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Abstract: Here we present a framework for identifying areas with high dead wood potential (DWP)
for conservation planning needs. The amount and quality of dead wood and dying trees are some of
the most important factors for biodiversity in forests. As they are easy to recognize on site, it is widely
used as a surrogate marker for ecological quality of forests. However, wall-to-wall information on
dead wood is rarely available on a large scale as field data collection is expensive and local dead
wood conditions change rapidly. Our method is based on the forest growth models in the Motti forest
simulator, taking into account 168 combinations of tree species, site types, and vegetation zones as
well as recommendations on forest management. Simulated estimates of stand-level dead wood
volume and mean diameter at breast height were converted into DWP functions. The accuracy of
the method was validated on two sites in southern and northeastern Finland, both consisting of
managed and conserved boreal forests. Altogether, 203 field plots were measured for living and
dead trees. Data on living trees were inserted into corresponding DWP functions and the resulting
DWPs were compared to the measured dead wood volumes. Our results show that DWP modeling is
an operable tool, yet the accuracy differs between areas. The DWP performs best in near-pristine
southern forests known for their exceptionally good quality areas. In northeastern areas with a
history of softer management, the differences between near-pristine and managed forests is not as
clear. While accurate wall-to-wall dead wood inventory is not available, we recommend using DWP
method together with other spatial datasets when assessing biodiversity values of forests.

Keywords: biodiversity; coarse woody debris; conservation planning; forests; forest simulation;
forestry; land-use planning; spatial conservation prioritization

1. Introduction

Land use, including forestry, is the main threat to biodiversity [1,2]. Forestry causes biodiversity
loss as it fundamentally changes the ecosystem functioning and induces habitat loss and degradation.
One of the most severe changes is the decline in the amount and quality of dead wood and dying trees,
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which are a crucial part of the life cycle of forests and one of the most important factors for biodiversity
in them [3–6].

Finland, situated in Fennoscandia in northern Europe, is one of the most forested countries in
the world, with forests covering 75% (22.8 million hectares) of the land area [7]. Still, 76% of forest
habitats and 9.8% of forest species are threatened. The main causes for this are the same for both
groups: (1) reduction in the amount of dead wood, (2) reduction in old-growth forests and individual
old trees, and (3) changes in tree species composition. These threats are interconnected as they usually
occur simultaneously [8–10]. This decline in ecological condition results mainly from the intensive
forest management during the last centuries, which has caused an alarming shortage of natural forests
outside protected areas [11,12].

A significant difference between managed and natural forests is dead wood volume. The mean
dead wood volume in Finnish forest areas is 5.8 m3 per hectare, varying from managed forests
with less than 2 m3 per hectare [7] to forests with softer management practices, e.g., urban forests
(median 10.1 m3 per hectare [13]), and finally to natural forests that host a volumes between 40 and
170 m3 per hectare [14]. What follows is that the dead wood continuum does not exist either [3,15,16].
Dead wood, in all forms, plays a significant role in the boreal forest ecosystems by producing a
high resource supply and microhabitat diversity. Thereby, it causes, e.g., up to 75% higher species
richness in saproxylic species in natural boreal forests compared to managed forests as 20–25% of forest
species are dependent on dead wood [15,17]. Dead wood has been used as a surrogate marker for
biodiversity as there are well-known dependencies between threatened forest biodiversity and the
different size, stages, and composition of dead wood parcels especially in boreal forests [15,18–20].
Following this, dead wood is commonly monitored and, e.g., in Finland the National Forest Inventory
(NFI) has compiled data on the amount of dead wood since the 1920s [21]. Based on collected data, the
amount and quality of dead wood has been assessed and modeled in various ways (see [22]). In the
beginning of the 21st century, the appearance of more biodiversity-oriented forestry has highlighted the
importance of including dead wood in forest simulations (e.g., [23]), whereas during the last decades,
its importance for climate change mitigation as carbon stock has emphasized it again (see, e.g., [24,25]).
However, for the needs of conservation planning, this data is often insufficient. This is mostly because
the big data sets, such as NFI, contain a minor amount of field plots with dead wood. The reason
for this is that dead wood occurs randomly and the amounts are often very small. Following this,
continuous dead wood information has not been achieved or the spatial accuracy has been insufficient.
A challenge is also that data on dead wood becomes outdated quite fast as the wood decays [26].

