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Abstract
We consider the geodesic X-ray transform acting on solenoidal tensor fields on a compact
simply connected manifold with strictly convex boundary and non-positive curvature. We
establish a stability estimate of the form L2 �→ H1/2

T , where the H1/2
T -space is defined using

the natural parametrization of geodesics as initial boundary points and incoming directions
(fan-beam geometry); only tangential derivatives at the boundary are used. The proof is based
on the Pestov identity with boundary term localized in frequency.

1 Introduction

To motivate our results, let us begin with the simplest case of the Radon transform in R2 in
parallel beam geometry (see [15] for more details).

Example If f ∈ C∞
c (R2), the Radon transform of f is

R f (s, v) =
∫ ∞

−∞
f (sv + tv⊥) dt, s ∈ R, v ∈ S1,

where v⊥ is the rotation of v by 90◦ counterclockwise. The Fourier transform of R f in the
s variable, denoted by (R f )˜( · , v), satisfies the Fourier slice theorem

(R f )˜(σ, v) = (2π)1/2 f̂ (σv), σ ∈ R, v ∈ S1.
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Using the Plancherel theorem and polar coordinates, we obtain that

‖ f ‖2L2(R2) = ‖ f̂ ‖2L2(R2) =
∫ ∞

0

∫
S1

| f̂ (σv)|2σ dv dσ

= 1

2

∫ ∞

−∞

∫
S1

| f̂ (σv)|2|σ | dv dσ

= 1

4π

∫ ∞

−∞

∫
S1

|(R f )˜(σ, v)|2|σ | dv dσ.

In particular, this implies the stability estimate

‖ f ‖L2(R2) ≤ 1

(4π)1/2
‖R f ‖

H1/2
T (R×S1)

(1.1)

with the mixed Sobolev norm ‖h‖
H1/2
T (R×S1)

= ‖(1 + σ 2)1/4h̃(σ, v)‖L2(R×S1).

The main question we address in the present paper is the existence of a stability estimate
analogous to (1.1) but in a geometric setting, namely, when R2 and the lines in the plane
are replaced by a Riemannian manifold and its geodesics. There are two features we wish
to preserve from (1.1): one is its L2 → H1/2 nature and the other is that the H1/2

T only
incorporates “half of the derivatives” of the target space (space of geodesics).

Let us first be more precise about the geometric setting. The geodesic X-ray transform
acts on functions defined on the unit sphere bundle of a compact oriented d-dimensional
Riemannian manifold (M, g) with smooth boundary ∂M (d ≥ 2). Let SM denote the unit
sphere bundle on M , i.e.

SM := {(x, v) ∈ T M : |v|g = 1}.
We define the volume form on SM by d�2d−1(x, v) = dV d(x)∧ dSx (v), where dV d is the
volume form on M and dSx is the volume form on the fibre SxM . The boundary of SM is
∂SM := {(x, v) ∈ SM : x ∈ ∂M}. On ∂SM the natural volume form is d�2d−2(x, v) =
dV d−1(x) ∧ dSx (v), where dV d−1 is the volume form on ∂M . We distinguish two subsets
of ∂SM (incoming and outgoing directions)

∂±SM := {(x, v) ∈ ∂SM : ±〈v, ν(x)〉g ≤ 0},
where ν(x) is the outward unit normal vector on ∂M at x . It is easy to see that

∂+SM ∩ ∂−SM = S(∂M).

Given (x, v) ∈ SM , we denote by γx,v the unique geodesic with γx,v(0) = x and γ̇x,v(0) = v

and let τ(x, v) be the first time when the geodesic γx,v exits M .
We say that (M, g) is non-trapping if τ(x, v) < ∞ for all (x, v) ∈ SM . In this case the

space of geodesics is naturally parametrized by ∂+SM (fan-beam geometry).

Definition 1.1 The geodesic X-ray transform of a function F ∈ C∞(SM) is the function

I F(x, v) :=
τ(x,v)∫

0

F(γx,v(t), γ̇x,v(t)) dt, (x, v) ∈ ∂+SM .

If the manifold (M, g) is non-trapping and has strictly convex boundary, then τ ∈
C∞(∂+SM) and as a consequence I : C∞(SM) → C∞(∂+SM). Moreover, I extends
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as a bounded operator I : Hk(SM) → Hk(∂+SM) for all k ≥ 0 [23, Theorem 4.2.1], where
the Sobolev spaces are defined using the L2-inner products arising from the volume forms
introduced above.

We shall consider I acting on special functions F ∈ C∞(SM) induced by symmetric
tensor fields. We denote by C∞(Sm(T ∗M)) the space of smooth covariant symmetric tensor
fields of rank m on M with L2 inner product:

(u, w) :=
∫
M
ui1···imwi1···im dV d ,

where wi1···im = gi1 j1 · · · gim jmw j1··· jm . There is a natural map

	m : C∞(Sm(T ∗M)) → C∞(SM)

given by 	m( f )(x, v) := fx (v, . . . , v). We can now define the geodesic ray transform acting
on symmetric m-tensors simply by setting Im := I ◦ 	m . Let ds = σ∇ be the symmetric
inner differentiation, where∇ is the Levi–Civita connection associated with g, and σ denotes
symmetrization. It is easy to check that if f = ds p for some p ∈ C∞(Sm−1(T ∗M)) with
p|∂M = 0, then Im f = 0. The tensor tomography problem asks the following question:
are such tensors the only obstructions for Im to be injective? If this is the case, then we
say Im is solenoidal injective or s-injective for short. This terminology is explained by the
following well known decomposition (cf. [23]). Given f ∈ Hk(Sm(T ∗M)), k ≥ 0, there
exist uniquely determined fs ∈ Hk(Sm(T ∗M)) and p ∈ Hk+1(Sm−1(T ∗M)), such that

f = fs + ds p, δs fs = 0, p|∂M = 0,

where δs is the divergence. We call fs and ds p the solenoidal part and potential part of f
respectively.

There is one important instance in which the tensor tomography problem is solved for
tensors of any order m and in any dimension d . This is when we assume in addition that
the sectional curvature of M is non-positive. Moreover, in this case a stability estimate is
available as follows:

Theorem 1.2 ([21] and [23, Theorem 4.3.3]) Let (M, g) be a simply connected compact
manifold with strictly convex boundary and non-positive sectional curvature. Given m ≥ 0
there is a constant C > 0 such that for any f ∈ H1(Sm(T ∗M))

‖ fs‖2L2 ≤ C(‖Im f ‖2H1(∂+SM)
+ m‖ f ‖H1‖Im f ‖L2).

