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Minimal learning machine in hyperspectral imaging
classification

Anna-Maria Hakolaa and Ilkka Pölönena

aFaculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, Finland

ABSTRACT

A hyperspectral (HS) image is typically a stack of frames, where each frame represents the intensity of a different
wavelength of light. Each spatial pixel has a spectrum. In the classification of the HS image, each spectrum
is classified pixel-by-pixel. In some of the real-time applications, the amount of the HS image data causes
performance challenges. Those issues relate to the platforms (e.g. drones) payload restrictions, the issues of the
available energy and to the complexity of the machine learning models.

In this study, we introduce the minimal learning machine (MLM) as a computationally cheap training and
classification machine learning method for the hyperspectral imaging classification. MLM is a distance-based
method that utilizes mapping between input and and output distances. Input distance is a distance between
the training set and its subset R. Output distance is corresponding distances between the label values of the
training set and the subset R. We propose a training point selection framework, which reduces the number of
data points in the R by selecting the points class-by-class, in the direction of the principal components of each
class.

We test MLM’s performance against four other classification machine learning methods: Random Forest,
Artificial Neural Network, Support Vector Machine and Nearest Neighbours classifier with three known hyper-
spectral data sets. As the main outcomes, we will show how the performance is affected by the size of the
subset R. We compare our subset selection method MLM’s performance to the random selection MLM’s perfor-
mance. Results show that MLM is an computationally efficient way to train large training sets. MLM reduces
the complexity of the analysis and provides computational benefits against other models. Proposed framework
offers tools that can improve the MLM’s classification time and the accuracy rate compared to the MLM with
randomly picked training points.

Keywords: Hyperspectral Imaging, Minimal Learning Machine, Classification, Principal Component Analysis,
Distance Learning

1. INTRODUCTION

Hyperspectral (HS) images contains information that allows the characterization, identification and classification
of the targets, such as land-covers with improved accuracy and robustness.1 Since the technical evolution of
optical sensors2 has been improving the imagers, there has been several new application domains, for example
in the medical diagnosis,3 skin cancer research,4 forest industry5 and agricultural applications3 .

Hyperspectral image classification is a process, where single pixels are assigned into a set of classes2 . Clas-
sification approaches can be split into categories of supervised, unsupervised and semi-supervised classifiers6 .
Supervised methods classifies based on model, which is created with training samples and their labels. Unsuper-
vised classifiers are using clustering methods without labelled training samples and semi-supervised classifiers
are using both, labelled and unlabelled training samples2,6 .

HS images can be classified pixel-wise with spectral classifiers or spectral-spatial with spectral-spatial clas-
sifiers7 . The spectral classifier considers the HS images as a list of spectral information, while the spectral-
spatial-classifier uses both, the spectral and the spatial information6 .
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The HS image classification can be a challenge2 . For example the accuracy results that can be reached
with standard classifiers and multispectral images are typically compromised with HS images1 . The typical
challenges of the spectral classifiers are the relatively small size of the training set from the high-dimensional
data,7 the high number of spectral channels,1 the spatial variability of the spectral signature1 and the quality of
the spectral data. As an example, the challenges are related to the Hughes phenomenon,8 the conditions, such
as incident illumination or instrument noises7 or to the high cost of the true sample labelling1 .

Despite the challenges, there are many classic classification methods that can perform well with HS images1,3, 6

. Some of the popular machine learning classification approaches utilises the neural networks, support vector
machines, random forests or deep learning classification methods6 . Because those methods can be complex and
time-consuming, it is an interesting idea to introduce HS images to the relatively new classifier, which is an easy
to implement and has had a promising results on performance and accuracy9 .

Minimal learning machine9 (MLM) is a supervised, distance-based machine learning classification method
that utilizes mapping between input and and output distances. The input distance is a distance between the
training set and its subset R. The output distance is corresponding distances between the label values of the
training set X and subset R. The MLM classification model is a generalization of a nearest neighbour classifier9

. This approach requires argument sorting for the distances between the input and output values and assigning
of the closest label value from the ground truth labels.

Previous studies confirms, that one of the main advantages of the basic MLM is that there is only one
parameter that requires tuning9 . The parameter is the number of the training samples (R). The closer the
amount of the selected training points (R) and the size of the entire training data X goes, the more accurate are
the results. That might encourage to increase the amount of the selected training points, but it will also increase
the computational efficiency and the used time.

When we are presenting the HS images to a supervised spectral MLM classifier, we need to pay attention
to a few features of the HS images. HS image consists of a large amount of spectral bands of which are the
dimensions of the spectral data. The high number of dimensions and the amount of the data makes the processing
computationally and memory costly. Other challenges are the curse of the dimensionality8,10 and the redundancy
among the samples11 . Those challenges might have an impact to the classifiers performance and accuracy.