In Finland, information on forest stands is collected regularly, producing several up-to-date
national forest data sets for forest management or related purposes. These are nowadays based on
remote sensing techniques and field inventoried sample plots. As field inventories have declined
drastically, attempts to inventory biodiversity features based on remote sensed data have become
necessary. Promising techniques for modeling the appearance of dead wood have been developed, but
neither data nor techniques are yet operatively available for a wider audience [27–29]. A significant
challenge for methodological development is the rarity of dead wood in forests [30], which causes a
shortage of field plots containing dead wood.

Here we report a framework for modeling dead wood potential (DWP) of forests based on
forest stand data. The overall aim was to develop a method to assist in estimating the biodiversity
values of forests on a large scale. These kinds of estimates are urgently needed in spatial land use
planning concerning nature conservation, e.g., for the needs of The Forest Biodiversity Programme of
Southern Finland, METSO [31]. Our DWP modeling is based on earlier developmental work on forest
conservation values in Finland [32–36]. The method was validated with field data from two separate
test areas in Finland. We were also interested in understanding how well the method works in areas
that are known for their substantial dead wood volumes. Additionally, we wanted to know whether
there are differences between different management histories.
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2. Materials and Methods

2.1. Dead Wood Potential Modeling Method

The developed DWP is based on forest fertility classes, tree species richness, the mean diameter
at breast height (DBHmean), and the volume of trees on each site. The variables for DWP modeling
were chosen for the following reasons: forest site types describe the capability of wood production
on a site based on soil fertility (e.g., Cajander [37]). The higher the growth, the higher the potential
to create resources such as tree biomass to support biodiversity on the site. Site types are also rather
easy to determine. Tree species reflect, obviously, species richness per se, but also different living
environments, biotopes, as every tree species maintains at least partly its unique set of biodiversity [38].
Age of the forest is one of the most important factors when considering its value for biodiversity (see,
e.g., [10,19,39]). As sufficient data on forest age on a national scale are not available, the DBHmean

was used as a surrogate. The total volume separates sparse and dense forests as well as low canopies
from tall ones. On its own, this variable does not reveal much about biodiversity, but as a part of this
framework, it provides additional information on the sites’ importance for biodiversity.

DWP was calculated for each forest stand in three steps (Figure 1): simulations of forest growth (1),
development of DWP functions (2), and conversion of forest stand data into DWP on each site (3).
Steps one and two did not require spatial data. All the three steps are described in more detail below.
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Figure 1. Calculation of dead wood potential (DWP) was executed in three steps. First, simulations of
forest growth produced the needed information of forest growth in 168 combinations of seven tree
species, six forest site types, and four vegetation zones. Second, based on the previous information,
altogether 168 different DWP functions were developed. Third, the spatial data of forest stands was
converted into the DWP for each tree species with DWP functions. DW = dead wood, DBH = diameter
at breast height, DBHmean = mean diameter at breast height.