(We note that a manifold as in the theorem is necessarily non-trapping.) There are two
notorious differences between the stability estimate above and that in (1.1). Firstly, the stabil-
ity estimate in Theorem 1.2 has in the right hand side the term ‖ f ‖H1‖Im f ‖L2 whenm �= 0.
Secondly, it is not sharp in the sense that it is L2 → H1. In [3] Boman and Sharafutdinov
resolved these issues for strictly convex domains in Euclidean space and asked whether the
same was true for the more general setting of non-positively curved Riemannian manifolds.
This paper provides a positive answer to these questions. Moreover, the 1/2-Sobolev space
on the target space of Im is naturally suggested by the geometry and the most relevant L2-
energy identity for the problem: the Pestov identity. The Pestov identity with boundary term
in the way that we shall use it here was derived for instance in [10, Lemma 8]. It contains a
boundary term given by

(Tu,
v∇u)L2(∂SM) (1.2)
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where u ∈ C∞(∂SM),
v∇ is the vertical gradient, and T is a tangential operator defined by

Tu := 〈ν(x), v〉
h

∇u − νXu,

where X is the geodesic vector field and
h

∇ the full horizontal gradient (we refer to Sects. 2
and 3 for the precise definitions). The operator T acts on ∂SM and it only involves horizontal
derivatives. This suggests that only horizontal derivatives of Im f on ∂SM should appear in
the stability estimate.

We can define the tangential (or horizontal) H1(∂SM)-norm by setting

‖u‖2
H1
T (∂SM)

:= ‖u‖2L2(∂SM)
+ ‖

h

∇‖u‖2L2(∂SM)

where
h

∇‖u contains the tangential derivatives in
h

∇u along ∂M . For example, if M is a ball
in Rd with Euclidean metric, then ∂SM = ∂M × Sd−1 and

‖u‖2
H1
T (∂SM)

=
∫

∂M

∫
Sd−1

(|u(x, v)|2 + |∇xu(x, v)|2) dS(v) dV (x)

where ∇x is the gradient on ∂M . The space H1
T (∂+SM) is defined by restriction, and

H1/2
T (∂+SM) is defined by complex interpolation between L2(∂+SM) and H1

T (∂+SM).
With this definition we may now state our main result:

Theorem 1.3 Let (M, g) be a simply connected compactmanifold with strictly convex bound-
ary and non-positive sectional curvature. Given m ≥ 0 there is a constant C > 0 such that
for any f ∈ H1(Sm(T ∗M))

‖ fs‖L2 ≤ C‖Im f ‖
H1/2
T (∂+SM)

.

The constant C can be estimated in terms ofm and (M, g). In fact, for the related stability
result for the transport equation in Theorem 5.1, one can take C = 1.

Most of work in the proof of Theorem 1.3 lies in the upgrade from the H1(∂+SM)-norm
in Theorem 1.2 to the H1/2

T (∂+SM)-norm. The upgrade is possible thanks to the localization
in frequency of the Pestov identity first noted in full generality in [17] (in two dimensions
this was proved in [19]). However, in [17] we did not consider the boundary term. It turns
out, quite remarkably, that the boundary term (1.2) also localizes in frequency. This allows
us to change the norm for Im f from H1 to H1/2

T , thus producing the upgrade. We also
mention that for d = 2 the proof would simplify substantially because spherical harmonics
decompositions and the T operator are simpler; the two-dimensional proof will be given in
[20].

1.1 Related results and alternative approaches

There are many earlier results on stability estimates for Im , using different techniques. One
approach is to consider the normal operator I ∗

m Im where the adjoint I ∗
m is computed using

a natural L2
μ-inner product on ∂+SM suggested by the Santaló formula. When M is free of

conjugate points, it turns out that I ∗
m Im is an (elliptic) �DO of order −1 on a slightly larger

open manifold engulfing M . This approach has produced stability estimates for the normal
operator, cf. [26], and has proved to be of fundamental importance in the solution of several
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geometric inverse problems. One drawback is that one needs to work on the slightly extended
manifold, unless one is willing to incorporatemodified transmission conditions to account for
boundary effects [14]. Another drawback is that the approach does not give estimates for the
constants due to a compactness argument. Still, quite recently, a sharp stability estimate has
been obtained in [1], by defining a suitable H1/2-norm based on this extension or equivalently
on a different parametrization of the space of geodesics. Our approach in Theorem 1.3 deals
directly with the boundary and with the space of geodesics in “fan-beam” geometry as given
by ∂+SM . In this sense our theorem addresses the open problem stated at the end of the
introduction in [1]. Also our tangential derivatives are naturally suggested by the geometry
of the problem.

The microlocal approach can actually be pushed further, using scattering calculus and a
combination of a local theorem with a global strict convexity assumption as in [27,28]. This
is also very powerful, and allows even to consider situations with conjugate points as long
as d ≥ 3. However, the stability estimates thus produced are L2 → H1.

One drawback of Theorem 1.3 is the curvature assumption. In [1] the estimates hold for
compact simple manifolds for m = 0, 1 and for m = 2 when Im is known to be injective,
e.g. when d = 2 [18,25]. Another possible improvement would be to replace the assumption
f ∈ H1 by f ∈ L2 and to prove the two-sided inequality

c‖ fs‖L2 ≤ ‖Im f ‖
H1/2
T (∂+SM)

≤ C‖ fs‖L2 .

For this, one would like to prove that Im is bounded from L2 to H1/2
T . This is true if f

vanishes near ∂M since Im is a Fourier integral operator, but it is not clear how to prove this
with uniform bounds when the support of f extends up to ∂M .

Finally, we mention that quite recently, Monard [13] has studied very detailed mapping
properties of I0 for 2D discs of constant curvature at all Sobolev scales; for these cases, he
also obtains a stability estimate with a suitable H1/2-norm. Further references to stability
estimates for Im may be found in [1].

It is natural to speculate whether Theorem 1.3 extends to more general situations. For
example one could try to relax the assumption about strict convexity of the boundary as in
[7] or allow for some hyperbolic trapping as in [6]. One could also speculate on extensions
that include attenuations and sections of a suitable vector bundle. We do not pursue these
here.

2 Geometric preliminaries

In this section we collect some geometric preliminaries for subsequent use.
Unit sphere bundle We start by recalling some standard notions related to the geometry

of the unit sphere bundle. We follow the setup and notation of [19]; for other approaches and
background information see [5,8,11,16,23].

Let (M, g) be a d-dimensional compact Riemannian manifold with or without boundary,
having unit sphere bundle π : SM → M , and let X be the geodesic vector field. We equip
SM with the Sasaki metric. If V denotes the vertical subbundle given by V = Ker dπ , then
there is an orthogonal splitting with respect to the Sasaki metric:

T SM = RX ⊕ H ⊕ V. (2.1)

The subbundle H is called the horizontal subbundle. Elements in H(x, v) and V(x, v) are
canonically identified with elements in the codimension one subspace {v}⊥ ⊂ TxM by the
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isomorphisms

dπx,v : V(x, v) → {v}⊥, Kx,v : H(x, v) → {v}⊥,

here Kx,v is the connection map coming from Levi–Civita connection. We will use these
identifications freely below.

We shall denote by Z the set of smooth functions Z : SM → T M such that Z(x, v) ∈
TxM and 〈Z(x, v), v〉 = 0 for all (x, v) ∈ SM . Alternatively we may describe the elements
of Z is a follows. Consider the pull-back bundle π∗T M over SM and let N denote the
subbundle of π∗T M whose fiber over (x, v) is given by N(x,v) = {v}⊥. Then Z coincides
with the smooth sections of the bundle N . Note that N carries a natural scalar product and
thus an L2-inner product (using the Liouville measure on SM for integration).

