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1  |   INTRODUCTION

The prevalence of overweight and obesity has increased 
(Broyles et  al.,  2010; Kautiainen, Rimpelä, Vikat, & 
Virtanen,  2002), while cardiorespiratory fitness (CRF) 
has declined among adolescents during the past decades 

(Tomkinson, Lang, & Tremblay,  2019). Adiposity and low 
CRF have been linked to an increased cardiometabolic risk in 
children and adolescents and an increasing body of evidence 
also suggests that they are associated with impaired cognition 
in youth (Donnelly et al., (2016); Hjorth et al., 2016; Trudeau 
& Shephard, 2008). Increased adiposity and low CRF have 
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Abstract
Purpose: To investigate the associations of cardiorespiratory fitness, adiposity, and 
arterial stiffness with cognition in 16- to 19-year-old adolescents.
Methods: Fifty four adolescents (35 girls; 19 boys) participated in the study. Peak 
oxygen uptake (V̇O2peak) and peak power output (Wmax) were measured by the maxi-
mal ramp test on a cycle ergometer and ventilatory threshold (VT) was determined 
with ventilation equivalents. Lean mass (LM) and body fat percentage (BF%) were 
measured using a bioelectrical impedance analysis. Aortic pulse wave velocity 
(PWVao) and augmentation index (AIx%) were measured by a non-invasive oscil-
lometric device. Working memory, short term memory, visual learning and memory, 
paired-associate learning, attention, reaction time, and executive function were as-
sessed by CogState tests.
Results: V̇O2peak/LM (β = 0.36 p = .011) and Wmax/LM (β = 0.30 p = .020) were 
positively associated with working memory. Wmax/LM was also positively associ-
ated with visual learning (β = 0.37, p = .009). V̇O2 at VT/LM was positively associ-
ated with working memory (β = 0.30 p = .016), visual learning (β = 0.31 p = .026), 
and associated learning (β = −0.27 p =  .040). V̇O2 at VT as % of V̇O2peak, BF%, 
PWVao, and AIx% were not associated with cognition.
Conclusion: Cardiorespiratory fitness was related to better cognitive function, while 
BF% and arterial stiffness were not associated with cognition in adolescents.
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also been related to increased arterial stiffness, an early indi-
cator of arteriosclerosis (McGill et al., (2000)). Furthermore, 
increased arterial stiffness has been associated with poorer 
cognitive functions in adolescents (Vogrin, Rupnik, and 
Micetic-Turk (2017)) and older adults (Kramer, Erickson, & 
Colombe, 2006). However, the evidence on the associations 
of CRF, body fat content, and arterial stiffness with cognition 
in adolescents is still limited (Lamballais et al., 2018).

CRF, estimated by 20-meter shuttle run test (Huang 
et  al.,  2015; Westfall et  al.,  2018) and peak oxygen uptake 
(V̇O2peak) scaled, that is, divided, by body mass (BM) have 
been positively associated with cognition in some (Chaddock, 
Erickson, Prakash, VanPatter, et al., 2010; Chaddock, Hillman, 
Buck, & Cohen, 2011; Chaddock, Hillman, et al., 2012; Davis 
et al., 2011; Voss et al., 2011), but not all studies (Chaddock, 
Erickson, Prakash, Kim, et  al.,  2010; Ruiz et  al.,  2010) in 
children and adolescents. However, scaling the measures of 
CRF by BM has no clear physiological rationale because it 
may not remove the effect of body size and composition on 
CRF (Tanner, 1949; Welsman & Armstrong, 2019). V̇O2peak 
scaled by lean mass (LM) has been considered the most ap-
propriate method to express CRF (Loftin, Sothern, Takashi, 
& Bonis, 2016). Furthermore, peak power output (Wmax) has 
often been considered a feasible indirect measure of maximal 
cardiorespiratory capacity (Dencker et al., 2008), but Wmax 
is not only a measure of peak aerobic power but also anaero-
bic capacity and the ability to utilize higher threshold motor 
units (Rowland,  2017). However, only a few studies have 
investigated the associations of the measures of CRF, such 
as V̇O2peak or Wmax scaled by LM with cognition and have 
reported statistically insignificant relationships between CRF 
scaled by LM and cognition in youth (Haapala et al., 2015; 
Haapala, Lintu, et al., 2019; Raine et al., 2017, 2018).

