
142
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

Advanced Optimization
Algorithms for Applications

in Control Engineering

Ernesto Mininno

JYVÄSKYLÄ STUDIES IN COMPUTING 142

Ernesto Mininno

UNIVERSITY OF

JYVÄSKYLÄ 2011

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 3

joulukuun 12. päivänä 2011 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in the building Agora, auditorium 3, on December 12, 2011 at 12 o'clock noon.

JYVÄSKYLÄ

Algorithms for Applications
in Control Engineering

Advanced Optimization

Advanced Optimization
Algorithms for Applications

in Control Engineering

JYVÄSKYLÄ STUDIES IN COMPUTING 142

JYVÄSKYLÄ 2011

Advanced Optimization

UNIVERSITY OF JYVÄSKYLÄ

Ernesto Mininno

Algorithms for Applications
in Control Engineering

URN:ISBN:9789513945404
ISBN 978-951-39-4540-4 (PDF)
ISSN 1456-5390

ISBN 978-951-39-4539-8 (nid.)
ISSN 1456-5390

Copyright © ,2011 by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2011

Editor
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo
Publishing Unit, University Library of Jyväskylä

ABSTRACT

Mininno, Ernesto
Advanced Optimization Algorithms for Applications in Control Engineering
Jyväskylä: University of Jyväskylä, 2011, 72 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 5390; 142)
ISBN 978-951-39-4539-8 (nid.)
ISBN 978-951-39-4540-4 (PDF)
Finnish summary
Diss.

In the last ten years optimization in industrial applications has obtained an in-
creasing attention. In particular it has been demonstrated useful and effective
in the solution of control problems. The implementation of an optimization al-
gorithm on a real-time control platform must cope with the lack of a full power
computer, thus it must use a very low amount of memory and computational
power. On the other hand the presence of nonlinearities, sensors and approxi-
mations injects in the signals of the control loop some noise, resulting in a noisy
fitness function to be optimized. In this work both issues are addressed in order
to show how a novel algorithmic design can arise from the solution of these im-
plementation problems, often underestimated in the theoretical approach. This
thesis proposes a set of novel algorithmic solutions for facing complex real-world
problems in control engineering. Two algorithms addressing the optimization in
the presence of noise are discussed. In addition, a novel adaptation system in-
spired by estimation of distribution paradigm is proposed to handle highly mul-
timodal fitness landscapes. A crucially important contribution contained in this
thesis is the definition of compact Differential Evolution for optimization prob-
lems in presence of limited hardware. Finally an evolution of the latter algorithm
in the fashion of Memetic Computing is proposed with reference to an industrial
application problem.

Keywords: Compact Algorithms, Noise analysis, Evolutionary Algorithms, Real
Time Control Systems, Differential Evolution, Robotic control.

142)

Author Dr. Ernesto Mininno
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisors Professor Tommi Kärkkäinen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Dr. Ferrante Neri
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Reviewers Prof. Stefano Cagnoni
Department of Computer Engineering.
University of Parma.
Italy

Dr. Chi-Keong Goh
Advanced Techno Centre
Rolls-Royce Singapore
Singapore

Opponent Prof. Dr.-Ing. Hendrik Richter
Elektrotechnik und Informationstechnik Institut
Leipzig
Germany

PREFACE

A large section of computer science devotes its research interest toward optimiza-
tion and design of optimization algorithms. The nature of many real-world ap-
plications and the intrinsic features of the problems, such as conflicting objec-
tives, time and space limitations, the presence of uncertainties, makes the prob-
lems extremely challenging. In order to address this class of problems, especially
when no hypotheses on the mathematical structure of the optimization problem
could be done, e.g. due to the lack of an explicit mathematical description of the
objective function, computational intelligence optimization has been developed.
Computational intelligence optimization is a subject which studies optimization
problems by means of computational intelligence structures. From an alternative
perspective, computational intelligence optimization is a subject which attempts
to tackle optimization problem which cannot be solved by means of traditional
exact optimization methods. In this sense, computational intelligence optimiza-
tion is an important for addressing industrial problems or, more generally, real-
world problems.

This thesis work addresses real-world optimization problems by means of
computational intelligence techniques. This work has been produced thinking
that algorithmic development and applications are two aspects of the same sub-
ject and are connected by a conceptual inter-dependency. In other words, each al-
gorithm contained in this thesis has been designed by thinking at one real-world
problem or to address a specific problem feature characterizing an engineering
process. More specifically, this thesis contains five published articles, three of
them published in journals and two of them contained in conference proceed-
ings. Robotics and control engineering are the main application domains consid-
ered in this work. Two relevant aspects plaguing these fields of technology are
considered in great details; these aspects are the presence of noise in the fitness
computation and the hardware limitations, especially in the memory structures.

ACKNOWLEDGEMENTS

Foremost I would like to thank my colleague and dear friend Ferrante Neri, for
his warm and kind support in these years in Jyväskylä. Without him everything
would have been much harder and less enjoyable.

Next I would thank my main supervisor Tommi Kärkkäinen for his constant
support during this work.

I would thank also Giovanni Iacca for the inspiring scientific conversation
and the constant scientific support in the prosecution of our work.

I would like to dedicate this work to my parents Antonio and Susi, whose
support and believing in my ability as a researcher have been of great inspiration
and confidence to proceed to this goal.

LIST OF FIGURES

FIGURE 1 Schematic of a general evolutionary algorithm 22
FIGURE 2 EA pseudo-code ... 23
FIGURE 3 GA pseudo-code ... 24
FIGURE 4 ES pseudo-code .. 25
FIGURE 5 DE pseudo-code ... 27
FIGURE 6 Direct optimization framework .. 32
FIGURE 7 Indirect optimization framework.. 32
FIGURE 8 Equivalent circuit of the armature electrical dynamics 36
FIGURE 9 DC motor schematic.. 37
FIGURE 10 Cascade of elementary components of the controller 38
FIGURE 11 Anti-windup algorithm ... 39
FIGURE 12 Summary of the GA configuration.. 40
FIGURE 13 Speed and load references during the training test 42
FIGURE 14 Simulation of substitution process on the virtual population

of the cGA.. 48
FIGURE 15 cGA pseudo-code ... 48
FIGURE 16 pe-cGA pseudo-code... 50
FIGURE 17 ne-cGA pseudo-code ... 50
FIGURE 18 Normalization of a truncated Gaussian curve (with standard

deviations σ = 1) so as to obtain a probability density func-
tion with a non-zero support only in the normalized interval
[−1, 1]. ... 53

FIGURE 19 ne-cGA pseudo-code ... 54

CONTENTS

ABSTRACT
PREFACE
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 13

2 OPTIMIZATION PROBLEMS AND ALGORITHMS 15
2.1 Basic Definitions and Notation: Optimization Problems 15

2.1.1 Randomness in optimization .. 16
2.1.2 No Free Lunch Theorems ... 17

2.2 A Short Introduction on Gradient based Methods........................ 19
2.3 Derivative Free Search: Hooke-Jeeves and Nelder Mead 20
2.4 Computational Intelligence Optimization 21

2.4.1 Introduction to Evolutionary Algorithms 21
2.4.2 Genetic Algorithms.. 24
2.4.3 Evolution Strategies ... 25
2.4.4 Differential Evolution... 26
2.4.5 Swarm Intelligence and Particle Swarm Optimization 27
2.4.6 Memetic Computing .. 28

3 WHY ARE REAL-WORLD APPLICATIONS MORE CHALLENGING
THAN “TOY PROBLEMS”? .. 30
3.1 Control Engineering: Generalities .. 30

3.1.1 Suitability ... 30
3.1.2 Unsuitability ... 31
3.1.3 Online optimization framework 31
3.1.4 EA for the online tuning of controls 33
3.1.5 Control of an Electric Drive .. 35

3.1.5.1 Dc Drive .. 36
3.1.5.2 Design on unstructured controllers with GAs 37

3.2 Noisy Fitness Functions .. 43
3.2.1 Definitions .. 43
3.2.2 A Brief Survey on Algorithms for Noisy Optimization 44

3.3 Limited Memory and Real-Time implementations 46
3.3.1 Binary Compact Genetic Algorithms 47
3.3.2 Elitism in cGAs.. 48
3.3.3 Real-Coded Compact Genetic Algorithms 52

4 BUILDING UPON THE STATE-OF-THE-ART IN OPTIMIZATION FOR
CONTROL ENGINEERING .. 56

4.1 Compact Differential Evolution ... 56
4.1.1 Objectives ... 56
4.1.2 Results.. 57
4.1.3 Relation with the whole context 57

4.2 Memetic Compact Differential Evolution 57
4.2.1 Objectives ... 57
4.2.2 Results.. 57
4.2.3 Relation with the whole context 58

4.3 Estimation Distribution Differential Evolution 58
4.3.1 Objectives ... 58
4.3.2 Results.. 58
4.3.3 Relation with the whole context 58

4.4 Noise Analysis Memetic Differential Evolution 59
4.4.1 Objectives ... 59
4.4.2 Results.. 59
4.4.3 Relation with the whole context 59

4.5 Noise Analysis Compact Genetic Algorithm 60
4.5.1 Objectives ... 60
4.5.2 Results.. 60
4.5.3 Relation with the whole context 60

5 CONCLUSION .. 61

YHTEENVETO (FINNISH SUMMARY) ... 62

REFERENCES.. 63

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI E. Mininno, F. Neri, F. Cupertino, D. Naso. Compact Differential Evolu-
tion. IEEE Transactions on Evolutionary Computation, Vol. 15, No. 1, 2011.

PII F. Neri and E. Mininno. Memetic Compact Differential Evolution. IEEE
Computational Intelligence Magazine, 2010.

PIII E. Mininno and F. Neri. Estimation Distribution Differential Evolution.
EvoApplications, Part I, 2010.

PIV E. Mininno and F. Neri. A memetic Differential Evolution approach in
noisy optimization. Memetic Computing, 2010.

PV E. Mininno and F. Neri. Noise Analysis Compact Genetic Algorithm.
EvoApplications, Part I, 2010.

https://doi.org/10.1109/TEVC.2010.2058120
https://doi.org/10.1109/MCI.2010.936305
https://doi.org/10.1007/978-3-642-12239-2_54
https://doi.org/10.1007/s12293-009-0029-4
https://doi.org/10.1007/978-3-642-12239-2_62

1 INTRODUCTION

The introduction of sophisticated research and optimization methods in various
fields of science and engineering has produced a strong effort in the design of
new, high performance, algorithms. In the last ten years a lot of effort has been
spent on the application of optimization techniques in industrial contests. The
specific field of application for these algorithms can range from the optimization
of the system design, to the tuning of the parameter of a control system. Among
them, the application of advanced metaheuristics such as Evolutionary Algo-
rithms (EA) Hart et al. (2004) and Swarm Intelligence Algorithms (SIA) e.g. Eber-
hart and Kennedy (1995) in online and offline control application has received
a lot of attentions. These metaheuristics are often robust search and optimiza-
tion methods that are able to cope with ill-behaved problem domains, exhibiting
attributes such as multimodality, discontinuity, time-variance, randomness, and
noise. These approaches have proved particularly successful in problems that are
difficult to formalize mathematically, and which are therefore not conducive to
analysis. This includes systems that are highly nonlinear, that are stochastic, and
that are poorly understood. Problems involving these classes of process tend to
be difficult to solve satisfactorily using conventional methods. The metaheustics,
as their name says (from ancient Greek “beyond the capability to find”), are gen-
eral purpose optimizers which do not require any piece of information on the
problem such as the explicit structure of the objective function and its gradient.
These features of metaheuristics make them attractive for industrial applications.
On the other hand, the well known No Free Lunch theorems (NFL), discussed
in Wolpert and Macready (1997), have dramatically changed the perspective in
the design and application of optimization methods. The theorems state the non-
existence of an universally better algorithm over the others. This new perspective
led the research community to push more effort in the design and programming
new specific algorithms, tailored to the engineering problem to be optimized.

On the other hand many difficulties can arise from the actual implementa-
tion of optimization algorithms into the hardware used in industrial applications,
such as noise from the sensors and the lack of enough computational power to
accomplish both the control and the optimization tasks. For example, robots for

14

domestic purposes (e.g. a vacuum cleaner robot) need to undergo a learning
process and solve which can result into a complex optimization problem. This
problem must be solved quickly and without counting on a full power computer,
due to volume and cost constraints. Obviously, algorithms employing an archive,
computationally expensive learning processes or a large population size are not
affordable for the hardware.

This thesis is intended as a step further in the process of both designing
robust optimization algorithms with knowledge about the optimization problem
and taking in consideration the peculiar characteristics of the final implementa-
tion that can directly affect the design and the structure of the algorithm itself.

In order to guide the reader through this path, the structure of the work is
organized as described in the following. In the second chapter all the general
definitions regarding optimization algorithms and problems, with an overview
of the most common optimization framework are discussed.

In the third chapter a deep review of the current literature on the applica-
tion of optimization algorithms to industrial application, with specific attention
to control problems, is shown. Then a more accurate introduction to the problem
of noise handling in optimization algorithms and a discussion with examples of
the issues of memory consumption in real-time optimization is done.

In the fourth chapter a review of the contribution of each paper with respect
the whole contest is presented.

2 OPTIMIZATION PROBLEMS AND ALGORITHMS

2.1 Basic Definitions and Notation: Optimization Problems

Mathematical techniques of search and optimization are aimed at providing a for-
mal means for the best decision in real-life optimization problem, such as long-
term investment decision, scheduling strategy for delivering systems and dy-
namic systems control. Stochastic search and optimization methods have gained
rapidly an important role due to the intrinsic uncertainty in information that may
be available for carrying out the task.

Let Θ be the domain of allowable value for a vector θ ∈ Θ. The general
optimization problem can be formulated as:

• Problem Find the values of a vector θ ∈ Θ that minimize a scalar-valued
loss function L : θ ∈ Θ → Λ.

The vector θ represents a set of parameters that must be picked in the best way.
The loss function L(θ) is a scalar measure of the overall performance of the sys-
tem for a give set of parameters. The loss function is also known as performance
measure, objective function or fitness function, depending on the context and the
optimization method.

The optimization problem above can be formally represented as finding the
set:

Θ∗ ≡ arg min
θ∈Θ

L(θ) = {θ
∗ ∈ Θ|L(θ∗) � L(θ)∀θ ∈ Θ}. (1)

In the equation (1) θ is a p-dimensional vector of parameters that are being
adjusted and Θ ⊆ R is the domain for θ. In practical applications, it is not easy
to obtain a closed-form analytical solution to (1). One of the main distinctions in
optimization is between global and local optimization. In general, it would be
preferable to obtain a global optimum solution for the optimization problem (i.e.,
at least one θ

∗ ∈ Θ, whit each θ
∗ providing a lower value of L than any other).

In practice, a global solution is not necessarily available and a local solution must
be accepted. Moreover, considering the inherent limitations of the vast majority

16

of optimization algorithms, it is usually only possible to ensure that an algorithm
will approach a local minimum with a limited amount of resource and computa-
tional time. However in this work will be considered some stochastic algorithms
(i.e. genetic algorithms, compact genetic algorithms, etc.) that are sometimes able
to find global optima among multiple local solutions.

2.1.1 Randomness in optimization

A lot of optimization problems, such as control system design problems, contrast
with classical deterministic search methods because of the intrinsic uncertainty in
the loss function measurement and the deterministic manner used to obtain the
search direction at every step of the algorithm. In many practical problems, such
information is not available, indicating that deterministic algorithms are inappro-
priate. Noisy optimization problems can be a result of the presence of sensors,
measurement devices, numerical simulators, and other objects which perform
measurements and approximations within the objective function calculation. If
the noise is unavoidable and cannot be eliminated from the objective function
computation, the optimization algorithm should take into account this difficulty
of the problem and perform its action notwithstanding the presence of noise. A
strong connection between non-smooth optimization and robust statistics could
be analyzed, as for example shown in Kärkkäinen and Heikkola (2004).

Here, simply consider a generic process state measurement result as re-
ported in equation 2.

Yi = Xi + εi, i = 1 . . . N. (2)

In this situation the “real” process state X is overlapped by the noise ε. The loss
function L can be then computed as

min
θ∈Rn

L(θ) = min
θ∈Rn ∑

i
‖θ − Yi‖ . (3)

In this case, the values of L(θ) are affected by the noise signal ε and must be
taken into consideration for the choice of the optimization algorithm.

For this reason, the stochastic definition in Spall (2003) for a problem and/or
an algorithm apply when:

• Property A There is a random noise in the measurements of L(θ)

• Property B There is a random choice made in the search direction at each
step of the algorithm.

