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Abstract 

Background 

Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the 
resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-
listening experiences, only a few studies applied ICA. 

New Method 

For processing the fMRI data elicited by 512-second modern tango, a FFT based band-pass filter was 
used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model 
order selection method was applied to estimate the number of sources. Next, both individual ICA and 
group ICA were performed. Subsequently, ICA components whose temporal courses were significantly 
correlated with the acoustical features of music were selected. Finally, for individual ICA, common 
components across majority of participants were found by diffusion map and spectral clustering. 

Results 

The extracted spatial maps (which were common across most participants, and within and surrounding the 
auditory cortices and slightly right-lateralized) by the new ICA approach were found relevant to the 
features of music.  

Comparison with Existing Method(s) 

Compared with the conventional ICA approach, more participants were found to have the common spatial 
maps extracted by the new ICA approach. Conventional model order selection methods underestimated 
the true number of sources in the conventionally pre-processed fMRI data for the individual ICA.  

Conclusions 

The further pre-processing by a reasonable band-pass digital filter can greatly benefit the following model 
order selection and ICA on fMRI data during real-world experiences. Diffusion map and spectral 
clustering are straightforward to find common ICA spatial maps. 
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1. Introduction 
In the past twenty years, there has been a growing interest in the study of functional magnetic resonance 
imaging (fMRI) (Pan et al., 2011). With fMRI, a new window is opened to study cognitive brain function 
of human beings in processing speech, music, emotion, pictures and so on, independently and 
interactively (Hickok et al., 2003,Koelsch., 2010,Price., 2010,Tootell et al., 1998,Koelsch et al., 2005). 
Conventionally, paradigms to actively elicit fMRI data include the block design and the event-related 
design (Pan et al., 2011). For the block design, the contrast of fMRI data between the stimulus onset and 
the stimulus offset is analyzed. For the event-related one, the design matrix can be used for regression 
during which the temporal course of a voxel and the corresponding spatial map are learned. With the 
development of fMRI research, some studies even reported the fMRI data in the real experience 
environment where the stimulus is naturalistic, continuous and long (Alluri et al., 2012,Hasson et al., 
2004,Haynes and Rees., 2006,Kauppi et al., 2010,Kay et al., 2008,Spiers and Maguire., 2007). Such 
naturalistic brain data can provide much richer brain responses for research. However, it tends to be 
difficult to obtain the contrast or the design matrix according to the experimental design. Hence, the data 
driven data processing methods, like independent component analysis (ICA) can be one candidate to 
process the challenging data (Malinen et al., 2007,Ylipaavalniemi et al., 2009).  

Since 1998 (McKeown et al., 1998) ICA has been extensively used for the fMRI data processing. 
For different definitions of samples and variables in the linear transform model, the application of ICA 
can be divided into temporal ICA and spatial ICA (McKeown et al., 1998,Erhardt et al., 2010,Calhoun et 
al., 2001,Hu et al., 2005,Lee et al., 2010). In the former, an independent component is a temporal course. 
For the latter, an independent component is a voxel series which can be assembled into a spatial map of 
fMRI. Given the typical dimensions of fMRI datasets, the spatial ICA is usually preferred both for the 
plausibility of the underlying neurophysiological model and for computational requirements. Hence, the 
spatial ICA is chosen for the fMRI data analysis in this study. Hereinafter, when ICA is mentioned, it is 
referred to spatial ICA.  

ICA can be further divided into individual ICA for an individual dataset (e.g., including one 
participant’s data) and group ICA for the concatenated dataset (e.g., including multiple participants’ data) 
(Calhoun et al., 2009). Group ICA can be even categorized the temporal concatenation approach (e.g., 
multiple participants’ data are concatenated in the time domain) and the spatial one (e.g., multiple 
participants’ data are concatenated in the spatial domain) (Calhoun et al., 2009). The temporal and spatial 
approaches allow examining individual temporal courses and individual spatial maps, respectively, and 
they provide common spatial maps and common temporal courses over multiple participants, 
respectively. Actually, group ICA requires additional assumptions besides those needed by individual 
ICA (Cong et al., 2013). It is unknown whether fMRI data during real-world experiences can meet the 
additional assumptions. Consequently, both individual ICA and group ICA are applied to decompose the 
fMRI data here to examine whether similar findings can be obtained by both methods.     

No matter which means of ICA is applied, it is very critical to determine the number of extracted 
components. Model order selection (MOS) has been applied for this purpose (Li et al., 2007) and the 
information theory based MOS algorithms are often used, for example, Akaike’s information criterion 
(AIC) (Akaike., 1974), Minimum Distance Length (MDL) (Rissanen., 1978), and Kullback-Leibler 
information criterion (KIC) (Cavanaugh., 1999). This type of MOS algorithms assumes the data are 
independently and identically distributed and the collected brain data have to be resampled to satisfy this 
assumption for MOS (Li et al., 2007). In this study, we examine another recently developed algorithm 
called SORTE (He et al., 2010) for MOS of fMRI data. SORTE is very efficient in the computing and 
does not require the resampling process (He et al., 2010). Although MOS has been extensively used for 
fMRI data, there are few explicit methods to validate whether the estimation of MOS is accurate or not 
for the real fMRI data. Recently, a simulation study has shown that MOS cannot precisely estimate the 
number of sources in the linear transform model when signal-noise-ratio (SNR) is low (e.g., less than 0 
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dB), and that when SNR is low SORTE and MDL tend to overestimate and underestimate the true 
number of sources, respectively (Cong et al., 2012). In this study, SORTE, AIC, MDL and KIC are 
performed on the conventionally preprocessed fMRI data and further preprocessed (by a digital filter) 
fMRI data to examine their performance in estimating the number of sources in fMRI data of individual 
participants. 