Given a smooth function u ∈ C∞(SM) we can consider its gradient ∇u with respect to
the Sasaki metric. Using the splitting above we may write uniquely in the decomposition
(2.1)

∇u = ((Xu)X ,
h∇u,

v∇u).

The derivatives
h∇u ∈ Z and

v∇u ∈ Z are called horizontal and vertical derivatives respec-
tively. (This differs from the definitions in [11,23] since here all objects are defined on SM
as opposed to T M .)

The geodesic vector X acts on Z as follows:

X Z(x, v) := DZ(ϕt (x, v))

dt
|t=0 (2.2)

where D/dt is the covariant derivative with respect to Levi–Civita connection and ϕt is the

geodesic flow.With respect to the L2-product on N , the formal adjoints of
v∇ : C∞(SM) → Z

and
h∇ : C∞(SM) → Z are denoted by− v

div and− h
div respectively. Note that since X leaves

invariant the volume form of the Sasaki metric we have X∗ = −X for both actions of X on
C∞(SM) and Z.

Let R(x, v) : {v}⊥ → {v}⊥ be the operator determined by the Riemann curvature tensor
by R(x, v)w = R(w, v)v, and let d = dimM .

Spherical harmonics decompositionThere is a natural spherical harmonics decomposition

with respect to the vertical Laplacian  = − v
div

v∇ (cf. [19, Section 3] and [8]):

L2(SM) =
∞⊕

m=0

Hm(SM),

so that any f ∈ L2(SM) has the orthogonal decomposition

f =
∞∑

m=0

fm .

We write �m = Hm(SM) ∩ C∞(SM). Then u = m(m + d − 2)u for u ∈ �m and we let
λm := m(m + d − 2).

Decomposition of X The geodesic vector field has a special behaviour with respect to
the decomposition into fibrewise spherical harmonics: it maps �m into �m−1 ⊕ �m+1 [8,
Proposition 3.2]. Hence on �m we can write

X = X− + X+
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where X− : �m → �m−1 and X+ : �m → �m+1. By [8, Proposition 3.7] the operator
X+ is overdetermined elliptic (i.e. it has injective principal symbol). We can explain the
decomposition X = X− + X+ as follows. Fix x ∈ M and consider local coordinates which
are geodesic at x (so ∂x j gkl(x) = 0 for all j, k, l). Then Xu(x, v) = vi ∂u

∂xi
. We now use the

following basic fact about spherical harmonics: the product of a spherical harmonic of degree
m with a spherical harmonic of degree one decomposes as the sum of spherical harmonics
of degree m − 1 and m + 1.

3 Pestov identity with boundary term

We recall the following commutator formulas from [19]:

[X ,
v∇] = − h∇,

[X ,
h∇] = R

v∇,

h
div

v∇ − v
div

h∇ = (d − 1)X .

(3.1)

Taking adjoints gives the following commutator formulas on Z:

[X ,
v
div] = − h

div,

[X ,
h
div] = − v

divR.

(3.2)

Using these relations one can establish a Pestov identity with boundary term. Let
μ(x, v) := 〈v, ν(x)〉. We let ‖·‖ and (·, ·) denote the L2-norm and L2-inner product respec-
tively determined by the volume form d�2d−1 on SM ; we let (·, ·)∂SM stand for the L2-inner
product on ∂SM determined by d�2d−2.

Proposition 3.1 (Pestov identity with boundary term, cf. Lemma 8 in [10]) Let (M, g) be a
compact manifold with smooth boundary. If u ∈ C∞(SM), then

‖ v∇Xu‖2 = ‖X v∇u‖2 − (R
v∇u,

v∇u) + (d − 1)‖Xu‖2 + P(u, u),

where P is the quadratic form defined by

P(u, w) = (Tu,
v∇w)∂SM ,

and Tu := μ
h∇u − Xu

v∇μ.

We can express T using the full horizontal derivative
h

∇u = h∇u + (Xu)v as Tu =
μ

h

∇u − νXu since
v∇μ = ν − μv. It turns out that T can also be rewritten in such a way that

it acts on functions u ∈ C∞(∂SM). To see this, consider the operators

∇‖u := ∇u − 〈∇u, (ν, 0)〉 (ν, 0) (3.3)

and
X‖ := X − 〈X , (ν, 0)〉 (ν, 0) = (v − 〈v, ν〉 ν, 0) = (v‖, 0) (3.4)
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at the boundary. Note that (ν, 0) is the horizontal lift of ν. We also define the horizontal part
of ∇‖ as

h

∇‖u := dπ(∇‖u) =
h

∇u − 〈
h

∇u, ν〉ν.

The following simple lemma is proved in [10, Lemma 14]:

Lemma 3.2 We have

Tu = μ
h

∇‖u − νX‖u. (3.5)

From this form we can clearly see that T : C∞(∂SM) → Z|∂SM .

Remark 3.3 In 2D, Tu = (Tu)iv, where T is the tangential horizontal vector field (iν, 0) and
i is the complex structure of the surface. The vector field T and the vertical vector field V
form a commuting frame for ∂SM .

We next rewrite the Pestov identity in terms of X+ and X− as in [17]. To do this, we need
some notation: for a polynomially bounded sequence α = (αl)

∞
l=0 of real numbers, we define

a corresponding ”inner product”

(u, w)α =
∞∑
l=0

αl(ul , wl)L2(SM), u, w ∈ C∞(SM).

We also write ‖u‖2α = ∑∞
l=0 αl‖ul‖2. (If each αl is positive one gets an actual inner product

and norm, but it is notationally convenient to allow zero or negative αl .)
The Pestov identity can then be written in the following form. Define

αl = λl

[(
1 + 1

l + d − 2

)2

− 1

]
+ (d − 1), (3.6)

βl = λl

[
1 −

(
1 − 1

l

)2
]

− (d − 1). (3.7)

The next result extends [17, Proposition 4.4] to the case with boundary terms.

Proposition 3.4 (Pestov identity in termsof X± with boundary term) Let (M, g)bea compact
manifold with smooth boundary. If u ∈ C∞(SM), then

‖X−u‖2α − (R
v∇u,

v∇u) + ‖Z(u)‖2 + P(u, u) = ‖X+u‖2β,

where Z(u) is
v
div-free.