Dimensionality reduction methods offers one solution for those challenges. One of the most widely used
method11 is the Principal Component Analysis (PCA) with its different extensions. With PCA, the data is
projected with the orthogonal projections of which maximises the variance of the data. The data is yielded to a
new uncorrelated coordinate system12 . With PCA, we can reduce the dimensions and select the training points
intentionally for the classifier.

As a main results in this study, we propose a new approach which can increase the accuracy rate and training
time, and reduce the classification time of the MLM classifier. The proposed framework (subsection 2.3) focuses
on the selection of the training output samples, and it consists from the data point selection algorithm, the MLM
training and the MLM classification algorithms.

The data point selection algorithm 1 utilises the PCA and selects only 3 data points from each of the classes in
the direction of each used principal components. The aim is to have a collection of data points which represents
the geometry of each class. This approach differs from the original MLM approach of picking the training points
randomly9 . The objective is to minimize the size of R, as it is the most influential factor9 in the computational
complexity of this method, without reducing the accuracy with reduced training points. The new framework is
called the PC-MLM.

The proposed framework uses three hyper-parameters. The amount of principal components (PC), the number
of neighbours and optionally the distance metrics (Euclidean, Manhattan or Cosine). Those hyper-parameters
controls the size of the subset R. The focus of the new framework is to improve the performance and still
maintain the accuracy rate in an acceptable level.

We will test the PC-MLM framework against four other supervised classification machine learning methods:
Random Forest, Artificial Neural Network, Support Vector Machine and k-Nearest Neighbours (kNN) classifier
with three known hyperspectral data sets (Indian Pines, Salinas and Pavia City). As the main outcomes, we



show how the performance is affected by the size of the subset R. Our hypothesis is that the MLM is the fastest
model to train when the size of the training set is large. MLM reduces the complexity of the analysis and provides
computational benefits against other models. PC-MLM framework offers tools that can improve the accuracy
rate and classification time compared to the MLM with randomly picked training points with large data sets.

The content of the paper is organized as follows. The section 2 describes methods, PC-MLM frameworks
algorithms and the demonstration materials. The results are introduced in the section 3. The analysis of the
results are discussed into the section (4), and the final section 5 concludes the study.

2. MATERIAL AND METHODS

On this section, we will present the MLM extension to the hyperspectral imaging. We explain the idea of
the intentionally selected training points (PC-MLM) and we will introduce the framework with step-by-step
algorithms. Finally there are a short overview to the comparison methods and the introduction of the selected
HS images as an demonstration material.

2.1 Minimal learning machine

MLM is an supervised machine learning algorithm that can be can be extended to classification tasks9 . MLM’s
learning process has three phases13 . It consists of building a linear mapping between the matrices of input
and output distances. Input distance is a distance between the training set and its subset R. Output distance
is corresponding distances between the label values of the training set and subset R. The generalization phase
utilises the learned mapping and provides an estimation of the distances between output values and the target
output value. The third phase is an optimization problem, based on the predicted output distances and the
ground truth points. The third phase is the computationally most complex9 .

In our framework, the basic MLM model is introduced to hyperspectral image classification. The aim is
to reduce the complexity of the optimization by selecting three training points from the directions of principal
components of the data set. Attempt is to mimics data sets geometry.

In the case of HS images, the training set of spectra with d wavebands is xi ∈ X ⊂ Rd and mk ∈ R is the
intentionally selected sampled subset of the X. Correspondingly yi ∈ Y ⊂ R are the labels of the training set
and tk ∈ T are the subset of the Y . The training set X consist of N samples, and subset R has K samples. Now
d(xi,mk) and δ(yi, tk) are the linear mapping distances.

After selecting the samples, we can define two matrices based on these distances ∆y ∈ RN×K and Dx ∈
RN×K . By assuming the linear mapping between these two distance matrices, we have a linear model

∆y = DxB + E, (1)

where B is coefficients and E is the residual. Coefficients B can be approximated using the ordinary least squares
estimator13

B̂ = (DT
x Dx)−1DT

x ∆y. (2)

Now B̂ is a linear model between distances δ(yi, tk) and d(xi,mk). Now, for the new spectrum xn the distance
between its label yn and set T is

δ(yn, T ) = d(xn, R)B̂. (3)

Label yn can be estimated by solving an quadratic optimisation problem

min
yn

K∑
k=1

(
yn − tk)T (yn − tk)− δ2(yn, T )

)2
. (4)

The equation 4 is the bottle neck of the MLM13 . If we solve it with optimization methods, our classification
is time-consuming and computationally expensive. We can consider that the model B̂ is a of generalization



of the nearest neighbour classifier. Equation 3 gives us distances to the nearest label values of xn. For the
classification of the xn, we need to perform argument sorting for δ(yn, T ) and assign the closest label value from
T . By selecting k closest values and use majority voting of labels; we have similar results than with kNN. The
detailed implementation is shown in algorithms 2 and 3.

