xs) a.s.
forany 0 <s<t<T.

Lemma 3.2 below was obtained in [21, Corollary 3.1 in the second article of this
thesis| and it provides an equivalent condition such that a functional of X; belongs to
Dy 5. We refer to [25, Proposition V 2.3.1] when X is a Brownian motion and refer to
[12, Lemma 3.2] when X has no Brownian component.

Lemma 3.2 ([21]). Let t € (0,T] and a Borel function f: R — R with f(X;) € La(P).
Then, f(X:) € Dyg if and only if the following two assertions hold:

(a) when o >0, f has a weak derivative’ f!, on R with f!,(X;) € La(P),

(b) the map (s,x) — w
Furthermore, if f(X;) € D12, then for P@ m-a.e. (w,s,x) € Qx [0,T] x R one has
F(X+2) — F(X)

x

Ljo,qxR, (8, ) belongs to Lo(P @ m).

Dso f(X1) = fio(Xe) Lo 950y (5, 2) + Ljo xR (5, T),

where we set, by convention, fl, :=0 when o = 0.

Lemma 3.3. Let f: R — R be a Borel function with f(Xr) € Lao(P).

(1) There are symmetric f, € La(u®") such that f(X1) =300, In(an%TLT]) a.s.

(2) Fort € [0,T), one has Ex,[f(X7)] = >0, In(fnnfgj;]) a.s. and Ex,[f(X1)] € Dyo.
(3) Forte (0,T), it holds

2 2
E <|06xF(t,Xt)| + /R |F'(t, Xt +x) — F(t, Xy)] V(d$)> < 00, (3.1)

where F(t,z) := Ef(x + X7r_¢) if 0 > 0, and in the case o = 0 we let F(t,-) be a
Borel function such that F(t, Xy) = Ex,[f(X7)] a.s. and set 0,F := 0.

Proof. Ttems (1) and (2) are due to [15, Lemma D.1]. For item (3), it is clear for the case
o = 0 that (3.1) is implied by Lemma 3.2. Let us turn to the case ¢ > 0. According
to Lemma 3.1, one has F(t,-) € C*°(R), and hence (F(t,-)),, = 0,F(t,-) a.e. with
respect to the Lebesgue measure A. Since the law of X is absolutely continuous with
respect to A, it holds that (F(¢,-)),,(X:) = 0,F(t, X;) a.s. Then, (3.1) follows from
Lemma 3.2. U

We are now in a position to prove Proposition 1.2.

2A locally integrable function h is called a weak derivative of a locally integrable funtion f on R if
Je f(x)¢' (z)dx = — [ h(z)¢(x)dz for all smooth functions ¢ with compact support in R. When such
an h exists (unique up to a A-null set), then we denote f,, := h.
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Proof of Proposition 1.2. For (t,z) € [0,T] x R, denote
F(t, Xt, + IE) - F(t, Xt,)
x

AF(t, x) = a,gF(t, Xt_)]l{m:()} + ﬂ{r?go}, (32)

where we recall that 0, F := 0 if 0 = 0 by convention. The assumption E|f(z+X;)| < oo

for all (t,x) € [0,T] x R implies that (F (¢, X; +x) — F(t, X¢)):c[0,7] is a martingale for

each z € R. Moreover, in the case o > 0, the assumption f(X7) € La(P) and Lemma 3.1

imply that F(t,-) € C°(R) for all t € [0,T) and (0, F'(t, X¢))se[o,7) is @ martingale.
Step 1. We show that for any ¢ € (0,7),

—E//\Ast m(ds, dz) <

Observe that (¢t,z) — F(t,x) is Borel measurable by Fubini’s theorem. In addition,
since X_ is predictable, we infer that (w,t,z) — F(t, X;—(w) + ) is P-measurable.
Therefore, AF given in (3.2) is P-measurable.

Remark that X, = X, as. for each s € [0,7]. Using Fubini’s theorem and the
martingale property, together with (3.1), we obtain for any ¢ € (0,7) that

t t
) :E/\aaxF(s,XS)|2ds+E// (s, Xs+2) — F(s, Xo)[20(da)ds
0 0JR

2 — 2u(dx
t<E]a8$F(t,Xt)| +E/R\F(t,Xt+x) F(t, Xy)|*v(d ))
< oQ.

Hence, the stochastic integral fg Jr AF(s,x)M(ds, dx) exists as an element in Ly(IP).
Step 2. Fix t € (0,7"). We prove that, a.s.,

F(t, X)) = Ef (X7) + / / AF(s,2)M(ds, dz). (3.3)

The representation (3.3) can be regarded as a consequence of the Clark—Ocone formula.
However, this formula seems to be considered either when the Lévy process X is square
integrable or when X has no Brownian component (i.e. o = 0) (see, e.g., [3, 23, 27, 28,
35]). So, for the reader’s convenience, we present here a complete proof for (3.3) where
neither square integrability nor ¢ = 0 is assumed. Due to the denseness of the simple
multiple stochastic integrals in Lo(P) (see [10, Lemma 2.1]), in order to obtain (3.3) it
is sufficient to check that

t
E [Ln(km)F(t, X¢)] = E [Im(km)// AF(s,z)M(ds,dx) (3.4)
0JR
for all m > 1 and all functions k,, of the form
km - lBlX---XBm7 (35)
where B; = (s;,t;] X (a;, b;] in which (a;,b;] are finite intervals and the time intervals
(si,ti] C [0,1] satisfy t;—1 < s4,1=2,...,m.

Since F(t, X;) € Dy 2 by Lemma 3. 3( ) applying Lemma 3.2 we have for P ® m-a.e.
(w,s,2) € 2 x[0,T] xR,

F(t, X, +z) — F(t, X
(t, X; i ( t)ﬂ[o,t]xRo(&ﬂf)- (3.6)

Moreover, for each (s,z) € [0,t] x R, the martingale property implies that, a.s.,

F(t, X, +z) — F(t, X})
X

D F(t, Xy) = 0:F(t, Xi)1jg <01 (s, 7) +

Er, |0 F(t, X)L (peg) + Lizro0y
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F(s,Xs+z)— F(s,Xy)
x

= 8J;F(S, Xs)]l{z:()} +
= AF(s,z),

Liaz0y

where the second equality comes from the fact that X, = X, a.s.