Proof Recall from [19, Lemma 4.4] that

h∇u = v∇
[ ∞∑
l=1

(
1

l
X+ul−1 − 1

l + d − 2
X−ul+1

)]
+ Z(u) (3.8)

where Z(u) ∈ Z satisfies
v
div Z(u) = 0. Thus by (3.1)

X
v∇u = v∇

∞∑
l=1

[(
1 − 1

l

)
X+ul−1 +

(
1 + 1

l + d − 2

)
X−ul+1

]
− Z(u). (3.9)
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This gives

‖X v∇u‖2

=
∞∑
l=1

λl

((
1 − 1

l

)
X+ul−1 +

(
1 + 1

l + d − 2

)
X−ul+1,

(
1 − 1

l

)
X+ul−1

+
(
1 + 1

l + d − 2

)
X−ul+1

)
+ ‖Z(u)‖2

=
∞∑
l=1

λl

[(
1 − 1

l

)2

‖X+ul−1‖2 +
(
1 + 1

l + d − 2

)2

‖X−ul+1‖2
]

+
∞∑
l=1

λl

(
1 − 1

l

)(
1 + 1

l + d − 2

) [
(X+ul−1, X−ul+1) + (X−ul+1, X+ul−1)

]

+ ‖Z(u)‖2.
On the other hand, one has

‖ v∇Xu‖2 − (d − 1)‖Xu‖2

= −(d − 1)‖X−u1‖2 +
∞∑
l=1

(λl − (d − 1))(X+ul−1 + X−ul+1, X+ul−1 + X−ul+1)

= −(d − 1)‖X−u1‖2 +
∞∑
l=1

(λl − (d − 1))
[‖X+ul−1‖2 + ‖X−ul+1‖2

]

+
∞∑
l=1

(λl − (d − 1))
[
(X+ul−1, X−ul+1) + (X−ul+1, X+ul−1)

]
.

Somewhat miraculously, we observe that

λl

(
1 − 1

l

)(
1 + 1

l + d − 2

)
= λl − (d − 1).

This means that the two sums above involving
[
(X+ul−1, X−ul+1) + (X−ul+1, X+ul−1)

]
terms are equal. The Pestov identity from Proposition 3.1 now yields

∞∑
l=0

αl‖X−ul+1‖2 − (R
v∇u,

v∇u) + ‖Z(u)‖2 + P(u, u) =
∞∑
l=1

βl‖X+ul−1‖2

where αl , βl are as in (3.6)–(3.7). The result follows. ��

Later on we shall need the following useful property.

Lemma 3.5 (Adjoint of T ) The formal adjoint of T : C∞(∂SM) → Z|∂SM satisfies

v
divT = −T ∗ v∇

and the operator
v
divT is self-adjoint in L2(∂SM, d�2d−2).
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Proof We use the Pestov identity with boundary term, to claim first that the operator
v
divT is

self adjoint. Proposition 3.4 and the polarization identity imply that

P(u, w) = (X+u, X+w)β − (X−u, X−w)α + (R
v∇u,

v∇w) − (Z(u), Z(w))

and since R is symmetric, it follows that P(u, w) = P(w, u). But P(u, w) = −(
v
divTu, w)

and thus
v
divT is self-adjoint. Hence

v
divT = (

v
divT )∗ = −T ∗ v∇

as desired. ��

4 Frequency localization

Recall from Sect. 2 that any u ∈ C∞(SM) admits an L2-orthogonal decomposition

u =
∞∑
l=0

ul , ul ∈ �l ,

where �l corresponds to the set of vertical spherical harmonics of degree l. Since X± maps
�l to �l±1, it is immediate that the Pestov identity with boundary term (Proposition 3.4)
reduces to the following identity when applied to functions in �l (i.e. frequency localized
Pestov identity).

Proposition 4.1 (Pestov identity on �l with boundary term) Let (M, g) be a compact man-
ifold with smooth boundary, and let l ≥ 0. One has

αl−1‖X−u‖2 − (R
v∇u,

v∇u) + ‖Z(u)‖2 + P(u, u) = βl+1‖X+u‖2, u ∈ �l .

(We define α−1 = 0.)

It was proved in [17] (and in [19, Appendix B] when dim (M) = 2) that the frequency
localized Pestov identity for all l is equivalent with the standard Pestov identity. The same is
true in the boundary case:

Lemma 4.2 The Pestov identity with boundary term on �l is equivalent with the Pestov
identity with boundary term in the following sense: for any u ∈ C∞(SM), one has

∞∑
l=0

[
αl−1‖X−ul‖2 − (R

v∇ul ,
v∇ul) + ‖Z(ul)‖2 + P(ul , ul) − βl+1‖X+ul‖2

]

= ‖X−u‖2α − (R
v∇u,

v∇u) + ‖Z(u)‖2 + P(u, u) − ‖X+u‖2β.

The result will follow if we can show that the curvature, Z and P terms localise. Thus
Lemma 4.2 is a corollary of the next result.

Lemma 4.3 If (M, g) is a compact Riemannian manifold, then

(R
v∇u,

v∇w) = 0, (Z(u), Z(w)) = 0, P(u, w) = 0

whenever u ∈ �m, w ∈ �l and m �= l. In particular
v
divT : �m → �m .

123



A sharp stability estimate for tensor tomography…

Proof The localization of the curvature term was proved [17, Lemma 5.4]. We shall prove
here that the Z -term localizes. That is enough to obtain also the conclusion for P since
Proposition 3.4 and the polarization identity imply that

P(u, w) = (X+u, X+w)β − (X−u, X−w)α + (R
v∇u,

v∇w) − (Z(u), Z(w)).

Hence the statements for the curvature and Z -term imply that P(u, w) = 0 when m �= l.

The last claim follows since P(u, w) = −(
v
divTu, w).

The claim for Z(u) for d = 2 follows from [17, Remark 6.5] using the explicit repre-

sentation for Z(u). To prove the claim when d ≥ 3, recall that Z(u) is the
v
div-free part of

h∇u (the
v
div-free part is uniquely defined since there are no nontrivial harmonic 1-forms on

SxM when d ≥ 3). Using the bracket relation
h∇ = v∇X − X

v∇ we can relate X
v∇ and Z(u).

Indeed this is done explicitly in equation (3.9), which shows that Z(u) is the
v
div-free part of

−X
v∇u. If we consider a coordinate system around a point x such that ∂x j gkl(x) = 0 for all

j, k, l and write
v∇u = (∂ku)∂xk as in [19, Appendix A], then at x

X
v∇u = v j∂x j (∂

ku)∂xk = v j∂k(∂x j u)∂xk = v j
v∇(∂x j u).

Hence if we think of each v j as 1-form it is enough to analyze the vertical Fourier decom-

position of A
v∇w, where A is a scalar 1-form and w = ∂x j u ∈ �m . This is precisely the

content of Lemma 4.4 below, and combining the statement of that lemma with (3.9) we see

that Z(u) = −B(u) where B is the operator in Lemma 4.4 for X
v∇. Since B localizes in

frequency, the lemma is proved. ��
It remains to prove the following frequency localization statement.

Lemma 4.4 Let d = dim M ≥ 3 and let A ∈ �1. For any um ∈ �m one has

A
v∇um = v∇α(um) + B(um)

where B(um) is the
v
div-free part of A

v∇um. The map B : C∞(SM) → Z satisfies

(B(um), B(wl)) = 0, m �= l,

for any um ∈ �m and wl ∈ �l .

The proof uses the following lemma, which follows either by relating the Hodge and
connectionLaplacians via aWeitzenbock identity [22,Theorem50] or by adirect computation
in normal coordinates.

