This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Luoto, Antti

Title: Time-dependent weak rate of convergence for functions of generalized bounded variation

Year: 2020

Version: Published version

Copyright: © 2020 The Author(s). Published with license by Taylor and Francis Group, LLC

Rights: CC BY 4.0

Rights url: https://creativecommons.org/licenses/by/4.0/

Please cite the original version:
Time-dependent weak rate of convergence for functions of generalized bounded variation

Antti Luoto

To cite this article: Antti Luoto (2020): Time-dependent weak rate of convergence for functions of generalized bounded variation, Stochastic Analysis and Applications, DOI: 10.1080/07362994.2020.1809458

To link to this article: https://doi.org/10.1080/07362994.2020.1809458

© 2020 The Author(s). Published with license by Taylor and Francis Group, LLC

Published online: 27 Aug 2020.

Submit your article to this journal

Article views: 41

View related articles

View Crossmark data
Time-dependent weak rate of convergence for functions of generalized bounded variation

Antti Luoto

Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland

ABSTRACT

Let W denote the Brownian motion. For any exponentially bounded Borel function g the function u defined by $u(t,x) = \mathbb{E}[g(x + \sigma W_{T-t})]$ is the stochastic solution of the backward heat equation with terminal condition g. Let $u^n(t,x)$ denote the corresponding approximation generated by a simple symmetric random walk with time steps $2T/n$ and space steps $\pm \sigma \sqrt{T/n}$ where $\sigma > 0$. For a class of terminal functions g having bounded variation on compact intervals, the rate of convergence of $u^n(t,x)$ to $u(t,x)$ is considered, and also the behavior of the error $u^n(t,x) - u(t,x)$ as t tends to T.

ARTICLE HISTORY

Received 9 April 2019
Accepted 7 August 2020

KEYWORDS

Approximation using simple random walk; weak rate of convergence; finite difference approximation of the heat equation

MATHEMATICS SUBJECT CLASSIFICATION (2010)

Primary: 41A25; 65M15; Secondary: 35K05; 60G50

1. Introduction

The objective of this article is to study the rate of convergence of a finite-difference approximation scheme for the backward heat equation. The error analysis is carried out for a large class of exponentially bounded terminal condition functions having bounded variation on compact intervals.

During the past decades, convergence rates of finite-difference schemes for parabolic boundary value problems have been studied with varying assumptions on the regularity of the initial/terminal condition, the domain of the solution, properties of the possible boundary data, etc. (see, e.g., [1–5]). In order to study the convergence, several techniques have been applied. Our approach is probabilistic: The solution of the PDE is represented in terms of Brownian motion, and the approximation scheme is realized using an appropriately scaled sequence of simple symmetric random walks in the same probability space, in the spirit of Donsker’s theorem. The possible discontinuities of the terminal function produce error bounds which are not uniform over the time-nets under consideration, and hence the time dependence of the error is of particular interest here.

To explain our setting in more detail, fix a finite time horizon $T > 0$, a constant $\sigma > 0$, and consider the backward heat equation

\[\frac{u(t,x) - u(t+\sigma^2 t,x)}{\sigma^2} = -\Delta u(t,x), \quad t < T, \quad u(T,x) = g(x) \]
The terminal condition \(g : \mathbb{R} \to \mathbb{R} \) is assumed to belong to the class \(GBV_{\text{exp}} \), consisting of exponentially bounded functions that have bounded variation on compact intervals (the precise description is given in Definition 2.3). The stochastic solution to the problem (1) is given by

\[
 u(t, x) := \mathbb{E}[g(\sigma W_T) | \sigma W_t = x] = \mathbb{E}[g(x + \sigma W_{T-t})], \quad (t, x) \in [0, T) \times \mathbb{R},
\]

where \((W_t)_{t \geq 0}\) denotes the standard Brownian motion. To approximate the solution (2), we proceed as follows. Given an even integer \(n \in 2\mathbb{N}\), a level \(z_0 \in \mathbb{R}\), and time and space step sizes \(\delta > 0 \) and \(h > 0 \), respectively, define

\[
 T^n := \left\{ t^n_k := 2k\delta \mid 0 \leq k \leq \frac{n}{2}, k \in \mathbb{Z} \right\}, \quad S^n_{z_0} := \{ z_0 + 2mh \mid m \in \mathbb{Z} \}. \tag{3}
\]

The finite-difference scheme we will consider is given by the following system of equations defined on grids \(G^n_{z_0} := T^n \times S^n_{z_0} \subset [0, T) \times \mathbb{R}, \)

\[
 \begin{aligned}
 \frac{\nu^n(t^n_k, x) - \nu^n(t^n_{k-1}, x)}{t^n_k - t^n_{k-1}} + \frac{\sigma^2 \nu''(t^n_k, x + 2h) - 2\nu''(t^n_k, x) + \nu''(t^n_k, x - 2h)}{2(2h)^2} &= 0, \\
 \nu^n(T, \cdot) &= g.
 \end{aligned} \tag{4}
\]

Letting \(\delta := \frac{T}{n} \) and \(h := \frac{\sqrt{T}}{n} \), the system (4) can be rewritten in an equivalent form as

\[
 \begin{aligned}
 \nu^n(t^n_{k-1}, x) &= \frac{1}{4} \left[\nu^n(t^n_k, x + 2h) + 2\nu^n(t^n_k, x) + \nu^n(t^n_k, x - 2h) \right], \\
 \nu^n(T, \cdot) &= g.
 \end{aligned} \tag{5}
\]

This scheme is explicit: Given the set of terminal values \(\{ g(x) \mid x \in S^n_{z_0} \} \), the solution \(\nu^n \) of (5) is uniquely determined by a backward recursion. We extend the function \(\nu^n \) in continuous time by letting

\[
 \nu^n(t, x) := \nu^n(t^n_k, x) \quad \text{ for } \quad t \in [t^n_k, t^n_{k+1}), \quad 0 \leq k < \frac{n}{2}, \tag{6}
\]

and study the error of approximation \(\epsilon^n(t, x) \) on \((t, x) \in [0, T) \times S^n_{z_0}\), where

\[
 \epsilon^n(t, x) := \nu^n(t, x) - u(t, x). \tag{7}
\]

Theorem 2.5, the main result of this article, states that for a constant \(C > 0 \) depending only on \(g \),

\[
 |\epsilon^n(t, x)| \leq \frac{C\psi(x)}{\sqrt{n(T-t)}} \left\{ 1_{\{t \neq t^n_{\frac{n}{2}}\}} + \frac{C\psi(x)}{\sqrt{n(T-t^n_{\frac{n}{2}})}} \right\}, \quad (t, x) \in [t^n_k, t^n_{k+1}) \times S^n_{z_0}, \quad 0 \leq k < \frac{n}{2}. \tag{8}
\]

where the function \(\psi(x) = \psi(|x|, g, \sigma, T) > 0 \) is given explicitly in Section 2.

In the 1950s, Juncosa and Young [2] considered a finite difference approximation of the (forward) heat equation on a semi-infinite strip \([0, \infty) \times [0, 1]\), where the initial condition was assumed to have bounded variation. Using Fourier methods, they proved
Theorem 7.1] that the error is $O(n^{-\frac{1}{2}})$ uniformly on $[t, \infty) \times [0, 1]$ for any fixed $t > 0$. However, they did not study the order of the blow-up of the error as $t \downarrow 0$ (which translates to $t \uparrow T$ in the case of the backward equation (1)). Indeed, the bound (8) suggests that the convergence is not uniform in (t, x). Nevertheless, one obtains the rate $n^{-\frac{1}{2}}$ on any compact subset of $[0, T) \times \mathbb{R}$, and this rate is also sharp for the class GBV_{\exp}. The blow-up in (8) vanishes if g has more regularity: For x-Hölder continuous g with $x \in (0, 1]$ and $\sigma = 1$, it was shown in [6, Corollary 4] that $|e_n(t, x)| \leq Cn^{-\frac{1}{2}}$ holds uniformly in (t, x), where $C = C(T) > 0$ is a constant.

The main result is derived using the following probabilistic approach. Let $(\xi_i)_{i=1,2,\ldots}$ be a sequence of i.i.d. Rademacher random variables, and define

$$u^n(t, x) := \mathbb{E}[g(x + \sigma W^n_{T-t})], \quad (t, x) \in [0, T] \times \mathbb{R},$$

where $(W^n_t)_{t \in [0, T]}$ is the random walk given by

$$W^n_t := \sqrt{\frac{T}{n}} \sum_{i=1}^{\lceil \frac{T}{\sqrt{n}} \rceil} \xi_i, \quad t \in [0, T]$$

($\lceil \cdot \rceil$ denotes the ceiling function). The key observation is that the function u^n, when restricted to $G^n_{z_0}$, is the unique solution of (5) for every $z_0 \in \mathbb{R}$. Relation (6) also holds for u^n by definition. Moreover, since the random walk $(W^n_t)_{t \in [0, T]}$ affects the value of u^n only through its distribution, we may consider a special setting where the Rademacher variables ξ_1, ξ_2, \ldots are chosen in a suitable way. Defining these variables as the values of the Brownian motion $(W_t)_{t \geq 0}$ sampled at certain first stopping times (see Section 2.1) enables us to apply techniques from stochastic analysis for the estimation of the error (7) where $v^n = u^n$.

The above procedure was applied in Walsh [7] (cf. Rogers and Stapleton [8]) in relation to a problem arising in mathematical finance. More precisely, the weak rate of convergence of European option prices given by the binomial tree scheme (Cox–Ross–Rubinstein model) to prices implied by the Black–Scholes model is analyzed in [7] (cf. Heston and Zhou [9]). A detailed error expansion is presented in [7, Theorem 4.3] for terminal conditions belonging to a certain class of piecewise C^2 functions.

Using similar ideas, we complement this result by considering a large class of functions containing the class considered in [7]. Moreover, instead of studying the error at time $t = 0$ only, we derive a time-dependent error bound. Finally, a gap is closed in the proof done in [7]. It concerns the estimate [7, Proposition 11.2(iv)] for which a detailed proof is given in Section 5.2.

It is argued in [7, Sections 7 and 12] that the rate remains unaffected if the geometric Brownian motion is replaced with a Brownian motion, and the binomial tree is replaced with a random walk. It seems plausible that also our time-dependent results in the Brownian setting can be transferred into the geometric setting with essentially the same upper bounds.

The article is organized as follows. In Section 2, we introduce the notation, recall the construction of a simple random walk using first hitting times of the Brownian motion, and formulate the main result Theorem 2.5. Using this sequence of first hitting times,
the error (7) will be split into three parts. Estimates for the adjustment error and the local error are derived in Section 3, and the global error is treated in Section 4. Section 5 contains the result for the sharpness of the rate and the key moment estimates applied in Section 4. The remaining auxiliary results and estimates can be found in the appendix, where also the construction of the terminal function class and its properties are briefly discussed.

2. The setting and the main result

2.1. Notation related to the random walk

Consider a standard Brownian motion \((W_t)_{t \geq 0}\) on a stochastic basis \((\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \geq 0})\), where \((\mathcal{F}_t)_{t \geq 0}\) stands for the natural filtration of \((W_t)_{t \geq 0}\). Let \((X_t)_{t \geq 0} := (\sigma W_t)_{t \geq 0}\), where \(\sigma > 0\) is a given constant. By \(\tau_{(-h,h)}\) we denote the first exit time of the process \((X_t)_{t \geq 0}\) from the open interval \((-h,h)\),

\[
\tau_{(-h,h)} := \inf\{t \geq 0 : |X_t| = h\} = \inf\{t \geq 0 : |W_t| = h/\sigma\}, \quad h > 0.
\]

In order to represent the error (7), we construct a random walk on the space \((\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \geq 0})\). Following [7], we define

\[
\tau_0 := 0 \quad \text{and} \quad \tau_k := \tau_k(h) := \inf\{t \geq \tau_{k-1} : |X_t - X_{\tau_{k-1}}| = h\} \tag{11}
\]

recursively for \(k = 1, 2, \ldots\). Then \(\tau_k\) is a \(\mathbb{P}\)-a.s. finite \((\mathcal{F}_t)_{t \geq 0}\)-stopping time for all \(k \geq 0\), and the process \((X_{\tau_k})_{k=0,1,\ldots}\) is a symmetric simple random walk on \(\mathbb{Z}^k := \{mh : m \in \mathbb{Z}\}\). For every integer \(k \geq 1\), we also let

\[
\Delta \tau_k := \tau_k - \tau_{k-1} \quad \text{and} \quad \Delta X_{\tau_k} := X_{\tau_k} - X_{\tau_{k-1}}.
\]

The strong Markov property of \((X_t)_{t \geq 0}\) implies that \((\Delta \tau_k, \Delta X_{\tau_k})_{k=1,2,\ldots}\) is an i.i.d. process such that for each \(k \geq 1\), we have \(\mathbb{P}(\Delta X_{\tau_k} = \pm h) = 1/2\),

\[
(\Delta \tau_k, \Delta X_{\tau_k}) \overset{d}{=} (\tau_{(-h,h)}, X_{\tau_{(-h,h)}}), \quad \text{and} \quad (\Delta \tau_k, \Delta X_{\tau_k}) \text{ is independent of } \mathcal{F}_{\tau_{k-1}}+
\]

Moreover, as shown in [8, Proposition 1], the increments \(\Delta X_{\tau_1}\) and \(\Delta \tau_1\) are independent. Consequently, the processes \((\Delta \tau_k)_{k=1,2,\ldots}\) and \((\Delta X_{\tau_k})_{k=1,2,\ldots}\) are independent (see also [7, Proposition 11.1] and [10, Proposition 2.4]).

We deduce, in particular, that for all \(N \geq 1\) the random variable \(X_{\tau_N}\) is distributed as \(\mathbb{E} \sum_{k=1}^{N} \xi_k\), where \((\xi_k)_{k=1,2,\ldots}\) is an i.i.d. sequence of Rademacher random variables. Therefore, for \(W^n_{T-t}\) defined in (10), we have the equality in law

\[
X_{\tau_N} \overset{d}{=} \sigma W^n_{T-t} \quad \text{provided that} \quad (h,N) = \left(\sigma \sqrt{T/n}, 2 \left\lfloor \frac{T-t}{2T/n} \right\rfloor \right).
\]

Note that in this case the sequence of stopping times \((\tau_k)_{k=0,1,\ldots}\) (11) depends on \(n\) via \(h = h(n)\).

The error (7) will be split into three parts, where each of these parts will take into account different properties of the given function \(g\). For this purpose, let us introduce some more notation. Let \(\theta_n\) denote the smallest multiple of 2\(T/n\) greater than or equal to \(T - t\). That means, for given \(n \in 2\mathbb{N}\) and \(t \in [0, T)\),
\[\theta_n := \frac{n_0 T}{n}, \quad \text{where} \quad n_0 := 2 \left\lceil \frac{T - t}{2T/n} \right\rceil \in \{2, 4, \ldots, n\}. \quad (12) \]

It is clear that
\[0 \leq \theta_n - (T - t) \leq \frac{2T}{n} \quad \text{and} \quad \theta_n \downarrow T - t \quad \text{as} \quad n \to \infty. \]

Note also that the connection between lattice points \(t^n_k = 2kT/n \in T^n \) introduced in (3) and the time instant \(\theta_n \in (0, T] \) is explained as follows:
\[t \in [t^n_k, t^n_{k+1}) \quad \text{if and only if} \quad \theta_n = T - t^n_k, \quad 0 \leq k \leq \frac{n}{2} - 1. \quad (13) \]

2.2. The class of terminal functions

The approximation error will be estimated for functions \(g \) belonging to the class \(GBV_{\exp} \) introduced below. This class is contained in the class of exponentially bounded Borel functions.

