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Abstract. In this study, some Baum-Katz’s type theorems for pairwise independent random ele-
ments are extended to a metric space endowed with a convex combination operation. Our results are
considered in the cases of identically distributed and non-identically distributed random elements.
Some illustrative examples are provided to sharpen the results.
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1 Introduction

The concept of complete convergence for a sequence of random variables (r.v.’s) was introduced
by Hsu and Robbins [6]. A sequence {Xn, n > 1} of real-valued r.v.’s converges completely to a
constant θ if

∑∞
n=1 P (|Xn − θ| > ε) < ∞ for any ε > 0, and hence it follows from Borel-Cantelli’s

lemma that Xn → θ almost surely. Also in [6], Hsu and Robbins proved that the sequence of
arithmetic means of independent and identically distributed (i.i.d.) r.v.’s converges completely to
the common expected value if their variance is finite. This result has been considered and extended
by many authors. A noteworthy result was obtained by Katz [7] and Baum and Katz [2], that is:

Theorem 1.1. Let {X,Xn, n > 1} be a sequence of i.i.d. r.v.’s, and set Sn =
∑n

i=1Xi. Given p > 1
and 0 < r < 2. Then E|X|pr < ∞ if and only if

∑∞
n=1 n

p−2P
(
max16k6n |Sk − km| > εn1/r

)
< ∞

for every ε > 0, where m = EX if pr > 1 and m = 0 if 0 < pr < 1.

This result has been extensively studied for various classes of r.v.’s. Recently, Bai et al. [1]
considered a particular case of above Baum-Katz’s result when r = 1 and 1 6 p < 2, and in this
situation the condition of i.i.d. can be relaxed to be pairwise i.i.d. ([1, Theorem 1.2]). Moreover,
when considering in Banach space setting, Bai et al. [1] also derived a similar result without any
geometric property of the underlying Banach space ([1, Theorem 3.2]).

Besides considering Baum-Katz’s type theorems for various classes of r.v.’s (e.g., pairwise i.i.d.
r.v.’s in [1] or martingale, negatively associated r.v.’s, ρ∗-mixing r.v.’s in [8]), many researchers
also have extended them into more abstract spaces such as Hilbert spaces [5] or Banach spaces
[1]. Continuing this direction, we will discuss Baum-Katz’s type theorems in a convex combination
space, which is the certain metric space introduced in 2006 by Terán and Molchanov [12]. Roughly
speaking, a convex combination space is a metric space endowed with a convex combination oper-
ation and the extension from linear spaces to convex combination spaces is not trivial. Some very
basic sets, such as singletons and balls, may fail to be convex in this type of metric spaces. To illus-
trate this demonstration, Terán and Molchanov [12] provided many interesting examples for convex
combination spaces, for example, the space of all cumulative distribution functions and the space
of upper semicontinuous functions with t-norm. Furthermore, the authors also proved several basic
properties of convex combination operation and used those to get the strong law of large numbers
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for pairwise i.i.d. random elements [12, Theorem 5.1], which extended [4, Theorem 1] of Etemadi.
Since then, some limit theorems for random elements taking values in convex combination space
were considered and extended (see [9, 11, 12, 14]). On the other hand, as shown recently in [13],
it is fairly remarkable that although these spaces are not linear in general, they always contains a
subspace which can be isometrically embedded into a Banach space and this embedding preserves
the convex combination operation.

In this study, we establish the complete convergence for maximum partial sums of a sequence of
random elements in a convex combination space, which gives us some new variants of Baum-Katz’s
type theorems. Notice that some usual techniques developed in Banach space are no longer appli-
cable here because we are dealing with problems in a nonlinear space. For example, Lemma 2.2 in
Section 2 is not necessary if one considers the problems in Banach space. Moreover, an illustrative
example will be given to show that some conditions appearing in our results cannot be removed in
general convex combination space while they become trivial in Banach space. This paper is orga-
nized as follows. In Section 2, we state and summarize some basic results about convex combination
spaces, discuss the notion of compactly uniform integrability in Cesàro sense and present some aux-
iliary lemmas. Our main results regarding to Baum-Katz’s type theorems for pairwise independent
random elements taking values in convex combination space are established in Section 3.

2 Preliminaries

Throughout this paper, (Ω,A, P ) is a complete probability space. For A ∈ A, the notation I(A)
(or IA) is the indicator function of A, the symbol C denotes a general positive constant and it is
probably not the same in each appearance.

For the reader’s convenience, we now present a short introduction to the work given by Terán
and Molchanov [12]. Let (X , d) be a metric space. Denote ‖x‖u := d(u, x) for u, x ∈ X . Based
on X , a convex combination operation is defined so that for all n > 1, numbers λ1, . . . , λn > 0
that satisfy

∑n
i=1 λi = 1, and all u1, . . . , un ∈ X , this operation produces an element in X , which

is denoted by [λ1, u1; . . . ;λn, un] or [λi, ui]
n
i=1. Assume that [1, u] = u for every u ∈ X and the

following properties are satisfied:

(CC.i) (Commutativity) [λi, ui]
n
i=1 = [λσ(i), uσ(i)]

n
i=1 for every permutation σ of {1, . . . , n};

(CC.ii) (Associativity) [λi, ui]
n+2
i=1 =

[
λ1, u1; . . . ;λn, un;λn+1 + λn+2,

[ λn+j

λn+1+λn+2
, un+j

]2
j=1

]
;

(CC.iii) (Continuity) If u, v ∈ X and λ(k) → λ ∈ (0; 1) as k → ∞, then [λ(k), u; 1 − λ(k), v] →
[λ, u; 1− λ, v];

(CC.iv) (Negative curvature) If u1, u2, v1, v2 ∈ X and λ ∈ (0, 1), then

d([λ, u1; 1− λ, u2], [λ, v1; 1− λ, v2]) 6 λd(u1, v1) + (1− λ)d(u2, v2);

(CC.v) (Convexification) For each u ∈ X , there exists limn→∞[n−1, u]ni=1, which is denoted by KXu
(or Ku without any confusion), and K is called the convexification operator.