Lemma 4.5 If u and v are 1-forms on a Riemannian manifold (M, g) and if  = dδ + δd is
the Hodge Laplacian, then

(u ∧ v) = (u) ∧ v − 2
dim(M)∑
j=1

∇E j u ∧ ∇E j v + u ∧ (v) + 2R(u�, v�, · , · )

where {E1, . . . , En} is any local orthonormal frame, ∇ is the Levi–Civita connection and R
is the Riemann curvature tensor.
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Proof of Lemma 4.4 This is a purely vertical statement and it is enough to argue for fixed
x ∈ M . Moreover, since SxM is isometric to the standard sphere Sd−1, it is enough to prove
the following statement: if A ∈ �1 and u ∈ �m , where�k is the space of spherical harmonics
of degree k on Sd−1, then

A du = d(α(u)) + δ(β(u)) (4.1)

where β maps �m into the set of exact 2-forms on Sd−1 and satisfies

(β(u)) = (λm + d − 3)β(u) + h (4.2)

where h is a harmonic 2-form (hence h = 0 for d ≥ 4). Here d , δ and  = dδ + δd are the
exterior derivative, codifferential and Hodge Laplacian on Sd−1, respectively. If (4.1) and
(4.2) have been proved, then we have

(δβ(um), δβ(wl)) = (β(um), β(wl)) = λm + d − 3

λl + d − 3
(β(um),β(wl))

= λm + d − 3

λl + d − 3
(δβ(um), δβ(wl)).

Thus B(um) = δβ(um) satisfies (B(um), B(wl)) = 0 for m �= l as required.
The formula (4.1) follows directly from the Hodge decomposition on Sd−1, and β(u) is

an exact 2-form (recall that there are no harmonic 1-forms for d ≥ 3). By taking the exterior
derivative of (4.1), we also see that

(β(u)) = d A ∧ du.

Let u ∈ �m . We claim that

(d A ∧ du) = (λm + d − 3)d A ∧ du. (4.3)

If (4.3) holds, then ((β(u)) − (λm + d − 3)β(u)) = 0, proving (4.2).
It remains to prove (4.3). By Lemma 4.5, for any local orthonormal frame {E j } of T (Sd−1)

we have

(d A ∧ du) = (d A) ∧ du − 2
d−1∑
j=1

∇E j d A ∧ ∇E j du + d A ∧ (du)

+ 2R(d A�, du�, · , · )

= (λm + d − 1)d A ∧ du − 2
d−1∑
j=1

∇E j d A ∧ ∇E j du + 2R(d A�, du�, · , · )

using that A ∈ �1, u ∈ �m and that  commutes with d . Now if v ∈ Sd−1 and w ∈ TvSd−1

with |w| = 1, and if γ (t) is the geodesic on Sd−1 with γ̇ (0) = w, one has

∇d A|v(w,w) = d2

dt2
A(γ (t))

∣∣∣
t=0

= d2

dt2
(a jγ

j (t))
∣∣∣
t=0

= −A(v)

using that geodesics are great circles. Thus ∇E j d A|v(w) = −A(v)〈E j , w〉, which gives that
∇E j d A|v = −A(v)E�

j and

d−1∑
j=1

∇E j d A ∧ ∇E j du = −A(v)

d−1∑
j=1

E�
j ∧ ∇E j du = −A(v)d(du) = 0.

Also, on the sphere we have R(u�, v�, · , · ) = −u ∧ v. These facts imply (4.3). ��
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5 Stability for the transport equation

In this section we will prove the main stability estimate for solutions of the transport equation
Xu = f in SM when f has finite degree. In the next section we will give the more standard
form where the solenoidal part of f is estimated in terms of Im f .

Theorem 5.1 Let (M, g) be a compact Riemannian manifold with smooth boundary and
sectional curvature ≤ 0, let u ∈ C∞(SM), and write f := Xu. Suppose that f has finite
degree m. If m = 0, then

‖ f ‖L2(SM) ≤ ‖u‖
H1/2
T (∂SM)

whereas if m ≥ 1, then

‖ f − X(u0 + · · · + um−1)‖L2(SM) ≤ ‖u‖
H1/2
T (∂SM)

.

5.1 Shifted Pestov identity with boundary terms

To prove Theorem 5.1 we first assume that m ≥ 1, and discuss the case m = 0 later. We will
try to estimate f in terms of u|∂SM in suitable norms. The starting point is the identity from
Proposition 4.1 with l ≥ 1:

αl−1‖X−ul‖2 − (R
v∇ul ,

v∇ul) + ‖Z(ul)‖2 + P(ul , ul) = βl+1‖X+ul‖2.
Since we are assuming non-positive sectional curvature, we have

−(R
v∇ul ,

v∇ul) + ‖Z(ul)‖2 ≥ 0

and thus

αl−1‖X−ul‖2 + P(ul , ul) ≤ βl+1‖X+ul‖2.
We divide this estimate by αl−1 (always different from zero since l ≥ 1), which corresponds
to shifting the estimate down by one half vertical derivatives since αl−1 ∼ l. It follows that

‖X−ul‖2 + 1

αl−1
P(ul , ul) ≤ βl+1

αl−1
‖X+ul‖2.

The constant βl+1
αl−1

is exactly Dd(l)2 where Dd(l) is as in [19, Lemma5.1].Note that Dd(l) ≤ 1
for d ≥ 4 and in the remaining cases it is sufficiently close to one for all practical purposes
(when reading the proof it may be helpful to think that Dd(l) ≡ 1).

Thus we have the following inequality:

‖X−ul‖2 + 1

αl−1
P(ul , ul) ≤ Dd(l)

2‖X+ul‖2. (5.1)

For l ≥ m we have X−ul+2 + X+ul = 0 and using (5.1) we may write

‖X−ul‖2 + 1

αl−1
P(ul , ul) ≤ Dd(l)

2‖X−ul+2‖2.
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Starting at l = m and iterating this inequality N times leads to

‖X−um‖2 ≤
⎡
⎣N−1∏

j=0

Dd(m + 2 j)2

⎤
⎦ ‖X−um+2N‖2 −

N−1∑
j=0

∏ j−1
k=0 Dd(m + 2k)2

αm−1+2 j

P(um+2 j , um+2 j )

Write γd,m, j = ∏ j−1
k=0 Dd(m + 2k)2 and γd,m,0 = 1. In the notation of [19, Theorem 1.1]

one has γd,m, j = ∏ j−1
k=0 Cd(m − 1 + 2k)2, and thus γd,m, j ≤ cd where

cd =
⎧⎨
⎩

2, d = 2,
1.28, d = 3,
1, d ≥ 4.

(5.2)

Since ‖X−ul‖2 → 0 as l → ∞, we may take the limit as N → ∞ to obtain

‖X−um‖2 ≤ −
∞∑
j=0

γd,m, j

αm−1+2 j
P(um+2 j , um+2 j ). (5.3)

The argument above gives a completely analogous inequality for ‖X−um+1‖2, and adding
these two inequalities leads to

‖X−um‖2 + ‖X−um+1‖2 ≤ −
∞∑
k=0

bm,k P(um+k, um+k) (5.4)

where

bm,k =
{ γd,m, j

αm−1+2 j
, k = 2 j,

γd,m+1, j
αm+2 j

, k = 2 j + 1.