Definition 2.1 (The class \(B_{\exp} \)). A function \(g : \mathbb{R} \to \mathbb{R} \) is said to be exponentially bounded if there exist constants \(A, b \geq 0 \) such that
\[|g(x)| \leq Ae^{b|x|} \quad \text{for all} \quad x \in \mathbb{R}. \quad (14) \]

The class of all Borel functions with the above property will be denoted by \(B_{\exp} \).

The function class \(GBV_{\exp} \) generalizes functions of bounded variation (which are bounded) by allowing exponential growth. While these functions have bounded variation on each compact interval, their total variation may be unbounded (or undefined) over unbounded intervals. See [11] and Appendix A.1 for more information on this topic.

Definition 2.2 ([11, Definition 3.2]). Denote by \(\mathcal{M} \) the class of all set functions
\[\mu : \{G \in \mathcal{B}(\mathbb{R}) : G \text{ is bounded}\} \to \mathbb{R} \]
that can be written as a difference of two measures \(\mu^1, \mu^2 : \mathcal{B}(\mathbb{R}) \to [0, \infty] \) such that \(\mu^1(K) < \infty \) and \(\mu^2(K) < \infty \) for all compact sets \(K \in \mathcal{B}(\mathbb{R}) \).

Below it is understood that \([a, b) = \emptyset \) whenever \(a \geq b \).

Definition 2.3 (The class \(GBV_{\exp} \)). Denote by \(GBV_{\exp} \) the class of functions \(g : \mathbb{R} \to \mathbb{R} \) which can be represented as
\[g(x) = c + \mu([0, x)) - \mu([x, 0)) + \sum_{i=1}^{\infty} \alpha_i 1_{\{x_i\}}(x), \quad x \in \mathbb{R}, \quad (15) \]
where \(c \in \mathbb{R} \) is a constant, \(\mu \in \mathcal{M} \), and \(\mathcal{J} = (x_i, x_i)_{i=1,2,\ldots} \subset \mathbb{R}^2 \) is a countable set such that \(x_i \neq x_j \) whenever \(i \neq j \). In addition, we require that for some constant \(\beta \geq 0 \),
\[\int_{\mathbb{R}} e^{-|x|}d|\mu|(x) + \sum_{i=1}^{\infty} |x_i|e^{-\beta|x_i|} < \infty. \quad (16) \]
To give some examples of classes of functions contained in GBV_{exp}, we have the remark below. See Appendix A.1 for the proof.

Remark 2.4 (Examples of functions belonging to the class GBV_{exp}).

(i) Every polynomial belongs to the class GBV_{exp}.
(ii) Each increasing (resp. decreasing) function $g \in B_{\text{exp}}$ belongs to GBV_{exp}.
(iii) Each convex (resp. concave) function $g \in B_{\text{exp}}$ belongs to GBV_{exp}.
(iv) $K_{\text{exp}} \subset GBV_{\text{exp}}$, where K_{exp} is the class of functions $g : \mathbb{R} \to \mathbb{R}$ considered in Walsh [7] (pp. 340, 345–346, and 348), i.e. they satisfy the below criteria:
(v) g, g', g'' belong to B_{exp}
(vi) g, g', g'' have at most finitely many discontinuities and no oscillatory discontinuities
(vii) $g(x) = \frac{1}{2}(g(x+) + g(x-))$ at each point $x \in \mathbb{R}$.

2.3. The main result

The main result of this article, Theorem 2.5, describes the approximation error between the solution of the backward heat equation (1) and its finite-difference approximation (9) for terminal functions belonging to the class GBV_{exp}.

Theorem 2.5. Let $n \in 2\mathbb{N}$, and let u and u^n be the functions introduced in (2) and (9). Suppose that $g \in GBV_{\text{exp}}$ is a function given by (15) and that $\beta \geq 0$ is as in (16). Then, for all $(t, x) \in [0, T) \times \mathbb{R}$,

(i) $|u^n(t, x) - u(t, x)| \leq \frac{C_{\beta, \sigma, T}}{\sqrt{n(T - t)}} e^{\beta|x|}, \quad t \neq t^n_k, \quad 0 \leq k < \frac{n}{2},$

(ii) $|u^n(t^n_k, x) - u(t^n_k, x)| \leq \frac{C_{\beta, \sigma, T}}{n(T - t^n_k)} e^{\beta|x|}, \quad 0 \leq k < \frac{n}{2},$

where $C_{\beta, \sigma, T} := C\sqrt{T} e^{3\beta^2 \sigma^2 T}$ and $C > 0$ is a constant depending only on g.

Remark 2.6. The error bounds in Theorem 2.5 grow exponentially as functions of the variable x. If the terminal condition g satisfies (16) with $\beta = 0$ one obtains bounds which are uniform in x.

Proof of Theorem 2.5. The function $u^n(t, x)$ is constant in t on intervals of length $2T/n$, while $t \mapsto u(t, x)$ is continuous. Therefore, for $t \in [t^n_k, t^n_{k+1})$, we will split the error and write

$$u^n(t, x) - u(t, x) = (u^n(t^n_k, x) - u(t^n_k, x)) + (u(t^n_k, x) - u(t, x)),$$

where

$$e_{\text{adj}}^n(t, x) := u(t^n_k, x) - u(t, x) = \mathbb{E}[g(x + X_{\theta^n}) - g(x + X_{T-t})]$$

(17)

will be called the *adjustment error*. Next, we exploit the construction of the random walk $(X_{\theta^n})_{k \geq 0}$ by Skorokhod embedding from the process $(X_t)_{t \geq 0}$ and let
\[J_n(\omega) := \inf \{ 2m \in 2\mathbb{N} : \tau_{2m}(\omega) > \theta_n \}, \quad \omega \in \Omega, \]
\[(18) \]

which is the index of the first stopping time \(\tau_0, \tau_2, \tau_4, \ldots \) exceeding the value \(\theta_n \).

Consequently, by construction, \(X_{\tau_{tn}} \) will be ‘rather close’ to \(X_{\theta_n} \) for large \(n \). Therefore, we will write

\[u^{n}(t^{n}_k, x) - u(t^{n}_k, x) = \mathbb{E}[g(x + X_{\tau_{tn}}) - g(x + X_{\theta_n})] = e^{n}_{n}^{\text{glob}}(t, x) + e^{n}_{n}^{\text{loc}}(t, x), \]

where the first term on the right-hand side

\[e^{n}_{n}^{\text{glob}}(t, x) := \mathbb{E}[g(x + X_{\tau_{tn}}) - g(x + X_{\tau_{tn}})] \]
\[(19) \]

is referred to as the \textit{global error}, and second term

\[e^{n}_{n}^{\text{loc}}(t, x) := \mathbb{E}[g(x + X_{\tau_{tn}}) - g(x + X_{\theta_n})] \]
\[(20) \]

denotes the \textit{local error}. The local error is influenced by the smoothness properties of the terminal condition \(g \), while for the global error only integrability properties of \(g \) are needed.

Since \(g \in GBV_{\exp} \), there exists a constant \(A = A(\beta) \geq 0 \) such that \(|g(x)| \leq Ae^{\beta|x|} \) for all \(x \in \mathbb{R} \). Indeed, relation (14) is satisfied for a function \(g \) given by (15) by letting \(b := \beta \) and \(A \) to be equal to the sum of \(|c| \) and the left-hand side of (16).

Consequently, by Theorems 3.1, 3.8, and 4.3 (the bounds for the error terms \(e^{n}_{n}^{\text{adj}}, e^{n}_{n}^{\text{loc}} \), and \(e^{n}_{n}^{\text{glob}} \), respectively), there exists a constant \(C > 0 \) such that

\[|u^{n}(t, x) - u(t, x)| \leq Ce^{\beta|x| + 3\beta^2\sigma^2T} \left(\frac{\sqrt{T}}{\sqrt{n(T - t)}} \mathbb{1}_{\{t \neq t^n_k\}} + \frac{\sqrt{T}}{\sqrt{n(T - t^n_k)}} + \frac{T}{n(T - t^n_k)} \right). \]

It remains to observe that since \(\sqrt{n(T - t^n_k)} \geq \sqrt{2T} \) for all integers \(0 \leq k < n/2 \), it holds

\[\frac{T}{n(T - t^n_k)} \leq \frac{\sqrt{T}}{\sqrt{n(T - t^n_k)}} \leq \frac{\sqrt{T}}{\sqrt{n(T - t)}}. \]

\[\square \]

3. The adjustment error and the local error

3.1. The adjustment error

The purpose of this subsection is to derive an upper bound for the modulus of the adjustment error defined in (17) for a terminal function \(g \) belonging to \(GBV_{\exp} \).

\textbf{Theorem 3.1.} Let \(n \in 2\mathbb{N} \), and suppose that \(g \in GBV_{\exp} \) and \(\beta \geq 0 \) is as in (16). Then, for all \((t, x) \in [0, T) \times \mathbb{R} \),

\[|e^{n}_{n}^{\text{adj}}(t, x)| \leq \frac{A_{\beta}\sqrt{T}}{n(T - t)} e^{\beta|x| + \beta^2\sigma^2T} \mathbb{1}_{\{t \neq t^n_k, \forall 0 < k < \frac{n}{2}\}}, \]

where \(A_{\beta} = 2\int_{\mathbb{R}} e^{-\beta|y|} |d\mu|(y) \).
Proof. Denote by p_s the density of $X_s = \sigma W_s$ for $s > 0$, and consider the function
\[
 u(s, x) = \mathbb{E}[g(x + X_{T-s})] = \int_{\mathbb{R}} g(x+z)p_{T-s}(z)dz, \quad 0 \leq s < T.
\]
Fix $n \in 2\mathbb{N}$ and suppose that $t^n_k = 2kT/n$ is the lattice point such that $t \in [t^n_k, t^n_{k+1})$. If $t = t^n_k$, (13) implies that $\theta_n = T - t$, and thus $\varepsilon_n^{adj}(t, x) = 0$ by (17). Suppose then $t \in (t^n_k, t^n_{k+1})$ and use the representation (29) for the function $z \mapsto g(x+z)$ in order to rewrite
\[
 u(t^n_k, x) - u(t, x) = \int_{\mathbb{R}} \left[g\left(x + z\sqrt{T-t^n_k} \right) - g\left(x + z\sqrt{T-t} \right) \right] p_1(z)dz
\]
\[
= \int_{\mathbb{R}} \int_{(0,\infty)} \left[\frac{1}{(y-x,\infty)} (z\sqrt{T-t^n_k} - 1_{(y-x,\infty)} (z\sqrt{T-t})) \right] d\mu(y)p_1(z)dz
\]
\[
- \int_{\mathbb{R}} \int_{(-\infty,0)} \left[1_{(-\infty, y-x)} (z\sqrt{T-t^n_k} - 1_{(-\infty, y-x)} (z\sqrt{T-t})) \right] d\mu(y)p_1(z)dz
\]
\[
= : I_1 - I_2.
\]
\[\text{(21)}\]
Since g is exponentially bounded, one may apply Fubini’s theorem to rewrite
\[
 I_1 = \int_{\mathbb{R}} \int_{(0,\infty)} \left[\frac{1}{(y-x,\infty)} (z\sqrt{T-t^n_k} - 1_{(y-x,\infty)} (z)) \right] d\mu(y)p_1(z)dz = \int_{\mathbb{R}} \int_{\frac{x}{\sqrt{T-t^n_k}}} \frac{x}{\sqrt{T-t}} p_1(z)dzd\mu(y).
\]
\[\text{(22)}\]
The mean value theorem and the fact $\sqrt{T-t} < \sqrt{T-t^n_k}$ imply for arbitrary $y \in \mathbb{R}$ that
\[
 e^{\beta|y|} \left[\int_{\mathbb{R}} \frac{x}{\sqrt{T-t^n_k}} p_1(z)dz \right] \leq e^{\beta|y|} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} \left(\sup_{z \in (0,\infty)} ze^{\beta\sigma\sqrt{T-t^n_k}} \right) \frac{\sqrt{T-t^n_k}}{\sqrt{T-t}} \leq e^{1+\beta|y|+\beta^2\sigma^2T} \frac{\sqrt{T}}{\sqrt{n(T-t)}},
\]
where the estimates $\sqrt{T-t^n_k} - \sqrt{T-t} \leq \sqrt{T-t} - t^n_k \leq 2T/n$ and
\[
 \sup_{z \in (0,\infty)} ze^{\beta\sigma\sqrt{T-t^n_k}} \leq \sup_{z \in (0,\infty)} e^{(1+\beta\sigma\sqrt{T})z} \leq e^{1+\beta^2\sigma^2T}
\]
were applied. Consequently, it follows by (22) that
\[
 |I_1| \leq \frac{e^{1+\beta|y|+\beta^2\sigma^2T}}{\sqrt{\pi}} \left(\int_{(0,\infty)} e^{-\beta|y|}d\mu(y) \right) \frac{\sqrt{T}}{\sqrt{n(T-t)}},
\]
\[\text{(23)}\]
and an analogous computation for the integral I_2 yields
\[
 |I_2| \leq \frac{e^{1+\beta|y|+\beta^2\sigma^2T}}{\sqrt{\pi}} \left(\int_{(0,\infty)} e^{-\beta|y|}d\mu(y) \right) \frac{\sqrt{T}}{\sqrt{n(T-t)}}.
\]
\[\text{(24)}\]
Since $\varepsilon_n^{adj}(t, x) = u(t^n_k, x) - u(t, x)$, the relations (21, 23), and (24) imply the claim. \(\square\)
3.2. The local error

Suppose that \((h, \theta) \in (0, \infty) \times (0, T]\). The aim of this subsection to derive an upper bound for the absolute value of the error

\[
\epsilon_{h, \theta}^{\text{loc}}(g) := \mathbb{E}[g(X_{\tau_j}) - g(X_\theta)]
\]

as a function of \((h, \theta)\), where \(g \in GBV_{\exp}\). The random variable \(J\) is given by

\[
J = J(h, \theta) = \inf\{2m : \tau_{2m} > \theta\},
\]

where \(\tau_k\) was defined in (11). Afterward, upper bounds for the error (25) are derived in the dynamical setting, where the step size \(h\) and the level \(\theta\) will depend on \(n\). Observe that \(J = J_n\) holds for \(J_n\) defined in (18) when one substitutes \((h, \theta) = \left(\sigma \sqrt{T/n}, \frac{2\pi}{n} \left[\frac{T-1}{2T/n}\right]\right)\).