Welet f(X7) = 7"01In (fn]l%"T Jand F(t, Xy) = > 07, In(fn]lf%z]) as in Lemma 3.3(1)

and (2) respectively, where fn € Lo(p®™) are symmetric. Let ky, be of the form as in

(3.5). Since functions f,, are symmetric, the left-hand side of (3.4) is computed as
follows

LHS(3.4) = m! / fm(x1, ..y zpm)m(dsy, dxy) - - - m(ds,,, dz,y,). (3.7)
BiXx--XBpm

For the right-hand side of (3.4), writing I, fB —1)M(ds,dx), where
km-1:=1B,x..xB,,_,, and using Fubini’s theorem we obtam

RHS(3.4) = E/B L1 (km—1)AF (s, z)m(ds, dz)

F(t, X; +a) — F(t, Xy)

T

= / E [Im—l(km—l)E}'s [8xF(t, Xt)]l{z:()} + ]l{z;éo}:|:| Irn(ds, d:L’)

_E / Tovr (k1) Do F(£, Xp)m(ds, d) (3.9)

J
E/ Im—1(km-1) (Lz(P®m)‘j1LT£1OZiIi1 (J?z'(',ﬂf) E(Z) t}l)]l[ 7(s ))) m(ds, dz)

m B [Tt e (235 1 (9)) | (s, do)

—m‘/ / m(T1y .y Ty, z)m(dsy, dzy) - - - m(dsy,—1, dzy,—1)m(ds, dz).
m J B1X-XBpm—1
(3.9)

Here, one uses (3.6) and the fact that ,,,—1(k,—1) is Fs-measurable for all s € (s, t]
to obtain (3.8). Combining (3.7) with (3.9) yields (3.4).

Step 3. For any t € (0,T), Jensen’s inequality implies that E|f(Xr7)|? > E|F(t, X;)|?.
Then, we apply Step 2 and It0’s isometry to obtain

E|f(X7)? > [Ef(X7) + E /0 /R AF(s, z)Pm(ds, dz).

Letting ¢ T T, we infer that the stochastic integral fOT Jg AF (s, 2)M(ds,dzx) exists
as an element in Ly(P) and equals to Lo(PP)-limyp fot Jg AF(s,z)M(ds,dz). On the
other hand, due to the martingale convergence theorem, F(t,X;) = Eg[f(X7)] —
Ez,_[f(X7)] a.s. and in Lo(P) as t T T, where Fr_ 1= o(Ui<rF). Since (Fi)efo,7 18
the augmented natural filtration of the Lévy process X, it holds that Fpr_ = Fp, and
hence the desired conclusion follows. O

4. CLOSED FORM FOR THE LOCAL RISK-MINIMIZING STRATEGY

This section gives the proof of Theorem 1.1. First, let us fix the setting of this section.

Setting 4.1. Let S = e be the exponential of a Lévy process X with (X|P) ~ (v, 0, v).
Assume that 0% + v(R) > 0 and fl$|>1 e*y(dr) < oo.
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The condition o2 + v(R) > 0 is simply to exclude the trivial case that X is a.s. de-
terministic. The condition f‘x|>1 e?*y(dz) < oo is equivalent to the square integrability

of S (see [31, Theorem 25.3]).
By It6’s formula, one has

S=1+ (/ O'St,th +/ Stf(ex — 1).[\7((3“,(11))) +/ ’YSStfdt
0 0JRo 0
=14 5™ 4 5,

where S™ and S respectively denote the martingale part and the predictable finite
variation part in the representation of S, and where

2

IS =+ Gt /R(ez — 1= 2ljjzi<ay)v(de). (4.1)

Recall from Theorem 1.1 the notation
(.0l = o+ [ (e = Du(da) € (0.00).
R

4.1. Follmer—Schweizer (FS) decomposition. We briefly present the FS decompo-
sition of a random variable and the notion of the minimal local martingale measure
which is the key tool to determine the FS decomposition. We refer the reader to [34]
for a survey about these objects.

In this article, we follow [17, p.863] and use the family of admissible strategies as

T
sadm(py .= {19 predictable : IE/ ¥7S% dt < oo} . (4.2)
0
It turns out that if ¥ € Y21 (P), then
T T T
]E/ 92d[S, S); :IE/ 92d[S™, S™], :E/ 92d(S™, S™),
0 0 0

T
= ||(o, I/)HE/O ¥7SE dt < oco. (4.3)

The following definition is due to [34].

Definition 4.2. (1) An H € Ly(P) admits a FS decomposition if H can be written as
T
H = H, +/ O ds, + LA,
0

where Hy € R, 911 € X21m(P) and L € M(P) is P-orthogonal to S™.
(2) The integrand 9! is called the local risk-minimizing strategy of H.

Remark 4.3. In our context, S satisfies the structure condition and the mean-variance
trade-off process K of S in the sense of [34, p.553] is
~ ,yg

SN [CA]

which is uniformly bounded in (w,t) € 2x[0,T]. Hence, it is known that any H € La(IP)
admits a unique FS decomposition (see [26, Theorem 3.4]).

We continue with the notion of the minimal martingale measure.
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Definition 4.4 (]33], Section 2). Let £(U) € CL(]0,7T]) be the stochastic exponential
of U,ie. dE(U) = E(U)_dU with E(U)g = 1, where

g

s ’ ~
oW + // (e —1)N(ds, dx)) . (4.4)
(e, )|l ( 0JRo
If £(U) > 0, then the probability measure P* defined by

dP* := E(U)rdP

is called the minimal martingale measure for S.

Since U given in (4.4) is a Lévy process and belongs to MY(P), it is known that &(U)
is also an Ly(P)-martingale (see, e.g., [29, Ch.V, Theorem 67] or [11, Lemma 1]).

We now give a condition imposed on the characteristics of X such that P* exists. Let
(U|P) ~ (yy,ou,vy) and denote

vs(e® —1)
(@)

ay(x) = — x e R.

Then, it follows from (4.4) that

Ivslo

(o, )II”

o= / av(@)(dz), oy = w=voag'.  (45)
o @)1

Since
EU)>0& AU > -1 < vy((—o0,—1]) =0 < y5(e” — 1) < ||(o,v)]|, V& € suppw,
the following assumption ensures the existence of P*:
Assumption 4.5. yg(e® — 1) < ||(o,v)]| for all x € suppv.
Remark that a sufficient condition for Assumption 4.5 is
0275 = —|(o, V)]l

Assume that Assumption 4.5 holds true. Then, by an application of Girsanov’s
theorem (see, e.g., [9, Propositions 2 and 3]), X is also a Lévy process under P* with
(X|P*) ~ (v*, 0%, "), where

PPV - o z(e® — 1v(dz
T H(a,uw( # [ e - )>’

=0 and v'(dz)= —M v(dx
of = d (dz) (1 Tex]] ) (dz). (4.6)

Moreover, if W* and N* are the standard Brownian motion and the compensated Pois-
son random measure of X under P*, then

* Yso
Wi =W, + t, (4.7)
' el

N*(dt,dz) = N(dt,dz) + — 25

(ICAD|

In the sequel, let E* (resp. Eg) denote the expectation (resp. conditional expectation
given a o-algebra G C F) with respect to P*.

(e — 1)v(dx)dt. (4.8)
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4.2. Proof of Theorem 1.1. Let f(z) := g(e*) and F*(t,z) := E* f(x + X7_;) so that
G*(t,e”) = F*(t,x) for (t,x) € [0,T] x R. We define

AyG*(t, ) == G*(t,e"S,_) — G*(t,Si_), (t,x) € [0,T] x R.

