
Toni Taipalus

JYU DISSERTATIONS 283

Persistent Errors in
Query Formulation

JYU DISSERTATIONS 283

Toni Taipalus

Persistent Errors in Query Formulation

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi syyskuun 29 päivänä 2020 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

on September 29, 2020 at 12 o’clock noon.

JYVÄSKYLÄ 2020

Editors
Marja-Leena Rantalainen
Faculty of Information Technology, University of Jyväskylä
Timo Hautala
Open Science Centre, University of Jyväskylä

ISBN 978-951-39-8290-4 (PDF)
URN:ISBN:978-951-39-8290-4
ISSN 2489-9003

Copyright © 2020, by University of Jyväskylä
This is a printout of the original online publication.
Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-8290-4

Jyväskylä University Printing House, Jyväskylä 2020

ABSTRACT

Taipalus, Toni
Persistent Errors in Query Formulation
Jyväskylä: University of Jyväskylä, 2020, 40 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 283)
ISBN 978-951-39-8290-4 (PDF)

We use the internet daily to query data from a myriad of databases; every search
term entered in a search engine, every movie watched, every song listened, ev-
ery newspaper article read online. Although we as end-users only see the rel-
atively effortless user interfaces as we query data, someone has had to formal-
ize our queries into a language the software understands. The most common
of these so called query languages is Structured Query Language (SQL). In or-
der for us as end-users to retrieve exactly the data we want, it is crucial that the
software developers responsible for writing the underlying queries have written
the queries without errors. Educational SQL research, however, has not yet thor-
oughly addressed issues related to understanding query formulation errors or
some technical factors which influence the process of learning SQL. This doctoral
dissertation makes the following contributions for increased understanding of
SQL education: (i) a systematic overview of SQL teaching practices proposed in
scientific literature, (ii) a creation of a wide taxonomy of errors committed in SQL
learning, (iii) a description of which types of errors halt query formulation, and
which types of encountered errors are usually fixed, (iv) evidence on the effects
of database complexity on query formulation success rates, and (v) a creation of
a planning notation designed to mitigate errors in query formulation. Contribu-
tion (ii) presents practical implications for research by allowing the comparison
of results of different SQL error studies when the taxonomy is used, and extend-
ing and generalizing prior SQL error studies. While contributions (i) and (v) may
be directly applied in teaching SQL, contributions (iii) and (iv) may be consid-
ered when making an informed decision on what kind of databases are the most
suitable for practicing SQL.

Keywords: Structured Query Language (SQL); computing education; database;
relational; error; logical complexity; planning; notation;

TIIVISTELMÄ (ABSTRACT IN FINNISH)

Taipalus, Toni
Pysyvät virheet tietokantakyselyissä
Jyväskylä: University of Jyväskylä, 2020, 40 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 283)
ISBN 978-951-39-8290-4 (PDF)

SQL-kieli (Structured Query Language) on yleisin kyselykielistä, joita käytetään
tiedon hakemiseen tietokannoista. Jotta kyselykielellä kirjoitetut kyselyt palaut-
taisivat loppukäyttäjälle hänen haluamaansa oikeellista tietoa, täytyy kysely kir-
joittaa virheettömästi. SQL-kielen opetuksen tutkimuksessa erilaiset virheet eivät
kuitenkaan ole saaneet laajaa tai syvällistä tieteellistä huomiota. Lisäksi joidenkin
SQL-kielen oppimiseen liittyvien seikkojen vaikutusta ei ole tieteellisesti tutkittu.
Tässä väitöskirjassa (i) tehdään systemaattinen kirjallisuuskartoitus SQL-kielen
opetuksessa käytetyistä menetelmistä, (ii) muodostetaan laaja SQL-kielen kyse-
lyiden kirjoittamisessa tehtyjen virheiden taksonomia, (iii) selitetään mitkä vir-
hetyypeistä ovat pysyviä, eli jäävät tavallisesti kyselyn kirjoittajalta korjaamatta
ja mitkä virhetyypeistä tavallisesti korjataan, (iv) esitetään harjoitustietokannan
monimutkaisuuden vaikutukset kyselyn kirjoittamiselle ja (v) kuvaillaan suun-
nittelunotaatio, jonka tarkoituksena on pysyvien virheiden lukumäärän vähentä-
minen. Edellä luetelluista kontribuutioista (ii) auttaa taksonomiaa käyttävien tie-
teellisten tutkimusten tuloksien vertailussa, sekä luo pohjan esimerkiksi virhei-
den ja virhetyyppien paikantamiseen koneoppimismenetelmin. Kontribuutioita
(i) ja (v) voidaan käyttää sellaisenaan SQL-kielen opetuksessa, ja kontribuutiot
(iii) ja (iv) auttavat päätöksenteossa sopivan monimutkaisen harjoitustietokannan
valinnassa.

Avainsanat: Structured Query Language (SQL); tietokanta; virhe; kysekykieli; loo-
gisen rakenteen monimutkaisuus; suunnittelu; notaatio;

Author Toni Taipalus
Faculty of Information Technology
University of Jyväskylä
Finland

Supervisors Dr. Mikko Siponen
Faculty of Information Technology
University of Jyväskylä
Finland

Dr. Tero Vartiainen
Department of Computer Science
University of Vaasa
Finland

Reviewers Dr. Jan Erik Moström
Department of Computing Science
Umeå University
Sweden

Dr. Julia Prior
School of Computer Science
Faculty of Engineering and Information Technology
University of Technology Sydney
Australia

Opponent Dr. Antti Knutas
School of Engineering Science
Department of Software Engineering
Lappeenranta University of Technology
Finland

ACKNOWLEDGEMENTS

My most sincere thanks to my supervisors and co-authors, professors Mikko
Siponen and Tero Vartiainen, for your support and trust over the years. Thank
you reviewers, Dr. Jan Erik Moström and Dr. Julia Prior for your kind comments
and constructive criticism, and Dr. Antti Knutas for taking the time and effort
as the opponent in my defence. Thank you, co-authors Dr. Ville Seppänen and
Piia Perälä. Thank you, professors Pekka Abrahamsson, Tuomo Rossi and Lauri
Kettunen for your trust and for always being supportive. You have given me the
opportunity to focus on research and teaching I am genuinely passionate about.
Thank you, Dr. Henri Pirkkalainen for your guidance, especially in the begin-
ning of my studies. Thank you, Dr. Mauri Leppänen for your contagious enthu-
siasm for databases, and for your examples in teaching. Thank you, numerous
co-workers, especially co-conspirer Hilkka Grahn for continuously assuring me
to keep on trying. Without you, I do not know how I could have survived all the
one-of-those-days at the office, the desk rejects, those countless faculty parties, or
the popular culture cues in the crossword puzzles. Thank you, researchers in the
Computer Science Education research group, especially Dr. Ville Isomöttönen for
always leading us with a professional and positive attitude. Thank you, family,
friends and critters home and abroad for just being there for me. Over the years,
you commendably endured my ramblings about research you had absolutely no
interest in. And thank you, who are already with the summer sun and brighter
sands.

Toni Taipalus
Jyväskylä
August 2020

LIST OF FIGURES

FIGURE 1 A relation represented as a table ... 14
FIGURE 2 An example of a conceptual, logical, and physical representa-

tion of the same database structure ... 15
FIGURE 3 An example of a basic SQL learning environment 16
FIGURE 4 A summary of factors affecting query formulation success rates 19

CONTENTS

ABSTRACT
TIIVISTELMÄ (ABSTRACT IN FINNISH)
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 11

2 THEORETICAL BACKGROUND .. 13
2.1 The relational model and SQL.. 13
2.2 SQL in education .. 15
2.3 Query formulation errors .. 16
2.4 Causes behind errors .. 18

3 SUMMARY OF ARTICLES .. 21
3.1 Overview and motivation.. 21
3.2 Contributions ... 23

3.2.1 Article PI .. 23
3.2.2 Article PII ... 24
3.2.3 Article PIII .. 25
3.2.4 Article PIV .. 25
3.2.5 Article PV ... 26

4 DISCUSSION ... 27
4.1 Practical implications .. 27
4.2 Limitations and threats to validity.. 28
4.3 Ethical considerations ... 30
4.4 Future agenda .. 31

5 CONCLUSIONS .. 32

YHTEENVETO (SUMMARY IN FINNISH) .. 33

REFERENCES.. 34

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI Toni Taipalus and Ville Seppänen. SQL education: A systematic mapping
study and future research agenda. ACM Transactions on Computing Educa-
tion, 20(3), Article 20, 2020.

PII Toni Taipalus, Mikko Siponen, and Tero Vartiainen. Errors and complica-
tions in SQL query formulation. ACM Transactions on Computing Education,
18(3), Article 15, 2018.

PIII Toni Taipalus and Piia Perälä. What to expect and what to focus on in SQL
query teaching. Proceedings of the 50th ACM Technical Symposium on Com-
puter Science Education (SIGCSE ’19)., ACM, New York, 198-203, 2019.

PIV Toni Taipalus. The effects of database complexity on SQL query formula-
tion. Journal of Systems and Software, 165, Article 110576, 2020.

PV Toni Taipalus. Teaching tip: A notation for planning SQL queries. Journal
of Information Systems Education, 30(3), 160-166, 2019.

1 INTRODUCTION

Structured Query Language (SQL) is the most common way to define databases
and manipulate data. As arguably all information systems consist of a database,
SQL is a crucial tool for software developers. It follows that SQL is an integral
part of ICT education, and understanding common mistakes and factors influenc-
ing SQL learning is an important step in further developing SQL teaching. One
factor in teaching SQL is the exercise database against which students execute
SQL queries in order to learn the language. It is rather common that the exercise
database is relatively simple (e.g., Elmasri and Navathe, 2016; Kroenke and Auer,
2016), although real life databases are usually complex (Cleve et al., 2015). Some
scholars have argued that a simple exercise databases are beneficial because they
facilitate the focus of learning to SQL semantics, and away from the complexity
of the database (Wagner et al., 2003). Others, however, have argued for the use
of complex databases in order to better help students cope in their future work
environments (Jukic and Gray, 2008a; Watson and Hoffer, 2003). In order to facil-
itate more effective SQL teaching, we need to provide students the most suitable
environment, while taking into account limitations concerning teacher workload,
i.e., it might not be feasible to tailor the environment for individual students. Be-
fore making an informed decision regarding a suitable environment, we need to
understand factors that influence query writing.

Studies have identified several factors that influence query writing success
rates, e.g., natural language and database representation considerations. How-
ever, scientific evidence on the effects of database complexity on query formula-
tion is lacking. Arguably, if database complexity has no negative effects on learn-
ing, it would be beneficial for students to learn SQL in an environment which
resembles their future work. However, in order to both measure success in query
writing, and to understand the causes for failure, we as researchers need to under-
stand what an error is, and what types of errors are possible in query formulation.
Although errors have been studied extensively in the realm of programming lan-
guages (Smith and Rixner, 2019), SQL has remained in the sidelines in this regard.
Studies concerning SQL errors have largely discussed errors from the perspective
of a single database management system (e.g., Ahadi et al., 2016a), and no broad

12

error categorization has been attempted. Finally, the assumption of practicing in
a realistic environment extends to query complexity as well; by facilitating the
learning of complex queries, we may be able to more effectively prepare students
for their future work, where complex queries are often required.

To facilitate SQL teaching, we present an aggregated body of knowledge on
SQL teaching practices proposed in scientific literature, and systematically map
SQL education research topics and publication fora. We formulate an extensive
database management system independent SQL error categorization based on
prior studies and empirical analysis. Subsequently, we focus on errors which are
more difficult to fix than others and seem to halt query formulation. Based on this
groundwork, we measure the effects of database complexity on query formula-
tion, and present that an increase in database complexity results in a decrease in
query formulation success rates. Finally, we introduce a notation for planning
SQL queries, which we have designed to mitigate query formulation errors orig-
inating from cognitive factors.

Rather than repeating the contents of the included articles in this research
article based doctoral dissertation, we provide an overview, briefly summarize
the articles, and discuss the implications of this line of research as a whole. The
rest of this dissertation is structured as follows. In Chapter 2, we present the the-
oretical background necessary to understand the following sections. In Chapter 3
we discuss the motivation behind the articles, and present our research questions
and contributions. In Chapter 4, we consider the practical implications of our
results, threats to validity, and future research agenda. Chapter 5 concludes the
dissertation, and is followed by the original articles.

2 THEORETICAL BACKGROUND

In this chapter, we define and discuss key terms regarding this line of research.
While some terms are described in detail in the included articles, we focus here on
terms which are crucial in later understanding the motivation and contributions
of the articles as a whole. The narrative advances from the general to more and
more on the research problems addressed by this study.

2.1 The relational model and SQL

Databases follow one or more data models, or paradigms, which dictate what kind
of data structures are available, what kind of data can be stored, and sometimes
what kind of operations are available to process the database data. Data models
are usually divided into conceptual, logical, and physical, from the highest to lowest
the level of abstraction. Prime examples conceptual and logical level paradigms
are the Entity-Relationship (ER) model (Chen, 1976) and the relational model
(Codd, 1970), respectively. In general, conceptual level data models are used to
describe data item characteristics and interrelations on a high level, and inde-
pendently of the underlying paradigm. Consequently, logical level data models
are used to describe data items in relation to a selected paradigm, but indepen-
dently of the physical implementation. In order to understand SQL, it is crucial
to understand the theoretical foundations behind the underlying data model.

In this study, we focus on the relational model. The relational model is a
logical level data model, and consists of data structures and set theory based op-
erations (Codd, 1971a, 1972). The most important data structures defined by the
relational model are attributes, which consist of an attribute name and a corre-
sponding atomic, i.e., indivisible value (e.g., name-value pairs 〈color : red〉 and
〈brand : Toyota〉 in Fig. 1). Next, tuples group attributes into representations of
an entity or an event in the business domain. Furthermore, relations group tu-
ples representing similar entities or events together, and a relation consists of a
header, i.e., intention of what kind of data the relation holds, and the data proper,

14

plateno brand model color

7C88505 Opel Corsa red

1A10290 Toyota Corolla black

6C88471 Toyota Corolla red

CAR

FIGURE 1 A relation represented as a table

i.e., extension. Importantly, the relational model describes two main integrity con-
straints, namely primary and foreign key. As all tuples in a relation must be distinct
(Codd, 1970), it follows that in a relation there is at least one set of attributes that
has different values for each tuple of the relation, and one of these sets is selected
as the relation’s primary key. Finally, a foreign key represents a set of attributes,
which is used to enforce that the values of the foreign key attributes are also
present in some other relation, usually as that relation’s primary key.

The most important operations in the relational model are projection (i.e.,
selecting attributes), selection (i.e., selecting tuples), and join (i.e., finding com-
mon values in two sets of attributes). One particularly common way to imple-
ment these operations is SQL, and the SQL standard (ISO/IEC, 2016a,b) provides
a description of how these – and additional – operations could be or should be
implemented. SQL adopts the secondary, perhaps more intuitive, nomenclature
used by Codd (1970): rough equivalents of sets of attributes of the same name are
referred to as columns, tuples as rows, and relations as tables. SQL also abandons
the property of the relational model which requires all rows to be distinct Date
(1983). While the operations defined by Codd (1970) retrieve, i.e., query data from
a relational database, SQL extends to other types of operations as well. In addi-
tion to data retrieval, SQL can be used to manipulate data, define data structures
and other database objects, e.g., users, indices, and functions, define user privi-
leges, and control database transactions.

In contrast to the SQL standard and the relational model which are more
theoretical foundations, the relational model and SQL are implemented by the
many database management systems (DBMS), and there are several key things
to note in understanding the physical implementations. First, even though SQL
is defined by the SQL standard, DBMSs implement SQL differently (Buitendijk,
1988; Randolph, 2003). Second, SQL has been from its very inception contra-
dictory to some aspects of the relational model, e.g., in handling duplicate val-
ues (Date, 1983), the implentation of missing values (Chamberlin, 2012), and
in nomenclature. Third, although the relational model is a logical data model,
SQL is not limited to the logical representation level, and can also be used to
define physical database aspects, e.g., data types and indices. Fourth, SQL has
evolved from the relational model to concepts which are, by definition, in vio-
lation the rules of the first normal form, e.g., non-atomic values (Eisenberg et
al., 2004; Kulkarni and Michels, 2012), or are adopted from different data models
altogether (Eisenberg and Melton, 1999).

15

CUSTOMER

CAR

cust_id

tel fname

sname

model

brandcolor

date

plateno

PURCHASES

N

M

customer

cust_id
fname
sname
tel

car

plateno
brand
model
color

purchase

cust_id
plateno
date

customer

cust_id	INT
fname			VARCHAR2(50)
sname			VARCHAR2(60)
tel					VARCHAR2(20)

car

plateno	CHAR(7)
model			VARCHAR2(20)
color			VARCHAR2(20)

purchase

cust_id		INT
plateno		CHAR(7)
date					DATE

cartype

model	VARCHAR2(20)
brand	VARCHAR2(20)

conceptual
(ER)

logical
(relational)

physical
(Oracle	Database)

FIGURE 2 An example of a conceptual, logical, and physical representation of the same
database structure

2.2 SQL in education

SQL is part of several ICT curricula, e.g., in the ACM/AIS undergraduate in-
formation systems curriculum guidelines (Topi et al., 2010), SQL is one of the
few specifically mentioned computer languages. Furthermore, SQL is mentioned
in the ACM/IEEE computer science (ACM/IEEE, 2013) and software engineer-
ing (ACM/IEEE, 2015) curricula guidelines. These guidelines vary in terms of
the level of detail, but seem to agree that data retrieval and manipulation, and
database structure definition are among the key concepts students should learn.

SQL is not taught in isolation, but usually as a part of a database course.
In our experience, three most important topics that should accompany SQL in a
database course are the ER and relational data models, and normalization the-
ory, all of which are among the database course topics in, e.g., the undergraduate
information systems curricula guidelines (Topi et al., 2010). First, learning con-
ceptual modeling helps students to understand of what is relevant in the business
domain in terms of data, and how domain relevant data are linked. Although the
common approach for conceptual modeling is the ER model, Watson (2006) ar-
gues that the notation is a secondary concern. As SQL was designed as a query
language for relational databases, it is natural that the theoretical foundations of
the underlying data model are taught before SQL (although opposing views also
exist). Next, the conceptual data model is transformed into a logical data model
(Fig. 2).

At this stage, it is natural to introduce relational database design practices,
i.e., normalization theory (Codd, 1970, 1971b, 1972). In layperson’s terms, nor-
malization is an iterative design process which rearranges the attributes and rela-
tions in a way that aims to minimize data redundancy and hence data anomalies.
As a simple example, in Fig. 2, normalization is applied in the transition between
the logical and physical levels, and the relation car is decomposed to reduce re-
dundancy with the assumption that no car model is associated with more than
one car brand. After normalization is applied to a level suitable to the needs of the
business domain, the database may be implemented on the physical level using a

16

plateno model

7C88505 Corsa

6C88471 Corolla

List	the	plate	numbers	and	models	of	red	cars.

SELECT	plateno,	model
FROM	car
WHERE	color	=	'red';

customer

cust_id	INT
fname			VARCHAR2(50)
sname			VARCHAR2(60)
tel					VARCHAR2(20)

car

plateno	CHAR(7)
model			VARCHAR2(20)
color			VARCHAR2(20)

purchase

cust_id		INT
plateno		CHAR(7)
date					DATE

cartype

model	VARCHAR2(20)
brand	VARCHAR2(20)

FIGURE 3 An example of a basic SQL learning environment

selected DBMS, e.g., Oracle Database. After the database has been implemented,
SQL may be utilized to query data and to receive result tables. In addition to as-
pects presented in the data model in Fig. 2, the physical data model may contain
additional information, e.g., database indices.

In addition to lectures, it is common that students learn practical SQL skills
using a digital learning environment (Brusilovsky et al., 2010). These environ-
ments are aplenty (Mitrovic, 1998, 2003; Permpool et al., 2019; Prior, 2014), and
have different advanced features designed to support SQL learning, e.g., team
forming and collaborative learning (Abelló et al., 2016), personalized or adap-
tive feedback (Mitrovic, 2003; Kenny and Pahl, 2005; Nalintippayawong et al.,
2017), and query execution visualization (Garner and Mariani, 2015). In contrast
to these advanced features, the digital learning environments typically consist of
four basic elements: a representation of the exercise database against which the
query is executed by the DBMS, a data demand expressed in natural language (e.g.,
“List the plate numbers and models of red cars”), an input field into which the
corresponding SQL query needs to be written, and the result table output by the
DBMS after the execution of the query (Fig. 3). Additionally, the environment
may contain auxiliary elements, e.g., data demand in pseudo-SQL instead of nat-
ural language (Casterella and Vijayasarathy, 2013), or the correct result table the
query should return (Reilly, 2018), which may help the student to formulate the
query or validate the result. If the result table is incorrect, or the DBMS returns
an error message instead, the query contains an error.

2.3 Query formulation errors

In any language, errors may be committed in a myriad of ways. While some
errors are archetypal and common among different query writers, others are
chimeric and subjective, possibly pertaining to different language related mis-
conceptions, database object name misreads, typographical errors, or simply ig-
norance. For the sake of narrative, we explore the development of scientific lit-
erature around query formulation errors, namely what errors occur, in three steps.

17

At the first step in understanding query formulation errors, errors have been di-
vided into syntax and semantic errors (Buitendijk, 1988; Smelcer, 1995). This is an
intuitive starting point, as DBMSs check the syntax of the submitted query, and
return a syntax error if the query is syntactically incorrect.

Syntax errors violate the rules of SQL, and even one prevents the execution
of the query. Archetypal syntax errors are, e.g., misspellings of SQL keywords
(Buitendijk, 1988), incorrect ordering of keywords (Welty, 1985), unmatched paren-
theses, and keywords used in incorrect contexts (Ahadi et al., 2016a). Chimeric
syntax errors, being highly diverse, are usually grouped together and not dis-
cussed in detail (e.g., Ahadi et al., 2016a). A key thing worth noting, especially in
the context of syntax errors, is that different DBMSs implement different syntax
checks. What might be considered a syntax error in one DBMS might be tolerated
by another. Consequently, a specific DBMS is often used to categorize syntax er-
rors, and these categorizations are based on a single DBMS’s point of view (Ahadi
et al., 2016a). This poses a problem in terms of generalizability, when results from
two studies using different DBMSs need to be compared.

According to the level of understanding at this step, if the result table is
returned but incorrect, the query contains a semantic error. In other words, se-
mantic errors are a equivalent to errors other than syntactic, as semantic errors are
not checked by DBMSs, or if they are, the query writer is not notified whether
the query contains a semantic error. Queries with one or more semantic error
usually retrieve a result table which does not correspond to the data demand,
or corresponds to the data demand, but only with the current exercise database
data. Examples of archetypal semantic errors are missing conditions (e.g., listing
all cars instead of red cars), retrieving unneeded columns, and failing to sort the
result table according to some attribute value (Ahadi et al., 2016b).

Buitendijk (1988) expressed a tangential - perhaps even axiomatic - notion
that a query should correspond to a specific data demand. This notion was later
explored in detail, and Brass and Goldberg (2006) further divided queries with
semantic errors to always incorrect and incorrect in regards to the data demand. This
marked the second step in understanding query formulation errors. While exam-
ples of the latter class have been provided in the previous paragraph, an always
incorrect query would try, inconsistently, to retrieve, e.g., all cars which are both
red and black from a database which only allows one color per car. The key detail
here is the subtle yet distinct difference between retrieving cars which are both
red and black, and retrieving red cars and black cars. For clarity, we henceforth
call the former type of semantic errors (e.g., inconsistencies and tautologies) se-
mantic, and the latter class of semantic errors (e.g., missing conditions) logical
errors.

At the third step, in addition to the three aforementioned error classes, re-
search extends to the concept of complications (Brass and Goldberg, 2006). Queries
that exhibit complications could be formulated in a simpler fashion. It is worth
noting that this is not a subjective consideration, e.g., violations of established
practices regarding uppercase keywords, indentation, or uniform suffixes are not
considered complications. Rather, a table join, or a condition is a complication if

18

its omittance would not affect the result table, for any data in the database. While
the presence of complications does not affect the result table, and consequently
complications are not errors in the strict sense, we address them as such. Simi-
larly to syntax errors, it is possible for DBMSs to recognize semantic errors and
complications (Brass and Goldberg, 2006), but not logical errors before DBMSs
can understand natural language data demands. When DBMSs can recognize
whether a query logically corresponds to a data demand, DBMSs arguably can
reliably convert data demands into SQL, thus making SQL a less important edu-
cational topic. For now, this is not the case, although attempts have been reported
(Li and Jagadish, 2014).

Although this division of errors into four classes seems justified, researchers
have not widely adapted this point of view, and the few studies on SQL errors
still operate according to the first step (Ahadi et al., 2015, 2016a,b). However, as
a necessary sidetrack to this narrative, we have noticed that industry recognizes
the existence of complications and semantic errors, but show it only for a small
subset of DBMS users. The most popular five1 relational DBMSs Oracle Database,
MySQL, SQL Server, PostgreSQL, and DB/2 all display warnings or indications
of some inconsistencies in queries in respective query execution plans. Although
this does not benefit application developers or writers of ad hoc queries, personnel
working on database optimization may see these indications. If nothing else,
the implementations of semantic error and complication recognition are evidence
that DBMS vendors can and want to utilize these considerations in practice.

2.4 Causes behind errors

A natural step in understanding query formulation errors is moving from what
errors occur to why errors occur (Reisner, 1981), before these problems can be
fixed (Smelcer, 1995). For the sake of structure, we first discuss the causes behind
query formulation errors stemming from the query writer, and then causes stem-
ming from the surrounding environment. These two categories of causes are not
disjoint, but merely consider the causes behind errors from different viewpoints.
Additionally, causes may stem from aspects we as teachers have no feasible con-
trol over, e.g., the design of the SQL language itself (Reisner, 1981).

From the query writer perspective, causes behind query formulation errors
have mostly been studied prior the year 2000. On a high level, errors are caused
by insufficient knowledge of the data, the database structure, or the query lan-
guage (Ogden et al., 1986, as cited in Smelcer, 1995). This level, however, is
too general to explain causes behind errors concerning different SQL concepts
(Smelcer, 1995). Based on Reisner (1977, 1981, 1988), Smelcer (1995) introduced
a model of four cognitive explanations for SQL errors: (i) overloading working
memory, (ii) absence of a clue, (iii) procedural fixedness, and (iv) ignorance. The
model is based on the presupposition that query formulation is a cognitive pro-

1 https://db-engines.com/en/ranking

19

query
formulation

success
rates
lower

data	demand	
ambiguity	higher

data	demand	
complexity	higher

congruence	lower

query	
complexity	higher

conceptual	database
representation	rather

than	logical

database	
complexity	higher

data	
complexity	higher

normal	form	higher

no	expectations	
for	query	results

FIGURE 4 A summary of factors affecting query formulation success rates

cess of translating a natural language data demand into an SQL query, and prob-
lems in the translation process lead to errors in the query.

First, if the number of items, e.g., database object names, SQL keywords, or
conditions, exceeds the query writer’s subjective working memory capacity, cer-
tain items are omitted, which in turn leads to query formulation errors. Second, if
the data demand is imprecise or lacks a clue (or a cue), the translation process re-
quires additional cognitive effort, and possibly additional interpretation. Third,
procedural fixedness is related to incorrectly utilizing translation procedures as-
sociated with preceding translations, e.g., querying a single table as in previous
query formulation tasks, although a multi-table query is required. Fourth, igno-
rance, or absence of procedural knowledge simply means that the query writer
lacks sufficient skill to translate the data demand. Smelcer (1995) regards this ex-
planation as “not theoretically interesting”, which is arguably a dismissive state-
ment in the context of educational research, yet captures phenomena such as stu-
dents simply trying to write SQL without first familiarizing themselves with the
language on a theoretical level.

From the environment’s perspective, causes behind query formulation er-
rors have been studied extensively. Intuitively, the factors that have the potential
to affect query formulation success rates are related to the data demand, query,
database, or database representation. These factors are summarized in Fig. 4, and
solid lines represent hypotheses supported by scientific evidence, while dotted
lines represent untested hypotheses or mere speculation.

As data demand ambiguity (cf. Ashkanasy et al., 2007) increases, query for-
mulation success rates decrease (Axelsen et al., 2001; Borthick et al., 2001a; Cast-
erella and Vijayasarathy, 2013, 2019). With Smelcer’s (1995) presupposition of the
absence of clues in mind, this is an expected development, as query writers need
to interpret an ambiguous data demand, in addition to translating it into a query.
As data demand complexity increases, query formulation success rates decrease
(Borthick et al., 2001a). Similarly, an increase in query complexity causes success
rates to decrease (Borthick et al., 2001a; Chan et al., 1999). It is worth noting that

20

a complex data demand does not necessarily result in a more complex query or
vice versa. In some cases, depending on the data demand, database, and the
natural language used, it is possible to express data demands simply, even for
those that require complex queries. Congruence refers to how well the database
objects correspond to their real world equivalents. If congruence decreases, so
do success rates (Borthick et al., 2001a). It has also been shown that if the query
writer has expectations on how much or what kind of data the query should re-
turn, they can more accurately formulate queries and correct them if necessary,
as opposed to query writers who have no expectations (Robb et al., 2012). If the
database structure is presented on a conceptual level (e.g., as an ER diagram),
query formulation success rates are lower than with a database presentation on
a logical level (e.g., as a database schema diagram) (Davis, 1990; Leitheiser and
March, 1996), although contradictory evidence has also been presented (Chan et
al., 1999; Siau et al., 2004). Additionally, it has been shown that higher normal
forms, i.e., further normalization from the first normal form results in a decrease
in query formulation rates, at least in some types of queries (Borthick et al., 2001b;
Bowen et al., 2004).

Rather surprisingly, neither the effects of the complexity of the database
structure (e.g., a few tables versus many tables) or data (e.g., a few rows versus
many rows) have been studied, although the latter has received arguments in
favor of complex data which arguably better prepares students for their future
work (Gudivada et al., 2007; Ortiz et al., 2012; Wagner et al., 2003). Furthermore,
it has been shown that students find more complex databases more interesting
and useful (Yue, 2013).

3 SUMMARY OF ARTICLES

In this chapter, we first discuss the motivation and assumptions behind the premises
of this line of research, and our research questions. Next, we briefly summarize
Articles PI through PV, their aims and contributions, and the author’s role in each
article.

3.1 Overview and motivation

The line of research presented in the included articles rests on four assumptions
which are argued for next.

Assumption 1. We as educators and researchers need to understand student er-
rors in query formulation if we are to facilitate learning.

First, as hinted in previous chapters, errors in SQL query formulation have
not been systematically mapped. With the exception of Brass and Goldberg (2006),
the error categorizations presented in prior studies have rather been presented as
a priori established vehicles for answering respective research questions, rather
than results of those studies. Furthermore, the errors presented in previous stud-
ies are by design a small subset of SQL errors (e.g., Smelcer, 1995), and sometimes
error categorizations have been based on a single DBMS’s point of view (e.g.,
Ahadi et al., 2016a). Indirectly inspired by Gregor’s (2006) taxonomy of theory
development in information systems, we deemed that before trying to under-
stand more complex questions of why something happens, what will happen, or how
to do something, we needed to first study what errors occur, as we considered prior
scientific literature on the topic insufficient. As Metcalfe (2017) points out, un-
derstanding student errors helps teachers focus instruction on difficult concepts,
and what aspects of the task possibly cause students to miss correct solutions. By
understanding what types of errors novices commit enables us as researchers to
move towards quantifying those errors in different research settings.

22

Assumption 2. Although committing errors is a part of the learning process, per-
sistent errors in particular are a desirable research focus.

Second, simply avoiding errors in various learning situations may be coun-
terproductive to learning (Metcalfe, 2017), whereas simply succeeding in all tasks
may result in learning not taking place at all (Wilson et al., 2019). As Metcalfe
(2017) points out, not all errors are equal. Therefore, we focused on persistent,
i.e., never corrected errors, and considered them an indication of either decisively
or prolongedly halted learning experience.

Assumption 3. Understanding what aspects in the environment cause persistent
query formulation errors is an important step in choosing the most appropriate
learning environment parameters.

Third, as underlined in Subsection 2.4, the effects of database complexity on
SQL query formulation success rates have not been studied, while many other
aspects in the environment have received scientific attention. To better prepare
students for their career, many studies have argued for utilizing natural environ-
ments, i.e., environments which more accurately mirror students’ future work
(Ahadi et al., 2015; AL-Salmi, 2018; Yue, 2013). As textbook examples often uti-
lize relatively simple exercise database structures (e.g., Elmasri and Navathe,
2016; Connolly and Begg, 2015; Kroenke and Auer, 2016), those databases do not
necessarily represent databases students will likely encounter in their work. Al-
though Wagner et al. (2003), Jukic and Gray (2008b), and Yue (2013) argue for
using either more complex database structures or datasets, the negative implica-
tions of such environment parameters have not been scrutinized. Therefore, if
more complex databases indeed have no discernible downsides to learning, ed-
ucators should utilize them in teaching SQL to better prepare students for their
future work. However, if such databases present a threat to the learning process,
caution should be exercised when choosing exercise database complexity.

Assumption 4. Understanding more and more of the aspects that affect query
formulation is an important step towards making an informed decision regarding
which of those aspects should be mitigated and how.

Fourth, the effects of different environment parameters in query formula-
tion success rates may be explained by different cognitive explanations presented
by Smelcer (1995), but only after these effects, or lack thereof, have been demon-
strated. Furthermore, in order to decide whether or not some environment pa-
rameter is beneficial to learning, we as educators should understand these effects.
Finally, if some negative aspects can be mitigated with relative ease, these pre-
ceding steps are useful in developing such solutions. Next, we discuss how the
research was conducted on a general level.

Chronologically, we first set out to find research gaps in SQL education. This
was not a systematic process, but revealed that the rather intuitive consideration
of the effects of database complexity on query formulation success rates had not
received scientific attention (Article PIV). However, before studying success rates

23

in query formulation, we needed to understand what success is, i.e., what con-
stitutes in making a query correct or incorrect. DBMS specific implementations
of the SQL languages presented a threat in this regard, as prior studies usually
utilized a specific DBMS to study errors. Therefore, we needed a DBMS inde-
pendent error definitions, and used the SQL standard to guide our error catego-
rization framework (Article PII). During the course of the error categorization, it
became apparent that not all errors committed are equal, as some are usually cor-
rected by query writers, while others halt the query writing process, resulting in a
failure in query formulation. Rather than merely understanding what is incorrect
(Article PII), we wanted to understand some aspects of why query formulation
is unsuccessful (Article PIII). Finally, based on the preliminary literature review,
we conducted a systematic mapping study to compile the varied SQL teaching
practices proposed in scientific literature, and to propose future research topics
for the educational SQL research field (PI). It is worth noting that the included ar-
ticles are not presented in a chronological order. The primary research questions
for the included articles are presented below.

RQ1: What SQL teaching practices have been proposed in scientific literature?
(Article PI)

RQ2: What types of errors novices commit in SQL query formulation? (Article
PII)

RQ3: What types of errors are persistent, i.e., have a tendency to remain unfixed?
(Article PIII)

RQ4: What are the effects of database complexity on query formulation? (Article
PIV)

Additionally, we developed a query planning notation to mitigate the root causes
for query formulation errors in the translation process as proposed by Smelcer
(1995) (Article PV). As the notation was not among intended results of our line
of research, it may be considered a by-product rather than an answer to an estab-
lished research question.

3.2 Contributions

3.2.1 Article PI

Toni Taipalus and Ville Seppänen. SQL education: A systematic mapping study
and future research agenda. ACM Transactions on Computing Education 20(3), Ar-
ticle 20, 2020.

Aim Using systematic mapping as proposed in Petersen et al. (2008, 2015), we
set out to collect SQL teaching practices and considerations from scientific litera-
ture. As the preliminary, non-systematic literature review for Article PII revealed

24

numerous teaching considerations, we deemed a systematic map using a wider
viewpoint a proper fit to explore the topic. A systematic map was also a natural
fit, as to our knowledge there are no systematic literature reviews or mapping
studies regarding SQL education.

Main contributions We present a systematic map of SQL education research
publication fora and publications by year over a time frame of 30 years. We
categorize SQL education research into six topics, namely (i) student errors in
query formulation; (ii) characteristics and presentation of the exercise database;
(iii) specific and (iv) non-specific teaching approach suggestions; (v) patterns and
visualization; and (vi) easing teacher workload. Additionally, we list 66 teach-
ing considerations from the selected 89 primary studies into these six topics, and
present a future research agenda based on the insights from the mapping process.

Minor contributions We adjusted and particularized the research type facet
classification scheme proposed in Wieringa et al. (2005) and Petersen et al. (2008)
for systematic mapping studies. The adjustment was done in order to more un-
ambiguously map educational research into research type facets. This was not
done according to one scientific method, but rather based on the experiences of
the authors.

Author’s contribution The author formulated the research goals and aims, col-
lected and analyzed research data, and wrote the initial draft of the paper. The
co-authors participated in validation and discussion of the data analysis, and con-
tributed to reviewing and editing the text. The final version of the paper was
created by collaboration of all the authors.

3.2.2 Article PII

Toni Taipalus, Mikko Siponen, and Tero Vartiainen. Errors and complications in
SQL query formulation. ACM Transactions on Computing Education 18(3), Article
15, 2018.

Aim Utilizing both directed and conventional content analyses as described in
Hsieh and Shannon (2005), we set out to formulate an SQL query error taxonomy
based on SQL query data from a cohort of students. Some SQL errors had been
identified in prior studies, yet error categorization had not been the goal of those
studies.

Main contributions We present a DBMS independent error categorization of
syntax, semantic, and logical errors, and complications in SQL query formula-
tion. The error categorization is presented as a taxonomy of three levels, i.e., the
aforementioned four error classes, which are comprised of a total of 18 error cat-
egories, which are further comprised of 105 different errors. Furthermore, we
present descriptive statistics on the frequency of the 18 errors types throughout
the 15 SQL exercises.

25

Minor contributions Based on our teaching experiences, we structured a query
concept framework of 15 exercises and 19 query concepts, which was then used to
guide our data collection. The query concept framework was formulated before
data collection.

Author’s contribution The author formulated the research goals and aims, and
the query concept framework, collected, coded and analyzed research data, and
wrote the initial draft of the paper. The co-authors supervised the research pro-
cess, participated in validation and discussion of the data analysis, and con-
tributed to reviewing and editing the text. The final version of the paper was
created by collaboration of all the authors.

3.2.3 Article PIII

Toni Taipalus and Piia Perälä. What to expect and what to focus on in SQL query
teaching. Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19). ACM, New York, 198-203, 2019.

Aim Utilizing the query concept framework and error taxonomy presented pre-
viously in Article PII, we proceed to focus on persistent (i.e., never corrected)
errors in SQL query formulation. Using queries from three student cohorts, we
separate common errors from common persistent errors, and describe what types
of errors certain query concepts seem to invite.

Main contributions We present descriptive statistics on error categories with
high relative frequencies. High relative frequencies indicate errors that are diffi-
cult for students to fix, as opposed to high frequencies presented in Article PII,
which indicate errors that are common, but not necessarily difficult to fix. Using
the highest level of the error taxonomy, we also present estimated means for each
error class for each exercise, revealing that logical errors are the most prominent
class of persistent errors in all exercises, regardless of the query concepts tested.

Minor contributions Abstracted from the data analysis, we present an estima-
tion of which query concepts invite which types of errors. This estimation does
not cover all of the 19 tested query concepts, as most concepts display no clear
patterns in relation to any error types.

Author’s contribution The author formulated the research goals and aims, col-
lected and coded research data, and wrote the initial draft of the paper. The co-
authors conducted the data analysis, and contributed to reviewing and editing
the text. The final version of the paper was created by collaboration of all the
authors.

3.2.4 Article PIV

Toni Taipalus. The effects of database complexity on SQL query formulation.
Journal of Systems and Software 165, Article 110576, 2020.

26

Aim Utilizing the query concept framework and error taxonomy presented ear-
lier in Article PII, and the insights on persistent errors in Article PIII, we pro-
ceed to study how logical complexity affects query formulation success rates. Al-
though prior scientific literature suggests positive effects on student motivation
and preparation for future work, the potential negative aspects of more complex
databases have not been studied.

Main contributions Based on analyses of queries executed against three data-
bases of different logical complexity, we present that as database complexity in-
creases, (i) query formulation success rates decrease; (ii) the number of complica-
tions increase; (iii) the number of syntax errors increase, but not with a statistically
significant effect; (iv) the number of semantic errors show no statistically signif-
icant difference; and (v) the number of logical errors display no distinct pattern
between databases of different logical complexity.

Author’s contribution The author was the sole author of the paper.

3.2.5 Article PV

Toni Taipalus. Teaching tip: A notation for planning SQL queries. Journal of Infor-
mation Systems Education 30(3), 160-166, 2019.

Aim Inspired by the notion that human working memory constraints, procedu-
ral fixedness, and lack of cues hinder query formulation, especially with more
complex queries, we proceed to emphasize the importance of a priori planning
by developing an SQL query planning notation. To the best of our knowledge,
this was the only SQL query planning notation published in a scientific forum,
although tangential work has been published before (Koutrika et al., 2010; Dana-
paramita and Gatterbauer, 2011) and simultaneously (Sundin and Cutts, 2019).

Main contributions We present an SQL query planning notation inspired by
graph theory. The notation covers a wide range of query concepts such as selec-
tion, restriction, joins, grouping and sorting. Additionally, the notation may be
applied to complex update and delete statements with minor alterations.

Author’s contribution The author was the sole author of the paper.

4 DISCUSSION

In this chapter, we first discuss the practical implications of the articles as a whole,
as opposed to individual implications discussed in the articles proper. Next, we
consider the limitations of this line of research, argue for the chosen research
methods, discuss threats to validity, and explain some ethical considerations. Fi-
nally, we present potential future research directions.

4.1 Practical implications

The line of research presented in Articles PII through PIV contribute to increased
understanding of errors in SQL learning, and shed light on the effects of database
complexity on query formulation errors. For research, we presented an SQL error
categorization which was designed to be DBMS independent. This categoriza-
tion is a contribution to any SQL research studying errors, and has the potential
benefit of making results of different studies that utilize the categorization com-
parable with each other. Additionally, we presented a query concept framework
to be utilized in courses and other research settings. The error frequencies pre-
sented in Article PII and investigated in more detail in Article PIII also provide
guidelines for teachers who want to mitigate natural language ambiguities in
data demands by showing students correct result tables. These frequencies can
be utilized in the design of exercise database data in a way that the data account
for most common errors. As presented in Article PIII, certain query concepts in-
vite certain types of errors, and exercise database data should be designed so that
queries with the most common errors return a different result table than the cor-
rect query. Accounting for all possible errors, however, is not feasible, and the
most common errors should be considered first. As these studies show, logical
errors are the most common class of errors, and the expected errors may be used
to guide the development of intelligent tutoring systems and the feedback they
provide to the student about incorrect queries. Regarding SQL teaching focus,
we presented errors which are common, errors which are persistent, and errors

28

which are both. As errors which are common but not persistent, students are able
to fix on their own, teachers should focus on errors which are both common and
persistent when designing exercise database data.

In terms of research, many factors affecting query formulation success rates
have been studied, and in Article PIV, we present evidence on the negative ef-
fects of increased database complexity on query formulation. In terms of teach-
ing, higher student engagement remains an important factor when more realistic
databases are used. Based on the preceding studies and results in Article PIV,
we suggest that there might be at least two directions worth studying, if we as
teachers want to both use realistic exercise databases, and see high query formu-
lation success rates. First, we might be able to convince students of the fact that
a more realistic database is not necessarily more complex. Second, we could use
method to try to mitigate the causes of procedural fixedness, working memory
constraints, and lack of cues while still utilizing complex exercise databases. As a
potential solution for the second consideration, we describe a planning notation
in Article PV, which can be utilized by teachers simultaneously to teaching SQL.

Although educational SQL research is scarce when compared to program-
ming languages, SQL has been a part of research and teaching for a relatively
long time, and time, rather than research focus, has resulted in a number of scien-
tific articles on educational SQL. In article PI, we aggregate a body of knowledge
of teaching practices to a relatively accessible format for teachers to utilize. For
research, we provide a systematic mapping of SQL education literature. Fur-
thermore, we summarize and discuss educational SQL research on a high level,
providing an overview of potential research dearths and trending research direc-
tions.

4.2 Limitations and threats to validity

According to the SQL standard, SQL is an extensive language. This line of re-
search, particularly Articles PII through PV, covers only a relatively small subset
of the SQL language, although according to different curricula guidelines, this
subset is a salient part of SQL. However, even though this line of research is
limited to data retrieval, which also is only a part of SQL, not all data retrieval
concepts and keywords are addressed in the articles. This is by design to limit
the scope of the studies.

Data analysed in Articles PII through PIV originates from participants who
took one single course and were taught SQL by one single teacher. This may
have influenced the diversity of different errors reported in Article PII, and par-
ticipants taught by another teacher could have committed errors not found in that
study. Although the error categorization reported in Article PII was designed to
be DBMS independent, SQLite was used in data collection. As mentioned in Arti-
cle PIII, syntax error discovery by a single DBMS is unreliable in regards to error
categorization. Although using a single DBMS in the research setting in Article

29

PIV is arguably a necessity to mitigate the unwanted effects of different DBMSs
on query formulation, using a single DBMS in Article PII to formulate the er-
ror taxonomy may limit the errors discovered, and skew error frequencies. We
would detail that SQLite is relatively lenient in syntax error detection, and does
not enforce strict grouping. This has possibly increased the number of reported
syntax errors, grouping related syntax errors in particular, in Articles PIII and
PIV. Furthermore, an iota of caution is advised when interpreting the DBMS in-
dependence in the error categorization, as no categorization is thoroughly DBMS
independent, because the standard does not always unambiguously dictate what
is an error.

We discuss many of the threats to validity concerning control variables in ar-
ticle PIV that extend to the preceding Articles PII and PIII as well. Additionally,
there are some considerations regarding the two types of qualitative content anal-
ysis used but not discussed in Article PII. According to Hsieh and Shannon (2005),
directed content analysis “presents challenges to the naturalistic paradigm” with
strong researcher bias originating from existing theory. Therefore, some syntax
errors, semantic errors, and complications that we recognized as previously dis-
covered errors in Article PII may indeed have exhibited novel types of errors we
failed to identify due to our preconceptions. As summarized in Hsieh and Shan-
non (2005), one of the main challenges in conventional content analysis is that
researchers miss key information. Although we discussed that prolonged expo-
sure and closeness to the teaching process should mitigate this in Article PII, it
is possible that we have missed some logical errors in our data coding and anal-
ysis. With this in mind, the main threat to validity in Articles PII through PIV
is that the query formulation error coding and taxonomy development was ef-
fectively based on a single researcher’s qualitative analysis, however close their
involvement to the teaching and data collection processes.

Choosing an appropriate statistical method is arguably an important factor
for validity. Regarding the methods used in Articles PIII and PIV, we feel neces-
sary to expand the discussion on the nature of data analysed to justify our chosen
methods. In Article PIII, we estimated means of errors by error class per exercise
using negative binomial regression. As our dependent variable was the number
of errors committed by a participant by error class by exercise, we considered
the scale of our dependent variable count. Our two independent variables (error
class and exercise) were measured on nominal scale, and we proceeded by further
investigating the suitability of Poisson regression. However, we found that our
data were overdispersed, and therefore considered negative binomial regression,
according to which variance and mean are not equivalent.

In Article PIV, we used both chi-square test of homogeneity and Kruskal-
Wallis H test to determine if there were statistically significant differences be-
tween query formulation success rates and database complexity, and between
numbers of different errors belonging to an error class and database complex-
ity. We chose chi-square test of homogeneity, because (i) our dependent variable
was measured on dichotomous scale (success or failure in formulating a query),
(ii) we had one independent variable and it had three categorical and indepen-

30

dent groups (simple, semi-complex, and complex database), (iii) we had inde-
pendence of observations by design, and (iv) we had a sufficiently large sample
size. We chose the Kruskal-Wallis H test, because (i) we had one continuous de-
pendent variable (number of errors committed by a participant within an error
class), (ii) we had one independent variable that had three categorical and in-
dependent groups (simple, semi-complex, and complex database), (iii) we had
independence of observations, (iv) data were not normally distributed for each
group of the independent variable, and (v) groups sizes were not equal. We first
considered running a one-way ANOVA, but due to points (iv) and (v), we chose
a non-parametric test instead, as to our understanding, Kruskal-Wallis H test is
not affected by outliers to the same degree as one-way ANOVA. For the Kruskal-
Wallis H tests, post hoc analysis (pairwise comparisons) were performed using
Dunn’s (1964) procedure with a Bonferroni correction for multiple comparisons.
Because the group sizes were not equal, and because the homogeneity of variance
was violated, we chose to use this particular post hoc analysis.

Article PIV only considers query formulation success rate as a measure of
successful query formulation. In hindsight, it would have been more informa-
tive to also measure query formulation time, number of attempts, and partici-
pant confidence as done by Chan et al. (1999) and Borthick et al. (2001a) in their
respective studies. However, measuring query formulation time reliably would
have required a more controlled research setting altogether.

Key assumptions that guided the development of the query planning nota-
tion in Article PV lean on the results of Smelcer (1995). However, it is unclear how
Smelcer (1995) mapped different query formulation errors to their particular cog-
nitive explanations. Additionally, Smelcer’s (1995) analysis is based on queries
from 17 participants, and, as discussed in article PI, new versions of the SQL
standard have since introduced new and alternative features to the language. Fi-
nally, although our experiences and informal feedback regarding the notation
have been positive, Article PV is effectively a solution proposal without empiri-
cal evidence to support the usefulness of the notation.