Let us start by introducing the following notation:

\[
Z^h_o := \{(2k + 1)h : k \in \mathbb{Z}\}, \quad Z^h_e := \{2kh : k \in \mathbb{Z}\}
\]

(o refers to “odd” and \(e\) refers to “even”); then \(Z^h = Z^h_o \cup Z^h_e\). In addition, we will abbreviate

\[
d_o(x) := \text{dist}(x, Z^h_o), \quad d_e(x) := \text{dist}(x, Z^h_e) = h - d_o(x), \quad x \in \mathbb{R}.
\]

As in [7], we project functions onto piecewise linear functions in order to compute the conditional expectation \(\mathbb{E}[g(X_{\tau_j})|\mathcal{F}_\theta]\).

Definition 3.2. Define operators \(\Pi_o\) and \(\Pi_e\) acting on functions \(u : \mathbb{R} \rightarrow \mathbb{R}\) by

- \(\Pi_o u(x) := u(x)\) if \(x \in Z^h_o\) and \(x \mapsto \Pi_e u(x)\) linear in \([2kh, (2k + 2)h]\) \(\forall k \in \mathbb{Z}\),
- \(\Pi_o u(x) := u(x)\) if \(x \in Z^h_o\) and \(x \mapsto \Pi_o u(x)\) linear in \([(2k - 1)h, (2k + 1)h]\) \(\forall k \in \mathbb{Z}\).

The key ingredient in the estimation of the error \(\epsilon_{h, \theta}^{\text{loc}}(g)\) is the following result, which was proposed in [7, Section 9]. For the convenience of the reader, a sketch of the proof is given below. Recall **Definition 2.1** for the class \(\mathcal{B}_{\exp}\), and denote by \(\mathbb{N}_0 := \{0, 1, 2, \ldots\}\) the set of non-negative integers.

Proposition 3.3. Let \((h, \theta) \in (0, \infty) \times (0, T]\) and define a random variable

\[
L = L(h, \theta) := \sup\{m \in \mathbb{N}_0 : \tau_m < \theta\}
\]

(\(\tau_L\) is equal to the largest of the stopping times \(\tau_0, \tau_1, \ldots\) less than \(\theta\)). Then, for a function \(g \in \mathcal{B}_{\exp}\),

\[
\epsilon_{h, \theta}^{\text{loc}}(g) = \mathbb{E}[\Pi_e g(X_\theta) - g(X_\theta)] + \mathbb{E}[\Pi_o \Pi_e g(X_\theta) - \Pi_e g(X_\theta)] \mathbb{P}(L \text{ even}|X_\theta).
\]

Proof. If \(g \in \mathcal{B}_{\exp}\), then also \(\Pi_o g \in \mathcal{B}_{\exp}\) and \(\Pi_o \Pi_e g \in \mathcal{B}_{\exp}\). The expectations on the right-hand side of (28) thus exist and are finite. Using the Markov property of the process \((X_t)_{t \geq 0}\), it can be shown that

\[
\mathbb{E}[g(X_{\tau_j})|\mathcal{F}_\theta] = \Pi_e g(X_\theta) \quad \mathbb{P}\text{-a.s. on }\{L \text{ odd}\},
\]
\[\mathbb{E}[g(X_t) | \mathcal{F}_0] = \Pi_o \Pi_o g(X_0) \quad \text{P-a.s. on } \{L \text{ even}\}, \]

see [7, Section 9]. Consequently, since \(1_{\{L \text{ odd}\}} + 1_{\{L \text{ even}\}} = 1 \) \(\mathbb{P} \)-a.s.,

\[\mathbb{E}[g(X_t)] = \mathbb{E}[\mathbb{E}[g(X_t) | \mathcal{F}_0] 1_{\{L \text{ odd}\}}] + \mathbb{E}[\mathbb{E}[g(X_t) | \mathcal{F}_0] 1_{\{L \text{ even}\}}] \]

\[= \mathbb{E}[\Pi_o g(X_0) \mathbb{P}(L \text{ odd} | X_0)] + \mathbb{E}[\Pi_o \Pi_o g(X_0) \mathbb{P}(L \text{ even} | X_0)] \]

\[= \mathbb{E}[\Pi_o g(X_0)] + \mathbb{E}[((\Pi_o \Pi_o g(X_0) - \Pi_o g(X_0)) \mathbb{P}(L \text{ even} | X_0)]. \]

If \(g \in \text{GBV}_\exp \) is a function given by (15) and \(g^x := g(x + \cdot) \) for given \(x \in \mathbb{R} \), then

\[g^x(z) = c + \int_{[0, \infty)} 1_{(y-x, \infty)}(z) d\mu(y) - \int_{(-\infty, 0)} 1_{(-\infty, y-x]}(z) d\mu(y) + \sum_{i=1}^{\infty} \chi_i 1_{\{x_i-x\}}(z). \quad (29) \]

Using the representation (29) and linearity, the estimation of the error \(e_{h, \theta}^{\text{loc}}(g^x) \) essentially reduces to the estimation of integrals whose integrands consist of indicator functions or their linear approximations given by the operators \(\Pi_o \) and \(\Pi_e \) (introduced in Definition 3.2). The following lemma enables us to interchange the order of integration or summation with the application of these operators.

Lemma 3.4. Suppose that \((h, \theta) \in (0, \infty) \times (0, T]\) and that \(g \in \text{GBV}_\exp \) admits the representation (15). Then, for all \(x \in \mathbb{R} \),

\[
\begin{align*}
(i) \quad \Pi_o g^x(z) &= c + \int_{[0, \infty)} \Pi_e 1_{(y-x, \infty)}(z) d\mu(y) - \int_{(-\infty, 0)} \Pi_e 1_{(-\infty, y-x]}(z) d\mu(y) \\
&\quad + \sum_{i \in \mathbb{N}: x_i-x \in \mathbb{Z}_b^o} \chi_i \Pi_e 1_{\{x_i-x\}}(z), \quad z \in \mathbb{R},
\end{align*}
\]

\[
\begin{align*}
(ii) \quad \Pi_o \Pi_e g^x(z) &= c + \int_{[0, \infty)} \Pi_o \Pi_e 1_{(y-x, \infty)}(z) d\mu(y) - \int_{(-\infty, 0)} \Pi_o \Pi_e 1_{(-\infty, y-x]}(z) d\mu(y) \\
&\quad + \sum_{i \in \mathbb{N}: x_i-x \in \mathbb{Z}_b^o} \chi_i \Pi_o \Pi_e 1_{\{x_i-x\}}(z), \quad z \in \mathbb{R}.
\end{align*}
\]

Idea of the proof. The representations in (i) and (ii) follow by using the representation (29), linearity of the operations \(f \mapsto \Pi_o f, f \mapsto \Pi_e f, \) and \(f \mapsto \int f d|\mu|, \) and relation (83).

Proposition 3.5. Let \((h, \theta) \in (0, \infty) \times (0, T]\). Suppose that \(g \in \text{GBV}_\exp \) admits the representation (15) and that \(\beta \geq 0 \) is as in (16). Then, for all \(x \in \mathbb{R} \),

\[
|\mathbb{E}[g^x(X_t) - g^x(X_0)]| \leq \frac{7}{\sqrt{2\pi} \sigma \sqrt{\theta}} \frac{h}{e^{3\beta h+3\beta |x|+\beta^2 \sigma^2 T/2}} \left(\int_{\mathbb{R}} e^{-\beta |y|} d|\mu|(y) + \sum_{i \in \mathbb{N}: x_i-x \in \mathbb{Z}_b^o} |\chi_i| e^{-\beta |x_i|} \right). \quad (30)
\]

\[\square \]
Proof. Let us denote by $p = p(\cdot, \theta)$ the density of X_θ:

$$p(z, \theta) = \frac{1}{\sqrt{2\pi\sigma^2\theta}} \exp \left(-\frac{z^2}{2\sigma^2\theta} \right), \quad z \in \mathbb{R}.$$

By Lemma 3.4, we may decompose the expectation on the left-hand side of (30) as follows:

$$\mathbb{E} \left[g^x(X_\theta) - g^x(X_\theta) \right] = \int_{\mathbb{R}} \int_{[0, \infty)} \left[\Pi_e 1_{(y-x, \infty)}(z) - 1_{(y-x, \infty)}(z) \right] d\mu(y)p(z)dz$$

$$- \int_{\mathbb{R}} \int_{(-\infty, 0)} \left[\Pi_e 1_{(-\infty, y-x]}(z) - 1_{(-\infty, y-x]}(z) \right] d\mu(y)p(z)dz$$

$$+ \int_{\mathbb{R}} \int_{[0, \infty)} \left[\Pi_o \Pi_e 1_{(y-x, \infty)}(z) - \Pi_e 1_{(y-x, \infty)}(z) \right] d\mu(y)q(z)p(z)dz$$

$$- \int_{\mathbb{R}} \int_{(-\infty, 0)} \left[\Pi_o \Pi_e 1_{(-\infty, y-x]}(z) - \Pi_e 1_{(-\infty, y-x]}(z) \right] d\mu(y)q(z)p(z)dz$$

$$+ \int_{\mathbb{R}} \sum_{i \in \mathbb{N}} x_i \left[\Pi_e 1_{(x_i-x]}(z) - 1_{(x_i-x]}(z) \right] p(z)dz$$

$$+ \int_{\mathbb{R}} \sum_{i \in \mathbb{N}} x_i \left[\Pi_o \Pi_e 1_{(x_i-x]}(z) - \Pi_e 1_{(x_i-x]}(z) \right] q(z)p(z)dz$$

$$=: E^{(1)} - E^{(2)} + E^{(3)} - E^{(4)} + E^{(5)} + E^{(6)},$$

where $q = q(z, \theta)$ is the function introduced in (57) which satisfies $q(z) = \mathbb{P}(\text{L even}|X_\theta = z)$ (Leb-a.e.). To show (30), we derive upper estimates for the quantities $|E^{(i)}|, 1 \leq i \leq 6$, in the following steps.

Step 1: $E^{(1)}$ and $E^{(2)}$. Suppose that $y - x \in [2kh, (2k + 2)h)$ for some $k \in \mathbb{Z}$. Then

$$\left| \Pi_e 1_{(y-x, \infty)}(z) - 1_{(y-x, \infty)}(z) \right| \leq 1_{[2kh, (2k+2)h)}(z),$$

and since for each $z \in [2kh, (2k + 2)h)$ it holds that $|y| \leq 2h + |x| + |z|$, we have

$$e^{\beta|y|} \int_{\mathbb{R}} \left| \Pi_e 1_{(y-x, \infty)}(z) - 1_{(y-x, \infty)}(z) \right| p(z)dz$$

$$\leq e^{2\beta h + \beta|x|} \int_{\mathbb{R}} e^{\beta|z|} \left| \Pi_e 1_{(y-x, \infty)}(z) - 1_{(y-x, \infty)}(z) \right| p(z)dz$$

$$\leq e^{2\beta h + \beta|x|} \int_{2kh}^{(2k+2)h} e^{\beta|z|} p(z)dz$$

$$\leq \frac{2}{\sqrt{2\pi}} e^{2\beta h + \beta|x| + \beta^2 T/2} \frac{h}{\sigma \sqrt{\theta}}.$$
\[|E^{(1)}| \leq \int_{[0, \infty)} e^{-\beta |y|} \left(e^{\beta |y|} \int_{\mathbb{R}} |\Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z) - \mathbb{1}_{(y-x, \infty)}(z)| p(z) \, dz \right) \, d|\mu|(y) \]

\[\leq \frac{h}{\sigma \sqrt{\theta}} \frac{2}{\sqrt{2\pi}} e^{2\beta h + \beta |x| + \beta^2 \sigma^2 T/2} \int_{[0, \infty)} e^{-\beta |y|} \, d|\mu|(y). \]

(32)

In fact, it also holds that

\[|E^{(2)}| \leq \frac{h}{\sigma \sqrt{\theta}} \frac{2}{\sqrt{2\pi}} e^{2\beta h + \beta |x| + \beta^2 \sigma^2 T/2} \int_{(\infty, 0]} e^{-\beta |y|} \, d|\mu|(y) \]

since \[|\Pi_{\varepsilon} \mathbb{1}_{(\infty, y-x]}(z) - \mathbb{1}_{(\infty, y-x]}(z)| = |\Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z) - \mathbb{1}_{(y-x, \infty)}(z)| \] for all \(z \in \mathbb{R} \), which is a direct consequence of the relation

\[\Pi_{\varepsilon} \mathbb{1}_{(-\infty, r]} = 1 - \Pi_{\varepsilon} \mathbb{1}_{(r, \infty)}, \quad r \in \mathbb{R}. \]

(34)

Step 2: \(E^{(3)} \) and \(E^{(4)} \). Suppose \(y-x \in [2kh, (2k+2)h) \) for some \(k \in \mathbb{Z} \). Then \(|y| \leq 3h + |x| + |z| \) holds for all \(z \in [(2k-1)h, (2k+3)h) \), and by (84) we may estimate

\[e^{\beta |y|} \int_{\mathbb{R}} |\Pi_{\varepsilon} \Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z) - \Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z)| q(z) p(z) \, dz \]

\[\leq e^{3\beta h + \beta |x|} \int_{\mathbb{R}} e^{\beta |y|} |\Pi_{\varepsilon} \Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z) - \Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z)| q(z) p(z) \, dz \]

\[\leq e^{3\beta h + \beta |x|} \int_{(2k+3)h}^{(2k+1)h} e^{\beta |y|} \frac{d_\varepsilon(z)}{4h} q(z) p(z) \, dz \]

\[\leq \frac{1}{4} e^{3\beta h + \beta |x|} \int_{(2k-1)h}^{(2k+3)h} e^{\beta |y|} p(z) \, dz \]

\[\leq \frac{1}{\sqrt{2\pi}} e^{3\beta h + \beta |x| + \beta^2 \sigma^2 T/2} \frac{h}{\sigma \sqrt{\theta}}, \]

where we used the fact that \(d_\varepsilon(z) \leq h \) and \(q(z) \leq 1 \) for all \(z \in \mathbb{R} \). Hence, by Fubini’s theorem,

\[|E^{(3)}| \leq \int_{[0, \infty)} e^{-\beta |y|} \left(e^{\beta |y|} \int_{\mathbb{R}} |\Pi_{\varepsilon} \Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z) - \Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z)| q(z) p(z) \, dz \right) \, d|\mu|(y) \]

\[\leq \frac{h}{\sigma \sqrt{\theta}} \frac{1}{\sqrt{2\pi}} e^{3\beta h + \beta |x| + \beta^2 \sigma^2 T/2} \int_{[0, \infty)} e^{-\beta |y|} \, d|\mu|(y). \]

(35)

Moreover, by (34) and by the linearity of \(\Pi_{\varepsilon} \), we obtain

\[|E^{(4)}| \leq \frac{h}{\sigma \sqrt{\theta}} \frac{1}{\sqrt{2\pi}} e^{3\beta h + \beta |x| + \beta^2 \sigma^2 T/2} \int_{(\infty, 0]} e^{-\beta |y|} \, d|\mu|(y), \]

(36)

since \[|\Pi_{\varepsilon} \Pi_{\varepsilon} \mathbb{1}_{(-\infty, y-x]}(z) - \Pi_{\varepsilon} \mathbb{1}_{(-\infty, y-x]}(z)| = |\Pi_{\varepsilon} \Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z) - \Pi_{\varepsilon} \mathbb{1}_{(y-x, \infty)}(z)|, \] \(z \in \mathbb{R} \).