For individual ICA, clustering the extracted ICA components of fMRI data is usually applied to 
find the common components across different participants, and the similarity matrix based hierarchical 
clustering has been often used (Calhoun et al., 2009,Esposito et al., 2005). The number of ICA 
components (݊) is always much smaller than the number of voxels (݌). In fMRI data, ݌ can be hundreds 
of thousands. For the very high-dimensional data, dimension reduction tends to be performed before 
machine learning, like clustering and classification. In this study, a recently developed dimension 
reduction method called diffusion map (DM) (Coifman and Lafon., 2006) is applied to reduce the 
dimension from ݌ to 2, and then, the degree of closeness of the ݊ ICA components can be visualized by 
the scatter plot of the two dimensional data. Furthermore, the spectral clustering (Nadler et al., 2006) is 
used to find the common components across multiple participants in this study.  

For group ICA, the temporal concatenation seems to outperform the spatial concatenation 
(Calhoun et al., 2009). Indeed, this conclusion is based on group ICA for fMRI data mostly in the block 
or event-related designs. It is unknown whether the conclusion is valid for the fMRI data during real-
world experiences. Therefore, both approaches are tried to decompose the fMRI here.  

In order to address the issues mentioned above, fMRI data of eleven musicians in a free-listening 
experiment (Alluri et al., 2012) are used in this study.  

2. Method  

2.1 Data description 

2.1.1 FMRI  
Eleven healthy participants (with no neurological, hearing or psy- chological problems) with formal 
musical training participated in the study (mean age: 23.2 ± 3.7 SD; 5 females).  The participants were 
scanned with fMRI while listening to a stimulus with a rich musical structure, a modern tango Adios 
Nonino by Astor Piazzolla. The participants were instructed to stay still and to relax while listening to the 
musical stimulus and to maintain their gaze on the screen. The fMRI measurements were made using a 3-
T (3.0T Signa VH/I General Electric) scanner at the Advanced Magnetic Resonance Imaging (AMI) 
Centre of Aalto University. The duration of the used stimulus was 512 seconds and the sampling 
frequency of fMRI was 0.5 Hz. A detailed description regarding fMRI data acquisition and preprocessing 
can be obtained from Alluri et al. (2012). The fMRI data are called conventionally pre-processed data 
hereinafter. 

2.1.2 Musical features  
Six musical features representing the perceived Activity, Fullness, Brightness, Timbral Complexity, Key 
Clarity and Pulse Clarity, were used in this study (Alluri et al., 2012). These acoustic components were 
derived as a result of principal component analysis performed on 25 acoustic features extracted from the 
music stimulus. A detailed description of the feature extraction procedure and post-processing of the 
features can be found in Alluri et al. (2012). The four timbral components are briefly introduced as 
follows: Activity is associated with roughness and flux of the high end of the spectrum; Fullness, on the 
other hand, is associated with the presence of spectral fluctuations in lower bands of the spectrum; 
Brightness is representative of the ratio between energy content in the higher end of the spectrum and 
lower end of the spectrum; and Timbral Complexity is a measure of the spread and flatness (Wiener 
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entropy) of the spectrum. The remaining two features represent tonal and rhythmical components, 
respectively: Key Clarity is the measure of the tonal clarity, and Pulse Clarity is the estimate of the clarity 
of the pulse (Alluri, et al., 2012).  

2.2 Systematic spatial independent component analysis approach  

2.2.1 ICA model  
ICA has been extensively used to study brain signals (Vigario and Oja., 2008), and it is based on the linear 
transformation model associating the observations (़) and the underlying sources (ष) in the brain. The 
model can be expressed as 

़ ൌ ऋष ൅ल ൌ ऋ(1)                                                               ,ܛ 

where, ल is senor noise, ܛ ൌ ष ൅ ल ,࢔ ൌ ऋ࢔, ़ ൌ 	 ሾݔଵ, ⋯,ଶݔ , ூሿ்ݔ ܛ , ൌ ,ଵݏൣ ⋯,ଶݏ , ௃൧ݏ
்

, and  ऋ ∈ जூൈ௃ 
with the full column rank is usually called as the mixing matrix regarding ICA. In spatial ICA for fMRI, 
each source is indeed the voxel series and can be assembled to a spatial map, and each column of ऋ 
denotes the temporal course of the corresponding spatial map.  In this study, we assume ܫ ൐  and this ܬ
means the number of scans in the fMRI experiment is larger than the number of underlying sources 
regarding spatial ICA. Hence, the model in Eq. (1) is over-determined. After the number of sources is 
estimated, the over-determined model can be converted to be determined through  