4.3 Ethical considerations

For Articles PI and PV, no personal data were used due to the nature of the re-
search. For Articles PII, PIII and PIV, we followed current scientific recommenda-
tions regarding data privacy and ethical considerations regarding research partic-
ipation. In summary, the participants were informed of what data were collected
and how it would be used in our research. The participants were informed that
the data would only be used for the purposes of our research, and not passed to
third parties outside the scope of the researchers listed as authors of the papers.
The participants were given the opportunity to participate or to opt out with no
advantages or disadvantages regarding, for example, course grade. Besides user
names, the data contained no personal information. The data were anonymized

31

before the analyses, and reported in a form of statistical information, where the
identification of individuals was not possible.

4.4 Future agenda

Based on the systematic mapping, we presented future research avenues for SQL
education in general in article PI. Additionally, for a more comprehensive SQL
error categorization, our query concept framework could be further developed
to encompass more of data retrieval concepts. One such extension is already
available (Migler and Dekhtyar, 2020), yet it remains open whether these new
query concepts introduce novel errors. Amongst all our student cohorts, logical
errors were the most prominent, and this suggests that logical errors should be
further investigated. Especially regarding logical errors, the usefulness of our
query planning notation remains an open question, and it would be beneficial to
investigate whether the notation mitigates the causes behind query formulation
failure it was designed to mitigate.

The effects of dataset complexity on query formulation have not been stud-
ied. This is closely related to the notion of natural and unnatural learning envi-
ronments presented in Articles PII and PIV; what kind of learning environment
in terms of database and dataset complexity, and data demand ambiguity is the
most beneficial to students? In this regard, we feel that SQL education is ready to
more systematically start moving in the direction of explaining why and propos-
ing solutions based on scientific evidence on query formulation success factors.

5 CONCLUSIONS

In this doctoral dissertation, we answered our four research questions. We fo-
cused on extending prior knowledge on errors in query formulation, namely,
what types of errors are committed, what types of errors are difficult to fix, and
what factors in the learning environment cause errors which are difficult to fix.
Additionally, we presented a systematic map of educational SQL research and
teaching practices proposed, a future research agenda, and a notation for plan-
ning more complex SQL queries.

Our results indicate that there are numerous different kinds of errors com-
mitted in query formulation, and the frequencies of different errors are highly
dependent on the type of query being formulated. While some errors were fre-
quent, we also considered errors which are difficult to fix, and halt the query
formulation process. On a general level, logical errors were most prominent in
query formulation, but also statistically the most difficult to fix. These results
support previously suggested cognitive explanations behind query formulation
errors, namely human working memory constraints, fixed query writing habits,
and natural language interpretation difficulties. Our results also revealed that an
increase in database complexity results in a decrease in query formulation suc-
cess rates, indicating that complex databases, although realistic, may not be the
most suitable environments for practicing SQL.

Additionally, we collected SQL teaching practices from scientific literature,
and systematically mapped SQL education research over a time frame of 30 years.
This listing of teaching practices may be directly utilized in SQL education. Fi-
nally, designed around the suggested cognitive explanations behind query for-
mulation errors, we presented a query planning notation especially for more
complex SQL retrieval statements. The notation can be used in both teaching
and industry to mitigate logical errors in query formulation.

33

YHTEENVETO (SUMMARY IN FINNISH)

Haemme päivittäin tietoa tietokannoista, vaikka tietokannan olemassaolo ei vält-
tämättä olekaan meille kuluttajille ilmiselvää. Jokainen verkon hakukoneella teh-
ty avainsanahaku, jokainen musiikkikappale tai elokuva suoratoistopalvelusta ja
jokainen verkkolehdessä luettu artikkeli saa aikaan kyselyn tietokantaan. Kyse-
lyn kirjoittaminen on tavallisesti yleistetty meille kuluttajille vaivattomaksi: pelk-
kä avainsanan kirjoittaminen riittää. Ohjelmistokehittäjän on kuitenkin järjestel-
mää kehittäessään täytynyt muuttaa kysely sellaiselle formaalille kielelle, jota
myös ohjelmisto ymmärtää. Yleisin näistä ns. kyselykielistä on SQL-kieli. Jotta
kuluttajina saisimme järjestelmästä juuri sen tiedon mitä haluamme, on tärke-
ää että ohjelmistokehittäjä on kirjoittanut vastaavan lauseen kyselykielellä vir-
heettömästi. SQL-kieltä tarkastelevassa tieteellisessä kirjallisuudessa ei ole kui-
tenkaan käsitelty laaja-alaisesti niitä virheitä, joita kyselyiden muodostamisessa
tavallisesti tehdään. Lisäksi kaikkien keskeisten tietokantaan liittyvien aspektien
vaikutusta kyselyiden kirjoittamiseen ei ole tutkittu. Tässä väitöskirjassa (i) kar-
toitettiin systemaattisesti SQL-kielen opetukseen liittyvä tieteellinen tutkimus 30
vuoden ajalta ja koottiin yhteen tieteellisessä kirjallisuudessa esitetyt tavat opet-
taa SQL-kieltä, (ii) muodostettiin laaja-alainen SQL-kyselyiden kirjoittamisessa
tapahtuvien virheiden taksonomia, (iii) eroteltiin virheet, jotka kyselyn kirjoittaja
pystyy tavallisesti havaitsemaan ja korjaamaan sellaisista virheistä, jotka tavalli-
sesti jäävät lopulliseen kyselyyn, (iv) havaittiin, että tietokannan rakenteen moni-
mutkaisuus on verrannollinen sellaisten virheiden määrään, joita kyselyn kirjoit-
taja ei tavallisesti pysty havaitsemaan tai korjaamaan, ja (v) muodostettiin moni-
mutkaisempien SQL-kyselyiden suunnitteluun notaatio, jonka tarkoituksena on
kyselyä kirjoitettaessa tehtyjen virheiden lukumäärän vähentäminen.

34

REFERENCES

ACM/IEEE 2013. Computer Science Curricula 2013: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science. doi:10.1145/2534860.
(999133).

ACM/IEEE 2015. Curriculum Guidelines for Undergraduate Degree Programs in
Software Engineering. 〈URL:https://dl.acm.org/citation.cfm?id=2965631〉.

AL-Salmi, A. 2018. A web-based semi-automatic assessment tool for formulat-
ing basic SQL statements: Point-and-click interaction method. In Proceed-
ings of the 10th International Conference on Computer Supported Education
(CSEDU), Vol. 1, 191-198. doi:doi.org/10.5220/0006671501910198.

Abelló, A., Burgués, X., Casany, M. J., Martín, C., Quer, C., Rodríguez, M. E.,
Romero, Ó. & Urpí, T. 2016. A software tool for e-assessment of relational
database skills. International Journal of Engineering Education 32 (3A), 1289–
1312. 〈URL:http://hdl.handle.net/2117/89668〉.

Ahadi, A., Behbood, V., Vihavainen, A., Prior, J. & Lister, R. 2016a. Students’ Syn-
tactic Mistakes in Writing Seven Different Types of SQL Queries and its Appli-
cation to Predicting Students’ Success. In Proceedings of the 47th ACM Tech-
nical Symposium on Computing Science Education (SIGCSE). New York, New
York, USA: ACM Press, 401–406. doi:10.1145/2839509.2844640.

Ahadi, A., Prior, J., Behbood, V. & Lister, R. 2015. A Quantitative Study of the Rel-
ative Difficulty for Novices of Writing Seven Different Types of SQL Queries.
In Proceedings of the 2015 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE). New York, New York, USA: ACM Press,
201–206. doi:10.1145/2729094.2742620.

Ahadi, A., Prior, J., Behbood, V. & Lister, R. 2016b. Students’ Semantic Mis-
takes in Writing Seven Different Types of SQL Queries. In Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer Sci-
ence Education (ITiCSE). New York, New York, USA: ACM Press, 272–277.
doi:10.1145/2899415.2899464.

Ashkanasy, N., Bowen, P. L., Rohde, F. H. & Wu, C. Y. A. 2007. The effects of user
characteristics on query performance in the presence of information request
ambiguity. Journal of Information Systems 21 (1), 53-82. doi:10.2308/jis.2007.
21.1.53.

Axelsen, M., Borthick, A. F. & Bowen, P. L. 2001. A model for and the effects of
information request ambiguity on end-user query performance. In ICIS 2001
Proceedings, 68. 〈URL:http://aisel.aisnet.org/icis2001/68〉.

35

Borthick, A., Bowen, P. L., Jones, D. R. & Tse, M. H. K. 2001a. The effects of infor-
mation request ambiguity and construct incongruence on query development.
Decision Support Systems 32 (1), 3–25. doi:10.1016/s0167-9236(01)00097-5.

Borthick, A., Bowen, P., Liew, S. & Rohde, F. 2001b. The effects of normalization
on end-user query errors: An experimental evaluation. International Journal of
Accounting Information Systems 2 (4), 195 - 221. doi:https://doi.org/10.1016/
S1467-0895(01)00023-9.

Bowen, P. L., Rohde, F. H. & Basford, J. 2004. Ex ante evaluations of alternate data
structures for end user queries. Journal of Database Management 15 (4), 45–70.
doi:10.4018/jdm.2004100103.

Brass, S. & Goldberg, C. 2006. Semantic errors in SQL queries: A quite complete
list. Journal of Systems and Software 79 (5), 630–644. doi:10.1016/j.jss.2005.06.
028.

Brusilovsky, P., Sosnovsky, S., Yudelson, M. V., Lee, D. H., Zadorozhny, V. & Zhou,
X. 2010. Learning SQL programming with interactive tools: From integration to
personalization. ACM Transactions on Computing Education 9 (4), 19:1–19:15.
doi:10.1145/1656255.1656257.

Buitendijk, R. B. 1988. Logical errors in database SQL retrieval queries. Computer
Science in Economics and Management 1 (2), 79–96. doi:10.1007/bf00427157.

Casterella, G. I. & Vijayasarathy, L. 2013. An Experimental Investigation of Com-
plexity in Database Query Formulation Tasks. Journal of Information Sys-
tems Education 24 (3), 211–221. 〈URL:http://jise.org/Volume24/24-3/pdf/
Vol24-3pg211.pdf〉.

Casterella, G. I. & Vijayasarathy, L. 2019. Query Structure and Data Model Map-
ping Errors in Information Retrieval Tasks. Journal of Information Systems Ed-
ucation 30 (3), 178–190. 〈URL:http://jise.org/Volume30/n3/JISEv30n3p178.
pdf〉.

Chamberlin, D. D. 2012. Early history of SQL. IEEE Annals of the History of Com-
puting 34 (4), 78-82. doi:10.1109/MAHC.2012.61.

Chan, H. C., Tan, B. C. & Wei, K.-K. 1999. Three important determinants of user
performance for database retrieval. International Journal of Human-Computer
Studies 51 (5), 895–918. doi:10.1006/ijhc.1999.0272.

Chen, P. P.-S. 1976. The entity-relationship model - toward a unified view of data.
ACM Transactions on Database Systems 1 (1), 9–36. doi:10.1145/320434.320440.

Cleve, A., Gobert, M., Meurice, L., Maes, J. & Weber, J. 2015. Understanding
database schema evolution: A case study. Science of Computer Programming
97 (P1), 113–121. doi:10.1016/j.scico.2013.11.025.

36

Codd, E. F. 1970. A relational model of data for large shared data banks. Commu-
nications of the ACM 13 (6), 377–387. doi:10.1145/362384.362685.

Codd, E. F. 1971a. A data base sublanguage founded on the relational calcu-
lus. In Proceedings of the 1971 ACM SIGFIDET (now SIGMOD) Workshop
on Data Description, Access and Control - SIGFIDET '71. ACM Press. doi:
10.1145/1734714.1734718.

Codd, E. F. 1971b. Further normalization of the data base relational model. IBM
Research Report, San Jose, California RJ909.

Codd, E. F. 1972. Relational completeness of data base sublanguages. IBM Re-
search Report RJ987. (republished on "ACM SIGMOD Anthology").

Connolly, T. & Begg, C. 2015. Database Systems (6th. ed.). Pearson.

Danaparamita, J. & Gatterbauer, W. 2011. Queryviz: Helping users under-
stand sql queries and their patterns. In Proceedings of the 14th International
Conference on Extending Database Technology. New York, NY, USA: ACM.
EDBT/ICDT ’11, 558–561. doi:10.1145/1951365.1951440.

Date, C. J. 1983. Critique of the SQL database language. SIGMOD Record 14 (3).
doi:10.1145/984549.984551.

Davis, J. S. 1990. Experimental investigation of the utility of data structure and
E-R diagrams in database query. International Journal of Man-Machine Studies
32 (4), 449 - 459. doi:10.1016/S0020-7373(05)80142-7.

Dunn, O. J. 1964. Multiple comparisons using rank sums. Technometrics 6 (3),
241–252. 〈URL:https://www.jstor.org/stable/1266041〉.

Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.-E. & Zemke, F. 2004. SQL:2003
has been published. ACM SIGMOD Record 33 (1), 119. doi:10.1145/974121.
974142.

Eisenberg, A. & Melton, J. 1999. SQL:1999, formerly known as SQL3. SIGMOD
Record 28 (1), 131–138. doi:10.1145/309844.310075.

Elmasri, R. & Navathe, S. B. 2016. Fundamentals of Database Systems (7th. ed.).
Pearson.

Garner, P. & Mariani, J. A. 2015. Learning SQL in steps. Journal of Systemics,
Cybernetics and Informatics 13 (4), 19–24.

Gregor, S. 2006. The nature of theory in information systems. MIS Quarterly 30
(3), 611. doi:10.2307/25148742.

Gudivada, V. N., Nandigam, J. & Tao, Y. 2007. Enhancing student learning in
database courses with large data sets. In 2007 37th annual Frontiers in Educa-
tion conference (FIE). IEEE. doi:10.1109/fie.2007.4418135.

37

Hsieh, H.-F. & Shannon, S. E. 2005. Three approaches to qualitative con-
tent analysis. Qualitative Health Research 15 (9), 1277-1288. doi:10.1177/
1049732305276687. (PMID: 16204405).

ISO/IEC 2016a. ISO/IEC 9075-1:2016 - SQL Part 1: Framework. 〈URL:https://
www.iso.org/standard/63555.html〉.

ISO/IEC 2016b. ISO/IEC 9075-2:2016 - SQL - Part 2: Foundation. 〈URL:https:
//www.iso.org/standard/63556.html〉.

Jukic, N. & Gray, P. 2008a. Teradata university network: A no cost web-portal for
teaching database, data warehousing, and data-related subjects. Journal of In-
formation Systems Education 19 (4), 395-402. 〈URL:http://jise.org/Volume19/
n4/JISEv19n4p395.html〉.

Jukic, N. & Gray, P. 2008b. Using real data to invigorate student learning. SIGCSE
Bull. 40 (2), 6–10. doi:10.1145/1383602.1383604.

Kenny, C. & Pahl, C. 2005. Automated tutoring for a database skills training envi-
ronment. In Proceedings of the 36th ACM Technical Symposium on Computer
Science Education (SIGCSE). New York, NY, USA: ACM. SIGCSE ’05, 58–62.
doi:10.1145/1047344.1047377.

Koutrika, G., Simitsis, A. & Ioannidis, Y. E. 2010. Explaining structured queries
in natural language. In 2010 IEEE 26th International Conference on Data Engi-
neering (ICDE 2010). IEEE. doi:10.1109/icde.2010.5447824.

Kroenke, D. & Auer, D. J. 2016. Database Processing: Fundamentals, Design, and
Implementation (14th edition). Pearson Education.

Kulkarni, K. & Michels, J.-E. 2012. Temporal features in SQL:2011. ACM SIGMOD
Record 41 (3), 34. doi:10.1145/2380776.2380786.

Leitheiser, R. L. & March, S. T. 1996. The influence of database structure represen-
tation on database system learning and use. Journal of Management Informa-
tion Systems 12 (4), 187–213. doi:10.1080/07421222.1996.11518106.

Li, F. & Jagadish, H. V. 2014. Constructing an interactive natural language inter-
face for relational databases. Proceedings of the VLDB Endowment 8 (1), 73–84.
doi:10.14778/2735461.2735468.

Metcalfe, J. 2017. Learning from errors. Annual Review of Psychology 68 (1), 465-
489. doi:10.1146/annurev-psych-010416-044022. (PMID: 27648988).

Migler, A. & Dekhtyar, A. 2020. Mapping the SQL learning process in introduc-
tory database courses (in press). In Proceedings of the 51th ACM Technical
Symposium on Computer Science Education (SIGCSE). ACM. SIGCSE ’20.

Mitrovic, A. 2003. An intelligent SQL tutor on the web. International Journal of
Artificial Intelligence in Education 13 (2-4), 173-197.

38

Mitrovic, A. 1998. Learning SQL with a computerized tutor. In Proceedings of the
Twenty-ninth SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA: ACM. SIGCSE ’98, 307–311. doi:10.1145/273133.274318.

Nalintippayawong, S., Atchariyachanvanich, K. & Julavanich, T. 2017. DBLearn:
Adaptive e-learning for practical database course - an integrated architecture
approach. In 2017 18th IEEE/ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking and Parallel/Distributed Comput-
ing (SNPD), 109–114. doi:10.1109/SNPD.2017.8022708.

Ogden, W. C., Korenstein, R. & Smelcer, J. B. 1986. An Intelligent Front-End for
SQL. IBM General Products Division.

Ortiz, J., Dietrich, S. W. & Chaudhari, M. B. 2012. Learning from database perfor-
mance benchmarks. Journal of Computing Sciences in Colleges 27 (4), 151–158.
〈URL:http://dl.acm.org/citation.cfm?id=2167431.2167457〉.

Permpool, T., Nalintippayawong, S. & Atchariyachanvanich, K. 2019. Interactive
SQL learning tool with automated grading using MySQL Sandbox. In Inter-
active SQL Learning Tool with Automated Grading using MySQL Sandbox,
928-932. doi:10.1109/IEA.2019.8715175.

Petersen, K., Feldt, R., Mujtaba, S. & Mattsson, M. 2008. Systematic mapping
studies in software engineering. In Proceedings of the 12th International Con-
ference on Evaluation and Assessment in Software Engineering. Swindon, UK:
BCS Learning & Development Ltd. EASE’08, 68–77.

Petersen, K., Vakkalanka, S. & Kuzniarz, L. 2015. Guidelines for conducting sys-
tematic mapping studies in software engineering: An update. Information and
Software Technology 64, 1 - 18. doi:10.1016/j.infsof.2015.03.007.

Prior, J. R. 2014. AsseSQL: An online, browser-based SQL skills assessment tool.
In Proceedings of the 2014 ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE). New York, NY, USA: ACM, 327–327.
doi:10.1145/2591708.2602682.

Randolph, G. B. 2003. The forest and the trees: Using Oracle and SQL Server
together to teach ANSI-standard SQL. In Proceedings of the 4th ACM Con-
ference on Information Technology Curriculum (CITC). New York, NY, USA:
ACM, 234–236. doi:10.1145/947121.947174.

Reilly, C. F. 2018. Experience with active learning and formative feedback for a
SQL unit. In 2018 IEEE Frontiers in Education Conference (FIE). IEEE. doi:10.
1109/fie.2018.8659173.

Reisner, P. 1977. Use of psychological experimentation as an aid to development
of a query language. IEEE Transactions on Software Engineering SE-3 (3), 218–
229. doi:10.1109/tse.1977.231131.

39

Reisner, P. 1988. Query languages. In M. Helander (Ed.) Handbook of Human-
Computer Interaction. New York: Elsevier, 257–280.

Reisner, P. 1981. Human factors studies of database query languages: A survey
and assessment. ACM Computing Surveys 13 (1), 13–31. doi:10.1145/356835.
356837.

Robb, D. A., Bowen, P. L., Borthick, A. F. & Rohde, F. H. 2012. Improving new
users’ query performance. Journal of Data and Information Quality 3 (4), 1–
22. doi:10.1145/2348828.2348829. 〈URL:https://doi.org/10.1145\%2F2348828.
2348829〉.

Siau, K. L., Chan, H. C. & Wei, K. K. 2004. Effects of query complexity and learn-
ing on novice user query performance with conceptual and logical database
interfaces. IEEE Trans. Syst., Man, and Cybernetics - Part A: Syst. and Hum. 34
(2), 276–281. doi:10.1109/TSMCA.2003.820581.

Smelcer, J. B. 1995. User errors in database query composition. International Jour-
nal of Human-Computer Studies 42 (4), 353–381. doi:10.1006/ijhc.1995.1017.

Smith, R. & Rixner, S. 2019. The error landscape: Characterizing the mistakes
of novice programmers. In Proceedings of the 50th ACM Technical Sympo-
sium on Computer Science Education - SIGCSE '19. ACM Press. doi:10.1145/
3287324.3287394.

Sundin, L. & Cutts, Q. 2019. Is it feasible to teach query programming in three
different languages in a single session?: A study on a pattern-oriented tutorial
and cheat sheets. In Proceedings of the 1st ACM UK & Ireland Computing
Education Research Conference. New York, NY, USA: ACM. UKICER, 7:1–7:7.
doi:10.1145/3351287.3351293.

Topi, H., Kaiser, K. M., Sipior, J. C., Valacich, J. S., Nunamaker, Jr., J. F., de Vreede,
G. J. & Wright, R. 2010. Curriculum Guidelines for Undergraduate Degree
Programs in Information Systems. 〈URL:https://dl.acm.org/citation.cfm?id=
2593310〉.

Wagner, P. J., Shoop, E. & Carlis, J. V. 2003. Using scientific data to teach a database
systems course. In Proceedings of the 34th ACM Technical Symposium on
Computer Science Education (SIGCSE). New York, NY, USA: ACM, 224–228.
doi:10.1145/611892.611975.

Watson, H. J. & Hoffer, J. A. 2003. Teradata university network: A new resource
for teaching large data bases and their applications. Communications of the
Association for Information Systems 12. doi:10.17705/1cais.01209.

Watson, R. T. 2006. The essential skills of data modeling. Journal of Informa-
tion Systems Education 17 (1), 39-42. 〈URL:http://jise.org/Volume17/n1/
JISEv17n1p39.pdf〉.

40

Welty, C. 1985. Correcting user errors in SQL. International Journal of Man-
Machine Studies 22 (4), 463–477. doi:10.1016/s0020-7373(85)80051-1.

Wieringa, R., Maiden, N., Mead, N. & Rolland, C. 2005. Requirements engineer-
ing paper classification and evaluation criteria: a proposal and a discussion.
Requirements Engineering 11 (1), 102–107. doi:10.1007/s00766-005-0021-6.

Wilson, R. C., Shenhav, A., Straccia, M. & Cohen, J. D. 2019. The eighty five
percent rule for optimal learning. Nature Communications 10 (1), 4646. doi:
10.1038/s41467-019-12552-4.

Yue, K.-B. 2013. Using a semi-realistic database to support a database course.
Journal of Information Systems Education 24 (4), 327-336. 〈URL:http://jise.
org/Volume24/n4/JISEv24n4p327.pdf〉.

ORIGINAL PAPERS

PI

SQL EDUCATION: A SYSTEMATIC MAPPING STUDY AND
FUTURE RESEARCH AGENDA

by

Toni Taipalus and Ville Seppänen 2020

ACM Transactions on Computing Education, 20(3), Article 20

Reproduced with kind permission of the ACM.

SQL education: A systematic mapping study and future research agenda

TONI TAIPALUS and VILLE SEPPÄNEN∗, University of Jyvaskyla, Finland

Structured Query Language (SQL) skills are crucial in software engineering and computer science. However, teaching SQL effectively

requires both pedagogical skill and considerable knowledge of the language. Educators and scholars have proposed numerous

considerations for the betterment of SQL education, yet these considerations may be too numerous and scattered among different fora

for educators to find and internalize, as no systematic mappings or literature reviews regarding SQL education have been conducted.

The two main goals of this mapping study are to provide an overview of educational SQL research topics, research types and publication

fora, and to collect and propagate SQL teaching practices for educators to utilize. Additionally, we present a short future research

agenda based on insights from the mapping process. We conducted a systematic mapping study complemented by snowballing

techniques to identify applicable primary studies. We classified the primary studies according to research type, and utilized directed

content analysis to classify the primary studies by their topic. Out of our selected 89 primary studies, we identified six recurring topics:

(i) student errors in query formulation; (ii) characteristics and presentation of the exercise database; (iii) specific and (iv) non-specific

teaching approach suggestions; (v) patterns and visualization; and (vi) easing teacher workload. We list 66 teaching approaches the

primary studies argued for (and in some cases against). For researchers, we provide a systematic map of educational SQL research, and

future research agenda. For educators, we present an aggregated body of knowledge on teaching practices in SQL education over a

time frame of 30 years. In conclusion, we suggest that replication studies, studies on advanced SQL concepts, and studies on aspects

other than data retrieval are needed to further educational SQL research.

CCS Concepts: • Information systems→Query languages; • Social and professional topics→ Computing education; Com-

puter science education; Software engineering education.

Additional Key Words and Phrases: Structured Query Language (SQL), education, database, query language, student

ACM Reference Format:

Toni Taipalus and Ville Seppänen. 20xx. SQL education: A systematic mapping study and future research agenda. 1, 1 (May 20xx),

31 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Among the core topics in software engineering, computer science, and information systems curricula in higher education

are databases and Structured Query Language (SQL) [62, 103, 105]. Since SQL is prevalent in database systems, SQL

skills are also valued in the software industry, and consequently, teaching SQL effectively is essential in training future

software professionals. However, teaching databases requires considerable subject knowledge in addition to pedagogical

skill [102]. Additionally, there are several approaches to teaching SQL, and especially for an inexperienced database

course teacher, differentiating between patterns (i.e., an effective teaching approach) and anti-patterns (i.e., what merely

looks like an effective teaching approach) is difficult [89].

Authors’ address: Toni Taipalus, toni.taipalus@jyu.fi; Ville Seppänen, ville.r.seppanen@jyu.fi, University of Jyvaskyla, Faculty of Information Technology,

Agora, P.O. Box 35, Jyvaskyla, Finland, FI-40014.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 20xx Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Taipalus and Seppänen

Over the years of teaching SQL, we have come across numerous teaching practices proposed in scientific literature.

Yet, these numerous studies may be overly onerous for educators to find and internalize, even superficially. Furthermore,

it may not be clear whether a proposed teaching approach has been supported or contested by other scholars, as there

are no systematic mapping studies or literature reviews regarding SQL education. To that end, and inspired by the

propagation of ideas proposed by Bort et al. [13], we collected 66 teaching approaches from 89 primary studies over the

course of 30 years with respective arguments for and against for educators to utilize. For researchers, we present a

systematic mapping of SQL education with classifications regarding both the nature and the topic of the studies. Finally,

based on the mapping, we present considerations for future research on what to study and how to study SQL education.

The rest of this study is structured as follows. In Section 2 we discuss the background of this study, i.e., SQL and

its role in higher education. In Section 3 we describe the systematic mapping process, the research type and topic

classifications, and threats to validity. In Sections 4 and 5 we present the results of our study, i.e., the systematic mapping

and the lists of teaching practices, respectively. In Section 6 we discuss our results, and in Section 7 present the future

research agenda. Finally, in Section 8 we conclude the study. In Appendices A, B, and C, we present the list of primary

studies, a more detailed primary study classifications, and a list of the number of participants in each primary study,

respectively.

2 BACKGROUND

2.1 SQL

The evolution of SQL (formerly SEQUEL, or Structured English Query Language [29, 30]) from the theoretical foundations

of relationally complete query languages [38] to what SQL is today has been driven by both standardization, and

vendors behind database management systems (DBMSs). The first available implementations of SQL were introduced in

the late 1970s and early 1980s, and the first SQL standard, SQL-86 in 1986 by the standard groups ANSI and ISO [28].

Since SQL-86, the standard has received eight revisions, SQL:2016 being the latest. Each revision has added additional

and alternative features. Despite its age, SQL remains the de facto query language in relational database management

systems.

The SQL language features in the SQL standard are divided into mandatory (i.e., core) and optional features, and

DBMSs implement both mandatory and optional features to varying degrees. Additionally, DBMSs may implement

features differently to how they are described in the SQL standard, and most DBMSs have additional, vendor specific

features [87]. Finally, SQL standard conformance testing of SQL implementations by the U.S. National Institute of

Standards and Technology (NIST) has been discontinued in 1996, and a feature being mandatory is not a guarantee for

a feature’s implementation. Despite all these points, at least basic SQL statements remain portable with little or no

modifications between DBMSs.

SQL is a versatile language, and allows users to retrieve, store, modify and delete data, create, modify and delete

database objects (e.g, tables, columns, procedures, users), grant and revoke user privileges, and group statements

into transactions. An SQL command is called a statement, and a statement which retrieves data from the database a

query. SQL statements consist of clauses (e.g., SELECT, FROM, WHERE), which mainly contain database object names,

predicates (e.g., LIKE, BETWEEN, EXISTS), operators (e.g., AND, OR, NOT), quantifiers (e.g., ANY, ALL, UNION), and

functions (e.g, COUNT, SUM, AVG) [59, 60]. We call these collectively concepts, when it is not necessary to differentiate

between, for example, clauses and predicates.

Manuscript submitted to ACM

SQL education 3

SQL is commonly divided into at least two sublanguages, Data Manipulation Language (DML, e.g., SELECT, INSERT,

UPDATE, DELETE) and Data Definition Language (DDL, e.g, CREATE, ALTER, DROP) [28, 60]. Additionally, as the

revisions of the SQL standard have introduced more features, two more sublanguages, Data Control Language (DCL,

e.g., GRANT, REVOKE) and Transaction Control Language (TCL or TxCL, e.g., BEGIN, COMMIT, ROLLBACK), are

sometimes discussed in literature. The origins of the sublanguage names DCL and TCL remain unclear, as these names

are not explicitly mentioned in the SQL standard. Nevertheless, we have found this division into four sublanguages

helpful and rather intuitive, and utilize it in this study.

2.2 SQL in Higher Education

SQL teaching in higher education is both long-lived and widespread. In the information technology subfields, SQL

is explicitly mentioned in software engineering (SE) [103], computer science (CS) [62], and information systems (IS)

undergraduate curricula guidelines [105], and additionally in areas such as business analytics [113]. These three

information technology curricula guidelines expectedly overlap [64], and recommend SQL education on a relatively

high level. SE guidelines recommend DML, DDL, and indexes, views, sequences, joins, and triggers in the context

of database design. IS guidelines recommend DML, DDL, DCL, and transactions. CS guidelines provide the finest

level of detail among the three, and recommend DDL, primary and foreign key attribute and schema definition, query

formulation, UPDATE, integrity constraints, selection, projection, aggregate functions, GROUP BY, subqueries, division,

stored procedures, and transaction control.

As these guidelines are merely guidelines, and presented at a high level, it is unclear how comprehensively and in

depth SQL is covered in courses. Our impression, based on the primary studies and our teaching experience, is that

basic DML is commonly discussed. Basic DML includes SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY,

INSERT INTO, VALUES, UPDATE and DELETE clauses, different types of joins, including the different variations of

JOIN, certain predicates like IN, EXISTS, LIKE, BETWEEN, and IS NULL, and standard SQL aggregate functions MIN,

MAX, AVG, SUM, and COUNT. However, advanced concepts like recursion, common table expressions, or derived tables

are seldom included. It is unclear whether these advanced features are not widely known to educators and curricula

designers, or have they been omitted from course contents by design. Basic DDL is commonly discussed, and includes

CREATE, ALTER, and DROP statements on tables, views, and users (i.e., roles). Table creation includes column name

and data type definitions, primary and foreign keys, and the CHECK constraint. However, more advanced concepts

such as assertion, trigger, and procedure manipulations are rare. DCL is discussed to a lesser extent than DML and DCL,

even though this sublanguage is relatively small and simple. If TCL is included in a course, it is often discussed with

examples outside SQL, such as simple read(a), write(b) [e.g., 39, p. 669ff.], even though transactions are often defined

using SQL. After SQL, database education may focus on non-relational extensions [107], other data models, and data

analytics [109].

2.3 Learning Context

In the aforementioned information technology curricula guidelines, SQL is not taught in isolation, but as a part of a

database course. Before learning SQL, students need to know, at the very least, about the relational data model, and

possibly the theoretical foundations of relational query languages. Nowadays, students learn SQL in digital, interactive

environments using an exercise database [23]. This kind of environment can simply be a DBMS to which a student

submits queries and receives output.

Manuscript submitted to ACM

4 Taipalus and Seppänen

Alternatively, the environment may be a DBMS’s SQL interface embedded in a web page, and the web page fitted with

auxiliary elements, for example, a representation of the underlying database schema, a natural language request (i.e.,

data demand) to which a students must write an SQL equivalent, and the correct result table [101]. The database may

be represented at the conceptual level as an Entity–Relationship (ER) diagram [37], or at the logical level as a database

schema diagram [43]. For both levels, numerous additional or alternative notations can be utilized, for example, Unified

Modeling Language class diagrams, enhanced/extended ER, and Logical Data Structures. When a student submits a

query, the DBMS outputs either a result table, or an error message. Commonly, SQL errors have been divided into

syntax and semantic errors [95]. More recently, research has identified the concept of complications, for example,

tautologies and unnecessary elements in queries, which do not affect the result table but performance and readability

[17]. Furthermore, semantic errors have been further divided into errors which are evident without knowledge of the

underlying data demand, and errors which are only recognizable if the data demand is known [17]. The former kind of

semantic errors are called semantic, and the latter logical [101].

Finally, more advanced environments may be used [19, 20]. These environments provide different additional features,

for example, non-binary grading of queries [1], personalized feedback [77], and visualized query execution [49]. These

more advanced environments are outside the scope this study.

3 RESEARCH METHOD

3.1 ResearchQuestions

We divided our research questions into two categories. Research questions 1 and 2 are closely related to typical outcomes

of the systematic mapping process in software engineering [83], and research question 3 and 4 related to the proposed

SQL teaching practices, and to the nature of the proposing studies:

RQ1: In which fora is SQL education research published? There are no publication fora which are specifically

focused on SQL education, or even SQL in general. However, both computing education and database

research fora in general are plentiful. Answers are presented in Section 4.1.

RQ2: What types of research are represented and to what extent? Educational research is diverse by nature,

and while some studies test clearly formulated hypotheses, others report opinions and experiences. We

want to understand the SQL education landscape to identify potential dearths in research. Answers are

presented in Section 4.2 and Appendix B.

RQ3: Which practices have been proposed for teaching SQL? In addition to lectures, textbooks, and practical

exercises, studies have identified and proposed practices (e.g., new tools, teaching methods, or increased

emphasis on specific topics) to more effectively teach SQL. Answers are presented in Section 5.

RQ4: What kind of evidence is presented to support the proposed practices? Whereas some SQL education

studies report practices as results, others merely suggest different practices in their respective discussion

sections. We want to differentiate between educated opinions and scientifically supported (or contested)

propositions. Answers are presented in Section 5 and Appendix C.

3.2 Search Strategy

We searched four digital libraries without applying date or publication type restrictions: ACMDigital Library, IEEExplore,

ISI Web of Science, and Scopus, which include arguably the most recognized computing science education research

fora such as ACM Transactions on Computing Education, Computer Science Education, and the SIGCSE and ITiCSE

Manuscript submitted to ACM

SQL education 5

Table 1. Search strings

Database Search string

ACM DL ("structured query language" OR SQL) AND (education OR teaching OR student OR students OR
learning)

IEEExplore (("structured query language" OR SQL) AND (education OR teaching OR student OR students OR
learning))

Web of Science TS=(("structured query language" OR SQL) AND (education OR teaching OR student OR students
OR learning))

Scopus TITLE-ABS-KEY(("structured query language" OR SQL) AND (education OR teaching OR student
OR students OR learning))

AIS eLibrary (SQL OR "structured query language")
JISE SQL

conferences. Due to the pervasive nature of SQL in the information and communication technology (ICT) field, we also

searched two information systems focused databases: AIS eLibrary and the database of Journal of Information Systems

Education (JISE). Search strings are presented in Table 1.

The database searches yielded a total of 2,709 studies, 414 from ACM Digital Library, 646 from IEEExplore, 228

from Web of Science, 1,361 from Scopus, 46 from AIS eLibrary, and 14 from JISE. Additionally, we had 16 papers

[4–6, 16, 17, 25, 40–42, 70, 71, 94, 98, 100, 101, 121] which we knew well enough to deem them suitable for closer criteria

evaluation (cf. Table 2). The AIS eLibrary search was limited to peer-reviewed repositories. Both the AIS eLibrary and

JISE search strings were more inclusive than the others due to the relative small size of the databases, although the

former is only small if limited to peer-reviewed repositories. Google Scholar was considered, but a preliminary search

returned too many results to inspect in a feasible timeframe.

The study selection process is illustrated in Fig. 1. The rectangles labeled A1 and A2 indicate the authors who

performed the corresponding step. We performed backward snowballing (i.e., following reference lists to find relevant

studies) [114] twice. Both authors studied the papers independently, and marked them both according to the research

type facet classification (Table 3), and whether the paper should be included or excluded and why. We then compared

our notes. In case of disagreement, we discussed until we reached a consensus on whether to include or exclude a paper,

and how to classify the paper according to the research type facets. The comparison and discussion step was performed

twice, and 89 primary studies were selected.

3.3 Study Selection

The searches yielded many papers concerning machine learning, SQL injection, and SQL learning environments.

These papers were excluded because different learning environments were outside the scope of this study, learning in

machine learning is not related closely enough to human learning in the context of this study, and education regarding

SQL injection is more concerned with the design of the application program rather than SQL. To a lesser extent, the

searches returned papers concerned with procedural extensions of SQL (e.g., T-SQL and PL/SQL), query optimization,

NoSQL, data warehousing, and web development, all of which were excluded. We were relatively unanimous in

our study inclusion/exclusion discussions, yet one study [106] was particularly difficult. The study explores the

effects of task complexity and time limitations on query writing, and gives every implication that the query language

Manuscript submitted to ACM

6 Taipalus and Seppänen

Duplicate removal,
selection based on

title, E1, E2

Selection based on
abstract,

E3, E4, E5, E6

Selection based on
full-text reading,
E4, E5, E6, E7

Backward
snowballing

Comparison and
discussion

Known works and
database search

n = 2,725 n = 242 (-2,483)

n = 109 (-133)

n = 83 (-26)n = 99 (+16)
Backward

snowballing

Comparison and
discussion

n = 102 (+3)

n = 95 (-7) n = 89 (-6)

A1 A1 A1 A2

A1 A2A1A1

A1 A2 A1 A2

Fig. 1. Study selection process - A1 and A2 refer to the authors, E refers to an exclusion criterion described in Table 2, and n indicates

the number of included papers

Table 2. Inclusion (I) and exclusion (E) criteria

ID Criterion Example studies

I1 present considerations on teaching or learning SQL
I2 published online during the time frame 1989 to Sep. 2019

E1 published in non-peer reviewed forum [48]
E2 not written in English
E3 full text we could not find or download [36, 68, 85, 120, 123]
E4 do not mention SQL, or SQL is merely an example or a vehicle [9, 11, 27, 55, 67, 92, 93, 96, 111]
E5 concerned with SQL alternatives rather than teaching SQL [22, 26, 31, 33, 35, 81]
E6 focus on describing an SQL learning environment [2, 19, 20, 76, 78, 82, 86]
E7 lack sufficient detail to suggest a detailed teaching approach [3, 52, 57, 69, 79, 116–118, 122]

under study is indeed SQL. However, SQL is not mentioned in the paper, with the exception of a table summarizing

prior work. The study was not included, along with several other borderline exclusions [7, 11, 19, 20, 23, 27, 31–

33, 45, 46, 50, 52, 55, 61, 63, 73, 79, 93, 97, 104]. Finally, we recognize that it is increasingly common for ICT research

to report implications for research, industry, and teaching. It follows that there are most likely papers that report

implications to SQL education, but were not found by our search criteria. As indications for finding these implications

are not often found in abstracts, reading, for example, all relational database related research was not feasible, and not

done in this study.

Inclusion (I1–I2) and exclusion (E1–E7) criteria are presented in Table 2. We decided to exclude papers published

before 1989. Although this year marked the publication of the first revision to the SQL standard, SQL-89, this was not

an educated choice as much as conveniently including 30 years of SQL education research.

Manuscript submitted to ACM

SQL education 7

3.4 Data Extraction

We extracted basic reference information from the database searches: names of the authors, title, publication year, name

of the publication forum, and issue number, volume, and page numbers, where applicable. Once the primary studies

were selected, we classified each paper according to the research type and research topic facets. We also marked why a

paper was excluded according to our predefined exclusion criteria, the number of citations from Google Scholar, and

the number of participants in each study.

3.5 Classification

Wieringa et al. [112] propose six classes (or research type facets, as Petersen et al. [83] summarize) for requirements

engineering papers. As we began categorizing our primary studies according to these facets, it became clear that

they are not a natural fit with educational research papers. Two particularly problematic classes were validation and

evaluation research. To summarize Wieringa et al. [112], validation research in requirements engineering is effectively

prototyping, simulation, and experiments (i.e., in vitro), whereas evaluation research is effectively case study, field

study, or survey (i.e., in vivo). In educational research, the dividing line between in vitro and in vivo is more difficult to

determine. If in vivo studies are concerned with students in their natural learning environments, how much restriction

(e.g., limiting the time to complete an exercise, forbidding communication or use of online materials) constitutes in

making the research setting in vitro? Rather than trying to estimate how natural the research settings of the primary

studies were, we adapted the research type facet classification to better fit educational research (Table 3).

As Wieringa et al. [112] point out, it is possible that one study covers more than one research type facet. For example,

Taipalus et al. [101] present a query concept framework based on their teaching experience, an error categorization

framework based on a qualitative study, and opinions on how SQL should be taught. By these three aspects, their study

could be classified as a philosophical paper, evaluation research, or an opinion paper. We classified each primary study

according to what we perceived as their primary contribution. As discussed in Wohlin et al. [115], these classifications

merely represent an overview of the type of research in a given mapping.

After the final 89 primary studies were selected, the first author classified the studies into categories according to

their topics. This was done based on full text reading, and according to directed content analysis [56] with the utilization

of prior knowledge on SQL education research categories. Using preconceived topic categories, the first author classified

each primary study into a category. If a study was concerned with a topic which did not fit to any category, a new

category was considered. Topic categories are reported in Section 4.2, and this category scheme is used to structure

Section 5, in which we report the teaching approaches in more detail.

3.6 Threats to Validity

3.6.1 Descriptive Validity. Descriptive validity concerns the objectivity and accuracy of the data gathering. We utilized

a data collection form described in Section 3.4 to increase the objectivity and accuracy of the classification and study

selection. Both authors used the same form when selecting the studies and classifying the research type.

3.6.2 Theoretical Validity. Theoretical validity concerns the selection and classification of the data. We tried to minimize

the possibility of missing relevant studies by searching several databases, and by performing backward snowballing

twice (Fig. 1). The first snowballing yielded 16 additional studies, and the second 3, yet after closer inspection, not all

these studies were included in the final selection. As Petersen et al. [84] point out, researcher bias is a known threat to

validity in the study selection phase. We tried to mitigate this by performing research type classification and applying

Manuscript submitted to ACM

8 Taipalus and Seppänen

Table 3. Research type facet in educational research (adapted from Wieringa et al. [112] and Petersen et al. [83])

Category Description

Evaluation research Hypotheses are tested on (or phenomena studied among) their natural target populations, and preferably in
as natural environments as possible. This means that if the hypotheses are concerned with evaluating a
new method for teaching students, the natural target is a student or a novice in a given technique (e.g., a
language), and the most natural testing environment should be the environment the students would be using
regardless of the research setting. This is not always possible, and varying degrees of unnatural elements
must often be included. Sufficient quantifiable evidence is presented.

Solution proposal Paper presents a new or significantly improved solution for a common and recognized problem. The
topic may be related to concepts that are difficult for students to learn, teacher’s workload, or curriculum
improvement. Solid arguments for (and preferably against) the proposal are presented.

Replication study Paper replicates a previously reported research setting as accurately as possible, or with premeditated
alterations (e.g., a different teacher, students who major in a different subject, or undergraduate instead
of graduate students). The goal of the study is to check the validity of the previous study, or to study
generalizability of the results. Sufficient quantifiable evidence is presented.

Philosophical paper Paper presents a new conceptual framework, taxonomy, general teaching approach, new, improved or
adapted research method, or simply summarizes existing work in a form of systematic literature review or
systematic mapping. Depending on the type of philosophical paper, the paper may utilize existing literature,
or be based on professional opinions or experiences.

Opinion paper Paper expresses opinions of the author or a third party. These opinions may be concerned with, for example,
whether something should be taught, how it should be taught, or to whom it should be taught. Typically no
scientific evidence is presented.

Experience report Paper describes how something was done, for example, a course or a curriculum implementation. The new
setting should be described in sufficient detail, so that others may replicate it. Paper should report what
worked and what did not.

exclusion criteria E3–E7 independently, and comparing results afterwards. Topic classification (Section 4.2) was done

solely by the first author, and is the main threat to validity in this regard.

3.6.3 Interpretive Validity. Interpretive validity concerns researchers’ biases in the interpretation of the data. The first

author is an author of several selected primary studies, which may induce bias in interpretation. The second author,

however, is not, and there were no disagreements on whether to include or exclude those studies. The first author’s

experience in educational research concerning SQL was also considered helpful in the study selection and classification

processes, although this may have biased the interpretation of primary study results.

3.6.4 Repeatability and Generalizability. In order to increase the repeatability of our results, we followed systematic

mapping guidelines proposed in Petersen et al. [83] and complemented later in Petersen et al. [84]. We also reported

threats to validity, and how we tried to mitigate them. However, study selection and classification involve human

judgment, and another group of researchers might select at least slightly different set of primary studies.

4 PUBLICATIONS

4.1 Publication Fora

Out of the 89 primary studies, 38 (43%) were journal articles published in 18 different journals. 50 (56%) studies were

presented in 31 different conferences, and one primary study was a workshop paper. As can be observed in Table 4,

the studies subject to this mapping study have been published in various journals and conference proceedings, and

Manuscript submitted to ACM

SQL education 9

searching teaching approach proposals should not be limited to merely educational fora. Appendix A lists the primary

studies and their corresponding identifiers.

Publication fora and citations among primary studies are illustrated in Fig. 2. We have clustered the primary studies

according to the journal (JISE, JCSC) or the organization (ACM, IEEE, Elsevier, and top IS) the forum is associated

with. In addition to the AIS senior scholars’ basket of journals1 in IS, the top IS cluster contains primary studies from

associated fora (CAIS and ICIS) with the exception of JISE, which formed a large enough cluster on its own. The color

of an edge corresponds to the citing publication, for example, a blue edge between a red and a blue node indicates that

the blue node is citing the red. Alternatively, a clockwise curving edge from node x to node y indicates that x cites y.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

2829

30

31

32

33

34

35
36

37

38

39

40

41

42

43

44 45

46

47

48

49

50

51

52
53

54

55

56

5758

59

60
61

62
63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78 79

80

81

82

83
84

85

8687

89
88

Fig. 2. Publication fora clusters and citations among primary studies - studies published in ACM journals or conference proceedings

are clustered top right (purple), Journal of Computing Sciences in Colleges bottom right (orange), IEEE bottom center (yellow), top IS

fora top left (red), Journal of Information Systems Education top center (blue), Elsevier center (green), and other fora (gray); size of

a node represents in-degree, color of an edge corresponds to citing publication, edge curves clockwise from the citing to the cited

publication, and numbers refer to primary study IDs

With a few exceptions, the top IS studies cite each other extensively, while citing among ACM studies varies. JISE,

IEEE, Elsevier and JCSC studies cite each other relatively seldom. A small percentage of JISE studies cite top IS studies

and some ACM and Elsevier studies. Top IS studies cite some Elsevier studies, but nothing else. ACM studies cite mostly

Elsevier and JISE studies, but not IEEE or top IS studies. JISE studies cite mostly top IS, Elsevier, and ACM studies, but

1https://aisnet.org/page/SeniorScholarBasket

Manuscript submitted to ACM

10 Taipalus and Seppänen

Table 4. Number of primary studies published in each forum

Forum name Type #

Journal of Information Systems Education (JISE) Journal 12
ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE) Conference 6
ACM Technical Symposium on Computer Science Education (SIGCSE) Conference 6
IEEE Frontiers in Education Conference (FIE) Conference 4
Journal of Computing Sciences in Colleges (JCSC) Journal 4
ACM Conference on Information Technology Education (SIGITE) Conference 3
British National Conference on Databases (BNCOD) Conference 3
Intl. Journal of Human-Computer Studies (IJHCS)* Journal 3
ACM Conference on Management of Data (SIGMOD) Conference 2
Information Systems Research (ISR) Journal 2
Intl. Conference on Information Systems (ICIS) Conference 2
Intl. Journal of Engineering Education Journal 2
Journal of the Association for Information Systems (JAIS) Journal 2
MIS Quarterly Journal 2
ACM Annual Southeast Regional Conference (ACM-SE) Conference 1
ACM Conference on Computer Personnel Research (SIGCPR) Conference 1
ACM Conference on Extending Database Technology (EDBT) Conference 1
ACM Conference on Information Technology Curriculum (CITC) Conference 1
ACM Transactions on Computing Education (TOCE) Journal 1
Annual Meeting of the Decision Sciences Institute Conference 1
ASEE Annual Conference and Exposition Conference 1
Communications of the Association for Information Systems (CAIS) Journal 1
Computers & Education Journal 1
Decision Support Systems Journal 1
IEEE Annual Computer Software and Applications Conference (COMPSAC) Conference 1
IEEE Conference on Industrial Electronics and Applications (ICIEA) Conference 1
IEEE Global Engineering Education Conference (EDUCON) Conference 1
IEEE Integrated STEM Education Conference (ISEC) Conference 1
IEEE Intl. Conference on Data Engineering (ICDE) Conference 1
IEEE Intl. Conference on Information Systems and Economic Intelligence (SIIE) Conference 1
IEEE Intl. Conference on Intelligent Computer Communication and Processing (ICCP) Conference 1
IEEE Intl. Conference on Networked Computing and Advanced Information Management (NCM) Conference 1
IEEE Intl. Conference on Scalable Computing and Communications (ScalCom) Conference 1
IEEE Transactions on Education (TOE) Journal 1
IEEE Transactions on Software Engineering (TOSE) Journal 1
Information Systems Education Conference (ISECON) Conference 1
Intl. Conference on Cognition and Exploratory Learning in Digital Age (CELDA) Conference 1
Intl. Conference on Computer Supported Education (CSEDU) Conference 1
Intl. Conference on Interactive, Collaborative and Blended Learning (ICBL) Conference 1
Intl. Conference on Web-Based Learning (ICWL) Conference 1
Intl. Conference on Very Large Data Bases (VLDB Conference) Conference 1
Intl. Convention on Information, Communication and Electronic Technology (MIPRO) Conference 1
Intl. Journal of Learning, Teaching and Educational Research (IJLTER) Journal 1
Intl. Journal on Very Large Data Bases (VLDB) Journal 1
Intl. Scientific Conference Computer Science Conference 1
Intl. Workshop on Teaching, Learning and Assessment of Databases (TLAD) Workshop 1
Journal of Management Information Systems (JMIS) Journal 1
Journal of Systems and Software Journal 1
Journal on Systemics, Cybernetics and Informatics (JSCI) Journal 1
UK & Ireland Computing Education Research Conference (UKICER) Conference 1
Total 89

* Formerly Intl. Journal of Man-Machine Studies

Manuscript submitted to ACM

SQL education 11

not IEEE studies. IEEE studies cite some ACM studies, but nothing else. Two of the JCSC studies cite a total of three

ACM studies. Some Elsevier studies cite some top IS studies. Publications per year are presented in Fig. 3.