Maximal indices of CRF, such as VO2peak and Wmax, re-
flect only one aspect of CRF and different submaximal in-
dices of CRF have been introduced. V̇O2 at the ventilatory 
threshold (VT), referring V̇O2 at the point where the rise in 
minute ventilation exceeds the increase in V̇O2 during the in-
cremental exercise test, is one commonly used and non-inva-
sive measure of submaximal exercise capacity. VT has also 
been found to be more sensitive to changes in physical activ-
ity than V̇O2peak in youth (Balady et al., 2010; Stringer, 2010). 
Furthermore, while the cardiac output is the strongest deter-
minant of V̇O2peak, muscle oxidative capacity and potentially 
reduced blood supply determine VT (Wasserman, 1987). In 
addition, VT, reflecting the ability to sustain submaximal ex-
ercise for prolonged periods (Basset & Howley, 2000) could 
be an ecologically more valid measure of CRF than V̇O2peak 
because habitual physical activity in youth is often light to 
moderate intensity and therefore rarely intensive enough to 
improve or require high V̇O2peak (Armstrong, Tomkinson, 
& Ekelund,  2011). Because of these physiological differ-
ences, the associations of V̇O2peak and VT with cognition and 

the mechanisms explaining those associations may differ. 
However, to the best of our knowledge, there are no previous 
studies that investigate the relation between VT and cognition 
in youth.

Body mass index (BMI) and waist circumference have 
been inversely associated with working memory, attention, 
psychomotor ability, and mental flexibility in youth (Bugge 
et al., 2018; Yau, Kang, Javier, & Convit, 2014). Similarly, 
higher body fat percentage (BF%) (Haapala et  al.,  2015; 
Kamijo et  al.,  2012) and visceral adipose tissue (Raine 
et  al.,  2017, 2018) have been inversely related to cogni-
tion tests in children. However, the inverse association be-
tween adiposity and cognition is not confirmed in all studies 
(Gunstad et al., 2008; Haapala, Lintu, et al., 2019). Although 
overweight and obesity are strongly related to arterial stiff-
ness in youth and the associations between vascular health 
and cognition may already be present during childhood and 
adolescence (Lamballais et  al.,  2018; Vogrin et  al.,  2017), 
most previous studies have focused on middle-aged and el-
derly adults (Lamballais et al., 2018).

Inappropriate scaling of CRF may limit our understand-
ing on the associations of CRF with cognition. Furthermore, 
only a few studies have investigated the associations of CRF, 
adiposity, and arterial stiffness with cognition in adolescents 
simultaneously. We, therefore, investigated the relationships 
of V̇O2peak and VT scaled by LM, BF%, and arterial stiffness 
with cognitive function in 16- to 19-year-old adolescents.

2  |   METHODS

2.1  |  Study design, participants, and 
laboratory procedure

The present analyses are based on the baseline data collected 
in the Neural Effects of Exercise, Diet, and Sleep (NEEDS) 
Study (ISRCTN12991197) in 2016–2017. Altogether, fifty-
four 16- to 19-year-old adolescents (19 males and 35 females) 
were recruited from high schools and vocational schools lo-
cated in the city of Jyväskylä, Finland. The adolescents were 
eligible to participate in the study if they were apparently 
healthy. Exclusion criteria included any cardiovascular dis-
ease, untreated or poorly controlled type 1 diabetes, muscu-
loskeletal trauma or disorder, or severe depression or anxiety. 
The protocol of the NEEDS Study was approved by the eth-
ics committee of the University of Jyväskylä, Finland. All 
participants gave their written informed consent.