Define r := u0 + u1 + · · · + um−1. Then the transport equation Xu = f also gives

Xr + X−um + X−um+1 = f (5.5)

and thus ‖ f − Xr‖2 = ‖X−um‖2 + ‖X−um+1‖2. This yields

‖ f − Xr‖2 ≤ −
∞∑
k=0

bm,k P(um+k, um+k). (5.6)

If we assume m = 0, then the equation Xu = f implies X−u1 = f , and (5.3) gives

‖ f ‖2 ≤ −
∞∑
j=0

b1,2 j P(u1+2 j , u1+2 j ) ≤ −
∞∑
k=0

b1,k P(u1+k, u1+k). (5.7)

Thus to prove Theorem 5.1 for m ≥ 0, it remains to bound the right hand side of (5.6) for
all m ≥ 1.

5.2 The right hand side of (5.6): the space H1/2
T (@SM)

Let m ≥ 1. Motivated by (5.6) and the fact that P is defined in terms of the (horizontal)
tangential operator T , we define a natural H1/2-space as follows. Define the H1

T (∂SM)-norm
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by setting

‖u‖2
H1
T

:= ‖u‖2L2 + ‖
h

∇‖u‖2L2 .

The space H1/2
T (∂SM) is defined by complex interpolation between L2 and H1

T . The norm

H−1/2
T is defined by duality, and then H−1/2

T is also the interpolation space between L2 and
H−1
T (see [2, Corollary 4.5.2]).

Remark 5.2 Note that from (3.5) we have

‖Tu‖L2 ≤ ‖
h

∇‖u‖L2 (5.8)

since |Tu|2 = μ2|
h

∇‖u|2 + |X‖u|2 ≤ (μ2 + |v‖|2)|
h

∇‖u|2 = |v|2|
h

∇‖u|2 = |
h

∇‖u|2.
Now we use the key property of localization given by Lemma 4.3 to observe that

∞∑
k=0

bm,k P(um+k, um+k) = P

( ∞∑
k=0

um+k,

∞∑
l=0

bm,lum+l

)
.

We define an operator B = Bm : C∞(∂SM) → C∞(∂SM) by setting

Bu :=
∞∑
l=0

bm,lum+l .

Since m ≥ 1, the constant bm,l is well defined also when l = 0. Now (5.6) becomes

‖ f − Xr‖2 ≤ −P(u, Bu) = −(Tu,
v∇Bu). (5.9)

Here is the main claim:

Lemma 5.3 Given u ∈ C∞(∂SM) we have

|(Tu,
v∇Bu)| ≤ ‖u‖2

H1/2
T

.

Proof We may write

(Tu,
v∇Bu) = −(B

v
divTu, u).

By the definitions, it suffices to show that

‖B v
divTu‖

H−1/2
T

≤ ‖u‖
H1/2
T

.

By interpolation, this follows from the next two inequalities

‖B v
divTu‖L2 ≤ ‖u‖H1

T
, (5.10)

‖B v
divTu‖H−1

T
≤ ‖u‖L2 . (5.11)

To prove these estimates we first establish the property

‖ v∇Bu‖L2 ≤ ‖u‖L2 . (5.12)
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Indeed using the definition of B,

‖ v∇Bu‖2L2 = (Bu,Bu) =
∞∑
l=0

λm+l b
2
m,l‖um+l‖2L2 .

To prove (5.12) we will show that λm+l b2m,l ≤ 1 for m ≥ 1 and l ≥ 0. If m = 1 and l = 0,

then λ1b21,0 = λ1
α2
0

= 1
d−1 ≤ 1, so we may assume m, l ≥ 1. One has γd,m, j ≤ cd , which

gives λm+l b2m,l ≤ c2d
λm+l

α2
m−1+l

. Observe that simplifying (3.6) gives αl = (2l+d−2)(l+d−1)
l+d−2 for

all l ≥ 1. We thus have, writing k = m + l ≥ 2,

λk

α2
k−1

= k(k + d − 2)(k + d − 3)2

(2k + d − 4)2(k + d − 2)2

= 1

4

k3 + (2d − 6)k2 + (d − 3)2k

(k2 + (d − 4)k + ( d−4
2 )2)(k + d − 2)

= 1

4

k3 + (2d − 6)k2 + (d2 − 6d + 9)k

k3 + (2d − 6)k2 + (d2 − 6d + 8 + ( d−4
2 )2)k + (d − 2)( d−4

2 )2
.

Thus if d = 2 or d ≥ 6, one has ( d−4
2 )2 ≥ 1 and hence λk

α2
k−1

≤ 1
4 . If d = 3, 4, 5 we estimate

λk

α2
k−1

≤ 1

4

k3 + (2d − 6)k2 + (d2 − 6d + 9)k

k3 + (2d − 6)k2 + (d2 − 6d + 8)k
≤ 1

4

[
1 + 1

(k + d − 3)2 − 1

]
≤ 1

3

using k ≥ 2. Combining these estimates with (5.2), we have

λm+l b
2
m,l ≤ c2d

λm+l

α2
m−1+l

≤ 1.

The estimate (5.12) follows. Since − v∇B is the adjoint of B
v
div, using (5.12) and (5.8) yields

‖B v
divTu‖L2 ≤ ‖Tu‖L2 ≤ ‖u‖H1

T

thus proving (5.10).

Finally to prove (5.11), we note that B
v
divT = v

divT B by Lemma 4.3. Using Lemma 3.5
we may write

‖B v
divTu‖H−1

T
= sup

‖h‖
H1
T

=1
(

v
divT Bu, h)

= sup
‖h‖

H1
T

=1
−(T ∗ v∇Bu, h)

= sup
‖h‖

H1
T

=1
−(

v∇Bu, Th)

≤ sup
‖h‖

H1
T

=1
‖u‖L2‖Th‖L2

≤ ‖u‖L2 ,

where in the penultimate line we used (5.12) and (5.8). ��
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Theorem 5.1 for m ≥ 1 now follows from (5.9) and Lemma 5.3. When m = 0, it follows
from (5.7) and Lemma 5.3.

6 Stability for the solenoidal part

We now rewrite Theorem 5.1 in terms of the solenoidal part of the tensor inducing f and
extend the result to H1 regularity. Recall that the map

	m : C∞(Sm(T ∗M)) →
[m/2]⊕
k=0

�m−2k,

is an isomorphism and it gives a natural identification between functions in �m and trace-
free symmetric m-tensors (for details on this see [5,8,19]). The identification actually holds
pointwise for every x ∈ M . Moreover, the L2-norms on trace free symmetric m-tensors and
functions in �m are the same up to a constant depending only on d and m (cf. [5, Lemma
2.4]).