The graph in Fig. 2 can be considered an indication of potentially untapped relevant primary research between

clusters, yet it should be interpreted with caution. First, the edges only represent citations among primary studies, and

are not an indication of how many citations a study has received (which, in itself, is not an indication of, for example,

quality of a study). Second, the age of a study has a natural effect on the number of citations. The number of citations

overall are presented in Table 5, to give an indication of the most commonly cited primary studies in SQL education. It

is worth noting that even though a primary study is not cited among the selected primary studies, it may have received

scientific attention outside these primary studies, as is the case with, for example, PS75. Finally, all SQL related research

is not, intuitively, relevant to each other, but the graph propounds the view that researchers are studying similar aspects

of SQL education without knowledge of each other. We give examples that support this argument in Section 7.3.

0

2

4

6

8

10

1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
EV SO RE PH OP EX

Fig. 3. Number of publications per year, and research type facets: evaluation research (EV), solution proposal (SO), replication study

(RE, none present), philosophical paper (PH), opinion paper (OP), and experience report (EX)

4.2 Classification

We presented our adapted research type facet classifications in Table 3. Additionally, we classified the primary studies

according to their topics, which we next describe briefly, and in detail in Section 5. It is worth noting that the categories

overlap, and that a number of studies were candidates to more than one category. The names and descriptions of

the categories are based on full-text reading of the primary studies, and constructed using directed content analysis

[56]. The summary of primary study distribution between these two classifications is presented in Fig. 4, and detailed

classification in Appendix B.

Studies concerning student errors (11 papers): these studies are concerned with presenting what kind of errors students

commit during their query formulation processes, what types of errors students usually cannot fix, possible reasons

why query formulation fails, and how to teach SQL in a DBMS or context independent viewpoint. Understanding what

are the most common errors and what causes them is a crucial step in demonstrating and mitigating these errors in

teaching. Most of these studies are evaluative in nature.

Manuscript submitted to ACM

12 Taipalus and Seppänen

Table 5. Primary studies, number of citations from Google Scholar in Sep. 2019, and citations divided by publication age in full years -

PS09 was not indexed by Google Scholar

ID citations citations/y ID citations citations/y ID citations citations/y

PS75 70 14 PS76 6 1.2 PS62 2 0.3
PS02 22 5.5 PS45 11 1.1 PS82 1 0.3
PS18 70 5 PS69 18 1.1 PS27 4 0.2
PS08 43 4.3 PS70 17 1.1 PS29 2 0.2
PS30 39 4.3 PS01 4 1 PS38 3 0.2
PS07 59 4.2 PS57 1 1 PS48 1 0.2
PS24 113 4.2 PS81 17 1 PS55 3 0.2
PS16 58 4.1 PS84 15 0.9 PS61 3 0.2
PS17 38 3.8 PS15 13 0.8 PS63 3 0.2
PS25 19 3.8 PS19 10 0.8 PS65 1 0.2
PS73 15 3.8 PS31 22 0.7 PS67 3 0.2
PS03 13 2.6 PS52 2 0.7 PS87 2 0.2
PS12 13 2.6 PS53 5 0.7 PS32 2 0.1
PS86 71 2.6 PS36 5 0.6 PS37 1 0.1
PS04 10 2.5 PS46 5 0.6 PS72 4 0.1
PS80 5 2.5 PS49 7 0.6 PS21 0 0
PS33 12 2.4 PS83 11 0.6 PS42 0 0
PS64 38 2.4 PS06 5 0.5 PS44 0 0
PS14 44 2.3 PS13 1 0.5 PS47 0 0
PS26 9 2.3 PS66 1 0.5 PS58 0 0
PS50 33 2.2 PS88 3 0.5 PS59 0 0
PS23 44 2.1 PS11 8 0.4 PS68 0 0
PS22 17 1.9 PS28 5 0.4 PS77 0 0
PS10 32 1.8 PS41 5 0.4 PS78 0 0
PS74 36 1.4 PS54 8 0.4 PS79 0 0
PS20 9 1.3 PS56 7 0.4 PS85 0 0
PS34 31 1.3 PS71 2 0.4 PS89 0 0
PS39 6 1.2 PS35 2 0.3 PS05 0 0
PS51 29 1.2 PS40 5 0.3 PS09 – –
PS60 14 1.2 PS43 4 0.3

Studies concerning the exercise database and elements closely related to it (20 papers): these studies evaluate, report

experiences, and present opinions and solutions in regard to what kind of an exercise database is efficient in facilitating

SQL learning. The studies discuss how to visually present the exercise database schema to students, how to express the

data demands, what kind of database business domains should be used, how realistic the database should be in terms of

data, and whether the students should be made aware if their SQL queries are logically correct. Most of these studies

are evaluative in nature.

Studies presenting a specific teaching approach (9 papers): these studies present a teaching approach which concerns

a specific subset of SQL, for example, how relational division, outer join, or existence negation should be taught. Most

of these studies are solution proposals and opinion papers.

Studies presenting a non-specific teaching approach (22 papers): these studies discuss a more general teaching approach

which should or could be used in teaching all SQL in a given course. The studies propose, for example, group learning

and projects, how a course should be structured, and what kind of general techniques can facilitate SQL learning. Most

of these studies are experience reports.

Manuscript submitted to ACM

SQL education 13

7

14

1

3

2

1

2

2

4

3

7

12

1

1

1

3

6

1

1

3

1

10

2

1

Student errors

Exercise database

Specific teaching
approach

Non-specific teaching
approach

Patterns and
visualization

Teacher workload

Evaluation
research

Solution
proposal

Replication
study

Philosophical
paper

Opinion
paper

Experience
report

Fig. 4. Number of primary studies in each research type facet (x-axis) and topic facet (y-axis) intersection

Studies discussing patterns and visualization (12 papers): these studies mainly propose solutions on how to visualize

the query execution process to students, whether to use visual query builders to facilitate SQL learning, planning queries

before writing using a specialized notation, and utilizing steps and natural language patterns in query formulation.

Most of these studies are solution proposals, and many overlap with the previously described category.

Finally, a number of studies proposed approaches to ease teacher workload (15 papers): these studies proposed

solutions concerning, for example, automated exercise generation, automated grading and feedback, and pointed

educators to materials available online. Arguably, as the teacher workload lightens, educators can focus more on difficult

concepts regarding SQL.

5 SQL TEACHING PRACTICES

All the teaching considerations listed in this section are not actionable advice per se, but, for example, concerned with

the most common errors students commit. These insights may be utilized by the teacher to focus on certain query

concepts during lectures or in exercise design. Furthermore, these errors can be utilized in exercise database data

generation, so that at least incorrect queries with the most common logical errors return data that is different from

the correct result table. Finally, these errors may be used to guide digital learning environment development, so that

feedback for the most common errors may be generated. It is worth noting that we have applied the nomenclature

discussed in Section 2 to all the following teaching practice presentations.

Teaching considerations regarding student errors, the exercise database, specific and non-specific teaching approaches,

patterns and visualization, and teacher workload are compiled into Tables 6, 7, 8, 9, 10, and 11, respectively. The teaching

approaches are not in any particular order regarding arguments for and against. In other words, it is arbitrary whether

an approach is presented as Teach x [PS01; argued against in PS02] or Do not teach x [PS02; argued against in PS01].

Appendix C lists the number of participants in each primary study.

Manuscript submitted to ACM

14 Taipalus and Seppänen

Table 6. Teaching approaches or considerations regarding student errors

ID Teaching approach or consideration

SE1 A list of semantic errors and complications can be used to support discussion with students on bad query writing practices
[PS18]. This list is complemented with syntax and logical errors [PS80], and together give high level representation of what
kinds of errors students can commit. Both of these lists are too long to discuss here.

SE2 Self-join is the most difficult query concept overall [PS02, PS03, PS04, PS79], and these queries fail due to logical errors
[PS02], namely join errors: joins are formed with incorrect tables, columns, or comparison operators, a join is missing, or a
join is extraneous and needs to be omitted [PS79].

SE3 After self-join, the most difficult query concepts are, not in order, correlated subquery [PS03, PS04, PS79], simple one-table
query [PS04], simple subquery [PS03], grouping restrictions [PS04], uncorrelated subquery [PS79], and expressions with
nesting [PS79].

SE4 The most common errors are, in order, incorrect ordering of columns in the SELECT clause, undefined column name used,
joining incorrect columns from correct tables, unnecessary joins, extraneous tables, omitting tables, missing expression,
aliases that are always identical, extraneous GROUP BY clause and COUNT function, and incorrect ordering of clauses
[PS24].

SE5 Logical errors are the most common class of errors overall [PS79, PS80], and the most difficult class of errors to fix [PS04,
PS79]. 40% of errors students commit are semantic or logical in nature, and occur in the SELECT and WHERE clauses
[PS04].

SE6 The most frequent errors that student cannot fix are, in order, illegal or insufficient grouping, common syntax errors,
inconsistent expression, inconsistent joins, missing joins, expression errors such as missing or extraneous expressions,
or expressions in incorrect clause, and projection errors such as missing or extraneous columns in the main the SELECT
clause [PS79].

SE7 54% of errors student commit are syntactical in nature, and 69% of syntax errors are caused by typing errors [PS04].
SE8 Most frequent syntax errors are common syntax errors [PS02, PS79, PS80] and the use of undefined database objects [PS02,

PS24, PS79], although the latter type of errors are usually fixed [PS79].
SE9 The next most frequent syntax errors are, in order, grouping errors, use of aggregate functions in the GROUP BY clause,

use of undefined operators, and problems with writing expressions [PS02].
SE10 Among queries requiring the use of aggregate functions, illegal or insufficient grouping is the the most frequent type of

error [PS02, PS79], followed by the use incorrect functions, incorrect columns as function parameters, missing DISTINCT
from the function parameter, and DISTINCT as a function parameter where not applicable [PS79].

SE11 Syntax errors are the cause of failure particularly in queries involving GROUP BY and HAVING clauses, as well as NATURAL
JOIN [PS02].

SE12 In multi-table queries, the most frequent errors are, in order, inconsistent joins, missing joins, and join errors such as joins
on incorrect table or using incorrect columns [PS79].

SE13 Unnecessary complications are frequent in all queries, regardless of the query concepts required [PS79, PS80].
SE14 Errors are usually caused by short-term memory limitations, absence of a clue in the data demand, procedural fixedness, or

ignorance [PS74].
SE15 Most frequent omission errors are, in order, omitting a join clause, omitting a subquery, and omitting the HAVING clause

[PS04].
SE16 When a student attempts an exercise more than 30 times, and there is at least one error regarding aggregate function usage

in the GROUP BY or WHERE clause, it is statistically unlikely that the student can successfully formulate the correct query
[PS02].

SE17 Teach standard SQL because using merely one DBMS will confuse students what is standard and what is DBMS specific. A
practical approach to this is to choose two DBMSs to teach students [PS67].

SE18 Teach SQL as a general language that is used in modern tools (e.g., NewSQL DBMSs) as well to mitigate motivational
concerns on the relevance of the language [PS73].

Manuscript submitted to ACM

SQL education 15

Table 7. Teaching approaches or considerations regarding the exercise databases

ID Teaching approach or consideration

DB1 A list of 19 query concepts that introductory database course exercises may test, and corresponding 15 exercises with
example answers are presented [PS80]. This list is too long to be presented here.

DB2 Data demands should be formulated with as little ambiguity as possible [PS11, PS65]. A less ambiguous data demand
entails fewer attempts [PS11, PS14], more perceived confidence [argued against in PS14] and correctness [PS11], less time
spent [PS11], and less errors [PS11, PS14, PS21]. There exist at least seven types of ambiguity [PS11].

DB3 Unambiguous data demands are more and more important as data demands’ complexity increases [PS20].
DB4 With low complexity queries, less ambiguous data demands produce less query formulation errors, but with high complexity

queries, data demand ambiguity has no effect on errors [PS21, PS82].
DB5 As training progresses, students should be introduced to more and more ambiguous data demands, which better reflect

their future work environments [PS82].
DB6 When GROUP BY clause is needed, the natural language representations should (at least in early exercises) contain a clear

indication to use it [PS03].
DB7 Presenting the database as an event-based ER or state-based ER does not affect query accuracy or student confidence

[PS07], but in regard to query formulation success rates, it is better to represent a database schema rather than a list of
database contents or an ER diagram [PS31]. Furthermore, database representation semantics [PS51], symbols [PS51; argued
against in PS10], and foreign key constraint representation [PS51] all have influence on query formulation success.

DB8 The three most important factors in query formulation success rates and time needed are, in order, data model representation
realism, high expressive ease, and query complexity. Data model representation realism refers to which level the data
model is represented, and the levels are, in ascending order of realism, physical, logical, and conceptual. Expressive ease is
concerned with the language used, were it SQL, natural language, or something else [PS23].

DB9 If incongruence (i.e., how well or poorly real world constructs match their equivalents in the database) increases, success
rates fall, more time is needed, and students feel less confident [PS14]. However, best design practices (e.g., database
normalization) should not be sacrificed in order to reach more ontological clarity, as the implications for benefits are
conflicted [PS15, PS16, PS17; argued against in PS74].

DB10 Provide an interface (or a cheatsheet) that allows students to see SQL keywords and database object names to reduce
typing errors [PS05]. Consider highlighting relevant parts of the data model for each data demand [PS82].

DB11 If data demand complexity increases, success rates fall, more time is needed, and students feel less confident [PS14].
DB12 Allowing students reuse similar queries in exercises leads to faster query formulation, but results in more errors, and a

poorer relationship between confidence and query correctness [PS08].
DB13 Students should not execute queries in the same exercise database, because modifications affect others [PS44].
DB14 Use complex [PS41, PS62, PS83; argued against in PS57 because students cannot manually check problems with erroneous

queries against complex data] and low quality [PS83] exercise data because students need to gain understanding of complex
environments, and that real data contains errors and missing values. Furthermore, use databases with business domains
which are novel to the students so that students learn the importance of domain knowledge and can recognize abstract
patterns and utilize them in different domains [PS46]. More realistic databases are perceived more interesting an useful by
students [PS88].

DB15 Provide students with the correct result table [PS68, PS80; argued against in PS03 as students may use brute force to write
correct queries], or the number of rows in the correct result table [PS68]. If these are not provided, students should validate
their results by manually writing tests [PS20]. Students should understand that query evaluation against a single dataset is
not enough [PS39].

6 DISCUSSION

6.1 Patterns and Anti-patterns

Even though we listed numerous teaching approaches in the previous section, it remains unclear which approaches are

patterns and which are anti-patterns, and in which contexts. As may be observed in the previous section, we do not

differentiate between approaches based on objectively interpreted results and subjective discussion. Consequently, we

Manuscript submitted to ACM

16 Taipalus and Seppänen

Table 8. A list of teaching approaches or considerations regarding a specific teaching approach

ID Teaching approach or consideration

SA1 Teach relational division with GROUP BY and HAVING, rather than multiple existence negations. This is easier for students
to learn [PS54, PS56], and the written queries are computationally faster [PS54; the latter point is argued against in PS56].
This work is extended from teaching relational division to teaching set comparison with a general approach [PS27].

SA2 Teach OUTER JOIN according to ANSI SQL-92, i.e., with OUTER JOIN rather than UNION or derived tables. This is perceived
easiest and it is computationally faster than the alternatives [PS55].

SA3 Teach existence negation with an English-like query language before teaching the SQL equivalent [PS48].
SA4 Explain the differences in the logic of NOT EXISTS and NOT IN subqueries [PS18].
SA5 Teach strict grouping [PS21, PS80]. Effectively, this means that if the main SELECT clause contains at least one aggregate

function, and at least one grouping column, all and only the grouping columns must be included in the GROUP BY clause.
SA6 Teach integrity constraints by dividing them into five classes: dynamic, domain, tuple, relation, and database integrity

constraints [PS29].
SA7 If you use Microsoft Access to teach SQL, and want to teach recursive joins which are not supported, stored procedures can

be used to complement SQL [PS28].
SA8 Teach transaction control using real SQL examples, and not simple READ(a) andWRITE(b) that are usually found in database

textbooks [PS37].
SA9 Teaching SQL after QBE yields better results than teaching SQL first [PS86; the use of QBE is argued against in PS69 because

mental models must be changed when switching to SQL].

Table 9. Teaching approaches or considerations regarding a non-specific teaching approach

ID Teaching approach or consideration

NA1 Emphasize practical work [PS64, PS71].
NA2 Teach SQL with short online lectures [PS81].
NA3 Students should learn SQL in teams [PS01, PS09, PS34, PS41, PS53] and group projects [PS32, PS40, PS59, PS63, PS72],

and the project should be based on realistic and reported specification [PS63]. These groups should be formed based on
student skill, and the level of difficulty of the exercises set accordingly [PS38]. The online environment utilized in the
course should facilitate team forming [PS01].

NA4 Teach students how to read SQL [PS61] before writing SQL [PS19]. Furthermore, demonstrate DBMS error messages
[PS20] and erroneous queries [PS43], especially regarding difficult concepts such as ALL and NOT EXISTS [PS61]. Have
students explain why they are erroneous, and why a certain solution works [PS43, PS61, PS89].

NA5 Have students come up with analogies for SQL query concepts and predicates. This helps students understand the concepts,
and remember them longer [PS58].

NA6 Teach DDL first, then integrity constraints, and finally DML [PS32; argued against in PS85]. Teach SQL before relational
algebra [PS61], and introduce relational algebra only in the context of implementation and optimization to avoid students
confusing relational algebra with SQL [PS61]. Regarding concurrent courses, do not teach SQL at the same time with a
procedural language [PS39].

NA7 Instead of a final exam, organize intermediary assessments which can be taken after a certain number of exercises have
been passed [PS70]. This helps especially weaker students [PS70]. Giving the assessments in a digital learning environment
positively affects grades [PS01]. SQL skills should not be assessed through SQL code alone, but also with multiple choise
questions [PS13]. Brighter students’ motivation suffers if a course is not challenging enough [PS70].

NA8 Demonstrate difficult SQL concepts with animations [PS33, PS60, PS89].
NA9 Encourage students against unnecessary SQL elements, even though such omittances affect readability [PS61].
NA10 Use SQLite to teach SQL, because it is lightweight and students do not need to configure anything [PS52; argued against in

PS80].

Manuscript submitted to ACM

SQL education 17

Table 10. Teaching approaches or considerations regarding patterns and visualization

ID Teaching approach or consideration

PV1 Utilize a template to help students write more complex SQL queries [PS06, PS20, PS82]. This increases success rates [PS82],
and decreases errors in the FROM and ORDER BY clauses, but not in the GROUP BY clause [PS21].

PV2 Have students plan more complex queries to ease cognitive load [PS78]. A planning notation is introduced and described
[PS78]. As data demand complexity increases, a priori planning decreases the number of errors more and more [PS21].

PV3 Teach students how to identify certain natural language patterns (e.g., never, all, sum) and their corresponding SQL clauses,
constructs, and keywords [PS66, PS77].

PV4 Teach SQL query formulation in steps (i.e., procedurally) [PS04, PS21, PS66, PS77]. Alternatively, introduce both procedural
and set-based query formulation approaches at the start of a course. Students can choose which to use [PS65]. Procedural
approach to query formulation is more natural to students, but fails at complex queries [PS65].

PV5 Visualize query execution [PS22, PS30, PS42]. It is helpful if students can visualize the query step by step, and go forward
and backward, similar to programming language debuggers [PS22, PS42]. If possible present the query simultaneously
visually and textually [PS39].

PV6 If students are likely to never write complex SQL, alternatives such as QBE should be considered, as it is faster to utilize,
and perceived more comfortable [PS45].

Table 11. Teaching approaches or considerations regarding teacher workload

ID Teaching approach or consideration

WL1 A list of 14 small SQL course modules is presented [PS85]. The list is too long to be presented here. SQL concepts are
divided into basic, advanced, and expert level modules [PS38] These modules may be used as, for example, a structure for
short online lectures [PS81].

WL2 Learning environments that allow teachers to monitor student activity, and also allow students to give feedback to the
teacher [PS01] are available. Furthermore, large online learning environments with exercises and exercise databases are
available without fee [PS84].

WL3 Exercise database datasets can be generated automatically [PS12, PS25, PS26], and tested against expected erroneous
queries automatically [PS12]. A query should be tested against multiple datasets [PS01], and discrepancies can be used
to automatically provide feedback [PS01, PS49, PS87]. Alternatively, a query’s correctness can be evaluated using string
metrics [PS76] or XML transformations [PS39].

WL4 As an alternative to automatic exercise database generation, students may be required to create their own exercise databases
and grant appropriate privileges [PS44].

WL5 Data demands can be automatically generated based on correct SQL queries [PS47].
WL6 Utilize examinations and exercises which can be automatically graded [PS81].
WL7 Students should be given the opportunity to select themselves how complex queries they want to practice writing (query

concepts, number of tables etc.), and these exercises can be automatically generated [PS35]. Furthermore, students should
be allowed to choose a level of hints which the system suggests [PS50].

WL8 SQL taught through game based learning significantly increases student performance when compared to textbooks [PS75].

advise a level of caution when interpreting the reported teaching approaches in the previous section, and the number

of corresponding participants Appendix C.

As the nature of opinion papers and experience reports is as their names suggest, these approaches are seldom tested

in a scientific setting. As an example, Matos and Grasser [70] suggested a teaching approach for teaching relational

division which is easier for students to understand. The authors report no numbers concerning how many students

found the approach easier. However, by comparing the proposed teaching approach and the commonly used alternative,

the benefits are apparent; in addition to being computationally faster, the approach of using GROUP BY with HAVING

is arguably easier to read than multiple existence negations, at least in our opinion. In contrast, Borthick et al. [15]

Manuscript submitted to ACM

18 Taipalus and Seppänen

studied how the database normalization level affects errors committed in query writing, and found out that end-users

commit fewer errors in queries against a database adhering to the first normal form than end-users against a database

adhering to the third normal form. The hypotheses were tested with 80 undergraduate and masters level students.

Based on reported quantifiable evidence supporting the views presented in these two studies, it might be compelling

to advise the use of lower normal form databases over higher ones, and to dismiss the one regarding relational division.

Although fewer errors might be a desirable goal to strive for, lower normal forms in database education present

significant downsides. Students learn bad design practices which later need to be unlearned, the database is subject to

anomalies [38], and requires more disk space due to redundancy. Finally, it is not clear whether students should strive

for fewer errors, (although other database end-users arguably should), as errors are arguably an efficient way through

which students learn, as argued in SQL education research [54, 100] as well as broader educational contexts [74].

6.2 Natural and Unnatural Learning Environments

A recurring theme in the primary studies, regardless of the research topic, was argumentation for [5, 8, 101, 121] and

against [75, 88, 101] natural learning environments. A natural learning environment better reflects industry, i.e., students’

future work environments. Environmental traits differ between workplaces, job titles, and used technologies. For the

sake of discussion, we state that in a workplace there is no known correct result table for a query [5], the data demand

is ambiguous [24], the datasets are complex [51], and the business domain is unfamiliar [58]. In contrast, peers are often

present to offer help, use of textbooks and the internet is naturally not forbidden, and the query may be formulated

as many times as necessary in a feasible timeframe. In an unnatural learning environment, these characteristics are

reversed. The underlying arguments for natural environments are that students need to be prepared for their future

work, and the arguments against are usually that natural environments hinder the learning of SQL (e.g., perceived

confidence and success rates decrease). In teaching, these two approaches are usually mixed to varying degrees, for

example, Taipalus et al. [101] report giving students the correct result table but designing exercise database data to

contain no anomalies, yet Wagner et al. [110] report utilizing low quality data.

If the goal of SQL education is to prepare students to effectively work in their future work environments, learning

should take place in more natural environments, and there is no need to exclusively choose a natural, mixed, or unnatural

environment. SQL should first be taught in an unnatural environment [12, 14], and when the syntax and semantics are

mastered to a degree, natural elements such as data demand ambiguity may be introduced gradually [108], or a natural

environment used in the final exam. Naturally, grading team performance is more difficult to the teachers, and students

should be prepared to work independently in their future workplace, even though help is available. We discuss natural

environments more in Section 7.1.

Although Lertnattee and Pamonsinlapatham [66] argue for using SQLite due to its relatively easy configuration,

teachers should be aware that SQLite 3 contains features2 which, in our experience, confuse students. For example, in

SQLite 3, data types have little meaning (strings can be stored in INT columns), some arguably important SQL concepts

are not implemented (ALL, RIGHT OUTER JOIN), PRIMARY KEY does not imply NOT NULL, and strict grouping is not

enforced.

2https://www.sqlite.org/quirks.html

Manuscript submitted to ACM

SQL education 19

6.3 Decay

In Section 3.3, we wrote that we rather conveniently chose to include SQL education research from a timeframe of

30 years. However, we advise caution when interpreting the results from the older primary studies, as these teaching

considerations decay over time. Both the SQL standard and its implementations develop over time, as do the technologies

in IT field in general. For example, a learning environment from 1990s appears naïve in terms of features, and the general

look of the user interface. Some, mostly older works study the effects of a conceptual database structure representation

instead of logical representation [61], while others criticize the very purpose of such a research setting [90]. More

importantly, examining some older studies raises questions whether the SQL language itself has changed too much for

a teaching approach to hold true anymore. This point is further emphasized with the notion that the SQL standard has

never been a simple source to interpret. Three examples follow.

First, a seminal study from 1995 [95] considered “omitting the FROM clause” a semantic rather than a syntax error,

even though (at least current) SQL standard considers the FROM clause mandatory in a query. Furthermore, the study

demonstrated all table joins with explicit WHERE clause conditions, without the use of JOIN predicate or subqueries.

This might be an educated approach, a coincidence, or resulting from the fact that these concepts were introduced in

the SQL-92 standard. At least one study [90] suggests that separating expressions and joins in their respective clauses

reduces some types of query formulation errors. It is unclear why Smelcer [95] demonstrates table joins using only

explicit join conditions in the WHERE clause, but this is a reason to infer that the students who participated in the

study were taught table joins with explicit WHERE clause conditions.

Second, another study from 1993 [119] demonstrated erroneous queries with subqueries formulated with NOT

EXISTS, in which the subqueries’ SELECT clauses contains multiple column names, and stated “Both cases contain

errors of form. The subqueries used with EXISTS (NOT EXISTS) should use the SELECT * ... format.” Nowadays, it is

more of a widely accepted practice to use simple (NOT) EXISTS subquery SELECT clauses such as SELECT * or SELECT

1, but effectively it does not matter what is selected, and even division by zero is accepted by DBMSs.

Third, a study from 1988 [21] demonstrates how the aggregate function SUM handled NULL at the time. The

study demonstrated how SUM would return NULL if even one of the items was NULL. Nowadays, the standard has

been revised, and in most implementations, SUM handles NULL similar to zero. Rather than criticism toward the

aforementioned studies, we are trying to communicate that even though the language we are using today has the same

name as decades ago, SQL has undergone notable changes, and for this reason alone older studies should be given

closer scrutiny.

7 FUTURE RESEARCH AGENDA

7.1 Research Dearths

Concepts beyond SELECT have received little attention in educational research. The studied query concepts [4, 6, 101],

and formulated error frameworks [17, 101] focus solely on data retrieval. Intuitively, the transition from SELECT to

UPDATE and DELETE is relatively easy [49], as the query concepts in the WHERE clause are the same. In terms of SQL,

DCL and TCL concepts are relatively simple, and the difficulty comes from the design of privileges and transactions

rather than implementation. However, DDL statements and INSERT are both a fundamental and important part of SQL

which have not been studied in detail.

Advanced SQL features have not been studied in educational contexts. If we consider the SQL concepts reported in

the primary studies, most of them could be based on the SQL-92 standard, and in some cases, even on SQL-89. Since

Manuscript submitted to ACM

20 Taipalus and Seppänen

then, numerous features have been added to the SQL standard, and they remain untapped from a research perspective.

Such features are, for example, online analytical processing aggregate functions, the WINDOW clause, table functions,

multisets, the MERGE statement, and generated columns added in SQL:1999 and SQL:2003 [47]. Additionally, SQL:2011

introduced both temporal [65] and non-temporal features [124] such as pipelined DML and enhancements to several

older concepts. As we mentioned in Section 2.2, it is unclear whether knowledge about these features need to be

propagated, or have they been omitted from course contents on purpose. Finally, in addition to software development,

further research could also explore how SQL has extended to adjacent fields such as data science [18], broader contexts

in general [44], and what types of SQL extensions have been introduced to better fit field specific needs [80].

Are unnatural environments beneficial remains an open question. Studies in which students or novices are aided by

for example, automated feedback, simpler data, or unambiguous data demands achieve higher success rates in query

formulation. This, however, does not necessarily reflect their future work environments. Furthermore, a recent study

[99] discovered that as the logical complexity of the exercise database increases, students are less likely to succeed in

query formulation. The same study, however, cautions the use of success rates alone in evaluating different teaching

approaches; it is possible that although the students who fail in query formulation with a complex database, are more

prepared for natural environments than students who succeed in query formulation with a simple database. Studies

that test student skill in natural environments are needed, preferably so that one group of students learns SQL in

an unnatural environment, and another in a natural environment, after which both groups are tested in a natural

environment. Furthermore, as unnatural environments are intuitively targeted to help poor performing students, Russell

and Cumming [91] raise an important concern that a certain level of simplification may impede both the learning, and

the ardor towards the IT field of brighter students.

7.2 Replication

As presented in Fig. 4, there were no replication studies among the primary studies. While experience reports, opinion

papers, solutions proposals, and philosophical papers are problematic to replicate due to their nature, even the most

fundamental evaluation research studies [14, 34, 95] remain without replication. This is problematic, as central premises

of subsequent studies are occasionally based on the results of the fundamental studies. The lack of replication studies

in computing education in general has only recently received scientific attention [53]. Partly because of the lack

of replication, we argue that educational SQL research is not mature enough to distinguish between patterns and

anti-patterns. Moreover, a particularly insightful study by Rho and March [90] noted that some studies evaluated SQL

on such a simple level, that the ceiling effect (i.e., variance in an independent variable is not measurable due to simplicity

of the task) might explain the lack of differences in the results. Replication studies are not needed only because of

reliability and the ceiling effect, but also because of obsolescence, as discussed in Section 6.3.

Beyond replication, and to uncover patterns and anti-patterns, it is crucial to evaluate proposed teaching approaches,

especially those of solution proposals and opinion papers, in a scientific environment. Preferably, these evaluations

should be done by researchers independent of the original authors, as it is common that reported solutions are considered

helpful by the original authors. With propagation concerns [13] in mind, approaches supported by scientific evidence

are likely to receive more attention among practitioners.

7.3 Building upon Existing Body of Knowledge

Based on the insights from the mapping process summarized in Fig. 2 and discussed in Section 4.1, we urge researchers

to utilize and build upon existing body of knowledge in new approach proposals, and to critically evaluate all approaches.

Manuscript submitted to ACM

SQL education 21

Matos and Grasser [70] authored a study showcasing a new approach for teaching relational division. The study was

published in the summer 2002 issue in JISE. Dadashzadeh [40] authored a study expanding and generalizing similar

approach to other set comparison queries. This study shows relational division similarly to Matos and Grasser, and was

published in the winter 2003 issue in JISE. Finally, McCann [72] authored a study presenting relational division similarly

to Matos and Grasser, and this study was presented in the FIE conference in November 2003. Neither of the two latter

studies cited Matos and Grasser, even though relational division is a specific concept. This might be a result of all the

studies published within a short timeframe, but also due to potentially fragmented educational research fora. Regarding

primary study citations in Fig. 2, is it that, for example, ACM studies in general considered top IS studies, but did not

find them relevant, or is it that they did not find them? Did they not find them because of different nomenclature, or did

they not utilize searches which included them? Would their research settings and conclusions have been different in

this regard? As IEEE studies are seldom cited among the primary studies, we might have missed them if we did not

know about IEEE beforehand. That being said, there might be relevant pockets of research that we have missed. Based

on our results, we advise educational researchers and reviewers to utilize and search prior works widely, as educational

considerations may be found in numerous fora.

Most of the 29 opinion papers and experience reports did not discuss potential downsides of their proposed or tested

approaches, and only one [10] had a section dedicated to discussing disadvantages. We urge authors of studies of this

nature to either critically evaluate their approaches, or discuss why the approach does not need critical evaluation. In

comparison, even a course given as a textbook based exam (and nothing else) has positive implications, as students

can study with a flexible schedule, and choose learning strategies based on their own preferences. With this in mind,

one critical factor to discuss is time. Elements cannot be added to a course without expanding it or removing other

elements. Expanding a course arguably has potential downsides, and, for example, sacrificing best database design

practices to more efficiently teach SQL is not a desired goal in a database course. Alternatively, a teaching approach

may be replaced altogether, as presented by for example, Matos and Grasser [70] and Matos et al. [71].

8 CONCLUSION

In this study, we set out to systematically map educational SQL research, and to list teaching approaches proposed

in scientific literature. Our mapping shows that primary studies are published in numerous fora, not all of which are

educational in nature. Recurring themes in educational SQL research are improved teaching approaches, students errors,

the exercise database and related concepts, and easing teacher workload, and all types of research are represented, with

the exception of replication studies. Furthermore, based on the 89 primary studies, we listed 66 teaching approaches to

help educators teach SQL more efficiently. For researchers, and in addition to the systematic mapping, we proposed

future research avenues, and general suggestions on how to conduct educational SQL research.

REFERENCES

[1] Alberto Abelló, Xavier Burgués, María José Casany, Carme Martín, Carme Quer, M. Elena Rodríguez, Óscar Romero, and Toni Urpí. 2016. A

software tool for E-assessment of relational database skills. International Journal of Engineering Education 32 (2016), 1289—-1312. Issue 3.

http://hdl.handle.net/2117/89668

[2] Alberto Abelló, M. Elena Rodríguez, Toni Urpí, Xavier Burgués, M. José Casany, Carme Martín, and Carme Quer. 2008. LEARN-SQL: Automatic

Assessment of SQL Based on IMS QTI Specification. In 2008 Eighth IEEE International Conference on Advanced Learning Technologies. IEEE.

https://doi.org/10.1109/icalt.2008.27

[3] Elizabeth S. Adams, Mary Granger, Don Goelman, and Catherine Ricardo. 2004. Managing the introductory database course. In Proceedings of the

35th Technical Symposium on Computer Science Education (SIGCSE). ACM Press. https://doi.org/10.1145/971300.971467

Manuscript submitted to ACM

22 Taipalus and Seppänen

[4] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister. 2016. Students’ Syntactic Mistakes in Writing Seven Different

Types of SQL Queries and its Application to Predicting Students’ Success. In Proceedings of the 47th ACM Technical Symposium on Computing

Science Education (SIGCSE). ACM Press, New York, New York, USA, 401–406. https://doi.org/10.1145/2839509.2844640

[5] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quantitative Study of the Relative Difficulty for Novices of Writing Seven

Different Types of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE).

ACM Press, New York, New York, USA, 201–206. https://doi.org/10.1145/2729094.2742620

[6] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016. Students’ Semantic Mistakes in Writing Seven Different Types of SQL Queries.

In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE). ACM Press, New York, New York,

USA, 272–277. https://doi.org/10.1145/2899415.2899464

[7] Judith D. Ahrens and Chetan S. Sankar. 1993. Tailoring Database Training for End Users. MIS Quarterly 17, 4 (1993), 419. https://doi.org/10.2307/

249586

[8] A. AL-Salmi. 2018. A web-based semi-automatic assessment tool for formulating basic SQL statements: Point-and-click interaction method.

In Proceedings of the 10th International Conference on Computer Supported Education (CSEDU), Vol. 1. 191–198. https://doi.org/doi.org/10.5220/

0006671501910198

[9] Brett Allenstein, Andrew Yost, Paul Wagner, and Joline Morrison. 2008. A Query Simulation System to Illustrate Database Query Execution. In

Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’08). ACM, New York, NY, USA, 493–497. https:

//doi.org/10.1145/1352135.1352301

[10] W.J. Amadio. 2003. The dilemma of Team Learning: An assessment from the SQL programming classroom. In Proceedings of the Annual

Meeting of the Decision Sciences Institute. 823–828. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0442278473&partnerID=40&md5=

ffb48d535e80751aaf8b153af6a13c42

[11] Neal Ashkanasy, Paul L. Bowen, Fiona H. Rohde, and Chiu Yueh Alice Wu. 2007. The Effects of User Characteristics on Query Performance in the

Presence of Information Request Ambiguity. Journal of Information Systems 21, 1 (2007), 53–82. https://doi.org/10.2308/jis.2007.21.1.53

[12] Micheal Axelsen, A Faye Borthick, and Paul L. Bowen. 2001. A model for and the effects of information request ambiguity on end-user query

performance. ICIS 2001 Proceedings (2001), 68. http://aisel.aisnet.org/icis2001/68

[13] Heather Bort, David P. Bunde, Zack Butler, Christopher Lynnly Hovey, and Cynthia Taylor. 2019. Propagating Educational Innovations. In

Proceedings of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA, 167–168. https:

//doi.org/10.1145/3287324.3287526

[14] A.Faye Borthick, Paul L. Bowen, Donald R. Jones, and Michael Hung Kam Tse. 2001. The effects of information request ambiguity and construct

incongruence on query development. Decision Support Systems 32, 1 (nov 2001), 3–25. https://doi.org/10.1016/s0167-9236(01)00097-5

[15] A. Faye Borthick, Paul L. Bowen, S.T Liew, and Fiona H. Rohde. 2001. The effects of normalization on end-user query errors: An experimental

evaluation. International Journal of Accounting Information Systems 2, 4 (2001), 195 – 221. https://doi.org/10.1016/S1467-0895(01)00023-9

[16] Paul L. Bowen, Robert A. O’Farrell, and Fiona H. Rohde. 2009. An Empirical Investigation of End-User Query Development: The Effects of Improved

Model Expressiveness vs. Complexity. Information Systems Research 20, 4 (dec 2009), 565–584. https://doi.org/10.1287/isre.1080.0181

[17] Stefan Brass and Christian Goldberg. 2006. Semantic errors in SQL queries: A quite complete list. Journal of Systems and Software 79, 5 (may 2006),

630–644. https://doi.org/10.1016/j.jss.2005.06.028

[18] Jennifer E. Broatch, Suzanne Dietrich, and Don Goelman. 2019. Introducing Data Science Techniques by Connecting Data-

base Concepts and dplyr. Journal of Statistics Education 27, 3 (2019), 147–153. https://doi.org/10.1080/10691898.2019.1647768

arXiv:https://doi.org/10.1080/10691898.2019.1647768

[19] Peter Brusilovsky, Sergey Sosnovsky, Danielle H. Lee, Michael Yudelson, Vladimir Zadorozhny, and Xin Zhou. 2008. An Open Integrated

Exploratorium for Database Courses. In Proceedings of the 13th Annual Conference on Innovation and Technology in Computer Science Education

(ITiCSE ’08). ACM, New York, NY, USA, 22–26. https://doi.org/10.1145/1384271.1384280

[20] Peter Brusilovsky, Sergey Sosnovsky, Michael V. Yudelson, Danielle H. Lee, Vladimir Zadorozhny, and Xin Zhou. 2010. Learning SQL Programming

with Interactive Tools: From Integration to Personalization. ACM Transactions on Computing Education 9, 4, Article 19 (Jan. 2010), 15 pages.

https://doi.org/10.1145/1656255.1656257

[21] R. B. Buitendijk. 1988. Logical errors in database SQL retrieval queries. Computer Science in Economics and Management 1, 2 (1988), 79–96.

https://doi.org/10.1007/BF00427157

[22] Clifford G. Burgess. 1991. A graphical, database-querying interface for casual, naive computer users. International Journal of Man-Machine Studies

34, 1 (1991), 23–47. https://doi.org/10.1016/0020-7373(91)90049-d

[23] Luca Cagliero, Luigi De Russis, Laura Farinetti, and Teodoro Montanaro. 2018. Improving the Effectiveness of SQL Learning Practice: A Data-Driven

Approach. In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Vol. 01. 980–989. https://doi.org/10.1109/

COMPSAC.2018.00174

[24] Gretchen Irwin Casterella and Leo Vijayasarathy. 2013. An Experimental Investigation of Complexity in Database Query Formulation Tasks.

Journal of Information Systems Education 24, 3 (2013), 211–221. http://jise.org/Volume24/24-3/pdf/Vol24-3pg211.pdf

[25] Gretchen Irwin Casterella and Leo Vijayasarathy. 2019. Query Structure and Data Model Mapping Errors in Information Retrieval Tasks. Journal

of Information Systems Education 30, 3 (2019), 178–190. http://jise.org/Volume30/n3/JISEv30n3p178.pdf

Manuscript submitted to ACM

SQL education 23

[26] Tiziana Catarci, Maria F. Costabile, Stefano Levialdi, and Carlo Batini. 1997. Visual Query Systems for Databases: A Survey. Journal of Visual

Languages & Computing 8, 2 (1997), 215–260. https://doi.org/10.1006/jvlc.1997.0037

[27] Claudio Cerullo and Marco Porta. 2007. A System for Database Visual Querying and Query Visualization: Complementing Text and Graphics to

Increase Expressiveness. In 18th International Conference on Database and Expert Systems Applications (DEXA 2007). IEEE. https://doi.org/10.1109/

dexa.2007.91

[28] Donald D. Chamberlin. 2012. Early History of SQL. IEEE Annals of the History of Computing 34, 4 (Oct 2012), 78–82. https://doi.org/10.1109/

MAHC.2012.61

[29] Donald D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A. Lorie, J. W. Mehl, P. Reisner, and B. W. Wade. 1976. SEQUEL

2: A Unified Approach to Data Definition, Manipulation, and Control. IBM Journal of Research and Development 20, 6 (Nov 1976), 560–575.

https://doi.org/10.1147/rd.206.0560

[30] Donald D. Chamberlin and Raymond F. Boyce. 1974. SEQUEL: A Structured English Query Language. In Proceedings of the 1974 ACM SIGFIDET

(Now SIGMOD) Workshop on Data Description, Access and Control (SIGFIDET ’74). Association for Computing Machinery, New York, NY, USA,

249–264. https://doi.org/10.1145/800296.811515

[31] Hock Chan, Keng Siau, and Kwok-Kee Wei. 1997. The effect of data model, system and task characteristics on user query performance: an empirical

study. ACM SIGMIS Database: the DATABASE for Advances in Information Systems 29, 1 (1997), 31–49. https://doi.org/10.1145/506812.506820

[32] Hock Chuan Chan. 2007. A two-stage evaluation of user query performance for the relational model and SQL. PACIS 2007 Proceedings (2007), 118.

https://aisel.aisnet.org/pacis2007/118

[33] Hock Chuan Chan, Hock-Hai Teo, and XH Zeng. 2005. An evaluation of novice end-user computing performance: Data modeling, query writing,

and comprehension. Journal of the American Society for Information Science and Technology 56, 8 (2005), 843–853. https://onlinelibrary.wiley.com/

doi/full/10.1002/asi.20178

[34] Hock Chuan Chan, Kwok Kee Wei, and Keng Leng Siau. 1993. User-Database Interface: The Effect of Abstraction Levels on Query Performance.

MIS Quarterly 17, 4 (Dec 1993), 441. https://doi.org/10.2307/249587

[35] Hock Chuan Chan, Kwok Kee Wei, and Keng Leng Siau. 1994. An empirical study on end-users’ update performance for different abstraction levels.

International Journal of Human-Computer Studies 41, 3 (1994), 309 – 328. https://doi.org/10.1006/ijhc.1994.1061

[36] H. C. Chan, K. K. Wei, and K. L. Siau. 1995. The effect of a database feedback system on user performance. Behaviour & Information Technology 14,

3 (May 1995), 152–162. https://doi.org/10.1080/01449299508914642

[37] Peter Pin-Shan Chen. 1976. The Entity-relationship Model - Toward a Unified View of Data. ACM Transactions on Database Systems 1, 1 (March

1976), 9–36. https://doi.org/10.1145/320434.320440

[38] E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13, 6 (June 1970), 377–387. https://doi.org/10.1145/

362384.362685

[39] Thomas Connolly and Carolyn Begg. 2015. Database Systems (6th. ed.). Pearson.

[40] Mohammad Dadashzadeh. 2003. A Simpler Approach to Set Comparison Queries in SQL. Journal of Information Systems Education 14, 4 (2003),

345–348. http://jise.org/Volume14/n4/JISEv14n4p345.pdf

[41] Mohammad Dadashzadeh. 2007. Teaching Tip: Recursive Joins to Query Data Hierarchies in Microsoft Access. Journal of Information Systems

Education 18, 1 (2007), 5–10. http://jise.org/Volume18/n1/JISEv18n1p5.pdf

[42] Mohammad Dadashzadeh. 2007. Teaching Tip: Specification and Enforcement of Semantic Integrity Constraints in Microsoft Access. Journal of

Information Systems Education 18, 4 (2007), 393–398. http://jise.org/Volume18/n4/JISEv18n4p393.pdf

[43] J. Steve Davis. 1990. Experimental investigation of the utility of data structure and E-R diagrams in database query. International Journal of

Man-Machine Studies 32, 4 (1990), 449 – 459. https://doi.org/10.1016/S0020-7373(05)80142-7

[44] S. W. Dietrich, D. Goelman, C. M. Borror, and S. M. Crook. 2015. An Animated Introduction to Relational Databases for Many Majors. IEEE

Transactions on Education 58, 2 (May 2015), 81–89. https://doi.org/10.1109/TE.2014.2326834

[45] Doug Downey, Susan Dumais, Dan Liebling, and Eric Horvitz. 2008. Understanding the Relationship Between Searchers’ Queries and Information

Goals. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM ’08). ACM, New York, NY, USA, 449–458.

https://doi.org/10.1145/1458082.1458143

[46] A. Efendioglu and T. Yanpar Yelken. 2010. Programmed instruction versus meaningful learning theory in teaching basic structured query language

(SQL) in computer lesson. Computers and Education 55, 3 (2010), 1287–1299. https://doi.org/10.1016/j.compedu.2010.05.026 cited By 9.

[47] Andrew Eisenberg, Jim Melton, Krishna Kulkarni, Jan-Eike Michels, and Fred Zemke. 2004. SQL:2003 has been published. ACM SIGMOD Record 33,

1 (mar 2004), 119. https://doi.org/10.1145/974121.974142

[48] Ramez Elmasri and Shamkant B. Navathe. 2016. Fundamentals of Database Systems (7th. ed.). Pearson.

[49] Philip Garner and John Amedeo Mariani. 2015. Learning SQL in steps. Journal of Systemics, Cybernetics and Informatics 13, 4 (2015), 19–24.

[50] Don Goelman. 2008. Databases, non-majors and collaborative learning. In Proceedings of the 13th Annual Conference on Innovation and Technology

in Computer Science Education (ITiCSE). ACM Press. https://doi.org/10.1145/1384271.1384281

[51] Venkat N. Gudivada, Jagadeesh Nandigam, and Yonglei Tao. 2007. Enhancing student learning in database courses with large data sets. In 2007 37th

annual frontiers in education conference (FIE). IEEE. https://doi.org/10.1109/fie.2007.4418135

[52] Mario Guimaraes. 2005. Integrating the Kennesaw Database Courseware and Other Database Coursewares in Database Classes. In Proceedings of

the 43rd Annual Southeast Regional Conference - Volume 1 (ACM-SE 43). ACM, New York, NY, USA, 15–15. https://doi.org/10.1145/1167350.1167362

Manuscript submitted to ACM

24 Taipalus and Seppänen

[53] Qiang Hao, David H. Smith IV, Naitra Iriumi, Michail Tsikerdekis, and Andrew J. Ko. 2019. A Systematic Investigation of Replications in Computing

Education Research. ACM Transactions on Computing Education 19, 4, Article Article 42 (Aug. 2019), 18 pages. https://doi.org/10.1145/3345328

[54] Joseph E. Hollingsworth. 2008. Teaching Query Writing: An Informed Instruction Approach. In Proceedings of the 13th Annual Conference on

Innovation and Technology in Computer Science Education (ITiCSE ’08). ACM, New York, NY, USA, 351–351. https://doi.org/10.1145/1384271.1384393

[55] A. S. M. L. Hoque, G. M. M. Bashiry, and M. R. Uddin. 2014. Equivalence of Problems in Problem Based e-Learning of Database. In 2014 IEEE Sixth

International Conference on Technology for Education. 106–109. https://doi.org/10.1109/T4E.2014.23

[56] Hsiu-Fang Hsieh and Sarah E. Shannon. 2005. Three Approaches to Qualitative Content Analysis. Qualitative Health Research 15, 9 (2005),

1277–1288. https://doi.org/10.1177/1049732305276687 arXiv:https://doi.org/10.1177/1049732305276687 PMID: 16204405.