As a first step, the data required for DWP modeling were simulated with the freely available
Motti forest stand simulator (version 3.3) [40–42], provided by the Natural Resources Institute
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Finland. The functionality of the simulator is built upon NFI. Simulations provided data on the
amount of dead wood (m3 per hectare) and diameter at breast height (DBH) of living trees (Figure 1,
step 1). Simulations were made in 5-year intervals for 168 forest combinations of seven tree species
(Alnus glutinosa ((L.) Gaertn.), Betula pendula (Roth), Betula pubescens (Ehrh.), Picea abies ((L.) H. Karst),
Pinus sylvestris (L.), Populus tremula (L.), and other broadleaved tree species), six forest site types, and four
vegetation zones from hemiboreal to northern boreal zones [43,44] (see Figure 2 and Appendix A
for more details). Finnish forest management practice recommendations [45] set the guidelines for
simulations. This information included, e.g., the number of seedlings per hectare and the timing of
thinnings in a growing stand. No clear-cutting was executed in the simulations as stands were allowed
to grow until the volume of the growing stock started to decline due to self-thinning effect. Simulations
were executed on mineral soil only as simulations on peatland were not available in this version of
Motti simulator. As the used version did not include information on the decomposition of dead wood,
the volumes were larger than in reality. Based on expert opinion, the amounts of simulated dead wood
were correct (considering the known deficiencies) and similar between tree species and forest site types.
As the initial purpose for the modeling was to develop relative data on the probability of dead wood
(differentiated from exact biological data) for spatial conservation prioritization needs, this was not
seen as a problem.
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Figure 2. The map of Finland, the vegetation zones used in DWP modeling, and locations of the
validation sites. The vegetation zones (grey lines) are as follows: I Southern Finland (vegetation zones 1
(hemiboreal), and 2a and 2c (southern boreal)), II Middle Finland (2b (southern boreal)), III Ostrobothnia
and Kainuu (3a–c (middle boreal)), and IV Northern Finland (4a–d (northern boreal)). Southern (Evo)
and northeastern (Kuhmo) sites are marked with pink squares.
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The second step (Figure 1, Step 2) included the conversion of simulated estimates of dead wood
and DBH into DWP functions. In total, 168 functions were formulated, one for each species–site
type–vegetation zone combination (see Appendix A). This was done in four steps as described in
Table 1. In Steps A and B, the amounts of dead wood (A) and DBH (B) were scaled between 0 and 1 in
relation to the amount of them at the simulation maximum point, a point where the growing stock
volume started to decline. In Step C, the scaled dead wood and the DBH were summed at each time
step (minimum value 0 at time step 0, maximum value 2 at time step of 80 years in the example in
Table 1). In Step D, the sum was rescaled from 0 to 1. These values were eventually used for fitting the
DWP functions (Figure 3, Appendix A).

Table 1. Example of construction of one dead wood potential (DWP) function. DWP function for other
broadleaved trees in forest site type 1 (herb-rich forest) and in vegetation zone 2 (southern boreal 2b)
was calculated as follows: Step A: the amount of dead wood was scaled between 0 and 1 in relation to
the amount at the simulation maximum point (bolded). Step B: the DBH values were scaled similarly to
the dead wood. Step C: the scaled dead wood and DBH were summed at each time step (min 0, max 2).
Step D: this sum was rescaled from 0 to 1 forming DWP multiplier.

Other Broadleaved Trees in Forest Site Type 1 and in Vegetation Zone 2

Simulated
results

Time steps, i.e., age of trees (years), starting from 0 60 65 70 75 80 85

Growing stock volume (m3 per hectare) 155.2 170.7 183.1 190.6 190.8 181.9

DBH (cm) 15.4 16.0 16.5 17.0 17.5 18.0

Dead wood volume (m3 per hectare) 4.7 7.9 13.6 23.5 39.4 63.3

Step A Rescaled dead wood in relation to the Motti simulation
maximum value (max. vol. 39.41 m3 per hectare) 0.12 0.20 0.35 0.60 1

Step B Rescaled DBH in relation to the Motti simulation
maximum value (max. DBH 17.54 cm per hectare) 0.88 0.91 0.94 0.97 1

Step C Sum of rescaled values of dead wood and DBH at
certain time step 0.99 1.11 1.29 1.57 2

Step D DWP multiplier (minimum 0, maximum 1) 0.50 0.55 0.64 0.78 1
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2.2. Validation of DWP Modeling Method 

Figure 3. Fitting the dead wood potential (DWP) functions and generating DWP multipliers. The figure
describes one of the 168 functions, being the function for other broadleaved trees, growing in the
most nutrient-rich soil (forest site type 1) in vegetation zone 2. DWP functions were formulated by
fitting an 8-decimal function through the scaled DBH and dead wood values. Here, the X-axis is the
diameter at breast height (DBH) and the Y-axis is the DWP multiplier for stratum volume. In this
example the DWP multiplier for stratum volume for trees of, e.g., 10 cm mean diameter at breast height,
is approximately 0.3.