In MLM, the subset R is selected picking data points randomly9 . When the size of R approaches the size
of X, the accuracy of the results improves9 . The objective is to minimize the size of R, as it is the most
influential factor in the computational complexity of this method. In our framework, we utilise previous MLM
steps with the idea of using principal components to select the data points intentionally to represent the shape
of the selected component.

2.2 The selection of the reference points

The Principal Component Analysis (PCA), finds the directions of the data variance and projects the data
according to the variance orthogonally, in as many directions as we have dimensions in the data12 . The PCA
reveals the geometry of the data; the first PC component has the highest variation of the data, the second
component reveals the highest variance on orthogonal direction of the first component and so on.

On this study, we utilise the properties of the PCA, by using the component directions to select intentionally
the data points from training set X to the reference set R. As a result, the R represents the geometry of each
class of the the HS image classification targets. We performed this separately for each class of the training set
X. We selected the minimum, maximum and median positions from each of the selected principal components
(PC) directions. Because of the noise in the data sets, the minimum and maximum positions were tuned by
moving both of the extreme values 5% towards the median position. By using this strategy, we can significantly
reduce the size of the reference set R.

On figures 1, 2 and 3 the training data from the each of the HS images is visualised class-by-class after
the PCA. The figures shows the first and the second principal components on the X and Y axis. The selected
reference points are marked to the figures with colors. Black represents the first direction, red is the second and
yellow is the direction of the third principal component. The details of the ground truth classes can be seen on
the subsection 2.4, tables 2 and 1.



Figure 1. Pavia Centre HS image. The class-by-class visualisation of the first and second principal components. The
selected data points from the first three principal components of the class, of which represents the geometry of the each
class are marked with colors. The total amount of selected data points with three principal components was 81.

Figure 2. Salinas HS image. The class-by-class visualisation of the first and second principal components. The selected
data points from the first three principal components of the class, of which represents the geometry of the each class are
marked with colors. The total amount of selected data points with three principal components was 144.



Figure 3. Indian Pines HS image. The class-by-class visualisation of the first and second principal components. The
selected data points from the first three principal components of the class, of which represents the geometry of the each
class are marked with colors. The total amount of selected data points with three principal components was 144.

2.3 The PC-MLM framework

The proposed framework consists of three algorithms. At first, the randomised training arrays are introduced to
the PC algorithm 1. The training phase starts from the reference points selection algorithm 1 and ends to the
first MLL algorithm 2. Prediction is the last step of the framework, the implementation can be seen on algorithm
3. The training time of this study is calculated from performing the algorithms 1 and 2, and the classification
time is the time used on performing the algorithm 3. The framework was implemented in Python. The PCA,
accuracy rate, distance metrics were implemented with Scikit-learn14 metrics and decomposition methods.

Algorithm 1: The selection of the reference points

Input: Training data, the number of components
Step 1: Perform PCA class-by-class
For each class

Compute number of components with PCA from the training data
Step 2: Select training points from each component
For each component

Argument sort component
Select median point from sorted score
Select subtracted minimum from sorted score
Select subtracted maximum from sorted score
Step 3: store selected points
Append selected points to set R and their labels to set T

Result: The R and T are now sorted arrays that represents the data sets shape in the direction of the
selected principal components. The R and T are ready for the MLM classifier implementation



Algorithm 2: The MLM training phase

Input: X (Training data), Y (Labels of the X), R (Selected reference points), T (Labels of the R),
distance metric

Step 1: Calculate output distances
Use Euclidean method and calculate the distances between Y and T .

Step 2 : Calculate input distances
Use distance metric and calculate the distances between X and R

Step 3: Approximate the coefficients
Use the ordinary least squares estimator (equation 2), and mirror the input distances to output

distances
Output: Trained model B̂

Algorithm 3: The MLM prediction phase

Input: New data, T, R, B̂, distance metric
Step 1: Calculate new distances

Calculate new distances, use selected metrics and calculate distances between New data and R
Step 2: Solve the equation 3

δ(yn, T ) = new distances.dot(B̂)
perform an argument sort to δ(yn, T )

Step 3: Select labels
if number of neighbours != 1 then

select neighbours (n shortest distances from sorted δ(yn, T ))
The result label is the mode of the neighbours

else
select the nearest neighbour from the T , use the indexes of the sorted δ(yn, T )

end
Result: The data is classified with PC-MLM framework.