Step 3: \(E^{(5)} \). Notice that \(\int_{\mathbb{R}} \varphi(z) p(z) \, dz = 0 \) for the function \(\varphi(z) := \sum_{i \in \mathbb{N} : x_i - x \in \mathbb{Z}} \mathbb{1}_{(x_i-x)}(z) \) since \(\varphi = 0 \) a.e. Notice also that for \(\xi \in \mathbb{Z}_e^h \), it holds that \(\Pi_{\varepsilon} \mathbb{1}_{\{\xi\}} \leq
Therefore, since it also holds (for each \(x_i \)) that \(|x_i| \leq 2h + |x| + |z| \) whenever \(|z - (x_i - x)| \leq 2h \),

\[
|E(5)| \leq \sum_{i \in \mathbb{N}: |x_i - x| < 2h} \left| x_i \int_{\mathbb{R}} \Pi e^{I} \chi_{\{x_i - x\}}(z)p(z)dz \right|
\]

\[
\leq \sum_{i \in \mathbb{N}: |x_i - x| < 2h} |x_i|e^{-\beta|x_i|} \int_{\mathbb{R}} e^{\beta|x_i|} \left[\chi_{\{(x_i - x) - 2h, (x_i - x) + 2h\}}(z) \right] p(z)dz
\]

\[
\leq \sum_{i \in \mathbb{N}: |x_i - x| < 2h} |x_i|e^{-\beta|x_i|} \int_{(x_i - x) - 2h}^{(x_i - x) + 2h} e^{\beta|x_i|} p(z)dz
\]

\[
\leq \frac{h}{\sigma \sqrt{\theta} \sqrt{2\pi}} \frac{4}{2h} e^{2\beta h + \beta^2} \sigma^2 T/2 \sum_{i \in \mathbb{N}: |x_i - x| < 2h} |x_i|e^{-\beta|x_i|}.
\]

Step 4: \(E(6) \). If \(\zeta \in \mathbb{Z}^2 \), relations (38), (39), and the linearity of \(\Pi_0 \) imply that

\[
\Pi_0 \Pi e^{I} \chi_{\{\zeta\}}(z) - \Pi e^{I} \chi_{\{\zeta\}}(z)
\]

\[
= \frac{1}{4h} \left(\Pi_0 \chi_{\{\zeta\}}(z) \chi_{\{\zeta\}}(z) - |z - (\zeta - 2h)| \right) - \frac{1}{2h} \left(\Pi_0 \chi_{\{\zeta\}}(z) - |z - \zeta| \right)
\]

\[
+ \frac{1}{4h} \left(\Pi_0 \chi_{\{\zeta\}}(z) \chi_{\{\zeta\}}(z) - |z - (\zeta + 2h)| \right)
\]

\[
= \frac{d_0(z)}{4h} \left(1_{\{\zeta - 2h, \zeta + 2h\}}(z) - 21_{\{\zeta - h, \zeta + h\}}(z) + 1_{\{\zeta - h, \zeta + h\}}(z) \right), \quad z \in \mathbb{R}.
\]

Therefore, since \(|x_i| \leq 3h + |x| + |z| \) whenever \(|z - (x_i - x)| \leq 3h \), we get

\[
|E(6)| \leq \sum_{i \in \mathbb{N}: |x_i - x| < 2h} |x_i| \int_{\mathbb{R}} \Pi_0 \Pi e^{I} \chi_{\{x_i - x\}}(z) - \Pi e^{I} \chi_{\{x_i - x\}}(z) |q(z)| p(z) dz
\]

\[
\leq \sum_{i \in \mathbb{N}: |x_i - x| < 2h} |x_i|e^{-\beta|x_i|} \int_{(x_i - x) - 3h}^{(x_i - x) + 3h} e^{\beta|x_i|} \frac{d_0(z)}{2h} q(z) p(z) dz
\]

\[
\leq \sum_{i \in \mathbb{N}: |x_i - x| < 2h} |x_i|e^{-\beta|x_i|} \int_{(x_i - x) - 3h}^{(x_i - x) + 3h} e^{\beta|x_i|} p(z) dz
\]

\[
\leq \frac{h}{\sigma \sqrt{\theta} \sqrt{2\pi}} \frac{3}{\sqrt{2\pi}} e^{3\beta|z| + \beta^2 \sigma^2 T/2} \sum_{i \in \mathbb{N}: |x_i - x| < 2h} |x_i|e^{-\beta|x_i|}.
\]

The proof is completed by combining relation (31) with the bounds (32)–(33) and (35)–(38). \(\square \)

Before presenting the main result of this subsection, **Theorem 3.8**, we provide an auxiliary convention regarding the notation. It enables us to distinguish between the general setting \((h, \theta)\) and the specific \(n\)-dependent setting \((h_n, \theta_n)\) also in the later sections.

Assumption 3.6. For given \(t \in [0, T] \) and \(n \in 2\mathbb{N} \), we substitute \((h, \theta) = (h_n, \theta_n)\), where

\[
h_n = \sigma \sqrt{\frac{T}{n}}, \quad \theta_n = \frac{n_0 T}{n} \quad \text{and} \quad n_0 = 2 \left\lceil \frac{T - t}{2T/n} \right\rceil
\]

as in (12). For notational convenience, we will drop the subscript \(n \) from \(h_n \).
Remark 3.7. The special choice \((h, \theta) = (h_n, \theta_n)\) in Assumption 3.6 affects the objects below used throughout this text:

\[
\tau_k = \inf \{ s > \tau_{k-1} : |X_s - X_{\tau_{k-1}}| = h \}, \quad (X_{\tau_k})_{k=0,1,...} \quad (\mathcal{F}_{\tau_k})_{k=0,1,...}
\]

\[
J_n = J = \inf \{ 2m \in 2\mathbb{N} : \tau_{2m} > \theta_n \}, \quad L_n = L = \sup \{ m \in \mathbb{N}_0 : \tau_m < \theta_n \},
\]

\[
\mathbb{Z}^h_e = \{ 2kh : k \in \mathbb{Z} \}, \quad \mathbb{Z}_o^h = \{ (2k+1)h : k \in \mathbb{Z} \}, \quad \mathbb{Z}^h = \mathbb{Z}_{\alpha}^h \cup \mathbb{Z}_o^h,
\]

\[
d_o(y) = \text{dist}(y, \mathbb{Z}_e^h), \quad d_c(y) = \text{dist}(y, \mathbb{Z}_o^h), \quad \text{and} \quad p(y) = \mathbb{P}(X_{\theta_n} \in dy)/dy.
\]

This choice also affects the function \(q = q(\cdot, h, \theta)\) defined below in (5.3). In particular, Proposition 5.3 implies that \(q(y) = \mathbb{P}(L_n \text{ even}|X_{\theta_n} = y)\) for \(y \not\in \mathbb{Z}_e^h\).

Recall that \(e_n^{\text{loc}}(t,x) = \mathbb{E}[g(x + X_{t_n}) - g(x + X_{\theta_n})]\) as defined in (20).

Theorem 3.8. Let \(n \in 2\mathbb{N}\). Suppose that the function \(g \in \text{GBV}_{\exp}\) admits the representation (15) and that \(\beta \geq 0\) is as in (16). Then, under Assumption 3.6, there exists a constant \(C > 0\) such that for all \((t,x) \in [0, T] \times \mathbb{R},
\[
|e_n^{\text{loc}}(t,x)| \leq \frac{C}{\sqrt{n(T-t^n_k)}} e^{\beta|x|+3\beta^2 \sigma^2 T}, \quad t \in [t^n_k, t^{n+1}_k), \quad 0 \leq k < \frac{n}{2}.
\]

Proof. Proposition 3.5 with \((h, \theta) = (h_n, \theta_n)\) as stated in Assumption 3.6 combined with the relation \(h(\sigma^2 \theta_n)^{-1/2} = n_n^{-1/2}\) yield

\[
|e_n^{\text{loc}}(t,x)| \leq \frac{C_{\beta, \sigma, T} e^{\beta|x|}}{\sqrt{n_n}} \left(\int_{\mathbb{R}} e^{-\beta|y|} d\mu(y) + \sum_{k \in \mathbb{N}: x_i-x \in \mathbb{Z}_e^h} |x_i| e^{-\beta|x_i|} \right),
\]

where the coefficient \(C_{\beta, \sigma, T} > 0\) implied by (30) can be estimated as follows:

\[
C_{\beta, \sigma, T} = \frac{7}{\sqrt{2\pi}} e^{3\beta h + 3\beta^2 \sigma^2 T/2} \leq \frac{7}{\sqrt{2\pi}} e^{3\beta h + 3\beta^2 \sigma^2 T/2} \leq C e^{3\beta^2 \sigma^2 T}
\]

for a constant \(C > 0\). Since \(n_n T = n(T-t_k^n)\) for \(t \in [t^n_k, t^{n+1}_k)\) by (13), we obtain the desired result. \(\square\)

4. The global error

Our aim is to derive an upper bound for the modulus of the global error defined in (19), that is

\[
e_n^{\text{glob}}(t,x) = \mathbb{E}[g(x + X_{t_n}) - g(x + X_{\tau_n})],
\]

where the function \(g\) is an exponentially bounded Borel function and \((X_{\tau_k})_{k=0,1,...}\) is the random walk considered in Section 2.1. For this purpose, we need a collection of estimates related to the behavior of the random walk \((X_{\tau_k})\) and the random variable \(J_n\). A part of these estimates are given in this section, while the more involved ones are presented later in Section 5.2 and Appendix A.2.

Note: Assumption 3.6 is taken as a standing assumption throughout Section 4.
Recall the definitions of n_0 and θ_n given in (12), and that $J_n(\omega) = \inf\{2m \in 2\mathbb{N} : \tau_{2m}(\omega) > \theta_n\}$ as was defined in (18). A result similar to the lemma below was proved in [7, Corollary 11.4].

Lemma 4.1. For any $b \geq 0$, it holds that

\[
\begin{align*}
(i) \quad & \mathbb{E}\left[e^{b|X_{\tau_n}|} \right] \leq 2e^{b^2\sigma^2T/2}, \\
(ii) \quad & \mathbb{E}\left[e^{b|X_{\tau_n}|} \right] \leq 2e^{b\sigma \sqrt{2T} + b^2\sigma^2T/2}.
\end{align*}
\]

Proof. (i) Since $X_{\tau_n} = \sum_{k=1}^{n_0} \Delta X_{t_k}$, where $(\Delta X_{t_k})_{k=1,2,\ldots}$ is a sequence of i.i.d. random variables with $\mathbb{P}(\Delta X_{t_k} = \pm h) = 1/2$ for $h = \sigma \sqrt{T/n}$ (see Section 2.1),

\[
\mathbb{E}\left[e^{b|X_{\tau_n}|} \right] \leq 2\mathbb{E}\left[e^{bX_{\tau_n}} \right] = 2(\mathbb{E}[e^{b\Delta X_{t_1}}]^{n_0} = 2(e^{b^2h^2n_0/2} \leq 2e^{b^2\sigma^2T/2},
\]

since $\cosh(y) \leq e^{y^2/2}$ holds for any $y \in \mathbb{R}$.

(ii) Firstly, observe that by the definition of J_n we have $|X_{\tau_n} - X_{\theta_n}| \leq 2h$. Secondly, since for a standard normal Z random variable it holds that $\mathbb{E}[e^{u|Z|}] \leq 2e^{u^2/2}$ for all $u \in \mathbb{R}$,

\[
\mathbb{E}\left[e^{b|X_{\tau_n}|} \right] \leq \mathbb{E}\left[e^{b|X_{\tau_n} - X_{\theta_n} + b|X_{\theta_n}|} \right] \leq e^{b^2h^2}\mathbb{E}\left[e^{b\sigma \sqrt{2|Z|}} \right] \leq 2e^{b\sigma \sqrt{2T} + b^2\sigma^2T/2}.
\]

The following upper bounds are later needed for the estimation of the global error.

Proposition 4.2.

(i) Suppose that $p \geq 0$, $g \in \mathcal{B}_{\exp}$, and that $b \geq 0$ is as in (14). Then there exists a constant $C_p > 0$ such that for all $x \in \mathbb{R}$,

\[
\sup_{(n,t) \in 2\mathbb{N} \times [0,T]} \mathbb{E}\left[\left(\frac{|X_{\tau_n}|}{\sqrt{\sigma^2 \theta_n}} \right)^p g(x + X_{\tau_n}) \right] \leq C_p e^{b|x| + b^2\sigma^2T}. \tag{41}
\]

Moreover, for every $p > 0$ there exists a constant $C_p > 0$ such that

\[
\begin{align*}
(ii) \quad & \sup_{(n,t) \in 2\mathbb{N} \times [0,T]} n_0^p \mathbb{P}\left(|X_{\tau_n}/h| > n_0^{3/5} \right) \leq C_p, \\
(iii) \quad & \sup_{(n,t) \in 2\mathbb{N} \times [0,T]} n_0^p \mathbb{P}\left(|J_n - n_0| > n_0^{3/5} \right) \leq C_p. \tag{43}
\end{align*}
\]

Proof. (i) Observe that

\[
S_{n_0} := \frac{X_{\tau_n}}{\sqrt{\sigma^2 \theta_n}} = \frac{1}{\sqrt{\sigma^2 \theta_n}} \sum_{k=1}^{n_0} \Delta X_{t_k} = \frac{1}{\sqrt{n_0}} \sum_{k=1}^{n_0} \xi_k,
\]

where $(\xi_i)_{i=1,2,\ldots}$ is an i.i.d. Rademacher sequence (see Section 2.1). Hence,

\[
\mathbb{E}[e^{S_{n_0}}] = \left(\cosh\left(\frac{r}{\sqrt{n_0}} \right) \right)^{n_0} \leq (e^{r^2/(2n_0)})^{n_0} = e^{r^2/2}, \quad r \in \mathbb{R}.
\]
Consequently, by the symmetry of \(S_{n_0} \) and Markov’s inequality,
\[
\mathbb{P}(|S_{n_0}| > r) = 2\mathbb{P}(e^{S_{n_0}} > e^r) \leq 2e^{-r^2} \mathbb{E}[e^{S_{n_0}}] \leq 2e^{-r^2/2}, \quad r > 0,
\]
and thus, uniformly in \((n, t)\), for \(p > 0\),
\[
\mathbb{E}|S_{n_0}|^p = p \int_0^\infty r^{p-1}\mathbb{P}(|S_{n_0}| > r)dr \leq 2p \int_0^\infty r^{p-1}e^{-r^2/2}dr := \tilde{C}_p < \infty. \tag{44}
\]
Hölder’s inequality, (44), and (39) then imply that
\[
|\mathbb{E}\left[|S_{n_0}|^p g(x + X_{n_0})\right]| \leq A e^{b|x|}\left(\mathbb{E}|S_{n_0}|^2p\right)^{1/2}\left(\mathbb{E}\left[e^{2b|X_{n_0}|}\right]\right)^{1/2} \leq 2ACp^{1/2}e^{b|x|+b^2\sigma^2T}.
\]
This proves (41) for \(p > 0 \), and the case \(p = 0 \) can be seen from the last line as well.
(ii) Since \(h\sqrt{n_0} = \sqrt{\sigma^2\theta_n} \), by Markov’s inequality and (44) we obtain
\[
\mathbb{P}\left(|X_{n_0}/h| > n_0^{3/5}\right) = \mathbb{P}\left(|S_{n_0}| > n_0^{1/10}\right) \leq \mathbb{E}|S_{n_0}|^q n_0^{-q/10} \leq C_q n_0^{-q/10} \tag{45}
\]
for all \(q > 0 \). Choose \(q \geq 10p \) and multiply both sides of (45) by \(n_0^p \) to obtain (42).
(ii) For every \(K > 0 \), Markov’s inequality and Proposition 5.9 imply that
\[
\mathbb{P}\left(|J_n - n_0| > n_0^{3/5}\right) \leq \mathbb{E}|J_n - n_0|^K n_0^{-3K/5} \leq C_K n_0^{-K/10} \tag{46}
\]
for some constant \(C_K > 0 \). For given \(p > 0 \), it remains to choose \(K \geq 10p \) and multiply both sides of (46) by \(n_0^p \).