[57] Ching-yu Huang. 2019. Integrative Curriculum for Teaching Databases. Journal of Computing Sciences in Colleges 34, 3 (Jan. 2019), 131–131.

http://dl.acm.org/citation.cfm?id=3306465.3306487

[58] Gretchen Irwin, Wessel Lark, and Harvey Blackburn. 2012. Teaching Case: The Animal Genetic Resource Information Network (AnimalGRIN)

Database: A Database Design & Implementation Case. Journal of Information Systems Education 23, 1 (2012), 19–28. http://jise.org/Volume23/n1/

JISEv23n1p19.pdf

[59] ISO/IEC. 2016. ISO/IEC 9075-1:2016, "SQL - Part 1: Framework". https://www.iso.org/standard/63555.html

[60] ISO/IEC. 2016. ISO/IEC 9075-2:2016, "SQL - Part 2: Foundation". https://www.iso.org/standard/63556.html

[61] W.J. Kenny Jih, David A. Bradbard, Charles A. Snyder, and Nancy G.A. Thompson. 1989. The effects of relational and entity-relationship data

models on query performance of end users. International Journal of Man-Machine Studies 31, 3 (Sep 1989), 257–267. https://doi.org/10.1016/0020-

7373(89)90007-2

[62] Joint Task Force on Computing Curricula, Association for Computing Machinery (ACM) and IEEE Computer Society. 2013. Computer Science

Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science. Technical Report. New York, NY, USA. https:

//doi.org/10.1145/2534860

[63] Nenad Jukic and Paul Gray. 2008. Using Real Data to Invigorate Student Learning. SIGCSE Bulletin 40, 2 (June 2008), 6–10. https://doi.org/10.1145/

1383602.1383604

[64] Jai W. Kang, Qi Yu, Edward P. Holden, and Xumin Liu. 2019. Complementing Course Contents Between IT/CS: A Case Study on Database

Courses. In Proceedings of the 20th Annual SIG Conference on Information Technology Education (SIGITE ’19). ACM, New York, NY, USA, 10–15.

https://doi.org/10.1145/3349266.3351414

[65] Krishna Kulkarni and Jan-Eike Michels. 2012. Temporal features in SQL:2011. ACM SIGMOD Record 41, 3 (oct 2012), 34. https://doi.org/10.1145/

2380776.2380786

[66] Verayuth Lertnattee and Perayot Pamonsinlapatham. 2017. Blended Learning for Improving Flexibility of Learning Structure Query Language

(SQL). In International Conference on Blended Learning (ICBL). Springer, 343–353. https://doi.org/10.1007/978-3-319-59360-9_30

[67] M. Luo. 2010. Study on design of graduation Practical Teaching management system based on SQL Server 2008 for Vocational College. In 2010

International Conference on Computer Application and System Modeling (ICCASM 2010), Vol. 2. V2–292–V2–296. https://doi.org/10.1109/ICCASM.

2010.5620476

[68] Maslin Masrom, Halimah Hasan, and Habsah Abdullah. 2007. Using a team-based approach in teaching database course. In National Conference on

Programming Science (ATUR 07), Vol. 5.

[69] Ramon A. Mata-Toledo and Carlos A. Reyes-Garcia. 2002. A Model Course for Teaching Database Administration with Personal Oracle 8i. Journal

of Computing Sciences in Colleges 17, 3 (Feb. 2002), 125–130. http://dl.acm.org/citation.cfm?id=772636.772658

[70] Victor M. Matos and Rebecca Grasser. 2002. Teaching Tip A Simpler (and Better) SQL Approach to Relational Division. Journal of Information

Systems Education 13, 2 (2002), 85–88. http://jise.org/Volume13/Pdf/085.pdf

[71] Victor M. Matos, Rebecca Grasser, and Paul Jalics. 2006. The Case of the Missing Tuple: Teaching the SQL Outer-join Operator to Undergraduate

Information Systems Students. Journal of Computing Sciences in Colleges 22, 1 (Oct. 2006), 23–32. http://dl.acm.org/citation.cfm?id=1181811.1181814

[72] L. I. McCann. 2003. On making relational division comprehensible. In Proceedings of the 2003 33rd Annual Frontiers in Education Conference (FIE),

Vol. 2. F2C–6. https://doi.org/10.1109/FIE.2003.1264699

[73] Kirby McMaster, Samuel Sambasivam, Steven Hadfield, and Stuart Wolthuis. 2013. Relational Algebra and SQL: Better Together. Information

Systems Education Journal 11, 1 (2013), 4–13. http://isedj.org/2013-11/N1/ISEDJv11n1p4.pdf

[74] JanetMetcalfe. 2017. Learning from Errors. Annual Review of Psychology 68, 1 (2017), 465–489. https://doi.org/10.1146/annurev-psych-010416-044022

PMID: 27648988.

[75] Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining Wrong Queries Using Small Examples. In Proceedings of the 2019 ACM Conference on

Management of Data (SIGMOD) (SIGMOD ’19). ACM, New York, NY, USA, 503–520. https://doi.org/10.1145/3299869.3319866

[76] Antonija Mitrovic. 1998. Learning SQL with a Computerized Tutor. In Proceedings of the Twenty-ninth SIGCSE Technical Symposium on Computer

Science Education (SIGCSE ’98). ACM, New York, NY, USA, 307–311. https://doi.org/10.1145/273133.274318

[77] Antonija Mitrovic. 2003. An intelligent SQL tutor on the web. International Journal of Artificial Intelligence in Education 13, 2-4 (2003), 173–197.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013603633&partnerID=40&md5=7e8de8bf8e5659c6720ec83f64e2e388

[78] Antonija Mitrovic. 2006. Large-Scale Deployment of three intelligent web-based database tutors. Journal of Computing and Information Technology

14, 4 (2006), 275–281. https://doi.org/10.2498/cit.2006.04.02

[79] Keith Moss. 2010. DataBase teaching tools. In IEEE EDUCON 2010 Conference. IEEE. https://doi.org/10.1109/educon.2010.5492432

Manuscript submitted to ACM

SQL education 25

[80] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. 2010. K*SQL: A Unifying Engine for Sequence Patterns and XML. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of Data (SIGMOD ’10). Association for Computing Machinery, New York, NY, USA, 1143–1146.

https://doi.org/10.1145/1807167.1807302

[81] David Olsen and Karina Hauser. 2007. Teaching Tip: Teaching Advanced SQL Skills: Text Bulk Loading. Journal of Information Systems Education

18, 4 (2007), 399–402. http://jise.org/Volume18/n4/JISEv18n4p399.pdf

[82] T. Permpool, S. Nalintippayawong, and K. Atchariyachanvanich. 2019. Interactive SQL Learning Tool withAutomatedGrading usingMySQL Sandbox.

In 2019 IEEE 6th International Conference on Industrial Engineering and Applications, ICIEA 2019. 928–932. https://doi.org/10.1109/IEA.2019.8715175

[83] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic Mapping Studies in Software Engineering. In Proceedings of

the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE’08). BCS Learning & Development Ltd., Swindon, UK,

68–77. http://dl.acm.org/citation.cfm?id=2227115.2227123

[84] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software engineering: An

update. Information and Software Technology 64 (2015), 1 – 18. https://doi.org/10.1016/j.infsof.2015.03.007

[85] Hongsiri Piyayodilokchai, Pintip Ruenwongsa, Watcharee Ketpichainarong, Parames Laosinchai, and Patcharin Panjaburee. 2011. Promoting

Students’ Understanding of SQL in a Database Management Course: A Learning Cycle Approach. The International Journal of Learning: Annual

Review 17, 11 (2011), 325–338. https://doi.org/10.18848/1447-9494/cgp/v17i11/47345

[86] Julia Coleman Prior. 2003. Online Assessment of SQL Query Formulation Skills. In Proceedings of the Fifth Australasian Conference on Computing

Education - Volume 20 (ACE ’03). Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 247–256. http://dl.acm.org/citation.cfm?id=

858403.858433

[87] Gary B. Randolph. 2003. The Forest and the Trees: Using Oracle and SQL Server Together to Teach ANSI-standard SQL. In Proceedings of the 4th ACM

Conference on Information Technology Curriculum (CITC) (CITC4 ’03). ACM, New York, NY, USA, 234–236. https://doi.org/10.1145/947121.947174

[88] Christine F. Reilly. 2018. Experience with Active Learning and Formative Feedback for a SQL Unit. In 2018 IEEE Frontiers in Education Conference

(FIE). IEEE. https://doi.org/10.1109/fie.2018.8659173

[89] Karen Renaud and Judy Van Biljon. 2004. Teaching SQL - Which Pedagogical Horse for This Course?. In British National Conference on Databases

(BNCOD). Springer, 244–256. https://doi.org/10.1007/978-3-540-27811-5_22

[90] Sangkyu Rho and Salvatore T March. 1997. An analysis of semantic overload in database access systems using multi-table query formulation.

Journal of Database Management 8, 2 (1997), 3–15. https://www.igi-global.com/gateway/article/51176

[91] Gordon Russell and Andrew Cumming. 2004. Improving the Student Learning Experience for SQL Using Automatic Marking. In Cognition and

Exploratory Learning in Digital Age (CELDA). 281–288.

[92] Edward Sciore. 2007. SimpleDB: A Simple Java-based Multiuser System for Teaching Database Internals. In Proceedings of the 38th SIGCSE Technical

Symposium on Computer Science Education (SIGCSE ’07). ACM, New York, NY, USA, 561–565. https://doi.org/10.1145/1227310.1227498

[93] Bilal Shebaro. 2018. Using Active Learning Strategies in Teaching Introductory Database Courses. Journal of Computing Sciences in Colleges 33, 4

(April 2018), 28–36. http://dl.acm.org/citation.cfm?id=3199572.3199576

[94] Yasin N. Silva, Isadora Almeida, and Michell Queiroz. 2016. SQL: From Traditional Databases to Big Data. In Proceedings of the 47th ACM Technical

Symposium on Computing Science Education (SIGCSE) (SIGCSE ’16). ACM, New York, NY, USA, 413–418. https://doi.org/10.1145/2839509.2844560

[95] John B. Smelcer. 1995. User errors in database query composition. International Journal of Human-Computer Studies 42, 4 (Apr 1995), 353–381.

https://doi.org/10.1006/ijhc.1995.1017

[96] M. Soflano, T.M. Connolly, and T. Hainey. 2015. Learning style analysis in adaptive GBL application to teach SQL. Computers and Education 86

(2015), 105–119. https://doi.org/10.1016/j.compedu.2015.02.009

[97] Song Jian-gong. 2010. Design and application of collaborative learning system based on web to database experiment teaching. In 2010 International

Conference on Educational and Information Technology, Vol. 3. V3–140–V3–143. https://doi.org/10.1109/ICEIT.2010.5608405

[98] Toni Taipalus. 2019. Teaching Tip: A Notation for Planning SQL Queries. Journal of Information Systems Education 30, 3 (2019), 160–166.

http://jise.org/Volume30/n3/JISEv30n3p160.pdf

[99] Toni Taipalus. 2020. The effects of database complexity on SQL query formulation. Journal of Systems and Software 165 (2020), 110576. https:

//doi.org/10.1016/j.jss.2020.110576

[100] Toni Taipalus and Piia Perälä. 2019. What to Expect and What to Focus on in SQL Query Teaching. In Proceedings of the 50th ACM Technical

Symposium on Computer Science Education (SIGCSE) (SIGCSE ’19). ACM, New York, NY, USA, 198–203. https://doi.org/10.1145/3287324.3287359

[101] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and Complications in SQL Query Formulation. ACM Transactions on Computing

Education 18, 3, Article 15 (Aug. 2018), 29 pages. https://doi.org/10.1145/3231712

[102] Josh Tenenberg and Robert McCartney. 2010. Why Discipline Matters in Computing Education Scholarship. ACM Transactions on Computing

Education 9, 4 (2010), 1–7. https://doi.org/10.1145/1656255.1656256

[103] The Joint Task Force on Computing Curricula. 2015. Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering. Technical

Report. New York, NY, USA. https://dl.acm.org/citation.cfm?id=2965631

[104] Richard C. Thomas and Rebecca Mancy. 2004. Use of large databases for group projects at the nexus of teaching and research. In Proceedings of the

9th annual conference on Innovation and technology in computer science education (ITiCSE). ACM Press. https://doi.org/10.1145/1007996.1008039

[105] Heikki Topi, Kate M. Kaiser, Janice C. Sipior, Joseph S. Valacich, J. F. Nunamaker, Jr., G. J. de Vreede, and Ryan Wright. 2010. Curriculum Guidelines

for Undergraduate Degree Programs in Information Systems. Technical Report. New York, NY, USA. https://www.acm.org/binaries/content/assets/

Manuscript submitted to ACM

26 Taipalus and Seppänen

education/curricula-recommendations/is-2010-acm-final.pdf

[106] Heikki Topi, Joseph S Valacich, and Jeffrey A Hoffer. 2005. The effects of task complexity and time availability limitations on human performance

in database query tasks. International Journal of Human-Computer Studies 62, 3 (2005), 349–379. https://doi.org/10.1016/j.ijhcs.2004.10.003

[107] Susan D. Urban and Suzanne W. Dietrich. 2001. Advanced Database Concepts for Undergraduates: Experience with Teaching a Second Course.

SIGCSE Bull. 33, 1 (Feb. 2001), 357–361. https://doi.org/10.1145/366413.364648

[108] Leo Vijayasarathy and Gretchen Casterella. 2016. The Effects of Information Request Language and Template Usage on Query Formulation. Journal

of the Association for Information Systems 17, 10 (Oct 2016), 674–707. https://doi.org/10.17705/1jais.00440

[109] Adam H. Villa. 2016. Big Data: Motivating the Development of an Advanced Database Systems Course. Journal of Computing Sciences in Colleges

31, 3 (2016), 119–128. https://dl.acm.org/doi/abs/10.5555/2835377.2835395

[110] Paul J. Wagner, Elizabeth Shoop, and John V. Carlis. 2003. Using Scientific Data to Teach a Database Systems Course. In Proceedings of the 34th

ACM Technical Symposium on Computer Science Education (SIGCSE) (SIGCSE ’03). ACM, New York, NY, USA, 224–228. https://doi.org/10.1145/

611892.611975

[111] R. T. Watson. 2006. The Essential Skills of Data Modeling. Journal of Information Systems Education 17, 1 (2006), 39–42. http://jise.org/Volume17/

n1/JISEv17n1p39.pdf

[112] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. 2005. Requirements engineering paper classification and evaluation criteria: a

proposal and a discussion. Requirements Engineering 11, 1 (nov 2005), 102–107. https://doi.org/10.1007/s00766-005-0021-6

[113] Coleen R. Wilder and Ceyhun O. Ozgur. 2015. Business Analytics Curriculum for Undergraduate Majors. INFORMS Transactions on Education 15, 2

(Jan. 2015), 180–187. https://doi.org/10.1287/ited.2014.0134

[114] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings of the

18th International Conference on Evaluation and Assessment in Software Engineering (EASE ’14). ACM, New York, NY, USA, Article 38, 10 pages.

https://doi.org/10.1145/2601248.2601268

[115] Claes Wohlin, Per Runeson, Paulo Anselmo da Mota Silveira Neto, Emelie Engström, Ivan do Carmo Machado, and Eduardo Santana de Almeida.

2013. On the reliability of mapping studies in software engineering. Journal of Systems and Software 86, 10 (2013), 2594 – 2610. https:

//doi.org/10.1016/j.jss.2013.04.076

[116] David A. Wolff. 2001. MySQL, PostgreSQL, and PHP: Open Source Technologies for a Database Management Course. Journal of Computing Sciences

in Colleges 17, 2 (Dec. 2001), 91–92. http://dl.acm.org/citation.cfm?id=775339.775358

[117] Donna Wright. 2013. Database: CSI, Inc. Journal of Computing Sciences in Colleges 28, 5 (May 2013), 80–81. http://dl.acm.org/citation.cfm?id=

2458569.2458586

[118] Wu Da-sheng and Wu Sheng-yu. 2010. Dynamically maintain the teaching examples of triggers and stored procedures about the course of database

application. In 2010 2nd International Conference on Education Technology and Computers, Vol. 1. V1–525–V1–527. https://doi.org/10.1109/ICETC.

2010.5529193

[119] M. Y. . Yen and R. W. Scamell. 1993. A human factors experimental comparison of SQL and QBE. IEEE Transactions on Software Engineering 19, 4

(April 1993), 390–409. https://doi.org/10.1109/32.223806

[120] M.-H. Ying, N.-W. Chi, and Y. Hong. 2012. Enhancement of learning by using an Online SQL Learning System with Automatic Checking Mechanism.

International Journal of Digital Content Technology and its Applications 6, 6 (Apr 2012), 239–248. https://doi.org/10.4156/jdcta.vol6.issue6.28

[121] Kwok-Bun Yue. 2013. Using a Semi-Realistic Database to Support a Database Course. Journal of Information Systems Education 24, 4 (2013), 327–336.

http://jise.org/Volume24/n4/JISEv24n4p327.pdf

[122] Liu Yuelan, Liao Yiwei, Huang Yuyan, and Liu Yuefan. 2011. Study on Teaching Methods of Database Application Courses. Procedia Engineering 15

(2011), 5425–5428. https://doi.org/10.1016/j.proeng.2011.08.1006

[123] Abe Zeid and Sagar Kamarthi. 2008. Best teaching practices in database courses for engineering students. International Journal of Engineering

Education 24, 5 (2008), 980–989.

[124] Fred Zemke. 2012. What’s new in SQL:2011. ACM SIGMOD Record 41, 1 (2012), 67–73. https://doi.org/10.1145/2206869.2206883

Manuscript submitted to ACM

SQL education 27

A LIST OF PRIMARY STUDIES

Selected primary studies

ID Publication

PS01 Abelló, A., Burgués, X., Casany, M.J., Martín, C., Quer, C., Rodríguez, M.E., Romero, Ó, & Urpí, T. (2016). A software tool for e-assessment of
relational database skills. International Journal of Engineering Education 32(3), 1289-1323. http://hdl.handle.net/2117/89668

PS02 Ahadi, A., Behbood, V., Vihavainen, A., Prior, J., & Lister, R. (2016). Students’ Syntactic Mistakes in Writing Seven Different Types of SQL
Queries and its Application to Predicting Students’ Success. In Proceedings of the 47th ACM Technical Symposium on Computer Science Education
(SIGCSE) (pp. 401–406). ACM. doi.org/doi:10.1145/2839509.2844640

PS03 Ahadi, A., Prior, J., Behbood, V., & Lister, R. (2015). A Quantitative Study of the Relative Difficulty for Novices of Writing Seven Different
Types of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE) (pp.
201—206). ACM. doi.org/doi:10.1145/2729094.2742620

PS04 Ahadi, A., Prior, J., Behbood, V., & Lister, R. (2016). Students’ Semantic Mistakes in Writing Seven Different Types of SQL Queries.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE) (pp. 272—277). ACM.
doi.org/doi:10.1145/2899415.2899464

PS05 AL-Salmi, A. (2018). A web-based semi-automatic assessment tool for formulating basic SQL statements: Point-and-click interaction method.
In Proceedings of the 10th International Conference on Computer Supported Education (CSEDU) (pp. 191–198). doi.org/10.5220/0006671501910198

PS06 Al-Shuaily, H., & Renaud, K. (2010). SQL patterns - a new approach for teaching SQL. In 8th HEA Workshop on Teaching, Learning and
Assessment of Databases (TLAD) (pp. 29–40). rke.abertay.ac.uk/ws/portalfiles/portal/9116027/TLAD2010Proceedings.pdf

PS07 Allen, G. N., & March, S. T. (2006). The effects of state-based and event-based data representation on user performance in query formulation
tasks. MIS Quarterly 30(2), 269–290. doi.org/10.2307/25148731

PS08 Allen, G. N., & Parsons, J. (2010). Is query reuse potentially harmful? Anchoring and adjustment in adapting existing database queries.
Information Systems Research 21(1), 56–77. doi.org/10.1287/isre.1080.0189

PS09 Amadio, W. (2003). The dilemma of team learning: An assessment from the SQL programming classroom. In Proceedings of the Annual Meeting
of the Decision Sciences Institute (pp. 823—828).

PS10 Aversano, L., Canfora, G., De Lucia, A., & Stefanucci, S. (2002). Understanding SQL through iconic interfaces. In Proceedings of the IEEE 26th
Annual International Computer Software and Applications (COMPSAC) (pp. 703-–708). IEEE. doi.org/10.1109/CMPSAC.2002.1045084

PS11 Axelsen, M., Borthick, A. F., & Bowen, P. L. (2001). A model for and the effects of information request ambiguity on end-user query performance.
ICIS 2001 Proceedings, p.68. aisel.aisnet.org/icis2001/68

PS12 Bhangdiya, A., Chandra, B., Kar, B., Radhakrishnan, B., Reddy, K.V.M., Shah, S., & Sudarshan, S. (2015). The XDa-TA system for automated
grading of SQL query assignments. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering (ICDE) (pp. 1468—1471).
IEEE. doi.org/10.1109/icde.2015.7113403

PS13 Boisvert, C., Domdouzis, K., & License, J. (2018). A comparative analysis of student SQL and relational database knowledge using automated
grading tools. In Proceedings of the 2018 IEEE International Symposium on Computers in Education (SIIE). IEEE. doi.org/10.1109/siie.2018.8586684

PS14 Borthick, A., Bowen, P. L., Jones, D. R., & Tse, M. H. K. (2001). The effects of information request ambiguity and construct incongruence on
query development. Decision Support Systems 32(1), 3-25. doi.org/10.1016/s0167-9236(01)00097-5

PS15 Bowen, P., O'Farrell, R., & Rohde, F. (2004). How does your model grow? an empirical investigation of the effects of ontological clarity and
application domain size on query performance. ICIS 2004 Proceedings, p.7. aisel.aisnet.org/icis2004/7/

PS16 Bowen, P. L., O'Farrell, R. A., & Rohde, F. H. (2006). Analysis of competing data structures: Does ontological clarity produce better end user
query performance. Journal of the Association for Information Systems 7 (22), 514-544. doi.org/10.17705/1jais.00098

PS17 Bowen, P. L., O'Farrell, R. A., & Rohde, F. H. (2009). An Empirical Investigation of End-User Query Development: The Effects of Improved
Model Expressiveness vs. Complexity. Information Systems Research 20(4), 565–584. doi.org/10.1287/isre.1080.0181

PS18 Brass, S., & Goldberg, C. (2006). Semantic errors in SQL queries: A quite complete list. Journal of Systems and Software 79(5), 630-644.
doi.org/10.1016/j.jss.2005.06.028

PS19 Caldeira, C. P. (2008). Teaching SQL: A case study. In Proceedings of the 2008 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE) (pp. 340-–340). ACM. doi.org/10.1145/1384271.1384382

PS20 Casterella, G.I., & Vijayasarathy, L. (2013). An Experimental Investigation of Complexity in Database Query Formulation Tasks. Journal of
Information Systems Education 24(3), 211-221. http://jise.org/Volume24/24-3/pdf/Vol24-3pg211.pdf

PS21 Casterella, G.I., & Vijayasarathy, L. (2019). Query Structure and Data Model Mapping Errors in Information Retrieval Tasks. Journal of
Information Systems Education 30(3), 178-190. http://jise.org/Volume30/n3/JISEv30n3p178.pdf

PS22 Cembalo, M., De Santis, A., & Ferraro Petrillo, U. (2011). SAVI: A New System for Advanced SQL Visualization. In Proceedings of the 2011 ACM
Conference on Information Technology Education (SIGITE) (pp. 165–170). ACM. doi.org/10.1145/2047594.2047641

PS23 Chan, H.C., Tan, B.C.Y., & Wei, K.K. (1999). Three important determinants of user performance for database retrieval. International Journal of
Human-Computer Studies 51(5), 895-918. doi.org/10.1006/ijhc.1999.0272

PS24 Chan, H.C., Wei, K.K., & Siau, K.L. (1993). User-Database Interface: The Effect of Abstraction Levels on Query Performance. MIS Quarterly
17 (4), 441. doi.org/10.2307/249587

PS25 Chandra, B., Chawda, B., Kar, B., Reddy, K.V., Shah, S., & Sudarshan, S. (2015). Data Generation for Testing and Grading SQL Queries. The
VLDB Journal 24(6), 731-755. doi.org/10.1007/s00778-015-0395-0

PS26 Chandra, B., Mathew, J., Radhakrishnan, B., Acharya, S., & Sudarshan, S. (2016). Partial Marking for Automated Grading of SQL Queries. In
Proceedings of the VLDB Endowment 9(13) (pp. 1541–1544). doi.org/10.14778/3007263.3007304

PS27 Dadashzadeh, M. (2003). Teaching Tip: A Simpler Approach to Set Comparison Queries in SQL. Journal of Information Systems Education
14(4), 345-348. http://jise.org/Volume14/n4/JISEv14n4p345.pdf

PS28 Dadashzadeh, M. (2007). Teaching Tip: Recursive Joins to Query Data Hierarchies in Microsoft Access. Journal of Information Systems
Education 18(1), 5-10. http://jise.org/Volume18/n1/JISEv18n1p5.pdf

Manuscript submitted to ACM

28 Taipalus and Seppänen

Selected primary studies (cont.)

ID Publication

PS29 Dadashzadeh, M. (2007). Teaching Tip: Specification and Enforcement of Semantic Integrity Constraints in Microsoft Access. Journal of
Information Systems Education 18(4), 393-398. http://jise.org/Volume18/n4/JISEv18n4p393.pdf

PS30 Danaparamita, J., & Gatterbauer, W. (2011). QueryViz: Helping Users Understand SQL Queries and Their Patterns. In Proceedings of the 14th
ACM International Conference on Extending Database Technology (EDBT) (pp. 558–561). ACM. doi.org/10.1145/1951365.1951440

PS31 Davis, J.S. (1990). Experimental investigation of the utility of data structure and E-R diagrams in database query. International Journal of
Man-Machine Studies 32(4), 449-459. doi.org/10.1016/S0020-7373(05)80142-7

PS32 Dean, T.J., & Milani, W.G. (1995). Transforming a database systems and design course for non computer science majors. In Proceedings of the
1995 25th Annual Frontiers in Education Conference (FIE). IEEE. doi.org/10.1109/fie.1995.483191

PS33 Dietrich, S.W., Goelman, D., Borror, C.M., & Crook, S.M. (2015). An Animated Introduction to Relational Databases for Many Majors. IEEE
Transactions on Education 58(2), 81-89. doi.org/10.1109/TE.2014.2326834

PS34 Dietrich, S.W., & Urban, S.D. (1996). Database Theory in Practice: Learning from Cooperative Group Projects. In Proceedings of the 27th ACM
Technical Symposium on Computer Science Education (SIGCSE) (pp. 112–116). ACM. doi.org/10.1145/236452.236520

PS35 Do, Q., Agrawal, R.K., Rao, D., & Gudivada, V.N. (2014). Automatic generation of SQL queries. In Proceedings of the 121st ASEE Annual
Conference and Exposition.

PS36 Dollinger, R., & Melville, N.A. (2011). Semantic evaluation of SQL queries. In Proceedings of the 2011 IEEE 7th International Conference on
Intelligent Computer Communication and Processing (ICCP) (pp. 57–64). IEEE. doi.org/10.1109/ICCP.2011.6047844

PS37 Fekete, A. (2005). Teaching Transaction Management with SQL Examples. In Proceedings of the 2005 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE) (pp. 163–167). ACM. doi.org/10.1145/1067445.1067492

PS38 Fong, J., Lee, J., & Fong, A. (2005). Student Centered Knowledge Level Analysis for eLearning for SQL. In Advances in Web-Based Learning
(ICWL) 2005, (pp. 174–185). Springer. doi.org/10.1007/11528043_17

PS39 Garner, P., & Mariani, J.A. (2015). Learning SQL in steps. Journal of Systemics, Cybernetics and Informatics 13(4), 19-24.
PS40 Green, G.G. (2005). Teaching Case: Greta’s Gym: A Teaching Case for Term-Long Database Projects. Journal of Information Systems Education

16(4), 387-390. http://jise.org/Volume16/n4/JISEv16n4p387.pdf
PS41 Gudivada, V.N., Nandigam, J., & Tao, Y. (2007). Enhancing student learning in database courses with large data sets. In Proceedings of the 2007

37th Annual Frontiers in Education Conference (FIE). IEEE. doi.org/10.1109/fie.2007.4418135
PS42 Hardt, R., & Gutzmer, E. (2017). Database Query Analyzer (DBQA) - A Data-Oriented SQL Clause Visualization Tool. In Proceedings of the 18th

ACM Conference on Information Technology Education (SIGITE). ACM. doi.org/10.1145/3125659.3125688
PS43 Hollingsworth, J.E. (2008). Teaching Query Writing: An Informed Instruction Approach. In Proceedings of the ACM Conference on Innovation

and Technology in Computer Science Education (ITiCSE) (pp. 351–351). ACM. doi.org/0.1145/1384271.1384393
PS44 Huang, C., & Morreale, P.A. (2016). A web-based, self-controlled mechanism to support students learning SQL. In Proceedings of the 2016 IEEE

Integrated STEM Education Conference (ISEC) (pp. 218–223). IEEE. doi.org/10.1109/ISECon.2016.7457536
PS45 Hvorecký, J., Drlík, M., & Munk, M. (2010). Enhancing database querying skills by choosing a more appropriate interface. In Proceedings of the

IEEE Global Engineering Education Conference (EDUCON) (pp. 1897–1905). IEEE. doi.org/10.1109/EDUCON.2010.5492434
PS46 Irwin, G., Wessel, L., & Blackburn, H. (2012). Teaching Case: The Animal Genetic Resource Information Network (AnimalGRIN) Database: A

Database Design & Implementation Case. Journal of Information Systems Education 23(1), 19-28. http://jise.org/Volume23/n1/JISEv23n1p19.pdf
PS47 Julavanich, T., Nalintippayawong, S., & Atchariyachanvanich, K. (2019). RSQLG: The Reverse SQL Question Generation Algorithm.

In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 908–912). IEEE.
doi.org/10.1109/IEA.2019.8715233

PS48 Kawash, J. (2014). Formulating Second-order Logic Conditions in SQL. In Proceedings of the 15th ACM Conference on Information Technology
Education (SIGITE) (pp. 115-120). ACM. doi.org/10.1145/2656450.2656452

PS49 Ke, H., Zhang, G., & Yan, H. (2009). Automatic Grading System on SQL Programming. In Proceedings of the 2009 IEEE International Conference
on Scalable Computing and Communications (ScalCom) (pp. 537–540). IEEE. doi.org/10.1109/EmbeddedCom-ScalCom.2009.105

PS50 Kenny, C., & Pahl, C. (2005). Automated Tutoring for a Database Skills Training Environment. In Proceedings of the 36th ACM Technical
Symposium on Computer Science Education (SIGCSE) (pp. 58–62). ACM. doi.org/10.1145/1047344.1047377

PS51 Leitheiser, R.L., & March, S.T. (1996). The Influence of Database Structure Representation on Database System Learning and Use. Journal of
Management Information Systems 12(4), 187-213. doi.org/10.1080/07421222.1996.11518106

PS52 Lertnattee, V., & Pamonsinlapatham, P. (2017). Blended learning for improving flexibility of learning structure query language (SQL). In
International Conference on Blended Learning (pp. 343–353). Springer. doi.org/10.1007/978-3-319-59360-9_30

PS53 Martín, C., Urpí, T., Casany, M.J., Burgués, X., Quer, C., Rodríguez, M.E., & Abelló, A. (2013). Improving learning in a database course using
collaborative learning techniques. International Journal of Engineering Education 29(4), 986-997.

PS54 Matos, V.M., & Grasser, R. (2002). Teaching tip: A Simpler (and Better) SQL Approach to Relational Division. Journal of Information Systems
Education 13(2), 19-28. http://jise.org/Volume13/n2/JISEv13n2p85.pdf

PS55 Matos, V.M., Grasser, R., & Jalics, P. (2006). The Case of the Missing Tuple: Teaching the SQL Outer-join Operator to Undergraduate Information
Systems Students. Journal of Computing Sciences in Colleges 22(1), 23-32. http://dl.acm.org/citation.cfm?id=1181811.1181814

PS56 McCann, L.I. (2003). On making relational division comprehensible. In Proceedings of the 2003 33rd Annual Frontiers in Education Conference
(FIE). IEEE. doi.org/10.1109/FIE.2003.1264699

PS57 Miao, Z., Roy, S., & Yang, J. (2019). ExplainingWrong Queries Using Small Examples. In Proceedings of the 2019 ACM Conference on Management
of Data (SIGMOD) (pp. 503–520). ACM. doi.org/10.1145/3299869.3319866

PS58 Mills, R.J., Dupin-Bryant, P.A., Johnson, J.D., & Beaulieu, T.Y. (2015). Examining learning styles and perceived benefits
of analogical problem construction on SQL knowledge acquisition. Journal of Information Systems Education 26(3), 203-217.
http://jise.org/Volume26/n3/JISEv26n3p203.pdf

PS59 Morris, S.A. (2008). Teaching Case: Remote Services, Inc. Journal of Information Systems Education 19(2), 147-156.
http://jise.org/Volume19/n2/JISEv19n2p147.pdf

PS60 Murray, M., & Guimaraes, M. (2008). Animated Database Courseware: Using Animations to Extend Conceptual Understanding of Database
Concepts. Journal of Computing Sciences in Colleges 24(2), 144-150. http://dl.acm.org/citation.cfm?id=1409823.1409855

Manuscript submitted to ACM

SQL education 29

Selected primary studies (cont.)

ID Publication

PS61 Myers, C., & Douglas, P. (2007). The Un-Structured Student. In Proceedings of the 24th British National Conference on Databases (BNCOD) (pp.
3–9). doi.org/10.1109/BNCOD.2007.22

PS62 Ortiz, J., Dietrich, S.W., & Chaudhari, M.B. (2012). Learning from Database Performance Benchmarks. Journal of Computing Sciences in Colleges
27 (4), 151-158. http://dl.acm.org/citation.cfm?id=2167431.2167457

PS63 Oussena, S., & Dunckley, L. (2007). Adopting Student-Centred Approach to Advanced Database Teaching. In Proceedings of the 24th British
National Conference on Databases (BNCOD) (pp. 10–14). doi.org/10.1109/BNCOD.2007.5

PS64 Pahl, C., Barrett, R., & Kenny, C. (2004). Supporting Active Database Learning and Training Through InteractiveMultimedia. In Proceedings of the
2004 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE) (pp. 27–31). ACM. doi.org/10.1145/1007996.1008007

PS65 Petrov, P., & Djolev, D. (2015). Combining the procedural and the set-based approaches in the teaching of SQL select statements in the
introductory databases course. In Proceedings of the International Scientific Conference Computer Science (pp. 249–254).

PS66 Qian, G. (2018). Teaching SQL: A Divide-and-conquer Method for Writing Queries. Journal of Computing Sciences in Colleges 33(4), 37-44.
http://dl.acm.org/citation.cfm?id=3199572.3199577

PS67 Randolph, G.B. (2003). The Forest and the Trees: Using Oracle and SQL Server Together to Teach ANSI-standard SQL. In Proceedings of the 4th
ACM Conference on Information Technology Curriculum (CITC) (pp. 234–236). ACM. doi.org/10.1145/947121.947174

PS68 Reilly, C.F. (2018). Experience with Active Learning and Formative Feedback for a SQL Unit. In Proceedings of the 2018 48th Annual Frontiers in
Education Conference (FIE). IEEE. doi.org/10.1109/FIE.2018.8659173

PS69 Renaud, K., & Van Biljon, J. (2004). Teaching SQL - Which Pedagogical Horse for This Course? In Proceedings of the 21st British National
Conference on Databases (BNCOD) (pp. 244-256). doi.org/10.1007/978-3-540-27811-5_22

PS70 Russell, G., & Cumming, A. (2004). Improving the Student Learning Experience for SQL Using Automated Marking. In Proceedings of the
International Conference on Cognition and Exploratory Learning in Digital Age (CELDA) (pp. 281–288).

PS71 Sastry, M.K.S. (2015). An Effective Approach for Teaching Database Course. International Journal of Learning, Teaching and Educational
Research 12(1). https://www.ijlter.org/index.php/ijlter/article/download/357/162

PS72 Seyed-Abassi, B. (1993). A SQL Project As a Learning Method in a Database Course. In Proceedings of the 1993 ACM Conference on Computer
Personnel Research (SIGCPR) (pp. 291–297). ACM. doi.org/10.1145/158011.158238

PS73 Silva, Y.N., Almeida, I., & Queiroz, M. (2016). SQL: From Traditional Databases to Big Data. In Proceedings of the 47th ACM Technical Symposium
on Computing Science Education (SIGCSE) (pp. 413–418). ACM. doi.org/http://doi.acm.org/10.1145/2839509.2844560

PS74 Smelcer, J.B. (1995). User errors in database query composition. International Journal of Human-Computer Studies 42(4), 353-381.
doi.org/10.1006/ijhc.1995.1017

PS75 Soflano, M., Connolly, T.M., & Hainey, T. (2015). An application of adaptive games-based learning based on learning style to teach SQL.
Computers & Education 86, 192-211. doi.org/10.1016/j.compedu.2015.03.015

PS76 Stajduhar, I., & Mausa, G. (2015). Using string similarity metrics for automated grading of SQL statements. In Proceedings of the 2015 38th Inter-
national Convention on Information, Communication and Electronic Technology (MIPRO) (pp. 1250–1255). doi.org/10.1109/MIPRO.2015.7160467

PS77 Sundin, L. & Cutts, Q. (2019). Is it feasible to teach query programming in three different languages in a single session?: A study on a
pattern-oriented tutorial and cheat sheets. In Proceedings of the 1st UK & Ireland Computing Education Research Conference (UKICER), p. 7.
ACM. doi.org/10.1145/3351287.3351293

PS78 Taipalus, T. (2019). Teaching Tip: A Notation for Planning SQL Queries. Journal of Information Systems Education 30(3), 160-166.
http://jise.org/Volume30/n3/JISEv30n3p160.pdf

PS79 Taipalus, T., & Perälä, P. (2019). What to Expect and What to Focus on in SQL Query Teaching. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (SIGCSE) (pp. 198–203). ACM. doi.org/10.1145/3287324.3287359

PS80 Taipalus, T., Siponen, M., & Vartiainen, T. (2018). Errors and Complications in SQL Query Formulation. ACM Transactions on Computing
Education 18(3), p. 15. doi.org/10.1145/3231712

PS81 Ullman, J.D. (2003). Improving the Efficiency of Database-system Teaching. In Proceedings of the 2003 ACM International Conference on
Management of Data (SIGMOD) (pp. 1–3). ACM. doi.org/10.1145/872757.872759

PS82 Vijayasarathy, L., & Casterella, G.I. (2016). The Effects of Information Request Language and Template Usage on Query Formulation. Journal
of the Association for Information Systems 17 (10), 674-707. doi.org/10.17705/1jais.00440

PS83 Wagner, P.J., Shoop, E., & Carlis, J.V. (2003). Using scientific data to teach a database systems course. In Proceedings of the 34th ACM Technical
Symposium on Computer Science Education (SIGCSE) (pp. 224–228). ACM. doi.org/10.1145/611892.611975

PS84 Watson, H.J., & Hoffer, J.A. (2003). Teradata university network: A new resource for teaching large data bases and their applications.
Communications of the Association for Information Systems 12(1), 131-144. doi.org/10.17705/1cais.01209

PS85 Wu, P.Y., Baugh, J.M., & Harvey, V.J. (2005). Teaching SQL in database management for adult continuing education. In Proceedings of the 2005
Information Systems Education Conference (ISECON). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.561.522&rep=rep1&type=pdf

PS86 Yen, M.Y. & Scamell, R.W. (1993). A human factors experimental comparison of SQL and QBE. IEEE Transactions on Software Engineering 19(4),
390-409. doi.org/10.1109/32.223806

PS87 Ying, M. & Hong, Y. (2011). The development of an online SQL learning system with automatic checking mechanism. In Proceedings of the 7th
IEEE International Conference on Networked Computing and Advanced Information Management (NCM) (pp. 346–351). IEEE.

PS88 Yue, K.B. (2013). Using a Semi-Realistic Database to Support a Database Course. Journal of Information Systems Education 24(4), 327-336.
http://jise.org/Volume24/n4/JISEv24n4p327.pdf

PS89 Zilligen, R., & Hidayat, A. (2008). A Misconception Module to a Database Courseware. In Proceedings of the 46th ACM Annual Southeast
Regional Conference (ACM-SE) (pp. 529–530). ACM. doi.org/10.1145/1593105.1593250

Manuscript submitted to ACM

30 Taipalus and Seppänen

B PRIMARY STUDY CLASSIFICATION

Primary study classification by topic and research type facets, PSs from primary study identifiers are omitted for brevity

Evaluation
research

Solution
proposal

Replication
study

Philosophical
paper

Opinion paper Experience
report

Student errors 02, 03, 04, 24,
74, 79, 80

61, 73 18 67

Exercise
database

05, 07, 11, 14,
15, 16, 17, 20, 21,
23, 31, 51, 82, 88

57, 83 62 41, 46, 68

Specific
teaching
approach

48 27, 54, 55, 56 28, 29, 37 86

Non-specific
teaching
approach

08, 13, 53 43, 58, 64 09, 38, 40, 60,
81, 89

19, 32, 33, 34, 52,
59, 63, 70, 71, 72

Patterns and
visualization

10, 45 06, 22, 30, 39,
42, 66, 78

77 65, 69

Teacher
workload

75 01, 12, 25, 26,
35, 36, 44, 47,
49, 76, 84, 87

85 50

Manuscript submitted to ACM

SQL education 31

C NUMBER OF PARTICIPANTS IN EACH PRIMARY STUDY

Number and type of participants in each primary study; primary studies that are not listed involved no participants, or did not report

participant numbers

Study Evidence Study Evidence

PS01 1,584 students PS31 116 subjects
PS02 approximately 161,000 queries from approximately

2,300 undergraduate students (possibly same data as
PS04)

PS33 75 students and 32 students

PS03 986 students PS44 21 students
PS04 approximately 161,000 queries from approximately

2,300 undergraduate students (possibly same data as
PS02), out of which 551 queries from 321 students stud-
ied in more detail

PS45 116 students

PS05 60 undergraduate students PS51 52 graduate business students
PS06 3 postgraduate students PS52 4 graduated [sic] students
PS07 342 subjects PS53 928 grades from 6 semesters
PS08 157 students PS55 22 undergraduate information systems students
PS10 88 undergraduate telecommunication students PS57 approximately 170 undergraduate students
PS11 95 advanced undergraduate and postgraduate students PS58 80 students
PS13 103 students PS66 120 students
PS14 23 graduate students PS70 over 300 undergraduate students
PS15 81 advanced undergraduate and graduate commerce

students (possibly same data as PS16 and PS17)
PS74 17 undergraduate business administration students

PS16 81 advanced undergraduate and graduate commerce
students (possibly same data as PS15 and PS17)

PS75 120 higher education students

PS17 81 advanced undergraduate and graduate commerce
students (possibly same data as PS15 and PS16)

PS76 393 student answers

PS19 48 students PS77 21 students
PS20 33 undergraduate junior and senior students in com-

puter information systems department
PS79 approximately 123,000 queries, out of which 8,773

queries from 744 undergraduate computer science and
information systems students studied in detail

PS21 63 undergraduate students PS80 approximately 33,000 queries from 237 students
PS23 112 subjects, but not everyone participated in all ex-

periments
PS82 63 students

PS24 47 subjects, out of which 24 used SQL PS86 65 students
PS88 186 students

Manuscript submitted to ACM

PII

ERRORS AND COMPLICATIONS IN SQL QUERY
FORMULATION

by

Toni Taipalus, Mikko Siponen, and Tero Vartiainen 2018

ACM Transactions on Computing Education, 18(3), Article 15

Reproduced with kind permission of the ACM.

39

Errors and Complications in SQLQuery Formulation

TONI TAIPALUS and MIKKO SIPONEN, University of Jyvaskyla, Finland

TERO VARTIAINEN, University of Vaasa, Finland

SQL is taught in almost all university level database courses, yet SQL has received relatively little attention in
educational research. In this study, we present a database management system independent categorization
of SQL query errors that students make in an introductory database course. We base the categorization on
previous literature, present a class of logical errors which has not been studied in detail and review and
complement these findings by analyzing over 33,000 SQL queries submitted by students. Our analysis verifies
error findings presented in previous literature and reveals new types of errors, namely logical errors recurring
in similar manners among different students. We present a listing of fundamental SQL query concepts we have
identified and based our exercises on, a categorization of different errors and complications and an operational
model for designing SQL exercises.

CCS Concepts: • Social and professional topics → Computing education; Computer science educa-

tion; Model curricula;

Additional Key Words and Phrases: Human factors, Languages, Standardization, Errors, Exercise Design,

Query Languages, SQL

ACM Reference Format:

Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2010. Errors and Complications in SQL Query Formulation.
ACM Trans. Comput. Educ. 9, 4, Article 39 (March 2010), 28 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Relational databases still dominate the field of enterprise applications [32], and Structured Query
Language (SQL) continues to be the de facto database query language. In addition to SQL’s current
popularity as a topic in database courses [7], the role of SQL in both courses and practice in the
future is strengthened by the recent emergence of NewSQL systems, which use SQL as their query
language [8, 41].
Different errors that users make have been studied extensively in programming [24] and to

some extent in other computer languages such as HTML and CSS [29]. Such studies contribute to
increased understanding of the difficulties that users experience in the process of learning new
languages [11]. Even though SQL was standardized by ANSI/ISO as early as 1986/1987 [14] and is
used widely today, SQL has received less attention in educational research than programming [1].
SQL still lacks a unified error categorization, and error categorizations presented in previous

studies [1, 34, 39] have focused on specific errors relevant only to each individual study or have
allowed a specific database management system (DBMS) to perform the categorization. DBMS-
specific SQL implementations differ from one another [31] and there exists no error categorization

Authors’ addresses: Toni Taipalus, toni.taipalus@jyu.fi; Mikko Siponen, mikko.t.siponen@jyu.fi, University of Jyvaskyla,
Faculty of Information Technology, P.O. Box 35 (Agora), FI-40014, Jyvaskyla, Finland; Tero Vartiainen, University of Vaasa,
Department of Computer Science, Wolffintie 34, P.O. Box 700, 65101, Vaasa, Finland, tero.vartianen@uva.fi.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1946-6226/2010/3-ART39 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Computing Education, Vol. x

39:2 T. Taipalus et al.

that is both DBMS-independent and also addresses a wide variety of different errors. Additionally,
no study is focused on categorizing student errors in SQL in detail in regard to data demand. As
defined by Buitendijk [6], data demand is a task expressed in natural language, e.g., “give me all
suppliers in London”, to which a student is required to write an equivalent SQL query. In other
words, all previous studies focused on errors that are apparent, even if the data demand was not
known [e.g., 4] or the focus of those studies was not in error categorization [e.g., 6].
An SQL standard based, unified error categorization will benefit database query teaching and

research by providing a framework by which study results are comparable, regardless of the DBMS
used or error types studied. Furthermore, a DBMS-independent error categorization is not limited to
pre-2010s relational implementations but extends to NewSQL systems as well. In terms of teaching,
this means that by teaching SQL in a way that conforms to the SQL standard, we are teaching
students the use of a query language that is usable in NewSQL systems [cf. 33] as well. With a
categorization explaining what errors occur, we can move toward understanding why those errors
occur and how we can adjust our teaching methods accordingly so that the occurrence of these
errors can be minimized or avoided.

Our work makes two main contributions. First, we review the previous literature on SQL errors
to form a basis for the unified error categorization in a DBMS-independent framework. We analyze
student data to review and complement these findings and present a categorization of different
errors. Second, we address an error class (namely logical errors, see Section 2.2) that has been
identified in a previous study [4] but has not been studied in detail, and we categorize SQL errors
within that class based on the analysis of student data.

In the next section, we review relevant studies on SQL errors. In Section 3, we describe the course
from which the student data was collected, the exercises and the procedure for error categorization.
In Section 4, we present the results of our study and compare them to previous research. In Section 5,
we discuss the practical implications of our results and in Section 6 present conclusions and future
work. Appendix A contains the database diagram presented to the students, and Appendix B
contains the SQL exercises with example answers.

2 BACKGROUND

We explored previous research in both computer languages in general and SQL in particular. We
conducted a keyword search in scientific databases, such as ACM, IEEE and Elsevier, with keywords
and keyword pairs sql, query, error, category and taxonomy. The publications we found also provided
us with references to related studies in other publications.

We have identified two error classes in previous studies: syntax and semantic errors. Before we
review error categories identified in previous studies, we discuss which error classes are the focus
of those studies and how these error classes are defined.

2.1 Terminology

The previous studies on SQL errors that we examined sometimes used conflicting definitions for
key terms, e.g., a query could be interpreted either as a statement in SQL [6] or a statement in
natural language [39]. Next, we define key terms for this work.