Then, a metric space endowed with a convex combination operation is referred to the convex com-
bination space (shortly, CC space). Notice that [λ1, u1; . . . ;λn, un] and the shorthand [λi, ui]

n
i=1

have the same intuitive meaning as the more familiar λ1u1 + · · · + λnun and
∑n

i=1 λiui, but X is
not assumed to have any addition. By induction and (CC.ii), the axiom (CC.iv) can be extended
to convex combinations of n elements as follows: if ui, vi ∈ X , λi ∈ (0; 1) with

∑n
i=1 λi = 1, then
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d([λi, ui]
n
i=1, [λi, vi]

n
i=1) 6

∑n
i=1 λid(ui, vi). The following properties (2.1)–(2.6) are implied from

(CC.i)–(CC.v) above, and their proofs were given in [12]:

(2.1) For every u11, . . . , umn ∈ X and α1, . . . , αm, β1, . . . , βn > 0 with
∑m

i=1 αi =
∑n

j=1 βj = 1, we

have [αi, [βj , uij ]
n
j=1]mi=1 = [αiβj , uij ]

i=m,j=n
i=1,j=1 .

(2.2) The convex combination operation is jointly continuous in its 2n arguments.

(2.3) The convexification operator K is linear, that is K([λj , uj ]
n
j=1) = [λj ,Kuj ]

n
j=1.

(2.4) If u ∈ X and λ1, . . . , λn > 0 with
∑n

j=1 λj = 1, then K([λj , u]nj=1) = Ku = [λj ,Ku]nj=1.
Hence, K is an idempotent operator on X .

(2.5) For λ1, λ2, λ3 > 0 with λ1 + λ2 + λ3 = 1 and u, v ∈ X ,

[λ1, u;λ2,Kv;λ3,Kv] = [λ1u; (λ2 + λ3),Kv].

(2.6) The mapping K is non-expansive, that is d(Ku,Kv) 6 d(u, v).

Let λk ⊂ (0; 1), λk → 0 and u, v ∈ X . By (CC.iv) and property (2.4), we have

d([λk,Ku; 1− λk,Kv],Kv) = d([λk,Ku; 1− λk,Kv], [λk,Kv; 1− λk,Kv]) 6 λkd(Ku,Kv)→ 0

as k → ∞. It follows [λk,Ku; 1 − λk,Kv] → Kv and this allows us to extend weights λi from
(0; 1) to [0; 1] for elements in K(X ), it means that we can define [λi, xi]i∈{i :λi>0} = [λi, xi]i∈{i :λi>0},
where xi ∈ K(X ),

∑
i λi = 1.

Suppose that (X , d) is a metric space. A mapping X : Ω → X is called an X -valued random
element (or A-measurable) if X−1(B) ∈ A for all B ∈ B(X ), where B(X ) is the Borel σ-algebra on
X . When an X -valued random element X takes finite values, it is called a simple random element.

The distribution PX of an X -valued random element X is defined by PX(B) = P (X−1(B)),∀B ∈
B(X ), and two X -valued random elements X,Y are said to be identically distributed if PX =
PY . The collection of X -valued random elements {Xi, i ∈ I} is said to be independent (resp.
pairwise independent) if the collection of σ-algebras {σ(Xi), i ∈ I} is independent (resp. pairwise
independent), where σ(X) = {X−1(B), B ∈ B(X )}.

In the sequel, we assume that (X , d) is a separable and complete CC space. According to (CC.v),
the set K(X ) is nonempty, and hence an element u0 ∈ K(X ) is fixed. Since X is separable, there
exists a countable dense subset {un, n > 1} of X . For each k > 1, we define the mapping ϕk : X → X
by setting ϕk(x) = umk(x), where mk(x) = min{i ∈ {0, . . . , k} : d(ui, x) = min06j6k d(uj , x)}.

The expectation for an integrable X -valued random element is constructed via approximation
as follows. For a simple random element X = [IΩi , xi]

n
i=1, the expectation of X is defined by EX =

[P (Ωi),Kxi]
n
i=1. It is easy to prove that if X,Y are simple random elements, then d(EX,EY ) 6

Ed(X,Y ). A random element X : Ω → X is said to be integrable if d(u,X) is an integrable real-
valued random variable for some u ∈ X , and the space of all integrable X -valued random elements
is denoted by L1

X . Since X is separable and complete, any integrable X -valued random element
can be approximated by a sequence of simple random elements. Namely, if X ∈ L1

X then X =
limk→∞ ϕk(X), and the expectation of X is defined by EX := limk→∞Eϕk(X). Based on the
approximation, we can also prove that d(EX,EY ) 6 Ed(X,Y ) whenever X,Y ∈ L1

X .
A set A ⊂ X is said to be convex if [λi, ui]

n
i=1 ∈ A for all ui ∈ A and any positive numbers λi

that sum up to 1. The convex hull of A ⊂ X , denoted by coA, is the smallest convex subset of X
containing A, and coA denotes the closed convex hull of A. Let k(X ) denote the set of nonempty
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compact subsets of X . It follows from [12, Theorem 6.2] that if X is a separable complete CC space,
then the space k(X ) with the convex combination

[λi, Ai]
n
i=1 = {[λi, ui]ni=1 : ui ∈ Ai, for all i}

and the Hausdorff metric dH

dH(A,B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)
}

is a separable complete CC space as well, where the convexification operator Kk(X ) is given by

Kk(X )A = coKX (A) = co{KXu : u ∈ A}.