2.4 Spectral images and preprocessing

The experiments were done with three known hyperspectral images, downloaded from the Grupo De Intelligencia
Computational (GIC)15 . The Pavia Centre HS image is the largest one of these three data sets. It has been
acquired by the ROSIS sensor with 102 spectral bands with the geometric resolution of 1.3 meters and with a
spectrum coverage ranging from 430 to 860 nm16 . The image size is 1096 x 1096 pixels. The image ground
truth (table 1) is divided into 9 classes15 . The geometry of Pavia HS image’s each class can be seen on figure 1.

The Salinas scene is collected with AVIRIS sensor. It has 224 spectral bands and the labels are divided in
to 16 classes (table 2). The size of the data set is 512 x 217 pixels with 3.7m spatial resolution over the range of
400–2500 nm17 . Salinas data set is preprocessed, 20 water absorption bands has been removed from the data15

. The Salinas HS image’s class-by-class geometry can be seen on figure 2.

Third HS image is the smallest one, Indian Pines. It consists of 145 x 145 pixels and 224 spectral reflectance
bands in the wavelength range of 400 - 2500 nm. It has been captured with AVIRIS sensor over the Indian Pines
test site. The ground truth (table 2) has been divided in to 16 classes that represents agriculture, forest and
other natural perennial vegetation. 20 Water absorption bands has been removed, leaving the total amount of
bands to 200. Indian Pines data set differs from the other data sets with its ground truth coverage. Some of the
ground truth classes has only 5% coverage.15 The geometry of Indian Pines classes can be seen on figure 3.



Table 1. Pavia Centre HS image ground truth classes and number of the samples

# Class Samples

1 Water 824

2 Trees 820

3 Asphalt 816

4 Self-Blocking Bricks 808

5 Bitumen 808

6 Tiles 1260

7 Shadows 476

8 Meadows 824

9 Bare Soil 820

Table 2. Salinas and Indian Pines HS image, ground truth classes and number of the samples

Salinas Indian Pines

# Class Samples # Class Samples

1 Brocoli green weeds 1 2009 1 Alfalfa 46

2 Brocoli green weeds 2 3726 2 Corn-notill 1428

3 Fallow 1976 3 Corn-mintill 830

4 Fallow rough plow 1394 4 Corn 237

5 Fallow smooth 2678 5 Grass-pasture 483

6 Stubble 3959 6 Grass-trees 730

7 Celery 3579 7 Grass-pasture-mowed 28

8 Grapes untrained 11271 8 Hay-windrowed 478

9 Soil vinyard develop 6203 9 Oats 20

10 Corn senesced green weeds 3278 10 Soybean-notill 972

11 Lettuce romaine 4wk 1068 11 Soybean-mintill 2455

12 Lettuce romaine 5wk 1927 12 Soybean-clean 593

13 Lettuce romaine 6wk 916 13 Wheat 205

14 Lettuce romaine 7wk 1070 14 Woods 1265

15 Vinyard untrained 7268 15 Buildings-Grass-Trees-Drives 386

16 Vinyard vertical trellis 1807 16 Stone-Steel-Towers 93

All of the three HS images were preprocessed as follows. At first, the spectral data was scaled between 0 and
1. The spectral data and the ground truth data were converted and reshaped to two-dimensional arrays. On
the array, each spatial pixel has its values, which is the pixel spectrum. On second, the spectral data and the
ground truth data were randomised with random permutation method, and all non-classified values were removed
from the both of the data sets. The randomised spectral data and its ground truth were divided to training
(60%), validating (20%) and testing (20%) portions. The framework’s model was trained with the training data,
performance and parameters were validated with validation data and the results were achieved with the test
data.



2.5 Reference methods

We tested PC-MLM against four other classification machine learning methods: Random Forest (RF), Artificial
Neural Network (ANN), Support Vector Machine (SVM) and k-Nearest Neighbours (kNN).

SVM is a supervised machine learning model which is based on the theory of statistical learning18 . The
basic idea is to separate the classes with hyperplane in a high or infinite dimensional space14 . Hyperplane is the
decision surface of which the classifier uses to make the decisions on the classification phase. The hyperplane is
optimal, when the margin between the nearest positive and nearest negative training sample is maximized.18

ANN methods are widely used in image analysis. Basic model of ANN consists of the input, hidden and
output layers14 . The variables in the input layer are called nodes, in our case the nodes are the training set
samples. The nodes on the output layer represents the values of the output classes. There are weighted links
between the layers, which controls the flow from input layer thru the hidden layers finally to the output layer.18

RF classifier is an ensemble learning algorithm of which are more accurate and robust towards noise than
single classifiers19,20 . The original RF classifier consists of a group of a single voting classifiers. Each classifier
votes for the assignation of the most frequent class for the input vector.20 On this study, we implemented the RF
classifier from the Scikit-learn Python library, of which combines the classifiers by averaging their probabilistic
prediction, which differs from the Breimans original voting strategy14,20,21 . The fourth reference method,
the Nearest Neighbours classifier (kNN) was used with reference points R. We used the Scikit-learn Nearest
neighbour classifier implementation14 to predict the classes.