A query is an answer that is usually written by a student in SQL for a particular data demand. A
query is submitted to the DBMS, and the DBMS outputs a result table or an error message. Although
a query is commonly understood as any Data Manipulation Language (DML) statement, this work
focuses on data retrieval queries. For convention and clarity, SQL keywords are written in all capital
letters.

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:3

A database object is any object that exists in a database or can be defined with a Data Definition
Language (DDL) statement. Database objects include, but are not limited to, tables, columns,
schemas, aggregate and scalar functions, triggers and catalogs.

A clause is a part of a query initiated by one of the following keywords: SELECT, FROM, WHERE,
GROUP BY, HAVING or ORDER BY, and is followed by one of the previous keywords or a semicolon
terminating the whole statement. A source table is a table from which a query projects or calculates
values into the result table. A subject table is a table that is utilized to restrict rows in the result table.
From a single query’s point of view, a table may be a source and a subject table at the same time. A
query may contain zero to many source and subject tables. In a special case such as a self-join, the
same table may be a subject table multiple times from a single query’s point of view.
A WHERE clause is the main restriction clause of an SQL query, and we make a distinction be-

tween restrictions: table join conditions are called joins and other restrictions are called expressions.

2.2 Error Classes

Error categorization has been studied extensively in programming [e.g., 18, 23, 25], and these
languages, regardless of whether they were studied in the 1970s or 2010s, are all imperative by
nature, whereas SQL is a fundamentally different language in its declarative nature and purpose.
Errors in SQL query formulation have been studied in the past, and different categorizations

for errors have been presented [e.g., 39, 40]. Although these studies are still largely relevant, the
SQL standard has undergone several changes and received additional features, including the JOIN
predicate, outer joins and new data types. Furthermore, more easily understood teaching methods
have been proposed, e.g., teaching relational algebraic division with aggregate functions rather
than multiple NOT EXISTS subqueries [26].
We aim to establish an error categorization that is independent of the DBMS and whether or

not the DBMS is a traditional relational DBMS or a NewSQL system. Different DBMSs implement
the SQL standard differently, and although these differences may be minor, we cannot base our
error categorization on one DBMS. If we were to base, e.g., our syntax error categorization on SQL
Server, that syntax error categorization would not be ours, and the errors would be categorized
by the DBMS. Consequently, categorizing the same data with a different DBMS would result in
a different categorization. Because of these differences and the aim of our study, we use the SQL
standard as a reference when categorizing the errors.

Previous research [1, 2, 4, 6, 34, 39] categorizes SQL errors under two classes: syntax and semantic
errors. The division is intuitive because DBMSs detect syntax but not semantic errors. All the
aforementioned research agrees that a query containing a syntax error is not valid SQL, and the
DBMS returns an error message. We add that, whether or not a query contains a syntax error can
depend on the DBMS, e.g., query rewriters of some DBMSs like MySQL may automatically add
type casts to expressions such as order_number LIKE 100, while others like PostgreSQL may return
a syntax error. Because we consider syntax errors in accordance with the SQL standard, all syntax
errors are not necessarily caught (or tolerated) by the DBMS.

In regard to semantic errors, previous research presents definitions for different levels of precision.
Buitendijk [6, p. 79] states that a query that contains a semantic error is produced with “an erroneous
train of thought”. Buitendijk’s [6] study contains the word pair logical errors, but the SQL errors
that are not syntax errors are called semantic errors. However, Buitendijk [6] points out that it
is possible for a user to commit a logical error, which results in the query being incorrect for the
particular data demand. Smelcer [34] and Ahadi et al. [1] propose that the semantically incorrect
query is syntactically correct but returns information not intended by the user. Ahadi et al. [3]
state that a query with a semantic error produces either an empty result table or a result table that
is not the same as desired.

ACM Transactions on Computing Education, Vol. x

39:4 T. Taipalus et al.

Fig. 1. Error classes and their relationship with the result table and data demand

Brass and Goldberg [4] detail the semantic error definition by stating that the SQL query is legal
(i.e., syntactically correct) but does not always produce the intended results for a given data demand
(they use the word task). Brass and Goldberg [4] make a further distinction between queries that
are incorrect regardless of the data demand and queries that are incorrect for a particular data
demand. These authors leave the latter class of semantic errors outside of their study and state that
it is possible to implement functionality to DBMSs to detect the former class of semantic errors. We
consider these former and latter classes of semantic errors fundamentally different by definition
and from now on call the latter class logical errors and the former class semantic errors. To clarify
the difference between semantic and logical errors, consider queries Q1 and Q2 in a database of a
single table, EMP(empno, fname, sname, job):

Q1 [4]:
SELECT *
FROM emp
WHERE job = ’clerk’ AND job = ’manager’;

Q2:
SELECT *
FROM emp
WHERE job = ’clerk’ OR job = ’manager’;

Given that the database is in the first normal form, both of the expressions in Q1 can never
be true, and, therefore, the WHERE clause could be reduced toWHERE False, which will always
return an empty result table. It follows that, even without knowing what the data demand is, Q1
contains a semantic error. It could be argued that Q1 is correct if the data demand is to “list all
the information about employees whose job is both clerk and manager”, but this data demand is
not valid because, with this database structure, it is not possible to store more than one job per
employee. Q2, however, does not contain a semantic error. Whether or not Q2 contains a logical
error depends on the data demand associated with the query. If the data demand for Q2 is to “list
all the information about clerks and managers”, Q2 is correct. If the data demand is something else,
Q2 contains a logical error. Our work essentially builds upon Brass and Goldberg’s study [4]; they
recognize the existence of logical errors, but they leave logical errors outside of their study. Our
study verifies their semantic errors, discovers new semantic errors and studies logical errors in
detail, namely, what logical errors occur in query writing, and characteristics and frequencies of
those errors.

Brass and Goldberg [4] further propose that queries that are unnecessarily complicated are also
considered to contain a semantic error. While Brass and Goldberg focus on compiler warnings and
optimization in their study, and we focus on students learning SQL, we make a further distinction
between semantic errors and complications. Both semantic errors and complications share the
characteristic of being evident by reading the query without knowledge of the data demand, but
while semantic errors affect the data in the result table, complications do not (see Section 4.4).

Figure 1 summarizes the definitions we use in this study. The rectangles represent queries with a
certain characteristic, the leftmost query being without errors or complications. The text below
the rectangles represents the nature of the result table that the query returns. The rectangles with
dotted lines represent error classes that can be recognized without knowing the data demand.

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:5

3 STUDY

In order to create an unified SQL error categorization, our study had the research goal of catego-
rizing errors and complications in students’ SQL retrieval statements in an introductory database
course. As we categorize students’ errors during their learning processes, our research approach is
interpretive in nature. Interpretive studies may be divided into the types of “outside researcher” or
“involved researcher” [38], and our study represents the involved type, as the first author of our
study carries out the teaching activity and aims to develop database education based on the results
of this study. This “close involvement” [38] means that, as the course teacher, the first author is
close to the students who produce the SQL sentences and is therefore able to understand the context
of the data production, the problems students face and the issues emerging. Although this kind of
involvement is time and resource consuming, the first author’s involvement makes it possible to
create an in-depth understanding of how to develop education with respect to database teaching.
The error categorization is based on analysis of over 33,000 SQL queries submitted by 237 students
via an e-learning environment developed in the university of the first two authors. The queries
were collected during a one-semester course taught by the first author.

Writing the correct SQL query for a course assignment can take several tries, and making an
error or several errors does not necessarily mean that a student is unable to complete an assignment
[7]. However, our e-learning environment logs all queries submitted to the DBMS, thus offering
more fine-grained data than is usually available for analysis. The granularity of logging allows us
to move closer to the student in our analysis as proposed by Fincher et al. [13], as opposed to only
analyzing the final answers. If we only analyzed the final answers, it is possible that we would
miss some errors. For this course, the e-learning environment provides a minimal interface for the
students to communicate with the DBMS via a web browser. The user interface is an interactive
SQL prompt similar to those provided by most relational DBMSs. The difference in the e-learning
environment’s SQL prompt is that it is embedded to a web page and that the students are not
required to install anything. Even though different SQL learning environments have been studied in
the past [e.g., 5], for this work, the e-learning environment simply provided a method of collecting
data and was not the subject of the study.

3.1 Course

The course in question mostly follows the ACM/AIS IS 2010 curriculum [37] guidelines for the core
course in data and information management. Topics of the course include conceptual modeling,
relational model and algebra, SQL, normalization up to fourth normal form and data warehousing.
The course is primarily taken by second-year CS and IT majors but also by students from other
departments minoring in ICT with no previous experience in SQL.
Query languages are taught in five phases in the course. First, students are introduced to the

concept of relationally complete relational algebra, which lays the foundation for different opera-
tions that queries utilize to retrieve data from a relational database. In the next four phases, SQL
is introduced gradually by the four sublanguages DML, DDL, Data Control Language (DCL) and
Transaction Control Language (TCL).

In order for the reader to understand the scope of our study, it is worth discussing how and what
aspects of DML, namely data retrieval, are taught in the course. All the DML aspects in the course
are taught according to the SQL standard and without a product-specific dialect. Our e-learning
environment, however, utilizes the SQLite DBMS to which the student queries are sent. SQLite
returns a result table or an error message depending on the query submitted. In addition to the basic
concepts like SELECT, FROM and ORDER BY clauses, and basic operators like classic comparison,
LIKE, IS and IN, table joins are taught in four different methods: subqueries with IN, subqueries

ACM Transactions on Computing Education, Vol. x

39:6 T. Taipalus et al.

with EXISTS, explicit join without a subquery and the keyword JOIN and its features like OUTER
and NATURAL. The differences in syntax and the logic behind each of the methods are explained.
After that, a student is free to choose the methods to his or her liking and use those in practice.

Grouping concepts are also taught in the course to the extent of GROUP BY and HAVING clauses
as well as aggregate functions. More advanced SQL concepts like CASE, WINDOW, recursion,
non-primitive grouping [22, p. 345] or runtime SQL are not discussed (see Section 3.2 for more
details on the query concepts). We expect error categorization to provide the disciplinary knowledge
and the fine-grained student data to provide knowledge on how students learn, as proposed by
Tenenberg and McCartney [36].

The students were given the opportunity to complete assignments to earn points toward a better
grade, and among these assignments were 15 SQL retrieval statements. The students could choose
whether to omit or include their queries from the study, and everyone chose to participate. Points
were given regardless of participation. The students were given seven days and unlimited tries
to complete each of the three sets of assignments (see sets A, B and C in Table 1) wherever and
using whatever material available (course material, internet and any means of communication) to
more accurately mimic today’s work environments. The exercises within a set could be completed
in whatever order, and the correct result table was presented for each of the exercises during
the whole process so that the students could compare it with the result table produced by their
query. Although existing literature on this approach is limited, Ahadi et al. [2] note that, compared
to work environments, providing the correct result table constitutes in making the environment
unnatural, as nobody knows the correct result table when writing a query. Prior [30], however,
utilizes an approach similar to ours and suggests that providing the correct result table facilitates
query formulation skills. The students were also presented a database schema diagram representing
tables, their columns, data types and primary and foreign keys (see Appendix A). SQLite allowed
the students to obtain more detailed information on the database objects, if necessary.

3.2 Exercises

The exercises were completed using a database with 11 tables (see Appendix A). The data were
handcrafted, and each table contained 5-125 rows, with an average of 60 rows. Table 1 lists all the
fundamental concepts associated with each of the exercises. The data demand and one example
answer for each exercise are listed in Appendix B. While concepts like single-table, multi-table,

expressions, nesting, ordering and grouping are self-explanatory and discussed in many course books
[e.g., 12, 27], the more ambiguous concepts are explained below.
The concept named facing foreign keys describes a situation in which table A has a foreign key

constraint linking to table B, and table B linking to table A (see foreign keys between tables store
and employee in Appendix A). The concept named does not exist is expressed as a negated existential
quantifier (¬∃) in tuple relational calculus. Syntactically, the concept is simple and is achieved by
the logical operator not and in SQL with NOT EXISTS or NOT IN, followed by a subquery or with
OUTER JOIN.
The concept named equal subqueries stands for two or more subqueries that are not nested,

but on the same level (compare example answers B6 and B8 in Appendix B). Aggregate function
evaluated against a column value (Q3) and a constant (Q4) are special cases in which the result
returned by a aggregate function must be evaluated against a column value or a constant using a
comparison operator. The column or constant side of the evaluation is in the upper level query, and
the aggregate function is in the subquery. In the scope of our course, evaluation against a constant
usually requires a correlated subquery, whereas evaluation against a column value requires an
uncorrelated subquery. Note that such comparisons related to grouping restrictions accomplished
by the HAVING clause are not included in this concept.

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:7

Table 1. Each exercise’s fundamental concepts and the number of source and subject tables required to
write a correct query. Tables total lists the number of tables in the correct query’s FROM -clause or clauses.
Concepts marked with an asterisk are also used in Ahadi et al. [2]

Fundamental concepts Source

tables

Subject

tables

Tables

total

A1 single-table*; expressions 1 1 1
A2 single-table*; expressions; ordering 1 1 1
A3 single-table*; wildcard; expressions with nesting 1 1 1
B4 multi-table*; expressions; facing foreign keys 1 1 2
B5 multi-table*; expressions with nesting; ordering 1 3 3
B6 multi-table*; expressions; does not exist 1 2 3
B7 multi-table*; expressions; does not exist 1 2 2
B8 multi-table*; expressions; does not exist; equal subqueries 1 2 3
B9 single-table*; expressions; aggregate functions* 1 1 1
B10 multi-table*; expressions; multiple source tables 2 3 4
B11 multi-table*; expressions; self-join*; aggregate function eval-

uated against a column value; correlated subquery*
1 2 2

B12 multi-table*; expressions; aggregate function evaluated
against a constant; uncorrelated subquery*; parameter dis-
tinct

1 1 2

B13 multi-table*; expressions; self-join*; 1 5 5
C14 multi-table*; multiple source tables; aggregate functions*;

grouping*
2 1 2

C15 multi-table*; multiple source tables; aggregate functions*;
grouping*; grouping restrictions*; ordering

2 1 2

Q3:
[...]WHERE price =
(SELECT MAX(price)
FROM[...]

Q4:
[...]WHERE 8 <
(SELECT COUNT(*)
FROM[...]

Not all of the exercises test a novel fundamental concept but rather the student’s ability to
combine previously learned concepts in different contexts. For example, in multi-table queries,
simple expressions require the necessary understanding of the query language as well as the
database structure regarding an expression’s placement in the correct clause. Based on previous
teaching experience, we believe that a number of these concepts invite the possibility of different
logical errors. For example, a data demand that requires expressions with nesting invites the
possibility of missing or incorrect nesting, whereas a data demand with grouping restrictions
invites the possibility of insufficient grouping, a missing HAVING clause or missing expressions.

3.3 Methodology

From the diversity of interpretive research methods, we selected directed and conventional content
analysis [19] to study students’ SQL queries. Directed content analysis is used when prior research
exists about a phenomenon but the literature is perceived to be incomplete. In directed content
analysis, the existing theory is used to direct the analysis of the data, for example. The strength of
directed content analysis is that existing literature can be extended. Conventional content analysis

ACM Transactions on Computing Education, Vol. x

39:8 T. Taipalus et al.

is used to study the phenomenon when research literature or existing theory on the phenomenon
is limited. The emergence of categories is data-driven, meaning that preconceived categories are
not used [19]. In this study, we first produced a synthesis of errors based on existing literature,
and then the first author used directed content analysis to determine error categories in students’
SQL queries. Most of the errors were categorized, but there were errors not found in pre-existing
studies, especially in the class of logical errors. Therefore, conventional content analysis was then
used to study those uncategorized logical errors. Next, we report our analysis step-by-step.
First, we gathered the errors, complications and error categories listed or discussed by Welty

[39], Smelcer [34], Brass and Goldberg [4] and Ahadi et al. [1]. We did not discuss runtime SQL in
our course and left runtime errors discussed by Brass and Goldberg [4] outside our categorization.
Next, when it was possible in terms of the level of detail used in the previous studies, we considered
to which of the four classes the error or complication belonged.
Second, we grouped similar errors and complications in previous studies together. This was

done because some of the studies discussed similar concepts using slightly different names or
descriptions, e.g., “misspellings” by Smelcer [34] and “using AVE instead of AVG” by Welty [39]
were grouped together as “misspellings” in our listing.

Third, the first author used the lists of syntax errors, semantic errors and complications produced
in the previous step to perform directed content analysis on the student data, as proposed by
Shannon and Hsieh [19]. He grouped the SQL queries submitted by students by exercise number
and then by student, and then he sorted the queries by the timestamp the query was submitted to
the DBMS. We wanted the DBMS to influence the results as little as possible, and the first author
analyzed the data without any computerized automation, e.g., a DBMS or scripts. It was possible
for a single query to demonstrate several errors and complications. The first author coded queries
with appropriate codes corresponding to errors and complications found in previous literature.
Any query demonstrating a new error or complication was marked. The queries that were marked
were analyzed again to determine the classes of errors the query demonstrated. New syntax errors,
semantic errors and complications were given a new code, and if the query did not demonstrate a
logical error, the mark was removed.

Fourth, the first author analyzed the queries that were left marked in the previous step, i.e., queries
with logical errors, using conventional content analysis as proposed by Shannon and Hsieh [19].
Every time a new logical error was encountered, it was given a code and a brief description. After
all the data had been analyzed, the first author considered whether or not the logical errors were
sufficiently similar to be grouped together, e.g., he grouped “join with > operator, when equijoin is
required” and “join with < operator, when equijoin is required” together as “join with incorrect
comparison operator”. We decided not to disregard errors just because they were infrequent because,
intuitively, different exercises invite different errors, and just because an error is infrequent in our
exercises does not necessarily mean that it would be infrequent in some other exercises.

Finally, the first author grouped errors and complications together into categories within each of
the four classes. These eighteen categories each represent a distinct family of errors or complications
that are similar in nature. These eighteen categories, and whether they are new or previously
identified, are discussed in detail in Section 4.

4 RESULTS

All the SQL examples provided in this section contain an error demonstrating the related error
category. The queries submitted by students were often complicated but the errors simple; because
of this, the example queries in Section 4 are not actual student answers but modified by us for
brevity and clarity to represent the error in question as clearly as possible. Unless stated otherwise,
the database schema for the example queries is as presented in Appendix A.

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:9

We gathered syntax, semantic and logical errors found in previous literature and student data into
Table 2, Table 4 and Table 5, respectively. Complications are presented in Table 6. The references in
italics represent errors we also encountered in the student data. The errors without a reference are
new errors we did not find in previous studies but encountered in the student data. The numbers
inside brackets in the Discussed in -column correspond to errors numbered by Brass and Goldberg
[4], and the IDs in the ID column are defined by us in the coding phase, as reported in Section 3.3.
We have also briefly elaborated on some of the previously identified errors in the tables.

4.1 Syntax Errors

Syntax errors were numerous in the student data. We identified 23 errors in the previous literature,
some of which had different levels of overlapping. Overlapping is a result of the level of detail
errors are discussed in different previous studies, e.g., Ahadi et al. [1] list different cases where the
query refers to nonexistent database objects (error IDs 4-8), whereas Smelcer [34] abstracts these
cases to misspellings and synonyms (error IDs 9-10).

4.1.1 SYN-1 Ambiguous Database Object. Database objects, such as tables, schemas and catalogs,
each form namespaces on different levels in the database, and the DBMS prevents naming conflicts
within a namespace. In multi-table, multi-schema or multi-catalog queries, however, namespaces
are merged and, e.g., without additional qualifiers, column names can become ambiguous. In SQL,
these qualifiers are called correlation names (i.e., aliases), and omitting them leads to a syntax error
if the DBMS cannot resolve the database object to which the query refers.

Cleve et al. [9] researched a schema evolution of a database in which the number of tables grew
roughly from 100 to 450. A database of hundreds of tables creates a need for namespaces of different
levels, and the queries to such databases need correlation names of corresponding levels. We see
no need to divide this subcategory to more fine-grained categories, such as ambiguous columns,
tables, schemas or functions, since future standards may introduce new database objects.

4.1.2 SYN-2 Undefined Database Object. Queries with references to nonexistent database objects
cause a syntax error for the same reason as references to unambiguous database objects because
the DBMS cannot resolve the database object based on the information schema.

This category combines syntax errors for undefined columns, tables and functions and extends
the categorization to include all other database objects as well. Smelcer’s [34] names “synonyms”
and “misspellings” give some insight as to why these types of errors occur, such as the student
making a typographical error or remembering the object name incorrectly, e.g., customers instead
of customer. In these two cases, the error is relatively easy to fix, but the error can also be caused
by more severe problems, such as the failure to understand the database structure.

4.1.3 SYN-3 Data Type Mismatch. As pointed out in Section 2.2, some DBMSs handle some type
conversions automatically while others do not. We argue that the type conversion, i.e., using the
correct operator, should always rest on the query writer, especially when teaching SQL in order
to simulate a DBMS-independent environment. When appropriate operators are used and when
necessary type casts are explicit and in accordance with the SQL standard, the queries are more
portable from one DBMS to the other. Next, we elaborate on the common cases of this error based
on the student data.
First, we observed using an unfit operator for a column data type. Examples of these errors

include cases of using LIKE instead of a classic comparison operator, IS instead of LIKE and IN
with something other than a list with atomic values. Second, we observed omitting quotes around
character strings (error ID 11) or adding quotes around other data types such as numerical values
or Booleans.

ACM Transactions on Computing Education, Vol. x

39:10 T. Taipalus et al.

Table 2. Syntax errors and error categories

ID Error Discussed in

SYN-1 Ambiguous database object

1 omitting correlation names [34, 39]

2 ambiguous column [1]

3 ambiguous function [1]
SYN-2 Undefined database object

4 undefined column [1]

5 undefined function [1]

6 undefined parameter [1]

7 undefined object [1]

8 invalid schema name [1]

9 misspellings [34, 39]

10 synonyms [34]

11 omitting quotes around character data [34]

SYN-3 Data type mismatch

12 failure to specify column name twice [34]

13 data type mismatch [1]

SYN-4 Illegal aggregate function placement

14 using aggregate function outside SELECT or HAVING [39]

15 grouping error: aggregate functions cannot be nested [1]

SYN-5 Illegal or insufficient grouping

16 grouping error: extraneous or omitted grouping column [4] (21)

17 strange HAVING: HAVING without GROUP BY [4] (32)

SYN-6 Common syntax error

18 confusing function with function parameter [39]

19 using WHERE twice [34, 39]

20 omitting the FROM clause [34]

21 comparison with NULL [4] (9)

22 omitting the semicolon [1]

23 date time field overflow [1]
24 duplicate clause
25 using an undefined correlation name
26 too many columns in subquery
27 confusing table names with column names
28 restriction in SELECT clause (e.g., SELECT fee >10)
29 projection in WHERE clause (e.g., WHERE firstname, surname)
30 confusing the order of keywords (e.g., FROM customer SELECT fee)
31 confusing the logic of keywords (e.g. grouping instead of ordering)
32 confusing the syntax of keywords (e.g., LIKE (’A’, ’B’))
33 omitting commas
34 curly, square or unmatched brackets
35 IS where not applicable
36 nonstandard keywords or standard keywords in wrong context
37 nonstandard operators: (e.g., &&, || or ==)
38 additional semicolon

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:11

Third, we observed failure to understand that both sides of logical operators AND and OR must
be evaluated as Boolean values, i.e., arguments of WHERE and HAVING clauses must be Boolean
type (error ID 13). This was a particularly common syntax error with the LIKE operator, and, in
some rarer cases, a classic comparison operator was used to compare a value to a set of values. The
former case was demonstrated by Smelcer [34]. Fourth, we observed using a column as a function
parameter even though the column data type does not match the parameter’s required data type
(usually results in error ID 13).

4.1.4 SYN-4 Illegal Aggregate Function Placement. The only two clauses in which aggregate
functions COUNT, SUM, AVG, MIN and MAX can be used in the scope of our course are the SELECT
and HAVING clauses. Placing an aggregate function in any other clause or using an aggregate
function as a parameter to another aggregate function causes a syntax error. This syntax error was
common with exercises involving aggregate function evaluation against a column or a constant.

4.1.5 SYN-5 Illegal or Insufficient Grouping. According to the SQL standard, two approaches
exist to implement grouping, and we call the non-additional implementation strict [22, p. 321-328].
The strict approach determines that a query with at least one aggregate function and at least one
grouping column in the query’s main SELECT clause must contain a GROUP BY clause that groups
the result table according to all grouping columns and only the grouping columns. Execution of
such a query should result in a syntax error if grouping is missing altogether, grouping is not
applied to all grouping columns or grouping is applied to non-grouping columns.

The additional, less strict approach (optional feature T301) states that all the grouping columns
in the SELECT clause must be functionally dependent on the columns listed in the GROUP BY
clause [22, p. 341-349]. Although theories and implementations of automated functional dependency
discovery to various levels of reliability have been proposed [e.g., 17, 20, 21], the query processors of
relational DBMSs are seldom aware of the functional dependencies present in the database. Because
of this, we consider the T301 approach problematic when learning SQL. To briefly demonstrate the
matter, let us assume Table 3 and queries Q5 and Q6 for the remainder of this subsection only.

Table 3. Customer table

cno fee

1 0
2 10
3 10

Q5:
SELECT cno, MAX(fee)
FROM customer;

Q6:
SELECT cno, MIN(fee), MAX(fee)
FROM customer;

We found this error particularly interesting because of different popular DBMS default settings.
Because the grouping is missing, both Q5 and Q6 return a syntax error in PostgreSQL, Oracle
Database, SQL Server and DB/2, all of which are among the most popular relational DBMSs. MySQL
and SQLite, however, return a result table that contains one row based on the execution plan. It is
worth noting that the result table returned by Q6 contains a spurious row, either (2, 0, 10) or (3, 0,
10). Furthermore, the row in the result table changes based on the order of the aggregate functions.
The outcome of implementing the T301 approach and the fact that the query processor is not
aware of functional dependencies is that grouping can be applied to whatever columns or omitted

ACM Transactions on Computing Education, Vol. x

39:12 T. Taipalus et al.

completely. We extend this category to the HAVING clause as well because it is closely related
to grouping, and the same approaches (strict and T301) apply to it. Our e-learning environment
utilized SQLite, which implements the T301 approach for grouping by default, and because we
overlooked this possibility when designing the exercise data, approximately 59% of the 158 students
who solved exercise B11 used a similar erroneous query and, satisfied with the result table, moved
on to the next exercise. Queries Q7 and Q8 explain the name of this error category.

Q7:
SELECT cno, AVG(fee)
FROM customer
GROUP BY city;

Q8:
SELECT cno, city, AVG(fee)
FROM customer
GROUP BY city;

Since customer number (cno) is not functionally dependent on city, Q7 displays illegal grouping
and Q8 insufficient grouping. To sum up, insufficient or illegal grouping causes no syntax error
in some popular DBMSs, but we cannot find any data demand by which having a result table
with a spurious row or a row that is seemingly but not truly random could be useful. Based on
the arguments above, we consider this a syntax error, and not a semantic or logical error unless
functional dependencies can be reliably identified and utilized by the DBMS to prevent behavior
not conforming to the SQL standard.

4.1.6 SYN-6 Common Syntax Error. Because syntax errors were numerous and diverse, we
categorized all syntax errors not fitting in clear patterns as common syntax errors, similar to
Ahadi et al. [1]. Examples of common syntax errors were misspellings of SQL keywords, missing
semicolon, brackets or commas, projection in a wrong clause, incorrect clause ordering and missing
clauses.
Without the FROM clause, no column values can be projected or calculated since no tables

or views are declared. Although Smelcer [34] categorizes FROM clause omission as a semantic
error, we consider it a syntax error since the SQL standard requires the FROM clause [22, p. 55-56].
Although some of the popular implementations conform to the SQL standard in this regard, others
such as PostgreSQL allow the FROM clause to be omitted, e.g., to perform calculations or calling
scalar functions that do not necessarily operate on database data. In such cases, omitting the FROM
clause is not a semantic or logical error.

4.2 Semantic Errors

Brass and Goldberg [4] state that their semantic error listing has “a certain degree of completeness”
and our findings support theirs; thus, we found few semantic errors not listed in their study. We did
not encounter errors regarding UNION in the student data because none of our exercises required
the use of UNION. Similarly, errors regarding OUTER JOIN were rare in the student data due to
the fact that most of the students chose to solve the exercises dealing with the concept of does not
exist with NOT IN or NOT EXISTS rather than using OUTER JOIN.

4.2.1 SEM-1 Inconsistent Expression. An inconsistent expression is an expression that causes
the result table to be empty or to contain all rows. Smelcer [34] lists four sample cases of AND/OR
difficulties, some of which are semantic errors and some clearly syntax errors.

A common example of an inconsistent expression in the student data was when the data demand
implied anANDoperator even thoughORwas required (e.g., exercise A1).We also grouped problems
with wildcards to this subcategory. Examples of wildcard errors included using an asterisk instead
of a percent sign, confusing the functionality of percent and underscore signs, using wildcards
with classical comparison operators or with IN and errors with null comparison.

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:13

Table 4. Semantic errors and error categories

ID Error Discussed in

SEM-1 Inconsistent expression

39 AND instead of OR (empty result table) [34]

40 implied, tautological or inconsistent expression [4] (1, 8)

41 DISTINCT in SUM or AVG [4] (33)

42 DISTINCT that might remove important duplicates [4] (38)

43 wildcards without LIKE [4] (34)

44 incorrect wildcard: using _ instead of % or using, e.g., *
45 mixing a >0 with IS NOT NULL or empty string with NULL
SEM-2 Inconsistent join

46 NULL in IN/ANY/ALL subquery [4] (10)

47 join on incorrect column (matches impossible) [4] (29, 31)

SEM-3 Missing join

48 omitting a join [4, 34] (27, 28)

SEM-4 Duplicate rows

49 many duplicates [4] (37)

SEM-5 Redundant column output

50 constant column output [4] (3)

51 duplicate column output [4] (4)

4.2.2 SEM-2 Inconsistent Join. An inconsistent join is an error that causes the result table to be
empty or, if there are no other restrictions, contain all the rows, and it is certainly not intended by
the query writer. Examples of inconsistent joins in the student data were multi-table join conditions
using columns with data types that did not match or that matched but had data ranges that never
overlapped, resulting in the join condition returning no rows. Self-joins using a wrong correlation
name were also observed.

Q9:
SELECT cust_id
FROM customer
WHERE cust_id IN
(SELECT renno
FROM rental);

Q10:
SELECT s1.stono, s1.street
FROM store s1, store s2
WHERE s1.city = s1.city
AND s2.stono = 100
AND s1.stono <>100;

Q9 demonstrates a join condition using columns that have different data types and no overlapping
values. The join condition in Q10 by itself does not restrict any rows because one of the correlation
names in the join is incorrectly s1 instead of s2.

4.2.3 SEM-3 Missing Join. Based on the student data, we noticed that table joins using IN or
JOIN contained fewer missing joins than joins with EXISTS or explicit join conditions without
subqueries. Even though a table join is usually required in multi-table queries, some special cases
exist in which omitting the join is desired. This argument is also supported by the SQL standard that
specifies an optional feature (F401-04) specifically for joinless (i.e., no column values are compared)
multi-table queries; CROSS JOIN [22, p. 1197]. Practical implications for joinless multi-table queries,
however, are scarce. We emphasize the meaning of the word missing here. A query contains this

ACM Transactions on Computing Education, Vol. x

39:14 T. Taipalus et al.

semantic error if a join is clearly implied (but omitted) for the result table to contain meaningful
data.

4.2.4 SEM-4 Duplicate Rows. Duplicate rows in the result table serve no purpose. We consider a
query that by design invites the possibility of duplicate rows to contain a semantic error. Duplicate
rows returned by the DBMS cause more data to be transferred between the disk and buffer, between
software tiers and possibly in the network. Duplicate rows also make the result table more difficult
to read for the end user. The error is remedied by using DISTINCT when needed. It is worth noting
that DISTINCT should not be used unnecessarily because it can decrease performance [4].

4.2.5 SEM-5 Redundant Column Output. Redundant column output demonstrates a projection
error that causes the result table to contain one or more columns that provide no useful data.
Brass and Goldberg [4] demonstrated two semantic errors related to redundant column outputs:
constant column output and duplicate column output. Even though it could be argued that SEM-4
and SEM-5 represent a similar concept, i.e., redundant data in the result table, we argue that they
demonstrate a different kind of error. SEM-5 represents errors that are possible for the student
to identify relatively easily even before running the query. SEM-4, however, can result from the
student using different methods for joining tables, e.g., a join with IN is less likely to produce
duplicate rows than an explicit join without a subquery.

4.3 Logical Errors

We discovered 30 logical errors, 28 of which were not discussed in previous studies. Contrary to
syntax and semantic errors that have been demonstrated in previous studies, we have provided
more examples of logical errors listed in Table 5.

4.3.1 LOG-1 Operator Error. For this category, we grouped together errors concerning com-
parison and logical operators. Operator errors cover errors with missing, extraneous (i.e., not
required) or misplaced operators, such as NOT, confusions with classical comparison operators and
BETWEEN, and using OR instead of AND. Note that using OR instead of AND can be a logical
or semantic error depending on the columns compared and other expressions in the clause. Two
particularly interesting and common examples of operator errors (IDs 55 and 56) were related to
existence negation in exercises B7 and B8. For brevity, let us consider the data demand “list the
surnames of actors who have never acted in a movie released in 2015”:

Q11:
SELECT a.sname
FROM actor a
WHERE EXISTS
(SELECT *
FROM acts s);
WHERE a.actno = s.actno
AND EXISTS
(SELECT *
FROM movie m
WHERE s.movno = m.movno
AND m.year <>2015)

);

Q12:
SELECT a.sname
FROM actor a
WHERE EXISTS
(SELECT *
FROM acts s);
WHERE a.actno = s.actno
AND NOT EXISTS
(SELECT *
FROM movie m
WHERE s.movno = m.movno
AND m.year = 2015)

);

Both Q11 and Q12 contain a logical error and answer to different data demands: “list the names
of actors who have acted in at least one movie not released in 2015” and “list the names of actors

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:15

Table 5. Logical errors and error categories

ID Error Discussed in

LOG-1 Operator error

52 OR instead of AND
53 extraneous NOT operator
54 missing NOT operator
55 substituting existence negation with <>
56 putting NOT in front of incorrect IN/EXISTS
57 incorrect comparison operator or incorrect value compared
LOG-2 Join error

58 join on incorrect table
59 join when join needs to be omitted
60 join on incorrect column (matches possible)
61 join with incorrect comparison operator
62 missing join
LOG-3 Nesting error

63 improper nesting of expressions [34]

64 improper nesting of subqueries
LOG-4 Expression error

65 extraneous quotes [39]

66 missing expression
67 expression on incorrect column
68 extraneous expression
69 expression in incorrect clause
LOG-5 Projection error

70 extraneous column in SELECT
71 missing column from SELECT
72 missing DISTINCT from SELECT
73 missing AS from SELECT
74 missing column from ORDER BY clause
75 incorrect column in ORDER BY clause
76 exraneous ORDER BY clause
77 incorrect ordering of rows
LOG-6 Function error

78 DISTINCT as function parameter where not applicable
79 missing DISTINCT from function parameter
80 incorrect function
81 incorrect column as function parameter

who have acted in at least one movie but not in a movie that was released in 2015”, respectively.
Although both of the examples above are syntactically and semantically correct, they display a lack
of understanding of either the functionality of the language, the data demand or both. Moreover,
both of these queries will likely return a seemingly correct result table in terms of the number of
rows returned. Although we discuss these errors in the lectures prior to the exercises, the error
demonstrated in Q11 was common in the student data.

ACM Transactions on Computing Education, Vol. x

39:16 T. Taipalus et al.

4.3.2 LOG-2 Join Error. The student data showed a common join-related error in one of the
exercises. Because the tables employee and store had facing foreign key constraints between them,
the students were required to choose the appropriate columns for the table join. Consider Q13 with
respect to the data demand “list the city and phone number of the store in which Jaakko Mattila
works”:

Q13:
SELECT s.city, s.phone
FROM store s, employee e
WHERE s.empno = e.empno
AND e.fname = ’Jaakko’
AND e.sname = ’Mattila’;

Q14:
SELECT COUNT(*) AS total
FROM movie m, acts a
WHERE m.movno = a.movno
AND m.year BETWEEN 1970 AND 2000;

Because the join condition is erroneous (error ID 60), the result table shows the cities and phone
numbers of the stores of which Jaakko Mattila is responsible for (but does not necessarily work in).
Again, the result table can be seemingly correct depending on the number of stores an employee
can be responsible for. Although this type of error might be mitigated by renaming the columns
with more descriptive names, e.g., manager_empno, this exercise served as a demonstration of the
importance of choosing the correct columns for a table join and that a NATURAL JOIN, although
preferable in terms of enforcing uniform column names and code maintainability, is not always
possible.

Q14 demonstrates an extraneous join condition for the data demand “list the number of movies
released between the years 1970 and 2000.” The example contains a join condition that checks
whether or not the movie has any actors, thus possibly limiting the results. In this case, the join must
be omitted for the query to be logically correct. A join on incorrect table (error ID 58) means that a
join was required by the data demand, and the query contained a syntactically and semantically
legal join but on an incorrect table. Missing join (error ID 62) as a logical error differs from missing
join listed in semantic errors. Consider the example answer for exercise B8 in Appendix B; if we
omit the last subquery, the query is still semantically correct but logically incorrect.

4.3.3 LOG-3 Nesting Error. Difficulties with Boolean logic are a recognized and studied phe-
nomenon in query writing [16], and we categorized these errors as nesting errors, i.e., erroneous
use of brackets. This subcategory is also listed by Smelcer [34] under AND/OR difficulties as
improper nesting. Smelcer demonstrated improper nesting with an example of improper nesting of
expressions. We extend this category with improper nesting of subqueries.

Q15:
SELECT fname, sname
FROM actor
WHERE sname LIKE ’F%’
OR sname LIKE ’S%’
AND dob IS NULL
OR dod IS NOT NULL;

Q16:
SELECT c.fname, c.sname, c.dob
FROM customer c
WHERE NOT EXISTS
(SELECT *
FROM rental rt
WHERE c.cust_id = rt.cust_id
AND EXISTS
(SELECT *
FROM review rv
WHERE c.cust_id = rv.cust_id)

);

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:17

Q15 (see exercise A3 in Appendix B) is similar to the one demonstrated by Smelcer [34]. A
query that has both AND and OR operators in a single WHERE clause usually requires nesting the
expressions. Errors with subquery nesting were expected in exercises with equal subqueries (B8).
For Q16, consider the data demand “list the full names and dates of birth of customers who have
never rented a movie but who have given at least one review.” Because the subqueries are nested
and not equal (i.e., on the same level) in Q16, the query functions like an exclusive OR operator
even though that might not be outright evident by reading the query. In other words, the query
returns a result table that contains the data of customers who have rented or reviewed at least one
movie but have not done both.

4.3.4 LOG-4 Expression Error. We identified three straightforward logical errors related to
expressions: missing expression, extraneous expression and expression on incorrect column. We
observed missing expressions to be common in all queries and expressions on incorrect columns
particularly common in queries involving self-joins. Consider the data demand “list the phone
numbers of stores which are in the same city as store #100” for both Q17 and Q18.

Q17:
SELECT DISTINCT s1.phone
FROM store s1, store s2
WHERE s1.city = s2.city
AND s2.stono = 100;

Q18:
SELECT DISTINCT s1.phone
FROM store s1, store s2
WHERE s1.city = s2.city
AND s1.stono = 100
AND s2.stono <>100;

Q17 demonstrates a missing expression: the result table also contains the phone number of store
#100, which is not desired. Q18 demonstrates an expression on the wrong column: the result table
contains only one row representing store #100 if the store is in the same city as some other store. We
also identified two more intricate expression errors. The first, extraneous quotes, is demonstrated
by Welty [39]. The second error was placing the expression in an incorrect clause, e.g., placing the
expression in WHERE clause instead of HAVING clause or vice versa, or placing the expression in
an incorrect WHERE clause.

Q19:
SELECT sname, SUM(fee)
FROM customer
WHERE fee >= 100
GROUP BY sname;

Q20:
SELECT sname, SUM(fee)
FROM customer
GROUP BY sname
HAVING SUM(fee) >= 100;

Consider Q19 with the data demand “list the sums of fees of customers by surname. Omit
surnames with sums below 100 euros” and Q20 with the data demand “list the sums of fees of
customers by surname. Calculate only individual fees of 100 euros and above.” Both Q19 and Q20
contain a logical error and answer to each other’s data demands.

4.3.5 LOG-5 Projection Error. Projection errors are related to column listings in ORDER BY and
the main SELECT clauses. We identified four projection errors in the main SELECT clause: missing
column, extraneous but non-redundant column, missing DISTINCT and missing AS when it was
required to rename a column in the result table.
Regarding ORDER BY clause, we identified four projection errors: fully or partially missing

ORDER BY clause, extraneous column in ORDER clause, incorrect column in ORDER BY clause and
incorrect ordering of rows. Although an extraneous ORDER BY clause may not affect the result

ACM Transactions on Computing Education, Vol. x

39:18 T. Taipalus et al.

table, ordering will usually negatively affect performance. Therefore, ordering should not be used
if it is not required.

Q21:
SELECT stono, city, zip
FROM store
ORDER BY city ASC, zip DESC;

Q22:
SELECT stono, city
FROM store
ORDER BY stono ASC, city ASC;

Q21 demonstrates incorrect ordering when the data demand is to “list the store numbers, cities
and zip codes and sort the results in ascending order by city and then in ascending order by zip
code.” Q22 demonstrates incorrect ordering when the data demand requires that the results are to
be sorted using city first and then, within a city, by store number. Q22 achieves the opposite.

4.3.6 LOG-6 Function Error. We identified four aggregate function errors in the student data:
incorrect function, incorrect column as function parameter, using DISTINCT as function parameter
where not applicable and missing DISTINCT from function parameter.

Q23:
SELECT SUM(fee)
FROM customer
WHERE fee >10;

Q24:
SELECT COUNT(dob)
FROM customer
WHERE fee >10;

The data demand for both Q23 and Q24 is to “list the number of customers with a fee over 10
euros”, but Q23 instead lists the sum of all customers’ fees and demonstrates the use of an incorrect
function. Q24 demonstrates the use of an incorrect column as a function parameter. Using date of
birth as a function parameter for counting customers with a fee may yield erroneous results since
the value of the date of birth can be null.
Our exercise database contained data on movies, actors and actors’ participation in different

movies. As in real life, the exercise database contained movies in which the same actor acts several
roles. Q25 demonstrates a missing DISTINCT when the data demand is to list the names of actors
who have acted in at least eight different movies.

Q25:
SELECT ar.fname, ar.sname
FROM actor ar
WHERE 7 <
(SELECT COUNT(ac.movno)
FROM acts ac
WHERE ar.actno = ac.actno);

Q26:
SELECT COUNT(DISTINCT zip)
FROM store;

Because the DISTINCT keyword is omitted from the function parameter, the function may count
the same movie multiple times. Only one of the exercises required the use of a parameter DISTINCT,
and approximately 45% of the 152 students who attempted exercise B12 could not formulate the
correct query. Q26 demonstrates using DISTINCT as function parameter where it is not applicable.
The data demand for Q26 is to “list the number of stores with a known zip code”.

4.4 Complications

Similar to semantic errors, complications are evident without knowledge of the data demand, but
unlike semantic errors, complications do not affect the result table. Queries with complications

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:19

return the correct result table but could be formulated in a simpler fashion. Such complications can
affect the readability of the query and cause performance issues.

Table 6. Complications

ID Complication Discussed in

82 unnecessary complication [4] (unnumbered)

83 unnecessary DISTINCT in SELECT clause [4] (2)

84 unnecessary join [4] (6)

85 unused correlation name [4] (5)

86 correlation names are always identical [4] (7)

87 unnecessarily general comparison operator [4] (11)

88 LIKE without wildcards [4] (12)

89 unnecessarily complicated SELECT in EXISTS subquery [4] (13)

90 IN/EXISTS can be replaced by comparison [4] (14)

91 unnecessary aggregate function [4] (15)

92 unnecessary DISTINCT in aggregate function [4] (16)

93 unnecessary argument of COUNT [4] (17)

94 unnecessary GROUP BY in EXISTS subquery [4] (18)

95 GROUP BY with singleton groups [4] (19)

96 GROUP BY with only a single group [4] (20)

97 GROUP BY can be replaced with DISTINCT [4] (22)

98 UNION can be replaced by OR [4] (23)
99 unnecessary column in ORDER BY clause [4] (24)

100 ORDER BY in subquery
101 inefficient HAVING [4] (25)

102 inefficient UNION [4] (26)
103 condition in the subquery can be moved up [4] (30)

104 condition on left table in LEFT OUTER JOIN [4] (35)
105 OUTER JOIN can be replaced by INNER JOIN [4] (36)

Most of the complications were already recognized by Brass and Goldberg [4], who proposed four
different reasons why a query writer (i.e., in our study, a student) would formulate a query that is
unnecessarily complicated. One of the proposed reasons is that the student does not even consider
an exemplary query. The other three reasons propose that the student considers an exemplary
query but discards it as either erroneous, suboptimal in terms of performance or more difficult to
read or maintain compared to his or her unnecessarily complicated query.
Common complications in the student data were unnecessary joins, using DISTINCT when it

is not needed, and declaring correlation names that are never used. Another complication also
common in the student data was an expression with no impact on the evaluation of the WHERE or
the HAVING clause, e.g., WHERE fee >= 0, even though the expression is enforced by a CHECK
constraint. One complication we did not observe in previous studies was using ORDER BY in a
subquery. It is worth noting that, given the nature of complications, we should focus primarily on
the errors in teaching, which affect the result table, and secondarily on complications, which affect
performance.
Table 7 summarizes the frequencies of all eighteen categories for each of the exercises. As

speculated in Section 3.2, certain query concepts appear to invite certain errors. Conversely, some

ACM Transactions on Computing Education, Vol. x

39:20 T. Taipalus et al.

errors are absent in some exercises. For example, function errors (LOG-6) are not observed before
exercise B9, possibly because the data demands in exercises A1-B8 do not imply the use of aggregate
functions, or possibly because the students are not yet even aware of the concept of aggregate
functions.

Table 7. Error and complication frequencies by category. A number represents the percentage of queries that
contained an error or complication belonging to a category, among the queries for a specific exercise.

A1 A2 A3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 C14 C15

SYN-1 0.0 0.0 0.0 0.9 0.5 0.0 0.6 0.0 0.0 0.9 0.0 0.6 0.0 0.3 4.4
SYN-2 25.9 20.4 1.9 19.5 15.5 4.0 10.1 10.7 8.0 11.1 8.7 4.7 2.0 4.9 6.5
SYN-3 22.3 7.8 4.2 2.6 1.0 30.3 4.9 3.3 2.3 9.8 6.7 3.4 0.5 1.0 1.5
SYN-4 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.9 0.0 0.0 9.3 1.7 0.0 0.0 2.5
SYN-5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.4 47.3 15.1 0.0 62.2 67.3
SYN-6 28.9 8.7 30.7 26.0 31.6 17.4 17.5 15.3 23.9 37.8 11.3 20.4 22.9 12.8 26.5
SEM-1 6.6 0.0 19.2 0.4 1.5 3.0 6.5 10.7 19.3 0.4 10.0 4.2 1.5 9.0 12.4
SEM-2 0.0 0.0 0.0 3.9 4.9 3.1 0.6 0.5 0.0 1.8 0.0 6.1 0.0 2.8 0.0
SEM-3 0.0 0.0 0.0 1.7 0.0 3.5 8.1 1.9 0.0 19.6 2.0 8.9 13.9 14.9 11.3
SEM-4 0.6 0.0 0.0 0.8 0.8 0.2 0.4 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
SEM-5 2.4 3.9 3.5 0.0 0.0 0.5 0.0 0.0 0.0 5.8 0.0 0.0 0.0 0.3 0.0
LOG-1 0.0 0.0 3.2 0.4 16.1 0.0 62.2 43.7 2.3 12.4 9.3 17.6 1.1 0.0 0.4
LOG-2 0.0 0.0 0.6 58.0 27.2 7.0 7.1 45.6 0.0 24.4 47.3 23.2 23.9 0.7 6.2
LOG-3 0.0 0.0 47.3 0.0 0.0 2.2 0.0 38.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LOG-4 10.2 28.2 32.9 49.8 35.9 35.3 30.2 59.5 18.2 9.3 58.7 21.8 38.3 31.3 40.4
LOG-5 2.4 60.2 5.1 11.3 67.2 62.7 15.6 2.3 36.4 40.4 10.7 6.7 12.9 67.4 60.1
LOG-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.2 0.0 5.3 56.1 0.0 21.5 13.8
COMP 41.6 76.7 0.6 50.6 10.7 64.2 75.3 28.4 4.5 48.4 89.3 49.4 66.2 24.0 9.5

5 DISCUSSION

In this study, we categorized student errors in SQL, a long-lived and popular database query
language, and proposed a DBMS-independent categorization of syntax, semantic and logical errors
and complications. In this section, we present considerations regarding our results, propose an
operational model for designing SQL exercises for a database course and discuss the limitations of
our study.

5.1 Regarding the Results

Based on the analyzed data, our findings showed similar syntax errors reported by Smelcer [34]
and Ahadi et al. [1]. We encountered similar syntax errors as Ahadi et al. [1, 2], even though they
used a different DBMS than us. In terms of syntax errors, we expected and encountered many
errors regarding grouping. As criticized by Date [10] over thirty years ago, grouping rules in SQL
can cause somewhat anticipated confusion, and this has not changed considering the analyzed
data. While some syntax errors were clear misspellings and did not relate to a student’s skill, other
syntax errors, such as illegal aggregate function placement or illegal grouping, displayed inadequate
knowledge about the query language.
Grandel et al. [15] report in their study a comparison of student errors in Java and Python and

conclude that the syntax of the language can reduce both syntax and logical errors. Furthermore,

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:21

Stefik and Siebert [35] reported that the syntax of a programming language influences both the
perceived and actual difficulty of the task. Given this information, the simple syntax of SQL might
encourage students to try solving the given exercises. On the other hand, more complex tasks may
be perceived simpler than they actually are, resulting in fallacies such as those demonstrated in
Section 4.1.5.