ܠ ൌ ܛऋࢀ܄ ൌ  (2)                                                                    ,ܛۯ

where ࢀ܄ ∈ ज௃ൈூ, and ࢀ܄ is called dimension reduction matrix, ۯ ∈ ज௃ൈ௃, ۯ ൌ  is also called ۯ ऋ andࢀ܄

the mixing matrix, and ܠ ൌ ,ଵݔൣ ⋯,ଶݔ , ௃൧ݔ
்

 . The determination of ࢀ܄ can be based on PCA and model 
order selection (Li et al., 2007) and this will be discussed later.  In order to separate the mixture in Eq. (2), 
an unmixing matrix is first learned by ICA (Hyvärinen et al., 2001), and then it transforms the mixture in 
Eq. (2) into independent components as 

ܡ ൌ ܠ܅ ൌ ܛۯ܅ ൌ  (3)                                                             ,ܛ۱

where ܅ ∈ ज௃ൈ௃ is the unmixing matrix,  ܡ ൌ ,ଵݕൣ ⋯,ଶݕ , ௃൧ݕ
்

 and ܡ represent the voxel series which can 
be assembled to spatial maps. In order to obtain the temporal course of each spatial map in the original 
over-determined model, Eq. (1), the inverse of the unmixing matrix is projected to the scan field through 
the dimension reduction matrix  

ट ൌ ۰	܄	 ൌ  ଵ,                                                              (4)ି܅	܄

where, ۰ ൌ		ି܅ଵ, and ट ∈ जூൈ௃ and each of its columns contains the temporal course of corresponding 
spatial map in ܡ.  

For perfect ICA decomposition, there is only one nonzero element in each row and each column of 
۱ in Eq. (3), and ݕ௝ the scaled version of ݏ௞ (Hyvärinen et al., 2001). It should be noted that the scale is 
unknown due to the variance indeterminacy of ICA component, and the ݆ in the ݕ௝ can be different from 
the ݇ in the ݏ௞ due to the permutation indeterminacy of ICA components (Hyvärinen et al., 2001). Indeed, 
according to Eq. (1), ݏ௞  is not the true source, ः௞ , but the true source plus decomposed sensor noise, 
ः௞ ൅ ݊௞ . If SNR is low, say, less than 0 dB,  ݏ௞  will be dominated by sensor noise. Although ः௝భ  is 
independent with another source ः௝మ , the independence between ݏ௝భand ݏ௝మ  will be absolutely weakened 
since sensor noise is assumed to be Gaussian, which can prevent to obtain satisfactory ICA decomposition. 
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Therefore, appropriately decreasing additional noise in Eq. (1) can benefit the following ICA 
decomposition.    

2.2.2 Appropriate digital filter to further preprocess fMRI data 
In fMRI data, the digital filter can be performed on the temporal course of a voxel (Friston et al., 2000). 
Regarding the filtering, two fundamental questions are to be answered. The first is how to determine the 
reasonable pass band of frequencies for the filter, and the second is how to implement the filter with the 
consideration of the given signal.  

The correlation coefficient between the temporal course of a musical feature and the temporal 
course of a voxel was calculated to determine the region of the interest in the spatial map of fMRI data 
(Alluri et al., 2012). If the two temporal courses are highly correlated, their spectrum should be similar 
too. Hence, in this study, we examined the magnitude spectrum of the temporal courses of the musical 
features to determine the pass band of the digital filter. Fig. 1 presents the temporal course and its 
magnitude spectrum of each musical feature. It indicates that most of the power of temporal courses is 
below 100 mHz. Hence, the pass band of the digital filter was set from 8 to 100 mHz in this study. The 
low cut-off frequency followed the previous pre-processing for this dataset (Alluri et al., 2012). 

For fMRI data collection, recordings at the beginning of the experiment are usually not included 
into analysis since they are much noisier. In this study, the data from 21 to 480 seconds were used for 
analysis. Hence, the number of scans for analysis is 231 (sampling frequency of the temporal course was 
500 mHz, i.e., TR = 2 seconds). We can design the digital filter through Fast Fourier Transform (FFT). 
For FFT based digital filter, the transformed coefficients out of the pass band are set to be zeros, and then, 
the modified coefficients series were transformed back to the time-domain to produce the filtered signal.  

2.2.3 Estimating number of extracted components  
Before ICA, it is necessary to determine how many components to be extracted. For individual ICA, 
MOS was performed for individual datasets. For the spatial concatenation approach of group ICA, MOS 
was applied to the grouped data directly. For temporal concatenation approach of group ICA, dimension 
reduction was firstly done for each participant like that for individual ICA; then, the selected PCA 
components (each PCA component can be regarded as a virtual scan in fMRI) of different participants 
were stacked together in the virtual scan space (Calhoun et al., 2009); next, MOS was performed on the 
stacked data.  

 For individual datasets, MOS methods including AIC, MDL and KIC based on the resampled 
fMRI data (Li et al., 2007) and SORTE (He et al., 2010) without the resampling step were applied, and 
results of MDL and SORTE were used for the individual ICA. For the two grouped datasets, only MDL 
and SORTE were applied. SORTE was successfully used to estimate the number of sources in EEG data 
(Cong et al., 2011, 2013). It is very computationally efficient (Cong et al., 2012). Therefore, we tested 
SORTE for fMRI data here.     