Step 3 (Figure 1), required spatial forest stand data (DBHmean and volume per hectare) as at this
point the DWP functions were used to convert the stand variables into the DWP. The DWP multiplier
was defined with the DWP function using the stand DBHmean (Figure 3, Appendix A). Due to the
overestimates that resulted from the extrapolation of the DWP functions, some of the DWP multipliers
were unrealistically high. This was because natural forests host larger trees than commercial forests,
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especially for class other broadleaved trees. As we wanted to preserve the value of the large trees in
natural forests, and on the other hand limit the overestimation of the DWP multiplier, its maximum
was set to 2. Finally, the volume was multiplied with the DWP multiplier resulting in the DWP value.
If there were more than one stratum of the same tree species in a stand, their DWP values were summed.

As an example, the stratum described in Figure 3 is Alnus incana ((L.) Moench) growing in herb-rich
forests in the southern boreal zone. The DWP multiplier for DBHmean 10 cm is approximately 0.3.
When the volume is 30 m3/ha, the DWP for this is:

DWP = DWP multiplier× volume (1)

where the DWP multiplier stands for the DWP function value at DBHmean of 10 cm (here 0.3). This is
multiplied with the volume (i.e., 30 m3/ha) to achieve the DWP value 0.3 × 30 = 9.

2.2. Validation of DWP Modeling Method

The accuracy of the DWP modeling was validated on two separate sites in Finland, located in
southern (Evo) and northeastern Finland (Kuhmo) (Figure 2). Both areas consist of managed and
conserved boreal forests and are managed by Metsähallitus, the state-owned enterprise responsible for
the management of state-owned areas. The most considerable differences between the areas, apart from
vegetation zone, concern the management histories of the forests. Firstly, the Evo forest school,
the oldest of the kind in Finland and still operational, has brought about systematic and intensive use
and experimental research of forests for educational purposes in the Evo area. Secondly, throughout the
history of the sites human population has been greater in southern Finland, inducing higher rates of
forest utilization for self-sufficiency needs and later for private forestry [46].

The southern validation area was located in Hämeenlinna, in the Evo recreational forest area and
in its surroundings (WGS84 lat: 63◦52′, lon: 29◦09′). Altogether, 100 field plots were measured during
the summer 2018 of which 82 were in managed and 18 in conserved forest areas (Table 2). Almost half
of the field plots (40 plots) were in forest stands that have been signed as habitats of special importance
in terms of biodiversity or alike. On these habitats, forestry is practiced with limitations or not at all,
but exact information is not publicly available [47–49]. Mineral soil covered 90 and peatland 10 of the
plots [50].

Table 2. Validation areas of Evo and Kuhmo in numbers.

Area No. of Plots Strictly
Conserved

Some Degree of
Conservation

Management
Not Restricted

Plots on Mineral
Soil/Peatland

Evo 100 18 40 42 90/10

Kuhmo 103 59 10 34 66/37

In Evo, in total, 88 of the plots were allocated to different forest strata using inventory data
provided by Metsähallitus. The area was divided into 100 theoretical strata according to the dominant
tree species (pine, spruce, birch sp., aspen, and other deciduous), DBH class (0–10, 10–20, 20–30,
30–40, and 40–50 cm), and basal area class (0–15, 15–30, 30–45, and 45–60 m2/ha). In total, 51 of the
theoretical strata were found from the site. The number of plots in each forest stratum was determined
by the forest stands’ relative abundance in the study area. In addition, 12 field plots were positioned
subjectively in areas where aspen (Populus tremula) was present. Plot-level DBHmean and mean volume
were 24 cm and 260.4 m3/ha, and for dead trees 8 cm and 15.8 m3/ha, respectively (Table 3).
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Table 3. Plot-level characteristics for living and dead wood (DW) in the Evo validation area.
DBHmean = mean diameter at breast height, H = mean height, Vol = volume, N = number of pieces,
D = mean value of the dead wood diameters. Mean row indicates mean values for the whole area.