2.2  |  Assessments of body composition

BM, fat mass, BF%, and LM were measured twice by bio-
electrical impedance analysis by the InBody 720 device 
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(Biospace Co. Ltd., Seoul, South Korea) following a fast of at 
least 3-hr (Stenman, Pesola, Laukkanen, & Haapala, 2017). 
In the present study, coefficients of variations for fat mass 
and LM analyses were 2.3 and 1.0%, respectively. Body com-
position assessed by bioelectrical impedance has been found 
to have an acceptable agreement with the measures of body 
composition measured by the dual-energy x-ray absorptiom-
etry in children and adults (Sillanpää et al., 2014; Tompuri 
et  al.,  2015). Stature was measured twice in the Frankfurt 
plane without shoes by a wall-mounted stadiometer with an 
accuracy of 1 mm. Waist circumference was measured twice 
after expiration at mid-distance between the bottom of the 
rib cage and the top of the iliac crest using non-stretchable 
measuring tape with an accuracy of 1 mm. The mean of these 
two values was used in the analyses. BMI was calculated as 
BM (kg)/stature (m)2 and ISO-BMI was computed based 
on Finnish reference values (Saari et  al.,  2011). ISO-BMI 
transforms age- and sex-specific child BMI to corresponding 
adult BMI value. The prevalence of underweight (ISO-BMI/
BMI<17), normal weight (17–24.9), overweight (25–29.9), 
and obesity (≥30) was computed using standard cut-offs.

2.3  |  Assessments of cardiorespiratory  
fitness

CRF was assessed by a maximal ramp exercise test on an 
electromagnetically braked Monark 929E cycle ergometer 
(Monark Exercise Ab, Sweden). The protocol included a 
2-min resting period seated on an ergometer, a 2-min warm-
up without resistance (0  W), and an incremental exercise 
period with an increase of workload by 1  W/3  s (totaling 
20 W/min) until voluntary exhaustion. The participants were 
asked to keep the cadence of 70–80 during the test. The test 
was terminated when the participant was unable to keep the 
cadence of 50 revolutions per minute or requested to stop. 
Participants were verbally encouraged to exercise until vol-
untary exhaustion.

Respiratory gas exchange was assessed directly by the 
breath-by-breath method using a metabolic cart (Vmax 
Encore, VIASYS Ltd., Conshohocken, USA) from the 2-min 
resting period until the point of voluntary exhaustion and was 
averaged over 20-s periods. The metabolic cart was calibrated 
according to the manufacturer's instructions. V̇O2peak was de-
fined as the highest V̇O2 achieved in the exercise test aver-
aged over 20 s recorded during the last minute of the exercise 
test. The beat-by-beat heart rate (HR) during the exercise 
test was recorded using a Polar H7 HR sensor (Polar Electro, 
Kempele, Finland).

Because we did not perform a supramaximal validation 
test to obtain maximal oxygen uptake (Sansum et al., 2019), 
we considered exercise test maximal if the primary and sec-
ondary objectives and subjective criteria indicated maximal 

effort and maximal cardiorespiratory capacity (a plateau of 
V̇O2 regardless of increasing workload, HR  >85% of pre-
dicted (Machado & Denadai,  2011), respiratory exchange 
ratio >1.05, or perceived exertion in Borg 6–20 scale ≥18, 
flushing, and sweating), and the exercise physiologist super-
vising the exercise test considered the test maximal.