2.2.4 ICA decomposition 
In this study, ICA was applied on the selected PCA components to extract independent components 
through software, FastICA (Hyvärinen., 1999) based ICASSO (Himberg et al., 2004). The advantage of 
this software is that the stability of ICA decomposition is analyzed. It may run one ICA algorithm many 
times respectively with individually and randomly initialized unmixing matrices; then, all the extracted 
components are clustered into the predefined number of clusters; finally, each common component in each 
cluster represents one component extracted by ICASSO (Himberg et al., 2004).  
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 The nonlinear function for FastICA was the hyperbolic tangen, FastICA was run 100 times, and in 
each round the maximum number of iteration of FastICA was 100 steps. The number of clusters was equal 
to the number of extracted components. Default parameters in ICASSO were used for the clustering. 

The difference of our approach from the default of ICASSO is that the rounds where FastICA did 
not converge were rejected before the clustering in ICASSO.  

2.2.5 Selecting components of interest  
After ICA decomposition, each temporal course of each extracted spatial map was correlated with each 
musical feature. Only the ICA components (i.e., spatial maps) whose temporal courses were significantly 
correlated with musical features were chosen. After that, if the normalized kurtosis (Hyvärinen et al., 
2001) of a selected ICA component (i.e., one spatial map for one participant) was smaller than five, it was 
rejected in order to remove the scattered spatial maps. Here, ‘five’ was determined based on empirical 
experiences. It should be noted that for the group ICA based on the spatial concatenation, one extracted 
ICA components actually includes all participants’ spatial maps, and therefore, it is first disconnected into 
sub-component for each participant, and each sub-component can be assembled into a spatial map.   

 For the selected components by ICA, given one musical feature, if the number of participants was 
equal to or larger than six (more than half of the eleven participants), the selected components were 
considered to represent information of majority of participants in the experiment, and were further 
analyzed.  

Statistically, it is necessary to investigate the significance of the correlation coefficient between 
two temporal courses. Then, the threshold to determine the significant correlation coefficient should be 
given. For such a purpose in this study, one threshold was based on one musical feature and all temporal 
courses of each participant in individual ICA and group ICA under the temporal concatenation approach. 
For the spatial concatenation approach of group ICA, there is only one set of temporal courses and they 
were used to determine the threshold for each musical feature.  

Since the temporal courses of spatial maps and musical features are inevitably correlated many 
times, correction for multiple comparisons should be applied to counter the reduction in statistical power 
(Groppe et al., 2011).  For this purpose, the Monte-Carlo and permutation test procedure presented in 
(Alluri et al., 2012) were employed to calculate the significance of correlation coefficient and to correct 
for multiple comparisons. Pearson correlation analysis was applied. The components of interest were then 
determined as the ones displaying significant correlations (p < 0.01) with the musical features. 

2.2.6 Clustering selected components  
The individual ICA is performed on individual fMRI datasets. Therefore, it is necessary to examine the 
common information across different participants to draw reliable conclusion (Esposito et al., 2005). Here, 
we applied diffusion map to reduce the dimension of each selected ICA component, and then, performed 
the spectral clustering to find the common ICA components across majority of participants (Sipola et al., 
2013). For the completeness of the study, diffusion map is introduced as follows.  

 The initial step of the diffusion map algorithm is to calculate the affinity matrix ܹ, which has 
data vector distances as its elements. Here Gaussian kernel with Euclidean distance metric is used 
(Coifman and Lafon., 2006) as below 

௜ܹ௝ ൌ exp	ሺെ
ฮ௫೔ି௫ೕฮ

మ

ఢ
ሻ                                                            (5) 
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where ݔ௜ is the ݌–dimensional data point. The neighborhood size parameter ߳ is determined by finding the 
linear region in the sum of all weights in ܹ , while trying different values of ߳  (Coifman et al., 
2008,Singer et al., 2009).   

 From the affinity matrix ܹ  the row sum diagonal matrix ܦ௜௜ ൌ ∑ ௜ܹ௝
௡
௝ୀଵ , ݅ ∈ 1,2,⋯ , ݊  is 

calculated. The ܹ  matrix is then normalized as ܲ ൌ ଵܹିܦ . This matrix represents the transition 
probabilities between the data points, which are the samples for clustering and classification. The 
conjugate matrix ෨ܲ ൌ  ଵ is created in order to find the eigenvalues of ܲ. In practice, substitutingିܦ√ܲܦ√
ܲ, we obtain   

෨ܲ ൌ  ଵ.                                                             (6)ିܦ√ଵܹିܦ√

 This so-called normalized graph Laplacian preserves the eigenvalues (Nadler et al., 2008). 
Singular value decomposition (SVD) ෨ܲ ൌ ∗ܷ߉ܷ  yields the eigenvalues ߉ ൌ ݀݅ܽ݃ሺሾߣଵ, ⋯,ଶߣ ,  ௡ሿሻ andߣ
eigenvectors in matrix ܷ ൌ ሾݑଵ, ⋯,ଶݑ ,  ௡ሿ. The eigenvalues of ܲ and ෨ܲ stay the same. It is now possibleݑ
to find the eigenvectors of ෨ܲ with ܸ ൌ  The low-dimensional coordinates in the .(Nadler et al., 2008) ܷܦ√
embedded space Ψ are created using ߉ and ܸas   

Ψ ൌ  (7)                                                                   .ܸ߉

 Now, for each ݌–dimensional data point ݔ௜, there is a corresponding ݀–dimensional coordinate, 
where ݀ ≪   .The number of selected dimensions depends on how fast the eigenvalues decay .݌

 The first few dimensions from the diffusion map represent the data for clustering up to a relative 
prevision, and thus, contain most of the distance differences in the data (Coifman and Lafon., 2006). 
Therefore, some of the first dimensions will be used to represent the data. The threshold at 0 in the 
embedded space divides the space between the possible clusters, which means that a linear classification 
can be used (Nadler et al., 2006,Meila and Shi., 2000,Shi and Malik., 2000).  