Since no result table is returned, we considered syntax errors to be the easiest for a student to spot
and fix because of the error message received.We considered other kinds of errors and complications
to be more problematic, e.g., complications can cause additional workload on the system, network
or both, and may never be fixed as the system, apart from possible performance issues, works as
expected. Semantic errors identified in the student data support Brass and Goldberg’s [4] listing,
where applicable.

It is worth noting that a recent study by Ahadi et al. [3] investigated errors made by students
when learning SQL. Ahadi et al. [3] make no distinction between semantic and logical errors but
list similar logical errors we encountered in the student data, namely error IDs 62, 66-68, 70-72 and
74-76 in Table 5. In fact, even though their study does not focus on what errors students make, but
more on why certain errors occur, errors listed in their study show clear similarities to our findings.
These similarities support our findings and show that the errors students make share common
patterns, no matter the teacher, teaching methods or the database domain. The error types listed
by Ahadi et al. [3] did not affect our categorization because their study was published after our
data analysis was completed.

The previously little-studied class of logical errors displayed patterns that we have encountered in
our teaching in the past, such as errors with nesting, misplaced NOT operators, missing expressions
and confusions with does not exist. Our error findings benefit future SQL research by providing
an a unified and DBMS-independent categorization of various errors: future studies may use this
categorization to identify and analyze errors without the need to establish their own. Our study
also adds to the understanding of what difficulties students face when learning SQL, specifically
the difficulties with understanding how the language logically operates.

5.2 Designing SQL Exercises

Our categorization of errors provides teachers with a framework of what kind of errors to expect
when teaching SQL in an introductory database course. Specifically, considering the results of
the study, logical errors are among the key points that cause difficulties with SQL logic among
students. In this section, we propose an operational model for designing SQL exercises based on
the fundamental concepts used in our exercises, our error categorization framework and positive
experiences in the course.
After designing the exercise database structure, we design each of the query exercises around

selected fundamental concepts, e.g., similar to those presented in Table 1, and recognize different
errors those exercises may invite. When fundamental concepts for each exercise are recognized
and acknowledged, we know what errors we as teachers might expect. As we know what errors
to expect, we can mitigate the problems students face with purposeful data. Next, we populate
the exercise database tables with appropriate amounts of data. We design the exercise data with
the expected errors for all exercises in mind. When we are aware of erroneous result tables and
the expected errors they are associated with, we can provide students with appropriate feedback.
Concerning Figure 2, a query q1 will have a correct result table RTc and expected logical errors
e1, e2 and e3 with their associated, erroneous result tables RTen . For example, in exercise B7, the
teacher could identify three likely errors. First, there is the potential for confusion with does

not exist. If a student erroneously formulates does not exist similarly to Q11, the result table will
contain movies released in 2000-2009, of which there exists at least one copy that is not a BluRay

ACM Transactions on Computing Education, Vol. x

39:22 T. Taipalus et al.

Fig. 2. Query q1, expected result tables and errors associated with each result table.

(LOG-1). Second, if a student places the year expression into the subquery’s WHERE clause instead
of the main query’s, the result table will contain movies released in 2000-2009, of which there
does not exist a copy in BluRay format, and movies which are not released in 2000-2009 (LOG-4).
Third, if the student formulates the query as in the example answer for B7 but omits the join,
the result table will be empty (SEM-3). Each of these erroneous result tables can be identified,
and feedback can be provided accordingly to the student. This feedback can be integrated into
e-learning environments by comparing the actual result table with result tables produced by queries
with expected errors. Such e-learning environments already exist and could benefit from more
accurate feedback concerning errors. For example, SQL-Tutor [28] provided feedback on possible
semantic errors in the student’s query, and strove to provide more understandable syntax error
messages than the DBMS. AsseSQL [30] was used to test the student’s query formulation skill, but
similar to our e-learning environment, AsseSQL provided no feedback about the correctness of the
query, besides presenting the correct result table. Brusilovsky et al. [5] discuss several additional
SQL learning environments and tools.
We provide the students with the correct result table for each exercise. If no result table is

provided or the correct result table is the same as returned by the queries that contain an expected
error, the students might continue to the next exercise even though the query contains an error.
Providing the students with the correct result table, however, can be problematic if the expected
errors are not recognized, as mentioned in Section 4.1.5.

5.3 Limitations

The first group of limitations of our study is related to the exercises. As stated earlier, the student data
provided the means to complement previous error categorization and to create new knowledge on
previously unstudied errors, and because the errors encountered are closely related to the exercise
design, it may be possible that there exists a key concept that would fit the scope of an introductory-
level database course. Even though we taught division operation in the course, it was not included in
the exercises. Additionally, even though the fundamental concepts listed in Table 1 were recognized
over many years from many different sources and teaching experiences involving diverse target
domains, it is possible that some other domains introduce novel, domain-specific fundamental
concepts. When analyzing the student data, we made several remarks regarding different errors.
In order to identify semantic and logical errors, we needed to inspect more than just the result
table and recognize whether or not the query was unnecessarily complicated. Furthermore, a single

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:23

query may contain a number of errors, both syntax and semantic [4], in addition to logical errors
and complications. Finally, in order to categorize all errors in a query according to our proposed
framework, we should not just focus on data demand and the query, but we also need knowledge
on the database structure, data types and constraints and the business logic of the target domain.

On the other hand, creating a similar research environment to this study is relatively simple: the
database structure and queries are reported in the appendices if the same database domain and
queries are warranted. If not, the fundamental concepts and query complexities are listed in Table 1.
The environment in which the students complete the exercises is minimally controlled. Students
are given the correct result table for each exercise. The error messages from the DBMS will likely
have a role in how the student will try to correct a syntactically incorrect query, as discussed by
Hristova et al. [18] in the context of programming language compiler errors. Therefore, we suggest
using SQLite with default settings in order to more accurately replicate our research environment.

The second group that affects our findings is related to the SQL standard. First, the standard is not
an implementation and leaves room for interpretation. Second, the standard is divided into different
levels, such as Entry, Intermediate and Full, which serve as instructions on how many features
should be implemented. Different products implement the SQL standard for different levels, which
may hinder the use of our framework with some DBMSs. Third, the standard contains optional
features, some of which overlap with the core features. As demonstrated in Section 4.1.5, some
DBMSs have adopted an optional feature over a core feature as their default behavior. All of these
points considered, no obvious, single position exists to what a standard-conforming implementation
is. As stated by Randolph [31], there is no conformance testing of SQL implementations anymore,
and different implementations allow conflicting features. Although the SQL standard should be
the reference point for different implementations, the companies behind DBMSs are known to add
nonstandard proprietary features to their products’ SQL dialects while omitting standard features.

The third group of limitations is related to the research methods and data. For directed content
analysis, Shannon and Hsieh [19] discuss that the researchers approach the data with strong bias.
Therefore, had we analyzed the data for syntax and semantic errors without examining previous
studies beforehand, it is possible that our error categorization might have been different. For
conventional content analysis, Shannon and Hsieh [19, p. 1281] argue that it might be challenging
for the researchers to develop a “complete understanding of the context, thus failing to identify
key categories”. Additionally, only the first author coded the errors. However, we have tried to
minimize the error margin for logical error categorization by prolonged exposure to the context, as
discussed in Section 3.3. Even though our data was collected over one teaching period, the number
of queries is relatively high for manual qualitative analysis.

6 CONCLUSIONS AND FUTUREWORK

This study presents a DBMS-independent categorization of SQL errors made by students in an
introductory database course. The discovered errors add to the knowledge on what problems
students face when learning SQL, specifically problems with the logic of the language.
We suggest applying our categorization framework in practice to proceed from what errors

occur to why errors occur, namely, what types of errors have a tendency to stay unresolved, what
the reasons are behind these errors and how much the error frequencies affect course performance.
When and if we answer these questions in future research, we can begin to identify the students
who have problems with SQL queries based on the exercise data, provide additional support for
those students and adjust our teaching methods accordingly. Additionally, current research does
not discuss the effects of providing versus not providing students with the correct result table.

Teaching SQL with a DBMS-independent approach benefits the students in understanding what
standard SQL is and what it is not [31]. When identifying different errors, the implementation

ACM Transactions on Computing Education, Vol. x

39:24 T. Taipalus et al.

used should be secondary, and the SQL standard the primary reference. As more NewSQL systems
emerge, it would be interesting to see an experimental research on how vigorously the query
languages of those systems conform to the SQL standard.

A DATABASE SCHEMA AND DESCRIPTION

The following database schema diagram and domain description were given to the students. The
students could also use the DBMS to acquire more information about the database objects, such as
CREATE TABLE statements.
The domain in the SQL exercises is a movie rental service that has stores all over the world.

The customers can use a website to search for movies, their favorite actors and the formats (e.g.,
BluRay) in which the physical copies of the movies can be rented. The customers can write reviews
for the movies so that other customers can see whether or not a certain movie is popular. The
database also contains information on the company employees that is not visible to customers.

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:25

B EXERCISES

The following table lists the 15 exercises used in this study, namely the data demands presented to
the students, and example answers formulated by us. The example answers were also provided to
the students after the weekly exercise deadlines had passed.

Data demand Example answer

A1 List all information regarding stores in
Helsinki and Tampere.

SELECT *
FROM store
WHERE city IN (’Helsinki’, ’Tampere’);

A2 List the names, age limits and years of
movies that are in English but are not pub-
lished by Goldeneye BC. Sort the results ac-
cording to the name of the movie in ascend-
ing order.

SELECT mname, age_limit, year
FROM movie
WHERE language = ’English’
AND publisher <>’Goldeneye BC’
ORDER BY mname ASC;

A3 List the names, dates of birth and death of
actors whose surname starts with an F or an
S, and whose date of birth is unknown, or
who have a date of death.

SELECT fname, sname, dob, dod
FROM actor
WHERE (sname LIKE ’F%’ OR sname LIKE ’S%’)
AND (dob IS NULL OR dod IS NOT NULL);

B4 List the city and phone number of the store
in which Jaakko Mattila works.

SELECT s.city, s.phone
FROM store s, employee e
WHERE s.stono = e.stono
AND e.fname = ’Jaakko’ AND e.sname = ’Mattila’;

B5 List the names of actors whose date of death
is known and who have acted in at least one
movie released after 2010. Sort the results
according to surname in descending order.

SELECT a.fname, a.sname
FROM actor a
INNER JOIN acts ac ON (a.actno = ac.actno)
INNER JOIN movie m ON (ac.movno = m.movno)
WHERE a.dod IS NOT NULL
AND m.year >2010
ORDER BY a.sname DESC;

B6 List the names of actors who have acted a
role as himself or herself. Sort the results
according to surname, and then according
to first name, both in ascending order.

SELECT a.fname, a.sname
FROM actor a
WHERE EXISTS
(SELECT *
FROM acts ac
WHERE a.actno = ac.actno
AND EXISTS
(SELECT *
FROM role r
WHERE ac.rolno = r.rolno
AND (r.alias = ’Himself’ OR r.alias = ’Herself’))

)
ORDER BY a.sname ASC, a.fname ASC;

B7 List the movie numbers, names and years of
movies that have been released in the first
decade of the 2000s, but of which there exists
no copy in BluRay format.

SELECT m.movno, m.mname, m.year
FROM movie m
WHERE m.year BETWEEN 2000 AND 2009
AND NOT EXISTS
(SELECT *
FROM copy c
WHERE m.movno = c.movno
AND c.format = ’BluRay’);

ACM Transactions on Computing Education, Vol. x

39:26 T. Taipalus et al.

B8 List the names and dates of birth of cus-
tomers who have never rented a movie but
who have given at least one review.

SELECT c.fname, c.sname, c.dob
FROM customer c
WHERE NOT EXISTS
(SELECT *
FROM rental rt
WHERE c.cust_id = rt.cust_id)

AND EXISTS
(SELECT *
FROM review rv
WHERE c.cust_id = rv.cust_id);

B9 List the number of movies released between
the years 1970-2000. Rename the column in
the result table descriptively.

SELECT COUNT(*) AS "movies released in 1970-2000"
FROM movie
WHERE year BETWEEN 1970 AND 2000;

B10 List the names of actors who have acted in
the movie Physics 101 and list the names
of the roles they have played in that movie.
Rename the columns in the result table de-
scriptively.

SELECT a.fname AS "actor’s first name",
a.sname AS "actor’s surname",
r.fname AS "character’s first name",
r.sname AS "character’s surname",
r.alias AS "character’s alias"

FROM movie m,
actor a,
acts ac,
role r

WHERE m.movno = ac.movno
AND ac.rolno = r.rolno
AND a.actno = ac.actno
AND m.mname = ’Physics 101’;

B11 List the name, year and genre of the oldest
movie published by Goldeneye BC.

SELECT mname, year, genre
FROM movie
WHERE publisher = ’Goldeneye BC’
AND year =
(SELECT MIN(year)
FROM movie
WHERE publisher = ’Goldeneye BC’);

B12 List the actor numbers and full names of ac-
tors who have acted in at least five different
movies.

SELECT a.actno, a.fname, a.sname
FROM actor a
WHERE 4 <
(SELECT COUNT(DISTINCT ac.movno)
FROM acts ac
WHERE a.actno = ac.actno);

B13 List the names of customers who have
rented exactly the same movie copy that
Robert Butler (rbutler1) has rented, when-
ever.

SELECT c.fname,
c.sname

FROM customer c,
rental r1,
rental_copy rc1,
rental_copy rc2,
rental r2

WHERE c.cust_id = r1.cust_id
AND r1.renno = rc1.renno
AND rc1.copyno = rc2.copyno
AND rc2.renno = r2.renno
AND r2.cust_id = ’rbutler1’
AND c.cust_id <>’rbutler1’;

ACM Transactions on Computing Education, Vol. x

Errors and Complications in SQLQuery Formulation 39:27

C14 List the numbers of movie copies located in
stores by city and status of the copy. Sort
the results by city in ascending order. Make
sure that the structure of the result table is
as below [example given].

SELECT s.city, c.status, COUNT(c.copyno) AS total
FROM store s, copy c
WHERE c.stono = s.stono
GROUP BY s.city, c.status
ORDER BY s.city ASC;

C15 List the numbers of movie copies by movie
number and movie name. Disregard movies
of which there are less than six copies, re-
gardless of the status of the copy. Sort the
results according to the number of the copies
in descending order.

SELECT m.movno, m.mname, COUNT(c.movno) AS
total
FROM movie m, copy c
WHERE m.movno = c.movno
GROUP BY m.movno, m.mname
HAVING COUNT(c.movno) >5
ORDER BY total DESC;

REFERENCES

[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister. 2016. Students’ Syntactic Mistakes
in Writing Seven Different Types of SQL Queries and its Application to Predicting Students’ Success. In Proceedings of

the 47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16). ACM Press, New York, New York,
USA, 401–406. https://doi.org/10.1145/2839509.2844640

[2] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quantitative Study of the Relative Difficulty
for Novices of Writing Seven Different Types of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation

and Technology in Computer Science Education (ITiCSE ’15). ACM Press, New York, New York, USA, 201–206. https:
//doi.org/10.1145/2729094.2742620

[3] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016. Students’ Semantic Mistakes in Writing Seven
Different Types of SQL Queries. In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer

Science Education (SIGCSE ’16). 272–277. https://doi.org/10.1145/2899415.2899464
[4] Stefan Brass and Christian Goldberg. 2005. Semantic errors in SQL queries: A quite complete list. J. Syst. Softw. 79, 5

(2005), 630–644. https://doi.org/10.1016/j.jss.2005.06.028
[5] Peter Brusilovsky, Sergey Sosnovsky, Michael V. Uydelson, Danielle H. Lee, Vladimir Zadorozhny, and Xin Zhou. 2010.

Learning SQL Programming with Interactive Tools: From Integration to Personalization. ACM Trans. Comput. Educ. 9,
4 (2010), 367–376. https://doi.org/10.1145.1656255.1656257

[6] R. B. Buitendijk. 1988. Logical errors in database SQL retrieval queries. Comput. Sci. Econ. Manag. 1, 2 (1988), 79–96.
https://doi.org/10.1007/BF00427157

[7] Gretchen Irwin Casterella and Leo Vijayasarathy. 2013. An Experimental Investigation of Complexity in Database
Query Formulation Tasks. J. Inf. Syst. Educ. 24, 3 (2013), 211–221. http://jise.org/Volume24/24-3/pdf/Vol24-3pg211.pdf

[8] Ugur Cetintemel, Nesime Tatbul, Kristin Tufte, Hao Wang, Stanley Zdonik, Jiang Du, Tim Kraska, Samuel Madden,
David Maier, John Meehan, Andrew Pavlo, Michael Stonebraker, and Erik Sutherland. 2014. S-Store: a streaming
NewSQL system for big velocity applications. Proceedings of the VLDB Endowment 7, 13 (2014), 1633–1636. https:
//doi.org/10.14778/2733004.2733048

[9] Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens Weber. 2015. Understanding database schema
evolution: A case study. Sci. Comput. Program. 97, P1 (2015), 113–121. https://doi.org/10.1016/j.scico.2013.11.025

[10] Christopher J. Date. 1983. Critique of the SQL database language. SIGMOD Rec. 14, 3 (Nov 1983). https://doi.org/10.
1145/984549.984551

[11] Alireza Ebrahimi. 1994. Novice programmer errors: language constructs and plan composition. Int. J. Hum. Comput.

Stud. 41 (1994), 457–480. https://doi.org/10.1006/ijhc.1994.1069
[12] Ramez Elmasri and Shamkant B. Navathe. 2016. Fundamentals of Database Systems (7th. ed.). Pearson.
[13] Sally Fincher, Josh Tenenberg, and Anthony Robins. 2011. Research Design : Necessary Bricolage. Comput. Sci. Educ.

(2011), 27–32. https://doi.org/10.1145/2016911.2016919
[14] Michael M. Gorman. 2002. Is SQL A Real Standard Anymore. The Data Administration Newsletter (2002), 2–4.
[15] Linda Grandell, Mia Peltomäki, Ralph Johan Back, and Tapio Salakoski. 2006. Why complicate things? Introducing

programming in high school using Python. Conf. Res. Pract. Inf. Technol. Ser. 52 (2006), 71–80.
[16] Sharon L. Greene, Susan J. Devlin, Philip E. Cannata, and Louis M. Gomez. 1990. No IFs, ANDs, or ORs: A study of

database querying. Int. J. Man. Mach. Stud. 32, 3 (Mar 1990), 303–326. https://doi.org/10.1016/S0020-7373(08)80005-3
[17] Eric Gregoire, Richard Ostrowski, Bertrand Mazure, and Lahkdar Sais. 2005. Automatic extraction of functional

dependencies. Theory Appl. Satisf. Test. 3542 (2005), 122–132.

ACM Transactions on Computing Education, Vol. x

39:28 T. Taipalus et al.

[18] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Identifying and correcting Java programming
errors for introductory computer science students. ACM SIGCSE Bulletin 35, 1 (Jan 2003), 153. https://doi.org/10.1145/
792548.611956

[19] Hsiu-Fang Hsieh and Sarah E Shannon. 2005. Three Approaches to Qualitative Content Analysis. Qual. Health Res. 15,
9 (2005), 1277–1288. https://doi.org/10.1177/1049732305276687

[20] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. Tane: An Efficient Algorithm for Discovering
Functional and Approximate Dependencies. Comput. J. 42, 2 (Feb 1999), 100–111. https://doi.org/10.1093/comjnl/42.2.
100

[21] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. 2004. CORDS: Automatic Discovery of
Correlations and Soft Functional Dependencies. In Proceedings of the 2004 ACM International Conference on Management

of Data (SIGMOD ’04). ACM Press, New York, New York, USA, 647. https://doi.org/10.1145/1007568.1007641
[22] ISO/IEC. 2003. ISO/IEC 9075-2:2003, "SQL - Part 2: Foundation". (2003).
[23] Eranki L.N. Kiran and Kannan M. Moudgalya. 2015. Evaluation of Programming Competency Using Student Error

Patterns. In 2015 International Conference on Learning and Teaching in Computing and Engineering. IEEE, 34–41.
https://doi.org/10.1109/LaTiCE.2015.16

[24] A.J. Ko and B.A. Myers. 2003. Development and evaluation of a model of programming errors. In Proceedings of the

IEEE Symposium on Human Centric Computing Languages and Environments. IEEE, 7–14. https://doi.org/10.1109/HCC.
2003.1260196

[25] Charles R. Litecky and Gordon B. Davis. 1976. A study of errors, error-proneness, and error diagnosis in Cobol.
Commun. ACM 19, 1 (Jan 1976), 33–38. https://doi.org/10.1145/359970.359991

[26] Victor M. Matos and Rebecca Grasser. 2002. Teaching Tip A Simpler (and Better) SQL Approach to Relational Division.
J. Inf. Syst. Educ. 13, 2 (2002), 85–88. http://jise.org/Volume13/Pdf/085.pdf

[27] Jim Melton. 2002. SQL:1999: Understanding Relational Language Components. Morgan Kaufman.
[28] Antonija Mitrovic. 1998. Learning SQL with a computerized tutor. ACM SIGCSE Bulletin 30, 1 (1998), 307–311.

https://doi.org/10.1145/274790.274318
[29] Thomas H. Park, Brian Dorn, and Andrea Forte. 2015. An Analysis of HTML and CSS Syntax Errors in a Web

Development Course. ACM Trans. Comput. Educ. 15, 1 (2015), 4:1–4:21. https://doi.org/10.1145/2700514
[30] Julia Prior. 2003. Online Assessment of SQL Query Formulation Skills. Proceedings of the Fifth Australasian Computing

Education Conference 20 (2003), 247–256. http://dl.acm.org/citation.cfm?id=858403.858433
[31] Gary B Randolph. 2003. The Forest and the Trees: Using Oracle and SQL Server Together to Teach ANSI-Standard

SQL. Design (2003), 234–236.
[32] Julian Rith, Philipp S. Lehmayr, and Klaus Meyer-Wegener. 2014. Speaking in tongues: SQL access to NoSQL systems.

Proceedings of the 29th Annual ACM Symposium on Applied Computing (SAC ’14), 855–857. https://doi.org/10.1145/
2554850.2555099

[33] Yasin N Silva, Isadora Almeida, and Michell Queiroz. 2016. SQL: From Traditional Databases to Big Data. In Proceedings

of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16). ACM Press, New York, New York,
USA, 413–418. https://doi.org/10.1145/2839509.2844560

[34] John B Smelcer. 1995. User errors in database query composition. Int. J. Hum. Comput. Stud. 42, 4 (Apr 1995), 353–381.
https://doi.org/10.1006/ijhc.1995.1017

[35] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into Programming Language Syntax. ACM
Trans. Comput. Educ. 13, 4 (2013), 1–40. https://doi.org/10.1145/2534973

[36] Josh Tenenberg and Robert McCartney. 2010. Why Discipline Matters in Computing Education Scholarship. ACM
Trans. Comput. Educ. 9, 4 (2010), 1–7. https://doi.org/10.1145/1656255.1656256

[37] Heikki Topi, Kate M. Kaiser, Janice C. Sipior, Joseph S. Valacich, J. F. Nunamaker, Jr., G. J. de Vreede, and Ryan Wright.
2010. Curriculum Guidelines for Undergraduate Degree Programs in Information Systems. Technical Report. New York,
NY, USA.

[38] Geoff Walsham. 2006. Doing interpretive research. Eur. J. Inf. Syst. 15, 3 (2006), 320–330. https://doi.org/10.1057/
palgrave.ejis.3000589

[39] Charles Welty. 1985. Correcting user errors in SQL. Int. J. Man. Mach. Stud. 22, 4 (1985), 463–477. https://doi.org/10.
1016/S0020-7373(85)80051-1

[40] Charles Welty and David Stemple. 1981. Human factors comparison of a procedural and a nonprocedural query
language. ACM Trans. Database Syst. 6, 4 (1981), 626–649. https://doi.org/10.1145/319628.319656

[41] Li-Yan Yuan, Lengdong Wu, Jia-Huai You, and Yan Chi. [n. d.]. A Demonstration of Rubato DB: A Highly Scalable
NewSQL Database System for OLTP and Big Data Applications. Proceedings of the 2015 ACM International Conference

on Management of Data (SIGMOD ’15) ([n. d.]), 907–912. https://doi.org/10.1145/2723372.2735380

Received September 2016; revised October 2017; accepted December 2017

ACM Transactions on Computing Education, Vol. x

PIII

WHAT TO EXPECT AND WHAT TO FOCUS ON IN SQL QUERY
TEACHING

by

Toni Taipalus and Piia Perälä 2019

Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19)., ACM, New York, 198-203

Reproduced with kind permission of the ACM.

What to Expect and What to Focus on in SQLQuery Teaching

Toni Taipalus
University of Jyvaskyla

Jyvaskyla, Finland
toni.taipalus@jyu.fi

Piia Perälä
University of Jyvaskyla

Jyvaskyla, Finland
piia.m.h.perala@jyu.fi

ABSTRACT

In the process of learning a new computer language, writing er-
roneous statements is part of the learning experience. However,
some errors persist throughout the query writing process and are
never corrected. Structured Query Language (SQL) consists of a
number of different concepts such as expressions, joins, grouping
and ordering, all of which by nature invite different possible errors
in the query writing process. Furthermore, some of these errors are
relatively easy for a student to fix when compared to others. Using
a data set from three student cohorts with the total of 744 students,
we set out to explore which types of errors are persistent, i.e., more
likely to be left uncorrected by the students. Additionally, based on
the results, we contemplate which types of errors different query
concepts seem to invite. The results show that syntax and semantic
errors are less likely to persist than logical errors and complications.
We expect that the results will help us understand which kind of
errors students struggle with, and e.g., help teachers generate or
choose more appropriate data for students to use when learning
SQL.

CCS CONCEPTS

• Social andprofessional topics→Computing education;Com-

putational thinking; Student assessment;

KEYWORDS

SQL, error, query language, database education, relational database

ACM Reference Format:

Toni Taipalus and Piia Perälä. 2019. What to Expect andWhat to Focus on in
SQL Query Teaching. In Proceedings of the 50th ACM Technical Symposium

on Computer Science Education (SIGCSE ’19), February 27-March 2, 2019,

Minneapolis, MN, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3287324.3287359

1 INTRODUCTION

SQL has been taught at university level courses for decades, yet
compared to programming languages, SQL has received relatively
little attention in educational research. A number of new teaching
methods have been presented to facilitate learning [5, 7–9], but

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287359

scientific evidence on which parts of SQL students struggle with
leaves room for interpretation.

This study is an attempt to address the issue of difficult, i.e.,
persistent errors in SQL. We consider an error persistent if it is
present in a student’s final answer to an exercise, i.e., the student
did not fix the error during the query writing process. The aim
of our study is to find out which errors are persistent, and then
consider which query concepts invite which persistent errors. To
that end, we analyzed the final answers of three student cohorts
with the total of 744 students and over 8,700 SQL queries.

In Section 2, we discuss previous studies on SQL error catego-
rization, and briefly explain the frameworks we chose for this study.
In Section 3, we describe how we collected and analyzed the data,
and in Section 4 we report our findings. In Section 5 we compare
our findings to previous studies, and consider the practical impli-
cations and limitations of our research, as well as further research
opportunities. Finally, in Section 6, we present conclusions.

2 BACKGROUND

2.1 Related Work

Previous SQL research in educational contexts mainly focuses on
one of two perspectives. First, on the development and analysis of
a particular tool for facilitating SQL learning, and second, on the
study of student errors in SQL. The former class of SQL research is
out of the scope of our study, but the latter class presents a number
of error categorizations, which are needed to quantifiably measure
and analyze student errors.

Brass and Goldberg [4] presented an extensive list of semantic
errors to be used in database management system (DBMS) compil-
ers, and a set of studies [1–3], which inspired us to this research,
explored the frequencies of syntax and semantic errors students
made when learning SQL. Ahadi et al. [1] used PostgreSQL to cat-
egorize syntax errors from over 160,000 SQL queries. Ahadi et al.
[2] studied student errors in exercises with seven different query
concepts, and, as the authors point out, theirs is the first published
quantitative study of the relative student difficulties in regard to
different SQL query concepts. Additionally, Ahadi et al. [3] closely
investigated 551 queries that contained a semantic error which
students were unable to correct.

Taipalus et al. [11] composed an unified error categorization and
a framework of query concepts using earlier research [1, 2, 4, 10, 12].
These findings were validated and complemented by an analysis
of over 33,000 SQL queries, and the categorization was based on
the SQL standard, and is DBMS independent. The categorization
mapped 105 errors and complications into four classes; 1) com-
plications, which do not affect the result table; 2) logical errors,
which affect the result table, and for which there exists a valid data
demand (i.e., a natural language representation of what the query

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA T. Taipalus and P. Perälä

needs to return from the database); 3) semantic errors, which affect
the result table, and for which there exists no valid data demand;
and 4) syntax errors, which result in an error message instead of a
result table.

2.2 Errors and Complications

We use the error categorization, and the query concept framework
composed by Taipalus et al. [11], because both of them are wider
than any of those presented in the previous studies. According to
the categorization, there are three classes of errors in addition to
complications. The 38 syntax errors are categorized into six cat-
egories; ambiguous database object (SYN-1), undefined database
object (SYN-2), data type mismatch (SYN-3), illegal aggregate func-
tion placement (SYN-4), illegal or insufficient grouping (SYN-5),
and common syntax error (SYN-6).

The 13 semantic errors are categorized into five categories; in-
consistent expression (SEM-1), inconsistent join (SEM-2), missing
join (SEM-3), duplicate rows (SEM-4), and redundant column output
(SEM-5).

The 30 logical errors are categorized into six categories; operator
error (LOG-1), join error (LOG-2), nesting error (LOG-3), expression
error (LOG-4), projection error (LOG-5), and function error (LOG-6).
The categorization points out that, while a semantic error is evident
just by reading the query without knowing the data demand, a
logical error can be identified only if the data demand is known.

Finally, in addition to errors, the framework contains 24 compli-
cations, which are, e.g., unnecessary joins and other structural prob-
lems which could be formulated in a simpler fashion. For brevity,
we refer to all of these four classes simply as errors, when it is not
necessary to differentiate errors from complications.

2.3 Query Concepts

As the base for our exercises, we use the the framework [11] which
lists 18 query concepts, all of which are present at least once in the
15 exercises. Notably, all of the exercises test skill with more than
one query concept, and, what’s more, some query concepts invite
others by design. All the query concepts per exercise are presented
in Table 1.

While some of the concepts are basic, e.g., single-table queries,
expressions, aggregate functions, and ordering, others, e.g., multiple
source tables (i.e., data in the result table is projected or calculated
from more than one source table), and parameter distinct (i.e., DIS-
TINCT is required as an aggregate function parameter) are relatively
difficult for an introductory database course. See to Taipalus et al.
[11] for more detailed information about the query concepts, exer-
cises, and error categories, as well as example data demands and
queries for each of the 15 exercises.

3 METHOD

For this study, we had over 123,000 SQL queries which we collected
from three student cohorts in a mandatory database course. The
course consisted of lectures, voluntary exercises, exercise discussion
sessions, and an exam. The students majored in computer science or
information systems with no prior knowledge on using SQL. Each
cohort answered to 15 SQL retrieval exercises. We designed the
exercises using the query concept framework presented by Taipalus

Table 1: Query Concepts per Exercise [11]

Exercise Concepts

A1 single-table; expressions
A2 single-table; expressions; ordering
A3 single-table; wildcard; expressions with nesting
B4 multi-table; expressions; facing foreign keys
B5 multi-table; expressions with nesting; ordering
B6 multi-table; expressions; does not exist
B7 multi-table; expressions; does not exist
B8 multi-table; expressions; does not exist; equal sub-

queries
B9 single-table; expressions; aggregate functions
B10 multi-table; expressions; multiple source tables
B11 multi-table; expressions; self-join; aggregate function

evaluated against a column value; correlated sub-
query

B12 multi-table; expressions; aggregate function evalu-
ated against a constant; uncorrelated subquery; pa-
rameter distinct

B13 multi-table; expressions; self-join
C14 multi-table; multiple source tables; aggregate func-

tions; grouping
C15 multi-table; multiple source tables; aggregate func-

tions; grouping; grouping restrictions; ordering

et al. [11], with the same query concepts, as well as the number
of source and subject tables. In order to mitigate the polarization
effect of the database business domain on the number of errors, we
designed different database structures and business domains for
each cohort.

We also replicated the learning environment as presented by
Taipalus et al. [11]. The students answered the 15 exercises during
the course. The exercises were divided into three sets (A, B, and
C in Table 1). For each set, the students had approximately one
week to complete the exercises in the given set, in whatever order,
and with unlimited tries. The learning environment was minimally
controlled, and the students could use whatever material or forms
of communication at their disposal, which more accurately mimics
their future work environments, as argued for by Taipalus et al. [11].
The exercise discussion sessions were held after the weekly deadline
had passed, and the sessions had no impact on the previous week’s
queries. The learning environment was effectively an interactive
SQL prompt (SQLite) embedded into a web page. The correct result
table was visible during the whole query writing process, which,
in turn, constitutes as making the environment unnatural when
compared to work environments.

In order to pinpoint persistent errors, we analyzed only final
answers from each student, which left us with over 8,700 queries
for further analysis. Out of these final queries, 2,765 were incorrect.
We manually marked these errors according to the error catego-
rization by Taipalus et al. [11]. Based on this, we approached error
persistence from two perspectives; relative frequencies for each
error category per exercise, and estimated means for each error
class per exercise.

What to Expect and What to Focus on in SQLQuery Teaching SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

Table 2: Relative Error Frequencies by Error Category in Incorrect Final Answers, and Complications in All Final Answers

A1 A2 A3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 C14 C15

Correct 0.67 0.77 0.60 0.79 0.77 0.78 0.76 0.82 0.91 0.63 0.41 0.43 0.62 0.75 0.56

SYN-1 ambiguous database object 0.00 0.00 0.04 0.02 0.09 0.01 0.03 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
SYN-2 undefined database object 0.00 0.05 0.00 0.05 0.01 0.03 0.01 0.00 0.00 0.07 0.03 0.03 0.05 0.02 0.02
SYN-3 data type mismatch 0.07 0.00 0.32 0.09 0.23 0.11 0.03 0.03 0.00 0.02 0.01 0.01 0.09 0.06 0.00
SYN-4 ill. aggr. function placement 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.02
SYN-5 ill. or insufficient grouping 0.03 0.00 0.00 0.01 0.00 0.04 0.00 0.03 0.02 0.06 0.38 0.43 0.06 0.37 0.67
SYN-6 common syntax error 0.11 0.27 0.09 0.25 0.15 0.09 0.16 0.22 0.05 0.14 0.04 0.09 0.10 0.11 0.06

SEM-1 inconsistent expression 0.08 0.00 0.04 0.00 0.01 0.01 0.01 0.14 0.05 0.02 0.01 0.13 0.15 0.04 0.03
SEM-2 inconsistent join 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.00
SEM-3 missing join 0.00 0.00 0.00 0.01 0.05 0.06 0.05 0.04 0.00 0.34 0.09 0.03 0.08 0.13 0.03
SEM-4 duplicate rows 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.20 0.05 0.00 0.00 0.00 0.00
SEM-5 redundant column output 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LOG-1 operator error 0.00 0.06 0.12 0.03 0.44 0.11 0.65 0.47 0.22 0.05 0.04 0.06 0.07 0.00 0.02
LOG-2 join error 0.00 0.00 0.00 0.34 0.15 0.23 0.19 0.35 0.00 0.40 0.07 0.20 0.39 0.06 0.02
LOG-3 nesting error 0.00 0.00 0.47 0.00 0.01 0.01 0.00 0.09 0.00 0.00 0.00 0.00 0.08 0.00 0.00
LOG-4 expression error 0.13 0.27 0.11 0.47 0.09 0.14 0.20 0.13 0.09 0.25 0.47 0.36 0.63 0.06 0.14
LOG-5 projection error 0.75 0.46 0.11 0.10 0.25 0.62 0.07 0.05 0.20 0.45 0.14 0.08 0.12 0.59 0.30
LOG-6 function error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.01 0.60 0.00 0.25 0.25

Complication 0.05 0.07 0.14 0.37 0.08 0.33 0.37 0.12 0.06 0.46 0.41 0.21 0.40 0.31 0.17

We calculated the relative frequencies of different errors among
incorrect final answers (N=2,765) in the 15 exercises, as we wanted
to identify which query concepts invite which classes of errors. An
answer was considered incorrect if it contained at least one syntax,
semantic or logical error. Importantly, a complication by itself did
not constitute in making an answer incorrect. In addition to errors,
we calculated relative frequencies of complications among all final
answers (N=8,773).

In order to identify persistent errors among exercises, we ana-
lyzed the data by counting the number of different classes of errors
for each exercise. The homogeneity of variance was tested before
analysis, and it was found that the data was overdispersed. There-
fore, we modeled the data with negative binomial regression that
is also common method for count data. Because our interest was in
comparing the error rates under the different exercises, we added
fixed effects of task to the model. The non-independence of the
observations due to the fact that each student completed multiple
exercises was modeled by including random effect of student in the
model. We estimated the model using the SPSS (version 24) Mixed
command, and interpreted the results by calculating the predicted
number of errors and their confidence intervals (CI) for each exer-
cise. We estimated the statistical significance using an overlap rule
of 95% for the CI bars, as proposed by Cumming et al. [6].

4 RESULTS

4.1 Error Persistence for Error Categories

We collected success rates, relative error frequencies by error cat-
egory in incorrect final answers, and complications in all final
answers to Table 2. We ignored non-attempts, as not all students
attempted to solve all exercises. Some errors were absent in some

exercises altogether. Again, we observed high numbers of relative
frequencies among logical errors when compared to other cate-
gories. In fact, for each of the logical error categories, at least one
exercise yielded a relative frequency of at least 0.40. By contrast,
e.g., illegal aggregate function placement (SYN-4), inconsistent join
(SEM-2), and redundant column output (SEM-5) error categories
had a relatively low highest relative frequency of at most 0.02.
Complications were present in all exercises.

4.2 Error Persistence for Error Classes

We collected estimated means and CIs of syntax, semantic, and
logical errors as well as complications in final answers per exercise
to Table 3. Collectively, logical errors were more prominent than
other error classes in all exercises. The results show that on average,
students are more likely to commit persistent syntax errors in
exercise C15 (estimate 0.828 with 95% CI [0.721, 0.951), whereas
persistent semantic errors were most prominent in exercise B10
(estimate 0.855 with 95% CI [0.735, 0.995]).

Investigation concerning the class of logical errors showed that
students committed fewer persistent logical errors in exercises A1,
A2, A3, B11 and C15 when compared to exercises B6, B7, B9, B10,
B12, and B13. The overall trend showed that, with a few exceptions,
the means of logical errors increase over time, but in the final
exercises C14 and C15, the means decreased.

Inspection of complications showed that students wrote more
complications in exercises B10, B13, and C14 when compared to
exercises A1, A3 and B5. Additionally, exercise B9 showed the
widest CIs among all error classes.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA T. Taipalus and P. Perälä

Table 3: Estimated Means and CIs for Each Errors Class per Exercise

Exercise
Syntax errors Semantic errors Logical errors Complications

Mean
95% CI

Mean
95% CI

Mean
95% CI

Mean
95% CI

LL UL LL UL LL UL LL UL

A1 0.556 0.464 0.666 0.402 0.325 0.498 0.939 0.817 1.079 0.422 0.343 0.519
A2 0.533 0.426 0.666 0.370 0.283 0.485 0.845 0.708 1.009 0.491 0.390 0.620
A3 0.578 0.491 0.682 0.385 0.314 0.471 0.885 0.775 1.011 0.431 0.356 0.521
B4 0.566 0.455 0.704 0.392 0.301 0.510 1.098 0.939 1.285 0.539 0.431 0.675
B5 0.637 0.521 0.777 0.390 0.302 0.505 1.026 0.877 1.202 0.396 0.307 0.510
B6 0.555 0.444 0.693 0.395 0.303 0.515 1.266 1.092 1.467 0.532 0.424 0.667
B7 0.522 0.419 0.651 0.442 0.348 0.563 1.213 1.049 1.402 0.547 0.441 0.679
B8 0.505 0.386 0.660 0.602 0.470 0.770 1.171 0.982 1.397 0.555 0.430 0.716
B9 0.396 0.260 0.602 0.389 0.254 0.595 1.282 1.015 1.619 0.382 0.249 0.585
B10 0.639 0.537 0.759 0.855 0.735 0.995 1.325 1.175 1.494 0.652 0.550 0.774
B11 0.585 0.514 0.667 0.372 0.315 0.438 0.819 0.734 0.915 0.528 0.460 0.606
B12 0.687 0.598 0.791 0.467 0.394 0.554 1.409 1.278 1.553 0.540 0.461 0.632
B13 0.571 0.464 0.703 0.526 0.423 0.655 1.420 1.244 1.621 0.625 0.512 0.763
C14 0.692 0.569 0.841 0.440 0.344 0.562 1.062 0.907 1.243 0.630 0.514 0.773
C15 0.828 0.721 0.951 0.425 0.351 0.516 0.949 0.834 1.080 0.482 0.402 0.578

Figure 1: Estimated Means for Each Error Class

5 DISCUSSION

5.1 Persistent Errors in Previous Studies

Although Ahadi et al. [2] used slightly different query concepts,
and did not quantitatively study which types of errors occur, we
can compare the success rates of our results to theirs to gain un-
derstanding on which concepts students struggle with. Their study
listed seven query concepts, five of which map to the framework
[11] we used. Simple, one table [2] corresponds to single-table (exer-
cises A1, A2 and A3). Their study reports success rate of 90%, while
our rates vary from 60% to 77%. The success rate of a query with
group by [2], which corresponds to grouping (exercise C14), is 75%,
which is the same as in our results.

Their query for group by with having [2], which corresponds to
our grouping restrictions (exercise C15), has a success rate of 61%,
while ours is 56%. Self-join [2] corresponds to self-join (exercises
B11 and B13), but the success rate of their study (24%) differs from
ours (41% and 62%). Finally, correlated subquery [2] corresponds to

correlated subquery (exercise B11), and the success rates are fairly
similar with their 46% and our 41%. It is worth noting that most
of our exercises tested more than one concept instead of just one.
What differs between these two studies, is that the most difficult
query concept in their results was self-join, but in our results the
most difficult concepts were correlated and uncorrelated subqueries,
with success rates of 41% and 43%, respectively.

An earlier study on syntax errors in the whole query writing pro-
cess [1] (as opposed to our study, in which we only analyzed final
answers) used PostgreSQL to categorize syntax errors, which makes
the results uncomparable to ours. However, some similarities can
be found, as the study points out syntax error (corresponds to SYN-6
common syntax error), undefined column and undefined table (SYN-
2), and grouping error (SYN-5 illegal or insufficient grouping) among
the most frequent syntax errors. Additionally, by examining the
final incorrect answers, they discovered that 51% of students aban-
doned the exercise when they were not able to fix a syntactic error.
Ahadi et al. [3] explored persistent semantic errors related to query
concepts. The study lists several common errors, most of which
correspond to the error categorization we used; missing/wrong con-

dition (corresponds to LOG-4, also possibly SEM-1), self-join not used
(SEM-3 missing join, also possibly SEM-2 inconsistent join),missing

group by or having clause (SYN-5 illegal or insufficient grouping,
and LOG-4 expression error), use of wrong column (SYN-5 illegal
or insufficient grouping, and LOG-4 expression error), missing or-

der by clause (LOG-5 projection error), incorrect/incomplete column

(LOG-5 projection error), andmissing/extra column in select (LOG-5
projection error). When compared to our findings in Table 2, these
error categories are among the most prominent ones, and our find-
ings seem to support theirs. Additionally, based on our results, data
type mismatch (SYN-3), common syntax (SYN-6), operator (LOG-1),
join (LOG-2), nesting (LOG-3) and function errors (LOG-6) were
relatively frequent in the exercises.

What to Expect and What to Focus on in SQLQuery Teaching SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

In summary, the available evidence seems to suggest that stu-
dents struggle with similar query concepts, and some errors are
more persistent than others. The consensus view among our results
and the results by Ahadi et al. [3] seems to be that the most per-
sistent errors are illegal or insufficient grouping (SYN-5), common
syntax error (SYN-6), inconsistent expression (SEM-1), inconsistent
join (SEM-2), missing join (SEM-3), expression error (LOG-4), and
projection error (LOG-5). Additionally, the results by Ahadi et al.
[1] and Taipalus et al. [11] seem to agree that, among all queries,
the most frequent syntax errors are common syntax errors (SYN-6),
undefined database object errors (SYN-2), and, in queries involving
aggregate functions, illegal or insufficient grouping errors (SYN-5).

5.2 Persistent Errors versus All Errors

Taipalus et al. [11] counted relative error frequencies in not just
final answers, but during the whole query writing process, i.e., in
all queries submitted to the DBMS. By comparing their results to
those presented in Table 2, we can acquire some insight on which
errors are common, but usually corrected by the students. First,
rough comparison reveals that ambiguous database object (SYN-
1) and illegal aggregate function placement errors (SYN-4) were
uncommon in all and in final answers, while undefined database
object errors (SYN-2) were common in all answers, but uncommon
in final answers, i.e., usually corrected. The occurrence of data
type mismatch (SYN-3) and illegal or insufficient grouping (SYN-
5) appears to be closely related to the query concepts, as these
errors were frequent in all and in final answers, but only in certain
exercises. Common syntax errors (SYN-6) were common in all and
in final answers.

The most frequent semantic errors among all and final answers
were inconsistent expressions (SEM-1), and missing joins (SEM-3).
In general, semantic errors were less frequent in both all and final
answers than syntax errors, and the least frequent among all four
error classes.

In general, logical errors were most frequent in all and in final
answers. Interestingly, in 9 of the 15 exercises, operator errors (LOG-
1) were more frequent in the final answers than in all answers. This
suggests that operator errors are both common, and they have
a high tendency to stay uncorrected. Join errors (LOG-2) were
common in almost all multi-table queries, both all and final. Nesting
errors (LOG-3) were common in queries which required nesting
expressions (A3), or designing the subqueries by using previously
uncommon nesting (B8). These errors, however, were closely related
to the query concepts, and most of the exercises invited no such
errors. Expression (LOG-4) and projection (LOG-5) errors were
most common in all and in final answers. These types of errors
seem relatively common in the query writing process, and are
relatively difficult for students to fix. Smelcer [10] studied SQL
query writing process in regard to short term memory, and the
occurrence of these types of errors might be related to the thought
process of a student translating the natural language data demand
into SQL. Intuitively, function errors (LOG-6) occurred only in
exercises involving aggregate functions (B9, B11, B12, C14, C15).
With the exception of exercise B11, function errors were more
common in final than in all answers. This suggests that function
errors are difficult for students to fix.

Finally, while complications were relatively common in both
all and in final answers, the number of final answers with com-
plications was usually considerably lower than the number of all
answers with complications. This suggests that, even though com-
plications are still common, many of them are corrected during the
query writing process.

In summary, different query concepts invite different errors by
design, e.g., a query with aggregate functions invites the possibility
of function errors. By examining themaximum error frequencies for
each error category in all answers, we can determine the common-
ness of each error category, and, consequently, by examining the
maximum error frequencies for each error category in all answers,
we can determine the persistence of each error category. These
things considered, it seems reasonable to assume that we as teach-
ers and researchers should focus on errors which are both common
and persistent. Our data indicates the same results as Taipalus et
al. [11], i.e., such error categories with a maximum (and arbitrary)
relative frequency of at least 0.40 are logical (LOG-1 through LOG-
6), and illegal or insufficient grouping errors (SYN-5), as well as
complications.

5.3 Persistent Errors and Query Concepts

Among syntax errors, the most persistent were data type mismatch
(SYN-3), illegal or insufficient grouping (SYN-5), and common syn-
tax errors (SYN-6). Common syntax errors were relatively frequent
in all exercises. With the exception of exercise B13, data type mis-
match errors seemed to decrease while the students completedmore
and more exercises, which might suggest that students learned to
formulate queries in which the expressions were Boolean type.
Illegal or insufficient grouping errors were common, but only in
exercises involving aggregate functions (B11, B12, C14, C15), with
the exception of exercise B9, which might be explained by the fact
that B9 is the only single-table query with aggregate functions, and
thus easier to solve. In terms of persistent syntax errors, answers
to exercise C15 showed the most syntax errors. This might be ex-
plained by the query requiring the use of all six SQL clauses, as
the second highest mean among syntax errors is in exercise C14,
which, in turn, required the use of five SQL clauses, while all other
exercises required the use of three to four clauses.

As seen in Fig. 1, the trend was that semantic errors were the
least persistent among the four error classes. Among semantic er-
rors, the most persistent were inconsistent expressions (SEM-1),
inconsistent joins (SEM-2), and missing joins (SEM-3). Inconsistent
expressions were relatively prominent compared to other semantic
errors in almost all exercises. This is rather unsurprising, because
expressions are required in almost all exercises (A1 through B13).
Also, intuitively, missing and inconsistent joins were relatively com-
mon in all multi-table exercises (B4 through B8, and B10 through
C15). Persistent semantic errors were most prominent in exercise
B10. One explanation might be that this exercise is the first in which
the result table must contain data from multiple tables, which in
turn invites joins without subqueries. This might be the first time a
student needs to use this approach, but it might not be evident that
this approach is preferred.

