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Abstract: 

We present the behavior of the cost-effective Planacon MCP-PMTs with 25 µm pore diameter in the presence o

magnetic fields up to 0.5 T. Having a batch of 62 devices of the same type, two MCP-PMTs were selected an

gain variation measured in different magnetic fields. These two otherwise identical devices satisfied the se

criteria by requiring the lowest (1.15 kV) and one of the highest (1.4 kV) bias voltage values to achieve a give

Both MCP-PMTs have a nearly identical tolerance of the strong magnetic field despite the significant differe

the bias voltage. This clarifies the mechanism of the B-field influence on the MCP-PMT gain, emphasizi

importance of the intrinsic parameters of the MCP emissive coating rather than external parameters, such as th

bias voltage. By evaluating the dependence of both gain and timing parameters on the magnetic field streng

confirm the operability of such MCP-PMTs in strong magnetic fields in spite of the relatively large pore diame

low bias voltage required for a given gain. 

Keywords: MCP-PMT; microchannel plate; magnetic field; Fast Interaction Trigger; PID. 

1. Introduction 

Photomultiplier tubes based on microchannel plates (MCP-PMTs) are frequently used as active components of p

identification (PID) and trigger detectors in a wide range of modern accelerator-based experiments [1-6]. One

main reasons limiting the application of other PMT types in such experiments is the use of strong magnetic fie

particular, small-pore (≤6 µm) MCP-PMTs are considered to be nearly insensitive to strong magnetic field

magnetic flux density up to B0.5 T [7].  One of the main drawbacks of these devices is a relatively high price re

from a complicated manufacturing process. In the standard approach, it involves multiple steps of thermo-mech

and chemical processing of thousands of lead glass fibers each reduced down to sub-mm dimensions of a singl

pore. It makes the cost of large-pore MCPs significantly lower than small-pore MCPs of the same dimension

example, 25 µm-pore MCP-PMTs are the most cost-effective options of Planacon photosensors available

Photonis, Inc. 

As a part of the R&D activities necessary for the Fast Interaction Trigger (FIT) detector for the upgraded A

apparatus at CERN [1, 8], we have selected and tested 25 µm-pore Planacon MCP-PMTs with 53×53 mm2 se

area as the photosensors of choice for the FIT Cherenkov subsystem.  To complete the project, we need 52 (+10

PMTs to be operational at 1.5·104 electron gain in the magnetic field of the ALICE L3 solenoid magnet [1] (ty

±0.2 T or ±0.5 T). In the case of FIT, the low-gain operation is optimal to detect relativistic particles with th

timing in a wide range of particle flux values [9], keeping the devices in the linear operation mode. 62 Planac

ALICE FIT were manufactured throughout 2018 and 2019. As we know from bench testing of these devices o

strong magnetic field, the total bias voltage requirements for the default electron gain (1.5·104) vary from 1.15

1.4 kV. None of the available systematic studies of the MCP-PMT performance in strong magnetic fields pres

data for such low bias voltage values [10-17]. However, the low-voltage operation of an MCP-PMT is beneficia

the point of the device lifetime, which is believed to be limited by the ion feedback, proportional to the voltage a

[18]. 

According to our preliminary study done for a single Planacon and reported before [9], placing the device bia

the gain of 1.5·104 in a 0.5 T magnetic field results in a decrease in gain by a factor of 2.5. This reasonably smal

was only measured for the total bias voltage of 1.35 kV, so this limited study is insufficient to predict the oper
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of any similar devices in a strong magnetic field. Testing the device at a lower bias voltage, e.g. 1.15 kV, has 

a decrease in gain by a factor of ~8 [9]. Such a significant gain drop is undesirable for many applications, inc

for use in the ALICE FIT detector. However, for the device under discussion, the lower voltage of 1.15 kV corre

to an electron gain of 6·102 only. Since the mechanism of the magnetic field influence on the MCP-PMT gain

completely clear, these results may not be predictive for most applications which require the device to opera

much higher gain. 

To make sure that all of the new cost-effective Planacon MCP-PMTs are operable in a strong magnetic field, w

measured and compared the dependence of gain on the magnetic field for two MCP-PMTs selected from the

production. These otherwise identical devices were selected from the extreme ends of the gain vs. voltage distr

(see Fig.1 and the description below). Furthermore, we have quantified the voltage adjustments needed for each

62 MCP-PMTs produced for FIT to keep their gains in B=0.2 T and B=0.5 T magnetic fields the same as in B

2. Planacon XP85002/FIT-Q MCP-PMTs 

To fulfill all FIT requirements for the detector granularity, timing, load capacity, and length, we have devel

custom backplane with 2×2 segmented anode readout and decided to use MCPs of a reduced resistance (12

RMCP ≤ 22 MΩ) [9]. Such modified Planacon MCP-PMTs acquired a dedicated model name XP85002/

Although the tested Planacons have been modified for the use with FIT, the modifications are not expected to inf

the described behavior of the sensors in strong magnetic fields. 