 In this study, ݀ ൌ 1, this means the ݌–dimensional data were reduced to one dimension for 
clustering. With the linear threshold, the second eigenvector (the first one is always constant in diffusion 
map analysis) separates the data into two clusters in the low-dimensional space. This eigenvector solves 
the normalized cut problem which means that there are small weights between clusters but the internal 
connections between the members inside the cluster are strong (Meila and Shi., 2000,Shi and Malik., 
2000).  

3. Result 

3.1 Musical features 
As show in Fig. 1, Brightness, Fullness, and Activity are similar, and most of their power falls below 
100mHz in their spectrum. Moreover, Timbral Complexity keeps the rough trends of those three musical 
features. Furthermore, Key Clarity is not significantly correlated with any of the other musical features.  

3.2 Number of extracted components   

3.2.1 Individual ICA  
As shown in Fig.2, using any of the information theory based MOS algorithms among AIC, MDL and 
KIC, the estimated number of sources in the conventionally preprocessed fMRI data (except one subject’s 
result by AIC) was smaller than the estimated number in the further filtered fMRI data by 8-100mHz 
band pass filter (Hereinafter, when the further filtered fMRI data mentioned, it means the 8-100mHz band 
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pass filter was used); using SORTE, the numbers of sources in the further filtered fMRI data decreased in 
contrast to those in the conventionally preprocessed data. For the further filtered fMRI data, AIC, MDL, 
and KIC gave the identical results. According the previous simulation study (Cong et al., 2012), when 
SNR is low, the information theory based MOS algorithms tend to underestimate the true number of 
sources, particularly MDL, and SORTE overestimates it. The results for the real fMRI data here matched 
the simulation study very well, indicating the SNR in the conventionally preprocessed fMRI data was still 
too low for MOS. 

 Furthermore, for the further filtered fMRI data, the estimated number of sources by AIC, MDL 
and KIC was a little bigger than that by SORTE, which also was observed for the further filtered event-
related potentials (ERPs) by performing the wavelet filter on the conventionally preprocessed ERP data 
(Cong et al., 2013).    

 Here, for individual ICA on the further filtered fMRI data, 94 components (estimated by SORTE 
in Fig.2) were extracted. For comparison, individual ICA was also performed on the conventionally 
preprocessed fMRI data, and the number of extracted components was about 30 (estimated by MDL as 
shown in Fig.2).    

3.2.2 Group ICA 
For group ICA, only MDL and SORTE were applied.  

For the temporal concatenation, the estimated numbers of sources in the conventionally 
preprocessed fMRI data were 18 (MDL) and 340 (SORTE), and they were 1 (MDL) and 1012 (SORTE) 
in the further filtered fMRI data.  

 For the spatial concatenation, the estimated numbers of sources in the conventionally 
preprocessed fMRI data were 122 (MDL) and 228 (SORTE), and they were 161 (MDL) and 94 (SORTE) 
in the further filtered fMRI data. 

 As a result, for the filtered fMRI data, 94 components (estimated by SORTE) were extracted by 
group ICA based on the spatial concatenation approach, and group ICA based on the temporal 
concatenation approach was not applied since the estimated number of components did not seem to be 
reasonable. For comparison, for the conventionally preprocessed fMRI data, 122 components (estimated 
by MDL) were extracted by group ICA based on the spatial concatenation approach, and 18 components 
(estimated by MDL) were extracted by group ICA based on the temporal concatenation approach.  

3.3 Selected components regarding musical features  

3.3.1 Individual ICA 

3.3.1.1 Further filtered fMRI data 
Fig.3-a shows the similarity matrix of the selected components whose temporal courses were significantly 
correlated with one musical feature. Among the six musical features, four of them were chosen since the 
number of participants (possessing components whose temporal courses were significantly correlated 
with one musical feature) was larger than half of all eleven participants regarding each of the four ones.  

After the components of interest were selected, the common component across the majority of 
participants was found via diffusion map and spectral clustering. Fig.3-b shows the spectral clustering 
results for the components regarding Brightness. Here, ten components from ten participants were found 
to formulate one dense group. Those ten components actually correspond to the ten components showing 
higher correlation coefficients in the similarity matrix for Brightness in Fig.3-a. Indeed, as long as the 
threshold of the correlation coefficient was correctly defined, the common component could also be found 
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based on the similarity matrix of the selected components. However, defining the threshold tends to be 
challenging and subjective. Based on the diffusion map, the spectral clustering can easily group the data 
points by using the objective threshold ‘0’ as mentioned in the previous section.  

Fig.3-c shows the spatial map of the average over the ten components in the dense group. 
Obviously, the auditory cortex was activated. Before averaging, each component was normalized to its 
standard deviation and subtracted its means.  

For Activity, seven components from seven participants were clustered into a dense group. They 
were actually included into the ten components mentioned above. For Fullness and Timbral Complexity 
there were no more than five participants showing similar components.   

As a result, by the individual ICA on the further filtered fMRI data, two musical features, 
Brightness and Activity, were found to be significantly correlated with the fMRI data of majority of 
participants. The selected common spatial maps regarding each of the two features were further analyzed.  