This is a nice feature of CC space. Based on this property, if a result holds in CC space, then it can
be uplifted to the space of nonempty compact subsets. Further details can be found in [11, 12, 13].

The notion of compactly uniform integrability in Cesàro sense for a collection of random elements
taking values in Banach spaces was discussed by many authors (see, e.g., [1, 3, 15]). We now
introduce this notion in metric spaces, which is also naturally extended from Banach spaces. Let
r > 0, then a sequence {Xn, n > 1} of X -valued random elements is said to be compactly uniformly
r-th order integrable in Cesàro sense (Cesàro r-th CUI) if there is a u ∈ X such that for every
ε > 0, there exists a compact subset Kε (depending on u) of X with

sup
n>1

(
n−1

n∑
i=1

E (‖Xi‖ruI(Xi /∈ Kε))
)
6 ε.

When r = 1, we also use the terminology Cesàro compactly uniformly integrable or Cesàro CUI for
the sake of simplicity. The following proposition shows that the notion of Cesàro r-th CUI does not
depend on the selection of u.

Proposition 2.1. A sequence {Xn, n > 1} of X -valued random elements is Cesàro r-th CUI with
respect to some element u if and only if it is Cesàro r-th CUI with respect to any element a ∈ X .

Proof. Suppose that {Xn, n > 1} is Cesàro r-th CUI with respect to u and let a be another element
of X . For ε > 0 and for each m ∈ N, there exists Kε,m ∈ k(X ) such that

n−1
n∑
i=1

E (‖Xi‖ruI(Xi /∈ Kε,m)) 6
ε

m2m
, ∀n > 1.

Let B(x, δ) denote the open ball with center x ∈ X and radius δ. We have

n−1
n∑
i=1

m−1P
(
Xi /∈

(
Kε,m ∪B

(
u,m−1/r

)))
6 n−1

n∑
i=1

E‖Xi‖ruI
(
Xi /∈

(
Kε,n ∪B

(
u,m−1/r

)))
6 n−1

n∑
i=1

E‖Xi‖ruI (Xi /∈ Kε,m) 6
ε

m2m
.

Therefore,

n−1
n∑
i=1

P
(
Xi /∈

(
Kε,m ∪B

(
u,m−1/r

)))
6

ε

2m
.
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The compactness of Kε,m follows that it can be covered by a finite number of open balls with equal
radii m−1/r, and so is Kε,m∪B

(
u,m−1/r

)
. Set Kε = ∩m>1

(
Kε,m ∪B

(
u,m−1/r

))
, then Kε is totally

bounded in X . Since X is complete, the closure clKε of Kε in X is compact. Thus, we obtain

n−1
n∑
i=1

P (Xi /∈ clKε) 6 n−1
n∑
i=1

P (Xi /∈ Kε) 6 n−1
n∑
i=1

P
(
Xi /∈ ∩m>1

(
Kε,m ∪B

(
u,m−1/r

)))
6 n−1

n∑
i=1

P
(
∪m>1

(
Xi /∈

(
Kε,m ∪B

(
u,m−1/r

))))
6
∞∑
m=1

ε

2m
= ε.

Denote Kε = clKε ∪ Kε,1, then Kε ∈ k(X ). Hence for all n > 1,

n−1
n∑
i=1

E (‖Xi‖raI(Xi /∈ Kε)) 6 Crn
−1

n∑
i=1

E(‖Xi‖ruI(Xi /∈ Kε)) + Crd
r(u, a)

(
n−1

n∑
i=1

P (Xi /∈ Kε)
)

6 Cr (ε/2 + dr(u, a)ε) .

By the arbitrariness of ε > 0, the proof is completed.

By Jensen’s inequality, it is easy to see that for 0 < r 6 p,(
n−1

n∑
i=1

E‖Xi‖ruI(Xi /∈ K)
)p/r

6 n−1
n∑
i=1

E‖Xi‖puI(Xi /∈ K),

and this implies that if {Xn, n > 1} is Cesàro p-th CUI then it is also Cesàro r-th CUI for 0 < r 6 p.
Further details about CUI, the readers can refer to [15].

Lemma 2.2. ([9, Lemma 3.3]) Let {ai, bi, 1 6 i 6 n} ⊂ [0, 1] be a collection of nonnegative
constants with

∑n
i=1 ai =

∑n
i=1 bi = 1. Then d([ai,Kxi]

n
i=1, [bi,Kxi]

n
i=1) 6

∑n
i=1 |ai − bi|d(xi, u),

where x1, . . . , xn, u ∈ X are arbitrary.

Notice that the inequality d([ai, xi]
n
i=1, [bi, xi]

n
i=1) 6

∑n
i=1 |ai−bi|d(xi, u) does not hold for x1, . . . , xn ∈

X in general as shown in [13, Example 1].

Lemma 2.3. ([16, Lemma A.6]) Let A1, . . . , An be events satisfying Var(
∑n

i=1 IAi) 6 α
∑n

i=1 P (Ai),
where positive α does not depend on n. Then (1− P (∪ni=1Ai))

2
∑n

i=1 P (Ai) 6 αP
(
∪ni=1 Ai

)
.

3 Baum-Katz’s type theorems for pairwise independent X -valued
random elements

Throughout this section, X is a complete and separable CC space and u0 is the fixed element of
K(X ) as mentioned in Section 2.