All 62 of the devices, mass-produced for ALICE FIT, have undergone an extensive bench testing procedure.

most of the bench testing results are beyond the scope of this article, we note that among the whole prod

consignment of 62 devices supplied in 9 separate batches, a significant spread in total bias voltage needed for a

electron gain was observed. For example, MCP-PMT #9002129 requires the lowest total bias voltage (Ub) for a

electron gain, while #9002166 requires one of the highest voltage values. Fig. 1 compares the gain curves of the

devices with those for the remaining 60 from tested production batch of MCP-PMTs.  

For the tested devices, the electron gain is determined by measuring single photoelectron charge spectra (desc

of this technique could be found in [19]). Since the electron gain value is not affected by the collection efficien

observed difference of the bias voltage is caused by a different average secondary electron yield (SEY) of th

coating of the MCP pores. Because of this and for the reader’s convenience, below we refer to the devices #90

and #9002166 as “High SEY” and “Low SEY” respectively. Basic characteristics of these MCP-PMTs are li

Table 1. The voltage divider circuit, we use for each tested device, is shown in Fig. 2. 

 

Figure 1.  Electron gain values as a function of the total bias voltage measured for the Planacon XP85002/

MCP-PMTs #9002129 (High SEY) and #9002166 (Low SEY) in comparison to the same dependencies for th

60 mass-produced devices. 
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Table 1. Basic parameters of the two out of 62 MCP-PMTs produced for FIT. 

Type Photonis Planacon XP85002/FIT-Q 

Pore diameter 25 µm 

ALD-coating no 

Sensitive area 53x53 mm2 

Serial # 9002129 9002166 

Alias “High SEY” “Low SEY” 

MCP stack resistance at Ub=1400 V 14.7 MΩ 15.3 MΩ 

Ub for 1.5·104 gain 1155 V 1394 V 

Ub for 106 gain 1485 V 1797 V 

 

 

Figure 2. The voltage divider circuit used for all tested Planacon MCP-PMTs. The picture also presents a sim

schematic and the operation principle of an MCP-PMT with a chevron MCP stack. 

3. Experimental set-up 

The study was performed in the homogeneous (within ±0.5%) field region, sized 1.0x0.5x0.3 m3, of the 20-ton M

dipole magnet at CERN. A schematic of the experimental set-up is shown in Fig. 3. The B-field value (magnet

density) was monitored by the Gauss/Tesla meter F.W. Bell 4048. Measurement of the properties of the Low

and High SEY MCP-PMTs was done by placing them in an individual light-tight housing with custom optica

inputs. The MCP-PMTs feature four square-shaped independent readout channels (quadrants) [9].  The first qu

of each device was illuminated by 405 nm light produced by an optical pulse generator (Advanced Photonic S

EIG1000D laser) and passed through an optical attenuator (OZ-optics DA-100) and an optical splitter. The w

the laser pulses was less than 45 ps, while the timing jitter is claimed by the manufacturer to be less than 3 p

laser light intensity was monitored and confirmed to be stable within 1% for the whole set of measurements do

each MCP-PMT with the help of a reference PMT (Philips 56 AVP) placed outside the magnet. The signal

digitized and their parameters measured by a LeCroy WaveRunner 8104 digital oscilloscope with 1 GHz ban

and 10 GS/s sampling rate. 
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Figure 3. Schematic of the experimental set-up.  

 

4. B-field influence on the MCP-PMT response 

Fig. 4 and 5 show in red the ratio of the signal amplitude at 0.5 T to the signal amplitude at 0 T and, in black, th

of the signal amplitude at 0.2 T to the signal amplitude at 0 T. In Fig.4 both ratios are plotted as a function of t

voltage, while in Fig.5 – as a function of the electron gain at B = 0 T. The values for High SEY are rendered in 

shades and connected by solid lines to guide the eye. The values for Low SEY are rendered as pale red and grey

connected by dashed lines to guide the eye. The measurements with the results presented in Fig. 4 and 5

conducted with the magnetic field from 0 to 0.5 T varied gradually with 25…50 mT steps. The more comple

set on the variation of the signal amplitude at a given magnetic field relative to zero field (“Relative signal ampl

is presented in Fig. 6 and 7. Fig. 6 data was obtained for total bias voltage values from 1.1 kV to 1.5 kV corresp

to electron gain values in the ranges 6·103 – 106 and 2·102 – 5·104 for the high SEY and low SEY MCP-

respectively. The same data is re-plotted in Fig. 7 arranged by the MCP-PMT electron gain at B=0 T. Electro

values from 2·102 to 106 were achieved at total bias voltage values in the range 0.9 – 1.5 kV and 1.1 – 1.8 kV 

High SEY and Low SEY MCP-PMTs, respectively. The full data set related to Fig. 6 and 7 is presented

attachment to this manuscript. 