In order to consider Property A, let us study the function,

L(θ) ≡ y(θ) + ε(θ), (4)

where ε represent the noise term. In an optimization problem, it is not necessar-
ily possible to apply common statistical assumption of independent, identically

17

distributed noise. In particular, noise often arise when physical system measure-
ment are used to calculate the loss function. Some specific cases of relevance are:

• Real-time control problems where data as collected “on-the-fly” (online)
during a system operation.

• Problems where physical data are processed sequentially on a dynamic sys-
tem with each value of θ applied to the system sequentially. In some con-
dition each loss evaluation could be affected by the previous one when the
system do not reach a steady state condition.

The Property B states that the deliberate introduction of randomness in the search
process can improve the convergence speed and make it less sensitive to errors in
the computational chain Data/Model/Loss values. For this reason this injection
of randomness have beneficial effects as it allows “spontaneous” movements to
unexplored areas of the search space Θ that may contain an unexpected good θ

value.
Monte Carlo methods are a class of computational algorithms that rely on

repeated random sampling to compute their results.The term describes a large
and widely used class of approaches that tend to follow a particular pattern:

• Define a domain of possible inputs.

• Generate inputs randomly from the domain using a certain specified prob-
ability distribution.

• Perform a deterministic computation using the inputs.

• Aggregate the results of the individual computations into the final results.

The use of Monte Carlo randomness is strictly related to an important class of
algorithms that emulate evolutionary principles of optimization; randomness is
a central part of both simulated and physical evolution through the introduction
of mutations and random crossover between the parents. In a different class of
algorithms the injected randomness can be used to compute quantities that act
like their deterministic counterparts. For example, in Simultaneous Perturbation
Stochastic Approximation (SPSA), presented in Spall (2000) a random approxima-
tion of the gradient is used to drive the search direction of the algorithm.

2.1.2 No Free Lunch Theorems

All the algorithms belonging to the class of Evolutionary Computation applications
were supposed to be valid in general-purpose "black-box" optimization problem.
In 1997 Wolpert and Macready Wolpert and Macready (1997) demonstrated the
lack of an universal best algorithm in the so called no free lunch (NFL) theorems.
In essence, the thesis is that an algorithm that is effective on one class of problem
is guaranteed to be ineffective on another one. In particular, if there are Nθ possible
values for θ and NL possible values for the loss, then by direct enumeration there

18

are (NL)
Nθ possible mappings of θ to possible loss values. The NFL theorems in-

dicate that:

All the possible algorithms ai perform the same when averaging over all
(NL)

Nθ possible mappings from Θ to the output space.

The NFL theorems are restricted to the discrete domain, but all optimization
problems that run on a digital computer meet this constraint because of the in-
trinsic discretization of Λ (the set of all the admissible values for L(θ)) in 32 or 64
bit representation. In order to have a more formal definition of the NFL theorems,
it is possible to define a "sample" of visited points as

dm ≡ {(dθ
m(1), dy

m(1)), . . . , (dθ
m(m), dy

m(m))}. (5)

Thus dθ
m(i) indicates the Θ value of ith successive element in a sample of size

m and dy
m(i) is its associated loss value. The space of all samples of size m is

Dm = (Θ × Λ)m. An optimization algorithm a is represented as a mapping from
previously visited sets of points to a single new point in Θ : a : d ∈ D → {x|x /∈
dx}. The performance of an algorithm a iterated m times on a loss function L can
be measured with P(dy

m|L, m, a): this is the conditional probability of obtaining a
particular sample dm. With these definitions the following NFL theorem 1 can be
enunciated:

Theorem 2.1.1 NFL 1: For any pair of algorithms a1 and a2
.

∑
L

P(dy
m| f , m, a1) = ∑

L
P(dy

m| f , m, a2)

Even if the NFL theorems indicate that "all algorithms perform the same", a key
qualifier is the "averaging over all possible mappings" statement. This means
that when an underling structure of the problem is known, and an algorithm uses
that structure, it is certainly possible to achieve a better performance with that
algorithm than another on the given problem.

Given the above intuition, an informal mathematical representation of the
NFL theorems is

Size of applicability domain × Efficiency = Constant.

So, in essence an algorithm cannot have both wide applicability and uni-
formly high efficiency.

19

2.2 A Short Introduction on Gradient based Methods

If L has an analytical expression, and under the conditions that L is unimodal
and twice differentiable, one can attempt to find its minimum using an analytical
method, based on the decomposition of f into a Taylor series Spall (2003). It is
possible to formulate the problem as described in equation 6.

L(θ) = L(θ0) + g(θ)(θ − θ0) + (θ − θ0)
T 1

2
G(θ0)(θ − θ0) + . . . , (6)

where g(θ) is the gradient of L and G(θ) is the Hessian matrix of L . Since
the optimum θ∗ of f is a stationary point where g(θ∗) = 0, we can derive that

θ∗ = −g(θ0)G−1(θ0) + θ0 (7)

A simplified version of this method can be obtained using the steepest de-
scent method, which consists in replacing G−1(θ0) with the identity matrix and
compute

θ1 = θ0 − γg(θ0) (8)

The iteration of this equation may conduct to values of θn closer to the
sought extremum than that of θn−1. The γ value is the size of the algorithm
step. The choice of the proper step size however becomes yet another problem,
more so since it depends on the objective function. Moreover, this approxima-
tion of the above-described analytical solution causes new problems to appear,
calling for more elaborate techniques which can fall into two categories: quasi-
newton methods attempt to approximate the inverse Hessian matrix in various
ways which often require extensive matrix computations, while conjugate gradi-
ent methods forgo the Hessian matrix entirely and repose on line optimization in
conjugate directions. But even if these methods show fast convergence properties
on quadratic, once or twice-differentiable, unimodal functions, their efficiency is
not guaranteed on arbitrary functions.

In optimization, quasi-Newton methods (also known as variable metric meth-
ods) are algorithms for finding local maxima and minima of functions. Quasi-
Newton methods are based on Newton’s method to find the stationary point of a
function, where the gradient is 0. Newton’s method assumes that the function can
be locally approximated as a quadratic in the region around the optimum, and
use the first and second derivatives (gradient and Hessian) to find the station-
ary point. In Quasi-Newton methods the Hessian matrix of second derivatives
of the function to be minimized does not need to be computed. The Hessian is
updated by analyzing successive gradient vectors instead. Quasi-Newton meth-
ods are a generalization of the secant method to find the root of the first deriva-
tive for multidimensional problems. In multi-dimensions the secant equation is
under-determined, and quasi-Newton methods differ in how they constrain the
solution, typically by adding a simple low-rank update to the current estimate of
the Hessian -see Davidon (1991)-.

20

2.3 Derivative Free Search: Hooke-Jeeves and Nelder Mead

In the case of non-differentiable functions -or functions without analytical expressions-
a different approach to the solution of the problem 1 must be adopted. Derivative-
free optimization methods have been developed to allow the optimization of ar-
bitrary functions. Also known as direct search methods, they consist in essence
in generating a solution θ and testing its fitness by computing L(θ).

The Hooke-Jeeves algorithm -see Hooke and Jeeves (1961)- is based on a
single base point θ0 and a step size h. The main idea of the algorithm is to explore
the neighbourhood of θ0 along each of the axes of the search space, and to find
whether a step of size h towards the positive or the negative direction is leading
to a better fitness. If no improvement has been found after exploring both direc-
tions, the original position of θ0 on that axis is retained. Once every axis has been
probed, the new point θ1, obtained by offsetting θ0 by h or −h along the relevant
axes, is evaluated. If the fitness of θ1 is no better than the one of θ0, a new ex-
ploration of the neighbourhood of θ0 is undertaken, this time with a smaller step
size. Otherwise, a new base point θ2 is chosen by taking one step further from θ1
in the direction defined by θ0 and θ1 (formally θ2 = θ1 + (θ1 − θ0)), optimistically
assuming that the direction is leading towards a better fitness, and the algorithm
is applied again on θ2. While the Hooke-Jeeves algorithm relies on a single point
and the systematic exploration of its neighbourhood, the Nelder-Mead algorithm,
as described in Nelder and Mead (1965), makes use of a set of n + 1 points in Θ,
θ0, . . . , θn forming an n + 1-dimensional polyhedron, or simplex. At each iteration
of the algorithm, the indices points are sorted by their increasing fitness so that
θ0 has the best fitness and θn presents the worst fitness. The procedure then con-
sists in constructing a candidate replacement point θr for θn by reflection of θn

in respect with the center θm of the other θ0, . . . , θn−1 points. Depending on the
performance of θr compared to θ0 and θn−1, an extension point may be created in
an optimistic attempt to explore further in the same direction, or on the contrary
a contraction point may be computed closer to θm. If none of the above attempts
lead to a better solution, the simplex is contracted around its best point in order
to reduce the exploration range in the next iteration of the algorithm.

It is worth noting that even though these algorithms do not require any
knowledge about the fitness function and particularly its derivative, they still
do make use of some crude form of gradient by sampling the search space and
measuring the difference of the fitness between two points from this sample. If
this "gradient" is leaning toward an improvement, the algorithms will make opti-
mistic attempts to follow it in the hope to find yet a better point in that direction.

21

2.4 Computational Intelligence Optimization

In multi-point methods, the search space is sampled in multiple points, which
are considered concurrently. One can consider two classes of metaheuristics, em-
ploying multiple starting points and imitating natural processes. Evolutionary
algorithms thus considers the multiple starting points as a population of indi-
viduals which breed with each other and adapt themselves to their environment.
Multiple solutions thus support each other, in the sense that new solutions are
derived from several precursor solutions. In swarm intelligence algorithms, the
starting points are considered as members of a flock or a swarm, each individ-
ual having only a limited intelligence and following simple behavioural rules,
but contributing altogether to the solution of the problem. Multiple solutions are
then rather following the lead of one of them.

2.4.1 Introduction to Evolutionary Algorithms

The role of evolution in biology and life sciences is well known. Essentially, evo-
lution acts as a type of natural optimization process based on the conceptually
simple operations of competition, reproduction, and mutation. The term Evolu-
tionary Computation (EC) refers to a class of stochastic search and optimization
methods based on the mathematical emulation of natural evolution. That is, EAs
mimic the process of natural evolution, taking into account the results of the in-
terplay between the creation of new genetic information and its evaluation and
selection. A key point of this class of algorithms is its population based structure. In
general, a set of individuals is continuously evolved and evaluated through the al-
gorithm process. Over the course of evolution, the stochastic nature of reproduc-
tion leads to a permanent production of novel genetic information and therefore
to the creation of new differing candidate solution (an offspring). In general, any
iterative, population based approach that uses selection and random variation to
generate new solutions can be regarded as an EA -see Neri et al. (2011)-.

In the context of evolutionary computation the formally equivalent loss func-
tion (4) is called fitness function. It must be noted that a significant group of re-
searchers in the wider CI community considers the nomenclature “loss function”
to be used in minimization context while “fitness function” must be used in the
case of maximization. However it is straightforward to switch from a minimiza-
tion problem to a maximization one just by considering the optimization of a dual
−L(θ) or 1

L(θ problem, as discussed in Spall (2003). The use of the term fitness is
due to the biological metaphor used in evolutionary computation, where each
solution is considered an individual that tries to survive through its capacity to
adapt -see Holland (1975)-.

Each individual within the population is assigned a fitness value L(θ) as
described in (4), which expresses how good the solution is at solving the problem.
The fitness value probabilistically determines how successful the individual will
be at propagating its genes (its code) to subsequent generations. Better solutions

22

are assigned higher values of fitness than worse performing solutions.
Evolution is performed using a set of stochastic operators, which manip-

ulate the candidate solutions. Most evolutionary algorithms include operators
that select individuals for reproduction, produce new individuals based on those
selected, and determine the composition of the population at the subsequent gen-
eration. Recombination and mutation are two well-known operators. All this is
illustrated in Figure 1.

FIGURE 1 Schematic of a general evolutionary algorithm

The recombination operator involves the exchange of information between
solutions, in order to create new solutions. The mutation operator makes small,
random, changes to a chromosome. Historically considered as a background op-
erator by the genetic algorithm community, its role is often regarded as providing
a guarantee that the probability of searching any given string will never be zero
and providing an opportunity to recover good genetic material that may be lost
through the action of selection and recombination. Once the new generation has
been constructed, the processes that result in the subsequent generation of the
population are begun once more. The evolutionary algorithm explores and ex-
ploits the search space to find good solutions to the problem. It is possible for an
EA to support several dissimilar, but equally good, solutions to a problem, due
to its use of a population.

EAs are robust tools, able to cope with discontinuities and noise in the prob-
lem landscape. They have proved useful at tackling problems that cannot be
solved using conventional means. Inclusion of domain-specific heuristics is not a
prerequisite, although it may improve the performance of an EA.

An evolutionary algorithm seeks to maximize (or minimize) the mean fit-
ness of its population through the iterative application of the genetic operators
previously described. The fitness value of a solution in the EA domain corre-
sponds to a cost value in the problem domain. An explicit mapping is made

23

t=0
initialize P(t)
evaluate P(t)
while budget condition do

P’(t)=variation P(t)
evaluate P’(t)
P(t+1)=selection P’(t)
t=t+1

end while

FIGURE 2 EA pseudo-code

between the two domains. ’Cost’ is a term commonly associated with traditional
optimization problems and is equally familiar to control engineers through use
of such optimization-based design procedures as the linear-quadratic regulator.
It represents a measure of performance: namely, the lower the cost, the better
the performance. Optimizers seek to minimize cost. Hence, it is evident that by
minimizing fitness, the EA is effectively minimizing the cost. Raw performance
measures must be translated to a cost value. This process is usually straightfor-
ward for single-objective problems, but becomes more complicated in the multi
objective case. Every possible decision vector has an associated cost value and
fitness value. The enumeration of all such vectors leads to the cost landscape and
fitness landscape for the problem.

A general framework for an EA (see Michalewicz (1992)) is shown in Figure
2, where P(t) denotes a population of n individuals at generation t.

At least three variants of evolutionary algorithms have to be distinguished:
Genetic Algorithms (GA), Evolution Strategy (ES), and Evolutionary Program-
ming (EP) -see Michalewicz (1992)-. The main differences lie in:

• the representation of individuals;

• the design of the variation operators (mutation and recombination);

• the selection/reproduction mechanism.

In general, in real-world applications the set Θ is the space of the physical pa-
rameters of the system (i.e. the parameters of the controller in a control loop) and
constitute the so-called phenotype space. On the other hand the genetic operators
often work in an abstract mathematical space known as the genotype space. Two
different approaches can be followed: the first is to choose a standard algorithm
and a decoding function according to the requirements of the algorithm. The sec-
ond one is to design the representation as close as possible to the characteristics
of the phenotype space. For example, as discussed in Cupertino et al. (2004), the
parameters of a controller can be either represented as a binary string -using a de-
coding function to obtain the right phenotype representation- or coding directly
the controller parameters in a real valued genetic algorithm. In the next sections
each of these approaches will be reviewed and explained in detail.

24

t=0
initialize P(t)
evaluate P(t)
while budget condition do

P’(t)=crossover P(t)
P”(t)=mutation P’(t)
evaluate P”(t)
P(t+1)=selection P”(t)
t=t+1

end while

FIGURE 3 GA pseudo-code

2.4.2 Genetic Algorithms

Genetic Algorithms (GA) -see Goldberg (1989) and Michalewicz (1992)- are the
most used and best known Evolution Algorithms. The metaphor underlying ge-
netic algorithms is that of natural evolution. In evolution, the problem that each
species face is the one of searching for beneficial adaptations to a complicated and
changing environment. The “knowledge” that each species has gained is embod-
ied in the makeup of the chromosomes of its members. The general framework
shown in the previous Section 2 is still valid, considering the introduction of the
two main GA operators: crossover and mutation. With this modification the evo-
lution process of a GA become as described in figure 3.

That is, a GA is a stochastic algorithm that processes at each step a popula-
tion of n individuals Pk = {θk

1, . . . , θk
n}. In the traditional form proposed by Hol-

land (1975) the mathematical representation for each individual (the genotype) is
in the form displayed in equation 2.4.2.

f : {0, 1}l → Y ⊆ R.

In case of continuous parameter optimization problem, GA typically repre-
sent a real valued vector θ ∈ Θ as a binary string x ∈ {0, 1}l through the imple-
mentation of encoding and decoding functions h : M → {0, 1}l and h′ : {0, 1}l →
M that facilitate the mapping operation. The genetic operators used in a common
GA are:

• Selection The Selection operator is based solely on the loss (fitness) values
of the individuals. It is in general implemented as a probabilistic operator,
using the relative loss value L(θk)

∑j L(θj)
(1 − L(θk)

∑j L(θj)
when minimizing) to deter-

mine the selection probability of an individual θk.