The proof of the main result of this section follows closely the proof of [7, Theorem 8.1].

Theorem 4.3. Let \(n \in 2\mathbb{N} \). Suppose that \(g \in \mathcal{B}_{\exp} \) and that \(b \geq 0 \) is as in (14). Then there exists a constant \(C > 0 \) such that for all \((t, x) \in [0, T) \times \mathbb{R},
\[
|e_n^{\text{glob}}(t, x)| \leq \frac{CT}{n(T-t_0)} e^{b|x|+b^2\sigma^2T}, \quad t \in [t_k^n, t_{k+1}^n], \quad 0 \leq k < \frac{n}{2}.
\]

Proof. The rough idea behind the estimation of the global error is to decompose it into a sum of a part, which corresponds to certain moments of the random variables \(X_{n_0} \) and \(J_n - n_0 \), and to a part, which can be bounded by a term which is “of the order” \(n_0^{-p} \) for some \(p > 1 \). Define a set
\[
\Gamma_{n_0} := \{|X_{n_0}|/h| | J_n - n_0 | \leq n_0^{3/5}\}
\]
and decompose the error \(e_n^{\text{glob}}(t, x) \) into the sum of expectations \(E^{(1)} \) and \(E^{(2)} \), where
\[
E^{(1)} := \mathbb{E}\left[g(x + X_{n_0}) - g(x + X_{n_0}); \Gamma_{n_0}\right],
\]
\[
E^{(2)} := \mathbb{E}\left[g(x + X_{n_0}) - g(x + X_{n_0}); \Gamma_{n_0}^c\right].
\]
Using the estimates of Lemma 4.1 and Proposition 4.2, it can be shown that
\[
|E^{(2)}| \leq C_0 n_0^{-3/2} e^{b|x|+b^2\sigma^2T+b\sigma\sqrt{2T}} \tag{48}
\]
for some constant $\tilde{C}_0 > 0$. This is done in Lemma A.2(i). Estimation of $|E^{(1)}|$ requires more subtlety. Denote the probability mass functions of $X_{t_{n_0}+h}$ and $J_n - n_0$ by

$$P_{n_0+k}(y) := \mathbb{P}(X_{t_{n_0}+h} = yh) \quad \text{and} \quad P_{n_0}^J(y) := \mathbb{P}(J_n - n_0 = y), \quad y \in \mathbb{Z}. \quad (49)$$

By Lemma A.2(ii), there exists a constant $\tilde{C}_1 > 0$ such that

$$|E^{(1)}| \leq \sum_{k=2-n_0}^{\infty} \sum_{y=-n_0}^{n_0} g(x+yh)P_{n_0}^J(k)P_{n_0}(y) \left(\frac{k}{2n_0} - \frac{3k^2 + 4ky^2}{8n_0^2} + \frac{3k^2y^2}{4n_0^3} - \frac{k^2y^4}{8n_0^4} \right)$$

$$+ \tilde{C}_1 n_0^{-3/2} e^{b|x|+b^2\sigma^2T}. \quad (50)$$

Next, we use relation (78) in order to rewrite the double sum on the right-hand side of (50) as

$$E^{(3)} := \sum_{k=2-n_0}^{\infty} \sum_{y=-n_0}^{n_0} g(x+yh)P_{n_0}^J(k)P_{n_0}(y) \left(\frac{k}{2n_0} - \frac{3k^2 + 4ky^2}{8n_0^2} + \frac{3k^2y^2}{4n_0^3} - \frac{k^2y^4}{8n_0^4} \right)$$

$$= \frac{1}{n_0} \left\{ \frac{1}{2} \mathbb{E} \left[g(x + X_{t_{n_0}}) \right] \mathbb{E}[J_n - n_0] - \frac{3}{8} \mathbb{E} \left[g(x + X_{t_{n_0}}) \right] \mathbb{E} \left[\left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2 \right] \right\}$$

$$- \frac{1}{2} \mathbb{E} \left[\frac{X_{t_{n_0}}}{\sigma^2 \theta_n} \right] g(x + X_{t_{n_0}}) \mathbb{E}[J_n - n_0] + \frac{3}{4} \mathbb{E} \left[\frac{X_{t_{n_0}}}{\sigma^2 \theta_n} \right] g(x + X_{t_{n_0}}) \mathbb{E} \left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2$$

$$- \frac{1}{8} \mathbb{E} \left[\frac{X_{t_{n_0}}}{\sqrt{\sigma^2 \theta_n}} \right] g(x + X_{t_{n_0}}) \mathbb{E} \left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2$$

$$= \frac{1}{n_0} \left\{ \mathbb{E} \left[g(x + X_{t_{n_0}}) \right] \left(\frac{1}{2} \mathbb{E}[J_n - n_0] - \frac{3}{8} \mathbb{E} \left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2 \right) \right\}$$

$$+ \mathbb{E} \left[\frac{X_{t_{n_0}}}{\sqrt{\sigma^2 \theta_n}} \right] g(x + X_{t_{n_0}}) \left(\frac{3}{4} \mathbb{E} \left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2 - \frac{1}{2} \mathbb{E}[J_n - n_0] \right)$$

$$- \frac{1}{8} \mathbb{E} \left[\frac{X_{t_{n_0}}}{\sqrt{\sigma^2 \theta_n}} \right] g(x + X_{t_{n_0}}) \mathbb{E} \left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2 \right\}. \quad (51)$$

By Proposition 5.7, there exist constants $c_1, c_2 > 0$ such that $|\mathbb{E}[J_n - n_0] - \frac{4}{3}| \leq c_1 n_0^{-\frac{1}{2}}$ and $\mathbb{E} \left[\left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2 - \frac{2}{3} \right] \leq c_2 n_0^{-\frac{1}{2}}$. In particular, the following inequalities hold:

$$\left| \frac{1}{2} \mathbb{E}[J_n - n_0] - \frac{3}{8} \mathbb{E} \left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2 - \frac{5}{12} \right| \leq \left(\frac{c_1}{2} + \frac{3c_2}{8} \right) \frac{1}{\sqrt{n_0}},$$

$$\left| \frac{3}{4} \mathbb{E} \left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2 - \frac{1}{2} \mathbb{E}[J_n - n_0] + \frac{1}{6} \right| \leq \left(\frac{c_1}{2} + \frac{3c_2}{4} \right) \frac{1}{\sqrt{n_0}},$$

$$\left| \frac{1}{8} \mathbb{E} \left(\frac{J_n - n_0}{\sqrt{n_0}} \right)^2 - \frac{1}{12} \right| \leq \frac{c_2}{8\sqrt{n_0}}.$$
Consequently, by (51) and (41), there exist constants \(\tilde{C}_2, \tilde{C}_3 > 0 \) such that
\[
|E(3)| \leq \frac{5}{12n_0} \left| \frac{\sigma_n^2}{\sigma^2} \right| \left| \mathbb{E} \left[g(x + X_{t_0}) \right] \right| + \frac{1}{6n_0} \left| \frac{\sigma_n^2}{\sigma^2} \frac{(X_{t_0})^2}{\sigma^2} \mathbb{E} \left[g(x + X_{t_0}) \right] \right|
+ \frac{1}{12n_0} \left| \frac{\sigma_n^2}{\sigma^2} \mathbb{E} \left[(X_{t_0})^4 \right] \mathbb{E} \left[g(x + X_{t_0}) \right] \right| + \frac{\tilde{C}_2 e^{h|x|+b^2\sigma^2 T}}{n_0^{3/2}} + \frac{\tilde{C}_3 e^{b|x|+b^2\sigma^2 T}}{n_0^{3/2}}.
\]

To complete the proof, it remains to observe that \(n_0^{-\frac{3}{2}} \leq n_0^{-1}(1/\sqrt{2}) \), to combine (48), (50), and (52), and to recall that \(n_0 T = n(T-t^n_k) \) for \(t \in [t^n_k, t^n_{k+1}] \).

5. Technical results

5.1. First exit times of Brownian bridges and the sharpness of the rate

Let \((h, \theta) \in (0, \infty) \times (0, T] \) and recall \(L = \sup\{m \in \mathbb{N}_0 : \tau_m < \theta \} \) as was defined in (27). In this subsection we derive a representation for the function
\[
y \mapsto \mathbb{P}(L \text{ even}|X_\theta = y)
\]
(53)
based on first exit time probabilities of a Brownian bridge. This representation (60) together with the associated estimates derived in [12] is applied in order to prove Proposition 5.5, the main result of this subsection.

Definition 5.1 (Brownian bridge). Let \(x, y \in \mathbb{R} \) and \(l > 0 \). A Gaussian process \((B_{s}^{x,y})_{s \in [0,l]}\) with mean and covariance functions given by
\[
\mathbb{E}[B_{s}^{x,y}] = x + \frac{s}{l}(y-x), \quad 0 \leq s \leq l,
\]
\[
\text{Cov}(B_{s}^{x,y}, B_{t}^{x,y}) = s \left(1 - \frac{t}{l}\right), \quad 0 \leq s \leq t \leq l,
\]
is called a (generalized) Brownian bridge from \(x \) to \(y \) of length \(l \).

Remark 5.2. By comparing mean and covariance functions, it is easy to verify that a Brownian bridge \((B_{s}^{x,y})_{s \in [0,l]}\) is equal in law with the transformed processes below:
\[
\left(B_{t-}^{x,y} \right)_{t \in [0,l]} \quad \text{('time reversal')}
\]
(54)
\[
\left(x + B_{t}^{0,y-x} \right)_{t \in [0,l]} \quad \text{('translation')}
\]
(55)
\[
\left(-B_{t}^{-x,-y} \right)_{t \in [0,l]} \quad \text{('reflection around the x-axis')}
\]
(56)

A continuous version of a Brownian bridge \((B_{t}^{x,0,y})_{t \in [0,l]}\) can be thought as a random function on the canonical space \((C[0,l], B(C[0,l]), \mathbb{P}_{x,0,y})\), where \(\mathbb{P}_{x,0,y} \) denotes the
associated probability measure. In the following proposition we give different character-
izations for the function (53) in terms of hitting times. For all \(c \in \mathbb{R}, \ a < b, \) and \(\omega \in C[0, \theta], \) we let

\[
H_c(\omega) := \inf \{ t \in [0, \theta] : \omega_t = c \}, \quad H_{(a,b)}(\omega) := \inf \{ t \in [0, \theta] : \omega_t \notin (a, b) \},
\]

\[
\hat{H}_c(\omega) := \sup \{ t \in [0, \theta] : \omega_t = c \}, \quad \hat{H}_{(a,b)}(\omega) := \sup \{ t \in [0, \theta] : \omega_t \notin (a, b) \}.
\]

Proposition 5.3. Let \((h, \theta) \in (0, \infty) \times (0, T] \). Suppose that \(\left(B_t^{(\sigma, \theta, 0)} \right)_{t \in [0, \theta]} \) is a Brownian bridge on a probability space \((\Omega, \mathcal{F}, \mathbb{P}) \), and define

\[
q(y) = q(y, h, \theta) := \mathbb{P} \left(\left(B_t^{(\sigma, \theta, 0)} \right)_{t \in [0, \theta]} \text{ hits } \mathbb{Z}_e^{h/\sigma} \text{ before hitting } \mathbb{Z}_o^{h/\sigma} \right), \quad y \in \mathbb{R}. \tag{57}
\]

Then, for all \(k \in \mathbb{Z} \),

(i) \(q(y) = \mathbb{P} (L \text{ even} | X_0 = y), \quad y \notin \mathbb{Z}^h \),

(ii) \(q(y) = \begin{cases} \mathbb{P}_{y, 0, 0} (H_{2kh/\sigma} < H_{(2k+1)h/\sigma}), & y \in (2kh, (2k+1)h), \\ \mathbb{P}_{y, 0, 0} (H_{2kh/\sigma} < H_{(2k-1)h/\sigma}), & y \in ((2k-1)h, 2kh), \end{cases} \tag{59} \)

(iii) \(q(y) = \begin{cases} \frac{d_n(y)}{h} + \frac{\sigma}{h} \mathbb{E}_\mathbb{P} \left[B_{0, y/\sigma}^{H_{(-2kh/h)}(\omega)} \right], & y \in (2kh, (2k+1)h), \\ \frac{d_n(y)}{h} - \frac{\sigma}{h} \mathbb{E}_\mathbb{P} \left[B_{0, y/\sigma}^{H_{(2kh/h)}(\omega)} \right], & y \in ((2k-1)h, 2kh). \end{cases} \tag{60} \)

Here \(\hat{H}_{(a,b)} = \inf \{ t \in [0, \theta] : B_t^{(\sigma, \theta, 0)} \notin (a, b) \} \), and \(\mathbb{P} \) refers to the probability measure on the space \((\Omega, \mathcal{F}, \mathbb{P}) \) considered in Section 2.