  
Figure 4. MCP-PMT signal amplitude in B=0.2 T 

and B=0.5 T relative to B=0 T magnetic field as a 

function of the total bias voltage. The lines 

connecting the points are drawn for visual purposes 

only. 

Figure 5. MCP-PMT signal amplitude in B=0.2 T 

and B=0.5 T relative to B=0 T magnetic field as a 

function of the electron gain value at B=0 T. The 

lines connecting the points are drawn for visual 

purposes only. 
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Figure 6. MCP-PMT signal amplitude relative to B=0 T case as a function of B-field strength for differe

voltages. The lines connecting the points are drawn for visual purposes only.    

Figure 7.  MCP-PMT signal amplitude relative to the B=0 T case as a function of B-field strength for different el

gain values at B=0 T. The lines connecting the points are drawn for visual purposes only. 

Both devices require a very low total bias voltage compared to the MCP-PMTs of other manufacturers and 

versions of Planacon MCP-PMTs [10, 12, 16, 17, 20]. However, the exact total bias voltage values for each 

differ significantly among them, particularly considering their identical mechanical and very similar ele

characteristics. Moreover, as can be seen from Fig. 4 and 6, the response of the two MCP-PMTs to the B-field va

is clearly different when biased to the same voltage, while it is rather similar when biased to an equal gain (Fig.

7). The two curves presenting the 0.5 T magnetic field influence to the signal amplitude in Fig.5 overlap for the

electron gain values from 5·102 to 5·104 within ±15%. In other words, influence of a strong magnetic field

MCP-PMT gain is independent of the bias voltage value applied to the MCP. At the same time, it may depend

other MCP-PMT parameter determining its gain at zero magnetic field – the average SEY of the MCP pore

indicates that the significant decrease in the total bias voltage needed for the modern Planacon MCP-PMTs to a

a given gain does not seem to cause an extra drop in gain when using these devices in strong magnetic fields o

B=0.5 T.  
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This behavior is further supported by the results of brief testing of all 62 FIT MCP-PMTs in strong magnetic f

presented in Fig. 8 and 9. As one can see from Fig. 8, the effect of the 0.5 T magnetic field on the MCP-PMT re

initially operating at 1.5·104 electron gain can be compensated by a relatively small increase in bias voltage o

80 V, while a decrease in total bias voltage of 10 to 40 V compensates for the effect of B=0.2 T. Moreover, th

shows no sign of an inverse dependence between the absolute values of the compensatory voltage and the tot

voltage (needed for the device to achieve the default gain at B=0 T). This is true both for the bias compen

dependencies on the total bias voltage (Fig.8), and on the voltage across the MCP (Fig.9) – the proportionality b

these two parameters is broken by the spread in the MCP resistance mentioned above (12 MΩ ≤ RMCP ≤ 22 M

inverse dependence observed in Fig. 8 and 9 brings hope that those MCP-PMTs with even lower bias voltage 

even higher SEY) may require bias compensation comparable to those values measured for the devices under 

 
Figure 8. Voltage correction needed to restore the initial 

electron gain of 1.5·104 after introducing Planacons to 

0.2 T and 0.5 T B-field. 

Figure 9. The same values, as in Fig. 8, but recalcu

to the voltage values across the MCP stack only. 

The data presented so far is from measurements for which the B-field direction was oriented opposite to the Plan

line of sight (as indicated in Fig. 3), even though MCP-PMTs are typically operated within detectors for 

magnetic field of both directions is used, including the ALICE FIT [1-6]. To make sure the obtained results are re

for both B-field orientations, the signal amplitude and timing parameters of the Planacon #9002166 were me

performing an upside-down rotation of the PMT housing to alternate the mutual orientation of the MCP-PMT a

magnetic field. The results are presented in Fig.10 and 11, showing an identical (within ±4%) Planacon perfor

in axial magnetic fields of opposite directions. The minor mismatch of the curves may arise from measu

uncertainty caused by the rotation of the PMT housing, although this uncertainty was not estimated quantitativ
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Figure 10. MCP-PMT signal amplitude relative to the B=0 T case as a function of B-field strength for differe

bias voltage values and field orientations. Mutual orientation of the B-field direction and the MCP-PMT line o

is indicated in the legend with arrows. The lines connecting the points are drawn for visual purposes only. 

Figure 11. Variation in the MCP-PMT signal propagation time as a function of B-field strength for different tot

voltage values and field orientations. Mutual orientation of the B-field direction and the MCP-PMT line of s

indicated in the legend with arrows. The lines connecting the points are drawn for visual purposes only. 