• Crossover The standard GA (sGA) performs a so-called one-point crossover,
where two individuals are chosen randomly from the population, a position
in the bit string (or in the real-valued vector θk) is randomly determined as
the crossover point and an offspring is generated by concatenating the left
substring of one parent with the right substring of the other one. In some
applications where real code representation for Θ is chosen its is possible
to find real versions of the crossover operator, such as arithmetic crossover

25

t=0
initialize P(t)
evaluate P(t)
while budget condition do

P’(t)=mutation P(t)
evaluate P’(t)
if (μ + λ)-ES then

P(t+1)=selection (P(t) U P’(t))
else

P(t+1)=selection P’(t);
end if
P(t+1)=selection P”(t)
t=t+1

end while

FIGURE 4 ES pseudo-code

(a linear combination of the vector couple (θi , θj)). Sometimes the crossover
operator can be domain specific, in order to preserve the consistency of the
generated solutions Michalewicz and Schoenauer (1996). As an example
the partially mapped crossover can be taken in consideration Goldberg and
Lingle (1985). It passes ordering and value information from the parent
tours to the offspring tours. A portion of one parent’s string is mapped
onto a portion of the other parents string and the remaining information is
exchanged.

• Mutation In a genetic algorithm the mutation operator has a small impor-
tance Holland (1975). This operator works by inverting a bit in the chromo-
some bit string (or by randomly altering a real gene θk(i)) with a very small
probability such as pm ∈ [0.005, 0.05].

2.4.3 Evolution Strategies

ES was originally designed for constrained continuous variable optimization prob-
lems. Like GAs, ES move a population of candidate solutions from generation-to-
generation with the aim of converging to a global minimum θ∗. The two general
forms of ES in most widespread use, as described in Schwefel and Rudolph (1995)
and Bäck et al. (Apr, 1997), are referred to by the notation (μ + λ)-ES and (μ, λ)-
ES; these are referred to the selection methods of the ES and will be discussed
later. ES do not need an encoding function h as for the binary-GA because they
work directly with θ ∈ Θ. The core steps for ES are reported below in figure 4.

The main differences between (μ + λ)-ES and (μ, λ)-ES are in the selection
operator: at each generation a new P′(t) subpopulation of λ individuals is cre-
ated. In the (μ + λ)-ES the new population P(t + 1) of N individuals is selected
from the combination of the original μ individuals in P(t) plus the new λ off-
spring; on the contrary, in (μ, λ)-ES, the N best values are selected from the pop-
ulation P′(t) of λ > N offspring only.

In this framework the main “variation” operator at each generation is the
mutation. New populations are generated from parent θ values according to the

26

formula 9,
θchild = θparent + μ(0, Dparent), (9)

where N(0, σ) is an n-dimensional normal random vector with a diagonal covari-
ance matrix σ; this matrix is sometimes -see Schwefel and Rudolph (1995)- called
step size. In ES various adaptation mechanism have been implemented to con-
trol the step size during the algorithm evolution. More formally, an individual
a = (θ, œ) consist of object variables θ ∈ Θ -the candidate solution- and strategy
parameters œ ∈ R+. The mutation operator works, as shown in equation (9),
by adding a normal random vector z ∈ R with zi ∼ N(0, σi). The effect of the
mutation, thus, is shown in equation 11,

σ′
i = σie

τ′N(0,1)+τNi(0,1) (10)

x′i = xi + σ′
i Ni(0, 1) (11)

where τ′ ∝ 1√
2n

and τ ∝ 1√
2
√

n
. The adaptation algorithm described in (11) is

known as self-adaptation (Schwefel (1981)).

2.4.4 Differential Evolution

Differential evolution Storn and Price (1995) is a versatile optimizer which, al-
though being originally described as an evolutionary algorithm, shares in certain
circumstances some features with Swarm Intelligence algorithms. The general
structure of DE is the same as the one of other evolutionary algorithms, with
which it shares in particular the concepts of mutation and crossover, but the Dif-
ferential Evolution cannot be anymore considered to be inspired by evolutionary
processes found in Nature. What sets Differential Evolution apart from e.g., Ge-
netic Algorithms or Evolution Strategies is that while in those the mutation is an
operation which produces a random change in an individual, the mutation op-
erator in Differential Evolution takes place before the crossover and produces on
one hand a deterministic change, and on the other hand may not involve the indi-
vidual itself at all. Another noticeable difference is that the crossover operation in
the Differential Evolution involves one parent and its provisional offspring rather
than two parents as is the case in the above-mentioned evolutionary algorithms.
The general structure of the Differential evolution is illustrated in Figure 5.

The initial sampling of the population is performed pseudo-randomly with
a uniform distribution function within the decision space. At each generation, for
each individual xi of the Spop, three individuals xr, xs and xt are pseudo-randomly
extracted from the population. According to the DE logic, a provisional offspring
x′o f f is generated by mutation as:

x′o f f = xr + F · (xs − xt) (12)

where F ∈ [0, 1+] is a scale factor which controls the length of the explo-
ration vector xs − xt and thus determines how far from point xt the provisional

27

t=0
initialize P(t)
evaluate P(t)
while budget condition do

P’(t)=Mutation P(t)
P”(t)=Crossover P’(t) and P(t)
evaluate P”(t)
P(t+1)=selection P”(t) over P(t)
t=t+1

end while

FIGURE 5 DE pseudo-code

offspring should be generated. When the provisional offspring has been gener-
ated by mutation, each gene of the individual x′o f f is exchanged with the corre-
sponding gene of xi with a uniform probability and the final offspring xo f f is
generated:

x′o f f ,j =

{
x′o f f ,j i f U(0, 1) < CR or j = jrand

xi,j otherwise
(13)

where U(0, 1) is a uniformly distributed random variable in [0, 1]; j is the index
of the gene under examination, jrand is a randomly selected gene -which is al-
ways exchanged, in order to prevent cases where no gene from the provisional
offspring is exchanged- and CR is the crossover rate used to define the amount of
parent’s information to pass to the offspring. The resulting offspring xo f f is eval-
uated and, according to a one-to-one spawning strategy, it replaces xi if and only
if f (xo f f) < f (xi); otherwise no replacement occurs. It must be remarked that
although the replacement indexes are saved one by one during the generation,
the actual replacements occur all at once at the end of the generation.

2.4.5 Swarm Intelligence and Particle Swarm Optimization

While evolutionary algorithms find their inspiration in the theory of evolution
and natural selection, swarm intelligence has its roots in the observation of groups
of animals, where some kind of collective intelligence emerges although the an-
imals themselves do not present signs of intelligence but rather following rela-
tively simple rules. The observation of ants has thus led to the development of
the Ant Colony Optimization algorithm, while the metaphor of a flock of birds is
the foundation for the Particle Swarm Optimization algorithm.

Although the Particle Swarm Optimization -see Eberhart and Kennedy (1995)-
is not directly inspired by a natural phenomenon, it is based on the metaphor of
a group of particles using their “personal” and “social” experience in order to
explore the problem’s space and locate optima. A particle represents a pseudo-
randomly initialized point xi in that space, and is associated to a pseudo-randomly
initialized velocity vi. The algorithm iteratively updates the particle’s position
until a terminating criterion is met. The particle’s position xi is thus updated by
applying the formula 14.

x′i = xi + vi (14)

28

Each particle additionally keeps a record of which one, of all the positions it
has taken, was the most successful. This point xbest

i is called local best. Moreover,
the population of particles tracks which one of the particles’ local bests has the
best fitness, and this solution xbest is named global best. The particle’s velocity is
then updated based on these two points, using the formula

v′i = vi + φ1U(0, 1)(xbest
i − xi) + φ2U(0, 1)(xbest

i − xi) (15)

where φ1 and φ2 are parameters and U(0, 1) represents a uniformly-distributed
pseudo-random variable in the interval [0, 1]. A particle’s local best can be con-
sidered as the particle’s memory, and thus the personal learning experience of
the particle due to successful and unsuccessful moves. The global best, being
shared by all the particles represents the above-mentioned social experience. The
particles therefore decide of their movements along two dimensions, the first one
being their own experience, and the second one being the imitation of the popu-
lation’s most successful individual. The utilization of random scale factors allow
to maintain diversity in the population and to prevent premature convergence.

2.4.6 Memetic Computing

Memetic Computing is a subject of computational intelligence which studies al-
gorithmic structures composed of multiple interacting and evolving modules
(memes), see Neri and Cotta (2011a). The first time that the term memetic has
been used in computer science was in late ’80s, see Moscato and Norman (1989),
when the definition of Memetic Algorithms (MAs) has been coined. In their early
definition, MAs were a modification of GAs employing also a local search opera-
tor for addressing the Traveling Salesman Problem (TSP) Moscato (1989). While
the employment of hybrid algorithms in optimization was already broadly used,
a novel and visionary perspective to optimization algorithms in terms of memetic
metaphor has been given in Moscato (1989). According to the metaphor, a meme
is the unit of cultural transmission, see Dawkins (1976). Human knowledge can
be seen as a structure of memes where each meme that can be duplicated in hu-
man brains, modified, and combined with other memes in order to generate a
new meme.

An operative definition of MA has been given in Hart et al. (2004), where
MAs are defined as population-based metaheuristics composed of an evolution-
ary framework and a set of local search algorithms which are activated within the
generation cycle of the external framework.

A plenty of algorithms fitting within this definition have been lately pro-
posed in literature to address a multitude of real-world optimization problems,
see Neri and Cotta (2011b) and Neri et al. (2011). A crucially important issue in
MA implementation is the selection and coordination of the memes within an
algorithmic structure, see Neri et al. (2011). By updating the classification given
in Ong et al. (2006), MA structures for automatic coordination of the algorithmic
components can be subdivided as: 1) Adaptive Hyper-heuristic, see e.g. Cowl-
ing et al. (2000), Kendall et al. (2002), Burke et al. (2003), and Kononova et al.

29

(2008), where the coordination of the memes is performed by means of heuris-
tic rules; 2) Self-Adaptive and Co-Evolutionary, see e.g. Smith (2007), Yu and
Suganthan (2010), and Krasnogor and Smith (2005), where the memes, either di-
rectly encoded within the candidate solutions or evolving in parallel to them,
take part in the evolution and undergo recombination and selection in order to
select the most promising operators; 3) Meta-Lamarckian learning, see e.g. Ong
and Keane (2004), Korošec et al. (2011), Nguyen et al. (2009), and Le et al. (2009),
where the success of the memes biases their activation probability, thus perform-
ing an on-line algorithmic design which can flexibly adapt to various optimiza-
tion problems; 4) Diversity-Adaptive, see e.g. Caponio et al. (2007), Neri et al.
(2007), Neri et al. (2007b), Neri et al. (2007a), Tirronen et al. (2008), Caponio et al.
(2009), and Tang et al. (2007), where a measure of the diversity is used to select
and activate the most appropriate memes. In addition, it is worthwhile comment-
ing Baldwinian systems, i.e. those MAs which do not modify the solutions after
the employment of local search, see Yuan et al. (2010) and Gong et al. (2010).

Recently, two concurrent reasons led to an extension of MA definition to-
wards the broader concept of Memetic Computing. The first reason is several
hybrid implementations which would nicely fit the memetic metaphor were tech-
nically not MAs according to the definition above. The second reason is that part
of the community started thinking about the automatic generation of algorithms
and brought to a more abstract level the memetic metaphor. For example, an early
attempt of mentioning a system capable to automatically generate MAs for given
problems is given in Meuth et al. (2009). In this context the term Memetic Com-
puting (MC) has been coined and defined as “...a paradigm that uses the notion
of meme(s) as units of information encoded in computational representations for
the purpose of problem solving”, see Ong et al. (2010).

A reorganization of the subject have been reported in Neri and Cotta (2011b)
and Neri et al. (2011) where the definition of MC is reported:

Memetic Computing is a broad subject which studies complex and dynamic com-
puting structures composed of interacting modules (memes) whose evolution dynamics is
inspired by the diffusion of ideas. Memes are simple strategies whose harmonic coordina-
tion allows the solution of various problems.

3 WHY ARE REAL-WORLD APPLICATIONS MORE
CHALLENGING THAN “TOY PROBLEMS”?

3.1 Control Engineering: Generalities

3.1.1 Suitability

The evolutionary approach has proved particularly successful in problems that
are difficult to formalize mathematically, and which are therefore not conducive
to analysis. This includes systems that are highly nonlinear, that are stochastic,
and that are poorly understood, e.g. as discussed in Fleming (2002). Problems
involving these classes of process tend to be difficult to solve satisfactorily using
conventional methods. The EA’s lack of reliance on domain-specific heuristics
makes it attractive for application in this area. Very little a priori information is
required, but this can be incorporated if so desired. A single control engineering
problem can contain a mixture of decision variable formats. This can prove signif-
icantly problematic for conventional optimizers that require variables of a single
mathematical type or scientific unit. Since the EA operates on an encoding of the
parameter set, diverse types of variable can be represented (and subsequently
manipulated in an appropriate manner) within a single solution. For example,
the decision vector {sensor type A, 18.3 degrees, blue, 2π} does not pose an in-
trinsic problem to the EA. The EA is a robust search and optimization method that
is well able to cope with ill-behaved cost landscapes, exhibiting such properties
as multi-modality, discontinuity, time-variance, randomness, and noise. Each of
these properties can cause severe difficulties to traditional computational search
methods, in addition to the lack of amenity to an analytical solution. Further-
more, an EA search is directed and, hence, represents potentially much greater
efficiency than a totally random or enumerative search.

31

3.1.2 Unsuitability

Safety critical applications do not appear, initially, to be favourable towards EA
usage due to the stochastic nature of the evolutionary algorithm. No guarantee
is provided that the results will be of sufficient quality for use online. When EAs
are evaluated on benchmark problems, they are commonly tested many (typically
20-30) times due to the algorithms’ stochastic nature. There is also the matter of
how individuals will be evaluated if no process model is available (as may well be
the case). Some supporting theory exists for evolutionary algorithms, especially
for ES, but this is unlikely to prove sufficient to win the approval of standards
and certification agencies. Much care would clearly be needed for critical sys-
tems. Real-time performance is of particular interest to the engineer. However,
EAs are very computationally intensive, often requiring massively parallel imple-
mentations in order to produce results within an acceptable time-frame. Hence,
online application to real-time control is often infeasible. Processes with long
time-constants represent the most feasible application.

3.1.3 Online optimization framework

Online applications present a particular challenge to the optimization. Successful
applications in this field have been somewhat limited to date. The benefits of an
EA for online control systems engineering applications are the same as those dis-
cussed for off-line applications. However, an online EA approach must be used
with particular caution. There are several considerations to be made. It is im-
portant that an appropriate control signal is provided at each sample instant. If
unconstrained, the actions of the ’best’ current individual of the EA may inflict
severe consequences on the process. This is unacceptable in most applications,
especially in the case of a safety- or mission-critical system. Given that it may not
be possible to apply the values represented by any individual in an EA popula-
tion to the system, it is clear that evaluation of the complete, evolving, population
cannot be performed on the actual process. The population may be evaluated us-
ing a process model, assuming that such a model exists, or performance may be
inferred from a system response to actual input signals. Inference may also be
used as a mechanism for reducing processing requirements by making a number
of full evaluations and then computing estimates for the remainder of the popu-
lation based on these results.

In a real-time application there is a limited amount of time for which an
optimizer can be executed between decision points. Given current computing
power, it is unlikely that an EA will execute to convergence within the sampling
time limit of a typical control application. Hence, only a certain number of gener-
ations may be evolved. For systems with long sample times, an acceptable level
of convergence may well be achieved.

In the case of a controller, an acceptable control signal must be provided at
each control-point. If the EA has evolved for only a few generations then pop-
ulation performance may still be poor. A further complication is that the sys-

32

tem, seen from the perspective of the optimizer, is changing over time. Thus,
the evolved control signal at one instant can become totally inappropriate at the
next. EAs can cope with time varying landscapes to a certain extent, but a fresh
run of the algorithm may be required. In this instance, the initial population can
be seeded with previous ’good’ solutions. Note that this does not guarantee fast
convergence and may even lead to premature convergence.

In literature, two main frameworks for the online controller optimization
can be identified.