Proof. Item (ii) is clear. To show (i), observe that if \(X_0(\omega) \in (2kh, (2k+1)h) \) and \(L(\omega) \) is even, the path \(t \mapsto X_t(\omega) \) does hit 2kh at \(\tau_L(\omega) \) and afterwards, i.e. on \([\tau_L(\omega), \theta] \), it does not hit any other \(mh \) \((m \neq 2k)\) and hence stays inside \((2k-1)h, (2k+1)h)\). Therefore, the last entry of this path into \((2kh, (2k+1)h)\) occurs via 2kh, and thus

\[
\mathbb{P}(L \text{ even}, X_0 \in (2kh, (2k+1)h)) = \mathbb{P}_0 \left(\sigma \omega_{H_{(2kh,(2k+1)h)}}(\omega) = 2kh, \ \sigma \omega_0 \in (2kh, (2k+1)h) \right)
\]

\[
= \mathbb{P}_0 \left(\omega_{H_{(2kh,(2k+1)h)}}(\omega) = \frac{2kh}{\sigma}, \ \omega_0 \in \left(\frac{2kh}{\sigma}, \frac{(2k+1)h}{\sigma} \right) \right)
\]

\[
= \mathbb{P}_0 \left(\hat{H}_{2kh/\sigma} > \hat{H}_{(2k+1)h/\sigma} \right),
\]

where \(\mathbb{P}_0 \) denotes the Wiener measure on \((C[0, \theta], \mathcal{B}(C[0, \theta])) \). Thus, for \(y \in (2kh, (2k+1)h) \),

\[
\mathbb{P}(L \text{ even} | X_0 = y) = \mathbb{P}_{0, y, y/\sigma} \left(\hat{H}_{2kh/\sigma} > \hat{H}_{(2k+1)h/\sigma} \right) = \mathbb{P}_{y, 0, 0} (H_{2kh/\sigma} < H_{(2k+1)h/\sigma} = q(y),
\]

where we used relations (54), (59), and the fact that \(\mathbb{P}(\cdot | X_0 = y) = \mathbb{P}_{0, 0, y/\sigma} \) on \((C[0, \theta], \mathcal{B}(C[0, \theta])) \) (see e.g. [13, Chapter 1]). The case \(y \in ((2k-1)h, 2kh) \) is similar.
For (iii), assume \(y \in ((2k - 1)h, 2kh) \); the case \(y \in (2kh, (2k + 1)h) \) is similar. It is clear that whenever \(z \not\in (a, b) \), \(a < 0 < b \), and \(\bar{H}_{(a, b)} = \inf \{ t \in [0, \theta] : B_{t}^{0, \theta, y} \not\in (a, b) \} \),
\[
\mathbb{P}_{0, 0, z}(H_{a} < H_{b}) = \frac{b}{b-a} - \frac{1}{b-a} \mathbb{E}_{\bar{H}}[B_{\bar{H}}^{0, \theta, z}] .
\] (61)

In addition, from (59) we deduce that
\[
q(y) = \mathbb{P}_{y/\sigma, 0, 0}(H_{2kh/\sigma} < H_{(2k-1)h/\sigma})
= \mathbb{P}_{0, -y/\sigma}(H_{(2k-1)h/\sigma} < H_{(2k-1)h-y}/\sigma)
= \mathbb{P}_{0, 0, y/\sigma}(H_{(2k-1)h/\sigma} < H_{(2k-1)h-y}/\sigma)
\] (62)
by (55) and (56). Substitute \(z = y/\sigma \), \(a = -2kh/\sigma \), and \(b = -2kh/\sigma \). Then \(z \not\in (a, b) \), \(a < 0 < b \), \(b - a = h/\sigma \), and hence by (61), (62), and \(d_{o}(y) = y - (2k - 1)h \),
\[
q(y) = \frac{d_{o}(h)}{h} - \frac{\sigma}{h} \mathbb{E}_{\bar{H}}[B_{\bar{H}}^{0, \theta, y/\sigma}].
\]

\[\square\]

Before we proceed to prove the sharpness result for the class \(GBV_{\exp} \), Proposition 5.5, we list the assertions of [12] which are needed for the proof.

Lemma 5.4 ([12, Lemmas 4.1 and 4.2(i)]). Let \((h, \theta) \in (0, \infty) \times (0, \infty) \) and suppose that \(a < 0 < b \) and \(y \not\in (a, b) \). Then
\[
\mathbb{E}_{\bar{H}}[B_{\bar{H}}^{0, \theta, y} | H_{(a, b)}] \leq \mathbb{E}_{0, \theta, y}[H_{(a, b)}] \left(|y| + 2(|a| + b) + 3\sqrt{2\theta} \right),
\] (63)
\[
\mathbb{E}_{0, \theta, y}[H_{(a, b)}] \leq \begin{cases}
\frac{b(2|a| + y) \wedge \theta, & y \geq b, \\
|a|(2b + |y|) \wedge \theta, & y \leq a.
\end{cases}
\] (64)

Proposition 5.5. Under Assumption 3.6, there exists a function \(g \in GBV_{\exp} \) such that
\[
0 < \liminf_{n \to \infty} n^{3} e_{n}(0, 0) \leq \limsup_{n \to \infty} n^{3} e_{n}(0, 0) < \infty.
\] (65)

\[\text{Proof.}\] For simplicity, let \(T = \sigma = 1 \) and \(g := \|_{[0, \infty)} \). Then \(h = n^{-1} \), \(g \in GBV_{\exp} \), and the location of the jump of \(g \) belongs to the set \(\mathcal{Z}_{n}^{b} \) for all \(n \in \mathbb{N} \). Observe that then \(e_{n}^{adj}(0, 0) = 0 \) by Theorem 3.1 and \(|e_{n}^{glob}(0, 0)| \leq Cn^{-1} \) by Theorem 4.3, where \(C > 0 \) is some constant. Consequently, it suffices to show that (65) is valid for the local error \(e_{n}^{loc}(0, 0) \).

The expression \(n^{3} e_{n}^{loc}(0, 0) \) is bounded from above by Theorem 3.8. For the lower bound, we note that by Definition 3.2,
\[
\Pi_{x}^{1}[0, \infty)(x) = \left(1 \wedge \frac{x + 2h}{2h} \right) \mathbb{1}_{[-2h, \infty)}(x), \quad \Pi_{x}^{2}[0, \infty)(x) = \left(1 \wedge \frac{x + 3h}{4h} \right) \mathbb{1}_{[-3h, \infty)}(x), \quad x \in \mathbb{R}.
\]
Consequently, for $(h, \theta) = (n^{-\frac{1}{2}}, 1)$, Proposition 3.3 and relation (58) yield
\[
e_{n}^{\text{loc}}(0, 0) = \mathbb{E}\left[\Pi_{\epsilon} 1_{[0, \infty)}(W_{1}) - 1_{[0, \infty)}(W_{1})\right] + \mathbb{E}\left[\left(\Pi_{\epsilon} 1_{[0, \infty)}(W_{1}) - \Pi_{\epsilon} 1_{[0, \infty)}(W_{1})\right)q(W_{1})\right]
= \int_{-2h}^{0} \frac{x + 2h}{2h} p(x) dx + \int_{-h}^{h} \frac{x + 3h}{4h} q(x) p(x) dx
= \int_{-2h}^{0} \frac{x + 2h}{2h} (1 - q(x)) p(x) dx + \int_{-h}^{h} \frac{x + 3h}{4h} q(x) p(x) dx + \frac{1}{2} \int_{0}^{h} x - h q(x) p(x) dx
\geq p(h) \int_{-h}^{0} \frac{x + 2h}{2h} (1 - q(x)) dx
\]
by the symmetry of the functions $p > 0$ and $q \in [0, 1]$ and substitution $x \mapsto -x$. Next, notice that for $k = 0$ and $\sigma = \theta = 1$, relations (60), (63), and (64) imply that whenever $x \in (-h, 0)$,
\[
\left|q(x) - \frac{d_{\sigma}(x)}{h}\right| = \frac{1}{h} \mathbb{E}_{\mu} \left[B_{H}^{0, 1, x} \right] \leq \frac{1}{h} \left(|x| + 2(|x| \vee (x + h)) + 3\sqrt{2} \right) \mathbb{E}_{\mu, 1, x} \left[H_{(x, h + x)} \right]
\leq \left(3h + 3\sqrt{2} \right) \frac{|x|}{h} (2h - |x|)
\leq 3h(h + \sqrt{2}).
\]
Consequently, for $x \in (-h, 0)$,
\[
1 - q(x) = 1 - \frac{d_{\sigma}(x)}{h} - \left|q(x) - \frac{d_{\sigma}(x)}{h}\right| \geq \frac{d_{\sigma}(x)}{h} - 3h(h + \sqrt{2}) = \frac{|x|}{h} - 3h(h + \sqrt{2}),
\]
and thus there exist constants $C_{1}, C_{2} > 0$ (not depending on h) such that
\[
e_{n}^{\text{loc}}(0, 0) \geq p(h) \int_{-h}^{0} \frac{x + 2h|\mu|}{2h} dx - 3h(h + \sqrt{2}) p(h) \int_{-h}^{0} \frac{x + 2h}{2h} dx
\geq \left[C_{1}h - C_{2}h^{2}(h + \sqrt{2}) \right] p(h).
\]
The relation $h = n^{-\frac{1}{2}}$ then implies that $\liminf_{n \to \infty} n^{\frac{1}{2}} e_{n}^{\text{loc}}(0, 0) \geq C_{1} p(0) > 0$. \hfill \square

Remark 5.6. In [7, Proposition 9.8] it is stated that the rate for the local error is h (i.e. $n^{-\frac{1}{2}}$) instead of h^{2} (i.e. n^{-1}) whenever the terminal condition g has a discontinuity at a non-lattice point $x \notin \mathbb{Z}^{h}$. By contrast, Proposition 3.5 implies that only the jumps that occur at even lattice points contribute to the error. This discrepancy is a result of the choice of different step functions: In [7], only step functions of the type $\tilde{1}_{[a, \infty)} := 1_{[a]} / 2 + 1_{(a, \infty)}$ are considered.

5.2. Moment estimates for the random variable J_{n}

In this subsection, moment estimates are presented for the random variable
\[
J_{n} = \inf\{2m \in 2\mathbb{N} : \tau_{2m} > \theta_{n}\},
\]
Suppose that Assumption 3.6 holds, and let K. Proposition 5.9.

Proposition 5.7. Suppose that Assumption 3.6 holds. Then there exists a constant $C > 0$ such that for all $(n, t) \in 2\mathbb{N} \times [0, T]$,

$$
\begin{align*}
(i) & \quad \mathbb{E}[J_n] - n_\theta - \frac{4}{3} \leq \frac{C}{\sqrt{n_\theta}}, \\
(ii) & \quad \mathbb{E}\left(\frac{J_n - n_\theta}{n_\theta}\right)^2 \leq \frac{C}{\sqrt{n_\theta}}.
\end{align*}
$$

To derive an estimate for $\mathbb{E}|J_n - n_\theta|^K$ for arbitrary $K > 0$, we recall (see, e.g. [15, Theorem 14.12]) a version of the Azuma–Hoeffding inequality.

Proposition 5.8 (Azuma–Hoeffding inequality). Suppose that $(M_t)_{t=0,1,\ldots}$ is a martingale started for which $M_0 = 0$ holds. In addition, assume that for all $i \geq 1$ there exists a constant $\varepsilon_i > 0$ such that $|M_i - M_{i-1}| \leq \varepsilon_i$ a.s. Then, for all $k \in \mathbb{N}$ and every $s > 0$,

$$
\mathbb{P}(M_k \geq s) \leq \exp\left(-\frac{s^2}{2\sum_{j=1}^k \varepsilon_j^2}\right).
$$

The following result, proved below in the time-dependent setting, can be found in [7, Proposition 11.2(iv)] for $t = 0$. The original proof, however, does not cover the case corresponding to the inequality (67) for the set A_3.

Proposition 5.9. Suppose that Assumption 3.6 holds, and let $K > 0$. Then there exists a constant $C_K > 0$ depending at most on K such that

$$
\mathbb{E}|J_n - n_\theta|^K \leq C_K n_\theta^{K/2} \quad \text{for all} \quad (n, t) \in 2\mathbb{N} \times [0, T).
$$

Proof. It suffices to prove the claim for $K \geq 2$, since the case $K \in (0, 2)$ then follows by Jensen’s inequality. Since $|J_n - n_\theta|$ is a non-negative random variable,

$$
\frac{1}{K} \mathbb{E}|J_n - n_\theta|^K = \int_0^\infty z^{K-1} \mathbb{P}(|J_n - n_\theta| > z)dz.
$$

We show that there exist constants $C_K^{(1)}, C_K^{(2)}, C_K^{(3)} > 0$ corresponding to the sets $A_1 = (0, 2], A_2 = (2, n_\theta]$ and $A_3 = (n_\theta, \infty)$ such that

$$
I_k(n_\theta) := \int_{A_k} z^{K-1} \mathbb{P}(|J_n - n_\theta| > z)dz \leq C_K^{(k)} n_\theta^{K/2} \quad \text{for all} \quad n_\theta.
$$

Step 1: Since $K \geq 2$ and $n_\theta \geq 2$, we have that

$$
I_1(n_\theta) = \int_0^2 z^{K-1} \mathbb{P}(|J_n - n_\theta| > z)dz \leq 2^{K-1} dz \leq 2^{K} / K \leq C_k^{(1)} n_\theta^{K/2}.
$$

Step 2: Suppose that $n_\theta > 2$ and define $\delta_{n_\theta}(u) := \frac{\lceil n_\theta u \rceil}{n_\theta}$. Then

$$
I_2(n_\theta) = \int_2^{n_\theta} z^{K-1} \mathbb{P}(|J_n - n_\theta| > z)dz = n_\theta^{K-1} \int_2/n_\theta^{1} u^{K-1} \mathbb{P}(|J_n - n_\theta| > n_\theta u)du
$$

$$
\leq n_\theta^K \int_2/n_\theta^{1} u^{K-1} \mathbb{P}(|J_n - n_\theta| > \delta_{n_\theta}(u)n_\theta)du.
$$

(68)
The idea here is to estimate the tail probability inside the integral on the last line of (68) with the help of Lemma A.6. To proceed, fix a constant \(a \in (0, 1] \) small enough such that for every \(m \in \mathbb{N} \),

\[
\delta_m(u) < \frac{\pi^2}{12 + \pi^2} \quad \text{and} \quad H \left(\sqrt{\frac{3\delta_m(u)}{1 + \delta_m(u)}} \right) \wedge H \left(\sqrt{\frac{3\delta_m(u)}{1 - \delta_m(u)}} \right) > \frac{1}{4} \quad \text{hold for all} \quad u \leq a,
\]

where the function \(H \) is defined below in (91). Depending on the value of \(n_0 \), we split the right-hand side of (68) into the sum of the integrals

\[
I_{2,1}(n_0) := n_0^K \int_{J/\sqrt{2n_0}} \mathbb{P}(|J_n - n_0| > \delta_{n_0}(u)n_0) du \quad (\text{for} \ a > 2/n_0, \ \text{otherwise} \ 0),
\]

\[
I_{2,2}(n_0) := n_0^K \int_{a \vee (2/n_0)^3} \mathbb{P}(|J_n - n_0| > \delta_{n_0}(u)n_0) du.
\]

If \(a \in (2/n_0, 1) \), by (69) and the fact that \(n_0(1 + \delta_{n_0}(u)) \) and \(n_0(1 - \delta_{n_0}(u)) \) are even integers, we may apply Lemma A.6 and estimate

\[
I_{2,1}(n_0) = n_0^K \int_{2/n_0}^a \mathbb{P}(|J_n - n_0| > n_0(1 + \delta_{n_0}(u))) + \mathbb{P}(J_n < n_0(1 - \delta_{n_0}(u)))) du
\]

\[
\leq n_0^K \int_{2/n_0}^a \left[\exp \left(-\frac{3}{8} \frac{n_0 \delta_{n_0}^2(u)}{1 + \delta_{n_0}(u)} \right) + \exp \left(-\frac{3}{8} \frac{n_0 \delta_{n_0}^2(u)}{1 - \delta_{n_0}(u)} \right) \right] du
\]

\[
\leq 2n_0^K \int_{2/n_0}^a e^{-u} du.
\]

By the properties of the floor function, for \(u \in (0, 1] \) it holds that

\[
\delta_{n_0}^2(u) = \frac{\left(\frac{n_0 u}{1 + \frac{n_0 u}{2}} \right)^2}{1 + \delta_{n_0}(u)} = \frac{\left(\frac{n_0 u}{1 + \frac{n_0 u}{2}} - 1 \right)^2}{1 + u} > \frac{(u - \frac{n_0}{2})^2}{2},
\]

and thus the right-hand side of (70) can be bounded from above by

\[
2n_0^K \int_{2/n_0}^a \mathbb{P}(J_n < n_0(1 - \delta_{n_0}(u)))) du
\]

\[
\leq 2n_0^K \int_{0}^{1} \left(u + \frac{2}{n_0} \right)^{-1} e^{-\frac{3n_0 u^2}{16}} du
\]

\[
\leq 2^{K-1}n_0^K \int_{0}^{1} \left(u^{-1} + \frac{2}{n_0} \right)^{K-1} e^{-\frac{3n_0 u^2}{16}} du.
\]

By substituting \(x = u\sqrt{n_0} \) and identifying the right-hand side of (72) as an integral with respect to a Gaussian measure, it can be verified that this integral multiplied by \(n_0^{K/2} \) is bounded by some constant \(C_K^{(2,1)} > 0 \). Hence, \(I_{2,1}(n_0) \leq C_K^{(2,1)}n_0^{K/2} \) for all \(n_0 \), where \(C_K^{(2,1)} > 0 \) depends only on \(K \).