(1) We present here a direct proof for this assertion, an alternative argument for more
general settings can be found in [6, Proof of Theorem 4.3]. By assumption, f(X7) =
9(ST) € La(P*) and E*|f(z + X¢)| = E*|g(e*S)| < oo for any (t,z) € [0,T] x R, we
apply Proposition 1.2 to obtain

K* = E*g(Sr) + / 05,0, G (1, S ) AW, + / ASGH (o) N*(dt, da),  (4.9)
0 0JRg

where K™ = (K7 )ejo,r) is the cadlag version of the Lo (IP*)-martingale (E%, [g(ST)])efo,77,

and where W* and N* are introduced in (4.7) and (4.8). Then, it holds that (U)K
is a martingale under P. Since the P-martingale U given in (4.4) satisfies that

2
KU, U) 7|l po (p) = H(VST‘Q <02 +/R(e$ — 1)2u(dx)> < 00,

it implies that £(U) is regular and satisfies (R2) in the sense of [7, Proposition 3.7]. Since
K7 = g(St) € Lo(P) by assumption, we apply [7, Theorem 4.9((i)<(ii))] to obtain

E[K*, K*]7 < oc.
Combining this with (4.9) yields

IE/OT 0?|S;_0,G*(t, Sy )|*dt + E/OT/R |A;G*(t,z)]?N(dt,dz) = E[K*, K*]1 < oc.
0
Since dtv(dz) is the predictable P-compensator of N(dt¢,dx), it implies that
IE/OT o2|S,_0,G" (t, S, )dt +]E/OT/R ASGH(t,2) 2r(d)dt < oo. (4.10)
Using Cauchy—Schwarz’s inequality yields

IE/T 022 10,G*(t, Si— )|dt+E//|AJG (t,2)S;—(e® — 1)|v(dz)dt

\/ / SZ dt\/ / |02, 0, G*(t, Sy ) |2dt
+ \//R(ew - 1)2u(dx)\/E/0 szdt\/E/O /R]AJG*(t,:c)Py(dx)dt

(4.11)

On the other hand, the F'S decomposition of H = ¢g(St) is
T
g(St) = Hy + / vHds; + LY (4.12)
0

where Hy € R, 97 € S2m(P) and L € M3(P) is P-orthogonal to the martingale
component S™ of S. According to [34, Eq. (3.10)], it holds that L is a local P*-
martingale. We remark that fO 9 dS, is also a local P*-martingale. Using Cauchy—
Schwarz’s inequality and (4.3), we obtain

E*\/[LH, LH]r < |EU) 7| 1oy EILH, LH )7 < o0,
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T T
E\/ / w{ﬂ?d[s,smuswmmﬁ [ 10#eas. s) < o
0 0

Hence, the Burkholder-Davis-Gundy inequality verifies that both L and fo 9 dS; are
P*-martingales. Combining (4.9) with (4.12), we derive Hy = E*¢(S7) and

/ vHas; + L1 = / 08 0,G*(t,S;_)dW} + / AyG*(t,z)N*(dt,dz). (4.13)
0 0 0JRg

Recall that the martingale part of S is S™ = [j 0S;—dW; + [§ [, Se—(e” — 1)N(dt, dz).
Since (L, S™)¥ = 0 by the definition of the FS decomposition, we take the predictable

quadratic covariation on both sides of (4.13) with S™ under P and notice that the
integrability condition (4.11) holds to obtain

||(o,y)y/ 0553_@:/ JQSf_ayG*(t,St)dt+//AJG*(t,x)St(e“’—l)y(da:)dt,
0 0 0JR

which yields (1.2) as desired.
(2) It follows from Cauchy-Schwarz’s inequality and (4.10) that

T T
E* / 1025,_0,G* (1, S,_)|dt + E* / / ALGH(t, 2)(e® — 1)|p(da)dt
0 0 JR

T
< \/THS(U)THLQ(H»)\/IE/ 02510y G*(t, Se—)[*dt
0

T
" ||6<U>T1|L2<P>\/T /R (e — 1>2u<dx>\/ﬂz /0 /R A G* (1, 2)|2(da)dt

< 0. (4.14)

By assumption, it is clear that (G*(t,e"St) — G*(t, St))iec[o,1] is @ P*-martingale for each
r € R. In the case o0 > 0, due to g(St) € L2(P*) and Lemma 3.1, (S:9,G*(t, St))se(o,1)
is also a P*-martingale. Hence, the function

[0,T) > t > E*|028,8,G*(t, Sy)| + E*/ G (t,e"S;) — G* (¢, Sp)|le® — 1|v(dz)
R

is non-decreasing by the martingale property. In addition, noticing that S;_ = S; a.s.
for each t € [0, 7], we infer from (4.14) and Fubini’s theorem that

E*|02S,0,G*(t, Sy)| + E* / G (t,e7S,) — G*(t, Sb)||e” — 1|w(dz) < oo
R

for all t € [0,T). Therefore,

(||(o,11/)|] <025t8yG*(t, St) + /R(G*(t,e"‘“St) — G*(t,S¢))(e* — 1)y(d:c)>>

tel0,T)

is a P*-martingale for which one can find a cadlag modification, denoted by ¢9. Then,
the process 99 defined by

~ g
99 .= 2 (4.15)

satisfies the desired requirements. O
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Remark 4.6. Let ¥ € CL([0,T)) be such that 0 =109 for P® M-a.e. (w,t) € Qx[0,T),
where 99 given in (4.15). Then, P(¥; = 97, Vt € [0,T)) = 1 due to the cadlag property.
Hence, ¥_ is also a LRM strategy of H = ¢g(S7), and it holds that, for any ¢t € [0,T),
~ 1
?J <025t8yG*(t, Sy) + /

TR v

5. DISCRETE-TIME HEDCGING IN WEIGHTED BOUNDED MEAN OSCILLATION SPACES

(G*(t,e*Sy) — G*(t, Sy))(e" — 1)1/(d:13)> a.s.

This section is a continuation of the work in [37] for the exponential Lévy models.
First, we use the approximation scheme for stochastic integrals introduced in [37] and
investigate the resulting error in weighted BMO spaces. Consequently, the L,-estimates
(p € (2,00)) for the error are provided. Secondly, to illustrate the obtained results,
we consider the stochastic integral term in the FS decomposition of a European type
option. This integral can be interpreted as the hedgeable part of the option. Notice
that we do not assume the (local) martingale property under the reference measure for
the underlying price process.

5.1. Weighted bounded mean oscillation (BMO) spaces. Let S([0,7]) denote

the family of all stopping times p: Q — [0, 7], and set inf () := oo.

Definition 5.1 ([14, 15]). Let p € (0,00).

(1) For ® € CL*([0,77]), we denote by BMO;?(IP’) the space of all Y € CLy([0,7]) with
HY|]BMO§(P) < 00, where

Y Ipos ) = inf {c=0:Ex[|Yr - Y, ] < PP as., VpeS(0,T))}.

(2) (Weight regularity) Let SMyp(P) be the space of all ® € CL* ([0, T']) with [|®[[suq, ) <
oo, where

|®[|sr1,(p) := inf {c >0:Eg, [supté[aﬂ @f} < PPh as., Va € [O,T]} .