The implementations of all the classifiers were from the Scikit-learn Python library14 . SVM, ANN and RF
were optimized with two rounds of hyper-parameter search with the largest data set Pavia Centre. At the first
phase, we narrowed down the selection of possible hyper-parameter values with Scikit-learn randomized Search
CV method14 . On the second phase, based on the results of the first search, we narrowed down the values
and run the Scikit-learn’s Grid Search CV method14 . As a result, we found the hyper-parameters of the best
accuracy rate for each classifier. The kNN classifier was tested with the same number of neighbours than in our
PC-MLM classifier.

All computations were done using Dell laptop with Intel Core i5-7300U CPU 2,6 GHz processor and 8 GB
memory.

3. RESULTS

The first part of the section presents the results of a comparison of the distance metrics of the MLM and PC-
MLM classifiers. Second, we present a classifier comparison with figures and tables, using the distance metrics
selected at the beginning of the chapter. Finally, we will see how the PC-MLM framework can improve the MLM
classifier performance on large data sets.

3.1 MLM with different distance metrics

Since the MLM is a distance based method, it is important to evaluate different distance calculation metrics and
use the most suitable metric in the PC-MLM implementation. Fig. 4 shows that the Euclidean distance metric
reached the overall best accuracy rate with all of the HS images. The Cosine distance metrics accuracy rate was
significantly lower than with the other methods.

Based on these results, we selected the Euclidean distance method to our framework and all of the results
shown this study are produced with it.



Figure 4. The comparison of the distance methods. The accuracy rate with different principal components (sizes of R).

3.2 The classifier comparison

Tables 3, 5 and 4 and figures 5, 7 and 6 shows that the MLM is one of the fastest classifiers in the comparison,
and it can produce comparable accuracy results against other spectral classifiers. MLM can train the largest
Pavia data set faster than the other classifiers. With smaller data sets, the training time of MLM is close to the
fastest model, the kNN classifier. PC-MLM has reached the third place on the training time comparison with
all of the data sets.

The classification maps (Figs. 5, 6 and 7) visualises the prediction results of all of the classifiers on the
comparison. Maps were produced by training the models with each HS images training data, and by predicting
with the whole data of the HS images.

Table 3. Pavia Centre method comparison, 25 principal components, 30 nearest neighbours

MLM 25 PC-MLM 25 PC kNN SVM ANN RF

Number of training samples X: 88891, R: 675 X: 88891, R: 675 675 88891 88891 88891

Training time 5.92 12.39 6.93 24.21 552.54 36.86

Classification time 2.06 1.82 0.10 10.75 1.61 0.33

Accuracy rate 94.48 98.49 95.17 99.34 99.00 98.87



Figure 5. The classification maps of the Pavia Centre HS image. Maps are produced with the comparison classifiers.
Numerical results of these maps are shown in the table 3.

The classification time comparison shows that the PC-MLM classifies all of the data sets faster than the
MLM classifier. With Pavia data, the fastest classifier was kNN. RF was the fastest with Salinas and the Indian
Pines comparison winner was ANN classifier.

The Accuracy rate comparison shows that the best results with Pavia data were achieved with SVM classifier.
Smaller data sets reached best accuracy scores with RF classifier. Table 3 shows that the PC-MLM with 25 PC
components reached promising results against the other classification methods in all of the categories. The Pavia
data’s results shows that with 25 PCA components and R size of 675, the PC-MLM is overall faster than SVM,
ANN and RF and it reaches 98.49% accuracy.



Table 4. Indian Pines method comparison, 25 principal components, 30 nearest neighbours

MLM 25 PC-MLM 25 PC kNN SVM ANN RF

Number of training samples X: 6149, R: 1200 X: 6149, R: 1200 1200 6149 6149 6149

Training time 1.51 2.12 0.88 5.14 6.82 5.39

Classification time 0.26 0.20 0.28 1.99 0.01 0.04

Accuracy rate 78.31 77.89 60.18 88.78 77.17 86.68

Figure 6. The classification maps of the Indian Pines HS image. Maps are produced with the comparison classifiers.
Numerical results of these maps are shown in the table 4.