In the first theorem, we establish a similar result to [1, Theorem 1.2] in CC space. However, the
version in CC space has a significant difference compared to the corresponding version in Banach
space, that is condition (3.1) below. It becomes trivial when one considers in Banach space with
usual convex combination operation, moreover we also show immediately after the proof that it
cannot be removed in general CC space, even when considered random elements are independent.
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Theorem 3.1. Let 1 6 p < 2, a ∈ K(X ) and let {X,Xn, n > 1} be a sequence of pairwise i.i.d.
X -valued random elements. Then EX = a and E‖X‖pa <∞ if and only if

Edp(X,KX) <∞ (3.1)

and
∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, Xi]

k
i=1, a

)
> nε

)
<∞ for all ε > 0. (3.2)

Proof. Necessity: If EX = a and E‖X‖pa <∞, then

Edp(X,KX) 6 2p−1(E‖X‖pa + E‖KX‖pa)
= 2p−1(E‖X‖pa + Edp(KX,Ka)) 6 2pE‖X‖pa <∞.

We now need to prove that (3.2) holds.
Step 1. Assume that X is simple with values x1, x2, . . . , xm on non-null sets Ω1,Ω2, . . . ,Ωm

respectively. Since {X,Xn, n > 1} is identically distributed, each Xn also takes values x1, . . . , xm
a.s. For each j = 1, . . . ,m, set

Zjn(ω) =
n∑
i=1

I(Xi = xj)(ω) = card{i ∈ [1, n] : Xi(ω) = xj},

Tn(ω) = {j : 1 6 j 6 m,Zjn(ω) > 0}, n > 1.

Then {Zjn(ω)}∞n=1 is a non-decreasing sequence for each j and each ω. By (CC.i) and property (2.1),

[k−1, Xi]
k
i=1 =

[
k−1Zjk,

[
(Zjk)

−1, xj
]Zj

k

i=1

]
j∈Tk

a.s.

Therefore,

d
(
[k−1, Xi]

k
i=1, EX

)
= d
([
k−1Zjk,

[
(Zjk)

−1, xj
]Zj

k

i=1

]
j∈Tk

,
[
P (Ωj),Kxj

]m
j=1

)
6 d
([
k−1Zjk,

[
(Zjk)

−1, xj
]Zj

k

i=1

]
j∈Tk

,
[
k−1Zjk,Kxj

]
j∈Tk

)
+ d
([
k−1Zjk,Kxj

]
j∈Tk

,
[
P (Ωj),Kxj

]m
j=1

)
6
∑
j∈Tk

k−1Zjkd
([

(Zjk)
−1, xj

]Zj
k

i=1
,Kxj

)
+

m∑
j=1

∣∣k−1Zjk − P (Ωj)
∣∣‖Kxj‖u0 (by (CC.iv) and Lemma 2.2)

6
∑
j∈Tk

k−1Zjkd
([

(Zjk)
−1, xj

]Zj
k

i=1
,Kxj

)
+M

m∑
j=1

∣∣k−1Zjk − P (Ωj)
∣∣,

where M := max16j6m ‖xj‖u0 . It implies

n−1 max
16k6n

kd
(
[k−1, Xi]

k
i=1, EX

)
6 max

16k6n

∑
j∈Tk

Zjk
n
d
([

(Zjk)
−1, xj

]Zj
k

i=1
,Kxj

)
+M

m∑
j=1

n−1 max
16k6n

∣∣Zjk − kP (Ωj)
∣∣

:= (I1) + (I2).

Next, we show that (I1) < ε/2 for all ω ∈ Ω when n is sufficiently large. Indeed, by the definition
of the operator K,

lim
n→∞

d([n−1, xj ]
n
i=1,Kxj) = 0
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for each j = 1, . . . ,m. Thus, there exists n0(ε,m) ∈ N such that for all n > n0(ε,m) and for all
j = 1, . . . ,m,

d([n−1, xj ]
n
i=1,Kxj) <

ε

2m
. (3.3)

Denote
N(ε,m) = max

16j6m
max

16k<n0(ε,m)
d
(
[k−1, xj ]

k
i=1,Kxj

)
and let n(ε,m) be the smallest integer number such that n(ε,m) > 2ε−1mN(ε,m)n0(ε,m). Now,
for any n > n(ε,m) and for each k = 1, . . . , n, each ω ∈ Ω:
If Zjk(ω) > n0(ε,m), then it follows from (3.3) and n−1Zjk(ω) 6 n−1Zjn(ω) 6 1 that

Zjk(ω)

n
d
([

(Zjk(ω))−1, xj
]Zj

k(ω)

i=1
,Kxj

)
<

ε

2m
.

If 0 < Zjk(ω) < n0(ε,m), then

Zjk(ω)

n
d
([

(Zjk(ω))−1, xj
]Zj

k(ω)

i=1
,Kxj

)
<
n0(ε,m)

n(ε,m)
N(ε,m) 6

ε

2m
.

Hence, for n > n(ε,m)

Zjk(ω)

n
d
([

(Zjk(ω))−1, xj
]Zj

k(ω)

i=1
,Kxj

)
6

ε

2m
.

This implies that

(I1) = max
16k6n

∑
j∈Tk

Zjk
n
d
([

(Zjk)
−1, xj

]Zj
k

i=1
,Kxj

)
6 max

16k6n

∑
j∈Tk

ε

2m
6 max

16k6n

m∑
j=1

ε

2m
=
ε

2

for all n > n(ε,m). Therefore,
∑∞

n=1 n
p−2P ((I1) > ε/2) <∞.