The theory of non-weighted BMO-martingales (i.e. when ® =1 and Y is a martin-
gale) can be found in [29, Ch.IV]. One remarks that the weighted BMO spaces above
were introduced in [14] for general cadlag processes which are not necessarily martin-
gales.

Definition 5.2 ([14]). For s € (1, 00), we denote by RHs(IP) the family of all probability
measures Q equivalent to P such that dQ/dP =: U € Ls(P) and there exists a constant
¢(5.1) > 0 such that U satisfies the following reverse Holder inequality

Ex,[U%] < s ) [Ex, [U]* as., Vp € 5(0,T). (5.1)

We refer the reader to [14, 15] for further properties of those quantities. Proposi-
tion 5.3 below recalls some features of weighted BMO which are crucial for our appli-
cations, and their proofs can be found in [15, Proposition A.6] and [37, Proposition
2.5].

Proposition 5.3 ([15, 37]). Let p € (0,00).

(1) There is a constant c1 = c(p) > 0 such that || - [, @) < c1l| @[z, @)l - ”BMO;?(]P)'

(2) If © € SMp(P), then for any r € (0,p| there is a constant ca = ca(r, p, | @[ sp1,(p)) >
0 such that || - [gmoe ) ~ea || - 702 (B)-

(3) If Q € RHs(P) for some s € (1,00) and & € SMp(Q), then there exists a constant
¢z = c(s,p) > 0 such that | - [lgpozq) < esll - lBmoz )
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Remark 5.4. The benefit of Proposition 5.3(2) is as follows: If p € [2, 00) (this is usually
the case in applications), then one can choose r = 2 so that ||- HBMog (P) ~e2 I HBMO%’(IP)?
and then we can still exploit some similar techniques as in the Lo(P)-theory to deal with
|| - HBMO%’(P)- Combining this observation with Proposition 5.3(1) yields the following
estimate provided that ® € SM,(P), p € [2, c0),

I lz,@) < crcall @z, @)l - lsmoz @)- (5.2)

Proposition 5.3(3) gives a change of the underlying measure which might be of interest
for further applications in mathematical finance.

5.2. Jump adjusted approximation. Let usrecall from [37] the approximation scheme
with the jump adjusted method. Roughly speaking, this method is constructed by
adding suitable correction terms to the classical Riemann sum of the stochastic integral
as soon as relatively large jumps of the driving process occur.

Time-nets. Let Tgey denote the family of all deterministic time-nets 7 = (t;)I'_, 0 =
to <t1 <--- <t,=T,n>1. The mesh size of 7 = (t;)], € Taet associated with a
parameter 6 € (0, 1] is defined by

Il = max
0 1=1,...,n (T — ti_l)l_e )

Let 7, € Tqet with #7,, = n+ 1. By a short calculation we can find that ||7,[/s > %0
Minimizing ||7,||¢ over 7, € Tqet with #7 = n + 1 leads us to the following adapted
time-nets, which were exploited in [11, 13, 14, 15, 37]: For § € (0,1] and n > 1, the

adapted time-net 70 = (tf’n)?zo is defined by

0, ::T(l— Wl—i/n), i=1,...,n. (5.3)

Then, a calculation gives
0

T
— <l <5, n>1

0
%7
Jump adjusted approzimation scheme. Let S = eX be the exponential Lévy process and
assume Setting 4.1. Let 9 € CL([0,T")) be such that IEfOT ¥?_S2 dt < oo (the tilde sign
here indicates the cadlag property of the process (ﬁt)te[o,T))- For 7 = (t;)i~g € Tdet, the
Riemann approximation AR™ (¥, 1) of f(;f U;_dS, is defined by

n
A?m(ﬁ, T) = Z ﬁtiil_(sti/\t — Stifl/\t)y t e [O, T]
i=1
Before proceeding to the jump adjusted approximation, we need the following stop-
ping times which capture the relative large jumps of S: For € > 0 and x > 0, we define
the family of stopping times p(e, k) = (pi(e, k))i=0 by setting po(e, k) := 0 and

pi(e, k) :==nf{T >t > pi_1(e, k) : |AS] > (T —t)"Si—} AT, i >1.

By specializing x = 0, the parameter € can be regarded as the jump size threshold.
When x > 0, this threshold shrinks as ¢t 1 T, and thus the parameter  indices the jump
size decay rate. The reason for using the decay function (7 — ¢)" is to compensate the
growth of integrands.

Definition 5.5. Let € > 0, s € [0, %) and 7 = ()7 € Tdet-
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(1) Let 7Up(e, k) denote the combined time-net constructed by combining 7 with p(e, k)
and re-ordering their time-knots.
(2) For t € [0,T], we define

g(T)t = Z étifl— ]l(tifl,ti] (t)v
=1

A?dj (é, T|€, li) = A%:{m(qg, T) =+ Z (épi(s,n)f - é(T)pi(s,ﬁ)) ASpi(s,n)a
pi(e,k)€[0,¢]N[0,T")

— t o
E?dJ(Q97 T|€7 H) = / r(9u—dSu - A?dj (19, T’E, H).
0

Denote
N(e,k) :=inf{i > 1: p;i(e, k) = T}.
We apply [37, Proposition 5.3] (with o = 2) to conclude that N (e, ) < oo a.s. for any

e >0and x € [0, 3). Hence, the sum in the definition of A* (4, e, x) is a finite sum a.s.

By adjusting this sum on a set of probability zero, we may assume that A2, 7|e, k),
and hence, F*4 (¥, 7|e, k), belong to CLo([0, ).

5.3. Discrete-time approximation in weighted BMO: A general result. Let us
introduce the main assumption to obtain the approximation results.

Assumption 5.6. Let S = eX with (X|P) ~ (v,0,v). Let ¥ € CL([0,T)) and 6 € (0, 1].
Assume that
(i) f‘x|>1 e?*y(dr) < oo.
(ii) Ad; =0 a.s. for each t € [0,T).
(iii) There exists a random measure Y: Q x B((0,7")) — [0, o] such that Y(w, (0,t]) <
oo for all (w,t) € Q x (0,7T), and such that for any 0 <a<b< T,

Er, [/( ) !1%—1%\253&] < o Bz, [/( b](b_t)T("dt>] s, (5.4)

(iv) There is an a.s. non-decreasing process © € CL*([0,T]) such that
(1) (Growth condition) One has

-1

19| < cis5) (T —a) 2 O, as.,Vael0,T). (5.5)
(2) (Curvature condition) One has
Er, / (T—t)l_e“f(-,dt)] <)@ as., Vae0,7), (5.6)
(a,T)
where

®:=05S. (5.7)
Here, c(5.4), ¢(5.5), ¢(5.6) are positive constants independent of a, b.