Given a tensor f̃ ∈ H1(Sm(T ∗M)), we let f = 	m f̃ (using 	m on H1 spaces). Note if m
is even (resp. odd), then f has zero odd (resp. even) Fourier modes. If Xu = f , we let

q :=
[(m−1)/2]∑

k=0

um−2k−1.

Upon defining q̃ := 	−1
m−1q , the well-known relation X	m−1 = 	mds implies that 	−1

m ( f −
Xq) = f̃ − dsq̃. To simplify the notation we shall the drop the tildes, identify f with f̃ , q
with q̃ and use that the L2-norms are equivalent.

We first collect regularity properties of solutions of transport equations involving H1

tensor fields.

Lemma 6.1 Let (M, g) be a compact simple manifold. Given f ∈ H1(Sm(T ∗M)), there is
u f ∈ H1(SM) satisfying

Xu f = − f in SM, u f |∂−SM = 0, u f |∂+SM = I f . (6.1)

Moreover, one has u f |∂SM ∈ H1(∂SM) and I f ∈ H1
0 (∂+SM).

Proof If f ∈ C∞(Sm(T ∗M)), define u f on SM by

u f (x, v) =
∫ τ(x,v)

0
f (ϕt (x, v)) dt

where ϕt is the geodesic flow on SM . One has u f ∈ C∞(SM \ S(∂M)) ∩ C(SM) since
the same is true for τ , and (6.1) holds for u f . By [24, Corollary 1], the map f �→ u f

extends as a bounded map H1(Sm(T ∗M)) → H1(SM). (This boils down to the fact that
v∇τ and

h

∇‖τ , where the operator
h

∇‖ is extended smoothly to SM , are uniformly bounded
on SM \ S(∂M), see [23, Lemma 4.1.3] and [4, Lemma 5.1].) Moreover, by [23, Theorem
4.2.1] the map f �→ I f extends as a bounded map H1(Sm(T ∗M)) → H1(∂+SM). Then
the properties (6.1) remain valid for f ∈ H1 (the boundary value of u f is in H1/2(∂SM)

by the trace theorem). Since I f vanishes on the boundary of ∂+SM when f ∈ C∞, one has
I f ∈ H1

0 (∂+SM) first for f ∈ C∞ and then for f ∈ H1 by density. Since u f |∂SM = E0(I f )
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where E0 denotes extension by zero from ∂+SM to ∂SM , we have u f |∂SM ∈ H1(∂SM)

when f ∈ H1. ��
Nextwe give a version of Theorem5.1 for H1 tensor fields. In its statement q is determined

by u f as described above.

Theorem 6.2 Let (M, g) be a simply connected compactmanifold with strictly convex bound-
ary and sectional curvature ≤ 0, and let f ∈ H1(Sm(T ∗M)). If m = 0, then

‖ f ‖L2(M) ≤ C‖u f ‖
H1/2
T (∂SM)

(6.2)

whereas if m ≥ 1, then
‖ f − dsq‖L2(M) ≤ C‖u f ‖

H1/2
T (∂SM)

. (6.3)

Here C only depends on d and m.

Proof Let m ≥ 1 (the case m = 0 is analogous). Going back to (5.3) and using Lemma 5.3,
one has the inequality

‖X−um‖2 + ‖X−um+1‖2 ≤ ‖u‖2
H1/2
T (∂SM)

, u ∈ C∞(SM).

Since functions in H1(SM) have traces in H1/2(∂SM), and hence also in H1/2
T (∂SM), the

above inequality holds for u ∈ H1(SM) by density. Then it is enough to take u = u f , where
u f ∈ H1(SM) by Lemma 6.1, and to note that by (5.5) and by equivalence of the L2 norms

‖X−um‖2 + ‖X−um+1‖2 = ‖ f − Xr‖2L2(SM)
≥ c(d,m)‖ f − dsq‖2L2(M)

.

��
The estimate (6.2) for m = 0 is already in the form that we want, so we will focus on the

case m ≥ 1. Using the potential and solenoidal decomposition, we may write f = fs + ds p
where δs fs = 0 and p is an (m − 1)-tensor such that p|∂M = 0. Let w = p − q . Then
integrating by parts

‖ f − dsq‖2 = ‖ fs + dsw‖2
= ‖ fs‖2 + 2( fs, d

sw) + ‖dsw‖2
= ‖ fs‖2 + 2(ιν fs, w)∂M + ‖dsw‖2
≥ ‖ fs‖2 − 2|(ιν fs, q)∂M |. (6.4)

Next we observe that for any ε > 0

2|(ιν fs, q)∂M | ≤ 1

ε
‖q‖2H1/2(∂M)

+ ε‖ιν fs‖2H−1/2(∂M)
. (6.5)

We now claim:

Lemma 6.3 We have

‖ιν fs‖H−1/2(∂M) � ‖ fs‖L2(M).

Proof This is a duality argument, but it is important that δs fs = 0. Consider a bounded
extension map for symmetric (m − 1)-tensors, e : H1/2(∂M) → H1(M) (such a map
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can be constructed from a corresponding extension map for functions by working in local
coordinates and using a partition of unity). Now write

‖ιν fs‖H−1/2(∂M) = sup
‖h‖H1/2(∂M)

=1

∫
∂M

〈ιν fs, h〉 dS

= sup
‖h‖H1/2(∂M)

=1
(−(δs fs, e(h)) + ( fs, d

se(h)))

= sup
‖h‖H1/2(∂M)

=1
( fs, d

se(h))

� ‖ fs‖L2(M).

��
Combining (6.3)–(6.5) with Lemma 6.3 and choosing ε small enough, it follows that

‖ fs‖2L2(M)
� ‖u f ‖2

H1/2
T (∂SM)

+ ‖q‖2H1/2(∂M)
. (6.6)

The next two lemmas will be useful when estimating the last term on the right.

Lemma 6.4 Given m ≥ 0, there is a constant C > 0 such that for any tensor q of order m

‖q‖H1/2(∂M) ≤ C‖	mq‖
H1/2
T (∂SM)

.

Proof Recall that we identify symmetric m-tensors with functions in
⊕[m/2]

k=0 �m−2k via 	m
as explained at the beginning of this section. By interpolation, it is enough to show that
‖	−1

m h‖L2 � ‖h‖L2 and ‖	−1
m h‖H1 � ‖h‖H1

T
when h ∈ ⊕[m/2]

k=0 �m−2k . The first inequality

follows from the equivalence of the L2-norms. For the second inequality, observe that locally
a symmetric m-tensor field can be written as q = qi1...im dx

i1 ⊗ · · · ⊗ dxim . The H1-norm
of q in ∂M consists of the L2-norm of q plus the L2 norm of the components qi1···im (x)

tangentially to M . Locally 	mq has the form qi1···imvi1 . . . vim . When we apply
h

∇‖ to 	mq all
the tangential derivatives in the direction of ∂M will appear. There will also be some vertical
derivatives (involving the Christoffel symbols), but since 	mq is a polynomial of degree m
in v, these terms can all be controlled by the L2-norm of 	mq . Thus ‖q‖H1 � ‖	mq‖H1

T

follows, and this may be rewritten as ‖	−1
m h‖H1 � ‖h‖H1

T
. ��

Lemma 6.5 (The H1
T (∂SM)norm localizes in frequency) One has

‖u‖2
H1
T (∂SM)

=
∞∑

m=0

‖um‖2
H1
T (∂SM)

for all u ∈ H1
T (∂SM). In particular, ‖∑m

l=0 ul‖H1
T (∂SM) ≤ ‖u‖H1

T (∂SM) when m ≥ 0.