For (I2), we have

P ((I2) > ε/2) 6
m∑
j=1

P
(
n−1 max

16k6n

∣∣Zjk − kP (Ωj)
∣∣ > ε

2Mm

)
.

For each j = 1, . . . ,m, applying [1, Theorem 1.2] for sequence {I(X = xj), I(Xn = xj), n > 1} of
pairwise i.i.d. and uniformly bounded r.v.’s to get

∞∑
n=1

np−2P
(
n−1 max

16k6n

∣∣Zjk − kP (Ωj)
∣∣ > ε

2Mm

)
<∞.

Combining above arguments,

∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, Xi]

k
i=1, EX

)
> nε

)
6
∞∑
n=1

np−2P ((I1) > ε/2) +
∞∑
n=1

np−2P ((I2) > ε/2)

6
∞∑
n=1

np−2P ((I1) > ε/2) +
m∑
j=1

∞∑
n=1

np−2P
(
n−1 max

16k6n

∣∣Zjk − kP (Ωj)
∣∣ > ε

2Mm

)
<∞,

which means that (3.2) holds for this case.
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Step 2. Let us consider the general case when X ∈ L1
X . For ε > 0 arbitrarily, [12, Proposition

4.1] implies that there exists a natural number h large enough such that Ed(ϕh(X), X) 6 ε/6,
where the function ϕh was mentioned in Section 2. Then {ϕh(X), ϕh(Xn), n > 1} is a collection of
pairwise i.i.d. and simple random elements with common expectation Eϕh(X) := b. Moreover,

E‖ϕh(X)‖pb 6 2p−1(E‖ϕh(X)‖pu0 + dp(u0, b)) 6 22p−1E‖X‖pu0 + 2p−1dp(u0, b) <∞.

It follows from the first case that

∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, ϕh(Xi)]

k
i=1, Eϕh(X)

)
> nε/3

)
<∞.

Similarly, {d(X,ϕh(X)), d(Xn, ϕh(Xn)), n > 1} is also a collection of pairwise i.i.d. real-valued r.v.’s
satisfying

Edp(X,ϕh(X)) 6 2p−1(E‖X‖pu0 + E‖ϕh(X)‖pu0) 6 CE‖X‖pu0 <∞.

As a corollary of [1, Theorem 1.2],

∞∑
n=1

np−2P
(∣∣∣ n∑

i=1

(d(Xi, ϕh(Xi))− Ed(Xi, ϕh(Xi)))
∣∣∣ > nε/6

)
<∞.

By the triangle inequality,

∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, Xi]

k
i=1, EX

)
> nε

)
6
∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, Xi]

k
i=1, [k

−1, ϕh(Xi)]
k
i=1

)
> nε/3

)
+
∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, ϕh(Xi)]

k
i=1, [k

−1, Eϕh(Xi)]
k
i=1

)
> nε/3

)
+

∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, Eϕh(Xi)]

k
i=1, EX

)
> nε/3

)
6
∞∑
n=1

np−2P
(∣∣∣ n∑

i=1

(d(Xi, ϕh(Xi))− Ed(Xi, ϕh(Xi)))
∣∣∣ > nε/6

)
+
∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, ϕh(Xi)]

k
i=1, [k

−1, Eϕh(Xi)]
k
i=1

)
> nε/3

)
+
∞∑
n=1

np−2P (d(EX,Eϕh(X)) > ε/3)

<∞,

and this completes the Necessity part.
Sufficiency: Suppose that Edp(X,KX) < ∞ and (3.2) holds for some a ∈ K(X ). By the
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triangle inequality,

‖KXn‖a 6 d(KXn, [n
−1, Xi]

n
i=1) + d([n−1, Xi]

n
i=1, a)

= d
([n− 1

n
,KXn;

1

n
,KXn

]
,
[n− 1

n
,
[ 1

n− 1
, Xi

]n−1

i=1
;

1

n
,Xn

])
+ d([n−1, Xi]

n
i=1, a)

6
n− 1

n
d([(n− 1)−1, Xi]

n−1
i=1 ,KXn) +

1

n
d(Xn,KXn) + d([n−1, Xi]

n
i=1, a)

6
n− 1

n
d([(n− 1)−1, Xi]

n−1
i=1 , a) +

n− 1

n
‖KXn‖a +

1

n
d(Xn,KXn) + d([n−1, Xi]

n
i=1, a).

This is equivalent to

‖KXn‖a 6 d(Xn,KXn) + (n− 1)d([(n− 1)−1, Xi]
n−1
i=1 , a) + nd([n−1, Xi]

n
i=1, a).

Thus

max
16k6n

‖KXk‖a 6 max
16k6n

d(Xk,KXk) + 2 max
16k6n

kd([k−1, Xi]
k
i=1, a).

On the other hand, for any α > 0, it follows from Edp(X,KX) <∞ that

∞∑
n=1

np−2P
(

max
16k6n

d(Xk,KXk) > nα
)
6
∞∑
n=1

np−2
n∑
k=1

P (d(Xk,KXk) > nα)

=
∞∑
n=1

np−1P (d(X,KX) > nα) 6 CEdp(X,KX) <∞.

Therefore, combining with (3.2) we obtain

∞∑
n=1

np−2P
(

max
16k6n

‖KXk‖a > nβ
)
6
∞∑
n=1

np−2P
(

max
16k6n

d(Xk,KXk) > nβ/3
)

+

∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, Xi]

k
i=1, a

)
> nβ/3

)
<∞

for every β > 0. It follows

P
(

max
16k6n

‖KXk‖a > n
)
→ 0 as n→∞,

and hence P (max16k6n ‖KXk‖a > n) 6 1
2 for all n > N0. Applying Lemma 2.3 for sequence

{(‖KXk‖a > n), 1 6 k 6 n, n > 1} of pairwise independent events with α = 1, we have that for
every n > N0,

n∑
k=1

P (‖KXk‖a > n) 6
P
(

max16k6n ‖KXk‖a > n
)

(
1− P

(
max16k6n ‖KXk‖a > n

))2 6 4P
(

max
16k6n

‖KXk‖a > n
)
.