FIGURE 6 Direct optimization framework

When the stochastic nature of the search for a good solution does not com-
promise the overall quality of the process functioning, then the framework shown
in Figure 6 can be used. In this configuration, the optimization algorithm works
online with the control system. A cost function is computed over a proper time
window with a specific time integral criterion (e.g. IAE, integral absolute error).
The width of the time window must be chosen according to the system main
time constant. The convergence to a good global solution, or vice versa, to a good
performance of the control system can take some time.

FIGURE 7 Indirect optimization framework

For the so called “mission critical” systems, such as chemical plants, a sec-
ond framework is considered more suitable. The indirect optimization frame-
work, shown in 7, uses an online system identification procedure in order to
properly simulate the system responses. This model is identified offline in a first
stage, then it is used to optimize the control parameters. Only the best solution

33

(i.e. at each generation or at the end of the optimization) is actually used on the
real system. Sometimes a proper feedback from the real system is used to train
again (online training) the system model. This framework is not very common
in literature, also due to the intrinsic difficulties in obtaining a good model of the
system.

3.1.4 EA for the online tuning of controls

A typical task of a EA in this context is to find the best values of a predefined set
of free parameters associated to either a process model or a control law. The gen-
eral problem of evolutionary control system design has been tackled in various
ways, which can be broadly classified from three different viewpoints, as sum-
marized in Table 1. Namely, the main characteristics of the various approaches
presented in literature reside in the structure of the control law, in the formu-
lation of the control objective, and in the mechanism of computing the fitness.
The first aspect involves the definition of a parametrized control law, i.e., the se-
lection of controller parameters that have to be optimized by the GA. From this
viewpoint, the largest part of the literature focuses on the optimization of linear
PID controllers. Various case studies finally show that GAs lead to more effective
PID regulators than those obtainable with more conventional design approaches.
With similar motivations, some researchers also focused on problems with larger
search spaces, e.g., combination of PIDs with lead compensators, see Grum et
al. (2001), or other linear transfer function -as in Boussak and Capolino (1992)-,
obtaining analogous results, as discussed in Chipperfield and Fleming (1996).

GAs have also been used to optimize nonlinear control strategies. In partic-
ular, a large amount of research focused on the design of fuzzy controllers (FCs)
using evolutionary approaches -see Hoffmann (2001) for a survey-. In fact, al-
though in principle FCs can be programmed using intuitive or expert knowledge
about the controlled process in the form of linguistic rules, a fine tuning proce-
dure is often necessary to reach satisfactory results. In the case of FCs, the man-
ual tuning is even harder due to the non-linearity of most operations performed
by such controllers, and the consequent lack of knowledge about the effects of
each configuration parameter on the input-output law. Furthermore, fuzzy in-
ference algorithms are generally difficult to implement on commercial low-cost
microcontroller, and must often be converted in look-up tables with additional
memory requirements. It must also be remarked that, even if fuzzy controllers
are universal approximators that can reproduce any input-output law, they may
not immediately offer significant improvements in terms of robustness and per-
formance. In fact, the use of classical PID controllers is still preferred in industrial
contexts unless nonlinear approaches are strictly required.

A second classification criterion of the existing literature concerns the for-
mulation of the fitness, i.e., the objective function describing the control goals. As
shown in Table 1, most technical literature defines the fitness with single indices,
as integral time errors in system’s step response. Control design problems are
inherently multi-objective, and often a single time-response-based index is not

34

TABLE 1 Classification of literature on EAs for control

Controller Type PI/PID
Duivenbode et al. (1998), Krohling and
Rey (2001), Chen et al. (2001), Acarnley
et al. (2000), Porter and Jones (1992)

Fixed structure - Linear Transfer Function (or
Matrix) w/wo anti-windup Fonseca and Fleming (1998), Chen and

Cheng (1998), Lee et al. (1998), Grum et
al. (2001)

Optimizable Structure - Combination of linear
(lead, lag, integrator) with anti windup devices Hoffmann (2001)

Fitness Integral of the error indices (e.g. IAE, ITAE)
Duivenbode et al. (1998), Krohling and
Rey (2001), Acarnley et al. (2000), Porter
and Jones (1992)

H∞ norm (stability, disturbance attenuation)
Krohling and Rey (2001), Chen and
Cheng (1998), Grum et al. (2001)

Multi-objective (aggregated): combination of time
and frequency indices, control action, distur-
bance rejection

Bobbin and Yao (1997), Salvatore et al.
(2002), Lee et al. (1998), Yu et al. (1999)

Multi-objective (Pareto-optimal): combination of
time and frequency indices, control action, dis-
turbance rejection

Chipperfield and Fleming (1996), Fon-
seca and Fleming (1998), Grum et al.
(2001), Chen et al. (2001)

Other
Zinober et al. (1995), Marrison and Sten-
gel (1997), Leng et al. (2000)

Computing the fitness Analytical formulae
Krohling and Rey (2001), Chen and
Cheng (1998)

Simulation
Bobbin and Yao (1997), Chipperfield and
Fleming (1996), Salvatore et al. (2002),
Porter and Jones (1992), Duivenbode et
al. (1998)

Direct experiments on process
Lee et al. (1998), Grum et al. (2001),
Acarnley et al. (2000)

35

sufficient to describe the desired specification of the controller. Furthermore, the
fitness can incorporate any measurable, observable, or calculable behaviour, or
characteristic of the considered problem -see Yu et al. (1999)-, so the choice of in-
tegral time errors seems not to fully exploit the potentialities of the GAs. In fact,
a fitness function can simultaneously take into account several aspects (e.g., in
time and frequency domain) of the design problem. The objectives can be either
combined by aggregating different indices in a unique fitness -as discussed in
Salvatore et al. (2002)- or considered separately in a multi-objective optimization
problem -see Chipperfield and Fleming (1996)-. The latter approach, however,
requires a more complex implementation of the GA, a larger number of iterations
and human supervision to guide the search toward the desired trade-off of objec-
tives. The third main classification criterion is related to the method to compute
the fitness of each controller. Namely, this can be achieved through closed for-
mulae, through computer simulations, or by direct experimentation on the pro-
cess. Closed formulae are generally available only using linear models for the
process and the controller, and neglecting all the nonlinear effects, such as hys-
teresis, voltage drops across brushes in electric drives -see Marrison and Stengel
(1997)-. In such cases, using simple linear controllers, the integral-time-based per-
formance indices (e.g., IAE or ITAE) can be computed through closed formulae of
controller parameters. More frequently, nonlinear effects are not negligible but an
accurate simulation model of the controlled process is available. In such cases, a
straightforward way to compute the fitness of the controller is to perform closed
loop simulation. Generally, GAs require order of thousand fitness evaluations to
converge properly. Therefore, each simulation involved in fitness computation
should take a short enough time to make this approach feasible. When the fitness
is measured by direct experiments on the physical hardware loop, the consid-
erable advantage of these approaches is the reliability of final results. While all
the model-based techniques expressly rely on the accuracy of the model used in
the simulations, in this case the effect of the actual and unknown a priori high-
order phenomena and nonlinearities are fully accounted in the fitness, and the
final controller (the one generating the best fitness) is ready-for-use with known
performance. On-line GA design techniques allow us to obtain automatic design
tools that do not require skilled expertise for system modelling, or trial-and-error
controller optimization. On the other hand, in spite of the simplicity of the basic
idea, online genetic optimization requires to deal with several challenging prob-
lems, which have strongly limited to date the number of successful applications
in this field.

3.1.5 Control of an Electric Drive

The application of the EA approach to the online optimization of a real system,
the case of the control of a DC-Drive, as studied by the author in Cupertino et al.
(2004) is presented in this section as an example of control application for EAs.

Designing and developing a system capable to properly run an evolutionary
search procedure directly commanding the physical hardware can be extremely

36

complex. First of all, safety mechanisms to avoid that poor-performing or even
unstable solutions could permanently damage the hardware must be developed.
The algorithm must also be designed to avoid interference among subsequent
solutions (i.e., it must be ensured that the fitness of an individual does not de-
pend on previously tested solutions, and nor will it affect the performance of
the subsequent ones). Furthermore, to obtain significant and practically useful
results, thousands of experiments must be conducted to obtain controllers with
high fitness, and mechanisms improving the speed of convergence become indis-
pensable to obtain results of practical interest in reasonable search times.

An objective function has been designed that aggregates in a single scalar
fitness a considerable number of conflicting performance measures, taking into
account the actual operating requirements and conditions of an electric drive,
ranging from good reference signal tracking to effective disturbance rejection,
from the limitation of actual power supply to the minimization of the effects of
uncertainties due to frictions, hysteresis, etc. A further contribution resides in
the mechanism used to properly limit the experimentation of badly performing
or unstable controllers. In this case, each index contributing to the total fitness
is computed on-line (i.e., updated at each time sample of the experiment) and
constantly monitored. During the evaluation of an individual, if some of the
monitored indices exceed predefined thresholds, the current experiment is im-
mediately stopped without interrupting the evolutionary search, which proceeds
to the evaluation of the next individual in the population. According to experi-
mental investigation, this highly practical scheme is sufficient to guarantee that
unnecessary stress of the hardware equipment is avoided.

3.1.5.1 Dc Drive

The complete set of equations for a DC motor can be easily found starting from
the physical principles behind it, as shown in Figure 8. For the armature circuit it

FIGURE 8 Equivalent circuit of the armature electrical dynamics

have,

La
dia

dt
= −Raia − KφωR + Va (16)

where,

• Ra: Armature resistance

37

• La: Armature inductance

• ωR: Rotor speed

• Kφ: EMF constant.

• Va: Armature voltage

• ia: Armature current

The torque due to the external magnetic field acting on the current in loop is of
the form

τe = Kφia, (17)

where Kφ is the torque constant. Finally, the mechanical equations are,

J
dωR

dt
= Kφia − f ωR − τL, (18)

dθR

dt
= ωR. (19)

FIGURE 9 DC motor schematic

A picture of a DC motor servo system and its associated schematic is shown
in Figure 9. In the schematic, J is the rotor moment of inertia and f is the coeffi-
cient of viscous friction. It is possible to substitute in equation (16) τa = La

Ra
and

τm = Ra J
K2

φ
. With these, the s-domain transfer functions of the DC motor become:

ω(s) =
1

Kφ

1
τaτms2 + τms + 1

Va(s) (20)

3.1.5.2 Design on unstructured controllers with GAs

The design of a discrete control system for electric drives can be formulated
as a search problem. As in optimal control design, we aim to find the con-
troller (and its order) achieving the maximum satisfaction of a closed-loop cost-
to-performance merit function. The merit function takes into account the tran-
sient and steady-state behaviour, the disturbance rejection, and the form and
entity of the control action. Ideally, the search algorithm must also be able to
recognize and handle unstable or badly performing individuals, possibly prior
to their actual experimentation on the real hardware. This section describes the

38

main structure and operators of the search algorithm, the mechanism developed
to deal with unstable solutions, and the fitness function.

A preliminary step in GA’s configuration is to define the encoding/decoding
strategy that associates a generic solution (i.e., the unstructured linear controller)
to an individual suitable for genetic operations as crossover and mutation. The
definition of the coding strategy can significantly affect the performance of the
GA in terms of accuracy and speed of convergence, and is therefore critical in
on-line application. Since our aim is to work on populations of controllers of
heterogeneous structure, the chromosomes have to include discrete (the order)
and continuous information (the position of poles and zeroes, or equivalently the
polynomial coefficients). As described in Figure 10 the controller is viewed as

0 0()

1

k z z

z

−
−

1

1

z z

z p

−
−

2
1 1

2
1 1

z z

p p

z z

z z

α β
α β

+ +
+ +

0 0f =

0 1f =

1 0f =

1 1f =

+

++

+

()E z ()LU z

FIGURE 10 Cascade of elementary components of the controller

a cascade of elementary controllers. The schema used contains a PI controller,
which guarantees a steady-state constant-reference tracking, a first-order lag or
lead compensator, and a second-order compensator with real or complex roots.
In this way, the maximum order of the controller is four. A sequence of binary
flags (indicated as f0 and f1 in Figure 10) associated to each elementary controller
constitutes the header of the encoded string, and specifies which components are
actually active. The rest of the string contains the sequence of the parameters of
each elementary controller (k0, z0, z1, p1, etc.) which evolve and converge inde-
pendently from the (de)activation of the corresponding flag. Then, the strings
corresponding to the independent controllers are concatenated to form a unique
linear transfer function, described in Figure 10 as G(z) = UL(z)/E(z), where UL
is the nonsaturated control action, E the error, and z is the Z-transform complex
variable.

The actual control action u(k) at discrete time k is computed applying an
anti-windup algorithm to the linear law G(z). In particular, indicating with n
the order of G(z), and defining N(z) and D(z) its numerator and denominator,
respectively, the actual control u(k) is computed as

u(k) =
{

uL(k), if |uL(k)| ≤ umax

sign (uL(k)) umax , otherwise
(21)

with,

uL(k) =
1
b0

(
n

∑
i=0

ai − e(k − i)−
n

∑
j=1

bju(k − j)

)
(22)

39

where ai and bj, (i, j = 1, . . . , n) are the coefficients of N(z) and D(z), respectively
and umax is the upper bound of the control action. In Figure 11 it is summarized

z-nN(z)

z-nD(z)-1

e(k)

-

+
umax

-umax

FIGURE 11 Anti-windup algorithm

the anti-windup algorithm with a block diagram.
Specific variants of the conventional mutation and crossover operators have

been developed with this hybrid encoding schema. The mutation consists in two
different operators that are applied randomly with different probability. The first
type of mutation (binary mutation) is relative to the binary flags describing the
structure, and works as a conventional binary mutation, i.e., inverting the value
of the selected flag (adding or removing one component in the cascaded con-
troller in Figure 10). The second type of mutation (real mutation) is only applied
to real-valued parameters and consists of random additive perturbation of them
within the prescribed bounds. Since the effects of the two mutation operators are
significantly different, their rate of occurrence must be carefully selected to obtain
the desired evolution of the search. The binary mutation acting on structure flags
may seem to perform a strong alteration of the mutated solution, since it adds or
remove poles or zeros from the mutated individual. Obviously, the entity of the
alteration also depends on the position of the removed or added roots with re-
spect to the remaining ones (e.g., adding a dominated pole will not significantly
alter the response of the individual). In fact, this makes the binary mutation very
similar to most mutation operators (e.g., the single-bit mutation in conventional
binary coded GAs), which can occasionally produce strong alteration of the mu-
tated individual (e.g., when the single-bit mutation is applied to the most signif-
icant gene). During the preliminary simulation investigation made to properly
configure the GA, it has been observed that to obtain a satisfactory speed of con-
vergence, the probability of binary mutation should be significantly lower than
the one for real mutation.

The probability of occurrence of the various mutation operators are sum-
marized in Table 12. Similar considerations can be extended to the crossover
between solutions, which also consists of various operators applied with differ-
ent frequencies. Namely, depending on a random condition, the crossover can
be applied either to the flags or to the parameters of a chromosome. If the bi-
nary part is selected, the algorithm applies a multi-point crossover (i.e., flags are
randomly swapped between individuals), otherwise, it applies one of three dif-
ferent real-valued crossovers (the simple, arithmetical, and heuristic crossover
operators described in Michalewicz (1992)). Simple crossover works similarly to

40

FIGURE 12 Summary of the GA configuration

the binary one, by randomly swapping the genes of the two parents. The arith-
metic crossover generates two new individuals along the direction defined in the
search hyper-rectangle by the two parents (i.e., it performs a linear convex com-
bination of the real-valued chromosomes). These operators always produce an
offspring that is included in the hyper-rectangle having two extreme vertices in
the two parents. If used alone, both these crossover operators lead the popula-
tions to quickly concentrate in gradually smaller regions of the solution space,
often causing the premature convergence of the GA. To avoid this risk, we intro-
duce the third crossover operator, which works implicitly as a local hill-climbing
heuristic. Namely, the heuristic crossover only generates a new individual that
lies outside the hyper-rectangle delimited by parents, in the direction of the par-
ent with the better fitness. Finally, this operator returns the best parent as second
child. Applying the three operators together, it is possible to achieve the desired
compromise between exploration and exploitation for our problem.

As already mentioned, the rate of occurrence of each mutation and crossover
operator must be defined with care to obtain an efficient search leading to satisfac-
tory controllers. In particular, to fully exploit the advantages of an evolutionary
optimization in a search space containing controllers of different orders, intu-
itively, the populations should evolve so that, in the first iterations, controllers
of different structure coexist and compete for reproduction, while the associ-
ated real-valued parameters converge to their optimized values for each different
structure. Later on, during the run, the most successful structures (in terms of the
specific fitness used) should progressively gain larger portions of the population
until the latest iterations, when the population should converge to regulators hav-
ing the same order, and the GA should perform a fine tuning of the real valued
parameters.