3.3.1.2 ROI analysis 
We performed region of interest (ROI) analysis on the spatial maps for Brightness and Activity, which 
had been averaged from common components across more than 50% of participants. The results show 
highly significant areas mainly within and surrounding the auditory cortices. A slight right-lateralized 
effect was observed in both maps. For both the two selected musical features, one large cluster at each 
hemisphere was identified (see Table 2 for a list of the clusters). The bilateral superior temporal gyrus 
(STG) was the most sizable region across both maps (k>1100), followed by the left middle temporal 
gyrus (MTG; k>550).  Other common areas across both maps were the bilateral rolandic operculum 
(k>55) and bilateral Heschl’s gyrus (k>65), both predominantly right-lateralized, plus the right insula 
(k>24). Similarly, the temporal pole of the STG (k>77) showed a rightward bias, whereas the 
supramarginal gyrus (SMG; k>11) displayed dissimilar hemispheric weightings in both maps.  

3.3.1.3 Conventionally preprocessed fMRI data  
Fig.4 shows the similarity matrix of the selected components whose temporal courses were significantly 
correlated with one musical feature. Among six musical features, only three of them were chosen since 
the number of participants (possessing components whose temporal courses were significantly correlated 
with one musical feature) was larger than half of all eleven participants regarding each of the three ones.  

However, for any of the selected three features, there were no more than five participants 
showing common components.  

3.3.2 Group ICA 

3.3.2.1 Further filtered fMRI data 
Temporal concatenation approach was not applied since the estimated number of components did not 
seem reasonable.  

 By the spatial concatenation approach, only one ICA component was selected since just this 
corresponding temporal course was significantly correlated with the musical feature (Brightness here) and 
the number of selected participants was larger than half of all eleven participants. Here, eight out of 
eleven participants were selected since the normalized kurtoses of their spatial maps were all larger than 
five. For the other five musical features, no components satisfied those conditions.     
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3.3.2.2 Conventionally preprocessed fMRI data  
Temporal concatenation approach was applied. However, there was no component whose temporal 
courses of more than half of all eleven participants were simultaneously correlated with any musical 
feature significantly.   

 By the spatial concatenation approach, only one ICA component was selected since just this 
corresponding temporal course was significantly correlated with the musical feature (Brightness here) and 
the number of selected participants was larger than half of all eleven participants.  Here, nine out of 
eleven participants were selected since the normalized kurtoses of their spatial maps were all larger than 
five. For other five musical features, no components satisfied those conditions.   

All the eight spatial maps used for Figs.5&6 showed the auditory cortex activated like the spatial 
map in Fig.3-c. For simplicity of the study, the spatial maps used for Figs.5&6 are not presented here.   

3.4 Kurtoses of selected components regarding musical features  
Table-1 gives the mean, standard deviation, minimum, median and maximum of the kurtoses of the 
finally selected spatial maps (e.g., ICA components) regarding each selected musical feature for each 
method. The kurtosis was used to select the component of interest here. Obviously, the spatial maps 
extracted by individual ICA from the further filtered fMRI data are much more super-Gaussian than those 
by any other methods.  

Discussion 
ICA has been often used to process fMRI data nowadays mostly for the resting-state, block and event-
related designs due to its outstanding advantage (Calhoun et al., 2009,Calhoun and Adali., 2012). For the 
fMRI data during real-world experiences, only a few studies reported the application of ICA (Malinen et 
al., 2007,Ylipaavalniemi et al., 2009). In the present study, key issues in applying ICA on fMRI data 
during free-listening to naturalistic and continuous music were investigated.  

 First of all, different from most of studies using ICA to decompose fMRI data, a digital filter was 
further performed on the temporal course of each voxel after the conventionally pre-processing step in 
order to further remove sources of no interest and noise before ICA. In this study, the pass band of the 
FFT based digital filter was set to 8-100 mHz, which can be regarded as the combination of a high pass 
filter with the cut-off frequency at 8 mHz and a low pass filter with the cut-off frequency at 100 mHz. 
The low cut-off frequency has been used in the conventional pre-processing step to remove the low-
frequency drift artifacts (Alluri et al., 2012). The determination of the high cut-off frequency was based 
on the magnitude spectrum of the musical features of the auditory stimulus since the selection of ICA 
components of interest is based on the correlation between the temporal courses of musical features and 
the temporal courses of the ICA components. Furthermore, the sampling frequency is 500 mHz and the 
folding frequency is 250 mHz here. Given such a sampling frequency, if the highest frequency in the 
signal to be recorded is no greater than 250 mHz, all the frequency components can be recovered 
according to the well-known sampling theorem. However, it is difficult to determine that the highest 
frequency component in fMRI data is not over 250 mHz, and the possibly existing frequency components 
which are higher than 250 mHz can appear as artifactual low frequencies in the digitized data (Luck, 
2005). Moreover, each digital filter practically cannot avoid the transitional band. Therefore, the high cut-
off frequency is essential to be lower than the folding frequency. In practice, the high cut-off frequency 
should be no more than one third of the sampling frequency (Luck, 2005). 