Hence

E‖KX‖pa 6 C
∞∑
n=1

np−1P (‖KX‖a > n) = C
∞∑
n=1

np−2
n∑
k=1

P (‖KXk‖a > n)

6 C
∞∑
n=1

np−2P
(

max
16k6n

‖KXk‖a > n
)
<∞

9



and E‖X‖pa 6 2p−1(Edp(X,KX)+E‖KX‖pa) <∞. This implies the existence of EX, then applying
the Necessity part

∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, Xi]

k
i=1, EX

)
> nε

)
<∞. (3.4)

Combining (3.2) with (3.4), we obtain EX = a.

Remark 3.2. If X is a separable Banach space with usual convex combination [λi, xi]
n
i=1 =∑n

i=1 λixi, then the condition (3.1) is trivial due to KX = X. However, in general CC space,
the condition (3.1) cannot be removed as shown in below example:

Example 3.3. Let p, r be real numbers such that 1 < r < p < 2, r(r − 1) 6= 1 and r2 > p.
Assume that (X , ‖.‖) is a Rademacher type r Banach space and denote by d the metric associated
with its norm ‖.‖. An operation r[., .] is defined based on X as follows: r[λi, xi]

n
i=1 =

∑n
i=1 λ

r
ixi.

As shown in [12, Example 5], r[., .] is the convex combination operation (r-th power combination)
and the corresponding convexification operator Kru = 0 for all u ∈ X . Assume that {X,Xn, n >
1} is a collection of i.i.d. X -valued random elements satisfying E‖X‖r < ∞ but E‖X‖p = ∞.
Now we show that the condition (3.2) holds while (3.1) does not. It follows from KrX = 0 that
Edp(X,KrX) = E‖X‖p = ∞, thus (3.1) fails. Since E‖X‖ 6 1 + E‖X‖r < ∞, there exists the
expectation of X with respect to r[., .], denoted by ErX, and a := ErX = 0. Now for ε > 0,
applying the Hájek-Rényi inequality for the collection {X,Xn, n > 1} of i.i.d. X -valued random
elements with EX = 0 as in [10],

∞∑
n=1

np−2P
(

max
16k6n

kd(r[k−1, Xi]
k
i=1, a) > nε

)
=
∞∑
n=1

np−2P
(

max
16k6n

1

kr−1

∥∥∥ k∑
i=1

Xi

∥∥∥ > nε
)

6
∞∑
n=1

np−2 · C

nrεr

n∑
k=1

E‖Xi‖r

kr(r−1)
= CE‖X‖r

∞∑
n=1

np−r−2
n∑
k=1

1

kr(r−1)

6 CE‖X‖r
∞∑
n=1

np−r−2 · 1

nr(r−1)−1
= CE‖X‖r

∞∑
n=1

1

nr2−p+1
<∞,

which means that (3.2) holds.

Remark 3.4. (a) Since the condition (3.2) implies d([n−1, Xi]
n
i=1, a) → 0 a.s. as n → ∞, we

immediately obtain the strong law of large numbers for {X,Xn, n > 1} of pairwise i.i.d.
random elements in CC space from the condition X ∈ L1

X . Therefore, [12, Theorem 5.1] is a
particular case of Theorem 3.1.

(b) Notice that some arguments in the proof of Theorem 3.1 can be also obtained by combining the
embedding theorem [13, Theorem 3.3] and corresponding results in Banach space. However,
this embedding is not too straightforward since its proof requires several intermediate results,
while the proof of Theorem 3.1 presented above is more direct.

Using the similar technique as in Theorem 3.1 and applying Theorem 1.1 with r = 1, we obtain
the following result for the case of i.i.d. random elements:
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Theorem 3.5. Let p > 1, a ∈ K(X ) and let {X,Xn, n > 1} be a sequence of i.i.d. X -valued
random elements. Then EX = a and E‖X‖pa <∞ if and only if

Edp(X,KX) <∞

and
∞∑
n=1

np−2P
(

max
16k6n

kd
(
[k−1, Xi]

k
i=1, a

)
> nε

)
<∞ for all ε > 0.

Next, we establish some results on complete convergence and Lr-convergence for non-identically
distributed random elements.

Proposition 3.6. Let {Xn, n > 1} be a sequence of pairwise independent X -valued random ele-
ments. If there is a compact subset K of X such that P (Xn ∈ K) = 1 for all n, then the following
statements hold:

(i)

∞∑
n=1

n−1P
(

max
16k6n

kd
(
[k−1, Xi]

k
i=1, [k

−1, EXi]
k
i=1

)
> nε

)
<∞ for every ε > 0.

(ii) Edr
(
[n−1, Xi]

n
i=1, [n

−1, EXi]
n
i=1

)
→ 0 as n→∞ for r > 1.

Proof. For ε > 0, by the compactness of K, there exists {c1, c2, . . . , cm} ⊂ K such that

K ⊂
m⋃
j=1

B(cj , ε/4), where B(cj , r) = {x ∈ X : d(x, cj) < r}.

For n > 1, define a sequence of X -valued random elements as follows:

Yn(ω) =


c0 := u0 if Xn(ω) /∈ K
c1 if Xn(ω) ∈ B(c1, ε/4) ∩ K
cj if Xn(ω) ∈ B(cj , ε/4) ∩ {∪j−1

t=1B(ct, ε/4)}c ∩ K, j = 2, . . . ,m.

