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Spherical symmetry is ubiquitous in nature. It is therefore unfortunate that simulation of spherical systems
is so hard and require complete spheres with millions of interacting particles. Here, we introduce a method to
model spherical systems using revised periodic boundary conditions adapted to spherical symmetry. Method
reduces computational costs by orders of magnitude, and is applicable for both solid and liquid membranes,
provided the curvature is sufficiently small. We demonstrate the method by calculating the bending and
Gaussian curvature moduli of single-layer and multilayer graphene. The method works with any interaction (ab
initio, classical interactions), with any approach (molecular dynamics, Monte Carlo), and with applications
ranging from science to engineering, from liquid to solid membranes, from bubbles to balloons.
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I. INTRODUCTION TO MODELING APPROACH

The problem in simulating spherical symmetry is topo-
logical: you cannot build a perfect sphere from identical
blocks. The absence of such a building block has enforced
expensive simulations with complete spheres—though usu-
ally spherical simulations are simply avoided. Overwhelming
dilemmas like this are often considered so fundamental and
frustrating that they restrain all attempts to seek for a prac-
tical solution.

Anyhow, avoiding spherical systems in our world is hard.
Spherical shells surround us in a variety of forms: in bal-
loons, in cell membranes inside our bodies, in bubbles in the
sea, or in Earth’s crust. The interaction of nanoparticles with
cell membranes, for instance, is a topical question.1 Since
cell membranes’ curvature moduli determine the very forms
of red blood cells, for example, one can see why simulations
should incorporate curvature effects.>3 Another timely ex-
ample is the foam of spherical bubbles in the sea, the burst-
ing of which may play an important role on the so-called sea
spray that produces spherical aerosols into the atmosphere.*>

Although liquid membranes are more abundant in nature,
also man-made solid membranes have spherical symmetries,
at least locally. Examples are fullerenes,® nanoballoons,” and
especially graphene that contains intrinsic ripples even when
suspended freely.®~!” Curvature moduli of graphene are inti-
mately related to these ripples, whether they are intrinsic or
not,'"!2 and in a broad sense to elastic behavior of all hon-
eycomb carbon, among graphene nanoribbons,!® multilayer
graphene,'® and carbon nanotubes.'*!

Conventionally spherical systems are treated in three
ways. The first way is to simulate the system as a whole.
Needless to say, this is expensive and often impossible.? The
second way is, should the system have some well-defined
point-group symmetries, to use those symmetries for reduc-
ing computational costs. Most established codes have the
ability to benefit from such symmetries; this has long been a
standard procedure with molecules and clusters.!® Because
the symmetry is exact, however, neither the curvature nor
other geometrical parameters can be changed flexibly. The
third way is to ignore curvature altogether and to use peri-
odic boundary conditions (PBCs) to simulate an infinitely
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large, flat membrane. Unfortunately, in nanoscience many
systems fall between these two extremes: systems with huge
number of particles, having no overall symmetry, but promi-
nent curvature effects. At the moment a practical way to
simulate such systems does not exist.

The periodic boundary conditions have been adapted,
however, also to symmetries beyond translation. The first
ideas came along chiral carbon nanotubes,!”!® and those
ideas have been used ever since; for reviews look at Refs. 19
and 20. An important extension to general symmetries with
exact treatment was done in Ref. 21, which has enabled more
flexibility.??->* Later, in Ref. 25 we introduced revised PBCs
(RPBCs), a simple formalism for general material distor-
tions; this is the approach we shall use here, and it is illus-
trating to review it briefly.

In RPBC, the usual translation operations are replaced by
general symmetry operations S" that, in a quantum-
mechanical language, leave the electronic potential invariant,
or

D(S")V(r) = V(S™r) = V(r). (1)

The operation S” is a succession of an abelian group of op-
erations S;, that is, $"=8]'S5? - -. Then, by imposing period-
icity (SMi=1, M, integer), one finds that the Hamiltonian
eigenstates #,,(r) at r and at r'=S™"r differ only by a phase
factor

D(S")ur) = 40 (ST'F) = explin - n) (1), (2)

with inverse operation S, band index a, and the reciprocal-
lattice vector . Equation (2) infers the familiar result: a
single simulation cell—whatever its shape—is enough to de-
scribe the extended system as a whole. Revised PBC is hence
similar to conventional PBC and differs only in the defini-
tions of the symmetry operations. There are no other funda-
mental differences. As an illustrative example, the total en-
ergy with a classical pair potential is
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FIG. 1. (Color online) Illustration of symmetry operations S,
and S, for spherical symmetry. S; is a rotation of angle 66, around
y axis and S, is a rotation of angle &6, around x axis; the angles 56,
are small. (In general, ¢; can also be nonorthogonal to ¢, and 56,
different from 56,.)