Table 5. Salinas method comparison, 25 principal components, 30 nearest neighbours

MLM 25 PC-MLM 25 PC kNN SVM ANN RF

Number of training samples X: 35477, R:1200 X: 35477, R:1200 1200 32477 32477 32477

Training time 7.21 11.34 3.85 34.03 184.40 20.33

Classification time 1.62 1.40 0.06 22.57 0.93 0.22

Accuracy rate 93.01 92.82 85.31 93.82 92.57 94.71



Figure 7. The classification maps of the Salinas HS image. Maps are produced with the comparison classifiers. Numerical
results of these maps are shown in the table 5.

The previous results shows that the MLM and PC-MLM classifiers can reach promising accuracy rates against
the other classifiers and decrease the time of training and classification. Those advances can be seen on results
of all of the data sets, regardless of the size of the data, but the best results can be accomplished with larger
ones.

3.3 The performance of the MLM and PC-MLM models

Figure 8 shows the comparison between the PC-MLM classifier and MLM classifier with randomly picked training
points (randomised MLM). The reference set R was formed with 6-30 principal components. The amount of the
randomly picked training points were equal with the size of the R.

The results of each data set is presented separately on rows in figure 8. The left side represents the MLM
and PC-MLM nearest neighbour classifiers. On the right side, there are the results of the MLM and PC-MLM
30 neighbour classifiers. The markers on the lines on the figures represents the amount of principal components,
x-axis shows the number of selected training points and y-axis shows the accuracy rate percent or time in seconds.



Results were measured 10 times and the final results are the average of 10 results. The training data X was
randomised in every round for the randomised MLM.

Figure 8. Pavia, Salinas and Indian Pines HS images, the comparison of the PC-MLM and randomised MLM with nearest
and 30 nearest neighbour classifiers. The accuracy rate and the number of training points of different amount of principal
components.

Figure 8 confirms an observation that the accuracy rate increases when the size of the training points increases.
The structure of the data affects on the results. If the data set is large and it has less ground truth classes, it
will most likely perform better than a smaller data set with high number of classes.

Table 6 shows that with Pavia data, the PC-MLM reached 97.54% accuracy rate with only 6 principal
components, which means 162 selected training points from the whole training data (X) of 88891 samples. With
the same amount of training points, the accuracy rate of randomised MLM was 96.47%. The Pavia data set’s
accuracy rate was better with the PC-MLM in all of the evaluation rounds with different amounts of selected
training points. The best comparable accuracy rate of this comparison was nearest neighbour PC-MLM’s 98.48%



with 675 training points. The result of the randomised MLM with same amount of training points was 97.92%.
This PC-MLM’s result can be improved by increasing the number of neighbours; the results in the tables 6, 8
and 7 shows, that the increased number of neighbours decreases the accuracy of the MLM classifier, but it may
have a positive impact on the accuracy of the PC-MLM model.

Table 6. Pavia Centre, the number of the principal components, size of the R and the accuracy rates: PC-MLM nearest
neighbour ans 30 neighbours classifiers against MLM nearest neighbour and 30 neighbours classifiers. The size of the
training set X: 88 891 samples.

PC The R size PC-MLM nearest MLM nearest PC-MLM 30 neighbours MLM 30 neighbours

3 81 96.91 95.20 46.50 73.16

4 108 97.13 95.24 70.35 74.72

5 135 97.43 96.11 70.56 75.92

6 162 97.54 96.47 97.54 76.85

10 270 97.88 97.14 97.88 84.97

15 405 98.02 97.55 98.23 90.78

20 540 98.39 97.75 98.37 93.41

25 675 98.48 97.92 98.49 94.48

30 810 - - 98.55 95.33

We can see from the tables 6,7, 8 and figure 8, that the results of the Pavia data differs from the results of
the other data sets. The PC-MLM has better accuracy rates than randomized MLM in Pavia results. The trend
of the increasing accuracy rate with the increments of the size of R is similar with all of the data sets. Salinas
and Indian Pines results (figure 8, tables 7 and 8) shows, that the accuracy rate of the randomised MLM exceeds
over the accuracy rate of the PC-MLM’s accuracy.

With Salinas data, the MLM with randomised training points performed better on the accuracy rate compar-
ison. For example with 25 principal components, the results were 92.82% (PC-MLM, 30 neighbours) and 93.41%
(randomised MLM, nearest neighbour). Indian Pines data followed the similar trend with the Salinas data, but
the difference of the accuracy rates was bigger. With 25 components, the MLM with nearest neighbours classifier
reached 79.52% accuracy, where the PC-MLM could reach only 77.94% accuracy.

Table 7. Salinas, the number of the principal components, size of the R and the accuracy rates: PC-MLM nearest neighbour
ans 30 neighbours classifiers against MLM nearest neighbour and 30 neighbours classifiers. The size of the training set
X: 32 477 samples.