V̇O2peak was defined as mL × kg LM−1 × min−1, because 
V̇O2peak scaled for mL  ×  kg LM−1  ×  min−1 has been con-
sidered the most appropriate body size normalizing factor 
(Graves et al., 2013; Loftin et al., 2016). V̇O2peak mL × kg 
LM−1 × min−1 was not statistically significantly associated 
with LM (r = 0.053, p = .702). V̇O2 at VT was determined by 
one experienced assessor (EAH) using the equivalents for VĖ/
V̇CO2 and V̇E/V̇O2. V̇O2 at VT was defined as a rate of V̇O2 
where VĖ/V̇O2 begins to increase without an increase in VĖ/
V̇CO2. VT was confirmed using the V-slope method. VT was 
defined as V̇O2 mL × kg LM−1 × min−1 and V̇O2 at VT as a 
percentage of V̇O2peak. VT scaled by LM was not associated 
with LM (r = 0.066, p =  .636). Peak power output (Wmax) 
was defined as the maximal workload achieved at the end of 
the maximal exercise test and was scaled by LM. Wmax scaled 
by LM was not statistically significantly associated with LM 
(r = −0.126, p = .365). To allow comparison with previous 
studies, we also performed the analyses using V̇O2peak, Wmax, 
and VT scaled by BM−1. V̇O2peak and VT scaled by BM were 
inversely, but not statistically significantly, associated with 
BM (r = −0.219, p = .111 and r = −0.077, p = .580, respec-
tively). Wmax scaled by BM was inversely associated with 
BM (r = −0.302, p = .026).

2.4  |  Assessments of aortic wave velocity and 
augmentation index

Aortic pulse wave velocity (PWVao) and augmentation 
index (AIx%) were measured twice from the right upper 
arm in the supine position at about 2-min intervals by os-
cillometric pulse wave analysis (Arteriograph; TensioMed 
Ltd., Budapest, Hungary) after a 10-min rest in the supine 
position (ArterioGraph. Medexpert Ltd.,  2010; Haapala, 
Laukkanen, Takken, Kujala, & Finni, 2018). The mean of 
these two measurements was used in the analyses. Initially, 
the Arteriograph automatically measured the actual sys-
tolic blood pressure (SBP) before inflating the cuff to a 
suprasystolic level of 35  mmHg above resting SBP and 
measured the fluctuations in the brachial artery. The device 
automatically measures resting SBP and diastolic blood 
pressure (DBP). The data were relayed to a tablet com-
puter, recorded, and analyzed as pulse waves as described 
previously (Haapala, Veijalainen, Kujala, & Finni, 2019a). 
PWVao has been found to have good short-term reproduc-
ibility and AIx modest short-term reproducibility in youth 
(Haapala, Veijalainen, et  al.,  2019). Previous studies in 
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adults have demonstrated a strong correlation (r  >  0.9) 
between PWVao and central blood pressure assessed by 
the Arteriograph and invasively measured PWV (Horváth 
et al., 2010; Rossen et al., 2014). Furthermore, PWV and 
AIx assessed by Arteriograph device correspond relatively 
well with PWV and AIx measured by other commonly 
used non-invasive techniques (Jatoi, Mahmud, Bennett, & 
Feely, 2009).

2.5  |  Assessment of cognition

Cognitive functions were assessed using a computer-based 
CogState test battery (CogState Ltd, Melbourne, Australia) 
consisting of eight separate tests measuring accuracy, the 
speed of performance, executive functions, attention, visual 
learning and memory, and working memory. The CogState 
has been reported to be a valid tool to assess neurocognitive 
functions/functioning in adolescents (Maruff et al., 2009) and 
the tasks are not influenced by verbal skills or cultural back-
ground (CogState, 2019).

In the current study, we examined the eight main vari-
ables associated with the cognitive tests, which sub-variables 
were related to the speed of the performance, accuracy or the 
total number of errors. All sub-tests were performed on the 
computer consecutively in a pre-determined order. All the 
cognitive tests of this study were performed in the same test-
ing laboratory and on the same computer (Lenovo ThinkPad 
E550) in a peaceful and quiet room before the exercise test. 
Participants were provided with test presentations and in-
structions were reported according to the manufacturer's 
guidelines.