Proof The proof is somewhat indirect and is based on the following observations.

(1) Let W be a vector field on M and let W = (W , 0) be its horizontal lift to SM . Then
W = W where  is the vertical Laplacian. This can be seen by taking a geodesic
coordinate neighbourhood around a point x , so that ∂ j gkl(x) = 0 for all j, k.l. In that
case if we write W = wi (x)∂xi , then (Wu)(x, v) = wi (x) ∂u

∂xi
and thus W : �m →

�m . (Another way to prove this is to check that [δ j ,] = 0, using the notation and
commutator formulas in [19, Appendix A].)
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(2) There is a neighbourhoodUε of ∂M inM diffeomorphic to ∂M×[0, ε) via ∂M×[0, ε) �
(x, t) �→ expx (−tν(x)) ∈ Uε. This allows us to naturally extend to Uε the exterior unit
normal ν to a vector field, still denoted by ν.

(3) A smooth function u ∈ C∞(∂SM) can be extended to a smooth function u� ∈ C∞(SUε)

simply by making it constant on the orbits of the flow of �, the horizontal lift of ν. By
item (1) we have

(um)� = (u�)m (6.7)

(4) Let ft be the flow of � in SM , and let Vε be the neighbourhood of ∂SM in SM dif-
feomorphic to ∂SM × [0, ε) via (x, v, t) �→ f−t (x, v). Since f−t (x, v) = (x(t), v(t))
where x(t) = expx (−tν) is the normal geodesic and v(t) is the parallel transport of v

along x(t), one has Vε = SUε (the map v �→ v(t) is bijective from SxM onto Sx(t)M).

Let u ∈ C∞(∂SM). The fact that �(u�) = 0 implies that
h

∇‖u = (
h

∇u�)|∂SM and thus for
(x, v) ∈ ∂SM we have

lim
ε→0

1

ε

∫ ε

0
|
h

∇u�(x, v, t)|2 dt = |
h

∇‖u(x, v)|2.
Integrating over ∂SM and using that Vε = SUε by (4), this gives

lim
ε→0

1

ε
‖
h

∇u�‖2L2(SUε)
= ‖

h

∇‖u‖2L2(∂SM)
. (6.8)

We now recall that it is possible to write for any w ∈ C∞(SUε) (all norms in L2(SUε)),
cf. [12, proof of Lemma 5.1]:

‖
h

∇w‖2 = ‖Z(w)‖2 + ‖X−w1‖2 +
∞∑
l=1

A(d, l)‖X+wl−1‖2 + B(d, l)‖X−wl+1‖2, (6.9)

where A(d, l) = 2+ d−2
2 and B(d, l) = 2+ 1

d+l−2 . ByLemma 4.3 onemaywrite ‖Z(w)‖2 =∑‖Z(wm)‖2, and thus using (6.9) for w = u� and w = (u�)m for each m we deduce

‖
h

∇u�‖2L2(SUε)
=

∞∑
m=0

‖
h

∇(u�)m‖2L2(SUε)
.

Dividing this by ε and taking the limit as ε → 0, the identities (6.7) and (6.8) yield

‖
h

∇‖u‖2L2(∂SM)
=

∞∑
m=0

‖
h

∇‖um‖2L2(∂SM)
.

This implies the desired claim for u ∈ C∞(∂SM), and the result follows since C∞(∂SM) is
dense in H1

T (∂SM). (Thedensity claimcanbeprovedbyusing apartitionof unity, convolution
approximation in coordinate neighborhoods, and the Friedrichs lemma [9, Lemma 17.1.5].)

��
We now put the arguments above together to derive:

Theorem 6.6 Let (M, g) be a simply connected compactmanifold with strictly convex bound-
ary and non-positive sectional curvature. Given m ≥ 0 there is a constant C > 0 such that
for any f ∈ H1(Sm(T ∗M)), one has

‖ fs‖L2(M) ≤ C‖u f ‖
H1/2
T (∂SM)

.
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Proof For m = 0 this is just (6.2), so we assume m ≥ 1. Combining (6.6) and Lemma 6.4
we derive

‖ fs‖ � ‖u f ‖
H1/2
T

+ ‖	m−1q‖2
H1/2
T

.

Recall that 	m−1q = ∑[(m−1)/2]
k=0 u f

m−2k−1. Interpolating the bound ‖∑[(m−1)/2]
k=0

um−2k−1‖L2(∂SM) ≤ ‖u‖L2(∂SM) for u ∈ L2(∂SM) with the bound in Lemma 6.5 gives
∥∥∥∥∥∥

[(m−1)/2]∑
k=0

um−2k−1

∥∥∥∥∥∥
H1/2
T

≤ ‖u‖
H1/2
T

, u ∈ H1/2
T (∂SM),

and the result follows by taking u = u f . ��
We can refine this further and prove Theorem 1.3 in the introduction. Define the space

H1/2
T (∂+SM) as the interpolation space between H1

T (∂+SM) and L2(∂+SM).

Proof of Theorem 1.3 Theorem 6.6 gives

‖ fs‖L2(M) ≤ C‖E0(I f )‖H1/2
T (∂SM)

(6.10)

where E0 is extension by zero from ∂+SM to ∂SM . We define H1
T ,0(∂+SM) as the closure

of C∞
c ((∂+SM)int) with respect to the H1

T -norm, and H1/2
T ,0 (∂+SM) as the interpolation

space between L2 and H1
T ,0(∂+SM). Since E0 is bounded H1

T ,0(∂+SM) → H1
T (∂SM) and

L2(∂+SM) → L2(∂SM), it is also bounded

E0 : H1/2
T ,0 (∂+SM) → H1/2

T (∂SM). (6.11)

Now, if f ∈ H1(Sm(T ∗M)), then I f is in H1
0 (∂+SM) by Lemma 6.1 and hence also in the

larger space H1/2
T ,0 (∂+SM). Combining (6.10) and (6.11) proves the result. ��

Remark 6.7 Theorem 1.3 remains true for f ∈ H1/2(Sm(T ∗M)) by density, since I is
bounded H1/2(Sm(T ∗M)) → H1/2(∂+SM) by [23, Theorem 4.2.1] and interpolation. It
would be interesting if one could prove Theorem 1.3 for f ∈ L2(Sm(T ∗M)). However, in
general we do not know if I is bounded L2(Sm(T ∗M)) → H1/2

T (∂+SM). Also, our approach
with the Pestov identity as it stands is unable to produce stability estimates for higher order
Sobolev norms.
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