Condition (i) is equivalent to the square integrability of S. Condition (ii) means that
the integrand ¥ has no fixed-time discontinuity, and this property is satisfied in various
contexts. Conditions (iii)—(iv) are adapted from [37, Assumption 3.3], and the random
measure T above describes some kind of curvature of the stochastic integral. Several
specifications of Y are provided in [15] (for the Brownian setting and the Lévy setting)
and in [37] (for the exponential Lévy setting).
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Theorem 5.7. Let Assumption 5.6 hold for some 9 € CL([0,T)) and for some 6 €
(0,1]. For ® given in (5.7), we define ® € CL™([0,T]) by setting

675 =, + SUDye[0,¢] ‘Aq)u‘, tc [O,T]
Assume that & € SMo(P). Then, the following assertions hold:

(1) If f|a:\<1 |z|"v(dz) < oo for some r € [1,2], then there is a constant c(5g) > 0 such
that for all T € Tqet, € > 0,

19 (il ) g < VT ) 09

Consequently, choosing the adapted time-net T,g and € =n" in (5.8) we obtain

sup nar || B2 (15,7'2’ n*%, 1;29>‘ < 0. (5.9)

n>1

BMOZ (P)

2) Ifsup - e* —1)v(dz)| < oo, then there is a constant c(s. 10y > 0 such that
r>0 le*—1|>r ( )
for all T € Tget, € > 0,

[ (3,7

= 7>HBMO¢ @ S €610 maX{ IITIIe,s}. (5.10)
Consequently, choosing the adapted time-net 70 and e = n"2 in (5.10) we obtain

Eodi (é,Tﬁf n (5.11)

1

2

1
sup n?2 ,%9) H _ <
n>1 BMOZ (P)

(3) If in addition ® € SMy(IP) for some p € (2,00), then the conclusions of items (1),
(2) hold for the L,(P)-norm in place of the BMOS (P)-norm.
(4) If in addition Q € RH4(P) for some s € (1,00) and ® € SM2(Q), then the conclu-
sions of items (1), (2) hold for the BMO‘P(Q) -norm in place of the BMO‘I’( )-norm.
Proof. By Subsection 2.4, one has dS; = S;_dZ;, where Z is a square integrable Lévy
process with the Lévy measure vy = voh™!, where h(z) := e” — 1. Moreover, it is clear
that flﬁle |z|"v(dz) < 0o & 2<1 |z|"vz(dz) < co. Then, we apply [37, Theorem 3.10]
to obtain items (1) and (2). Items (3), (4) are due to Proposition 5.3 and Lemma A.2.
O

Remark 5.8. The parameter n in front of the BMOQ6 (P)-norm in (5.9) and (5.11) can be
1-6
5 )

regarded as the Ly (P)-norm of the cardinality of the combined time-net 771 p(n_%,

and 78 U p(n~ 2 1—29) respectively. This assertion is derived from [37, Proposition 3.13]

(with Q =P, and q=2,17=00).

5.4. Holder spaces and «-stable-like processes. We first define some classes of
Holder continuous functions and bounded Borel functions, where the payoff functions
are contained in.

Definition 5.9. Let U C R be a non-empty open interval.

(1) For n € [0,1], we let C*"(U) denote the space of all Borel functions f: U — R with
| flcom@y < oo, where

|[fleonwy = inf{c = 0:[f(x) = f(y)] < cle —y[", Yo,y € Uz # y}.
(2) For g € [1,00], we define

Whi(U) := {f: U—R:3ke L U), fly)— flz) = /y k(u)du,Ve,y € U,z < y} ,

and let ’f’Wl a(U) HkHLq
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It is obvious that C%7(U) is the space of all n-Holder continuous functions on U for
€ (0,1], and C%9(U) consists of all bounded and Borel functions on U. For n € [0, 1],
Hoélder’s inequality implies that

1 17% 0, 1 T 11%
W>i=a(U) C CP"(U) with |f’CO,W(U) < |f’W1’ﬁ(U)7 Ve W i-n(U).
In particular, W10 (U) = C%}(U), which is the space of Lipschitz functions on U.
We next introduce some classes of a-stable-like Lévy measures.

Definition 5.10. Let v be a Lévy measure and a € (0, 2).

(1) We let v € 8;(«) if one can decompose v = v + v2, where vy, vy are Lévy measures
and satisfy that

1
lﬁf\ljgop e /(1 — cos(uz))va(de) < oo, (5.12)
oy (da) = S 1y 0y, (5.13)

| |a+1

where 0 < liminf, ,ok(z) < limsup,_,ok(z) < oo, and the function z o 18

non-decreasing on (—o00,0) and non-increasing on (0, 00).

(2) We let v € 83(a) if

1 1
0 < liminf — /R(l — cos(uz))v(dzr) < limsup —— o /(1 — cos(ux))v(dzr) < oo

|u|—o0 |u’a |u|—o0
(5.14)

In fact, 81(a) C 82(a) for @ € (0,2), and moreover, the inclusion is strict. This
assertion and some further properties of 81(«), 82(a) are given in Lemma A.1.

Example 5.11. Let us provide some examples for those classes of Holder functions and
of a-stable-like processes used in financial modelling.

(1) The European call and put are Lipschitz, hence they belong to Wt (Ry).
The power call g(y) := ((y—K)V0)" with K > 0 and n € (0,1) belongs to C%7(R),
but g ¢ I/i/l’q(]RJr) for any ¢ € (1,00). However, we can decompose g = g1 + g2,
where g1 := ((y — K) V0)" A1 and gy := g — g1, so that g € Micge Whe(R,)
and g¢o is Lipschitz. By the linearity, the LRM strategy of g is the sum onf the LRM

strategies corresponding to g1 and go.
The binary option g(y) := 1k ) (y) belongs to C"O(R,) obviously.

(2) The CGMY process with parameters C,G, M > 0 and Y € (0,2) (see [32, Section
5.3.9]) has the Lévy measure

eGCC ]l{:c<0} +e
‘x’1+y

Mz,
veamy (dz) = C 0} Ligzoyde

which belongs to 8;(Y") due to Lemma A.1(3).
The Normal Inverse Gaussian (NIG) process (see [32, Section 5.3.8]) has the Lévy
density pnig(x) := vnig(dx)/dz that satisfies

0 < liminf, o 2?pyic(z) < lim SUP|3| 0 ?pNic(7) < .