Accuracy during the working memory task was measured 
by Two Back Task (TWOB) and speed during short term 
memory task with One Back Task (ONB). In the TWOB, 
the participants were asked (using buttons “yes” or “no”) 
to answer whether a present card was the same as the card 
presented two cards ago. In the ONB the participants were 
asked, using buttons “yes” or “no” to answer whether the 
present card was the same as the previous card. A higher 
score indicated better performance.

Accuracy during the visual memory task was assessed 
with the One Card Learning test (OCL). In the OCL, the par-
ticipants were asked (using buttons “yes” or “no”) to answer 
whether they had seen the present card before during the 
OCL test. Accuracy was scored as the reaction time required 
to make a correct response. A higher score indicated better 
performance.

Visual learning and memory (paired-associate learning) 
were measured by the Continuous Paired Associate Learning 
Task (CPAL). In the first part of the two-part test, the partici-
pants were asked to learn and remember abstract pictures and 
hidden patterns in different locations. Then the participants 

were then asked to recall where the re-displayed hidden pic-
ture had been located. The test score was the errors during 
all performance sequences. A lower score indicated better 
performance.

Speed of performance during an attention task was mea-
sured by the Identification Task (IDN). During the task, the 
participants were asked to choose whether a revealed card 
was either red or not. If the card was red, the participants 
were required to press “yes” and for the black card to press 
“no.” A lower score indicated better performance.

Psychomotor function and reaction time were assessed 
with the Detection Test (DET). During the test, the partici-
pants were asked to click a button as quickly as possible when 
a playing card flipped over on a computer screen. The test 
result was based on accuracy, speed of performance, and the 
number of correct answers. A lower score indicated better 
performance.

Execution functions were assessed with the Groton Maze 
Learning Test (GML). Initially, the participants were asked to 
search hidden a 28-step path on a computer screen and then 
remember the path as perfectly as possible. The visual mem-
ory was measured by Groton Maze Learning Test -Delayed 
Recall (GMR) which corresponds to the GML-test.

2.6  |  Other assessments

Pubertal status was assessed by self-reported testicular devel-
opment in boys and breast development in girls on the basis 
of the five-stage criteria described by Tanner (Tanner, 1949; 
Taylor et al., 2001).

2.7  |  Statistical methods

All statistical analyses were performed using IBM SPSS 
Statistics 24.0. for Macintosh (IBM Comp. Armonk, NY, 
USA). Differences in basic characteristics, V̇O2peak, V̇O2 at 
VT, body size and composition, PWVao, and Aix% between 
sexes were analyzed by the Student's t test or Mann–Whitney 
U-test for continuous variables. Associations of CRF, body 
composition, and arterial stiffness (Aix% and PWVao) were 
compared to different cognition test variables using linear 
regression analyses adjusted for age and sex. Age and sex 
were entered into the regression model at the 1st step and 
the measures of CRF, body composition, or arterial health 
were entered separately into the model at step 2 and the 
standardized regression coefficients with corresponding p-
values were reported for each factor. Pubertal status was not 
included as a covariate into the regression models because we 
found that pubertal status was not associated with the meas-
ures of CRF or cognition. The p-values <.05 were considered 
statistically significant.
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3  |   RESULTS

3.1  |  Basic characteristics

Males were taller and heavier and had a lower BF% and a 
higher LM than females (Table 1). Males also had a higher 
absolute and body mass proportional to V̇O2peak and Wmax 
(p <  .001) than females but no statistically significant dif-
ferences were observed in V̇O2peak and Wmax scaled by LM 
between females and males. In addition, males had a higher 
V̇O2 at V̇T scaled by BM than females but there were no 
differences in V̇O2 scaled by LM between males and fe-
males. Males also had higher systolic blood pressure and 
lower AIx% than females. Males had a poorer performance 
in TWOB than females (p = .003), but there were no other 
statistically significant differences in cognitive performance 
between males and females.