N
> > Uy(R;— S"R;

ij=1 n

), (3)

1
Epair = E
where N is the particle count and n runs over operations
where particle 7 at R; still interacts with the periodic image of
particle j at S"R;. Forces are the negative gradients of this
expression, as usual. Look at Ref. 25 for details of RPBC
and Refs. 15 and 26 for examples of usage.

In this paper, we use the RPBC, reviewed above, in an
approximate way to introduce a trick for modeling spherical
membranes. Adapting RPBC for spherical systems enables
simulations with orders-of-magnitude reductions in compu-
tational costs. We shall apply the method to calculate
graphene’s mean and Gaussian curvature moduli but first we
proceed to discuss symmetry operations and their character.

II. SPHERICITY AS AN APPROXIMATE SYMMETRY

Consider the square cone in Fig. 1, regard the grid as
fixed in space, and concentrate on the shaded region. If we
rotate all particles an angle 6, around y axis or an angle 66,
around x axis, the geometry within the shaded region will
remain approximately intact. This means that rotations S}'r
=R(n;80,¢,)r and Sr=R(n,66,¢,)r [with ¢,=], ¢,=1 and
operation R(c) as |c| radian rotation around ¢] leave the
electronic potential V(r) invariant near the shaded region: S,
and S, are symmetry operations as far as the shaded region
and its vicinity is concerned. Two rotations around different
axes do not commute in general but if the rotation angles 56;
are small Syr=r+ 66,c; Xr, rotations do commute to linear
order in 86)’s, [S,,Sz]z(’)(éﬁ?). Hence also the combined
operation
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(ST = R(n,860,¢, + ny66,¢,)r = S'r 4)

is an approximate symmetry operation, provided that n; are
small enough. Equation (4) is basically all we need to fully
employ the RPBC of Ref. 25; we are, in principle, ready to
go and to simulate any spherical membrane.

III. FEATURES DUE TO APPROXIMATION

In practice, however, the approximate character of S&"
raises questions that deserve some elaboration. First, as al-
ready mentioned, the formalism assumes periodic boundary
conditions (Sﬁ”" =1) which may seem questionable. Here we
remind that similar PBCs are used also in regular bulk, with
all three dimensions periodic in an intertwined fashion. (In
two dimensions, PBC represents topologically a toroid.) The
bottom line is that periodicity is not a physical reality but a
mere mathematical trick that works, and enables the applica-
tion of revised Bloch’s theorem in the first place.?”-?® The
integers M; are connected rather to x-point sampling than to
physical reality.

Second, revised PBC does not need the “unit-cell” con-
cept. However, we shall call the square cone in Fig. 1, ex-
tending from the origin to infinity and enclosing the shaded
region, a unit or simulation cell because the concept is famil-
iar and convenient in discussion. Otherwise, the mere ex-
pression for S" in Eq. (4) is enough to determine everything
in the simulation.

Third, the claim is not to simulate a complete sphere but
rather to view the curvature as a local property. The particles
in the simulation cell see the closest environment curved—
and only this is important. The simulation cell is the only cell
we model, and distances and angles measured only from the
simulation cell are meaningful. For example, the vicinity of
particle at r in Fig. 1 exhibits curvature in bond angles and
distances if one looks at particle’s own periodic images at
Sor and Sglr. Symmetry operations S" that have n; large
enough to rotate large angles [n;~ (m/2)/ 86;] should be ex-
cluded because the noncommutativity of S;’s would other-
wise become significant.

Fourth, the radius or curvature R in Fig. 1 is not a param-
eter in the simulation; radially particles can migrate wher-
ever interactions drive them. The spherical form is only
forced by the choice of symmetry operations and the param-
eters 66, and 66,, and since the symmetry is discrete, the
system needs to be neither continuously nor smoothly spheri-
cal.

Fifth, a natural limitation is to have enough empty space
near the origin to avoid too close encounters between the
particles.?” Membrane can be thick.