Finally, and most importantly, logical errors were most persistent
among the four error classes. Expression (LOG-4) and projection

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA T. Taipalus and P. Perälä

Table 4: Which Persistent Errors to Expect

Concept Expect

multi-table SEM-2 inconsistent join, SEM-3 miss-
ing join, LOG-2 join error

equal subqueries LOG-2 join error
self-join LOG-2 join error

multiple source tables SEM-3 missing join
aggregate functions SYN-5 illegal or insufficient grouping,

LOG-6 function error
(all) SYN-6 common syntax error, LOG-4 ex-

pression error, LOG-5 projection error,
complication

errors (LOG-5) were common across all exercises, and operator
(LOG-1) and join errors (LOG-2) across almost all exercises. Among
logical errors, nesting errors (LOG-3) were relatively uncommon,
and the persistence of function errors (LOG-6) was closely related
to query concepts involving the use of aggregate functions. Based
on our results, we collected the different errors that some of the
concepts invite to Table 4. For most of the concepts, however, the
data showed no distinguishable patterns.

In conclusion, our results provide needed insight on which SQL
errors students struggle with, and which aspects we as teachers
and researchers should focus on when utilizing SQL. Although
Taipalus et al. [11] proposed an operational model for designing
SQL exercises and exercise database data, taking into account their
framework’s 105 different errors for each exercise is arguably an
onerous task. We propose that teachers should start the exercise
design by focusing on the most expected persistent errors first, and
then work down to less common errors depending on their personal
time and resource constraints. What’s more, our study propounds
the view that students are able to correct some types of errors by
themselves, and therefore teaching should focus on errors which
students struggle with.

5.4 Limitations and Further Research

We compared our results with certain previous studies [1–3], which
did not use the same query concepts or error categorization. With
this in mind, there is a chance of misinterpretation of the listed
concepts and error categories. Furthermore, these concepts and
categories might include or exclude aspects of the framework [11]
we used. Finally, the framework lists multiple query concepts per
exercise, while Ahadi et al. [2, 3] only list one. In some cases, this
might be the result of different levels of specificity between the
concept listings, but nonetheless makes the cause and effect analysis
in our results more difficult, as it not clear whether frequent errors
in any one exercise are caused by a particular query concept, or by
a combination of two specific query concepts.

For further research, we propose a tool for automatically cate-
gorizing errors in student answers according to the error catego-
rization by Taipalus et al. [11]. The categorization is extensive, and
complications, semantic errors, and syntax errors must be analyzed
by hand. This is further emphasized by the fact that the catego-
rization is DBMS independent, which makes reliable syntax error

discovery by a single DBMS unreliable. By automation, the catego-
rization is open to larger datasets, and by making the automation of
error categorization real-time, learning environments may provide
students feedback as the query is being written.

6 CONCLUSION

In this study, we set out to investigate which errors are persistent,
i.e., more difficult for students to fix, and which types of persistent
errors different query concepts, such as joins or aggregate func-
tions invite. The results show that logical errors and complications
are more persistent than syntax or semantic errors. While func-
tion errors were common in exercises with certain query concepts,
expression and projection errors were persistent in all exercises,
regardless of the query concepts. We propose that while designing
SQL exercises, teachers and researchers design the exercise data to
take account most persistent errors, starting from the most common
ones.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Mikko Rönkkö for his in-
valuable advice and support regarding the methodology, and the
anonymous reviewers for their comments and suggestions.

REFERENCES
[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.

2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL
Queries and its Application to Predicting Students’ Success. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16).
ACM Press, New York, New York, USA, 401–406. https://doi.org/10.1145/2839509.
2844640

[2] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quantita-
tive Study of the Relative Difficulty for Novices of Writing Seven Different Types
of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’15). ACM Press, New York,
New York, USA, 201–206. https://doi.org/10.1145/2729094.2742620

[3] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016. Students’
Semantic Mistakes in Writing Seven Different Types of SQL Queries. In Proceed-
ings of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education (SIGCSE ’16). 272–277. https://doi.org/10.1145/2899415.2899464

[4] Stefan Brass and Christian Goldberg. 2005. Semantic errors in SQL queries:
A quite complete list. Journal of Systems and Software 79, 5 (2005), 630–644.
https://doi.org/10.1016/j.jss.2005.06.028

[5] Luca Cagliero, Luigi De Russis, Laura Farinetti, and Teodoro Montanaro. 2018.
Improving the Effectiveness of SQL Learning Practice: A Data-Driven Approach.
In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMP-
SAC), Vol. 01. 980–989. https://doi.org/10.1109/COMPSAC.2018.00174

[6] Geoff Cumming, Fiona Fidler, and David L. Vaux. 2007. Error bars in experimental
biology. The Journal of Cell Biology 177, 1 (2007), 7–11. https://doi.org/10.1083/
jcb.200611141 arXiv:http://jcb.rupress.org/content/177/1/7.full.pdf

[7] Mohammad Dadashzadeh. 2003. A Simpler Approach to Set Comparison Queries
in SQL. Journal of Information Systems Education 14, 4 (2003), 345–348.

[8] Victor M. Matos and Rebecca Grasser. 2002. Teaching Tip A Simpler (and Better)
SQL Approach to Relational Division. Journal of Information Systems Education
13, 2 (2002), 85–88. http://jise.org/Volume13/Pdf/085.pdf

[9] Gang Qian. 2018. Teaching SQL: A Divide-and-conquer Method for Writing
Queries. Journal of Computing Sciences in Colleges 33, 4 (April 2018), 37–44.
http://dl.acm.org/citation.cfm?id=3199572.3199577

[10] John B Smelcer. 1995. User errors in database query composition. International
Journal of Human-Computer Studies 42, 4 (Apr 1995), 353–381. https://doi.org/
10.1006/ijhc.1995.1017

[11] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and Complica-
tions in SQL Query Formulation. ACM Transactions on Computing Education 18,
3, Article 15 (Aug. 2018), 29 pages. https://doi.org/10.1145/3231712

[12] Charles Welty. 1985. Correcting user errors in SQL. International Journal of Man-
Machine Studies 22, 4 (1985), 463–477. https://doi.org/10.1016/S0020-7373(85)
80051-1

PIV

THE EFFECTS OF DATABASE COMPLEXITY ON SQL QUERY
FORMULATION

by

Toni Taipalus 2020

Journal of Systems and Software, 165, Article 110576

Reproduced with kind permission of Elsevier.

The Effects of Database Complexity on SQL Query Formulation

Toni Taipalus

Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland

Abstract

In Structured Query Language (SQL) education, students often execute queries against a simple
exercise database. Recently, databases that are more realistic have been utilized to the effect that
students find exercises more interesting and useful, as these databases more accurately mimic databases
students are likely to encounter in their future work environments. However, using even the most
engaging database can be counterproductive to learning, if a student is not able to formulate correct
queries due to the complexity of the database schema. Scientific evidence on the effects of database
complexity on student’s query formulation is limited, and with queries from 744 students against
three databases of varying logical complexity, we set out to study how database complexity affects
the success rates in query formulation. The success rates against a simple database were significantly
higher than against a semi-complex and a complex database, which indicates that it is easier for
students to write SQL queries against simpler databases. This suggests, at least in the scale of our
exercise databases, that educators should also consider the negative effects of more realistic databases,
even though they have been shown to increase student engagement.

Keywords: Structured Query Language (SQL), database, database complexity, education, student
learning

1. Introduction

Computer languages have been a major topic in ICT education curricula for decades. Even though
most of these languages change over time, Structured Query Language (SQL) has proved especially
resilient. Given the importance, long life, and pervasive nature of databases and query languages
in the field of information technology, it is rather surprising that educational research on the topic
is relatively scarce when compared to, e.g., programming languages. Furthermore, studies related
to skills of professionals working with databases have pointed out the difficulties arising from the
differences of database management system implementations of the SQL standard (McMinn et al.,
2019), faults in database schema integrity constraint definition and enforcement (McMinn et al., 2015),
and ill-designed database transactions (Warszawski and Bailis, 2017), all of which further emphasize
the importance of effective SQL education.

In addition to teaching theoretical foundations, many university level database courses facilitate
SQL learning by providing the students an environment in which they can execute SQL queries against
an exercise database (e.g., Mitrovic, 1998). Similarly to programming education, teaching SQL in
practice is justified, as many students are expected to perform similar tasks in their future work
environments. The used exercise databases are usually constructed by the teacher, or provided by a
third party. One of such third party database is the Sakila1 database of MySQL database management
system (Sakila, 2019), which contains both structure and data for a movie rental business domain.
Traditionally, these exercise databases have been relatively simple, possibly to shift the focus of the

Email address: toni.taipalus@jyu.fi (Toni Taipalus)
1https://dev.mysql.com/doc/sakila/en/

Preprint submitted to Elsevier March 24, 2020

learning process from the structure of the database to the logic and semantics of SQL (Wagner et al.,
2003). Recently, though, more realistic databases such as Sakila, and some of the databases of Teradata
University Network (Jukic and Gray, 2008a; Watson and Hoffer, 2003) have been utilized, and research
shows that students find more realistic databases more interesting and useful (Yue, 2013). In effect,
educational research has provided support for the assertion that more complex databases have positive
effects on database education. However, little research touches the potential negative effects of the
structural complexity of a database on SQL learning, e.g., a student’s failure to formulate SQL queries.
This inability is a likely indication that a student has not acquired the necessary practical knowledge
to write valid SQL, which is arguably one of the goals of SQL education. This study provides the field
with a perspective on the potential negative side effects (i.e., lower success rates in query formulation)
of increasing exercise database complexity.

Given the consideration that, however interesting a more realistic exercise database might seem
to a student, utilizing such a database may be counterproductive to learning, if the student cannot
formulate correct SQL queries due to the structural complexity. This problem of database complexity
potentially manifests in either as a failure to start the query formulation process due to perceived
overwhelming complexity, or as a failure to successfully formulate the query despite one or several
attempts. Although writing erroneous queries is part of any student’s learning process, a student is
able to correct some errors, but not necessarily all. An error left uncorrected is a common indication
of some problem in knowledge, skill, or learning. In the vein of Taipalus and Perälä (2019), we call
errors which are never corrected persistent. In this study, we set out to analyze differences in query
writing performance (i.e., success rates) of three student cohorts with a total of 744 students. One
cohort wrote SQL queries against a simple, one against a semi-complex, and one against a complex
database. While the complexity of a database schema is both subjective and relative, we measured
the complexity of a database schema according to previously established metrics (Calero et al., 2001),
which effectively measure complexity by both the number of certain database objects, and the number
of potential predictable joins (cf. Section 2.2 for a more detailed description, and the Appendices for
the database schemas).

Our results show statistically significant differences in success rates between the student cohorts.
Based on our results, we recommend that researchers and educators also consider the negative impli-
cations of more complex exercise databases, rather than using the more complex databases available.

The rest of the study is structured as follows. In Section 2 we discuss prior SQL education research,
database complexity metrics, and the frameworks used in this study. In Section 3, we present our
hypotheses. In Section 4, we describe the course and exercises from which the data were collected,
the exercise databases, and our research method. In Section 5 we present our results, and in Section
6 discuss practical implications and limitations of our study, and future research avenues. Finally, in
Section 7 we present conclusions.

2. Theoretical background

2.1. Database complexity in education

A number of studies discuss database complexity and SQL learning (Jukic and Gray, 2008b; Wag-
ner et al., 2003; Yue, 2013), but it is worth noting that none of these studies explore the effects of
database complexity on query writing performance, but on student interest (Yue, 2013), or how to
better prepare students for their future work (Jukic and Gray, 2008b; Wagner et al., 2003). Addi-
tionally, the effects of task complexity (Topi et al., 2005) and data model representation (Chan et al.,
1997, 2005; Rho and March, 1997) on query formulation have been studied. However, given that there
exists no scientific evidence regarding the effects of logical complexity of a relational database on SQL
query learning, we address here studies that consider database complexity in education in general.

Intuitively, it may seem obvious that it is easier to write SQL queries against a simple rather than
a complex database. We traced the argument for more complex exercise databases to 2003, when
Wagner et al. (2003) concluded that “[...] using large scientific datasets in a database systems course

2

has a number of benefits for students, and no discernible losses.” The authors claim that increased
complexity better prepares students for their future employment, students learn that real-world data
have problems, and students learn interdisciplinary work and communications skills. Even though
the authors present little numerical evidence to support their argument, we can certainly agree with
the part concerning the benefits for students. Similar argument for the benefits for students has
also been presented later by Jukic and Gray (2008b). However, the latter part of the quotation
concerning no discernible losses seems somewhat contradictory, as the same article reports students
perceiving increased complexity more difficult. It is worth noting that Wagner et al. (2003) focus their
discussion on the complexity of data (i.e., extension), not the complexity of the database structure
(i.e., intension), and in this study, by complexity of a database we refer to the complexity of the logical
structure, rather than complexity of data.

A more recent study by Yue (2013) argued for more complex exercise databases from the point
of view of student interest. The study measured the perceived interestingness and usefulness when
Sakila-based assignments were gradually integrated into a database course. The students perceived
Sakila more interesting and useful when compared to instructor and textbook assignments. The
study also commended Sakila for having the right balance of complexity, meaning that the database
is structurally complex, but does not contain unnecessary domain intricacies. This is a noteworthy
observation, and in line with Wagner et al. (2003).

For studying how database complexity influences query writing performance, we identified three
crucial aspects. First, a set of metrics is needed to measure database complexity, second, a unified set
of SQL exercises for the cohorts despite the fact that the three databases are different, and third, a
framework to measure whether or not a student’s query is correct or incorrect. Next, we discuss these
three aspects in prior studies, and argue for the choices we made concerning this study.

2.2. Database complexity metrics

Although normal forms can be considered a method of determining the complexity of a relational
database, a higher normal form does not implicitly result in a simpler or more complex database
structure. Even though a higher normal form implies more tables, and thus a more complex database,
a lower normal form presents different complexities for the query writer. Regarding relational database
structure complexity metrics, we found two scientific proposals which complement normalization.
First, a four part metric was proposed by Calero et al. (2001) which consists of the number of attributes
in the schema (NA), depth referential tree (DRT), number of foreign keys in the schema (NFK), and
cohesion of the schema (COS). When a database is presented as a graph G of tables (nodes) and
foreign keys (directed edges), DRT is the number of edges on the longest path (not counting loops),
and COS is the sum of the square of the number of nodes in each component of G. Second, Pavlic
et al. (2008) proposed a database complexity measuring method which decrees that the complexity
of a database is the sum of the number of all attributes, keys (i.e., primary and secondary keys),
indices, and foreign keys in the database. We wanted to limit this study to the logical complexity of
a database, and chose to use the former metrics (Calero et al., 2001), as indices are not a part of the
relational model but a part of physical database design.

We would like to add that while any of the metrics proposed by Calero et al. (2001) is insufficient
to measure complexity by itself, together they consolidate into an adequate, high-level presentation of
the logical complexity of a relational database. Two issues with database complexity metrics, Calero
et al. (2001) included, is that there is no objective way to measure whether one database is more
complex than the other, if one of the attributes (e.g., DRT) is higher, but another (e.g., COS) is
lower. In contrast, database complexities measured by the metrics proposed by Pavlic et al. (2008)
can be objectively compared by numbers, but these numbers do not represent objective complexity,
as these numbers may be the same for different databases (compare a database with 9 attributes,
3 primary keys, and 5 foreign keys to a database of 12 attributes, 3 primary keys, and 2 foreign
keys). The second issue is that these database complexity metrics measure only quantitative aspects
of databases, but not the complexity of the business domain. Arguably, a genome database may be

3

more complex for a layperson than a movie rental database, even if these two databases are of equal
complexity by both of the discussed metrics.

2.3. Exercises and query evaluation

A number of studies exploring SQL exercises have been published (Ahadi et al., 2016a,b; Prior and
Lister, 2004; Smelcer, 1995; Taipalus et al., 2018), and many of these studies utilized exercises designed
for each particular study. The query concepts in the SQL exercises reported in these five studies show
similarities, e.g., exercises testing joins, expressions, ordering, and grouping with their respective
clauses and predicates. In addition to reporting query concepts by name, Taipalus et al. (2018)
provide example SQL queries of the exercises, and the number of tables needed for the formulation
of each query. For its relative specificity, we designed our exercises for each database using the query
concept framework presented by Taipalus et al. (2018). Although a query can be interpreted as any
SQL statement, the scope of our chosen framework limits our study solely on data retrieval. This
limitation would have also been the case, had we based our study on any other of the aforementioned
studies’ query concepts.

In order to measure success rates in student queries, we needed a framework to determine whether
or not a student’s query was correct or incorrect. Some studies discuss SQL error categorizations
(Ahadi et al., 2016b,a), which are, however, not the results of the studies, but rather a vehicle for an-
swering their respective research questions. Other studies, however, present SQL error categorizations
as results of their respective studies. Brass and Goldberg (2006) present an extensive list of semantic
errors and complications based on their teaching experience, and Taipalus et al. (2018) complement
Brass and Goldberg’s listing with syntax and logical errors, which are rooted in the SQL standard
(ISO/IEC, 2016) rather than a single database management system’s implementation. Taipalus et al.
(2018) categorize 105 different errors into four error classes: 1) complications, which do not affect
the result table, but hinder queries with readability or performance issues, 2) logical errors, which
affect the result table, and make the query appear as if it was written to answer a different but valid
data demand (i.e., natural language representation of the task), 3) semantic errors, which affect the
result table, and make the query unsuitable for any valid data demand, and 4) syntax errors, which
result in an error message instead of a result table. For this study, we chose this error categorization
framework for its relative extensiveness, and for database management system independence. This
error categorization framework (Taipalus et al., 2018) also fits our chosen database complexity metrics
(Calero et al., 2001), as both of them disregard physical structure in its entirety.

3. Hypotheses

The discussion in the previous section has both highlighted the positive outcomes for using more
complex exercise databases in teaching SQL, as well as the undercurrent of the possible negative effect
of difficulty. We propose that as database complexity increases, so does the difficulty of successfully
writing SQL queries that satisfy given data demands. The basic proposition to be tested is

H1: The success rates for formulating correct SQL queries decrease as logical complexity
of the database increases.

The error categorization framework (Taipalus et al., 2018) divides errors into four classes (syntax
errors, semantic errors, logical errors, and complications), and an incorrect query may, in theory,
exhibit as many as 105 different errors. A recent study (Taipalus and Perälä, 2019), in turn, indicated
that logical errors and complications are more likely to persist than syntax errors and semantic errors,
meaning that although syntax and semantic errors are committed, they are more likely corrected by
students. Given the framework to measure these four error classes, and rather than only studying
whether there exists an effect between success rates and database complexity, we wanted to explore if
different database complexities invite different kinds of errors. Therefore, as auxiliary hypotheses, we
propose that the number of persistent errors committed for each of these four error classes increase
as database complexity increases.

4

H2: The number of syntax errors committed in incorrect final SQL queries increase as
logical complexity of the database increases.

H3: The number of semantic errors committed in incorrect final SQL queries increase as
logical complexity of the database increases.

H4: The number of logical errors committed in incorrect final SQL queries increase as
logical complexity of the database increases.

H5: The number of complications committed in final SQL queries increase as logical com-
plexity of the database increases.

Concerning the auxiliary hypotheses, it is worth noting that lower success rates do not necessarily
imply higher numbers of persistent errors. Even if success rates increase, it is possible that students
who are unable to write correct queries commit more persistent errors.

4. Research setting

4.1. Course and data collection

We collected the queries from an introductory database course targeted for second year students
majoring in computer science or information systems, with no prior knowledge on SQL. The course
was mandatory, but completing the exercises was not, and by completing the exercises the students
could earn points toward a better grade. We collected the queries from three student cohorts (237,
280, and 227 students), and each cohort completed SQL exercises against a simple, semi-complex, or
complex database (cf. Appendices), respectively. This study took place over a period of three years,
and the first author taught the course for each student cohort. The course was given in Finnish.

We constructed exercises for each of the cohorts using the query concept framework presented
by Taipalus et al. (2018). The framework contains 15 exercises, all of which test a student’s skill in
several query concepts. These query concepts per exercise are presented in Table 1. This framework
allowed us to construct similar exercises for each cohort in terms of query concepts tested, and the
number of tables required to formulate the correct query. According to the framework, a source table
is a table which is used to project or calculate values into the result table, and a subject table is a
table which is used to restrict the values that are accepted into the result table. For the complex
database, we utilized the database structure and exercises presented by Taipalus et al. (2018), and,
from there constructed the simple and semi-complex databases with respective business domains and
exercises. Refer to Taipalus et al. (2018) and Appendix D for detailed descriptions and examples of
the query concepts. It is worth noting that the data demands and database schemas presented in
the Appendices are translations from Finnish to English, and the translations introduce some natural
language considerations about the similarity of the data demands between the student cohorts.

Students completed the exercises using an interactive database management system (SQLite)
prompt embedded on a web page, which, depending on the query submitted by the student, out-
put either a result table or an error message from SQLite. The correct result table was visible during
the whole query writing process, and the students could compare their result tables with the correct
one. The exercises were completed over three weeks during the course, in three sets (cf. A, B, and
C in Table 1), each with their weekly deadlines. The exercises in a set could be completed in any
order. The students were given unlimited tries within the weekly deadlines, and were allowed to use
whatever materials or ways of communication. The database schema as well as a short description
of the business domain was also visible during the whole process, and students could obtain more
information on the database objects using built-in SQLite commands. After a deadline had passed,
the students were given example answers for the respective set of exercises. Course contents prior to
and during data collection are presented in Table 2, and the structure is common for a database course
(Topi et al., 2010), containing enhanced/extended entity-relationship model (EER), transformation

5

Table 1: Query concepts for each exercise, the numbers of source tables and subject tables, and the total number of
tables needed in the formulation of a correct query, based on Taipalus et al. (2018)

Exercise Concepts Source Subject Total

A1 single-table; expressions 1 1 1
A2 single-table; expressions; ordering 1 1 1
A3 single-table; wildcard; expressions with nesting 1 1 1
B4 multi-table; expressions; facing foreign keys 1 1 2
B5 multi-table; expressions; ordering 1 3 3
B6 multi-table; expressions with nesting; ordering 1 2 3
B7 multi-table; expressions; does not exist 1 2 2
B8 multi-table; does not exist; equal subqueries 1 2 3
B9 single-table; expressions; aggregate functions 1 1 1
B10 multi-table; expressions; multiple source tables 2 3 4
B11 multi-table; expressions; self-join; aggregate function evalu-

ated against a column value; correlated subquery
1 2 2

B12 multi-table; expressions; aggregate function evaluated
against a constant; uncorrelated subquery; parameter dis-
tinct

1 1 2

B13 multi-table; expressions; self-join 1 5 5
C14 multi-table; multiple source tables; aggregate functions;

grouping
2 1 2

C15 multi-table; multiple source tables; aggregate functions;
grouping; grouping restrictions; ordering

2 1 2

from EER to relational schema, relational calculus, and SQL sublanguages data manipulation lan-
guage (DML), data definition language (DDL), data control language (DCL), and transaction control
language (TxCL). The course continues with database normalization, data warehousing, database
distribution, and NoSQL. The course structure was the same for each of the three cohorts.

4.2. Databases

We implemented the exercise databases with hand-crafted data. For clearer distinguishability,
we call these databases “simple”, “semi-complex” and “complex”, although, compared to real life
databases, they are all relatively simple. The logical complexities of the databases, some summarizing
information, and, for comparison, additional databases from literature are presented in Table 3. Our
three databases were normalized to Boyce/Codd normal form. In terms of data, the tables in the
simple database contained 17–73 rows, with the average of approximately 46 rows, the tables in the
semi-complex database 5–105 rows, with the average of approximately 50 rows, and the tables in the
complex database 5–125 rows, with the average of approximately 61 rows. We designed the data
to contain no anomalies or errors, and null values were only present in obvious columns, e.g., in a
customer’s email or an actor’s date of death, as opposed to null values in foreign key columns. For
these reasons, it was more feasible to hand-craft the data, rather than using automatic data generation
tools such as DBMonster2 or Mockaroo3 and evaluating the schema with tools such as SchemaAnalyst
(Kapfhammer et al., 2013; McMinn et al., 2016).

The textbook databases described in Table 3 are presented in their respective sections concerning
SQL. These textbooks also present other databases in, e.g., sections addressing conceptual modeling
or data warehousing. Note that in Elmasri and Navathe (2016), NFK, and hence DRT, are counted

2http://dbmonster.sourceforge.net/
3https://mockaroo.com/

6

Table 2: Course activities prior to and during data collection

Week Course activity (chronologically ordered for each week)

n Lectures: general concepts in database systems, conceptual modeling with EER

n+1 Lectures: relational model, transformation from EER to relational schema

n+2
Lectures: relational calculus, DML
Exercises #1 presented: conceptual modeling with EER

n+3
Lectures: DML, DDL
Answers for exercises #1 presented
Exercises #2 presented: transformation from EER to relational schema, SQL exercise set A

n+4
Lectures: DCL, TxCL
Answers for exercises #2 presented
Exercises #3 presented: SQL exercise set B

n+5
Lectures: database normalization
Answers for exercises #3 presented
Exercises #4 presented: SQL exercise set C, additional SQL exercises (DML, DDL, DCL)

n+6
Lectures: data warehousing
Answers for exercises #4 presented
Exercises #5 presented: database normalization

Course continues

using the table creation statements (p. 211) presented in the textbook. If the schema complexity is
evaluated based on the database schema (p. 194), NFK = 8 and DRT = 5.

4.3. Protocol and method

After the last deadline for the last student cohort had passed, we collected all the submitted
queries for the 15 exercises from our learning environment, a total of over 123,000 SQL queries. Some
students had attempted to complete the course and exercises in a previous year or years. To achieve
independence of observations, we removed all but first attempts from the data, i.e., if a student tried
to complete the exercises in year n, n+1 and n+2, we omitted their answers from years other than
n. In order to study success rates and the numbers of persistent errors, we were only interested in
the final queries from each student for each exercise. After omitting all non-final queries (i.e., queries
submitted chronologically before the last query), we were left with 8,771 queries. Next, using the error
categorization framework (Taipalus et al., 2018), we coded each final query with errors it exhibited,
if any. We considered a query incorrect if it contained at least one syntax, semantic, or logical error.
A query which contained only a complication or complications was considered correct.

We first conducted a chi-square test of homogeneity using count data with weighted cases to
examine the relation between database complexity (simple, semi-complex, complex) and success rate
in respective final queries. Not all students attempted all exercises, and we considered non-attempts
as failures. We argue for our decision with a minimal counterexample of two students cohorts, ten
students each: in cohort A, only one student tries to complete an exercise and succeeds (success
rate = 100%), and in cohort B, all ten students try to complete an exercise but only three succeed
(success rate = 33%). We consider our protocol to better reflect the equivalence of the research setting
between the cohorts, as opposed to ignoring non-attempts. The chi-square test of homogeneity fit our
data and research design, as we had a sufficiently large sample size, and, by design, independence of
observations.

To test the auxiliary hypotheses, we compared the numbers of errors committed for each error class
against the databases of different complexity. The data were not normally distributed between groups

7

Table 3: Database business domains and complexities (NT = number of tables, NA = number of attributes, NFK =
number of foreign keys, DRT = depth referential tree, COS = cohesion of the schema) - databases marked with an
asterisk can also be found in the Teradata University Network

Business domain NT NA NFK DRT COS

Simple social media 5 22 8 3 25
Semi-complex rally timing 7 32 8 3 49
Complex movie rental 11 54 12 4 121

Hoffer et al. (2014) order catalog 4 17 3 2 16
Kroenke and Auer (2016) order catalog 5 27 2 1 11
Elmasri and Navathe (2016)* company employees 6 28 6 3 36
Connolly and Begg (2015) property rental 6 39 6 3 36
Hoffer et al. (2011)* product lines 15 59 13 2 153
Sakila (2019) movie rental 16 88 23 7 256

(simple, semi-complex, and complex), but the distributions of the number of errors committed were
similar for all groups. Additionally, group sizes were not equal (745, 1,116, and 791 incorrect final
queries). For these reasons, we ran a Kruskal-Wallis H test (one for syntax errors, one for semantic
errors, and one for logical errors) to determine if there were differences in the number of errors
committed between the database groups of different complexity. Finally, we ran a Kruskal-Wallis H
test to determine if there were differences in the number of complications committed between the
database groups. As complications by themselves do not constitute in making a query incorrect, we
ran the test on final queries regardless of their correctness (2,870, 3,425, and 2,476 final queries).

5. Results

The null hypothesis for a chi-square test of homogeneity is that in all groups of the independent
variable, the proportions are equal in the population, while the alternative hypothesis is that not all
group population proportions are equal. There was a statistically significant difference between the
three independent binomial proportions (p < .001). Therefore, we can reject the null hypothesis and
accept the alternative hypothesis.

We analyzed 11,160 cases (8,771 queries and 2,389 cases of non-attempts) from a total of 744
students, each assigned to a group writing queries against either a simple, semi-complex or complex
exercise database. The group of 227 students writing queries against the simple database had a higher
success rate (62.4%) compared to the group of 280 students with the semi-complex database (55.0%),
and to the group of 237 students with the complex database (47.4%). Post hoc analysis involved
pairwise comparisons using the z-test of two proportions with a Bonferroni correction. All pairwise
comparisons were statistically significant. The success rates for each database are visualized in Fig.
1, and the success rates for each exercise for each database in Fig. 2.

The null hypothesis for a Kruskal-Wallis H test is that the distribution of the number of errors
(syntax, semantic, or logical) for the groups are equal, while the alternative hypothesis is that the
distribution of the number of errors (syntax, semantic, or logical) are not equal. The Kruskal-Wallis
H test is a common nonparametric alternative to one-way ANOVA (Ruxton and Beauchamp, 2008).

A Kruskal-Wallis H test was run to determine if there were differences in the number of syntax
errors committed between three groups of students writing queries against four databases of different
complexity: “simple” (N = 745), “semi-complex” (N = 1,116) and “complex” (N = 791), where N
represents the number of incorrect final queries submitted by each group in total. Distributions of
the number of syntax errors committed were similar for all groups, as assessed by visual inspection
of a boxplot. Median number of syntax errors committed were statistically significantly different
between groups, H (2) = 23.481, p < .001. Subsequently, pairwise comparisons were performed using

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SIMPLE SEMI-COMPLEX COMPLEX

qu
er
y
fo
rm
ul
at
io
n
su
cc
es
s
ra
te

Figure 1: Success rates (mean ± SEM) for each database

Dunn’s (1964) procedure with a Bonferroni correction for multiple comparisons. Adjusted p-values are
presented. This post hoc analysis revealed statistically significant differences in the number of syntax
errors committed between the simple (mean rank = 1,279.10) and complex (mean rank = 1,420.85)(p
< .001), and semi-complex (mean rank = 1,291.26) and complex (p < .001) database complexity
groups, but not between the simple and semi-complex database complexity group.

A Kruskal-Wallis H test was run to determine if there were differences in the number of semantic
errors committed between four groups of students writing queries against four databases of different
complexity: “simple” (N = 745), “semi-complex” (N = 1,116) and “complex” (N = 791). Dis-
tributions of the number of semantic errors committed were similar for all groups, as assessed by
visual inspection of a boxplot. Median numbers of semantic errors committed were not statistically
significantly different between groups, H (2) = 5.314, p = .070.

A Kruskal-Wallis H test was run to determine if there were differences in the number of logical
errors committed between three groups of students writing queries against three databases of different
complexity: “simple” (N = 745), “semi-complex” (N = 1,116) and “complex” (N = 791). Distribu-
tions of the number of semantic errors committed were similar for all groups, as assessed by visual
inspection of a boxplot. The numbers of logical errors committed were statistically significantly dif-
ferent between groups, H (2) = 14.280, p = .001. Subsequently, pairwise comparisons were performed
performed using Dunn’s (1964) procedure with a Bonferroni correction for multiple comparisons. Ad-
justed p-values are presented. This post hoc analysis revealed statistically significant differences in
the number of logical errors committed between the complex (mean rank = 1,250.20) and simple
(mean rank = 1,341.41)(p = .031), and complex and semi-complex (mean rank = 1,370.62)(p < .001)
database complexity groups, but not between simple and semi-complex.

A Kruskal-Wallis H test was run to determine if there were differences in the number of complica-
tions committed between three groups of students writing queries against three databases of different

9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A1 A2 A3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 C14 C15

qu
er
y
fo
rm
ul
at
io
n
su
cc
es
s
ra
te

SIMPLE SEMI-COMPLEX COMPLEX

Figure 2: Success rates for each exercise for each database

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SIMPLE SEMI-COMPLEX COMPLEX

me
an

nu
mb
er

of
 e
rr
or
s
co
mm
it
te
d

SYNTAX SEMANTIC LOGICAL COMPLICATION

Figure 3: Means for each error class for each database

complexity: “simple” (N = 2,870), “semi-complex” (N = 3,425) and “complex” (N = 2,476). Distri-
butions of the number of complications committed were similar for all groups, as assessed by visual
inspection of a boxplot. The numbers of complications committed were statistically significantly dif-
ferent between groups, H (2) = 717.363, p < .001. Subsequently, pairwise comparisons were performed
performed using Dunn’s (1964) procedure with a Bonferroni correction for multiple comparisons. Ad-
justed p-values are presented. This post hoc analysis revealed statistically significant differences in the
number of complications committed between the simple (mean rank = 3,932.88) and semi-complex
(mean rank = 4,173.22)(p < .001), and simple and complex (mean rank = 5,205.56)(p < .001), and
semi-complex and complex (p < .001) database complexity groups. These numbers for four error

10

classes for each of the three databases are visualized in Fig. 3 as means (rather than mean ranks) for
readability.

Based on the aforementioned results, we can conclude that the basic proposition H1, and auxiliary
hypothesis H5 were supported. Auxiliary hypothesis H2 was supported, but the increase from simple
database to semi-complex was not statistically significant. Auxiliary hypothesis H3 was not supported,
and had a negative, but statistically non-significant effect. Auxiliary hypothesis H4 was not supported.

6. Discussion

6.1. Why the success rates differ

The chi-square test of homogeneity indicates that there is an association between database com-
plexity and success rate, and on the basis of the evidence currently available, it seems fair to suggest
that more often than not, a logically more complex relational database yields lower success rates
than a simpler relational database when students try to write correct SQL queries. Even though this
relationship does not appear uniform among all the exercises (Fig. 2), the results overall (Fig. 1)
support the position that a more complex database results in lower success rates, and the question
under scrutiny is not if but rather why.

Based on a set of studies by Reisner (1977, 1981, 1988), a seminal study on student errors in
SQL query writing by Smelcer (1995) provided the field with six (later abstracted to four in the same
study) cognitive explanations on why errors occur. First two, absence of retrieval cue and imprecise
retrieval cue are closely related to the data demand. For example, the data demand ”list the names of
customers who have rented the same movie as John Doe has rented” lacks the cue to leave John Doe
out of the results. However, in addition to the query concept framework, we designed the exercises
for all cohorts to follow similar natural language expressions. Next three explanations, misperception,
procedural fixedness, and inaccurate procedural knowledge, are closely related to human error, and
lack of knowledge concerning the relational model, the business domain, or SQL. We believe that
although these three explanations matter in the comparison of success rates between the cohorts, the
differences of their effects between the cohorts are minor due to our research design, as explicated in
Section 4.1. Finally, and in our opinion, most importantly, Smelcer (1995) explains SQL errors with
exceeding working memory’s capacity (Miller, 1956): when the number of query concepts, expressions,
or database objects in a task increases, a student’s working memory capacity exceeds, and errors
(omission errors in particular) occur. Our results seem to support the observations presented by
Smelcer (1995), although the connection is not straightforward. What is worth noting is that between
our three cohorts, the query concepts, number of required tables, and database objects in a task are
the same by design (cf. Table 1), and it is the complexity of the database which increases. The view
that more database objects (were they merely present in the database, or also part of a query being
written) cause more strain on working memory is in line with common sense. Based on the results
by Smelcer (1995) and our research, we suggest that it is not only the complexity of the task that
affects the success rate, but also the logical complexity of the exercise database. For future research,
mapping errors to their cognitive explanations via e.g., student interviews would be a valuable addition
to understanding why errors occur with databases of different complexities.

In this study, we did not consider student engagement, but intuitively, more interesting exercises
should result in both more students trying to complete the voluntary exercises, and students engaging
more in the exercises, e.g., a less interested student attempting 5 times, and a more interested student
attempting 10 times to solve an exercise before giving up. In the analyses, we considered that a
student had attempted to solve an exercise if they had written at least one SQL query. A post hoc
inspection of attempt rates revealed that the cohort with the simple database had the highest attempt
rates for 11 of the 15 exercises, while the cohort with the complex database had the lowest attempt
rates for all exercises. This might suggest that the students in the cohort with the simple database
(social media) were more interested in completing the exercises than the students in the cohort with
semi-complex (rally timing) and the complex database (movie rental). This might be due to database
complexity, but also due to the database business domain.

11

This leads to another point we feel compelled to make. Making mistakes is part of any learning
process, and it is rare that a student is able to write the correct query on the first attempt. Moreover,
even if a student is not able to formulate the correct query at all, the errors committed during
the writing process constitute to learning, but non-attempts do not. This propounds the view that
measuring success rates while ignoring non-attempts leaves out the factor of how many of the students
in a cohort even attempted, thus possibly biasing the results towards higher success rates. In contrast,
measuring the perceived interest and usefulness of the exercises, as studied by Yue (2013), leaves out
the factor of success rates, as successfully formulating a query implies that a student has achieved the
required level of knowledge in SQL, whereas failure to do so implies the opposite.

6.2. Considerations on lower success rates

Our results show statistically significant differences in success rates between the databases of
different complexities. However, we do not wish to infer that a high success rate in query writing is a
metric that educators should necessarily strive for, or that a high success rate conflates with learning.
Arguably, the more a student commits errors, the more misconceptions are uncovered and uncertainties
remedied. That being said, we did not consider the number of errors a student committed, only the
number of persistent errors. As stated earlier, a persistent error arguably represents a misconception
or uncertainty that is not remedied, at least not during the query writing process.

Prior studies have provided evidence on the positive effects of more complex databases, and while
our results are not in conflict, they shed light on the possible negative effects. The data yielded by this
study provides considerations for future research, as many questions regarding the matter of exercise
database complexity remain open. If students learn SQL using more complex exercise databases, does
that imply that the students are more familiar with complex databases, but do not have the skills to
formulate correct SQL queries? In contrast, if students learn SQL using simpler exercises databases,
does that imply that the students have the skills to formulate correct SQL queries, but not in complex
database environments? If a more realistic database is demonstrated to cause positive feelings (i.e.,
it is interesting and useful, Yue, 2013) in students, does a low success rate in query formulation
cause negative feelings in students towards SQL, query languages, or databases in general? These
considerations also propound the future research question of how simple exercise database is too
simple, and how complex is too complex.

Finally, as discussed by, e.g., Denny et al. (2012) in the context of programming languages, students
have different levels of capability, and by making the task more difficult, performance decreases (Topi
et al., 2005). With these considerations in mind, it is intuitive that students with high capability have
a tendency to perform better than students with low capability, regardless of the task complexity.
As our results have provided evidence that an increase in database complexity (as opposed to task
complexity) also results in decrease in performance, it seems justified to foster debate whether more
complex databases emphasize the capability differences between students.

6.3. Implications for research

Only one of the auxiliary hypotheses, H5, was supported with a statistically significant effect.
Consequently, while we cannot infer from our results that database complexity affects the number
of syntax, semantic, or logical errors, complications seem to increase with a statistically significant
effect as the the complexity of the database increases. According to the error categorization (Taipalus
et al., 2018), complications can be, e.g., unnecessary joins, ordering in a subquery, or unused corre-
lations names (i.e., aliases). As complications do not affect the result table, but query readability or
computational performance, their severity is below that of other errors. Furthermore, it is theoreti-
cally possible to reliably identify complications in queries with computerized automation (Brass and
Goldberg, 2006), as opposed to, e.g., identifying logical errors. Persistent and non-persistent SQL
errors have been identified earlier (Taipalus and Perälä, 2019), but based on the evidence currently
available, it seems reasonable to suggest that error persistence in regards to error class is not affected
by database complexity.

12

An interesting set of studies by Bowen et al. (2004, 2009) investigated whether ontological clarity
affects query writing performance. The authors effectively designed two relational databases with
the same business domain. One database was designed following widely accepted design guidelines
at the cost of ontological clarity, resulting in a simpler database structure. The other database was
designed with the prioritization of ontological clarity, resulting in a more complex database structure.
Their results indicated that the participants writing queries against the ontologically clearer database
committed more semantic errors, took longer to write their queries, and were less confident in the
accuracy of their queries than the participants writing queries against the ontologically less clear
database. With the omittance of the factor of ontological clarity, our results provide an indication
that increased structural complexity negatively affects query formulation performance.

6.4. Implications for teaching

Intuitively, there were three possible outcomes of this study; a more complex database either causes
a decrease or an increase in success rates, or the success rates remain the same despite the change in
database complexity. Depending on the results, and with Yue’s study (2013) in mind, we encourage
teachers to utilize simpler exercise databases now that the results suggest a decrease in success rates.
We would like to point out that the two other possible outcomes would have been equally interesting,
and in those cases we would have argued for the use of more complex databases. However, as discussed
earlier, our results leave room for interpretation, and, given that a teacher has time, more than one
exercise database can be utilized.

Although it is not apparent in the study by Yue (2013) whether the students found a more complex
database more interesting and useful due to complexity or something else, for the sake of discussion,
we would like to argue that structural complexity increases perceived usefulness and student interest.
Furthermore, if an increase in structural complexity indeed implies decrease in success rates, we as
researchers and teachers should either 1) consider other ways besides increasing structural complexity
to convey interesting and useful exercise databases to students, or 2) support learning SQL in complex
databases with a different or an auxiliary method. That said, if an interesting and useful database is
inevitably also complex, we suggest utilizing both of the above. Finally, if the differences in success
rates between simple and complex databases are indeed caused by increased load on working memory,
we propose that the earlier, rather ambiguously phrased auxiliary method could be considered a way
to simplify the SQL syntax, semantics, and the database structure into a form that puts less strain on
a student’s working memory. As a possible solution, we are currently investigating how a notation for
planning more complex SQL queries (Taipalus, 2019) affects SQL query formulation in more complex
exercise databases. In addition to the environment, concerns about the relationship between language
syntax and cognitive load have been raised in the context of programming languages (Kelleher and
Pausch, 2005; Lister, 2011a,b). Ahadi et al. (2016a) conclude their study on SQL syntax errors by
noting that while semantic errors require more creative problem solving, solving them is not feasible
until possible syntax errors are fixed. With this in mind, the relative difference in the means of syntax
and logical errors (Fig. 3) should not be considered an indicator that syntax errors are somehow less
important.

As shown in Table 2.2, our databases are somewhat similar in complexity to those presented in
learning environments and textbooks. When a teachers chooses an exercise database for a course,
the appropriate structural complexity depends on the difficulty of the planned exercises, student
backgrounds (e.g., majoring in business analytics versus software engineering), as well as teacher skill
and experience. Furthermore, a single database course is not necessarily limited to a single exercise
database. A teacher may utilize a simple database to teach query concepts in theory and through
examples, yet utilize a complex database against which the students can practice query formulation.

Finally, although in the vein of Yue (2013), we have effectively treated a more realistic database as
a synonym for a more complex database, this connection does not necessarily hold true. The growing
trend of, e.g., microservice architectures (Alshuqayran et al., 2016) and mobile applications are often
concerned with subsets of business domains, and do not necessarily address structurally complex

13

databases. This puts forward the topical view that more realistic databases are not necessarily more
complex, and educators should consider using databases which are both realistic (and thus engaging),
and relatively simple (and thus query formulation is likely more successful). That said, what is an
engaging business domain among students remains an open question. While the answer is changing
and subjective, student engagement to different database domains is an interesting future research
topic. In conclusion, the database feature of being more or less realistic is simply a student’s perception
of realistic. If educators can demonstrate that a simple exercise database indeed reflects the structure
of a realistic database, that might positively affect student engagement without negatively affecting
query formulation.

6.5. Limitations

There are two main limitations that affect the generalizability of the results of this study. First,
the data were collected from one university, and a single course which took place three times over three
years. This presents the question whether similar results could be obtained from students taking other
database courses in other universities or under other teachers. As this study was to our knowledge
the first to explore the effects of database complexity on query writing performance, it is not possible
to compare the our results to other studies. Second, only a subset of SQL concepts, even in the scope
of data retrieval, were studied. Then again, a narrower study scope does not necessarily imply weaker
research, as argued for by Siponen and Klaavuniemi (2019).

6.6. Threats to validity

We wanted to study the effects of database complexity on SQL query formulation. Prior to the
study, we identified seven control variables that could affect our results (cf. Fig. 4), and designed our
research setting to mitigate the effects of these variables. Next, we discuss how these variables might
have affected the results of this study, describe the measures (labels a-g in Fig. 4) we took to mitigate
these effects, and argue for the choices we made concerning the research setting.

Results

Teacher
development

Differences in
student cohorts

Differences in
exercise
complexity

Natural language
differences

in data demands

Differences in
business domain

engagement

Differences in
database
complexity

Differences in
learning

environment

Differences in
teaching methods
and materials

a

b

cde

f

g

Figure 4: Variables potentially affecting the results

As we studied three students cohorts, each with their respective database and exercises, the effects
of differences in exercise complexity (Fig. 4a) needed to be mitigated. We designed the exercises for

14

each cohort according to the query concept framework, which lists query concepts and the number
of source and subject tables needed for each of the 15 exercises. Designing the exercises with this
framework allowed us to control the complexity of the exercises, thus mitigating the risk that one
cohort had easier or more difficult exercises than another.

Each of the three cohorts wrote queries against a database with a different business domain. Con-
sequently, the data demands for each cohort were different from each other (Fig. 4b), e.g., one cohort
had to list the names of social media users, one of rally drivers, and one of customers. Although these
natural language considerations are relatively minor due to the fact that the exercises were designed
using the same framework, natural language entails ambiguity (Borthick et al., 2001; Casterella and
Vijayasarathy, 2013; Reisner, 1981). We tried to minimize the effects of natural language on query
writing by providing the students with the correct result table, and we did not consider the number
of tries a student needed to formulate the correct query. We hoped that if students saw that their
result table differed from the correct result table, it would effectively steer students toward the cor-
rect interpretation of the data demand. Similarly, the effects of different database business domains
(Fig. 4c) may have affected the number of students who decided to attempt the exercises. It has also
been shown that understanding the business domain affects query writing performance (Siau et al.,
2004). We considered using a single business domain and a single database, and modularly adding
(or subtracting) tables and attributes for each cohort. However, we found it increasingly difficult to
utilize the query concept framework and come up with at least somewhat realistic data demands.
We also considered using the modular approach with same data demands for each cohort. This was
not deemed feasible for two reasons. First, it would have meant that that some of the tables would
not have been utilized in any query, for any cohort. In our study, the simple database contained five
tables and the complex database eleven, and with same data demands, the remaining six tables of
the complex database would not have been used in any of the queries. Second, based on our previous
teaching experiences, some students have shared the example answers from previous years in different
forums. Even the most diligent student may be tempted to look up an example answer to an exercise
they could not solve, thus achieving more course points. For these reasons, we designed new exercises
and databases for each student cohort, and strived to utilize business domains that are at least some
way familiar to students.

We mitigated the effects of differences in teaching methods and materials (Fig. 4d), and in the
learning environment (Fig. 4e) by using the same teaching materials (slides, handouts), not making
adjustments to the teaching methods, and retaining the course outline (cf. Fig. 2) for all cohorts.
All cohorts used the same e-learning environment and database management system (SQLite) even
though the pedagogical shortcomings of SQLite became increasingly apparent during the study. The
first author taught the course for each cohort, and also coded the queries according to the error
categorization framework. It is possible that there were misinterpretations of the framework, but
possible misinterpretations were at least consistent between the cohorts.

As we elaborated in Section 4.1, the students formulated the queries in a minimally controlled
environment, and there is a possibility that the student cohorts studied were, in some unforeseeable
way, different from each other (Fig. 4f). Perhaps there was a growing trend that students communicate
with each other more and more, perhaps students are more and more skilled in utilizing internet search
engines, or perhaps students have more and more certain personal characteristics - a factor which has
been studied to affect query writing performance (Ashkanasy et al., 2007). Additionally, and although
we used the same teaching materials for each cohort, it is possible, even likely, that the teacher’s skills
develop over time (Fig. 4g), thus possibly positively affecting the development of success rates over
time. If such trends or development exist, we tried to mitigate the effects by following a schedule.
Instead of chronologically gradually increasing or decreasing the database complexity for the cohorts,
we utilized the complex database for the first cohort, the simple for the second, and the semi-complex
for the third. Furthermore, the teacher had taught the same course for years before the first cohort
subject of this study, so major developments in teaching skills were not likely.

In summary, we made deliberate choices to favor a more natural environment for the students to

15

write their queries. Although, as opposed to a more controlled environment, this presented several
threats to validity, but in turn allowed us to study query writing that more accurately reflects the
students’ future work environments. Additionally, our data collection method allowed for a relatively
large number of students and queries to be studied, whereas a more controlled experiment, at least
in our experience, would possibly have yielded significantly less participants. We believe that the
relatively large sample sizes compensate for the margin of error presented possibly by the less controlled
environment.

7. Conclusion

In this study, we set out to investigate whether the logical structural complexity of a relational
database affects the success rates of students writing SQL queries against three databases of vary-
ing complexity. Overall, the results show statistically significant differences between the different
databases, which indicates that students are less likely to formulate correct SQL queries if the exer-
cise database is complex. Rather than suggesting the usage of simpler databases when teaching SQL,
we encourage educators to consider the potential negative effects of more complex databases on SQL
learning, as it has been demonstrated that more complex databases also bring beneficial effects to
teaching.