A second aspect of fundamental importance in on-line GA applications is
the definition of special mechanisms to avoid the experimentation of unstable

41

or badly performing individuals. Namely, due to the inherently random explo-
ration of the GAs, the crossover and mutation may generate unstable closed-loop
systems, especially during the first iterations. Testing such controllers is not nec-
essary and often dangerous, since it may cause hardware damages. To overcome
this risk, as proposed by some authors (see, Chen and Cheng (1998)), it would be
desirable to constrain the search into subregions where the control system is sta-
ble or it has predictable behaviour. Unfortunately in the case discussed here such
regions are not known a priori with sufficient certainty. On the one hand, impos-
ing conservative bounds may exclude regions containing good controllers from
the search, this way compromising the optimality of the final results. In Cuper-
tino et al. (2004) a heuristic strategy has been adopted that effectively overcomes
the limitations of model-based analysis. Instead of computing the fitness at the
end of each experiment, as usually done in on-line tuning approaches, we com-
pute each index contributing to the total fitness on-line, i.e., updating its value at
each time sample of the experiment. The on-line value of each fitness term is con-
stantly monitored, and whenever it exceeds a predefined threshold the current
experiment is immediately stopped. In fact, in our application, badly performing
controllers exhibit an irregular behaviour even in the earliest part of the experi-
ment. It is so possible to detect unstable (or highly unsatisfactory) solutions well
before the involved signals reach potentially dangerous values. Furthermore, the
effects of frictions combined with a limited supply of control action contribute to
limit the effects of badly performing individuals. In case a monitored index ex-
ceeds the prescribed threshold, the value of the fitness is multiplied by a penalty
factor and assigned to the individual, and the algorithm proceeds with another
experiment. In this way, the evolutionary search is never interrupted until the
terminating condition occurs.

The reference input for the control loop also plays a fundamental role in the
success of the evolutionary design. It is not so difficult to tune a good PI controller
looking at motor speed during startup from zero to full speed, trying to minimize
the IAE of the speed response. This task can be performed by skilled operator
or using a simple search algorithm. Unfortunately, the obtained controller does
not give satisfactory responses in the low speed range or when the load condi-
tion changes. Controllers for electric drives must provide satisfactory responses
when operating within the linearity ranges of the actuators, and at the same time
they must limit the effects of saturations in presence of abrupt set-point changes.
These aspects are often contrasting, i.e., good controllers in full-load conditions
exhibit poor performance when no load is applied to the motor and vice versa. In
order to take all these aspects into account in our problems, the system is excited
with a speed reference of variable amplitude: first small and then high reference
changes let the controllers operate both in linear and saturated conditions. At the
same time, a suitable sequence of load steps is applied so to explore the motor
drive performance in the whole speed range at different load levels, as shown in
Figure 13.

To optimize the overall response of the motor drive, the employed objective
function is a weighted sum of several performance indices that are directly mea-

42

0 1 2 3 4 5 6 7
0

0.5

1

time, s

sp
ee

d
an

d
lo

ad
 to

rq
ue

 r
ef

er
en

ce
s,

 p
u

no load full load full load full load no load no load

FIGURE 13 Speed and load references during the training test

sured during the system response to the input signal described above. The fitness
to be minimized is:

f =
5

∑
j=1

αj f j, (23)

where αj represent positive weights and f j are five performance indices defined
in the following. The formulation of a single aggregated index was initially pre-
ferred to “truly” multiobjective GAs (MOGAs) searching for the Pareto-front of
nondominated solution (see, Fonseca and Fleming (1998)), because the latter ap-
proaches in general require a larger number of fitness evaluation to converge.
The indices used in the optimization problem are the following:

• Steady-State Speed Response: This index measures the speed error in the set-
tling phases

f1 =
n

∑
j=1

|ωR(j)− ω∗
R(j)|gω(j), (24)

where ωR and ω∗
R indicate motor speed and speed reference (i.e., setpoint),

respectively, and the integer n indicates the number of stored signal sam-
ples. When the speed reference changes, gω is set equal to zero, and after
0.25 s is set equal to one. In this way, the speed error is not considered for
the calculation of f1 when the speed controller saturates. In fact, in this con-
dition, the speed behaviour cannot be further improved because the motor
acceleration is limited by the actual motor current.

• Speed Overshoot: We define the single overshoot index as

fos =
ωmax

R − ω
steady
R

ω
steady
R

(25)

43

where ωmax
R = maxh=1,...,n |ωR(j)|, and ω

steady
R is the steady-state speed value.

The global overshoot index f2 is the sum of the indices fos measured for ev-
ery speed step change.

• Transient Response Duration: The index f3 is the sum of the settling times
(within 2% of the reference) measured for every speed step change.

• Rise Time: The rise time from 2% to 98% of the reference speed step is mea-
sured every time the speed set point is modified. The fourth index f4 mea-
sures the sum of all the rising times.

• Current Reference Oscillations for Constant Speed Reference: For each step change
the following index is measured:

fre f =
ni+1−1

∑
j=ni

|i∗a(j)− imean
a |gω(j) (26)

where ni is the number of the sample corresponding to a speed step change,
imean
a is the mean value of i∗a calculated between ni and ni+1 − 1 when gω(j) =

1. The index f5 is the sum of the fre f indices and accounts for undesired rip-
ples and oscillations of the current that increase losses and vibrations.

3.2 Noisy Fitness Functions

3.2.1 Definitions

As already described in the previous sections, the presence in the control loop
of sensors,measurement devices, numerical simulators, and other objects which
perform measurements or approximations within the calculation of the objective
function. If the noise is unavoidable and cannot be eliminated from the objective
function computation, the optimization algorithm should take into account this
difficulty of the problem and perform its action notwithstanding the presence of
noise.

For example, simply consider a generic process state measurement result

Yi = Xi + εi, i = 1 . . . N. (27)

In this situation the “real” process state X is overlapped by the noise ε. The loss
function L can be then computed as

min
θ∈Rn

L(θ) = min
θ∈Rn ∑

i
‖θ − Yi‖ . (28)

In this case, the values of L(θ) are affected by the noise signal ε and must be taken
into consideration for the choice of the optimization algorithm. The optimiza-
tion algorithm should be able to handle the noise and perform a compensation

44

and/or filtering during the optimization process. As summarized in Di Pietro
et al. (2004), the noise in the objective function causes two types of undesirable
behavior: 1) a candidate solution may be underestimated and thus eliminated, 2)
a candidate solution may be overestimated, thus saved and allowed to lead to-
wards incorrect search directions. Equivalently, a noise fitness landscape can be
seen as characterized by false optima which consequently mislead the algorithm
search, see Neri and Mäkinen (2007). For these reasons, the application of a clas-
sical (deterministic) optimization algorithm is often inadequate, since its search
strategy would be heavily jeopardized by the noise. Some examples of determin-
istic algorithms whose structure has been modified in order to handle noise are
given in Anderson et al. (2000) and Neri et al. (2008). On the other hand, due
to their inner structure and population based setup, Evolutionary Algorithms
(EAs) are considered to be very promising with noisy problems and manage to
improve upon the initial fitness values, see Arnold and Beyer (2003), Beyer and
Sendhoff (2006), and Arnold and Beyer (2006). However, the noise still represents
a challenge to be handled, and standard EAs often do not manage to detect sat-
isfactory solutions. In particular, the most critical operation is, as highlighted in
Branke and Schmidt (2003), selection of the most promising solutions for subse-
quent phases of the optimization algorithms. Obviously, the selection requires a
prior fitness-based comparison operation whose reliability and significance can
be heavily jeopardized by the noise.

3.2.2 A Brief Survey on Algorithms for Noisy Optimization

In a noisy fitness scenario the application of a classical (deterministic) optimiza-
tion algorithm is often inadequate, since its search strategy would be heavily
jeopardized by the noise. Some examples of deterministic algorithms whose
structure has been modified in order to handle noise are given in Anderson et
al. (2000) and Neri et al. (2008).

On the other hand, due to their inner structure and population based setup,
Evolutionary Algorithms (EAs) are considered to be very promising with noisy
problems and manage to improve upon the initial fitness values, see Arnold and
Beyer (2003), Beyer and Sendhoff (2006), and Arnold and Beyer (2006). However,
the noise still represents a challenge to be handled, and standard EAs often do not
manage to detect satisfactory solutions. In particular, the most critical operation
is, as highlighted in Branke and Schmidt (2003), selection of the most promising
solutions for subsequent phases of the optimization algorithms. Obviously, the
selection requires a prior fitness-based comparison operation whose reliability
and significance can be heavily jeopardized by the noise.

Following the analysis reported in Jin and Branke (2005), noise handling
components for EAs can be classified into two categories, each category being
divided into two sub-categories:

• Methods which require an increase in the computational cost

Explicit Averaging Methods

45

Implicit Averaging Methods

• Methods which perform hypotheses about the noise

Averaging by means of approximated models

Modification of the Selection Schemes

Explicit averaging methods consider that, in the presence of noise, re-sampling of
the fitness values followed by the averaging (for zero-mean noise) of these values
is beneficial in order to perform a correct fitness estimation. As a matter of fact,
increasing the sample size is equivalent to reducing the variance of the estimated
fitness. Thus, ideally, an infinite sample size would reduce to zero uncertainties
in the fitness estimations, transforming the problem into a non-noisy one.

Implicit averaging consists of enlarging the population size in order to give
the solutions a chance to be re-evaluated. In addition, a large population size al-
lows the evaluations of neighbour solutions and thus an estimation of the fitness
landscape in a certain portion of decision space. In Miller and Goldberg (1996),
the fact that a Genetic Algorithm (GA) with infinite population size would be
noise-insensitive has been proven.

The topic, whether a re-sampling or an enlargement of the population size
is better when it comes to noise handling, has been discussed in literature and
various results supporting both philosophies have been presented, e.g., Beyer
(1993), and Hammel and Bäck (1994).

In both cases, these methods lead to an increase in the amount of fitness
evaluations with respect to a standard EA. This fact obviously implies an increase
in computational overhead, which can be unacceptable in real-world applications
where the computational cost of each fitness evaluation may be high. Thus, in
order to obtain efficient noise filtering without excessive computational cost, var-
ious solutions have been proposed in literature. In Aizawa and Wah (1993) and
Aizawa and Wah (1994), two variants of adaptive re-sampling systems based on
the progress of evolution have been proposed. In Stagge (1998), a variable sam-
ple size performed by means of a probabilistic criterion based on the solution
quality is presented. In Neri et al. (2006) and Neri et al. (2008) both sample and
population size are adaptively adjusted on the basis of a diversity measure. In
Branke and Schmidt (2003), Branke and Schmidt (2004), and Cantú-Paz (2004) se-
quential approaches have been proposed which aim at reducing the sample size
during the tournament selection and performing massive re-sampling only when
strictly necessary.

Regarding methods which employ approximated models in order to per-
form the averaging, the main idea is that computation of a fitness value by means
of the values of neighbour points can give, without an extra fitness evaluation, a
reliable estimation of the fitness. More specifically, according to this algorithmic
philosophy, the fitness value estimated by an approximated (and computation-
ally cheap) technique is not less imprecise than the original noisy value. For
example, Branke et al. (2001) and Sano et al. (2000) propose taking fitness esti-
mates of neighbouring individuals in order to predict the fitness value of some

46

candidate solutions. Paper Neri et al. (2008), by employing a similar philosophy,
proposes construction of a local linear surrogate model (an approximate model
of the true fitness function) which locally performs the noise filtering.

Other works make some assumptions regarding the noise in order to pro-
pose integration of a filtering component within the selection schemes so as to
perform sorting of the solutions without the use of a large amount of samples.
A theoretical study about the threshold choice is presented in Beielstein and
Markon (2002). In Rudolph (2001), under the hypothesis that the noise is bounded,
application of a partial order on the set of noisy fitness values is proposed.

In recent years, noise filtering components have been designed and inte-
grated into metaheuristics as opposed to the classical ES and Genetic Algorithms
(GAs). For example, in Ball and Bowler (2003) a modified Simulated Annealing
(SA) has been proposed for noisy problems. In Gutjahr (2003), an implementation
of Ant Colony Optimization (ACO) for noisy environments has been proposed.In
Bartz-Beielstein et al. (2007), a sequential sampling procedure has been proposed
for a Particle Swarm Optimization (PSO). In Pan and Wanga (2006) and Klamar-
gias et al. (2008) very accurate statistics-based procedures for noise handling are
integrated within PSO structures.

Some noise handling components have also been proposed for Differential
Evolution (DE). In several papers, e.g. in Krink and Fogel (2004), it is empirically
shown that the DE is not recommended for noisy problems. However, recent
works propose some modifications of the DE schemes which make it very com-
petitive with advanced metaheuristics tailored to optimization in a noisy envi-
ronment. According to the explanation given in Das and Konar (2005a) and Das
and Konar (2005b), DE is based on an overly deterministic structure for handling
difficulties imposed by the noise. Thus, introduction of stochastic elements in the
framework (the scale factor, in this case) can greatly improve the DE performance
in the presence of uncertainties. By following a similar logic, in Rahnamayan et
al. (2006), an opposition based DE (i.e., a DE which performs extra sampling of
symmetrical points) is proposed for noisy environment and shows that gener-
ation of the opposition based points beneficially perturbs determinism of a DE
structure in the presence of a noisy fitness. The fact that stochastic elements inte-
grated within a DE can be beneficial for reaching a high performance level can be
further confirmed by several studies in literature, e.g. Brest and Greiner (2006),
which show the improvements for static functions in high dimensions. In addi-
tion, in Bo Liu and Ma (2008), a DE hybridized with a SA for noisy problems has
been proposed.

3.3 Limited Memory and Real-Time implementations

In many real-world applications, an optimization problem must be solved de-
spite the fact that a full power computing device may be unavailable due to cost
and/or space limitations. This situation is typical of robotics and control prob-

47

lems. For example, a commercial vacuum cleaner robot is supposed to, over the
time, undergo a learning process in order to locate where obstacles are placed
in a room (e.g. a sofa, a table etc) and then perform an efficient cleaning of the
accessible areas. Regardless of the specific learning process, e.g. a neural net-
work training, the robot must contain a computational core but clearly cannot
contain all the full power components of a modern computer, since they would
increase the volume, complexity, and cost of the entire device. Thus, a traditional
optimization meta-heuristic can be inadequate under these circumstances. In or-
der to overcome this class of problems compact Evolutionary Algorithms (cEAs)
have been designed. A cEA is an Evolutionary Algorithm (EA) belonging to the
class of Estimation of Distribution Algorithms (EDAs), see Larrañaga and Lozano
(2001). The algorithms belonging to this class do not store and process an entire
population and all its individuals therein but on the contrary make use of a statis-
tic representation of the population in order to perform the optimization process.
In this way, a much smaller number of parameters must be stored in the memory.
Thus, a run of these algorithms requires much less capacious memory devices
compared to their correspondent standard EAs.

3.3.1 Binary Compact Genetic Algorithms

Compact Genetic Algorithms (cGA) Harik et al. (Nov, 1999) are evolutionary algo-
rithms that mimic the behavior of conventional GAs by evolving a probability
vector (PV) that describes the hypothetic distribution of a population of solutions
in the search space. A cGA iteratively processes the PV with updating mecha-
nisms that mimic the typical selection and recombination operations performed
in a standard GA (sGA) until a stopping criterion is met. In Harik et al. (Nov,
1999) it is shown that the cGA is almost equivalent to a sGA with binary tour-
nament selection and uniform crossover on a number of test problems, and also
suggested some mechanisms to alter the selection pressure in the cGA. The main
strength of the cGA is the significant reduction of memory requirements, as it
needs to store only the PV instead of an entire population of solutions.

A building block, as discussed in the Schemata Theorem (see Holland (1975)),
is a set of genes that as a whole give a high contribution to the fitness of an indi-
vidual. In the initial population there will be some instances of the building block;
then during the action of a GA the number of instances of the building block can
increase or decrease. In (Harik et al. (1997)) the authors conducted an analysis
about the behavior of the building blocks within a random walk model. This
analysis suggests that it is possible to directly simulate this process for order-one
problems1. The main idea is to simulate l independent random walks through
the introduction of a probability vector PV, p ∈ [0, 1]l, as described in Figure 14.

The general framework of the PBIL (and the EDA) is valid also for the cGA.
The main difference is the connection that is made between the cGA and the sGA.
Specifically for order-one problems the two algorithms are approximately equiv-

1 By order-one problem we mean a problem that can be solved to optimality by combining
only order-one schemata.

48

...
i − th

...
j − th

...