DBHmean (cm) H (m) Vol (m3/ha) N_DW (N/ha) D_DW (cm) Vol_DW (m3/ha)

Min 0 0 0 0 0 0

Max 49.6 31.6 955.4 432 37 320.2

Mean 24 20.7 260.4 51 8 15.8

The northeastern validation area was in Kuhmo, covering the Hiidenportti National Park and
Teerisuo-Lososuo Mire Reserve, and the commercially managed forests between them (WGS84 lat:
61◦14′, lon: 25◦07′). Here, 103 field plots were measured during the summer 2019 of which 44 were in
managed and 59 in conserved forest areas (Table 2). Ten of the managed forest field plots were in forest
stands with restricted utilization possibilities. Mineral soil covered 66 and peatland 37 of the plots.
The plots were positioned using a systematic grid with 400 m distance between the neighboring plots
in x and y directions. The plot-level DBHmean and mean volume were 18.5 cm and 117.6 m3/ha, and for
dead trees 15.8 cm and 28.6 m3/ha, respectively (Table 4).

Table 4. Plot-level characteristics for living and dead wood in the Kuhmo validation area.

DBHmean (cm) H (m) Vol (m3/ha) N_DW (N/ha) D_DW (cm) Vol_DW (m3/ha)

Min 0 0 0 0 0 0

Max 39.9 22.1 464.3 825 42.1 182.3

Mean 18.5 13.5 117.6 201 15.8 28.6

In both validation areas, the field sample was measured as circular plots with a fixed radius of
9 m (or 5.64 m for trees with DBH < 4.5 cm). DBH and the tree species were determined for all living
trees with a DBH of over 4.5 cm. For trees with a DBH of under 4.5 cm, only the height and number
of the stems were recorded. Tree height was measured for 25% of trees in each forest stand stratum
(i.e., for each tree species in both upper and lower canopy storey). The heights of individual trees were
acquired by parametrizing Näslund’s height curve [51] using the measured sample trees. Tree volumes
were calculated with taper curves [52].

Both standing and downed dead wood were measured in all plots. Standing and downed dead
wood with a DBH of over 10 cm were measured for length and DBH (maximum diameter if breast
height could not be defined). For fragments of dead wood, all pieces with a maximum diameter of
10 cm or more were recorded. For fallen trees, only the parts inside the plots were included in the
inventory. For intact trunks, volumes were calculated with taper curves [52], whereas for snags and
coarse woody debris, volume was derived using the formula of truncated cone. The species was
determined for all dead wood whenever possible.

Plot-level attributes for living and dead wood were calculated for each stratum. Mean diameter
was weighted with the basal area (Equation (2)), and for height value, Lorey’s mean height (Equation (3))
was used.

DBHmean =

∑
BA×DBH∑

BA
(2)

hl =

∑
BA× h∑

BA
(3)

BA stands for tree-level basal area, DBH for diameter at breast height (i.e., 1.3 m), and h for
tree height.

Information on the forest site type was taken from the Metsähallitus database [53,54].
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The DWP conversion was carried out for Evo with functions from vegetation zone 1 and for
Kuhmo with zone 3. Strata from the same tree species in the same forest stand were summed. For dead
wood comparison, all DWPs in the same field plot were summed. This information was compared
with the field measured amount of dead wood.

3. Results

The modeling method was validated on two separate areas in Finland (Figure 2) by comparing the
reference volumes of dead wood to the modeled index values, i.e., DWP (Figure 4). The modeled DWP
values were calculated based on field plot data that had been collected simultaneously with the dead
wood data. Dead wood and DWP volumes of different tree species occurring in the same field plot
were summed for the comparison. In Evo, the DWP values varied between 0 and 1623 (mean 132) and
volume of dead wood from 0 to 320.2 m3 per hectare (mean 15.8). In Kuhmo, the DWP values ranged
between 0 and 301 (mean 54) and dead wood volumes from 0 to 182.3 m3 per hectare (mean 28.6).
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Figure 4. Correlation between the dead wood potential (DWP) and dead wood volume in Evo and
Kuhmo. The x-axis describes the plot level dead wood volume (m3 per hectare) and y-axis the DWP
value for each plot. Both values are sums of different tree species in each plot. Plots on managed
and conserved areas are marked with black triangles and gray circles, respectively. Coefficients of
determinations are shown with dashed lines for managed and with dotted line for conserved field plots.