Hence, Lemma A.1(3) verifies that vnig € 81(1).
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5.5. Discretisation of LRM strategies. Let X be a Lévy process with (X|P) ~
(7,0,v) and S = eX. In this subsection, we apply results of Subsection 5.3, and the
stochastic integral being approximated is the integral term in the FS decomposition of
9(St). Moreover, we choose the cadlag version 99 of the LRM strategy as mentioned
in Theorem 1.1(2) so that the integral we are going to approximate is of the form

T ~
/ J9_ds;.
0
Under the assumptions of Theorem 1.1, it follows from Remark 4.6 that, for ¢ € [0,T),
- 1 * t x _ * t
V] = (028yG*(t, St) +/ Gt e"5) = G ’St)(ex - l)u(dx)) a.s. (5.15)
(o, V)] R St

For n € [0,1] and ¢ € [0, T, we define

O()e = sup,cp (St 1Y), ®(n)e == O():St,
D(n); := (n)t + SuPyeo.g |AP(7)ul-

The results about approximation are given in items (4)-(6) of Theorem 5.12 below.
In fact, the LRM strategy 97 is quite difficult to investigate directly under the original
measure P but it fits well the main assumption Assumption 5.6 under the minimal
martingale measure P*. Therefore, our idea is to switch between the original measure
P and the minimal martingale measure P* and use the fact that weighted BMO-norms
allow a change of measure as given in Proposition 5.3(3). Moreover, regarding the drift
coefficient g given in (4.1), we now focus on the case yg # 0 since the case vg = 0,
which corresponds to the martingale setting, was investigated in [37, Section 4].
Theorem 5.12. Assume Setting 4.1, Assumption 4.5, vs # 0 and f‘x|>1 e3%y(dz) < oo
Let g € CO"(Ry) with n € [0,1]. Then, the following assertions hold:

(1) Both ®(n) and ®(n) belong to SM3(P) N SMa(P*).
(2) P* € RH3(P) and || - || for some constant ¢ > 0.

BMOF™ (pry S ol ||BMO<I><n) ®)

(3) Set M := 09S. Then, Assumption 5.6 is satisfied under P* for the selection
0=199, Y(,dt) =AM, MEF + M2dt, ©=0(n), &=3(n),
and for the parameter 0 provided in Table 1.
(4) With the adapted time-nets ¢ given in (5.3), one has

1
sup nar |[E2 (199 ‘n 2r,

n>1

= d
E )HBMog’W(P*) =% (5.16)

where the parameters r and 6 are provided in Table 1.

(5) Lets € (1,00), and assume in addition when ”(2”)” €[-1,00 thatf| =€ 1=5)2y(dz) <
0o. Then, P € RHs(P*) and

|| : ”BMO$(">(]P’*) ~c H : ||BMO§<U)(P)
for some constant ¢ > 1, and hence

adj -L 19
FE J(W,Tn‘n o,

su n? ) H -
P 2 JllBMOZ™ (p)

n=1

< 00, (5.17)

where the parameters r and 0 are provided in Table 1. Moreover, (5.17) holds true
for the Ls(P)-norm in place of the BMO;P(W) (P)-norm.
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(6) If in addition f‘x|>1 ePr(dx) < oo for some p € (3,00), then (5.16) (resp. (?17)) is
satisfied for the Ly—1(P*)-norm (resp. Ly(P)-norm) in place of the BMO;I)(W) (P*)-
norm (resp. BMO;I)(U)(IP’)—norm).

Table 1: Values of parameters r and 6

o and n | Small jump condition | Regularity of g | Conclusions for r and 6
“l Ze> (%, 1] ﬂi‘i@ﬁfi@ﬁ,}m g€ COM(RY) gg:%[(?; ?Lifln € (0,1)
2| i | o ton |9 MR |y
s ZEZ[(()), 1) fVOI‘ESiil(lOeé)Oz €l+mn,2) g € C™M(Ry) :; i (((;: 22}(1;;77) _ 1)
cd ZGZ[?), 1) fl‘joresiiflz)a €l+mn,2) g€ Wl,ﬁ(RﬂL) zg i ((0(6)222}(1:’7) _ 1)

Remark 5.13. (1) Let us comment on the parameters r and 6 in Table 1. First, since
we use the adapted time-net 7¢ which leads to better estimates (see (5.9)), it follows
that the parameter r only depends on the behavior of v around zero. Moreover, the
smaller r is, the better approximation accuracy one achieves. The parameter 6 is
the outcome of the interplay between the behavior of v around zero and the Holder
regularity of the payoff function.

(2) Since X is a Lévy process under both measures P and P*, we apply [37, Proposition

5.3] (with @ = 2 and k = 1;29, € = nfi) to conclude that the parameter n in

front of the BMO?W (P*)-norm in (5.16) can be regarded as the Lo(P)-norm and

the Lo (P*)-norm of the cardinality of the combine time-net 77 L p(n_%, 1=0). The

parameter n in front of the BMOg)(n) (P)-norm in (5.17) can be interpreted in a
similar manner.

For the proof of Theorem 5.12, we need the following lemmas where we recall v*(dz) =
(1- ”(gii)”(ex —1))v(dz) from (4.6) and the classes 81(c), 82(c) from Definition 5.10.
Lemma 5.14. Under Assumption 4.5, the following assertions hold:

(1) For g €[0,2], one has f\x|<1 l2[Pv(dz) < 00 & flﬂle |lz|Pv*(dz) < oo.
(2) Assume vs # 0. Then, for r € [1,00) one has
Ee™t < 00,Vt > 0 & e v(dr) < oo

|z|>1

& e D2%(dz) < 0o & E*erDXt < o0, vt > 0.
lz|>1
Proof. Ttem (1) is clear from the relation between v and v*. A short computation and
[31, Theorem 25.3] imply item (2). O

Lemma 5.15. Assume Assumption 4.5 and f‘w|>1 e’v(dz) < oo. Ifv € §i(a) for some
€ (0,2), then v* € §;j(a) fori=1,2.
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Proof. We first prove the assertion for ¢ = 1. Assume that S8;(a) > v = v; + 1o,
where vy, vy are Lévy measures satisfying (5.13) and (5.12) respectively. Observe that

suppv; C supp v for i = 1,2. We define
_ _ 98 (T _ e _ s
V() i ((1 ICOIS 1)> Liz<oy + 1{x>0}> vi(dz) if gty <O
1 = )
((1 = T (&7 — 1)> Tia0y + 1{r<0}> vi(dz) i sy > 0,

and set

vy (dz) = v*(dz) — vi(dx)
o (¢ = Doy (de) + (1 ~ T @ — 1)> vo(dz)  if iy <O
Moo (L =€) Liz<oyri(de) + (1 ~ T (&7 — 1)) vo(dz) i Sy > 0.

It is clear that v and v5 are Lévy measures. Moreover, a short calculation shows that
vy and v3 satisfy (5.13) and (5.12) respectively, which verifies v* € 8;(«).

We now prove the statement for i = 2. Assume that v € Sa(a). Let € € (0,1) and
d > 0 be such that \75(6 ) | < ¢ for all |z| < 6. Then,

(@)l

/R(1 — cos(uz))v*(dz) > /m|<6(1 — cos(uz)) <1 - m) v(de)

> (1- 5)/| \<5(1 — cos(uz))v(dx)

=(1-¢) (/R(l — cos(uzx))v(dz) — /|x|>6(1 — cos(u:@)u(dx)) .