IV. APPLYING THE METHOD

The validity of the method depends on the system and its
interactions. As a principal rule, the radius of curvature R
should be much larger than the interaction ranges between
the particles. If ranges are larger than the system size, espe-
cially if those interactions control morphology, one does bet-
ter to model the complete system. The Coulomb interactions
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can play a role locally, within small length scales (size of the
unit cell at most), but the long-ranged Coulomb interaction
requires special care, perhaps some refinements (the unit cell
better be neutral).’® Quantitative error due to the noncommu-
tativity of S;’s can be estimated by first using the right-hand
side of Eq. (4) as 8", and then using the left-hand side of Eq.
(4) as S" (changing the ordering of S}'S3?), and comparing
the resulting energies.

Because liquid lacks long-range order, the method suits
particularly well for liquid membranes, such as lipid bilay-
ers. Their energetics can be described by the Helfrich Hamil-
tonian that gives membrane’s elastic energy per unit area as®!

(1 [ 11 DZ 1

g=2k|l=| —+—|]| +k . (5)
Here « is the mean curvature modulus (do not confuse with
a K point), k is the Gaussian curvature modulus, and R, and
R, are the principal radii of curvature. The liquid membrane
does not need to be free standing, however, because also
solid support can be incorporated, either by external force
fields or by fixed atoms. External radial forces can be also
used for pressurization, mimicking the embedding of mem-
brane in gaseous or liquid environments.

For solid membranes the situation is more complicated
because energy will come also from the internal strain E;. If
a flat, round sheet of radius p is wrapped into a spherical
segment, the energy will be E,~ Ehmp®/108R*3? where E is
the Young’s modulus of the material, /& is the membrane
thickness, and R is the radius of curvature; meanwhile the
curvature-related energy is E,=g-mp>. Hence, for a reason-
able modeling of solid membranes using Eq. (5), we need to
have E,<E_, or

Ehp*R?
_EAP Rmin 1, 6)

EJE. ~ —
1082k + k)

which suggests a minimum radius of curvature R,;, for a
given unit-cell area. If this geometrical and material-
dependent criterion should be violated, the simulation would
be dominated by nonlocal stress fields. Since the method
does not properly describe these fields, the treatment would
become ill-defined.

The above problem is present when sphericity is forced
on originally flat sheet. But defects, for example, can induce
spontaneous curvature in solid membranes in which case
Rin can be smaller. The method provides a new tool to
investigate phenomena such as rippling due to adsorption-
induced pinching of the membrane.!' This method does not
directly compete with any existing method but instead it pro-
vides possibilities to do something new.

V. EXAMPLE: SPHERICAL GRAPHENE

The spherical symmetry was implemented in the density-
functional tight-binding code HOTBIT.**-** The RPBC imple-
mentation has a negligible computational overhead as com-
pared to translational symmetry,”> and can be implemented
just by a few lines of new code in any existing RPBC imple-
mentation. The code source is open and stands for inspec-
tion.
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FIG. 2. (Color online) (a) Two-atom unit cell for spherical
graphene, illustrating the symmetry operations: S, is a rotation of
angle 86, around ¢ and S, is a rotation of angle 56, around ¢,. (b)
Few periodic images of atoms a and b, shown for visualization
purposes only. (c) Elastic energy per atom as a function of radius of
curvature. Inset: fit to R=2 behavior; the thin shaded fan is the error
estimate due to approximations involved.

In this section we use the hotbit implementation to present
one practical example. We calculate the curvature moduli of
graphene, motivated by their relevance to present-day engi-
neering with carbon nanostructures. For a sphere the radii of
curvature are R;=R,=R, and Eq. (5) gives g=(2k+K)/R>;
for a cylinder R, =R, R,=, and g=«/(2R?). Hence, by cal-
culating the elastic energies for a cylinder and a sphere and
varying 86;’s (hence varying R) we obtain both « and
directly.

Prior to simulating spherical graphene, we first calculated
the mean curvature modulus of graphene, also applying re-
vised PBC. Only now the symmetry operations, in a cylin-
derlike setup, were a rotation around z axis (S;) and transla-
tion in z direction (S,) with a four-atom unit cell (like a
nanotube with enormous diameter); we would not discuss the
cylinder setup further here.'® The resulting cohesive energy
depends on R quantitatively like R™2, as Eq. (5) suggests, and
the fitted value for k=1.61 eV (4.22 eV A?/atom) agrees
with a density-functional reference value (1.5 eV) (Ref. 35)
albeit is larger than an experimental reference value (1.2
eV).3