3.2  |  Associations of cardiorespiratory 
fitness, body composition, and arterial stiffness 
with cognition

Higher V̇O2peak/LM was associated with better accuracy 
of working memory (TWOB) after adjustment for age and 
sex. Higher Wmax/LM was also associated with better accu-
racy of working memory (TWOB) and accuracy of visual 
learning (OCL) after adjustment for age and sex (Table 2). 
Furthermore, higher V̇O2 at VT/LM was associated with 
better working memory (TWOB), visual learning (OCL), 
as well as visual learning and memory (CPAL). V̇O2 at VT 
as a proportion of V̇O2peak (%) was not associated with cog-
nition. The associations of V̇O2peak, VT, and Wmax scaled 
by BM with cognition are present in Table S1. The results 
based on the measures of CRF scaled by BM were rela-
tively similar to the results based on the measures of CRF 
scaled by LM.

BF% and waist circumference were not associated with 
the measures of cognition after adjustment for age and sex 
(Table 3). We also tested the associations between ISO-BMI 
and cognition, but ISO-BMI was not associated with cogni-
tion (β = −0.228 to 0.091, p > .300). Moreover, AIx%, and 
PWVao were not associated with cognition (Table 3).

4  |   DISCUSSIONS

We observed that higher V̇O2peak, V̇O2 at VT, and Wmax 
were associated with better working memory accuracy. V̇O2 
at VT and Wmax were also positively associated with visual 
learning. Finally, we found no statistically significant asso-
ciation of BF%, waist circumference, AIx%, or PWVao with 
cognition.

In line with previous studies (Chaddock, Erickson, Prakash, 
Kim, et al., 2010; Chaddock et al., 2011; Raine et al., 2013), 
we found a positive association between VO2peak and work-
ing memory, while Wmax was also positively associated with 
working memory. Wmax had a stronger association with vi-
sual learning than VO2peak, which is in contrast with some 
previous studies suggesting no association between Wmax and 
cognition in children (Haapala et al., 2015; Haapala, Lintu, 
et al., 2019). Furthermore, we found no associations between 
VO2peak or Wmax with executive function inconsistent with the 
findings of others (Davis et al., 2011; Wu & Hillman, 2013). 
The reason for a larger and statistically significant regression 
coefficient in the association of Wmax with visual learning 
compared to that of V̇O2peak is not known, but one explanation 
might be that Wmax also reflects neuromuscular functioning 
and coordination, which have been associated with better cog-
nitive functions in children and adults (Geertsen et al., 2016; 
Haapala et  al.,  2015). In addition, while a previous study 
(Raine et  al.,  2017) has suggested that the associations be-
tween CRF and cognition might reflect adiposity rather than 
peak aerobic power, our findings suggest that higher VO2peak 
and Wmax are appropriately scaled by LM benefits working 
memory and visual learning in adolescents. These findings 
also agree with some previous studies showing a positive 
association of fitness with more complex and higher order 
cognition functions, but not with the performance in simple 
reaction speed tasks (Hillman, Erikson, & Kramer,  2008). 
However, direct comparison between the present study and 
previous studies is unfortunately not possible because of 
the different measures of cognition and approaches to scale 
VO2peak. Furthermore, our results using the measures of CRF 
scaled by LM were remarkably similar to the results utilizing 
the measures of CRF scaled by BM. One explanation for these 
similar results may be that our study sample was relatively ho-
mogenous, muscular, and fit. Therefore, for example, VO2peak 
scaled by BM was not statistically significantly associated 
with BM, indicating that VO2peak scaled by BM was not heav-
ily confounded by body size and composition. More studies 
with larger and more heterogenous samples comparing differ-
ent scaling approaches for CRF are warranted.