PC The R size PC-MLM nearest MLM nearest PC-MLM 30 neighbours MLM 30 neighbours

3 144 87.63 88.34 14.15 48.21

4 192 88.46 89.38 49.06 52.52

5 240 89.27 90.31 49.07 61.50

6 288 89.90 90.89 89.90 68.66

10 480 91.45 92.00 91.46 81.41

15 720 92.25 92.70 92.23 88.82

20 960 92.55 93.08 92.61 92.12

25 1200 92.80 93.41 92.82 93.01



The training and classification time (fig. 8, table 3) follows the same pattern with all of the data sets. The
randomised MLM was faster on the training, but more time-consuming on the classification than the PC-MLM.
For example the average classification time of with Pavia data and 675 training points was 2.06 seconds with
randomized MLM, PC-MLM performed the same classification tasks on average of 1.82 seconds. The according
average training times were 12.39 seconds (randomised MLM), and 5.92 seconds (PC-MLM).

Table 8. Indian Pines, the number of the principal components, size of the R and the accuracy rates: PC-MLM nearest
neighbour ans 30 neighbours classifiers against MLM nearest neighbour and 30 neighbours classifiers. The size of the
training set X: 6149 samples.

PC The R size PC-MLM nearest MLM nearest PC-MLM 30 neighbours MLM 30 neighbours

3 144 63.61 65.15 12.49 48.29

4 192 64.49 67.23 34.78 53.49

5 240 66.73 69.60 36.93 56.53

6 288 67.49 71.37 67.46 61.41

10 480 72.49 75.53 72.35 71.18

15 675 74.49 77.15 74.47 74.68

20 900 76.79 78.65 76.63 77.58

25 1050 77.94 79.52 77.89 78.31

30 1170 - - 78.31 78.54

4. DISCUSSION

The MLM and PC-MLM classifiers seems to perform well with hyperspectral images. The accuracy results are
promising against the other classifiers. MLM and PC-MLM reaches comparable training and classification times
towards most of the other methods. Those advances can be seen on all of the data sets, regardless of the size of
the data set. However, the classifiers were optimized with the largest Pavia data set, which may have an affect
on the performance with smaller data sets, like Salinas and Indian Pines.

Compared to the original MLM classifier, the new PC-MLM framework slightly increases the number of
hyper-parameters with two obligatory and one optional parameter (distance method, the number of principal
components and the number of neighbours). One of the benefits of the original MLM is that it has only one
hyper-parameter to tune, which is the size of the randomly selected training points (R)9 . Our model extends
the amount of parameters, but it seems to still maintain MLM’s overall advances of the easy implementation,
fast classification time and good accuracy rate compared to the other models (see tables 3, 5, 4 and classification
maps 5, 7 and 6). With the reference classifiers, the hyper-parameter tuning was time consuming, and especially
the ANN classifier was hard and time-consuming to optimize, which confirms previous observations of using
ANN classifier22 . The RF and SVM classifier were easier and faster to optimise.

When we compare the PC-MLM’s performance against the MLM with randomly selected points, we can see
from the figure 8, that the PC-MLM is more time-consuming on the training, but it is faster on the classification
phase. The reason, why the PC-MLM is fast in classification, is inside of the implementation of the reference
point selection (algorithm 1). We present in the MLM chapter 2.1, that the optimization problem can be solved
with the nearest neighbours method. After performing the reference point selection algorithm 1, our R and T
are sorted and organised class-by-class. When we are picking randomly samples from the X, the R and T will
remain unorganised. On the classification phase, the PC-MLM’s δ(yn, T ) can be sorted faster than the MLM’s
δ(yn, T ).

The performance of all of the classifiers followed similar trend with each of the HS images. For example, the
Indian Pines had the lowest performance (table 4), while the Pavia HS image reached the highest accuracy scores
(table 3). One explanation for this trend can be that all of the classifiers were optimised only for the largest
Pavia data set.



The MLM and the PC-MLM can classify data with significantly smaller amount of reference points (R) than
SVM, ANN and RF classifiers. The MLM and PC-MLM uses the information from the whole training set X on
the model B̂ (algorithm 2), but in the prediction phase, the classifier calculates only the distances between the
new data and the reference set R. Model utilises the B̂ with the new distances and selects the labels for the
new data with nearest neighbour method (algorithm 3). Therefore it is relatively simple and computationally
less complex machine learning model compared to the reference models.