Since sup,cp | fm%(l — cos(uz))v(dz)| < 2v(R\(—0,9)) < oo, it implies that

liminf —— / (1 — cos(uz))v*(dz) > (1 — &) liminf —— / (1 — cos(uz))v(dz) > 0.

oo |u|® lul—oo |u|®

For the upper limit, one has

/R(l—cos(ux)) “(dz) < (1+5)/

|x|<d

=(1+¢) (/R - /m|>6> (1 — cos(uz))v(dx) + /x|>5(1 — cos(uz))v*(dz),

and hence,

lim sup |u1 /(1 — cos(uz))v*(dz) < (14 ¢)limsup ’ul| /(1 — cos(ux))v(dzr) < oo

(1 — cos(ux))v(dz) + / (1 — cos(ux))v*(dz)

|z| =6

Combining those arguments, we get v* € 8a(). O

Proof of Theorem 5.12. Recall (X|P*) ~ (v*,0*,v*) from (4.6). Since the function g
in Table 1 has at most linear growth and flw\>1 e3?y(dr) < oo, which is equivalent to

flx|>1 e?*1*(dr) < oo by Lemma 5.14(2), the assumptions of Theorem 1.1 are satisfied

so that (5.15) is applicable.
(1) Combining Lemma 5.14(2) with Lemma A.3, we obtain that ®(n) € SM3(P) N
SM;y(P*). Thanks to Lemma A.2, one has ®(n) € SM3(P) N SMa(P*).
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(2) We recall £(U) from Definition 4.4 and notice that £(U) > 0 due to Assump-
tion 4.5. According to Subsection 2.4, there is a Lévy process V with (V|P) ~ (yy, oy, vv)
such that £(U) = e". Due to (4.5), by letting h(z) := In(1 + z) for z > —1 one has

w=vyoh l=(voa;)oh ' =vo(hoay) " (5.18)
Since h(ay(x)) =In (1 - %) for x € supp v, there exists an g(5 19y > 0 such that
{z esuppv : |h(ay(z))] > 1} € R\(~£(5.19),€(5.19))- (5.19)

Then, the assumption flz\>1 e3y(dz) < oo implies that

T 3
/ 3y (dz) _/ e3(h(OlU($)))V(dx) < / (1 _ ’ys(el)) v(dz) < oo,
||>1 |h(ay (2))[>1 |2]>¢€(5.19) Gl

Let (V|P) ~ vy . Since (63‘4*"/1""(*31))1&6[03} is a cadlag martingale, it follows from the
optional stopping theorem that for any stopping time p: Q — [0, 7], a.s.,

E]:p [63VT] _ efTIpv(fiii)E}_

) e3VT+va(fBi)} — o TWv (=30 o3V,tpwoy (~3i)

< oLV (=3)[ 3V, — oTlv (=3i)]| ‘EFP [eVT] ‘3 ’
where we use the martingale property of e” for the last equality. According to Defini-
tion 5.2 and Proposition 5.3(3), dP* = e"7dP € RH3(P).
(3) In the notations of Assumption 5.6, let
0 =199, Y(.,dt) =d(M, MY + M2dt, ©=0(n), &=o(n).

We now verify the requirements of Assumption 5.6 under the measure P*.

Item (i) is clear. For item (ii), Theorem 1.1(2) verifies that M = 995 is a P*
martingale adapted to the augmented natural filtration of X, which is a quasi-left
continuous filtration (see [29, p.150]). This implies that 09 _S;_ = #9S; a.s. for each

t €[0,7) (see [29, p.191]), and hence ¢ = 1Y a.s. due to S;_ = S; a.s.

For item (iii), we can prove (5.4) as in [37, Example 3.2] (with o(z) = =), where the
square P*-integrability of M can be inferred from (5.20).

For item (iv), it follows from the proof of [37, Theorem 4.6(3)] that for any a € [0,7T),
a.s.,

E;:a [/ (T - t)l—&?fr(.’ dt)]
()
B, [ty ME + [, ) Mdt] it =1

E%, [f(a,T) (L=0) (T —t)~0 + (T —t)'7) Mfdt] if 0 € (0,1).

Hence, in order to verify (iv), thanks to ®(n) € SMy(P*), it suffices to show that there
is a constant c(5 90y > 0 which might depend on 6 but is independent of ¢ such that

109] < c00)(T — 1) 7 O(n);  aus., Vit € 0,T), (5.20)
where 6 is given according to the cases C1 and C2 of Table 1 as follows

§_n in the case Cl1
~]1 in the case C2.

Regarding C3 and C4, it is sufficient to prove that (5.20) holds for any 6 c (0, 2(Ltn) —1).

[0}
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Indeed, we first let Q := P* and ¢ := v in (A.1) and then derive from (5.15) that

I (T —t,5)
[(o V)

Case C1: Since 0* = o > 0 and f|w|>1 e?*y*(dx) < oo, Proposition A.4(1) implies (5.20)

with 6 = 7.

Case C2: Since f|f6|<1 |z["" 1y (dx) < oo, combining Lemma 5.14(1) with Proposition A.4(2)

we obtain (5.20) with 6 = 1.

Case C3: Due to Lemma 5.15, we have v* € 8;(«). Let € € (0,2— ] be arbitrary. Then
it follows from Lemma A.1(2) that flw\@ |z|*Ter(dx) < oo. We apply Proposition A.4(3)

and Remark A.5 with 8 = a + ¢ to obtain that, for any ¢t € [0,T), a.s

|F11/p>*(Tft, St 2(7,;1)_1_%5)_1)
| (o, v)]]

where ¢, > 0 is some constant which might depend on €. Since € > 0 can be arbitrarily
small, the assertion (5.20) holds for any g e (O, @ — 1).

Case C4: Again, one has v* € 83(«) due to Lemma 5.15, and Lemma A.1(2) verifies
flfﬂl@ |z|*Ter(dz) < oo for all € € (0,2 — a]. By Proposition A.4(4) and Remark A.5

with 8 = a + € and by the same reason as in the case C3 above, we get (5.20).

9 = a.s., Vt € [0, 7).

ntl_q1_e

1971 = <o —t)& st < e — 1) (( O,

(4) By the relation between the behavior of v and of v* around zero given in Lemma 5.14(1),
we use item (3) and apply (5.9) to obtain (5.16).

(5) Step 1. For vy given in (5.18), we first show that f| =97y (dz) < oo.

Indeed,

x 1—s
/ e1=9)7py (dz) = / <1 _asle )> v(dx)
le>1 Ih(aw (2))[>1 (o, v)]]

)
sl =DV
) /|9525(5.19) <1 ”( )H ) (d ) '1(5‘21)' (5-21)
e}
Vs

\>1

We consider three cases regarding as follows:

Case 1: ”(‘;%)” > —1. We denote xg := ln( + ”(‘;:)H) Then, Assumption 4.5 verifies

that z¢ ¢ suppv, which means v((z¢ — €9, 20 + £9)) = 0 for some ¢y > 0. Moreover,

using the mean value theorem we infer that 1 — Wﬁ((f,zy;“l) > |z — xg H(LZS |)H TAZo for all

x € supp v. Hence,

T 1 1—s
L5021 = / (1 - Pys(Q)) v(dx),
|z[>€(5.10):|z—20|>€0 (o, V)]

ol _lsl / e(1=9)(@A0) ()
=0 H(O‘y Z/)HI_S |x|>6(5_19),|l’—$0‘260

1-s
< o L, ) <o
Y T 6(0 19)

where the finiteness is due to the assumption f|

Case 2: @ —1. We have L5y =

i>1 =97y (dx) < oo

f‘x|>s(519) e1=9)7y(dz) < 0o
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Case 3: ”(‘fyi:)” < —1. In this case, one has vg < 0, which implies that inf,cr (1 —

Ys(e®=1)\ _ v
Toa ) =1+ qasyy > 0 Hence,

1—s
Vs
I 5.21 < (1 + ) / V(dl‘) < 0.
o2 (e, )] #l>5(s.10

(1=8)2 11, (dx) < oo, or equivalently

We conclude from three cases above that flr|>1 e

e Wv((=D) — g9V « oo ¢ > 0.