Results show that correlations between DWP and reference dead wood volumes (see Table 5) are
more constant in Kuhmo than in Evo. When validation areas are observed separately, the correlation is
stronger in Evo (R2 = 0.54) than in Kuhmo (R2 = 0.29). Correlation in conserved areas (strictly or with
some degree of conservation) is stronger in Evo (R2 = 0.62) than in Kuhmo (R2 = 0.24). The results
were investigated also based on soil type as the Motti simulations were executed only with mineral
soil variables. Based on the results from Kuhmo, where 36% of field plots were on peatland, there were
no significant differences between the correlations on different soil types (mineral soil and peatland
both R2 = 0.24). As for Evo, where only 10% of field plots were on peatland, the correlation for mineral
soil DWP was higher (R2 = 0.57) than for peatland (R2 = 0.30).

Table 5. Coefficients of determinations for two validation sites. Total = all field plots on area,
conserved = field plots in permanently protected areas and areas with restricted forest management,
managed forests = field plots in non-conserved areas, mineral soil = field plots situated in mineral soil,
and peatland = field plots in peatland.

Area R2 Total R2 Conserved R2 Managed R2 Mineral Soil R2 Peatland

Evo 0.54 0.62 0.11 0.57 0.3

Kuhmo 0.29 0.24 0.23 0.24 0.24
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In addition to plot-level validation, the DWP method was also examined on a larger scale using
stand data for all forest stands in the Evo area managed by Metsähallitus [53–55]. The DWPs of
different tree species were summed. The locations of areas known for their high biodiversity value and
substantial dead wood volumes were revealed as shown in Figure 5.Forests 2020, 11, x FOR PEER REVIEW 10 of 24 
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4. Discussion

This article presents how forest stand information can be converted to wall-to-wall dead wood
information that can be used for estimating forest biodiversity. In this approach, forest stand information
(location, site type, tree species, DBHmean, and volume) was converted into the DWP by exploiting
Motti forest simulations. Altogether, a process transforming stand data into DWP was generated to
enable dead wood modeling for the whole of Finland or similar boreal ecosystems. The framework
was validated with field data from two separate areas. The comparison between the DWP values and
field data showed that the dead wood value of forests is predictable with our DWP modeling method.
Additionally, the method recognized areas known for their substantial dead wood volumes, such as
the protected areas of Kotinen and Sudenpesänkangas in Evo. Correlations between measured dead
wood volume and modeled DWP varied between 0.11 and 0.62 indicating variation in reliability of the
method between forest environments.

The results show that the performance of the DWP method varies depending on which field plots
were examined. Differences within validation areas arise when comparing the correlations of managed
and conserved plots in Evo (see Table 5), where the difference is evident. In managed forests the
correlation between DWP and reference dead wood volume is low (R2 = 0.11), whereas in conserved
areas the correlation was much higher (R2 = 0.62). This was expected as managed forests in Evo have
been treated according to the present forest management standards, which increases the amount of
growing stock but leaves very little dead wood on site. It is notable, that there were exceptionally big
aspens (DBH > 50 cm) in some field plots in Evo, which resulted in significantly high DWPs (>600)
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for three of the plots as seen in Figure 4. When the correlations were examined without these three
plots, the R2 values appeared similar to those in Kuhmo. In Evo, the R2 of all areas decreased from
0.54 to 0.24. The R2 of managed and conserved forests changed from 0.11 to 0.25 and from 0.62 to
0.28, respectively. However, as there were no measurement errors in these three plots, they were not
seen as outliers but merely as an evidence of the influence of chance on the results. On the other
hand, in Kuhmo the correlations were constant. A likely reason for this is the more homogeneous
forest management practices, or merely the lack of them, as the Kuhmo area forms an ecologically
important region, where only 33% of field plots were normally managed, 57% strictly conserved,
and 10% conserved with an unknown degree of conservation. A similar phenomenon can also be
found in other forest areas with softer management practices such as urban forests [13]. There were no
exceptional field plots that would have stood out from others in Kuhmo, either. For comparison, in Evo,
42% of field plots were managed, 18% strictly conserved, and 40% conserved with an unknown degree
of conservation. The low correlations can also be caused by the heterogeneity of forest environments in
conserved areas. Conserved forest stands tend to differ from managed stands in terms of their vertical
and horizontal structure, species distribution, and age structure [3,4].