Better CRF has been associated with improved brain syn-
aptic plasticity and grey matter development and white mat-
ter integrity in children and adolescents (Chaddock-Heyman 
et al., 2014; Cotman, Berchtold, & Christie, 2007; Talukdar 
et  al., 2018). Furthermore, CRF has been positively related 
to cerebral blood flow (Chaddock, Erickson, et  al.,  2012; 
Tyndall et  al.,  2018), exercise-activated growth factors 
(Cotman et al., 2007; Hillman et al., 2008), and increased neu-
ral processing (Gomez-Pinilla & Hillman, 2013). These brain 
level structural and functional changes may explain the asso-
ciations between CRF and cognition. It is also possible that 
improved V̇O2peak and Wmax due to regular vigorous physical 
activity partly may explain our results (Talukdar et al., 2018).
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To the best of our knowledge, there are no previous stud-
ies on the associations between V̇O2 at VT and cognition in 
adolescents. We observed positive associations of VT with 
working memory and visual learning. Higher VT refers to 
the point at which lactate production exceeds lactate clear-
ance because of the increased contribution of anaerobic me-
tabolism (Svedahl & MacIntosh,  2003). In addition, VT is 
limited by muscle oxidative capacity and possibly through 
reduced blood supply is limiting VT (Wasserman,  1987). 
The mechanism for how higher VT may benefit cognitive 
functions is currently unknown. It is possible that physical 
activity partly explains observed associations as VT has been 
found to be more sensitive to exercise training than V̇O2max 
(Balady et  al.,  2010; Stringer, 2010). Furthermore, VT has 
been inversely associated with arterial stiffness in adolescents 
(Haapala et al., 2018) and one plausible mechanism explain-
ing our observations may be that higher VT influences cog-
nition through better cerebral vascular functions and thereby 
improved oxygen and nutrient supply (Wasserman,  1987). 
Nevertheless, biological brain level mechanisms explaining 
the associations of CRF, VT, and arterial health with cogni-
tive functions are not well understood and further studies are 
needed.

While unfavorable cardiometabolic risk factor profile has 
been linked to poorer cognition in youth, we found weak 
if any associations of adiposity and arterial stiffness with 
cognition. Our results are in line with some previous stud-
ies showing a weak and statistically non-significant associa-
tion between adiposity and cognition (Gunstad et al., 2008). 
Nevertheless, other studies have shown poorer cognition in 
overweight and obese children than in their normal-weight 
peers (Yau et al., 2014). Similarly, arterial stiffness has been 
related to impaired cognitive function in the elderly (Kramer 
et  al.,  2006). Furthermore, higher Aix(%) and central sys-
tolic artery pressure have been associated with lower aca-
demic performance among youth aged 11–16 years (Vogrin 
et al., 2017), but the evidence in youth and young adults is 
limited. The reason for the weak associations of adiposity and 
arterial stiffness with cognition in the present study might 
be that the adolescents in our study were relatively lean and 
most of them were normal weight and had normal levels of 
arterial stiffness.

The strengths of the present study are valid and objec-
tive measures of cognition, CRF, arterial stiffness, and body 
composition. We also studied the associations of CRF, ad-
iposity, and arterial stiffness with cognition in adolescents, 
which is an understudied population. Nevertheless, we did 
not perform the supramaximal validation test to confirm 
maximal oxygen uptake and therefore it is possible that we 
have underestimated true aerobic capacity in some partici-
pants (Sansum et al., 2019). Furthermore, we had a relatively 
small sample size and unequal sex distribution. Therefore, we 
were not able to perform the analyses separately for males 

and females and could not stratify the analyses based on pu-
bertal development. Furthermore, we did not control for so-
cioeconomic status in the analyses, because our sample was 
a very homogeneous group. The sample was also recruited 
from local high-schools and therefore the sample may not be 
representative of the general population of adolescents from 
varying socioeconomic backgrounds. Finally, our cross-sec-
tional design precludes any causal interpretations.

In conclusion, adolescents with higher CRF and espe-
cially those with higher VT, performed better in tasks re-
quiring working memory and visual learning. Furthermore, 
adiposity and arterial stiffness were not associated with cog-
nition. In the future, more research is warranted to explore 
whether V̇O2peak or VT in adolescence predicts brain health 
and cognitive functions later in life.
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