Step 2. We show P € RH¢(P*). By writing dP = e~"7dP* and since eV = £(U) is a
P-martingale, it implies that e~V is a P*-martingale. We have for any ¢ € [0, 7] that,
a.s.,

. [g(—%)} = o ViR, [ VTeVT] = e Vi, [e(l—sWT} < TV ((s=1))|g=sVa
t X .
By a similar argument as in the proof of [15, Proposition A.1], we infer that

E3, [o"/)] < v (e D0le=sVe = (T (=00l 5 [ 7] ' as

for any stopping times p:  — [0, T], which implies P € RH,(P*).
Step 3. Thanks to Step 2 and items (1), (2), we apply Proposition 5.3(3) to obtain
I lgpgosoney ~ | Tioiosy
Then, assertion (5.17) is clear due to (5.16). The “Moreover” part holds because of
®(n) € SM3(P) and (5.2).

(6) A similar argument as in the proof of item (1) shows that both ®(n) and ®(n)
belong to SM,(P) N SM,—1(P*). We now apply (5.2) to derive the assertion. O

APPENDIX A. SOME TECHNICAL RESULTS

A.1. Some properties of classes 8;(a) and Sy(a). We recall 8;(«) and 83(«) from
Definition 5.10.

Lemma A.1 (See also [37], Remark 4.5). For a € (0,2), the following assertions hold:
(1) S1(a) & S2(a).
(2) If v € 83(v), then oo = inf{r € [0, 2] : f\w|<1 |z|"v(dz) < oo}.

(3) If a Lévy measure v has a density p(x) := % which satisfies

0 < liminf |[z|'**p(x) < limsup |z|'Tp(x) < oo,
|z|—0 |z|—0

then v € 8§1(«).

Proof. (1) Let 81(a) v = 11 + v2. A short calculation shows that (5.14) holds for
vy in place of v. Combining this with (5.12) yields that (5.14) holds for v, and hence
v € 8(a). Since v(dz) := 2711 g q)(z)dz € S2()\S1(ev), the inclusion 81 () C Sz(cv)
is strict.

(2) follows from [4, Theorem 3.2].
(3) By assumption, there exist constants 0 < ¢ < C' < oo and € > 0 such that

clz| 17 < p(z) < Clz| 7%, V2] <.
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We let
vi(dx) = c]1{0<‘$|<5}|x|_1_adx and 9(dx) :=v(dx) — v1(dz).

Then, v satisfies (5.13). For va, we have

1—
/(1 — cos(uz))va(dr) < (C — c)/ de + 2/ v(dx),
R |z|<e |J}’ |z|>e
which implies that (5.12) holds for vo. Hence, v € 81 (). O

A.2. Regularity of weight processes. Let 7' € (0,00). We assume that Q is a
probability measure and X = (X);c[o,7] is a Lévy process with (X]Q) ~ (72,02, 1Q).

The regularity of the weight ® used in Theorem 5.7 is verified by Lemma A.2 below.
For ® € CL*([0,T]), we let ® € CL™([0,T]) by setting

ét =P + SUPyel0,4] |A<pu’, te [0, T]
It is clear that ® V ®_ < @, and ® = ® if and only if ® is continuous.

Lemma A.2 ([37], Proposition 7.1). If ® € SM,(Q) for some q € (0,00), then ® €
SM,(Q).

We next recall the process ®(n) € CL*(]0,7T]) used in Theorem 5.12, that is
q)(n)t = et SUPye[0,t] e(n_l)Xuv te [07 T]a ne [0’ 1]
Lemma A.3 ([37], Proposition 7.2). If flw\>1 e?1Q(dz) < oo for some q € (1,00), then
®(n) € SMy(Q) for alln € [0,1].

A.3. Gradient type estimates for a Lévy semigroup on Hélder spaces. Assume
that X = (Xy)i>0 is a Lévy process with respect to a probability measure Q with
(X]Q) ~ (12,09, 12). We let

Desep (X Q) 1= {g: R, — R Borel : EQ|g(ye’t)| < 0o, Yy > 0, > o} ,

where E? is the expectation computed under Q. For t > 0, we define Q; : Dexp(X|Q) —
Dexp(X|Q) by setting
Qig(y) == E%g(ye™).

It is clear that Q¢1s = Q¢ 0 Qs for all s,¢ > 0 which means that (Q¢);>0 is a semigroup.
For a Lévy measure £ on B(R) and a Borel function g, we write symbolically

IR = 00Po,Qu(w) + [ DX =W e ) ()

for (t,y) € R%, where 9,Q:g := 0 if 0@ = 0. We recall CO"(R,), Wl’ﬁ(RJr) from
Definition 5.9 and 81(«), 82(a) from Definition 5.10.

Proposition A.4 ([37], Proposition 8.6). Let ¢ be a Lévy measure and g € CO"(R)
with n € [0,1]. Assume that f‘x|>1 et zp(dx) < oo. Then, for any T € (0,00) there
exists a constant c( 2y > 0 such that

TRty < can Ry, ¥(ty) € (0.T] x Ry, (A.2)
where the cases for Ry are provided in the following cases:
(1) If o© > 0 and flfv\>1 e?*1Q(dx) < oo, then Ry = 5
(2) If 2 =0, fm>1€my@(d$) < oo and f\a:|<1 2| (dx) < oo, then Ry = 1.
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(3) If 6@ = 0 and if the following two conditions hold:
(a) vQ € 81(a) for some o € (0,2) and f‘$|>1 e®1Q(dz) < oo,
(b) there is a B € (1 +n,2] such that
2 +1
0 < sup 7"3/ < L N >€(d:{:) < 00, (A.3)
re(0,1] |z|<1 r r

-8
then one has R; = tHi .

(4) If 62 =0, g € WLI%W(RJF), and if the following two conditions hold:

(a) vQ € 8s(a) for some a € (0,2) and f‘x|>1 e®12(dx) < oo,
(b) there is a B € (1 +m,2] such that (A.3) is satisfied,
then one has R; = tni_ﬁ,

Here, the constant c(x o) might depend on 3 in items (3) and (4).

Remark A.5. Since [£[> A [Z[7F1 < |Z|8 for B € (1 + n,2], a sufficient condition for
(A.3) is that 0 < f\x|<1 |z|2¢(dx) < oo.
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