⎡⎢⎢⎢⎢⎢⎢⎣

...
0 1 0 0 0

�

1 1 0 1 1
...

⎤⎥⎥⎥⎥⎥⎥⎦ =⇒

...
i − th

...
j − th

...

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
0 1 0 1 0

...
0 1 0 1 0

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
FIGURE 14 Simulation of substitution process on the virtual population of the cGA

counter t = 0
{** PV initialization **}
for i = 1 : n do

initialize PV [i] = 0.5
end for
while budget condition do

generate 2 individuals a b by means of PV
[winner, loser] = compete (a, b)
{** PV Update **}
for i = 1 : n do

if winner [i]! = looser [i] then
if winner [i] = 1 then

PV [i] = PV [i] + 1/Np
else

PV [i] = PV [i]− 1/Np
end if

end if
end for
counter update t = t + 1

end while

FIGURE 15 cGA pseudo-code

alent. The basic idea in the cGA implementation is about the selection process:
imagine a selection scheme in which two individual (i.e. the i-th and j-th individ-
uals) are randomly chosen in a “virtual” population of n individuals and suppose
to delete the worst one and to make a copy of better one, as shown in Figure 14.

This scheme is equivalent to a steady state binary tournament selection
where the proportion of the winning alleles will increase by 1/n. For instance
in the Figure 14 the proportion of 0’s in the first, fourth and fifth position will
increase by 1/n. At the other position the proportion will remain the same. This
suggest that an update rule increasing a gene’s proportion by 1/n simulates a
small step in the action of a GA with a “virtual” population of size n.

3.3.2 Elitism in cGAs

The great advantage of low computational cost and memory usage of the cGA
has a drawback when facing it with complex problems such as fully deceptive
and multimodal problems. In Ahn and Ramakrishna (Aug 2003) the authors pro-
pose two new elitism-based compact GAs that belong to a class of EDA -the per-
sistent compact GA (pe-cGA) and the nonpersistent compact GA (ne-cGA). The main
objective is to efficiently solve difficult problems using the cGA without unduly

49

compromising on memory and computational cost.
The pe-cGA deals with the problem of lack of memory by simply retain-

ing the best solution found so far, thereby mitigating the disruptive effects of
uniform cross-over. Another interesting aspect is that in this configuration the
pe-cGA shows a close connection to (1+1)-ES with self-adaptive mutation as dis-
cussed above. This can be interpreted as a revelation of the relationship between
EDA and ES. In addition, the pe-cGA offers some advantages over (1+1)-ES to
GA practitioners. On the other hand, it can be further improved by controlling
the strength of elitism. This scheme is used to prevent the rapid degeneration of
genetic diversity, thereby improving the quality of the solution. The only differ-
ence of ne-cGA from pe-cGA is in the operational mechanism, whereby a chro-
mosome that is randomly generated replaces the elite one when a certain criterion
indicating the allowable length of inheritance is not satisfied.

In sGA elitism provides a means for reducing the genetic drift by ensur-
ing that the best chromosome(s) is allowed to pass/copy their traits to the next
generation. Elitism can increase the selection pressure by preventing the loss of
“low” salience genes of chromosomes due to deficient selection pressure and it
improves the performance with regard to optimality and convergence of GAs
in many cases. However the degree of elitism should be adjusted in order to
prevent premature convergence. In general a more difficult problem requires a
higher selection pressure for finding a better solution. This is because higher
selection pressure offsets the disruptive effects of uniform crossover, thereby en-
couraging convergence to a better solution. The introduction of this mechanism
in cGA without any extra memory consumption can be obtained replacing only
the loser individual by the new individual in the standard cGA pseudocode. In
other words, the winner is never eliminated in so far as a better chromosome
has not yet been produced from the PV. This is the framework of the pe-cGA as
reported in Figure 16.

While gaining in selection pressure, on the other hand, the pe-cGA may lose
genetic diversity owing to implied elitism leading to premature convergence and
to a suboptimal solution. In order to prevent this behavior in ne-CGA a parameter
η -the allowable length of the elite chromosome’s inheritance- is introduced to
control the strength of elitism. With this modification the pseudocode of the ne-
cGA becomes:

Two remarkable results are discussed in Ahn and Ramakrishna (Aug 2003)
and are reported here: equivalence of pe-cGA and (1+1)-ES and remarks on the
maximum length of inheritance η.

Theorem 3.3.1 The pe-cGA is equivalent to the (1+1)-ES with self adaptive mutation.

Proof Let L : Θ → R be the loss function to be minimized. Consider the Marko-
vian process Xk�0 generated by a stochastic algorithm,

Xk+1 =

{
Xk + lkZk, if L(Xk + lkZk) < L(Xk)
Xk, otherwise

(29)

50

counter t = 0
{** PV initialization **}
for i = 1 : n do

initialize PV [i] = 0.5
end for
generate elite by means of PV
while budget condition do

generate 1 individual a by means of PV
{** Elite Selection **}
[winner, loser] = compete (a, elite)
if a == winner then

elite = a
end if
{** PV Update **}
for i = 1 : n do

if winner [i]! = looser [i] then
if winner [i] = 1 then

PV [i] = PV [i] + 1/Np
else

PV [i] = PV [i]− 1/Np
end if

end if
end for
counter update t = t + 1

end while

FIGURE 16 pe-cGA pseudo-code

counter t = 0 and θ = 0
{** PV initialization **}
for i = 1 : n do

initialize PV [i] = 0.5
end for
generate elite by means of PV
while budget condition do

generate 1 individual a by means of PV
{** Elite Selection **}
[winner, loser] = compete (a, elite)
θ = θ + 1
if a == winner OR θ ≥ η then

elite = a
θ = 0

end if
{** PV Update **}
for i = 1 : n do

if winner [i]! = looser [i] then
if winner [i] = 1 then

PV [i] = PV [i] + 1/Np
else

PV [i] = PV [i]− 1/Np
end if

end if
end for
counter update t = t + 1

end while

FIGURE 17 ne-cGA pseudo-code

51

where lk is the step length control parameter that is increased as far as mutation
improves solutions. Each random vector Zk has a joint probability density func-
tion (pdf) with independent marginal densities. The (29) can model an (1+1)-ES
with self-adaptive mutation if the step length control parameter is changed when
the relative frequency of improving mutations is below or above some threshold
within τ trials. (see Rudolph (1999)).
Now let Yk be a random vector generated from the PV. The probability distribu-
tion of Yk is given by

FYk
(y1, . . . , yl) =

l

∏
i=1

Pk(i) (30)

where Pk(i) represents the i-th element of PV at the k-th generation.
By employing Yk the pe-cGA can described by

Xk+1 =

{
Yk, if L(Yk)) < L(Xk)
Xk, otherwise

(31)

With some straightforward manipulation and the relation

lkZk = Yk − Xk (32)

with the pdf of Zk computed as

FZk(z1, . . . , zl) = FZk(z) = |lk|FYk
(lkz + Xk). (33)

With equations (31) and (33) it is possible to conclude that the two algorithms (i.e.,
the pe-cGA and the (1+1)-ES with self adaptive mutation) follow the identical
model

The second main result in Ahn and Ramakrishna (Aug 2003) relates to the length
of inheritance η.

Theorem 3.3.2 The allowable length of inheritance η should not exceed the simulated
population size n. That is, η < n.

Proof Define Wk as a random vector generated from a random PV set to 0.5. Let
Vk be another vector defined as (Pk+1 −Pk). This is the inter generational changes
of the PV. Let us assume that the winner takes the PV to converge regardless
of optimality of the solution. It is assumed that the winner always defeat its
competitor when the PV converges, irrespective of the optimality of the solution.
The PV evolution can be described by

Pk+1 (i) =
{

Pk (i) + E (Vk (i) |Xk (i) = 1) , if Xk (i) = 1
Pk (i) + E (Vk (i) |Xk (i) = 0) , if Xk (i) = 0

(34)

Each conditional expectation on Vk(i) can be computed as follows:

E[Vk|Xk(i) = 1] =
1
n

p[Vk =
1
n
|Xk = 1] (35)

E[Vk|Xk(i) = 0] = − 1
n

p[Vk = − 1
n
|Xk = 0] (36)

52

On the other hand each conditional probability is seen to be

p[Yk(i) = 0] = 1 − Pk(i) (37)

p[Yk(i) = 1] = Pk(i) (38)

Let us consider (37) first. To increase the i-th element of PV by 1
n given that i-th

gene of the winner has “1”, the i-th gene of its competitor should generate “0”
because the winner in (k − 1)-th generation becomes a winner in the present k-th
generation. Using (35), (36), (37) and (38) it is possible to rewrite (34) as

Pk+1 (i) =
{

Pk (i) + 1
n{1 − Pk(i)}, if Xk (i) = 1

Pk (i)− 1
n Pk(i), if Xk (i) = 0

(39)

Define PM
k and Pm

k as max∀j Pk(j) and min∀j Pk(j), respectively. None of the ele-
ment in the PV should be brought to convergence by the same winner because
there is no guarantee that the chromosome leads to an optimal solution. It means
that:

PM
k+η < 1 (40)

Pm
k+η > 0. (41)

This means that the allowable length of inheritance for binary pe-cGA must sat-
isfy:

PM
k+η = (1 − 1

n
)PM

k+η−1 +
1
n

= (1 − 1
n
)2PM

k+η−2 + {(1 − 1
n
) + 1} 1

n
= . . .

= (1 − 1
n
)ηPM

k + {1 − (1 − 1
n
)η}

≈ (1 − η

n
)PM

k
η

n
< 1.

Thus the allowable length of inheritance η must satisfy

η < n (42)

By a similar method it can be easily shown that also for Pm
k > 0 it must be valid

the (42)

3.3.3 Real-Coded Compact Genetic Algorithms

In (Mininno et al. (2008)), it is presented a novel cGA that combines the non-
persistent elitist compact GA proposed in (Ahn and Ramakrishna (Aug 2003))
with a real-valued chromosome representation. The real-valued coding has been
widely used in evolutionary algorithms (including GAs Michalewicz (1992)) to

53

avoid the additional computational cost related to the binary-to-float conver-
sions. To use a real-valued coding in a cGA, a number of modifications are nec-
essary. Let us consider a modified minimization problem in an m-dimensional
hyper-rectangle, that is

L : Θ̂ → R. (43)

Here the set Θ̂ ⊆ R
m represents the hyper-rectangle of Rm with each com-

ponent of θ ∈ Θ̂ normalized to the interval [−1,+1]. The estimate of the single
(binary) gene distribution in a cGA can be specified with a scalar in [0,1] express-
ing the probability of finding a “0” or a “1” in the single gene. As the rcGA uses
real-valued genes, the distribution of the single gene in the hypothetical popula-
tion must be described by a Probability Density Function (PDF) defined on the
normalized interval [−1,+1]. A variety of different PDFs could be used for this
purpose. Here it is assumed that the distribution of the j-th gene can be described
with a Gaussian PDF with mean xj and standard deviation σj. More precisely,
since the Gaussian PDF is defined in] − inf,+ inf[, it is proposed a “Gaussian-
Shaped” PDF defined on [−1,+1] whose height is normalized so that its area is
equal to one. In Figure 18 it is illustrated the effect of the normalization procedure
on a Gaussian PDF with zero mean and standard deviations equal to 1 and 10,
respectively.

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

Normalized Parameter Interval

Gaussian pdf N(0,1)
Scaled Gaussian curve
Final Truncated pdf

unitary area

FIGURE 18 Normalization of a truncated Gaussian curve (with standard deviations
σ = 1) so as to obtain a probability density function with a non-zero sup-
port only in the normalized interval [−1, 1].

The height normalization has a generally negligible computational cost, as
it is obtained by means of a simple numerical procedure (Spall (2003) and Cody
(1969)). Let us consider the normal distribution N (x̂, σ) and standard error func-

54

counter t = 0 and θ = 0
{** PV initialization **}
for i = 1 : n do

initialize PV [i] = 0.5
end for
generate elite by means of PV
while budget condition do

generate 1 individual a by means of PV
{** Elite Selection **}
[winner, loser] = compete (a, elite)
θ = θ + 1
if a == winner OR θ ≥ η then

elite = a
θ = 0

end if
{** PV Update **}
for i = 1 : n do

if winner [i]! = looser [i] then
update mean and variance of PV

end if
end for
counter update t = t + 1

end while

FIGURE 19 ne-cGA pseudo-code

tion er f (x):

pd f (N(x̂, σ), x) =
1

σ
√

2π
e−

(x−x̂)2

2σ2 (44)

er f (x) =
2√
π

∫ x

0
et2

dt. (45)

So, it is possible to scale the normal distribution N(0, σ) multiplying its pdf
by the factor:

Kscale =

(
er f

(
1√
2σ

))−1

. (46)

Therefore, the PV became in the rCGA an m × 2 matrix specifying the two pa-
rameters of the PDF of each single gene. Thus, it is possible to define:

PVk = [x(k)œ(k)], (47)

where x(k) =
[

x(k)1 , . . . , x(k)m

]
is the vector of the mean values, œ(k) =

[
σ
(k)
1 , . . . , σ

(k)
m

]
is the vector of the standard deviations, and k is the iteration index. Here it is re-
ported the pseudocode description of the real-neCGA; the main difference with
the bcGA regards the generation of the initial population and the update rule. The
initial population is generated by setting x(1)j = 0 and σ

(1)
j = λ where λ is a large

positive constant (e.g., λ = 10, see Figure 18). In this way after height normal-
ization it is possible to obtain a PDF that approximates sufficiently the uniform
distribution U(−1, 1) that is almost always used to generate initial individuals in
real-valued GAs.

55

The update rule of the real cGA are:

x(k+1)
j = x(k)j +

1
n
(wi − li) (48)[

σ
(k+1)
j

]2
=

[
σ
(k)
j

]2
+

[
x(k)j

]2 −
[

x(k+1)
j

]2
+

1
n

([
wj

]2 − [
lj
]2
)

(49)

The update rule is designed so as to replicate the typical operations of a bcGA. As
in Harik et al. (Nov, 1999), the idea is to mimic a steady state binary tournament
selection. This operator simply replaces the looser with a copy of the winner, and
consequently alters also the compact, probabilistic description of the population.
In particular, while the mean is simply moved in the direction of the winner with
a step whose size depends on the population size n, the standard deviation is
subject to a less transparent effect, due to its quadratic structure.

4 BUILDING UPON THE STATE-OF-THE-ART IN
OPTIMIZATION FOR CONTROL ENGINEERING

As mentioned in the previous chapter many issues must be taken in account
when an evolutionary algorithm is applied to the solution of an optimal con-
trol problem. In particular the actual implementation of the algorithm on the
real-time control platform must cope with the lack of a full power computer, thus
it must use a very low amount of memory and computational power. On the
other hand the presence of nonlinearities, sensors and approximations inject in
the signals of the control loop some noise, resulting in a noisy fitness function to
be optimized. The articles presented in this work can be subdivided into two cat-
egories. PI to PIII present better variation of the compact framework presented
in Mininno et al. (2008). PIV presents a variation of the noise analysis mecha-
nism within a memetic scheme. Then PV discuss the implementation of both
a cEA framework and a component to reduce the influence of the noise on the
optimization process.

4.1 Compact Differential Evolution

4.1.1 Objectives

Although the general motivation is similar to that of cGA and its variants, there
are important issues especially related to differential evolution (DE) algorithm.
First, the survivor selection scheme that performs a pair-wise comparison be-
tween the performance of a parent solution and its corresponding offspring. This
logic can be naturally encoded into a compact algorithm unlike the case of a selec-
tion mechanism typical of genetic algorithms (GAs), e.g., tournament selection.
In other words a DE can be straightforwardly encoded into a compact algorithm
without losing the basic working principles (in terms of survivor selection).

The second issue is related to the DE search logic. A DE algorithm contains
a limited amount of search moves which might contribute to jeopardizing the

57

generation of high quality solutions which improve upon the current best per-
formance. A cDE algorithm, due to its nature, does not hold a full population of
individuals but contains its information in distribution functions and samples the
individuals from it when necessary. Thus, unavoidably some extra randomness,
with respect to original DE, is introduced.

4.1.2 Results

The suitability of cDE in the resolution of a sophisticated control problem is
demonstrated in the paper by showing the results of an optimized neural net-
work controller for a linear electric drive. These motors are often directly coupled
with their load, and the absence of reduction/transmission gears makes the po-
sitioning performance strongly influenced by the various uncertainties related to
electro-mechanical phenomena (striction, cogging forces), which therefore must
be compensated with appropriate strategies. Beside that, the performance and
robustness of this new compact algorithm is widely discussed, comparing its per-
formance with those of other compact and population based algorithms.