The study confirms previous findings that the RF classifier can perform well on the land-cover classifications
and remote sensing23 . We trained SVM, ANN and FR models with training sets that had 60% amount of the
HS image data points. With RF classifier, it is a good size for avoiding the over fitting23 . Compared to the
MLM and PC-MLM classifiers training points, the size difference is remarkable. MLM and PC-MLM had only
675 samples and RF 88 891 samples on the Pavia classification task. The accuracy results were close to each
other, but the MLM and PC-MLM could perform results faster than RF classifier.

Since there are similarities with the kNN classifier, it was an interesting to see, how the kNN classifier could
perform with the same intentionally selected training points than the MLM and PC-MLM classifiers. The results
shows, that the MLM’s and PC-MLM’s model performed more accurately than the kNN classifier.

As an limitation for the PC-MLM framework, these tests were done only with three HS images and only
relatively well optimized classifiers. The PC-MLM framework is now ready for the future improvements. For
example, it is an interesting question to solve, how the structure and the size of the data set, and the geometry
of each class affects to the accuracy.

The HS images class-by-class principal component visualisations (fig. 1, 2 and 2) reveals the geometry of
each class and the selected training points. The labels and amounts of the samples can be seen on the ground
truth tables 1, 2. The prediction results are shown in the classification maps shows (figs. 5, 7 and 6).

With Pavia data, the amount of the samples in the ground truth labels had even distribution (table 1), the
selected training points and their position can be seen on figure 1. Figure 1 shows that Pavia’s training points
had less scatter than the classes in the figures 2 (Salinas) and 3 (Indian pines). The reference point selection
algorithm 1 worked well with Pavia data. Salinas and Indian Pines were more difficult to predict. Salinas had
more classes and samples than Pavia, but the image size was significantly smaller and the amount of spectral
bands were twice as big as Pavia’s.

Indian Pines was the smallest data set with the biggest variance on the amount of samples per class. The
principal component visualisation (fig. 3) shows that the training points were scattered. Figure also shows, how
the selected training points are representing the geometry of each class. The classification map 6 reveals, that
the mistakes in the classification of the data set covers all of the classes, which differs from, for example, the
classification map of Salinas 2, where the mistakes are more clearly focused on few categories.

Based on these observations, it would be interesting to research more the relationship between the geometry
of the classes, the structure and size of the data and the intentional reference point selection method (algorithm
1). For example, when the minimum and maximum positions were moved closer to the median position, the
optimization of the new locations were done with Pavia data. This movement increased the accuracy rate, and
it was necessary because of the noise in the data. It would have been interesting to see, how the accuracy rate
results would have behaved, if this optimisation has been done individually to each data set.

We tested MLM and PC-MLM with a large HS image and small number of classes (Pavia Centre), a large HS
image with relatively large number of classes (Salinas) and with a small HS-image and relatively large number
of classes with wide range on the amount of samples per classes (Indian Pines). It might have been interesting
to see how it would have affected on all of the classifiers if we would have performed these tests with a small
data set and small number of classes. Some of the previous classification studies (eg.24) has cleaned the Indian
Pines data, by limiting the classes to the largest ones, since there are classes that has only limited amount of
samples (see from table 2). It would have been interesting to try this experiment again with Indian Pines data
and limited classes.

Another idea to improve the PC-MLM is to study the relation between the number of components and
number of neighbours. The results indicates that with a low number of principal components it might be good



to use the nearest neighbour in the predicting phase, but when we are optimising the classifier, there is a point
with the number of principal components, where the number of neighbours should be increased to achieve better
accuracy rate. The way we select the positions of the minimum and maximum values seems also have an affect
on the number of neighbours, which means that there might be another place to improve the PC-MLM method.
Finding out these optimisation rules might improve and simplify the optimisation process on the future.

The feature extraction (FE) methods are important in hyperspectral data classification. Different FE methods
can be used for extraction of geometric structures, shape and texture from the HSI25 .The aim of the FE is to get
an excellent representation from the original data. On this study, we used the PCA, which is a popular method.
Our findings confirms the previous research of the FE methods. With those methods, we can reduce the number
of the training samples (R size) and reduce the computing time, without decreasing the accuracy rate. The FE
is an important step before using the HS image classification methods10,26 .

5. CONCLUSIONS

The MLM is an effective tool for HS image classification. Comparison against four other spectral classifiers
reveals, that MLM is an easy to implement, it provides good accuracy rates and while classifying, it consumes
less time than the reference models SVM, ANN, RF and kNN.

MLM’s accuracy rate and classification time can be improved by selecting the reference points class-by-class
intentionally with principal component analysis to respect the geometry of each class. The proposed framework
for improving the performance is called the PC-MLM. However, the improvement is dependent on the size of the
data. The results indicates, that MLM’s performance can be improved with large HS images, but with smaller
HS images, the basic version of the MLM might perform better than the PC-MLM.
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