 Secondly, for individual ICA, the estimation by model order selection methods on the 
conventionally pre-processed fMRI data and the further filtered fMRI data indicated that the estimated 
number of sources in the former data seemed not to be precise, but tended to be reasonable in the latter 
data as shown in 3.2.1. Indeed, when SNR is low, it is very difficult to accurately estimate the model 
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order (Cong et al., 2012). Therefore, it is expected that the FFT filter used in this study could benefit the 
model order selection. Particularly, the fast model order selection method, the eigenvalues’ gap based 
SORTE (He et al., 2010), worked very well for the further filtered fMRI data. It is very promising to use 
the gap based method for model order selection (Cong et al., 2012) when ICA is applied for the fMRI 
data processing. 

 Thirdly, individual ICA on the filtered fMRI data outperformed individual ICA on the 
conventionally pre-processed fMRI data from the point of view of the degree of the correlation between 
the fMRI data of majority participants and the musical features of the music stimulus. We think the main 
reason origins from the number of extracted components, i.e., the estimated number of sources. For the 
conventionally pre-processed fMRI data, the number of extracted components was about 30 by MDL in 
this study, and this number seemed to be much smaller than the true number of sources in the data with 
the reference to the estimated number of sources from the further filtered fMRI data. Therefore, selecting 
30 PCA components of the conventionally pre-processed fMRI data for ICA made the linear transform 
model of the selected data undetermined, i.e., the true number of sources is larger than the number of 
observed signals (e.g., the number of selected PCA components here). It is not surprising that the results 
could be worse when the determined ICA algorithm was applied on the underdetermined mixtures.       

 Fourthly, based on the spatial concatenation approach, group ICA on the filtered fMRI data did 
not significantly differentiate from group ICA on the conventionally pre-processed fMRI data. 
Furthermore, the spatial concatenation based group ICA outperformed the temporal concatenation based 
group ICA from the point of view of the estimation of number of sources and the degree of the correlation 
between the fMRI data of majority participants and the musical features.  

Fifthly, using individual ICA from the further pre-processed fMRI data, we found two musical 
features (Brightness and Activity) were significantly correlated with the temporal courses of the common 
spatial maps of majority of participants. For group ICA on the further filtered fMRI data or the 
conventionally pre-processed fMRI data, only one musical feature (Brightness) was found. Furthermore, 
by the individual ICA, there were more components whose temporal courses were significantly correlated 
with the musical features, and those components which were not common across majority of participants 
were difficult for group ICA to extract out. Moreover, it has been recently again proved that ICA is 
indeed based on independence among non-Gaussian sources (Calhoun et al., 2013). From this point of 
view, the individual ICA on the further filtered fMRI data outperformed any other methods in this study 
since the selected ICA components by this method were the most super-Gaussian. However, group ICA is 
much more straightforward for the group-level comparison than the individual ICA (Calhoun et al, 2009). 
The similar results between individual ICA and group ICA here guarantee the rationale in using group 
ICA for the fMRI data during real-world experiences in the future.     

 Sixthly, finding common spatial maps across different participants was based on the diffusion 
map dimensionality reduction (Coifman and Lafon, 2006) and spectral clustering (Nadler et al., 2006) in 
this study. The approach was earlier compared to other clustering methods, namely PCA and kernel PCA 
based spectral clustering, and hierarchical clustering based on the similarity matrix. For details, please 
refer to our previous study (Sipola et al., 2013). Diffusion map reduces dimensionality of the data from 
hundreds of thousands to two for easier clustering. The reduced data conveniently visualizes the 
distribution of data samples in the two-dimensional space. The assumption that most of the spatial maps 
describing a response to a certain stimulus are similar leads to the belief that they form clusters. Diffusion 
map finds a structure based on the transition probabilities between samples. The obtained clustering is 
meaningful in that sense, finding a description of the data that separates the clusters. 

Finally, our study is different from Malinen et al. (2007) and Ylipaavalniemi et al. (2009) in 
selecting the interesting spatial maps extracted by ICA from fMRI data elicited by the naturalistic 
stimulus. In Malinen et al. (2007), the spatial maps of interest were chosen based on roughly inspecting 
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the correlations between the stimulus sequence and the temporal courses of the corresponding spatial 
maps. In Ylipaavalniemi et al. (2009), they were decided according to the canonical correlation analysis 
(CCA) between the temporal courses of acoustical features of speech and those of spatial maps. Our study 
examined the statistically significant correlation coefficients between the temporal course of each musical 
feature and those of spatial maps since we wanted to examine each musical feature individually. 
Furthermore, since the significance of the correlation coefficient was determined by the Monte-Carlo and 
permutation test procedure, the condition to select a spatial map of interest was stricter here. 

The results derived from the common spatial maps per feature obtained from our individual ICA 
approach and further clustering method intersect with those obtained by Alluri et al. (2012) using the 
same set of musical features and fMRI data acquired during a continuous, free listening condition. Thus, 
the map of relevant regions for Activity was virtually identical to the one found by the preceding authors, 
comprising most of the two largest clusters recruited in their study, with very similar regional 
contributions. Other cerebellar correlates observed in their study were not identified, nor were common 
negative correlating regions in the frontal and parietal lobes across most of the participants observed. For 
Brightness our results closely resemble the largest foci in Alluri et al. (2012) at each hemisphere. 
Similarly as with Activity, our method failed to map the areas outside these two large auditory cortical 
clusters, i.e., in the basal ganglia and cerebellum.  