It is obvious that the sequence {Yn, n > 1} is also pairwise independent. By the triangle inequality,

d
(
[n−1, Xi]

n
i=1, [n

−1, EXi]
n
i=1

)
6 d
(
[n−1, Xi]

n
i=1, [n

−1, Yi]
n
i=1

)
+ d
(
[n−1, Yi]

n
i=1, [n

−1,KYi]
n
i=1

)
+ d
(
[n−1,KYi]

n
i=1, [n

−1, EYi]
n
i=1

)
+ d
(
[n−1, EYi]

n
i=1, [n

−1, EXi]
n
i=1

)
:=An +Bn + Cn +Dn.

Modifying the proof of [14, Proposition 3.1], we obtain ess supω∈ΩAn(ω) 6 ε/4, ess supω∈ΩDn(ω) 6
ε/4 for all n. Using the same arguments as in the proof of (I1) in Theorem 3.1 (Necessity part) to
get ess supω∈ΩBn(ω) 6 ε/4 for n large enough. For Cn, by property (2.1) and Lemma 2.2, we have

Cn = d
(
[n−1,KYi]

n
i=1, [n

−1, EYi]
n
i=1

)
= d
(
[n−1, [I(Yi = cj),Kcj ]

m
j=0]ni=1, [n

−1, [P (Yi = cj),Kcj ]
m
j=0]ni=1

)
6

m∑
j=0

∣∣∣ 1
n

n∑
i=1

(
I(Yi = cj)− P (Yi = cj)

)∣∣∣‖cj‖u0
6M

m∑
j=1

∣∣∣ 1
n

n∑
i=1

(
I(Yi = cj)− P (Yi = cj)

)∣∣∣,

11



where M := max16j6m ‖cj‖u0 .
For conclusion (i): Notice that

{
I(Yn = cj) − P (Yn = cj), n > 1

}
is a sequence of pairwise

independent and uniformly bounded r.v.’s. It follows from [1, Theorem 1.1] that

∞∑
n=1

n−1P
(

max
16k6n

∣∣∣ k∑
i=1

(
I(Yk = cj)− P (Yk = cj)

)∣∣∣ > nε/4Mm
)
<∞.

Thus,

∞∑
n=1

n−1P
(

max
16k6n

kCk > nε/4
)

6
∞∑
n=1

n−1P
( m∑
j=1

max
16k6n

∣∣∣ k∑
i=1

(
I(Yk = cj)− P (Yk = cj)

)∣∣∣ > nε/4M
)

6
m∑
j=1

∞∑
n=1

n−1P
(

max
16k6n

∣∣∣ k∑
i=1

(
I(Yk = cj)− P (Yk = cj)

)∣∣∣ > nε/4Mm
)
<∞.

Combining the parts above, we have the desired result.
For conclusion (ii): By Jensen’s inequality and for n large enough,

Edr
(
[n−1, Xi]

n
i=1, [n

−1, EXi]
n
i=1

)
6 4r−1

(
3(ε/4)r +M rmr−1

m∑
j=1

E
∣∣∣ 1
n

n∑
i=1

(
I(Yi = cj)− P (Yi = cj)

)∣∣∣r)
6 3εr/4 + 4r−1M rmr−1

m∑
j=1

2r−1E
∣∣∣ 1
n

n∑
i=1

(
I(Yi = cj)− P (Yi = cj)

)∣∣∣
6 3εr/4 + C

m∑
j=1

1

n

(
E
∣∣∣ n∑
i=1

(
I(Yi = cj)− P (Yi = cj)

)∣∣∣2)1/2

6 3εr/4 + Cn−1/2.

Letting n→∞ and by the arbitrariness of ε > 0, we derive the desired conclusion.

Theorem 3.7. Let {Xn, n > 1} be a sequence of pairwise independent X -valued random elements.
(a) If {Xn, n > 1} is Cesàro CUI and

∑∞
n=1 n

−pE‖Xn‖pu <∞ for some p ∈ [1, 2], some u ∈ X ,
then

∞∑
n=1

n−1P
(

max
16k6n

kd
(
[k−1, Xi]

k
i=1, [k

−1, EXi]
k
i=1

)
> nε

)
<∞

for all ε > 0. In particular, d([n−1, Xi]
n
i=1, [n

−1, EXi]
n
i=1)→ 0 a.s. as n→∞.

(b) If {Xn, n > 1} is Cesàro r-th CUI (r > 1), then Edr
(
[n−1, Xi]

n
i=1, [n

−1, EXi]
n
i=1

)
→

0 as n→∞.

Proof. Given ε > 0. By Cesàro r-th CUI assumption (with r = 1 in the case (a)), there exists a
compact subset K := Kε,u of X satisfying

n−1
n∑
i=1

E(‖Xi‖ruI(Xi /∈ K)) 6 ε/4 for all n.

For each n > 1, we define a sequence of X -valued random elements by setting

12



Yn(ω) =

{
Xn(ω) if Xn(ω) ∈ K
u if Xn(ω) /∈ K.

It is obvious that the sequence {Yn, n > 1} is also pairwise independent. By the triangle inequality,

d
(
[n−1, Xi]

n
i=1, [n

−1, EXi]
n
i=1

)
6 d
(
[n−1, Xi]

n
i=1, [n

−1, Yi]
n
i=1

)
+ d
(
[n−1, Yi]

n
i=1, [n

−1, EYi]
n
i=1

)
+ d
(
[n−1, EYi]

n
i=1, [n

−1, EXi]
n
i=1

)
:=Qn +Rn + Sn.