Let us then consider the integral \(I_{2,2}(n_0) \). If \(a/3 \leq 2/n_0 \), then \(n_0 \leq 6/a \), \(a \leq a \vee (2/n_0) \), and thus \(I_{2,2}(n_0) \leq 6^K(ka)^{-1} \). On the other hand, if \(a/3 \in (2/n_0, 1) \), by Lemma A.6,
\[I_{2,2}(n_0) = n_0^K \int_a^1 u^{K-1} \left[\Pr(J_n > n_0(1 + \delta_n(u))) + \Pr(J_n < n_0(1 - \delta_n(u))) \right] du \]
\[\leq n_0^K \int_a^1 u^{K-1} \left[\Pr(J_n > n_0(1 + \delta_n(a/3))) + \Pr(J_n < n_0(1 - \delta_n(a/3))) \right] du \]
\[\leq n_0^K \left[\exp \left(-\frac{3 n_0^2 \delta_n(a/3)^2}{81 + \delta_n(a/3)} \right) + \exp \left(-\frac{3 n_0^2 \delta_n(a/3)^2}{81 - \delta_n(a/3)} \right) \right] \int_a^1 u^{K-1} du \]
\[\leq 2n_0^K \exp \left(-\frac{3 n_0^2 \delta_n(a/3)^2}{81 + \delta_n(a/3)} \right) \int_a^1 u^{K-1} du \]
\[\leq 2n_0^K \exp \left(-\frac{3 n_0^2 (a/3 - 2/n_0)^2}{16} \right). \]

Here we used the fact that \(u \mapsto \delta_n(u) \) is nondecreasing, that \(n_0(1 + \delta_n(a/3)) \) and \(n_0(1 - \delta_n(a/3)) \) are (even) integers, condition (69), and inequality (71). Notice that the right-hand side converges to zero as \(n_0 \to \infty \). Consequently, there exists a constant \(C_{K}^{(2,2)} > 0 \) such that \(I_{2,2}(n_0) \leq C_{K}^{(2,2)} \) for all \(n_0 \), and (67) for \(k=2 \) follows.

Step 3: To estimate \(I_3(n_0) \), we apply the Azuma–Hoeffding inequality to the tail distribution of the random variable \(J_n = \inf \{ 2m \in 2\mathbb{N} : \tau_{2m} > \theta_n \} \). Recall that \(\tau_i - \tau_{i-1}, i = 1, 2, \ldots, \) are i.i.d. (see Section 2.1) and that \(\frac{n}{T} \theta_n = n_0 \) according to (4). Let \(\zeta_i := \frac{n}{T}(\tau_i - \tau_{i-1}) \), \(i \geq 1 \). Then, for all \(m \in \mathbb{N} \), we have

\[
\Pr(J_n \geq 2m) = \Pr(\tau_{2m-2} \leq \theta_n) = \Pr \left(\sum_{i=1}^{2m-2} \zeta_i \leq \frac{n}{T} \theta_n \right) \leq \Pr \left(\sum_{i=1}^{2m-2} \zeta_i \wedge N \leq n_0 \right)
\]
\[\leq \Pr \left(\sum_{i=1}^{2m-2} (c_N - \zeta_i \wedge N) \leq (2m - 2)c_N - n_0 \right), \tag{73} \]

where \(N \in \mathbb{N} \) is chosen such that \(3/4 < c_N := \mathbb{E}[\zeta_i \wedge N] < \mathbb{E}[\zeta_i] = 1 \). Then \(|\mathbb{E}[\zeta_i \wedge N] - \zeta_i \wedge N| \leq N \) for all \(i \geq 1 \), and by (73) and the Azuma–Hoeffding inequality (Proposition 5.8),

\[
\Pr(J_n \geq 2m) \leq \exp \left(-\frac{(2m - 2)c_N - n_0)^2}{2(2m - 2)N^2} \right), \quad m \in \mathbb{N}.
\]

Since \(J_n > 0 \), we have

\[
I_3(n_0) = \int_0^{\infty} z^{K-1} \Pr(J_n - n_0 \geq z) dz
\]
\[= \int_{n_0}^{2n_0+2} z^{K-1} \Pr(J_n \geq z + n_0) dz + \sum_{m=3}^{\infty} \int_{(m-1)n_0+2}^{mn_0+2} z^{K-1} \Pr(J_n \geq z + n_0) dz \]
\[\leq \int_{n_0}^{2n_0+2} z^{K-1} \Pr(J_n \geq 2n_0) dz + \sum_{m=3}^{\infty} \int_{(m-1)n_0+2}^{mn_0+2} z^{K-1} \Pr(J_n \geq mn_0 + 2) dz \]
\[\leq \int_{n_0}^{2n_0+2} z^{K-1} e^{-\frac{m n_0 ((2-\gamma_0)\gamma_{m-1})^2}{(2-\gamma_0)n_0}} dz + \sum_{m=3}^{\infty} \int_{(m-1)n_0+2}^{mn_0+2} z^{K-1} e^{-\frac{m n_0 (\gamma_{m-1})^2}{m n_0}} dz \]
\[=: I_{3,1}(n_0) + I_{3,2}(n_0). \]
Since \(c_N \in (3/4, 1) \), there exist constants \(c, c' > 0 \) such that

\[
I_{3,1}(n_\theta) = \int_{n_\theta}^{2n_\theta+2} z^{K-1} e^{-\frac{n_\theta((2-2/n_\theta)c_N-1)^2}{(2-2/n_\theta)^2}} \, dz \leq 2(2n_\theta+2)^{K-1} e^{-\frac{n_\theta c'_N}{N^2}} \leq C^{(3,1)}_K,
\]

\[
I_{3,2}(n_\theta) = \sum_{m=3}^{\infty} \int_{(m-1)n_\theta+2}^{mn_\theta+2} z^{K-1} e^{-\frac{n_\theta(mn_\theta-1)^2}{mn_\theta^2}} \, dz \leq \sum_{m=3}^{\infty} (mn_\theta+2)^{K-1} e^{-\frac{mn_\theta c'_N}{N^2}} \leq C^{(3,2)}_K,
\]

where \(C^{(3,1)}_K, C^{(3,2)}_K > 0 \) depend at most on \(K \). This proves (67) for \(k = 3 \).

\[\Box\]

Funding

The author was financially supported by the Magnus Ehrnrooth Foundation and The Finnish Cultural Foundation during the preparation of this article.

References

Appendix A

A.1. The class GBV\textsubscript{exp}

The present subsection gives some insight to the properties of the terminal function class GBV\textsubscript{exp}. For a function $g : \mathbb{R} \to \mathbb{R}$, we let

$$T_g(x) := \sup \left\{ \sum_{i=1}^{N} |g(x_i) - g(x_{i-1})|, \; N \in \mathbb{N}, \; -\infty < x_0 < x_1 < \cdots < x_N = x \right\}.$$

If $\lim_{x \to -\infty} T_g(x) < \infty$, the function g is said to be of bounded variation. The class of functions with this property is denoted by BV.

In this article, an extension of BV instead of the class itself is chosen as the class of terminal functions. The reason for this is the fact that, by definition, each function in BV is bounded. Consequently, e.g. the class of polynomials is not contained in BV even though a polynomial has bounded variation on every compact interval. To find a large class of functions which may be unbounded but also have the latter property, we will follow the presentation given in [11].

Recall the class \mathcal{M} given by Definition 2.2, which consists of set functions μ (acting on bounded Borel sets on \mathbb{R}) that can be written as a difference of two measures $\mu^+, \mu^- : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ such that $\mu^+(K)$ and $\mu^-(K)$ are finite for all compact sets $K \in \mathcal{B}(\mathbb{R})$. In [11, Theorem 3.3] it is proved that such a decomposition can be chosen to be orthogonal and minimal: There exists a unique pair of measures μ^+, μ^- on $\mathcal{B}(\mathbb{R})$ such that μ^+ and μ^- are mutually singular, and $\mu^+ \leq \mu^1$ and $\mu^- \leq \mu^2$ hold for all the other decompositions $\mu = \mu^1 - \mu^2$. Even though $\mu \in \mathcal{M}$ is not itself a signed measure (it is undefined on unbounded sets), the aforementioned result, based on the Hahn decomposition theorem, allows us to define the total variation measure associated to μ by setting

$$|\mu| : \mathcal{B}(\mathbb{R}) \to [0, \infty], \quad |\mu| := \mu^+ + \mu^-.$$

Consequently, the integral in (16) appearing in Definition 2.3 of the class GBV\textsubscript{exp} is defined.

As a special case of the result [11, Theorem 4.3], one may verify that $BV \subset GBV_{\text{exp}}$ holds true. To close this subsection, we sketch the proof of the item (i) and (iv) of Remark 2.4. The proofs for the items (ii) and (iii) are left to the reader.

Proof of Remark 2.4. (i) To show that every polynomial $f(x) = \sum_{k=0}^{N} a_k x^k$, $a_k \in \mathbb{R}, N \in \mathbb{N}$ belongs to the class GBV\textsubscript{exp}, let

$$c = a_0, \quad d\mu = \sum_{k=1}^{N} k a_k x^{k-1} dx, \quad \text{and} \quad J = \emptyset$$

to be the parameters appearing in the representation (5) for the function f. It remains to observe that this μ satisfies the condition (16), since for every $\beta > 0$,

$$\int_{\mathbb{R}} e^{-\beta|\mu|} d|\mu|(x) = \int_{\mathbb{R}} e^{-\beta|\mu|} \left| \sum_{k=1}^{N} k a_k x^{k-1} \right| dx < \infty.$$

(iv) Denote the points of discontinuity of the function $g \in K_{\text{exp}}$ by $x_1 < x_2 < \cdots < x_N$, $N \geq 0$. Then, the function $h : \mathbb{R} \to \mathbb{R}$ defined as

$$h(x) := g(x) - \sum_{i=1}^{N} \Delta g(x_i) \left(\frac{1}{2} \mathbb{1}_{[x_i, x_{i+1})}(x) + \mathbb{1}_{(x_{i-1}, x_i]}(x) \right), \quad \Delta g(x_i) := g(x_i+) - g(x_i-),$$

is continuous. In addition, by the fundamental theorem of calculus for piecewise continuous functions, it holds that

$$h(y) - h(x) = \int_{x}^{y} g'(s) ds, \quad x, y \in \mathbb{R}.$$

One then checks that the function g satisfies (5) provided that the set function μ is given by
Lemma A.2. Suppose that \(g \in \mathcal{B}_{\text{exp}} \) and that \(b \geq 0 \) is as in (14). Suppose also that \(R^{(1)} \) is as in (75) and that \(\Gamma_{n_0} \) is given by (47). Then there exists a constant \(C > 0 \) such that for all \(x \in \mathbb{R} \) and \(n_0 \in 2\mathbb{N} \),

\[
(i) \quad \left| \mathbb{E}\left[g(x + X_{t_{n_0}}) - g(x + X_{t_n}); \Gamma_{n_0}^c \right] \right| \leq C n_0^{-3/2} e^{b|x| + b^2 \sigma^2 T + b \sigma \sqrt{2T}} ,
\]

\[
(ii) \quad \left| \mathbb{E}\left[g(x + X_{t_{n_0}}) - g(x + X_{t_j}); \Gamma_n \right] - \sum_{k=2}^{n_0} \sum_{h=-n_0}^{n_0} g(x + yh) P_{n_0}(k) P_{n_0}(y) R^{(1)}(n_0, k, y) \right| \leq C n_0^{-3/2} e^{b|x| + b^2 \sigma^2 T} .
\]
Proof. (i) Since $$\Gamma_0^n \subset \{ |X_{n_0}/h | > n_0^{3/5} \} \cup \{ |J_n - n_0 | > n_0^{3/5} \}$$, we may use Hölder’s inequality, (42), and (43) to show that there exists a constant $$C' > 0$$ such that

$$\mathbb{E} \left[|g(x + X_{n_0}) - g(x + X_{n_0}) |^{2} \right] \leq C' n_0^{-3/2} \left(\mathbb{E} \left[|g(x + X_{n_0}) - g(x + X_{n_0}) |^2 \right] \right)^{1/2}.$$

The claim follows, since by the triangle inequality, (39) and (40), and the fact that $$g \in B_{\exp}$$, there exists another constant $$C > 0$$ such that

$$\left(\mathbb{E} \left[|g(x + X_{n_0}) - g(x + X_{n_0}) |^2 \right] \right)^{1/2} \leq C e^{b|\xi| + b^2 \sigma^2 T + b\sigma \sqrt{2T}}.$$

(ii) The proof of item (ii) is done in several intermediate steps and only sketched here for the sake of brevity. More details can be found in [14, Lemma A.3].