Overall, we observed agreement with the results reported in Alluri et al. (2012). More specifically, 
the present ICA approach seemed to be sensitive to the largest clusters present in the aforementioned 
study pertaining to the auditory cortical surface, and rather insensitive in detecting smaller clusters in 
other cerebral and cerebellar areas. 
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Table  
Table-1: Normalized kurtoses of selected ICA components for each method regarding each selected 
musical feature: ICA-1 is individual ICA on the further filtered fMRI data, ICA-2 is individual ICA on 
the conventionally pre-processed fMRI data, ICA-3 is group ICA on the further filtered fMRI data, and 
ICA-4 is group ICA on the conventionally pre-processed fMRI data. 

 

Method | 
Parameter 

Number of 
selected 

components: R 

Mean of  
R 

kurtoses 

Standard 
deviation of  
R kurtoses 

Minimum of  
R kurtoses 

Median of  
R kurtoses 

Maximum of  
R kurtoses 

ICA-1: 
Fullness 

9 35.8 23.7 9.8 28.1 78.5 

ICA-1: 
Brightness 

17 35.6 18.8 9.6 35.3 68.9 

ICA-1: 
Timbral 

Complexity 
6 21.4 13.6 8.1 16.4 40.9 

ICA-1: 
Activity 

15 37.3 20.5 9.8 35.3 78.5 

ICA-2: 
Fullness 

7 16.2 13.3 6.2 11.7 44.7 

ICA-2: 
Brightness 

10 23.5 16.5 7.2 20.1 55.5 

ICA-2: 
Activity 

8 21.9 10.5 11.7 19.8 44.7 

ICA-3: 
Brightness 

8 12.7 6.7 5.2 12.7 23.0 

ICA-4: 
Brightness 

9 12.5 7.3 5.3 12.9 29.1 
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Table-2: Results of the region on interest (ROI) analysis using Marsbar v0.431 on the clusters obtained via 
the 18-connectivity scheme employed in SPM. Clusters were extracted from the averaged spatial maps 
across more than 50% of participants (for Activity and Brightness). The significance threshold was set to 
p=.001 (Z=3.29), and regions ≤ 10 voxels were rejected. The table reports hemispheric location, within-
cluster region size (k; i.e., number of voxels), the peak Z-score per region within the cluster, and its 
respective MNI coordinates. Anatomical areas within the clusters were determined using Automated 
Anatomical Labeling (AAL; Tzourio-Mazoyer et al., 2002).  Abbreviations: STM (superior temporal 
gyrus), MTG (middle temporal gyrus), SMG (supramarginal gyrus) 

 

LEFT k max Z x y z 
 

RIGHT k max Z x y z 

ACTIVITY                         

Cluster #1             Cluster #2           

STG 1161 13.89 -58 -10 2   STG 1474 13.01 62 -16 8 

MTG 571 9.99 -56 -16 0   Rolandic operculum 208 10.53 56 -16 10 

Heschl’s gyrus 65 8.64 -54 -16 8   Heschl’s gyrus 199 11.47 58 -10 6 

Rolandic operculum 55 6.27 -46 -30 14   Temporal pole, STG 85 7.56 56 4 -4 

SMG 15 5.51 -54 -26 14   Insula 24 8.32 50 -4 0 

              SMG 13 3.83 56 -36 24 

              Postcentral gyrus 11 6.11 64 -16 14 

                          

BRIGHTNESS                         

Cluster #1             Cluster #2           

STG 1183 13.88 -58 -10 2   STG 1499 12.83 60 -14 6 

MTG 556 9.93 -56 -16 0   Heschl’s gyrus 211 12.01 54 -10 4 

Heschl’s gyrus 83 8.16 -54 -16 8   Rolandic operculum 164 9.43 56 -16 10 

Rolandic operculum 60 5.89 -46 -30 14   Temporal pole, STG 77 6.50 58 2 0 

SMG 11 5.01 -64 -24 14   Insula 34 8.39 50 -4 0 

  

                                                            
1 MarsBaR v0.43 (http://marsbar.sourceforge.net) 
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Figure 
 

Figure 1: a) Temporal courses of six musical features, b) Magnitude spectrums of six musical features  

Figure 2: Estimated number of sources for individual ICA  

Figure 3: Results of individual ICA on the further filtered fMRI data: a) Similarity matrix of selected 
components regarding each selected musical feature (the title of each subplot shows the name of the 
selected musical feature), b) Demo for diffusion map based spectral clustering, c) Spatial map  

Figure 4: Results of individual ICA on the conventionally preprocessed fMRI data: Similarity matrix of 
selected components regarding each selected musical feature. The title of each subplot shows the name of 
the selected musical feature. 

Figure 5: Results of group ICA on the further preprocessed fMRI data: Similarity matrix of selected 
components. The title of the figure shows the name of the selected musical feature, 

Figure 6: Results of group ICA on the conventionally preprocessed fMRI data: Similarity matrix of 
selected components. . The title of the figure shows the name of the selected musical feature, 
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Fig. 1-a 
 

 

Fig. 1-b 
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Fig. 2 

 

 

Fig. 3-a 

 
 

 

 

Fig. 3-b 
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Fig. 3-c 

 

 

c© 2014 Elsevier. This is the authors’ postprint version of the article. The original article appeared as: Fengyu Cong, Tuomas Puoliväli, Vinoo
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Fig. 4 

 

 

Fig. 5 
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Fig. 6 
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