Acknowledgements

The authors would like to thank Hilkka Grahn for her invaluable advice regarding the data anal-
ysis and grammar, and the associate editor and anonymous reviewers for their helpful insights and
comments on how to improve the paper.

Declarations of interest

None.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.

References

Ahadi, A., Behbood, V., Vihavainen, A., Prior, J., Lister, R., 2016a. Students’ Syntactic Mistakes in
Writing Seven Different Types of SQL Queries and its Application to Predicting Students’ Success,
in: Proceedings of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE
’16), ACM Press, New York, New York, USA. pp. 401–406. doi:10.1145/2839509.2844640.

Ahadi, A., Prior, J., Behbood, V., Lister, R., 2016b. Students’ Semantic Mistakes in Writing Seven
Different Types of SQL Queries, in: Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’16), ACM Press, New York, New York, USA.
pp. 272–277. doi:10.1145/2899415.2899464.

Alshuqayran, N., Ali, N., Evans, R., 2016. A systematic mapping study in microservice architecture, in:
2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA),
IEEE. pp. 44–51. doi:10.1109/SOCA.2016.15.

16

Ashkanasy, N., Bowen, P.L., Rohde, F.H., Wu, C.Y.A., 2007. The effects of user characteristics on
query performance in the presence of information request ambiguity. Journal of Information Systems
21, 53–82. doi:10.2308/jis.2007.21.1.53.

Borthick, A., Bowen, P.L., Jones, D.R., Tse, M.H.K., 2001. The effects of information request am-
biguity and construct incongruence on query development. Decision Support Systems 32, 3 – 25.
doi:10.1016/S0167-9236(01)00097-5.

Bowen, P., O’Farrell, R., Rohde, F., 2004. How does your model grow? An empirical investi-
gation of the effects of ontological clarity and application domain size on query performance,
in: Proceedings of the International Conference on Information Systems (ICIS), p. 7. URL:
https://aisel.aisnet.org/icis2004/7.

Bowen, P.L., O’Farrell, R.A., Rohde, F.H., 2009. An empirical investigation of end-user query develop-
ment: The effects of improved model expressiveness vs. complexity. Information Systems Research
20, 565–584. doi:10.1287/isre.1080.0181.

Brass, S., Goldberg, C., 2006. Semantic errors in SQL queries: A quite complete list. Journal of
Systems and Software 79, 630–644. doi:10.1016/j.jss.2005.06.028.

Calero, C., Piattini, M., Genero, M., 2001. Metrics for controlling database complexity, in: Developing
Quality Complex Database Systems: Practices, Techniques and Technologies. IGI Global, pp. 48–68.
doi:10.4018/9781878289889.ch003.

Casterella, G.I., Vijayasarathy, L., 2013. An Experimental Investigation of Complexity in Database
Query Formulation Tasks. Journal of Information Systems Education 24, 211–221. URL:
http://jise.org/Volume24/24-3/pdf/Vol24-3pg211.pdf.

Chan, H., Siau, K., Wei, K.K., 1997. The effect of data model, system and task characteristics on user
query performance: an empirical study. SIGMIS Database 29, 31–49. doi:10.1145/506812.506820.

Chan, H.C., Teo, H.H., Zeng, X., 2005. An evaluation of novice end-user computing performance:
Data modeling, query writing, and comprehension. Journal of the American Society for Information
Science and Technology 56, 843–853. doi:10.1002/asi.20178.

Connolly, T., Begg, C., 2015. Database Systems (6th. ed.). Pearson.

Denny, P., Luxton-Reilly, A., Tempero, E., 2012. All syntax errors are not equal, in: Proceedings of
the 17th ACM Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE), ACM, New York, NY, USA. pp. 75–80. doi:10.1145/2325296.2325318.

Dunn, O.J., 1964. Multiple comparisons using rank sums. Technometrics 6, 241–252.
doi:10.2307/1266041.

Elmasri, R., Navathe, S.B., 2016. Fundamentals of Database Systems (7th. ed.). Pearson.

Hoffer, J.A., Ramesh, V., Topi, H., 2011. Modern database management. Upper Saddle River, NJ:
Prentice Hall.

Hoffer, J.A., Topi, H., Ramesh, V., 2014. Essentials of Database Management. Pearson Education.

ISO/IEC, 2016. ISO/IEC 9075-2:2016, ”SQL - Part 2: Foundation”. URL:
https://www.iso.org/standard/63556.html.

Jukic, N., Gray, P., 2008a. Teradata university network: A no cost web-portal for teaching database,
data warehousing, and data-related subjects. Journal of Information Systems Education 19, 395–
402. URL: http://jise.org/Volume19/n4/JISEv19n4p395.html.

17

Jukic, N., Gray, P., 2008b. Using real data to invigorate student learning. SIGCSE Bulletin 40, 6–10.
doi:10.1145/1383602.1383604.

Kapfhammer, G.M., McMinn, P., Wright, C.J., 2013. Search-based testing of relational schema in-
tegrity constraints across multiple database management systems, in: 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, IEEE. doi:10.1109/icst.2013.47.

Kelleher, C., Pausch, R., 2005. Lowering the barriers to programming: A taxonomy of program-
ming environments and languages for novice programmers. ACM Computing Surveys 37, 83–137.
doi:10.1145/1089733.1089734.

Kroenke, D., Auer, D.J., 2016. Database Processing: Fundamentals, Design, and Implementation
(14th. ed.). Pearson Education.

Lister, R., 2011a. Programming, syntax and cognitive load (part 1). ACM Inroads 2, 21–22.
doi:10.1145/1963533.1963539.

Lister, R., 2011b. Programming, syntax and cognitive load (part 2). ACM Inroads 2, 16–17.
doi:10.1145/2003616.2003622.

McMinn, P., Wright, C.J., Kapfhammer, G.M., 2015. The effectiveness of test coverage criteria for
relational database schema integrity constraints. ACM Transactions on Software Engineering and
Methodology 25, 8:1–8:49. doi:10.1145/2818639.

McMinn, P., Wright, C.J., Kinneer, C., McCurdy, C.J., Camara, M., Kapfhammer, G.M.,
2016. SchemaAnalyst: Search-based test data generation for relational database schemas, in:
2016 IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE.
doi:10.1109/icsme.2016.93.

McMinn, P., Wright, C.J., McCurdy, C.J., Kapfhammer, G.M., 2019. Automatic detection and
removal of ineffective mutants for the mutation analysis of relational database schemas. IEEE
Transactions on Software Engineering 45, 427–463. doi:10.1109/TSE.2017.2786286.

Miller, G.A., 1956. The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological Review 63, 81. doi:10.1037/0033-295x.101.2.343.

Mitrovic, A., 1998. Learning SQL with a computerized tutor, in: Proceedings of the Twenty-ninth
SIGCSE Technical Symposium on Computer Science Education, ACM, New York, NY, USA. pp.
307–311. doi:10.1145/273133.274318.

Pavlic, M., Kaluza, M., Vrcek, N., 2008. Database complexity measur-
ing method, in: Central European Conference on Information and Intel-
ligent Systems, Faculty of Organization and Informatics Varazdin. URL:
http://archive.ceciis.foi.hr/app/index.php/ceciis/2008/paper/view/84/84.

Prior, J.C., Lister, R., 2004. The backwash effect on SQL skills grading. SIGCSE Bulletin 36, 32–36.
doi:10.1145/1026487.1008008.

Reisner, P., 1977. Use of psychological experimentation as an aid to development of a query language.
IEEE Transactions on Software Engineering SE-3, 218–229. doi:10.1109/tse.1977.231131.

Reisner, P., 1981. Human factors studies of database query languages: A survey and assessment.
ACM Computing Surveys 13, 13–31. doi:10.1145/356835.356837.

Reisner, P., 1988. Query languages, in: Helander, M. (Ed.), Handbook of Human-Computer Interac-
tion. Elsevier, New York, pp. 257–280.

18

Rho, S., March, S.T., 1997. An analysis of semantic overload in database access systems
using multi-table query formulation. Journal of Database Management 8, 3–15. URL:
https://www.igi-global.com/gateway/article/51176.

Ruxton, G.D., Beauchamp, G., 2008. Time for some a priori thinking about post hoc testing. Behav-
ioral Ecology 19, 690–693. doi:10.1093/beheco/arn020.

Sakila, 2019. Sakila sample database (accessed February 2019). URL:
https://dev.mysql.com/doc/sakila/en/sakila-structure.html.

Siau, K.L., Chan, H.C., Wei, K.K., 2004. Effects of query complexity and learning on novice user query
performance with conceptual and logical database interfaces. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans 34, 276–281. doi:10.1109/TSMCA.2003.820581.

Siponen, M., Klaavuniemi, T., 2019. Narrowing the theory’s or study’s scope may in-
crease practical relevance, in: Proceedings of the Annual Hawaii International Con-
ference on System Sciences, University of Hawai’i at Manoa. pp. 6260–6269. URL:
https://scholarspace.manoa.hawaii.edu/handle/10125/60060.

Smelcer, J.B., 1995. User errors in database query composition. International Journal of Human-
Computer Studies 42, 353–381. doi:10.1006/ijhc.1995.1017.

Taipalus, T., 2019. Teaching Tip: A Notation for Planning SQL Queries. Journal of Information
Systems Education 30, 160–166. URL: http://jise.org/Volume30/n3/JISEv30n3p160.pdf.

Taipalus, T., Perälä, P., 2019. What to expect and what to focus on in SQL query teaching, in:
Proceedings of the 50th ACM Technical Symposium on Computer Science Education, ACM, New
York, NY, USA. pp. 198–203. doi:10.1145/3287324.3287359.

Taipalus, T., Siponen, M., Vartiainen, T., 2018. Errors and complications in SQL query formulation.
ACM Transactions on Computing Education 18, 15:1–15:29. doi:10.1145/3231712.

Topi, H., Kaiser, K.M., Sipior, J.C., Valacich, J.S., Nunamaker, Jr., J.F., de Vreede, G.J., Wright, R.,
2010. Curriculum Guidelines for Undergraduate Degree Programs in Information Systems. Technical
Report. ACM/AIS. New York, NY, USA. URL: https://dl.acm.org/citation.cfm?id=2593310.

Topi, H., Valacich, J.S., Hoffer, J.A., 2005. The effects of task complexity and time availability limi-
tations on human performance in database query tasks. International Journal of Human-Computer
Studies 62, 349–379. doi:10.1016/j.ijhcs.2004.10.003.

Wagner, P.J., Shoop, E., Carlis, J.V., 2003. Using scientific data to teach a database systems course,
in: Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education, ACM,
New York, NY, USA. pp. 224–228. doi:10.1145/611892.611975.

Warszawski, T., Bailis, P., 2017. ACIDRain: Concurrency-related attacks on database-backed web
applications, in: Proceedings of the 2017 ACM International Conference on Management of Data,
ACM, New York, NY, USA. pp. 5–20. doi:10.1145/3035918.3064037.

Watson, H.J., Hoffer, J.A., 2003. Teradata university network: A new resource for teaching large data
bases and their applications. Communications of the Association for Information Systems 12, 9.
URL: https://aisel.aisnet.org/cais/vol12/iss1/9/.

Yue, K.B., 2013. Using a semi-realistic database to support a database course. Journal of Information
Systems Education 24, 327–336. URL: http://jise.org/Volume24/n4/JISEv24n4p327.html.

19

Appendix A. Simple database schema

concerns

reaction
userno INT
postno INT
reaction_type VARCHAR(12)

posts
user

userno INT
username VARCHAR(50)
email VARCHAR(50)
country CHAR(2)
postno INT

featured post

post
postno INT
description TEXT
content BLOB
reputation INT
userno INT

message
userno_sender INT
userno_recipient INT
sent_at DATETIME
received_at DATETIME
content VARCHAR(255)
read BOOLEAN

reacts

relationship
userno1 INT
userno2 INT
relationship_type VARCHAR(10)

concerns

concerns

receives

sends

Appendix B. Semi-complex database schema

races in

race
contno INT
stageno INT
year INT
carno INT
duration TIME

mechanic
responsible

car
carno INT
brand VARCHAR(10)
model VARCHAR(20)
model_year INT
hp INT
checkup_complete BOOLEAN
contno INT

iconic
driver

contender
contno INT
fname VARCHAR(30)
sname VARCHAR(40)
type CHAR(1)
nationality CHAR(2)
blood_type VARCHAR(3)
carno INT

stage
stageno INT
stagename VARCHAR(50)
length_km INT

races in

is raced on

belongs
rallyno INT
stageno INT
year INT

belongs to

rally
rallyno INT
rallyname VARCHAR(50)
country CHAR(2)
spono INT

belongs to
sponsor

spono INT
sponsorname VARCHAR(50)
country CHAR(2)

sponsors

20

Appendix C. Complex database schema (Taipalus et al., 2018)

is

has

is acted in
movie

movno INT
mname VARCHAR(50)
genre VARCHAR(50)
language VARCHAR(20)
publisher VARCHAR(30)
year INT
age_limit INT
rating NUMBER(3,1)

review
cust_id CHAR(8)
movno INT
points INT
review_text TEXT

is located

copy
copyno INT
format VARCHAR(6)
status CHAR(1)
movno INT
stono INT

is included

rental_copy
renno INT
copyno INT
status CHAR(1)

includes

rental
renno INT
due DATE
cust_id CHAR(8)writes

customer
cust_id CHAR(8)
fname VARCHAR(50)
sname VARCHAR(50)
dob DATE
fee INT

works in

responsible
for

store
stono INT
street VARCHAR(50)
zip CHAR(6)
city VARCHAR(20)
phone VARCHAR(20)
empno INT

performs

actor
actno INT
fname VARCHAR(50)
sname VARCHAR(50)
dob DATE
dod DATE
picture BLOB

belongs to

acts
actno INT
movno INT
rolno INT
description TEXT

role
rolno INT
fname VARCHAR(50)
sname VARCHAR(50)
alias VARCHAR(50)
description TEXT

employee
empno INT
fname VARCHAR(50)
sname VARCHAR(50)
active_bool BOOLEAN
stono INT

makes

Appendix D. Data demands and queries

21

Simple Semi-complex Complex (Taipalus et al., 2018)

A1 List all information regarding users from Finland
(FI) and Sweden (SE).

List all information regarding cars from Opel and
Toyota.

List all information regarding stores in Helsinki and
Tampere.

SELECT *
FROM user
WHERE country IN (’FI’, ’SE’);

SELECT *
FROM car
WHERE brand IN (’Opel’, ’Toyota’);

SELECT *
FROM store
WHERE city IN (’Helsinki’, ’Tampere’);

A2 List the user numbers, user names, countries and
emails of users who are Australian (AU) but have
no featured post. Sort the results according to user
name in ascending order.

List the names, nationalities and blood types of co-
drivers who are not Finnish (FI). Sort the results
according to surname in ascending order.

List the names, age limits and years of movies that
are in English but are not published by Goldeneye
BC. Sort the results according to the name of the
movie in ascending order.

SELECT userno, username, country, email
FROM user
WHERE country = ’AU’
AND postno IS NULL
ORDER BY username ASC;

SELECT fname, sname, nationality, bloodtype
FROM contender
WHERE type = ’c’
AND nationality <> ’FI’
ORDER BY surname ASC;

SELECT mname, age limit, year
FROM movie
WHERE language = ’English’
AND publisher <> ’Goldeneye BC’
ORDER BY mname ASC;

A3 List the post numbers, descriptions and user num-
bers who made the post, of posts which description
starts with an S or an R, and that have been posted
by users whose user number is 1001 or 1003.

List the names and nationalities of contenders
whose surname starts with an A or a C, and who
are from the United Kingdom (UK) or the United
States (US).

List the names, dates of birth and death of actors
whose surname starts with an F or an S, and whose
date of birth is unknown, or who have a date of
death.

SELECT postno, description, userno
FROM post
WHERE (description LIKE ’S%’ OR description
LIKE ’R%’) AND (userno = 1001 OR userno =
1003);

SELECT fname, sname, nationality
FROM contender
WHERE (surname LIKE ’A%’ OR surname LIKE
’C%’) AND (nationality = ’UK’ or nationality =
’US);

SELECT fname, sname, dob, dod
FROM actor
WHERE (sname LIKE ’F%’ OR sname LIKE ’S%’)
AND (dob IS NULL OR dod IS NOT NULL);

B4 List user names and emails of users who have a
featured post with no description.

List the car brand and model of the car of which
Ari Vatanen is the iconic driver.

List the city and phone number of the store in
which Jaakko Mattila works.

SELECT u.username, u.email
FROM user u, post p
WHERE u.postno = p.postno
AND p.description IS NULL;

SELECT c.brand, c.model
FROM car c, contender d
WHERE c.contno = d.contno
AND d.fname = ’Ari’ AND d.sname = ’Vatanen’;

SELECT s.city, s.phone
FROM store s, employee e
WHERE s.stono = e.stono
AND e.fname = ’Jaakko’ AND e.sname = ’Mat-
tila’;

22

Simple Semi-complex Complex (Taipalus et al., 2018)

B5 List the post numbers and descriptions of posts
which at least one Finnish (FI) user has considered
funny. Sort the results according to post number
in descending order.

List the names and countries of rallies which in-
cluded at least one stage of over 20 kilometers in
1998. Sort the results according to rally name in
descending order.

List the names of actors whose date of death is
known and who have acted in at least one movie
released after 2010. Sort the results according to
surname in descending order.

SELECT p.postno, p.description
FROM post p
INNER JOIN reaction r ON (p.postno = r.postno)
INNER JOIN user u ON (r.userno = u.userno)
WHERE u.country = ’FI’
AND r.reaction type = ’funny’
ORDER BY p.postno DESC;

SELECT r.rallyname, r.country
FROM rally r
INNER JOIN belongs b ON (r.rallyno = b.rallyno)
INNER JOIN stage s ON (b.stageno = s.stageno)
WHERE b.year = 1998
AND s.length km > 20
ORDER BY r.rallyname DESC;

SELECT a.fname, a.sname
FROM actor a
INNER JOIN acts ac ON (a.actno = ac.actno)
INNER JOIN movie m ON (ac.movno = m.movno)
WHERE a.dod IS NOT NULL
AND m.year > 2010
ORDER BY a.sname DESC;

B6 List the contents and user numbers of the receivers
of messages which were sent by an user with user
number 1001 or 1003, and who has reacted to some
post at least once. Sort the results according to the
user number, and then according to content, both
in ascending order.

List the brands and models of cars which have been
driven at least once on stage called Sweet Lamb 1 or
Sweet Lamb 2. Sort the results according to brand,
and then according to model, both in ascending
order.

List the names of actors who have acted a role as
himself or herself. Sort the results according to
surname, and then according to first name, both in
ascending order.

SELECT m.content, m.userno receiver
FROM message m
WHERE EXISTS
(SELECT *
FROM user u
WHERE m.userno sender = u.userno
AND (u.userno = 1001 OR u.userno = 1003)
AND EXISTS
(SELECT *
FROM reaction r
WHERE u.userno = r.userno)

)
ORDER BY m.userno receiver ASC, m.content
ASC;

SELECT c.brand, c.model
FROM car c
WHERE EXISTS
(SELECT *
FROM race r
WHERE c.carno = r.carno
AND EXISTS
(SELECT *
FROM stage s
WHERE r.stageno = s.stageno
AND (s.stagename = ’Sweet Lamb 1’
OR s.stagename = ’Sweet Lamb 2’))

)
ORDER BY c.brand ASC, c.model ASC;

SELECT a.fname, a.sname
FROM actor a
WHERE EXISTS
(SELECT *
FROM acts ac
WHERE a.actno = ac.actno
AND EXISTS
(SELECT *
FROM role r
WHERE ac.rolno = r.rolno
AND (r.alias = ’Himself’
OR r.alias = ’Herself’))

)
ORDER BY a.sname ASC, a.fname ASC;

23

Simple Semi-complex Complex (Taipalus et al., 2018)

B7 List the post numbers, contents and reputations of
posts which have a reputation greater than 0, but
which no one has ever considered funny.

List the names and nationalities of co-drivers who
have never raced in 1986-2010.

List the movie numbers, names and years of movies
that have been released in the first decade of the
2000s, but of which there exists no copy in BluRay
format.

SELECT p.postno, p.content, p.reputation
FROM post p
WHERE p.reputation > 0
AND NOT EXISTS
(SELECT *
FROM reaction r
WHERE p.postno = r.postno
AND r.reaction type = ’funny’);

SELECT c.fname, c.sname, c.nationality
FROM contender c
WHERE c.type = ’c’
AND NOT EXISTS
(SELECT *
FROM race r
WHERE c.contno = r.contno
AND r.year BETWEEN 1986 AND 2010);

SELECT m.movno, m.mname, m.year
FROM movie m
WHERE m.year BETWEEN 2000 AND 2009
AND NOT EXISTS
(SELECT *
FROM copy c
WHERE m.movno = c.movno
AND c.format = ’BluRay’);

B8 List the user names, emails and countries of users
who have never posted anything but who have at
least once reacted to a post.

List the stage numbers, names and lengths of stages
which have never been a part of any rally but on
which someone has raced at least once.

List the names and dates of birth of customers who
have never rented a movie but who have given at
least one review.

SELECT u.username, u.email, u.country
FROM user u
WHERE NOT EXISTS
(SELECT *
FROM post p
WHERE u.userno = p.userno)

AND EXISTS
(SELECT *
FROM reaction r
WHERE u.userno = r.userno);

SELECT s.stageno, s.stagename, s.length km
FROM stage s
WHERE NOT EXISTS
(SELECT *
FROM belongs b
WHERE s.stageno = b.stageno)

AND EXISTS
(SELECT *
FROM race r
WHERE s.stageno = r.stageno);

SELECT c.fname, c.sname, c.dob
FROM customer c
WHERE NOT EXISTS
(SELECT *
FROM rental rt
WHERE c.cust id = rt.cust id)

AND EXISTS
(SELECT *
FROM review rv
WHERE c.cust id = rv.cust id);

B9 List the average of post reputations with a repu-
tation greater than 0. Rename the column in the
result table descriptively.

List the number of stages with the length between
4 and 10 kilometers. Rename the column in the
result table descriptively.

List the number of movies released between the
years 1970-2000. Rename the column in the result
table descriptively.

SELECT AVG(repuration) AS ”average positive
reputation”
FROM post
WHERE reputation > 0;

SELECT COUNT(*) AS ”number of 4-10 km
stages”
FROM stage
WHERE length km BETWEEN 4 AND 10;

SELECT COUNT(*) AS ”movies released in 1970-
2000”
FROM movie
WHERE year BETWEEN 1970 AND 2000;

24

Simple Semi-complex Complex (Taipalus et al., 2018)

B10 List the user names, emails, countries, and reac-
tion types and post numbers which the reactions
concern, but only from users who are married. Re-
name the columns in the result table descriptively.

List the names and types of contenders, and the car
brands and models with which they have raced on
a stage called Ouninpohja. Rename the columns
in the result table descriptively.

List the names of actors who have acted in the
movie Physics 101 and list the names of the roles
they have played in that movie. Rename the
columns in the result table descriptively.

SELECT u.username AS ”user name”, u.email AS
”email”, u.country AS ”country”, r.reaction type
AS ”reaction”, p.postno AS ”post number”
FROM user u, reaction r, post p, relationship s
WHERE u.userno = r.userno
AND r.postno = p.postno
AND u.userno = s.userno1
AND s.relationship type = ’marriage’;

SELECT c.fname AS ”first name”, c.sname
AS ”surname”, c.type AS ”type”, a.brand AS
”brand”, a.model AS ”model”
FROM contender c, car a, race r, stage s
WHERE c.contno = r.contno
AND r.stageno = s.stageno
AND r.carno = a.carno
AND s.stagename = ’Ouninpohja’;

SELECT a.fname AS ”actor’s first name”, a.sname
AS ”actor’s surname”, r.fname AS ”character’s
first name”, r.sname AS ”character’s surname”,
r.alias AS ”character’s alias”
FROM movie m, actor a, acts ac, role r
WHERE m.movno = ac.movno
AND ac.rolno = r.rolno
AND a.actno = ac.actno
AND m.mname = ’Physics 101’;

B11 List the contents, sender user number, and the time
the message was sent of the oldest unread message.

List the car number, model year and horse powers
of the oldest Toyota.

List the name, year and genre of the oldest movie
published by Goldeneye BC.

SELECT content, userno sender, sent at
FROM message
WHERE read = False
AND sent at =
(SELECT MIN(sent at)
FROM message
WHERE read = False);

SELECT carno, model year, hp
FROM car
WHERE brand = ’Toyota’
AND model year =
(SELECT MIN(model year)
FROM car
WHERE brand = ’Toyota’);

SELECT mname, year, genre
FROM movie
WHERE publisher = ’Goldeneye BC’
AND year =
(SELECT MIN(year)
FROM movie
WHERE publisher = ’Goldeneye BC’);

B12 List the user names and emails of users who have
sent messages to exactly six different users.

List the names of contenders who have raced with
at least three different cars.

List the actor numbers and full names of actors
who have acted in at least five different movies.

SELECT u.username, u.email
FROM user u
WHERE 6 =
(SELECT COUNT(DISTINCT

m.userno recipient)
FROM message m
WHERE u.userno = m.userno sender);

SELECT c.fname, c.sname
FROM contender c
WHERE 2 <
(SELECT COUNT(DISTINCT r.carno)
FROM race r
WHERE r.carno = c.carno);

SELECT a.actno, a.fname, a.sname
FROM actor a
WHERE 4 <
(SELECT COUNT(DISTINCT ac.movno)
FROM acts ac
WHERE a.actno = ac.actno);

25

Simple Semi-complex Complex (Taipalus et al., 2018)

B13 List the user names and countries of users who have
posted a post which has received the at least one
similar type of reaction as any post made by user
1004.

List the numbers and names of rallies which have
at least one stage which is of the same length as
some stage that has been part of the Rally of Wales
(rallyno = 201), whenever.

List the names of customers who have rented ex-
actly the same movie copy that Robert Butler
(rbutler1) has rented, whenever.

SELECT u.userno, u.country
FROM user u, post p1, post p2, reaction r1, reac-
tion r2
WHERE u.userno = p1.userno
AND p1.postno = r1.postno
AND r1.reaction type = r2.reaction type
AND r2.postno = p2.postno
AND p2.userno = 1004
AND u.userno <> 1004;

SELECT r.rallyno, r.rallyname
FROM rally r, belongs b1, belongs b2, stage s1,
stage s2
WHERE r.rallyno = b1.rallyno
AND b1.stageno = s1.stageno
AND s1.length km = s2.length km
AND s2.stageno = b2.stageno
AND b2.rallyno = 201
AND r.rallyno <> 201;

SELECT c.fname, c.sname
FROM customer c, rental r1, rental copy rc1,
rental copy rc2, rental r2
WHERE c.cust id = r1.cust id
AND r1.renno = rc1.renno
AND rc1.copyno = rc2.copyno
AND rc2.renno = r2.renno
AND r2.cust id = ’rbutler1’
AND c.cust id <> ’rbutler1’;

C14 List the numbers of users by country and relation-
ship type. Sort the results by country in ascending
order. Make sure that the structure of the result
table is as below [example given].

List the numbers of stages by rally name and year.
Sort the results by year in ascending order. Make
sure that the structure of the result table is as be-
low [example given].

List the numbers of movie copies located in stores
by city and status of the copy. Sort the results
by city in ascending order. Make sure that the
structure of the result table is as below [example
given].

SELECT u.country, s.relationship type,
COUNT(u.userno) AS total
FROM user u, relationship s
WHERE u.userno = s.userno1
GROUP BY u.country, s.relationship type
ORDER BY u.country ASC;

SELECT r.rallyname, b.year, COUNT(b.stageno)
AS total
FROM rally r, belongs b
WHERE r.rallyno = b.rallyno
GROUP BY r.rallyname, b.year
ORDER BY b.year ASC;

SELECT s.city, c.status, COUNT(c.copyno) AS
total
FROM store s, copy c
WHERE c.stono = s.stono
GROUP BY s.city, c.status
ORDER BY s.city ASC;

Simple Semi-complex Complex (Taipalus et al., 2018)

C15 List the numbers of sent messages by the sender’s
country and message read status. Disregard
senders with less than four sent messages, regard-
less of the message read status. Sort the results
according to the number of messages sent in de-
scending order.

List the numbers of raced stages by contender num-
ber and nationality. Disregard contenders with less
than seven raced stages. Sort the results according
to the number of stages raced in descending order.

List the numbers of movie copies by movie number
and movie name. Disregard movies of which there
are less than six copies, regardless of the status of
the copy. Sort the results according to the number
of the copies in descending order.

SELECT u.country, m.read,
COUNT(m.userno sender) AS total
FROM user u, message m
WHERE u.userno = m.userno sender
GROUP BY u.country, m.read
HAVING COUNT(m.userno sender) > 3
ORDER BY total DESC;

SELECT c.contno, c.nationality,
COUNT(r.stageno) AS total
FROM contender c, race r
WHERE c.contno = r.contno
GROUP BY c.contno, c.country
HAVING COUNT(r.stageno) > 6
ORDER BY total DESC;

SELECT m.movno, m.mname, COUNT(c.movno)
AS total
FROM movie m, copy c
WHERE m.movno = c.movno
GROUP BY m.movno, m.mname
HAVING COUNT(c.movno) > 5
ORDER BY total DESC;

26

PV

TEACHING TIP: A NOTATION FOR PLANNING SQL QUERIES

by

Toni Taipalus 2019

Journal of Information Systems Education, 30(3), 160-166

Reproduced with kind permission of ISCAP.

Journal of
Information
Systems
Education

Volume 30

Issue 3
Summer 2019

Teaching Tip
A Notation for Planning SQL Queries

Toni Taipalus

Recommended Citation: Taipalus, T. (2019). Teaching Tip: A Notation for Planning SQL
Queries. Journal of Information Systems Education, 30(3), 160-166.

Article Link: http://jise.org/Volume30/n3/JISEv30n3p160.html

Initial Submission: April 4 2018
Accepted: 13 February 2019
Abstract Posted Online: 5 June 2019
Published: 12 September 2019

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

Teaching Tip
A Notation for Planning SQL Queries

Toni Taipalus
University of Jyvaskyla

Faculty of Information Technology
Jyvaskyla, Finland, 40014

toni.taipalus@jyu.fi

ABSTRACT

Structured Query Language (SQL) is still the de facto database query language widely used in industry and taught in almost all
university level database courses. The role of SQL is further strengthened by the emergence of NewSQL systems which use SQL
as their query language as well as some NoSQL systems, e.g., Cassandra and DynamoDB, which base their query languages on
SQL. Even though the syntax of SQL is relatively simple when compared to programming languages, studies suggest that students
struggle with simple concepts due to working memory constraints when learning SQL. This teaching tip presents a novel, simple,
and intuitive notation for planning more complex SQL queries, which 1) facilitates the learning of SQL by providing students with
a big picture of a particular data demand in regard to the database structure and 2) separates the logic of a data demand from the
syntax and semantics of SQL, thus alleviating the strain on the student’s short-term memory. The notation can also be applied when
discussing SQL semantics during the teaching process without focusing on the syntactical nuances of the language.

Keywords: Structured query language (SQL), Query language, Data management, Data visualization, Teaching tip

1. INTRODUCTION

When teaching programming, teachers often emphasize
planning before writing, and encourage the use of various
techniques, e.g., flowcharts, to plan how the software works. As
the software becomes increasingly complex, planning can be
supported by design, e.g., by using class diagrams. Various
planning techniques that support learning have been proposed
for programming (e.g., Hu, Winikoff, and Cranefield, 2012),
but SQL has received less attention despite its popularity in
both education and industry. The techniques intended for
supporting the learning of programming cannot be utilized as is
with SQL because of the declarative (i.e., a query is a
description of what) and set focused (i.e., a query is difficult or
impossible to divide into working subsets) nature of SQL as
opposed to the imperative (i.e., a function is a description of
how) and step focused (i.e., software operates line-by-line and
function-by-function) nature of programming languages such
as Java, C#, or Python. These differences make the use of
flowcharts unsuitable for planning SQL queries.

The more complex the query is, the more strain it puts on
the query writer’s short-term memory (e.g., de Jong, 2010, for
working memory in general; Smelcel, 1995, for working
memory in SQL in particular). Additionally, Ahadi et al. (2016)
found that omission errors are among the most common errors
when students are learning SQL and proposed that following a
systematic procedure and segmenting the question could be the
solution for avoiding omission errors. Additionally, even
though the syntax of SQL is relatively simple, during the query

writing process, the writer must recall SQL keywords with their
syntax and semantics, in addition to the database object names,
namespaces, and required expressions which, according to
Smelcer (1995), often causes strain on the student’s short-term
memory. Furthermore, Buitendijk (1988) discussed that one of
the four major reasons for writing incorrect SQL queries was
the complexity of the task. Our work introduces a simple and
intuitive notation for planning SQL queries (NPSQ) which is
not based on any existing notation. The purpose of the notation
is two-fold. First, to assist the student in acquiring the big
picture of more complex queries, and second, to separate logic
and semantics from syntax, thus alleviating the strain on the
student’s short-term memory.

The notation can be utilized in any database course that
involves SQL. We have used the notation in an introductory
database course with approximately 250 to 350 students
(depending on the year), mandatory for undergraduate students
who major in information systems or computer science, who
typically have no previous experience in SQL. We have taught
SQL from the SQL standard’s perspective as proposed by
Randolph (2003). In addition to positive student feedback,
several industry professionals have indicated that the notation
has proven increasingly useful when planning more and more
complex queries.

2. BACKGROUND

In this section, we first define key terms for this work. We then
describe our perceptions on how a query writing process takes

Journal of Information Systems Education, Vol. 30(3) Summer 2019

160

place in order to give background on what conceptions have
driven the evolution of the notation.

2.1 Terminology
A data demand is a natural language representation of what data
is needed to which a query writer, e.g., a student, is required to
write an equivalent query in SQL. When a query is run, the
database management system outputs an error message, or a
result table which contains the rows that satisfy the query. A
query plan is a picture drawn by a query writer using NPSQ. A
query plan is drawn after reading the data demand but before
writing the query.

Rows that satisfy a query can be limited in two ways: joins
and expressions. To the extent of our teaching, a student can
write a join in one of four methods: using the JOIN predicate,
an uncorrelated subquery with IN, a correlated subquery with
EXISTS, or with an explicit join condition without a subquery.
Not all the methods can be applied for all data demands, and
some methods fit more naturally to some data demands.
Expressions concern either a column, or groups, which means
that the expression is placed either in a WHERE clause, or a
HAVING clause, respectively. Concrete examples of some of
these methods can be found in Appendix 1, and examples of all
methods in Taipalus, Siponen, and Vartiainen (2018).

2.2 The Query Writing Process
Over the last eight years of teaching SQL, we have identified
six steps in the query writing process which, in turn, have
guided the formulation and usage of this notation. Similar steps
or aspects have also been recognized by others (e.g., Casterella
and Vijayasarathy, 2013). These steps are, in order: i) which
tables are needed to answer the data demand; ii) which columns

are needed in the result table; iii) which tables need to be joined;
iv) which columns are the joining columns, and is there a need
for an outer join; v) which columns are subject to expressions;
and vi) is there a need for ordering, grouping, or expressions on
groups. These steps can be interpreted as one of the lower level
presentations of the model of the query formulation process
suggested by Borthick et al. (2001).

3. THE NOTATION

In this section we first discuss the elements of NPSQ from a
more theoretical viewpoint and then present practical step-by-
step instructions on how to utilize the notation. More examples
can be found in Appendix 1. The notation can also be utilized
for complex UPDATE and DELETE statements with little or
no modifications. Furthermore, the notation may be used with
other relationally complete query languages which, however,
appear to be scarce.

3.1 The Elements of the Notation
NPSQ does not decree the syntactical elements of the query,
e.g., which method should be used when writing joins or how
expressions should be written, but only the logic of the query.
We have designed the notation for SELECT, FROM, WHERE,
ORDER BY, GROUP BY, and HAVING clauses, because
these are the most commonly taught data retrieval elements of
SQL. Although we present the elements of NPSQ drawn with a
computer program, we emphasize that the planning should take
place with pen and paper for quickness and convenience. Figure
1 summarizes the notation, and Table 1 presents examples of
the SQL equivalents. The elements on the left side correspond
to relational algebraic operations (Codd, 1970, 1972):

Table 1. The Corresponding SQL Concepts for Each Element of the Notation

a) SELECT c1
FROM <some table> T

e) ORDER BY c1 ASC, c2 DESC

b) FROM <some table> T
WHERE c1 = <some value>

f) SELECT c1, c2, SUM(c3)
[…]
GROUP BY c1, c2

c) FROM <some table> T
INNER JOIN <some table> S ON (T.c1 = S.c1)

g) SELECT c1, COUNT(c2)
[…]
GROUP BY c1
HAVING COUNT(c2) > 2

d) FROM <table> T
LEFT OUTER JOIN <some table> S ON (T.c1 = S.c1)

Figure 1. The Elements of the Notation

Journal of Information Systems Education, Vol. 30(3) Summer 2019

161

projection (SELECT), restriction (WHERE), join (INNER
JOIN), and intersection (OUTER JOIN). The elements on the
right side correspond to SQL clauses: sorting (ORDER BY),
grouping (GROUP BY), and expressions on groups
 (HAVING).

While we designed the elements of the notation around the
six steps of the query writing process discussed in Section 2.2,
the structure of a query plan is inspired by the query trees used
as input and output by the query processing components of
different database management systems. A query plan can also
be understood as a graph with nodes (tables), edges (joins), and
properties (joining columns and expressions) of both.
Furthermore, a query plan is a kind of tree in which the root
node is the table from which columns are projected into the
result table. However, a tree can have multiple root nodes, if the
result table contains columns from more than one table.

Tables should be represented not by table names but by
short aliases for brevity and convenience. In a case such as a
self-join when the same table must be presented more than
once, different aliases should be considered, e.g., T1 and T2 for
table T. If an expression is complex, or the expression repeated
with different values for different tables, more precise notation
can be used, e.g., c1 = ‘New York’ instead of c1. If a join is
complex, e.g., based on an aggregate function, or if a quantified
comparison operator such as ALL is used, it can be presented
as a property of the corresponding edge.

If the query is written with subqueries, the distance from
the root node(s) represents the depth of a query; the root nodes
represent the main SELECT clause, the nodes on the next level
of the tree represent first level subqueries, the nodes on the level
below that represent second level subqueries etc. A case of
negated existential quantifier (¬) can be formulated with either
left or right outer join, with a subquery using NOT IN or NOT

EXISTS, or with ALL. In the former case, letters L or R can be
used to illustrate the type of the outer join, as demonstrated

in Figure 1 (d). If NATURAL JOIN or CROSS JOIN is used,
the property of the edge can be omitted.

In the scope of our course, we teach only strict grouping. In
practice, this means that if an aggregate function is used in the
main SELECT clause with a grouping column, the result table
must be grouped by all grouping columns, and only the
grouping columns for the query to be syntactically correct, as
opposed to the optional feature T301 (ISO/IEC, 2016). This
grouping convention can be observed in Figure 1 and Table 1
(f, g).

3.2 Practical Examples
In order to demonstrate the usage of the notation in practice,
and to demonstrate corresponding SQL clauses with complete
examples, we utilize two data demands presented by Taipalus,
Siponen, and Vartiainen (2018). We present the query plan
formulation in six steps, which correspond to the steps
presented in Section 2.2. Additionally, we present the
corresponding SQL queries formulated in six steps. It is worth
noting that we do not necessarily write the queries in the order
presented in Tables 2 and 3, and the tables are presented merely
for illustrative purposes. Refer to Appendix 2 for the database
schema and business domain.

For Figure 2 and Table 2, consider the data demand “List
the names of actors who have acted a role as himself or herself.
Sort the results according to surname and then according to first
name, both in ascending order.”

Figure 2. The Iterative Process of a Basic Query Plan Formulation - Table Abbreviations A, AC, and R Stand for
Actor, Acts, and Role, Respectively

Journal of Information Systems Education, Vol. 30(3) Summer 2019

162

i) ii) iii)
SELECT
FROM actor a, acts ac, role r

SELECT a.fname, a.sname
FROM actor a, acts ac, role r

SELECT a.fname, a.sname
FROM actor a, acts ac, role r
WHERE a. = ac.
AND ac. = r.

iv) v) vi)
SELECT a.fname, a.sname
FROM actor a, acts ac, role r
WHERE a.actno = ac.actno
AND ac.rolno = r.rolno

SELECT a.fname, a.sname
FROM actor a, acts ac, role r
WHERE a.actno = ac.actno
AND ac.rolno = r.rolno
AND r.alias IN (’Himself’, ’Herself’)

SELECT a.fname, a.sname
FROM actor a, acts ac, role r
WHERE a.actno = ac.actno
AND ac.rolno = r.rolno
AND r.alias IN (’Himself’, ’Herself’)
ORDER BY a.sname ASC, a.fname ASC;

Table 2. The Corresponding SQL Statements for Each Step Presented in Figure 2

i) ii) iii)
SELECT
FROM actor a, role r,
 movie m, acts ac

SELECT a.fname, a.sname,
 r.fname, r.sname, r.alias
FROM actor a, role r,
 movie m, acts ac

SELECT a.fname, a.sname,
 r.fname, r.sname, r.alias
FROM actor a, role r,
 movie m, acts ac
WHERE a. = ac.
AND r. = ac.
AND ac. = m.

iv) v) vi)
SELECT a.fname, a.sname,
 r.fname, r.sname, r.alias
FROM actor a, role r,
 movie m, acts ac
WHERE a.actno = ac.actno
AND r.rolno = ac.rolno
AND ac.movno = m.movno

SELECT a.fname, a.sname,
 r.fname, r.sname, r.alias
FROM actor a, role r,
 movie m, acts ac
WHERE a.actno = ac.actno
AND r.rolno = ac.rolno
AND ac.movno = m.movno
AND m.mname = ‘Physics 101’;

(nothing to add)

Table 3. The Corresponding SQL Statements for Each Step Presented in Figure 3

Figure 3. The Iterative Process of a More Complex Query Plan Formulation – Table Abbreviations A, R, AC,
and M Stand for Actor, Role, Acts, and Movie, Respectively

Journal of Information Systems Education, Vol. 30(3) Summer 2019

163

For Figure 3 and Table 3, consider the data demand “List
the names of actors who have acted in the movie Physics 101,
and list the names of the roles they have played in that movie.”
For the query plans in Figures 2 and 3, notice how the distances
of the nodes from the root node would represent the level of the
subqueries.

4. IMPLICATIONS FOR TEACHING

We have identified fours ways of using the notation in teaching.
First, when SQL is first taught in the course lectures, query
plans can be utilized to explain the logic behind each data
demand before writing the query. In our experience, the
notation is so simple and intuitive that it can be explained
simultaneously to drawing the first query plan. During the
drawing process, the teacher can ask students the questions
listed in Section 2.2 and draw the plan gradually. The students
can be encouraged to plan all queries before writing them for
lab assignments or in the final examination.

Second, as the notation separates logic and semantics from
syntax, the students can ask the teachers whether their query is
planned correctly without focusing on the syntactical aspects of
the query. Subsequently, the teachers can point out possible
logical errors in the plan, asking questions such as “this plan
answers to a different data demand, can you tell me what it is?”
This in turn informs the students whether they have understood
the data demand and can then focus on the syntax. For example,
if we join STORE with EMPLOYEE (see Appendix 2) using
stono, the result table contains stores with at least one employee
working in them. However, the teacher can draw a query plan
in which the tables are joined using empno and ask the students
to explain what the data demand is.

Third, in addition to writing queries in the final
examination, query plans may be required. Although this
requirement means that the students need to learn an additional
notation for the final examination, it might eliminate some
errors caused by carelessness, such as missing expressions or
ordering from the queries, in addition to forcing the student to
reflect on the logic behind the data demand before starting the
query writing process.

Fourth, the logic behind joining different tables by different
columns in a specific database domain can be practiced in pairs:
one student draws the query plan and another student writes the
query based on that plan. The exercise can be made more
difficult if only the student drawing the query plan is aware of
the data demand. We are eager to construct a research setting to
see if scientific evidence supports our positive experiences with
the notation.

5. CONCLUSION

In this paper, we presented a simple notation for planning
complex SQL queries to separate the logic of a data retrieval
task from the syntax of SQL and to alleviate the strain a task
puts on the query writer’s short-term memory. We hope that the
paper will encourage other educators to use the notation in their
database courses to facilitate the teaching of SQL and to help
formulate, understand, and teach more complex queries to
mimic the students’ future work environments, whether those
environments are in the domain of business analytics or
software engineering.

6. REFERENCES

Ahadi, A., Prior, J., Behbood, V., & Lister, R. (2016). Students’

Semantic Mistakes in Writing Seven Different Types of SQL
Queries. Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education
(ITiCSE ’16), 272–277.

Borthick, A. F., Bowen, P. L., Jones, D. R., & Tse, M. H. K.
(2001). The Effects of Information Request Ambiguity and
Construct Incongruence on Query Development. Decision
Support Systems, 32, 3-25.

Buitendijk, R. B. (1988). Logical Errors in Database SQL
Retrieval Queries. Computer Science in Economics and
Management, 1(2), 79-96.

Casterella, G. I. & Vijayasarathy, L. (2013). An Experimental
Investigation of Complexity in Database Query Formulation
Tasks. Journal of Information Systems Education, 24(3),
211-222.

Codd, E. F. (1970). A Relational Model of Data for Large
Shared Data Banks. Communications of the ACM, 13(6),
377–87.

Codd, E. F. (1972). Relational Completeness of Data Base
Sublanguages. Data Base Systems (Courant Computer
Science Symposium 6), Prentice-Hall.

de Jong, T. (2010). Cognitive Load Theory, Educational
Research, and Instructional Design: Some Food for Thought.
Instructional Science, 38, 105–134.

Hu, M., Winikoff, M., & Cranefield, S. (2012). Teaching
Novice Programming using Goals and Plans in a Visual
Notation. Proceedings of the Fourteenth Australasian
Computing Education Conference - Volume 123 (ACE '12),
Darlinghurst, Australia, 43-52.

ISO/IEC. (2016). ISO/IEC 9075-2:2016, SQL - Part 2:
Foundation.

Randolph, G. B. (2003). The Forest and the Trees: Using Oracle
and SQL Server Together to Teach ANSI-Standard SQL.
Proceedings of the 4th Conference on Information
Technology Curriculum (CITC4), 234–236.

Smelcer, J. B. (1995). User Errors in Database Query
Composition. International Journal of Human-Computer
Studies, 42(4), 353–381.

Taipalus, T., Siponen, M., & Vartiainen, T. (2018). Errors and
Complications in SQL Query Formulation. ACM
Transactions on Computing Education, 18(3), Article 15.

AUTHOR BIOGRAPHY

 Toni Taipalus is a teacher at the University of Jyvaskyla. He

teaches databases, data management,
application programming, and
system development. His research
interests are in the pedagogical
aspects of query languages, data
models, and agile software
development.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

164

APPENDIX 1: EXAMPLE QUERY PLANS

Query (Taipalus, Siponen, and Vartiainen, 2018) Query plan
SELECT c.fname, c.sname, c.dob
FROM customer c
WHERE NOT EXISTS
 (SELECT *
 FROM rental rt
 WHERE c.cust_id = rt.cust_id)
AND EXISTS
 (SELECT *
 FROM review rv
 WHERE c.cust_id = rv.cust_id);

SELECT mname, year, genre
FROM movie
WHERE publisher =‘Goldeneye BC’
AND year =
 (SELECT MIN(year)
 FROM movie
 WHERE publisher =‘Goldeneye BC’);

SELECT c.fname,
 c.sname
FROM customer c,
 rental r1,
 rental_copy rc1,
 rental_copy rc2,
 rental r2
WHERE c.cust_id = r1.cust_id
AND r1.renno = rc1.renno
AND rc1.copyno = rc2.copyno
AND rc2.renno = r2.renno
AND r2.cust_id = ‘rbutler1’
AND c.cust_id <> ‘rbutler1’;

SELECT m.movno,
 m.mname,
 COUNT(c.movno) AS total
FROM movie m, copy c
WHERE m.movno = c.movno
GROUP BY m.movno, m.mname
HAVING COUNT (c.movno) > 5
ORDER BY total DESC;

Journal of Information Systems Education, Vol. 30(3) Summer 2019

165

APPENDIX 2: THE DATABASE SCHEMA

This appendix contains a database schema (Taipalus, Siponen, and Vartiainen, 2018) to be used in conjunction with the examples
in Sections 3.2 and 4 and Appendix 1.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

166

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2019 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

	ABSTRACT
	TIIVISTELMÄ (ABSTRACT IN FINNISH)
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	2 THEORETICAL BACKGROUND
	2.1 The relational model and SQL
	2.2 SQL in education
	2.3 Query formulation errors
	2.4 Causes behind errors

	3 SUMMARY OF ARTICLES
	3.1 Overview and motivation
	3.2 Contributions
	3.2.1 Article PI
	3.2.2 Article PII
	3.2.3 Article PIII
	3.2.4 Article PIV
	3.2.5 Article PV

	4 DISCUSSION
	4.1 Practical implications
	4.2 Limitations and threats to validity
	4.3 Ethical considerations
	4.4 Future agenda

	5 CONCLUSIONS
	YHTEENVETO (SUMMARY IN FINNISH)
	REFERENCES
	ORIGINAL PAPERS
	PI: SQL EDUCATION: A SYSTEMATIC MAPPING STUDY AND FUTURE RESEARCH AGENDA

	PII: ERRORS AND COMPLICATIONS IN SQL QUERY FORMULATION
	PIII: WHAT TO EXPECT AND WHAT TO FOCUS ON IN SQL QUERY TEACHING
	PIV: THE EFFECTS OF DATABASE COMPLEXITY ON SQL QUERY FORMULATION
	PV: TEACHING TIP: A NOTATION FOR PLANNING SQL QUERIES