4.1.3 Relation with the whole context

The main motivation behind this work is the enhancement of the performance
of a standard cEA in terms of robustness and overall performance on various
optimization benchmarks. In the context perspective, this work has been able
to demonstrate the suitability of the DE scheme within a compact framework in
order to obtain better performance in both numerical and experimental tests.

4.2 Memetic Compact Differential Evolution

4.2.1 Objectives

The extension of the cDE approach presented in the previous paper is here con-
sidered. The adoption of a memetic computing approach to the cDE framework
is discussed in order to achieve an overall better performance in terms of robust-
ness with respect to a set of benchmark problems. The low memory needs of the
algorithm remains in this approach a main goal, and it is obtained also in the lo-
cal searcher, which implements a hypercube around a certain point and samples
points within the hypercube volume is integrated in order to assist, in a memetic
fashion.

4.2.2 Results

The combination of these search structures makes the algorithm a compact struc-
ture which requires a very limited amount of memory resources and can therefore
be implemented into computational devices characterized by modest computa-

58

tional power. This feature makes the proposed algorithm appealing for imple-
mentation in cheap and portable hardware. In order to test the suitability of the
proposed approach, McDE has been tested for a challenging real-world applica-
tion, i.e. the control of a Cartesian robot.

4.2.3 Relation with the whole context

It must be noticed that there is a lack, in literature, of modern compact MC ap-
proaches, especially for continuous optimization problems.The proposed McDE
aims thus at combining a high performance with the capability to run on de-
vices characterized by a limited memory.This goal is achieved by defining a com-
pact structure for both evolutionary framework and local search, and hybridizing
them under the supervision of a memetic logic.

4.3 Estimation Distribution Differential Evolution

4.3.1 Objectives

Differential evolution uses the generation of new solutions by combining ran-
domly chosen parents algebraically. If for some reason, the algorithm does not
succeed in generating offspring solutions which outperform the corresponding
parent, the search is repeated again with similar step size values and will likely
fail by falling into an undesired stagnation condition. In this fashion, this paper
proposes a novel, relatively simple, and efficient adaptive scheme for performing
control parameter setting in DE frameworks. The proposed control scheme sam-
ples the scale factor and crossover rate control parameters from a truncated adap-
tive Gaussian function, which adapt during the optimization process towards the
most promising values and attempt to follow the needs of the evolution.

4.3.2 Results

The resulting algorithm has been proved robust and efficient over a set of various
test problems. The proposed algorithm, despite its simplicity, offers a good per-
formance compared to other modern sophisticated algorithms based on a Differ-
ential Evolution structure. Numerical results prove that the proposed algorithm
is competitive for many test problems and outperforms the other algorithms con-
sidered in this study in most of considered cases.

4.3.3 Relation with the whole context

In a standard population based framework a novel mechanism for the control
parameters adaptation has been studied. This algorithm is directly inspired by
the Gaussian adaptation system behind all the real valued cEA presented in this
work. The results of this hybridization with a population based algorithms sug-

59

gest that this component would be beneficial for further improvements of cDE
and McDE in future works.

4.4 Noise Analysis Memetic Differential Evolution

4.4.1 Objectives

The handling of noise and thus optimization despite the presence of noise, as dis-
cussed in chapter 2, are very important in this day and age for industries and,
more generally, for the solution of real-world problems. If the noise is unavoid-
able and cannot be eliminated from the objective function computation, the op-
timization algorithm should take into account this difficulty of the problem and
perform its action notwithstanding the presence of noise. The main motivation
of this paper has been the explicitly addressing of the problem of noisy optimiza-
tion by means of a Memetic approach. An algorithm which combines, within
a DE framework, a controlled randomization of the parameters proposed in, a
noise analysis component and a scale factor local search logic proposed.

4.4.2 Results

Memetic approaches have rarely been applied in noisy optimization problems
and in literature there are no systematic studies on the performance of MAs in
noisy environments. In this sense, this paper offers a valuable first contribution
to the scientific community. The algorithm proposed has been tested on a broad
and various set of benchmark test problems. The comparison carried out against
six different algorithms confirms that a standard DE framework is inadequate in
a noisy environment, the opposition based logic is beneficial in improving upon
the standard DE performance but its benefits are marginal with respect to other
modifications which can be carried out. The main drawback of the proposed ap-
proach is the high amount of parameters that need to be set due to the algorithmic
complexity.

4.4.3 Relation with the whole context

Since the noise handling is a key point in on-line optimization for control appli-
cations, this work has been conducted to explore and better understand the ap-
plication of a noise analysis component in a memetic framework. This work has
produced a better understanding of this component in order to enhance the noise
mitigation and therefore to successfully implement it in a compact framework, as
described in the last paper here included

60

4.5 Noise Analysis Compact Genetic Algorithm

4.5.1 Objectives

As a final sum of the research efforts through the realization of a novel approach
to on-line optimization for control systems, a first combination of both compact
framework and noise analysis is presented in this paper. That is, if the application
requires the solution of an optimization problem despite both limited hardware
conditions and the presence of noise, a population based approach is not appli-
cable and the employment of classical compact algorithms (as well as classical
population based algorithms) might lead to unsatisfactory results due to the per-
nicious effect of noise. In this paper, we propose the first (to our knowledge)
implementation of compact algorithm integrating a noise handling component.

4.5.2 Results

The proposed algorithm can be useful for those engineering system character-
ized by a limited memory and the presence of measurement systems which affect
the fitness landscape and make it noisy. The resulting algorithm integrates an
adaptive system for performing the minimum amount of fitness evaluations and
still reliably selecting the elite individual for the subsequent algorithmic compar-
ison. Numerical results show that the noise analysis system efficiently enhances
the performance of a standard compact genetic algorithm. The experiments have
been repeated for both persistent and nonpersistent elitist schemes. Results show
that the nonpersistent scheme al- lows a more robust behavior with respect to the
persistent elitism.

4.5.3 Relation with the whole context

This final paper can be considered the conceptual summa of all the efforts in find-
ing a good compromise in real-time engineering optimization. Both low memory
requirements and noise handling have been achieved, thus demonstrating as a
prove of concept the possibility of obtaining a performing optimization and con-
trol framework for micro controllers.

5 CONCLUSION

The evolutionary approach has proved particularly successful in problems that
are difficult to formalize mathematically, and which are therefore not conducive
to analysis. This includes systems that are highly nonlinear, that are stochastic,
and that are poorly understood. This characteristic makes them suitable for the
resolution of control problems where a set of decisional variables can concur in
the composition of the overall performance of the system. The suitability of this
approach however must cope with some limitation that can occur in the actual
implementation of this techniques on real control hardware. The actual imple-
mentation of the algorithm on the real-time control platform must cope with the
lack of a full power computer, thus it must use a very low amount of memory and
computational power. On the other hand the presence of nonlinearities, sensors
and approximations inject in the signals of the control loop some noise, resulting
in a noisy fitness function to be optimized. In this work both these aspects have
been deeply analyzed and discussed. A survey of the main optimization frame-
works and a deep review of the litterature regarding the application of such a
paradigma within control frameworks has been shown.

During this work, a novel class of compact algorithm has been created as an
ibridization of the standard real valued compact framework with the Differential
Evolution framework. This led to a new set of more roboust algorithm, tested on
real robotic testbench. At the same time the inclusion of a noise adaptive compo-
nent to handle noisy fitnesses, that often compromise the results of optimization
processes, has been defined and tested.

62

YHTEENVETO (FINNISH SUMMARY)

Viimeisen vuosikymmenen aikana optimointi käytännön sovelluksissa on saanut
kasvavaa huomiota varsinkin teollisuudessa. Erityisesti optimointi on osoittau-
tunut käytännölliseksi ja tehokkaaksi työkaluksi säätötekniikkaan liittyvissä on-
gelmissa. Optimointialgoritmin toteutuksen reaaliaikaiselle kontrollialustalle täy-
tyy selviytyä ilman tehokasta tietokonetta, joten sen täytyy toimia rajoitetulla
muistilla ja laskentateholla. Toisaalta sensorien ja likiarvojen aiheuttamat epälin-
eaarisuudet näkyvät häiriönä optimoitavassa funktiossa. Tässä työssä esitellään
ratkaisuja molempiin edellämainittuihin haasteisiin ja näytetään kuinka uusi al-
goritmimalli voi syntyä tällaisista toteutusongelmista, jotka jäävät usein huomiotta
teoreettisissa lähestymistavoissa.

Tässä väitöksessä esitellään joukko uusia ratkaisualgoritmeja monimutkaisiin
käytännön ongelmiin säätötekniikassa. Kaksi uutta algoritmia esitellään funk-
tioille joissa esiintyy häiriötä. Lisäksi ehdotetaan uutta satunnaisdistribuutioon
perustuvaa mukautuvaa systeemiä funktioille joilla on useita lokaaleja minimejä
ja maksimeja. Erityisen tärkeänä osana tätä väitöskirjaa on kompaktin differenti-
aalievoluution käsitteen määrittely optimointiongelmille rajallisella laitteistolla.
Lopuksi esitellään edellä mainitun algoritmin kehitys osana käytännön sovel-
lusta.

63

REFERENCES

Acarnley, P. P., da Silva, W. G. & Finch, J. W. 2000. Application of genetic algo-
rithms to the online tuning of electric drive speed controllers. IEEE Transac-
tions On Industrial Electronics 27, 217-219.

Ahn, C. W. & Ramakrishna, R. S. Aug 2003. Elitism-based compact genetic algo-
rithms. IEEE Transactions On Evolutionary Computation 7, 367-385.

Aizawa, A. N. & Wah, B. W. 1993. Dynamic control of genetic algorithms in a
noisy environment. In Proceedings of the Conference on Genetic Algorithms,
48-55.

Aizawa, A. N. & Wah, B. W. 1994. Scheduling of genetic algorithms in a noisy
environment. Evolutionary Computation 2 (2), 97–122.

Anderson, B., Moore, A. & Cohn, D. 2000. A nonparametric approach to noisy
and costly optimization. In International Conference on Machine Learning.

Arnold, D. V. & Beyer, H.-G. 2003. A comparison of evolution strategies with
other direct search methods in the presence of noise. Computational Optimiza-
tion and Applications 24 (1), 135–159.

Arnold, D. V. & Beyer, H.-G. 2006. A general noise model and its effects on evo-
lution strategy performance. IEEE Transactions on Evolutionary Computation
10 (4), 380–391.

Ball, R. C. & Bowler, N. E. 2003. Stochastic annealing. Physical Review Letters 91
(3), 03020-1–03020-4.

Bartz-Beielstein, T., Blum, D. & Branke, J. 2007. Particle swarm optimization and
sequential sampling in noisy environments. In K. F. Doerner et al. (Ed.) Meta-
heuristics, Vol. 39. Springer. Operations Research/Computer Science Interfaces
Series, 261–273.

Beielstein, T. & Markon, S. 2002. Threshold selection, hypothesis test, and DOE
methods. In Proceedings of the IEEE Congress on Evolutionary Computation,
777-782.

Beyer, H.-G. 1993. Toward a theory of evolution strategies: Some asymptotical
results from the (1,+ λ)-theory. Evolutionary Computation 1 (2), 165–188.

Beyer, H. G. & Sendhoff, B. 2006. Functions with noise-induced multimodality: a
test for evolutionary robust optimization-properties and performance analysis.
IEEE Transactions on Evolutionary Computation 10 (5), 507–526.

Bobbin, J. & Yao, X. 1997. Solving optimal control problems with a cost changing
control by evolutionary algorithm. Proceedings IEEE International Conference
on Evolutionary Computation, 331-336.

64

Boussak, M. & Capolino, G. 1992. Recursive least squares rotor time constant
identification for vector controlled induction machines. Electrical machines and
Power Systems 20, 137-147.

Bo Liu, X. Z. & Ma, H. 2008. Hybrid differential evolution for noisy optimization.
In Proceedings of the IEEE Congress on Evolutionary Computation, 587–592.

Branke, J., Schmidt, C. & Schmeck, H. 2001. Efficient fitness estimation in noisy
environments. In L. Spector et. al (Ed.) Genetic and Evolutionary Computation
Conference. Morgan Kaufmann, 243–250.

Branke, J. & Schmidt, C. 2003. Selection in the presence of noise. In E. Cantu-Paz
(Ed.) Proceedings of Genetic and Evolutionary Computation Conference, Vol.
2723. Springer. Lecture Notes in Computer Science, 766–777.

Branke, J. & Schmidt, C. 2004. Sequential sampling in noisy environments. In
Parallel Problem Solving from Nature, Vol. 3242. Springer. Lecture Notes in
Computer Science, 202–211.

Brest, J. & Greiner, S. 2006. Self-adapting control parameters in differential evolu-
tion: A comparative study on numerical benchmark problems. IEEE Transac-
tions on Evolutionary Computation 10 (6), 646–657.

Burke, E. K., Kendall, G. & Soubeiga, E. 2003. A tabu search hyperheuristic for
timetabling and rostering. Journal of Heuristics 9 (6), 451–470.

Bäck, T., Hammel, U. & Schwefel, H.-P. Apr, 1997. Evolutionary computation:
Comments on the history and current state. IEEE Transactions On Evolutionary
Computation 1, 3-17.

Cantú-Paz, E. 2004. Adaptive sampling for noisy problems. In Proceedings of the
Genetic and Evolultionary Computation Conference. Springer. Lecture Notes
in Computer Science, 947-958.

Caponio, A., Neri, F. & Tirronen, V. 2009. Super-fit control adaptation in memetic
differential evolution frameworks. Soft Computing-A Fusion of Foundations,
Methodologies and Applications 13 (8), 811–831.

Caponio, A., Cascella, G. L., Neri, F. & Sumner, M. 2007. A fast adaptive memetic
algorithm for on-line and off-line control design of pmsm drives. IEEE Trans-
actions on System Man and Cybernetics-part B 37 (1), 28–41.

Chen, B. & Cheng, Y. 1998. A structure specified h-infinity optimal control design
or prac- tical applications: A genetic approach. IEEE Transactionon Control
System Technolo- gies 6, 707-718.

Chen, G., Tang, K. S., Man, K. F. & Kwong, S. 2001. An optimal fuzzy pid con-
troller. IEEE Transactions On Industrial Electronics 28, 757-765.

65

Chipperfield, A. & Fleming, P. 1996. Multiobjective gas turbine engine controller
using genetic algorithms. IEEE Transactions On Industrial Electronics 43, 583-
587.

Cody, W. J. 1969. Rational chebyshev approximations for the error function. Math-
ematical Computation 8, 631-638.

Cowling, P., Kendall, G. & Soubeiga, E. 2000. A hyperheuristic approach to
scheduling a sales summit. In Proceedings of the Third International Confer-
ence on Practice and Theory of Automated Timetabling, Vol. 2079. Springer.
Lecture Notes in Computer Science, 176–190.

Cupertino, F., Mininno, E. & Naso, D. 2004. Online genetic design of anti-windup
unstructured controllers for electric drives with variable load. IEEE Transac-
tions On Evolutionary Computation 8, 347-365.

Das, S. & Konar, A. 2005a. An improved differential evolution scheme for noisy
optimization problems. In Pattern recognition and machine intelligence, Vol.
3776. Springer. Lecture Notes in Computer Science, 417–421.

Das, S. & Konar, A. 2005b. Improved differential evolution algorithms for han-
dling noisy optimization problems. In Proceedings of the IEEE Congress on
Evolutionary Computation, Vol. 2, 1691–1698.

Davidon, W. C. 1991. Variable metric method for minimization. SIOPT 1 (1), 1-17.

Dawkins, R. 1976. The Selfish Gene. Oxford: Clarendon Press.

Di Pietro, A., While, L. & Barone, L. 2004. Applying evolutionary algorithms to
problems with noisy, time-consuming fitness functions. In Proceedings of the
IEEE Congress on Evolutionary Computation, Vol. 2, 1254–1261.

Duivenbode, R., Rey, J. P., Brunisma, J. A. & Krohling, R. A. 1998. Genetic algo-
rithms applied to controller design of an electric drive system. Proceedings of
IEEE ISIE.

Eberhart, R. & Kennedy, J. 1995. A new optimizer using particle swarm theory.
In Proceedings of the Sixth International Symposium on Micromachine and
Human Science, Vol. 1, 39-43.

Fleming, P. 2002. Evolutionary algorithms in control system engineering: a sur-
vey. Control Engineering Practice 10, 1223–1241.