When comparing the results between the validation areas, the correlations between DWP
and reference dead wood volumes were higher in Evo (R2 = 0.54) than in Kuhmo (R2 = 0.29).
As mentioned before, most of the difference is explained by the presence of big aspens in a few field
plots. However, we would also like to bring up the possible impact of using the Motti simulator for
calculating the default dead wood volumes for DWP models. As the Motti program is developed for
forest growth modeling in managed forests, and forest management recommendations were used
as input data for the simulations, the results should be more accurate in the widely managed area
of Evo (only 18 field plots on conservation areas) than in the more pristine area of Kuhmo (59 field
plots in conservation areas). Lastly, the occurrence of dead wood is very scattered in the landscape.
Together with the small sample plot size (radius 9 m and area 252 m2), the scattered occurrence
increases stochasticity of the data. To lower the influence of individual trees in the future, using bigger
sample plots (e.g., 30 × 30 m) would likely decrease the variation between plots.

The starting point for this study was to find a method to be utilized for conversion of national
stand-level forest data into information on biodiversity values. As the volume of trees was considered
inadequate and expert opinion-based estimate too inaccurate, the openly available Motti program 3.3
was seen as a possibility as it had been developed to observe the effect of different management decisions
on forest growth in a small scale based on Finnish NFI data. Ranius, Kindvall, Kruys, and Jonsson [23]
simulated dead wood quantity for Picea abies ((L.) Karst.) including decomposition, but as for us,
Motti provided a Finnish NFI-based ready-to-use platform for seven tree species. Other methods based
on Finnish NFI were either designed for modeling the estimations of use of forests in more coarse
resolution or the changes in dead wood rations and decomposition (see, e.g., [56,57]).

In general, the method presented in this paper provides a way to assess the biodiversity value of
forests but also highlights the needs for development. The information and methodology on dead
wood dynamics has increased during recent decades (see [22,57,58]), but accurate methods for locating
dead wood, be it mapping or modeling, are still missing. As long as there are no techniques to measure
dead wood automatically, modeling is needed. This DWP method should be improved first by adding
dead wood dynamics into the calculations. Disturbances are an essential factor for the input rate
of dead wood [59]. However, including natural disturbances, such as forest fires and windthrows,
is challenging as long as operational stand-level data is pursued.

Decisions on the use of forest land are made daily. They are based on knowledge and values,
and therefore it is essential to employ biodiversity data in decision making. This is especially because
many nations, including Finland, have pledged to principles of sustainable development, Aichi targets,
etc. [60]. As accurate landscape-level data on dead wood is often unavailable, DWP can be used to mimic
such data. As forest management reduces biodiversity values but stimulates growth, thus increasing
the DWP value, we recommend using DWP jointly with other datasets that can provide additional
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information on the conditions of the subject area (see also [23]). This can include information on threats
to biodiversity (e.g., planning and construction), species observations (e.g., red-listed species), locations
of permanently protected areas, former land use decisions (e.g., ditching or forest management),
or forest heterogeneity (e.g., horizontal and vertical structure of forests, changes in bedrock, soil, or soil
moisture). According to the preliminary results, the method has been used successfully for spatial
conservation prioritization needs when used with additional data in Zonation analysis [36,61].

When the development of DWP modeling to achieve a national-level surrogate for biodiversity
started, there were no open forest data nor interfaces to deliver such information. Nonetheless, the old
method needed an update. In this study we presented a method that treats the whole of Finland equally
and builds upon NFI data. Our method utilized simulation results, and 168 options for calculating
biodiversity value were developed. The results show that DWP performs better in near-pristine
southern forests known for their exceptionally good quality areas. These areas have high correlations
with reference dead wood values. However, in northeastern areas with a history of softer management,
the differences between the near-pristine and the managed forests is not as clear. As the forest
management history affects the trees and the biodiversity values of the sites, we recommend using this
data with supplementary data for estimating the site-specific biodiversity values.