The data for Fig. 10 and Fig. 11 was obtained with a single set of measurements. The arrival time spectra of the

PMT anode signals were measured with a software-based CFD implemented in the LeCroy WR8104 oscillo

The CFD algorithm was set to trigger at the 50% fraction of the pulse amplitude. The arrival time spectra wer

with a Gaussian function determining the mean and sigma values. The former value represents the time delay, 

according to Fig.11, may reach 0.3-0.5 ns at 0.5 T magnetic field. The latter value represents the time resolut

order to keep the MCP-PMT output in linear mode [21, 22], each pair of curves was measured at a differen

intensity: 3·105 – 102 photoelectrons per readout channel for 1210 V – 1797 V total bias voltage, respectively.

such conditions, the average time resolution was measured to be =12±3 ps including the contribution of th

pulse generator (defined in Section 3), and no significant variation in this value was observed over the range

field values applied. 
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5. Discussion 

A set of publications describes the behavior of the MCP-PMTs (including those of the Planacon type) bia

1.8…3.5 kV in magnetic fields up to 4.5 T [10-17, 20, 23], but any information for bias voltage values under 

is missing from the literature. This lower voltage regime is particularly interesting due to the fact that modern

PMTs can operate with unprecedentedly low total bias voltages down to Ub=1.15 kV for 1.5·104 electron gain 

only across the MCP stack) or ~1.5 kV for 106 electron gain. To reach the same gain, other devices reported else

require total bias voltage values higher by 500 – 1500 V. 

Figures 4 and 5 confirm the operability of the cost-effective Planacons biased to 1.5·104 electron gain under ma

field values relevant for the ALICE FIT even with total bias voltage down to 1.15 kV. Fig. 4 and 6 also shed

light on the influence of the magnetic field on the MCP-PMT gain. According to [13], this may be caused 

shrinkage of the electron spiral trajectories when the Larmor radius becomes comparable to the pore size, prev

the electrons from impinging the channel walls. If this were the case, one might expect an equal magneti

influence on the performance of two devices with identical inner dimensions biased to an equal voltage. Ho

this is not true for the Low SEY and High SEY devices tested here. 

Similar B-field influence on the performance of these two devices biased initially to the same gain (Fig. 7) co

well with the mechanism described in [7] and [11]. In this assumption, the Lorentz force creates an additional cur

of electron trajectories, increasing the average number of their collisions with the pore walls, thus increasing th

When the kinetic energy of secondary electrons at the moment of collision becomes insufficient to pull out mo

one electron, gain starts decreasing. Here, we note that the dependence of the secondary electron yield of the

SiO2 coating of Planacon pores [24, 25] on the incoming electron kinetic energy exhibits a peak value at ~2

decreasing for both higher and lower electron energies [26]. Thus, the MCP-PMT gain in a strong magneti

might likely be a trade-off between the average number of electron collisions and the average SEY, both ha

non-obvious dependence on the B-field value. It is important to note, that the latter parameter becomes even

critical for the ALD-coated MCP-PMTs [27] because of a much steeper dependence of the average SEY 

electron kinetic energy [26].  

The previous discussion should be kept in mind when identifying the optimal MCP-PMT photosensor for

experimental conditions from the point of cost and performance in strong magnetic fields. Different attempt

been made to develop a technique to simulate the parameters of certain MCP-PMT types in the magnetic fie

given direction and magnetic flux density [7, 28, 29]. Nevertheless, none of the available solutions were confir

be a universal tool matching any MCP-PMT type. We understand that the development of a universal simulati

and the verification of its predictive power require many datasets on the magnetic field influence on the perfor

of different MCP-PMTs with well-known parameters. As our modest contribution to this task, we present h

dataset for the strong axial magnetic field influence on Planacon XP85002/FIT-Q MCP-PMTs. New data 

performance of these MCP-PMTs in non-axial magnetic fields and their saturation parameters is upcoming. 

6. Conclusions 

Modern 25 µm-pore Planacon MCP-PMTs require an unprecedentedly low total bias voltage to achieve a give

which is very beneficial as this minimizes the level of afterpulsing and increases the device lifetime. Desp

relatively large pore size and low total bias voltage, the devices are operable in strong magnetic fields up to 0.5 

only a moderate change in their response: signal amplitude may drop by a factor of 3 or rise by a factor of 2 at 1

initial gain. This behavior can be compensated by changing the total bias voltage by less than 80 V. No sign

influence of the strong magnetic field on the device timing apart from a small (<0.5 ns) increase of the 

propagation time was observed. The same conclusion holds for both orientations of the axial B-field. 

Furthermore, the performance of the two MCP-PMTs with the widest variation in secondary electron yield s

from among the batch of 62 devices with identical mechanical parameters was evaluated in the magnetic field

biased to equal voltage or equal gain. The obtained results emphasize the importance of the SEY dependence

MCP pores’ emissive coating on the electron kinetic energy rather than other parameters such as the total bias v
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