Step 1: Let us first show that there exists a constant $$C > 0$$ such that for all $$x \in \mathbb{R}$$ and $$n_0$$,

$$\sum_{k=2-n_0}^{\infty} \sum_{y=-n_0}^{n_0} g(x + y h) P_{n_0}(k) P_{n_0}(y) R_{(1)}(n_0, k, y) \mathbb{I} \{ |y| \leq n_0^{3/5} \} \leq C n_0^{-3/2} e^{b|\xi| + b^2 \sigma^2 T},$$

where $$R_{(1)}$$ is as in Proposition A.1. Using the relations $$h = \sigma \sqrt{T/n}$$, $$\theta_n = n_0 T/n$$ and (49), it can be shown that for given integers $$p, q, r \in \mathbb{N}$$ and subsets $$\Lambda_1, \Lambda_2 \subset \mathbb{Z},$$

$$\sum_{k=2-n_0}^{\infty} \sum_{y=-n_0}^{n_0} g(x + y h) P_{n_0}(k) P_{n_0}(y) \frac{k^p y^q}{n_0} \mathbb{I} \{ y \in \Lambda_1, k \in \Lambda_2 \}$$

where $$R_{(1)}$$, there exists an integer $$N \in \mathbb{N}$$, a vector $$(a_i)_{i=1}^N \subset \mathbb{R},$$ and vectors $$(p_i)_{i=1}^N, (q_i)_{i=1}^N, (r_i)_{i=1}^N \in \mathbb{N}$$ such that $$(p_i + q_i)/2 - r_i \leq -3/2$$ for all $$1 \leq i \leq N,$$ and

$$R_{(1)}(n_0, k, y) = \sum_{i=1}^{N} a_i \frac{k^p y^q}{n_0}$$ for $$(n_0, k, y) \in \mathcal{D}(R).$$

Therefore, by the relation (78), the left-hand side of (77) can be rewritten and estimated by

$$\sum_{i=1}^{N} a_i n_0^{3/2 - r_i} \left[\frac{X_{n_0}}{\sigma^2 \theta_n} \right]^{q_i} g(x + X_{n_0}) \mathbb{E} \left[\left(\frac{I_n - n_0}{\sqrt{n_0}} \right)^p \right] \left[\frac{n_0^{3/2}}{n_0} \right]$$

$$\leq C n_0^{-3/2} e^{b|\xi| + b^2 \sigma^2 T},$$

where $$\tilde{C} > 0$$ is some constant implied by (41) and (66). This proves (77).

Step 2: Let us show that for some constant $$C > 0$$ and for all $$x \in \mathbb{R}$$ and $$n_0 \in \mathbb{N},$$

$$\sum_{k=2-n_0}^{\infty} \sum_{y=-n_0}^{n_0} g(x + y h) P_{n_0}(k) P_{n_0}(y) R_{(1)}(n_0, k, y) \mathbb{I} \{ |y| \leq n_0^{3/5} \} \leq C n_0^{-3/2} e^{b|\xi| + b^2 \sigma^2 T}.$$

By (75) and (78), it is sufficient to prove that for given $$p, q, r \in \mathbb{N}$$ there exists a constant $$C_{p, q, r} > 0$$ such that for all $$x \in \mathbb{R},$$

$$\sum_{k=2-n_0}^{\infty} \sum_{y=-n_0}^{n_0} g(x + y h) P_{n_0}(k) P_{n_0}(y) \frac{k^p y^q}{n_0} \mathbb{I} \{ |y| \leq n_0^{3/5} \} \leq C_{p, q, r} n_0^{-3/2} e^{b|\xi| + b^2 \sigma^2 T}.$$
Relation (80) can be verified by writing \(\{ |y| \vee |k| > n^3_\theta \} = \{ |y| > n^3_\theta \} \cup \{ |k| > n^3_\theta \} \) and considering the corresponding sums separately using relation (78) and similar calculations as in Step 1. Indeed, the case \(\{ |y| > n^3_\theta \} \) can be shown using Hölder’s inequality and relations (39), (42), (44), and (66). The case \(\{ |k| > n^3_\theta \}, |y| \leq n^3_\theta \) follows from Hölder’s inequality, (41), (43), and (66).

Step 3: Since the processes \((\Delta \tau_k)_{k=1,2,...}\) and \((\Delta X_{\tau_k})_{k=1,2,...}\) are independent (see Section 2.1), the random variable \(I_n\) and the process \((X_{\tau_k})_{k=0,1,...}\) are also independent. Taking also into account that \(\text{supp}P_{n_0+k} = \{ m \in 2\mathbb{Z} : |m| \leq n_0 + k \}\) (for each \(k \in 2\mathbb{N}\)) and \(\text{supp}P_{n_0} = \{ m - n_\theta : m \in 2\mathbb{N}\}\), it can be shown that

\[
\begin{align*}
\mathbb{E}[g(x + X_{\tau_n}) - g(x + X_{\tau_1}); \Gamma_{n_0}] &= \sum_{k=-n_0}^{n_0} \sum_{j=-n_0}^{n_0} g(x + yh)P_{n_0}(k)P_{n_0}(y) \left(1 - \frac{P_{n_0+k}(y)}{P_{n_0}(y)}\right) \mathbb{I}\{|y| \leq n_\theta^{3/5}\}.
\end{align*}
\]

Thus, by (74)–(78), there exist constants \(C_0, C_1 > 0\) and \(n_0 \in 2\mathbb{N}\) such that whenever \(n_\theta > n_0\),

\[
\begin{align*}
&\left| \sum_{k=-n_0}^{n_0} \sum_{j=-n_0}^{n_0} g(x + yh)P_{n_0}(k)P_{n_0}(y)R^{(1)}(n_0, k, y) \mathbb{I}\{|y| \leq n_\theta^{3/5}\}
- \mathbb{E}[g(x + X_{\tau_n}) - g(x + X_{\tau_1}); \Gamma_{n_0}] \right|
\leq C_0n_\theta^{-3/2} \sum_{k=-n_0}^{n_0} \sum_{j=-n_0}^{n_0} |g(x + yh)|P_{n_0}(k)P_{n_0}(y) \mathbb{I}\{|y| \leq n_\theta^{3/5}\}
+ \sum_{k=-n_0}^{n_0} \sum_{j=-n_0}^{n_0} g(x + yh)P_{n_0}(k)P_{n_0}(y)R^{(2)}(n_0, k, y) \mathbb{I}\{|y| \leq n_\theta^{3/5}\}
\leq C_0n_\theta^{-3/2} \mathbb{E}\left[|g(x + X_{\tau_n})|; |X_{\tau_n}/h| \leq n_\theta^{3/5}\right] + C_1n_\theta^{-3/2}e^{b|x|+b^3T}
\leq C_2n_\theta^{-3/2}e^{b|x|+b^3T}
\end{align*}
\]

for some constant \(C_2 > 0\) implied by (41). Consequently, we get the claim for all \(n_\theta > n_0\) by the triangle inequality, (79), and (81). By letting

\[
M := \sup_{(n_\theta, k, y) : |y| \leq n_\theta^{3/5}} \left(R^{(1)}(n_\theta, k, y) - [1 - R(n_\theta, k, y)] \right) \mathbb{I}\{|y| \leq n_\theta^{3/5}\} < \infty,
\]

for \(n_\theta \leq n_0\) we find another constant \(C_3 = C_3(n_0) > 0\) such that

\[
\begin{align*}
&\left| \sum_{k=-n_0}^{n_0} \sum_{j=-n_0}^{n_0} g(x + yh)P_{n_0}(k)P_{n_0}(y)R^{(1)}(n_\theta, k, y) \mathbb{I}\{|y| \leq n_\theta^{3/5}\}
- \mathbb{E}[g(x + X_{\tau_n}) - g(x + X_{\tau_1}); \Gamma_{n_\theta}] \right|
\leq M \sum_{k=-n_0}^{n_0} \sum_{j=-n_0}^{n_0} |g(x + yh)|P_{n_0}(k)P_{n_0}(y) \mathbb{I}\{|y| \leq n_\theta^{3/5}\}
\leq ME\left[|g(x + X_{\tau_n})|; |X_{\tau_n}/h| \leq n_\theta^{3/5}\right] + n_\theta^{3/5}e^{b|x|+b^3T}
\leq C_3n_\theta^{-3/2}e^{b|x|+b^3T}
\end{align*}
\]

by (41). Combine (79), (81), and (82) to complete the proof. \(\square\)
A.3. Auxiliary results for Sections 3 and 5

The following identities are applied in proof of Lemma 3.4.

Lemma A.3. Let $h > 0$ and recall the operators Π_c and Π_o given by Definition 3.2.

(i) For all $\xi \in \mathbb{R}$, it holds that
\[
\Pi_c 1_{(\xi)}(x) = \frac{1}{4h} (|x - (\xi - 2h)| + |x - (\xi + 2h)| - 2|x - \xi|), \quad x \in \mathbb{R}. \tag{83}
\]
(ii) If $y \in [2kh, (2k + 2)h)$ for $k \in \mathbb{Z}$, then in terms of d_o defined in (26),
\[
|\Pi_o \Pi_c 1_{(\infty)}(x) - \Pi_o 1_{(\infty)}(x)| = \frac{d_o(x)}{4h} \frac{1}{2} (2k + 2)h(2k + 3)h(x), \quad x \in \mathbb{R}. \tag{84}
\]

Proof. (i) It is obvious by the definition of Π_c that $\Pi_c 1_{(\xi)} \equiv 0$ for $\xi \not\in \mathbb{Z}_c$. If $\xi \in \mathbb{Z}_c$, then
\[
\Pi_c 1_{(\xi)}(x) = \begin{cases} x - (\xi - 2h), & (\xi - 2h) \leq x < \xi, \\ (\xi + 2h) - x, & \xi \leq x < (\xi + 2h), \end{cases} \tag{85}
\]
and zero elsewhere, so it suffices to verify that (85) agrees with the representation given in (83).

(ii) Suppose that $y \in [2kh, (2k + 2)h)$ for some $k \in \mathbb{Z}$. One checks that
\[
\Pi_c 1_{(\infty)}(x) = \frac{1}{2} + \frac{1}{4h} |x - 2kh| - \frac{1}{4h} |x - (2k + 2)h|, x \in \mathbb{R}. \tag{86}
\]
Then, by the linearity of Π_o and by (86), we have for every $x \in \mathbb{R}$ that
\[
\Pi_o \Pi_c 1_{(\infty)}(x) - \Pi_c 1_{(\infty)}(x) \]
\[
= \frac{1}{4h} (\Pi_o 1_{(-2kh)}(x) - x - 2kh) - \frac{1}{4h} (\Pi_o 1_{-(2k + 2)h}(x) - x - (2k + 2)h) \]
\[
= \frac{d_o(x)}{4h} \frac{1}{2} (2k + 2)h(2k + 3)h(x), \tag{87}
\]

since it holds for all $x \in \mathbb{R}$ and $m \in \mathbb{Z}$ that
\[
\Pi_o 1_{-2mh}(x) - x - 2mh = d_o(x) \frac{1}{2} (2m - 1)h(2m + 1)h(x). \tag{88}
\]

Taking the absolute values of both sides of (87) then completes the proof. □

The proof of the next lemma, which is based on the Laplace transform of the stopping time τ_1 defined in (11), follows the approach of [7, Proposition 11.3] and is given in [14, Section 6.2].

Lemma A.4. Under Assumption 3.6, suppose that $n_0 \in 2\mathbb{N}$ and a constant $\xi > 0$ are such that $n_0 \xi \in \mathbb{N}$. Then for every $\rho \in \left(0, \frac{\xi^2}{12 \xi^2 \theta_n \sqrt{n_0}}\right)$ it holds that

(i) $P\left(\sqrt{n_0} (\tau_{n_0, \xi} - \xi \theta_n) > \rho \right) \leq \exp \left(-\frac{3}{2} \rho^2 \frac{\rho^2}{\xi \theta_n^2} H \left(\frac{3 \rho}{\xi \theta_n \sqrt{n_0}} \right) \right)$, \tag{89}

(ii) $P\left(\sqrt{n_0} (\tau_{n_0, \xi} - \xi \theta_n) < -\rho \right) \leq \exp \left(-\frac{3}{2} \rho^2 \frac{\rho^2}{\xi \theta_n^2} H \left(\frac{3 \rho}{\xi \theta_n \sqrt{n_0}} \right) \right)$, \tag{90}

where the function $H : (0, \pi/2) \to \mathbb{R}$ is given by
\[
H(x) := 1 + \frac{6}{x^2} \left(\frac{x^2}{2} + \log x \right). \tag{91}
\]
Remark A.5. The above estimates are non-trivial only whenever H is positive. Since $H(0^+) = 1/2$, it holds that $H(x) > 0$ for small enough x. Notice that the condition $\rho \in \left(0, \frac{\pi^2}{12} \xi \theta_n \sqrt{n_0}\right)$ ensures that $\sqrt{\frac{3\rho}{\xi \theta_n \sqrt{n_0}}} \in (0, \pi/2)$, which is the domain of H.

The purpose of Lemma A.4 and its immediate application is the following result related to the tail probabilities of J_n—an essential tool in proof of Proposition 5.9. While it resembles inequality (42) in [7], the time-dependent setting causes some changes.

Lemma A.6. Under Assumption 3.6, suppose that $n_0 \in 2\mathbb{N}$, $\delta \in \left(0, \frac{\pi^2}{12+\pi^2}\right)$, and let H be as in (91). Then

(i) $\Pr(J_n > n_0(1 + \delta)) \leq \exp\left(-\frac{3}{2} \frac{n_0 \delta^2}{1 + \delta} H \left(\sqrt{\frac{3\delta}{1 + \delta}}\right) \right)$ if $n_0(1 + \delta) \in 2\mathbb{N}$,

(ii) $\Pr(J_n < n_0(1 - \delta)) \leq \exp\left(-\frac{3}{2} \frac{n_0 \delta^2}{1 - \delta} H \left(\sqrt{\frac{3\delta}{1 - \delta}}\right) \right)$ if $n_0(1 - \delta) \in 2\mathbb{N}$.

Proof. Fix $n_0 \in 2\mathbb{N}$, $\delta \in \left(0, \frac{\pi^2}{12+\pi^2}\right)$, and let $\rho := \delta \theta_n \sqrt{n_0}$. For (i), let $\tilde{\xi} := 1 + \delta$ and suppose that $n_0(1 + \delta) = n_0 \tilde{\xi} \in 2\mathbb{N}$. Then (the first equality follows from the definition of J_n in (18))

$\Pr(J_n > n_0 \tilde{\xi}) = \Pr(\tau_{n_0 \tilde{\xi}} < \theta_n) = \Pr(\sqrt{n_0}(\tau_{n_0 \tilde{\xi}} - \xi \theta_n) < -\rho) \leq \exp\left(-\frac{3}{2} \frac{\rho^2}{\tilde{\xi} \theta_n^2} H \left(\sqrt{\frac{3\rho}{\tilde{\xi} \theta_n \sqrt{n_0}}}\right)\right)$

by (90), since the choice of δ ensures that the pair $(\tilde{\xi}, \rho)$ satisfies the assumptions of Lemma A.4. To show (ii), let now $\tilde{\xi} := 1 - \delta$ and suppose that $n_0(1 - \delta) = n_0 \tilde{\xi} \in 2\mathbb{N}$. Then, by (89),

$\Pr(J_n < n_0 \tilde{\xi}) = \Pr(\tau_{n_0 \tilde{\xi}} > \theta_n) = \Pr(\sqrt{n_0}(\tau_{n_0 \tilde{\xi}} - \xi \theta_n) > \rho) \leq \exp\left(-\frac{3}{2} \frac{\rho^2}{\tilde{\xi} \theta_n^2} H \left(\sqrt{\frac{3\rho}{\tilde{\xi} \theta_n \sqrt{n_0}}}\right)\right)$

since the pair $(\tilde{\xi}, \rho)$ satisfies the assumptions of Lemma A.4 due to the choice of δ. \qed