Let us bound three parts above as follows:
For Qn: We have

Qn 6
1

n

n∑
i=1

d
(
Xi, Yi

)
=

1

n

n∑
i=1

‖Xi‖uI(Xi /∈ K).

For Rn: It is clear that {Yn, n > 1} is a sequence of pairwise independent X -valued random elements
and Yn ∈ K ∪ {u} for all n. Applying Proposition 3.6, we get that

∞∑
n=1

n−1P
(

max
16k6n

kRk > nε/4
)
<∞ and E(Rn)r → 0 as n→∞.

For Sn: Since {Xn, n > 1} is Cesàro r-th CUI (r > 1), Jensen’s inequality yields

(Sn)r 6
( 1

n

n∑
i=1

Ed(Yi, Xi)
)r

=
( 1

n

n∑
i=1

E
(
‖Xi‖uI(Xi /∈ K)

))r
6

1

n

n∑
i=1

E
(
‖Xi‖ruI(Xi /∈ K)

)
6 ε/4.

Proof of part (a). It is sufficient to show
∑∞

n=1 n
−1P (max16k6n kQk > nε/2) <∞. Indeed,

∞∑
n=1

n−1P
(

max
16k6n

kQk > nε/2
)
6
∞∑
n=1

n−1P
( n∑
i=1

‖Xi‖uI(Xi /∈ K) > nε/2
)

6
∞∑
n=1

n−1P
(∣∣∣ n∑

i=1

(
‖Xi‖uI(Xi /∈ K)− E

(
‖Xi‖uI(Xi /∈ K)

))∣∣∣ > nε/4
)
<∞,

where the last quantity is finite by applying [1, Lemma 2.1] for sequence {‖Xn‖uI(Xn /∈ K), n > 1}.
Proof of part (b). By using Jensen’s inequality again,

Edr
(
[n−1, Xi]

n
i=1, [n

−1, EXi]
n
i=1

)
6 3r−1(E(Qn)r + E(Rn)r + E(Sn)r)

6 3r−1
( 1

n

n∑
i=1

E‖Xi‖ruI(Xi /∈ K) + E(Rn)r + ε/4
)

= 3r−1ε/2 + o(1) as n→∞.

By the arbitrariness of ε > 0, we obtain the conclusion (b).

Remark 3.8. In Theorem 3.7, conclusion (a) extends [1, Theorem 3.1] to CC space and conclusion
(b) extends [3, Theorem 1.2] to CC space.

As mentioned in Section 2, (k(X ), dH) is a separable and complete CC space. Let Ek(X )X denote
the expectation of an integrable random element X in (k(X ), dH). By applying Theorem 3.1 and
Theorem 3.7, we obtain immediately the following corollaries:
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Corollary 3.9. Let 1 6 p < 2, A ∈ Kk(X )(k(X )) and let {X,Xn, n > 1} be a sequence of pairwise
i.i.d. k(X )-valued random elements. Then Ek(X )X = A and EdpH(X,A) <∞ if and only if

EdpH(X,Kk(X )X) <∞

and

∞∑
n=1

np−2P
(

max
16k6n

kdH
(
[k−1, Xi]

k
i=1, A

)
> nε

)
<∞ for all ε > 0.

Corollary 3.10. Let {Xn, n > 1} be a sequence of pairwise independent k(X )-valued random
elements.

(a) If {Xn, n > 1} is Cesàro CUI and
∑∞

n=1 n
−pEdpH (Xn, U) < ∞ for some p ∈ [1, 2], some

U ∈ k(X ), then for all ε > 0

∞∑
n=1

n−1P
(

max
16k6n

k dH

(
[k−1, Xi]

k
i=1, [k

−1, Ek(X )Xi]
k
i=1

)
> nε

)
<∞.

In particular, dH([n−1, Xi]
n
i=1, [n

−1, Ek(X )Xi]
n
i=1)→ 0 a.s. as n→∞.

(b) If {Xn, n > 1} is Cesàro r-th CUI (r > 1), then

EdrH
(
[n−1, Xi]

n
i=1, [n

−1, Ek(X )Xi]
n
i=1

)
→ 0 as n→∞.
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[10] Shixin, G.: The Hájek-Rényi inequality for Banach space valued martingales and the p smooth-
ness of Banach spaces. Statist. Probab. Lett. 32, 245–248 (1997)

[11] Terán, P.: Algebraic, metric and probabilistic properties of convex combinations based on the
t-normed extension principle: the strong law of large numbers. Fuzzy Sets Syst. 223, 1–25
(2013)

[12] Terán, P., Molchanov, I.: The law of large numbers in a metric space with a convex combination
operation. J. Theor. Probab. 19, 875–898 (2006)

[13] Thuan, N.T.: Approach for a metric space with a convex combination operation and applica-
tions. J. Math. Anal. Appl. 435, 440–460 (2016)

[14] Thuan, N.T., Quang, N.V., Nguyen, P.T.: Complete convergence for arrays of rowwise inde-
pendent of random variables and fuzzy random variables in convex combination spaces. Fuzzy
Sets Syst. 250, 52–68 (2014)

[15] Wang, X.C., Bhaskara Rao, M.: Some results on the convergence of weighted sums of random
elements in separable Banach spaces. Studia Math. 86, 131–153 (1987)

[16] Zhang, L.X., Wen, J.W.: Strong laws for sums of B-valued mixing random fields. Chinese Ann.
Math. Chinese Series 20, 205–216 (2001)

15


	Introduction
	Preliminaries
	Baum-Katz's type theorems for pairwise independent X-valued random elements