Returning to spherical graphene, Figs. 2(a) and 2(b) show
the two-atom unit cell of graphene. Unlike in Fig. 1, the unit

cell is skewed with c1=j and cz=cos(57r/6);+sin(57'r/6)j.
The geometry was optimized with given 86;’s, which were
taken as 86,=2.5 A/R’ when we wanted to investigate a
radius of curvature that roughly equals R’.3” All the radii of
curvature we report, anyhow, are the optimized R (R=R’
because curvature changes bond distances only slightly). In
practice we found that structure optimizations require con-
vergence criteria tighter than with translational cells, due to
geometrical effects from small 86,.3% In quantum simulations
K points can be freely sampled (k; € [—7,]) because PBC
is an approximation, just as with conventional Bloch’s theo-
rem; we used a 50X 50 k-point mesh.
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Figure 2(c) shows our main result, graphene’s cohesive
energy as a function curvature—and represents the showcase
of the distinct physics this method can unearth. Energy be-
haves clearly like R72, as suggested by Eq. (5). The energy
penalty 6.6 eV A% R~2/atom, combined with previously cal-
culated «, yields k=-0.70 eV; we could not find this num-
ber in the literature. This result confirms graphene’s beautiful
elastic behavior up to high curvature—also for spherical
distortion.®

We did consistency checks for the graphene sphere calcu-
lations, three listed next. As a first check, when we investi-
gate Eq. (6) with graphene parameters, we get p

72 . 2 .
<\V6 AXR. For a graphene unit cell p~1 A (lattice
constant 2.5 A), and the consequent criterion R>0.2 A s
easily fulfilled. We obtained the same k with N=8 and N
=32 atom unit cells, even though larger N increases R,.i, [Eq.
(6) and p? N infer R,,;,N]. Thus, the area is small enough
to be stress-free, and the simulation is indeed dominated by
curvature energy alone. We were able to perform controlled
calculations down to radii R, ~ 10 A or 86, ~15°. As a
second check, we estimated quantitative error in energy due
to the noncommutativity of the two rotations [inset in Fig.
2(c)], as suggested above, but found the error fairly small. As
a third check, we implemented symmetry also with a nega-
tive Gaussian curvature R;=-R,=R, for which g=—i/R? di-
rectly, and got an independent confirmation for k; we will
not attempt to describe structures with negative Gaussian
curvature here. Finally, since there is no charge transfer, the
long-range Coulomb interactions are no issue.

Closer inspection of geometry revealed that curvature in-
creased bond distances as d,,=1.417 A+0.135 A3/R?, due
to the weakening of in-plane o bonds, and hereby decreasing
the effective nearest-neighbor tight-binding hopping param-
eter as fog=1,,—4.8 eV A*/R* (t,,~2.7 eV). For a detailed
discussion of curvature-induced effects on graphene, we rec-
ommend Refs. 39-41.

For completeness we calculated « and « for bilayer and
trilayer graphene as well, and summarize the results in Table
I. Assuming a constant layer separation of h=3.4 A analyti-
cal expressions for the curvature moduli of multilayer
graphene come as

Kk, =nk; + ER3(n® - n)/12,
K,=nk, — Eh’(n®* —n)/12, (7)

where n is the number of layers and E is Young’s modulus.
The simulated and analytical numbers have a fair agreement.
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TABLE 1. Curvature moduli for single-layer and multilayer
graphene (AB stacking). Numbers in parentheses are estimates from

Eq. (7).

Layers (N) Ky (eV) Ky (eV)
Monolayer 1.61% -0.70
Bilayer 180 (180) —140 (-176)
Trilayer 690 (660) —-600 (=700)

Ak=1.610 eV for bending against zigzag direction (armchair direc-
tion remains straight) and x=1.606 eV for bending against arm-
chair direction.

Table I reveals how strikingly smaller the moduli are for
graphene monolayer, a true oddity among solid elastic
sheets, as noted already in Ref. 42.

VI. CONCLUDING REMARKS

We have introduced a simple and practical method to
simulate spherical systems using revised PBC. Although the
method is approximate, it is applicable precisely to systems
so hard to handle: large systems with prominent curvature
effects. Since the method works with schemes from ab initio
electronic structures and classical potentials to coarse-
grained and finite-element modeling, and has a wide range of
applicability, we encourage any additional implementations.

Admittedly, it may take some time to digest the approxi-
mate nature of the method. The role of symmetries in mate-
rials modeling is usually taken as clear-cut, solid, and un-
touchable: it either is or is not. In this paper we have,
however, created and entered a new gray area in symmetry
usage; we are unaware of symmetry being treated in this type
of approximate fashion before. For this reason, when using
approximate spherical symmetry—or other approximate
symmetries in future—we urge to examine modeled systems
carefully and get assured of method’s validity; the best guide
on this way is common sense.
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