Fonseca, C. M. & Fleming, P. J. 1998. Multiobjective optimization and multiple
constraint handling with evolutionary algorithms. part i: A unified formula-
tion. part ii: Applica- tion example. IEEE Transactions On System Man and
Cybernetics, Part A 28, 26-47.

Goldberg, D. & Lingle, R. 1985. Alleles locia and the traveling salesman problem.
ICGA 1 (1), 154-159.

66

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley.

Gong, M., Jiao, L. & Zhang, L. 2010. Baldwinian learning in clonal selection algo-
rithm for optimization. Information Sciences 180 (8), 1218–1236.

Grum, N., Schroder, P., Green, B. & Fleming, P. J. 2001. On-line evolution of robust
control systems: An industrial active bearing application. Control Engineering
Practice 9, 37-49.

Gutjahr, W. 2003. A converging ACO algorithm for stochastic combinatorial opti-
mization. In A. Albrecht & K. Steinhoefl (Eds.) Stochastic Algorithms: Founda-
tions and Applications, Vol. 2827. Springer-Verlag. Lecture Nptes in Computer
Science, 10-25.

Hammel, U. & Bäck, T. 1994. Evolution strategies on noisy functions, how to
improve convergence properties. In Y. Davidor, H. P. Schwefel & R. Männer
(Eds.) Proceedings of Parallel Problem Solving from Nature, Vol. 866. Springer-
Verlag. Lecture Notes in Computer Science, 159-168.

Harik, D., Cantu-Paz, E., Goldberg, D. & Miller, A. 1997. The gam-
bler’s ruin problem, genetic algorithms and the sizing of popula-
tions. In IEEECEP: Proceedings of The IEEE Conference on Evolution-
ary Computation, IEEE World Congress on Computational Intelligence.
〈URL:citeseer.ist.psu.edu/article/harik97gamblers.html〉.

Harik, G. R., Lobo, F. G. & Goldberg, D. E. Nov, 1999. The compact genetic algo-
rithm. IEEE Transactions On Evolutionary Computation 3, 287-297.

Hart, W. E., Krasnogor, N. & Smith, J. E. 2004. Memetic evolutionary algorithms.
In W. E. Hart, N. Krasnogor & J. E. Smith (Eds.) Recent Advances in Memetic
Algorithms. Berlin, Germany: Springer, 3-27.

Hoffmann, F. 2001. Evolutionary algorithms for fuzzy control system design. Pro-
ceedings IEEE 89, 1318-1333.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. Univ. of Michi-
gan Press.

Hooke, R. & Jeeves, T. 1961. Direct search solution of numerical and statistical
problems. Journal of the ACM 8, 212-229.

Jin, Y. & Branke, J. 2005. Evolutionary optimization in uncertain environments-a
survey. IEEE Transactions on Evolutionary Computation 9 (3), 303–317.

Kendall, G., Cowling, P. & Soubeiga, E. 2002. Choice function and random hyper-
heuristics. In Proceedings of the Fourth Asia-Pacific Conference on Simulated
Evolution and Learning, 667–71.

67

Klamargias, A. D., Parsopoulos, K. E. & Vrahatis, M. N. 2008. Particle filtering
with particle swarm optimization in systems with multiplicative noise. In Pro-
ceedings of the 10th annual conference on Genetic and evolutionary computa-
tion. ACM, 57–62.

Kononova, A. V., Ingham, D. B. & Pourkashanian, M. 2008. Simple scheduled
memetic algorithm for inverse problems in higher dimensions: Application to
chemical kinetics. In CEC 2008. Hong Kong: IEEE Press, 3906-3913.

Korošec, P., Šilc, J. & Filipič, B. 2011. The differential ant-stigmergy algorithm.
Information Sciences. to appear.

Krasnogor, N. & Smith, J. 2005. A tutorial for competent memetic algorithms:
model, taxonomy, and design issues. IEEE Transactions on Evolutionary Com-
putation 9, 474–488.

Krink, T. & Fogel, G. 2004. Noisy optimization problems - a particular challenge
for differential evolution ? In Proceedings of the IEEE Congress on Evolution-
ary Computation, 332–339.

Krohling, R. A. & Rey, J. P. 2001. Design of optimal disturbance rejection pid con-
trollers using genetic algorithms. IEEE Transactions On Evolutionary Compu-
tation 5, 78-82.

Kärkkäinen, T. & Heikkola, E. 2004. Robust formulations for training multilayer
perceptrons. Neural Computation, MIT 16, 837–862.

Larrañaga, P. & Lozano, J. A. 2001. Estimation of Distribution Algorithms:A New
Tool for Evolutionary Computation. Kluwer.

Le, M. N., Ong, Y. S., Jin, Y. & Sendhoff, B. 2009. Lamarckian memetic algorithms:
local optimum and connectivity structure analysis. Memetic Computing Jour-
nal 1 (3), 175–190.

Lee, C. O., Jeon, Y. & Hong, Y.-S. 1998. Optimization of the control parameters of
a pneu- matic servo cylinder drive using genetic algorithms. Control Engineer-
ing Practice 6, 847-853.

Leng, S. B., Sim, Y. C. & Subramaniam, V. 2000. A combined genetic algorithms-
shooting method approach to solving optimal control problems. International
Journal on Systems and Science 31, 83-89.

Marrison, C. H. & Stengel, R. F. 1997. Robust control system design using random
search and genetic algorithms. IEEE Transactions On Automatic Controls 42,
835-839.

Meuth, R., Lim, M. H., Ong, Y. S. & Wunsch-II, D. C. 2009. A proposition on
memes and meta-memes in computing for higher-order learning. Memetic
Computing Journal 1 (2), 85–100.

68

Michalewicz, Z. & Schoenauer, M. 1996. Evolutionary algorithms for constrained
parameter optimization problems. Evolutionary Computation 4 (1), 1-32.

Michalewicz, Z. 1992. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer.

Miller, B. L. & Goldberg, D. E. 1996. Genetic algorithms, selection schemes, and
the varying effects of noise. Evolutionary Computation 4 (2), 113-131.

Mininno, E., Cupertino, F. & Naso, D. 2008. Real-valued compact genetic algo-
rithms for embedded microcontroller optimization. IEEE Transactions On Evo-
lutionary Computation 12, 347-365.

Moscato, P. & Norman, M. 1989. A Competitive and Cooperative Approach to
Complex Combinatorial Search.

Moscato, P. 1989. On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts: Towards Memetic Algorithms.

Nelder, A. & Mead, R. 1965. A simplex method for function optimization. Com-
putation Journal 7, 308-313.

Neri, F. & Cotta, C. 2011a. A primer on memetic algorithms. In F. Neri, C. Cotta
& P. Moscato (Eds.) Handbook of Memetic Algorithms. Springer. Studies in
Computational Intelligence. to appear.

Neri, F. & Cotta, C. 2011b. Memetic algorithms and memetic computing optimiza-
tion: A literature review. Swarm and Evolutionary Computation. to appear.

Neri, F., Iacca, G. & Mininno, E. 2011. Disturbed exploitation compact differential
evolution for limited memory optimization problems. Information Sciences 181
(12), 2469-2487.

Neri, F., Toivanen, J., Cascella, G. L. & Ong, Y. S. 2007. An adaptive multimeme
algorithm for designing HIV multidrug therapies. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 4 (2), 264–278.

Neri, F., Cotta, C. & Moscato, P. 2011. Handbook of Memetic Algorithms, Vol. 379.
Springer. Studies in Computational Intelligence.

Neri, F., Kononova, A. V. & Acciani, G. 2006. Prudent-daring vs tolerant survivor
selection schemes in control design of electric drives. In Rothlauf, F. et al. (Ed.)
Applications of Evolutionary Computing, Vol. 3907. Springer. Lecture Notes in
Computer Science, 805–809.

Neri, F., Kotilainen, N. & Vapa, M. 2008. A memetic-neural approach to discover
resources in P2P networks. In J. van Hemert & C. Cotta (Eds.) Recent Advances
in Evolutionary Computation for Combinatorial Optimization. Springer. Stud-
ies in Computational Intelligence, 119–136.

69

Neri, F. & Mäkinen, R. 2007. Hierarchical evolutionary algorithms and noise com-
pensation via adaptation. In S. Yang, Y. S. Ong & Y. Jin (Eds.) Evolutionary
Computation in Dynamic and Uncertain Environments. Springer. Studies in
Computational Intelligence, 345–369.

Neri, F., Tirronen, V., Kärkkäinen, T. & Rossi, T. 2007a. Fitness diversity based
adaptation in multimeme algorithms: A comparative study. In Proceedings of
the IEEE Congress on Evolutionary Computation, 2374–2381.

Neri, F., Toivanen, J. & Mäkinen, R. 2007b. An adaptive evolutionary algorithm
with intelligent mutation local searchers for designing multidrug therapies for
HIV. Applied Intelligence 27 (3), 219–235.

Neri, F., del Toro Garcia, X., Cascella, G. L. & Salvatore, N. 2008. Surrogate as-
sisted local search on PMSM drive design. COMPEL: International Journal for
Computation and Mathematics in Electrical and Electronic Engineering 27 (3),
573–592.

Neri, F., Cotta, C. & Moscato, P. 2011. Handbook of Memetic Algorithms.
Springer. Studies in Computational Intelligence. to appear.

Nguyen, Q. C., Ong, Y. S. & Lim, M. H. 2009. A probabilistic memetic framework.
IEEE Transactions on Evolutionary Computation 13 (3), 604–623.

Ong, Y. S. & Keane, A. J. 2004. Meta-lamarkian learning in memetic algorithms.
IEEE Transactions on Evolutionary Computation 8 (2), 99–110.

Ong, Y. S., Lim, M. H., Zhu, N. & Wong, K. W. 2006. Classification of adaptive
memetic algorithms: A comparative study. IEEE Transactions On Systems, Man
and Cybernetics - Part B 36 (1), 141–152.

Ong, Y.-S., Lim, M.-H. & Chen, X. 2010. Memetic computation-past, present and
future. IEEE Computational Intelligence Magazine 5 (2), 24–31.

Pan, H. & Wanga, L. 2006. Particle swarm optimization for function optimization
in noisy environment. Applied Mathematics and Computation 181, 908–919.

Porter, B. & Jones, I. H. 1992. Genetic tuning of digital pid controllers. Electronic
Letters 28, 843-844.

Rahnamayan, S., Tizhoosh, H. R. & Salama, M. M. 2006. Opposition-based differ-
ential evolution for optimization of noisy problems. In Proceedings of the IEEE
Congress on Evolutionary Computation, 1865–1872.

Rudolph, G. 2001. A partial order approach to noisy fitness functions. In Proceed-
ings of the IEEE Congress on Evolutionary Computation, 318–325.

Rudolph, G. 1999. Self-Adaptive Mutations May Lead to Premature Convergence.
〈URL:citeseer.ist.psu.edu/article/rudolph99selfadaptive.html〉.

70

Salvatore, L., Cupertino, F., Naso, D. & Turchiano, B. 2002. Design of cascaded
controllers for dc drives using evolutionary algorithms. Proceedings of IEEE
World Conference on Computational Intelligence.

Sano, Y., Kita, H., Kamihira, I. & Yamaguchi, M. 2000. Online optimization of an
engine controller by means of a genetic algorithm using history of search. In
Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learn-
ing. Springer, 2929–2934.

Schwefel, H.-P. & Rudolph, G. 1995. Contemporary evolution strategies. Lecture
Notes in Artificial Intelligence 929.

Schwefel, H.-P. 1981. Numerical Optimization of Computer Models. Wiley.

Smith, J. E. 2007. Coevolving memetic algorithms: A review and progress report.
IEEE Transactions on Systems, Man, and Cybernetics, Part B 37 (1), 6-17.

Spall, J. C. 2000. Adaptive stochastic approximation by the simultaneous pertur-
bation method. IEEE Transaction on Automatic Control 45, 1839-1853.

Spall, J. C. 2003. Introduction to stochastic search and optimization. Wiley.

Stagge, P. 1998. Averaging efficiently in the presence of noise. In Proceedings
of the 5th International Conference on Parallel Problem Solving from Nature.
Springer-Verlag, 188–200.

Storn, R. & Price, K. 1995. Differential Evolution - a Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces. ICSI.

Tang, J., Lim, M. H. & Ong, Y. S. 2007. Diversity-adaptive parallel memetic
algorithm for solving large scale combinatorial optimization problems. Soft
Computing-A Fusion of Foundations, Methodologies and Applications 11 (9),
873–888.

Tirronen, V., Neri, F., Kärkkäinen, T. & Rossi, T. 2008. An enhanced memetic
differential evolution in filter design for defect detection in paper production.
Evolutionary Computation 16, 529–555.

Wolpert, D. H. & Macready, W. G. 1997. No free lunch theorems for optimization.
IEEE Transactions On Evolutionary Computation 1, 67-82.

Yu, E. L. & Suganthan, P. N. 2010. Ensemble of niching algorithms. Information
Sciences 180 (15), 2815–2833.

Yu, J., Koza, J. R. & Keane, M. A. 1999. Automatic synthesis of both the topology
and parameters for a robust controller for a nonminimal phase plant and a
three-lag plant by means of genetic programming. Procediings 38th IEEE Int.
Conference on Decision and Control, 5292-5300.

Yuan, Q., Qian, F. & Du, W. 2010. A hybrid genetic algorithm with the baldwin
effect. Information Sciences 180 (5), 640–652.

71

Zinober, A. S. I., Moin, N. H. & Harley, P. J. 1995. Sliding mode control design
using genetic algorithms. Proceedings on Genetic Algorithms Engineering Sys-
tems: Innovations, Applications, 238-244.

ORIGINAL PAPERS

PI

COMPACT DIFFERENTIAL EVOLUTION

by

E. Mininno, F. Neri, F. Cupertino, D. Naso 2011

IEEE Transactions on Evolutionary Computation, Vol. 15, No. 1

Reproduced with kind permission of IEEE 2011.

https://doi.org/10.1109/TEVC.2010.2058120

PII

MEMETIC COMPACT DIFFERENTIAL EVOLUTION

by

F. Neri and E. Mininno 2010

IEEE Computational Intelligence Magazine

Reproduced with kind permission of IEEE 2010.

https://doi.org/10.1109/MCI.2010.936305

PIII

ESTIMATION DISTRIBUTION DIFFERENTIAL EVOLUTION

by

E. Mininno and F. Neri 2010

EvoApplications, Part I

Reproduced with kind permission of Springer-Verlag Berlin Heidelberg 2010.

https://doi.org/10.1007/978-3-642-12239-2_54

PIV

A MEMETIC DIFFERENTIAL EVOLUTION APPROACH IN
NOISY OPTIMIZATION

by

E. Mininno and F. Neri 2010

Memetic Computing

Reproduced with kind permission of Springer-Verlag Berlin Heidelberg 2009.

https://doi.org/10.1007/s12293-009-0029-4

Reading link: https://rdcu.be/b3X7F

PV

NOISE ANALYSIS COMPACT GENETIC ALGORITHM

by

E. Mininno and F. Neri 2010

EvoApplications, Part I

Reproduced with kind permission of Springer-Verlag Berlin Heidelberg 2010.

https://doi.org/10.1007/978-3-642-12239-2_62

	ABSTRACT
	PREFACE
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	2 OPTIMIZATION PROBLEMS AND ALGORITHMS
	2.1 Basic Definitions and Notation: Optimization Problems
	2.2 A Short Introduction on Gradient based Methods
	2.3 Derivative Free Search: Hooke-Jeeves and Nelder Mead
	2.4 Computational Intelligence Optimization

	3 WHY ARE REAL-WORLD APPLICATIONS MORE CHALLENGING THAN “TOY PROBLEMS”?
	3.1 Control Engineering: Generalities
	3.2 Noisy Fitness Functions
	3.3 Limited Memory and Real-Time implementations

	4 BUILDING UPON THE STATE-OF-THE-ART IN OPTIMIZATION FOR CONTROL ENGINEERING
	4.1 Compact Differential Evolution
	4.2 Memetic Compact Differential Evolution
	4.3 Estimation Distribution Differential Evolution
	4.4 Noise Analysis Memetic Differential Evolution
	4.5 Noise Analysis Compact Genetic Algorithm

	5 CONCLUSION
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	PI COMPACT DIFFERENTIAL EVOLUTION
	PII MEMETIC COMPACT DIFFERENTIAL EVOLUTION
	PIII ESTIMATION DISTRIBUTION DIFFERENTIAL EVOLUTION
	PIV A MEMETIC DIFFERENTIAL EVOLUTION APPROACH IN NOISY OPTIMIZATION
	PV NOISE ANALYSIS COMPACT GENETIC ALGORITHM