5. Conclusions

Dead wood data is a key factor in the assessment of conservation values of forest areas. This DWP
method provides a tool for assessing the dead wood potential of large forest areas when spatially
accurate data on dead wood volume is unavailable. Considering the techniques and data sources
available, the DWP method presented in this paper provides a potential tool for acquiring wall-to-wall
dead wood data for landscape-level analysis.
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Appendix A

Dead Wood Potential (DWP) Functions

These 168 DWP functions were used for calculating the DWP for every tree stratum. X in functions
was replaced with stratum DBHmean, which gave the DWP multiplier for stratum volume as an outcome.
All multipliers greater than 2 is recommended to set to 2.

The vegetations zones were (1) hemiboreal 1 and southern boreal 2a and 2c, (2) southern boreal 2b,
(3) middle boreal 3a–c (4) northern boreal 4a–d [42,43]. The forest site types (mineral ground forest site
types and their counterparts on peatland) were (1) herb rich forests, (2) herb-rich heath forest, (3) mesic
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heath forest, (4) sub-xeric heath forest, (5) xeric heath forest, and (6) barren heath forest. The forest
site types 7, 8, and 9 (the most barren ones) were calculated with functions for barren heath forest (6).
The DBH value in the table Appendix A is the value of DBH in Motti simulation maximum for tree
volume in that tree species–vegetation zone–forest site type combination.

Tree Species
Vegetation

Zone
Forest Site

Type
Functions for Dead Wood Potential (DWP)

Calculation
DBH (cm)

1
Picea abies ((L.)

H. Karst.)
1 Herb-rich forest

y = 0.0000000161x5
− 0.0000017284x4 + 0.0000659861x3

− 0.0010311017x2 + 0.0147885592x − 0.0049002034
55.4

2 Picea abies 1
Herb-rich heath

forest
y = 0.0000000184x5

− 0.0000017033x4 + 0.0000563171x3

− 0.0007552955x2 + 0.0134742452x − 0.0023702218
50.7

3 Picea abies 1
Mesic heath

forest
y = 0.0000005264x4

− 0.0000425948x3 + 0.0011372754x2

− 0.0002934437x + 0.0169174344
52.6

4 Picea abies 1
Sub-xeric heath

forest
y = 0.0000005986x4

− 0.0000192421x3 + 0.0003016817x2 +

0.0115485958x + 0.0025994013
37

5 Picea abies 1
Xeric heath

forest
y = 0.0000002716x5

− 0.0000157163x4 + 0.0003436485x3

− 0.0030953347x2 + 0.0272649678x − 0.0038273867
28.8

6 Picea abies 1
Barren heath

forest
y = 0.0010125092x2 + 0.0150097643x + 0.0023813648 25

7 Picea abies 2 Herb-rich forest
y = 0.0000006155x4

− 0.0000450509x3 + 0.0010562901x2 +

0.0018961460x + 0.0096330860
53.5

8 Picea abies 2
Herb-rich heath

forest
y = 0.0000006155x4

− 0.0000450509x3 + 0.0010562901x2 +

0.0018961460x + 0.0096330860
50.7

9 Picea abies 2
Mesic heath

forest
y = 0.0000005306x4

− 0.0000448023x3 + 0.0012362144x2

− 0.0014654573x + 0.0164931209
53.7

10 Picea abies 2
Sub-xeric heath

forest
y = 0.0000013384x4

− 0.0000816544x3 + 0.0017079190x2 +

0.0008330889x + 0.0132025288
40

11 Picea abies 2
Xeric heath

forest
y = 0.0000040479x4

− 0.0001761466x3 + 0.0027120941x2 +

0.0028549025x + 0.0111397051
29.3

12 Picea abies 2
Barren heath

forest
y = 0.0000092054x4

− 0.0003755234x3 + 0.0052546605x2

− 0.0051711784x + 0.0160875537
25.5

13 Picea abies 3 Herb-rich forest
y = 0.0000122709x3

− 0.0007624465x2 + 0.0290175225x −
0.0309302578

48.3

14 Picea abies 3
Herb-rich heath

forest
y = 0.0000000372x5

− 0.0000032919x4 + 0.0001048535x3

− 0.0013661297x2 + 0.0173523584x − 0.0041851545
45.6

15 Picea abies 3
Mesic heath

forest
y = 0.0000008241x4

− 0.0000591222x3 + 0.0014262304x2

− 0.0001559167x + 0.0149484085
46.2

16 Picea abies 3
Sub-xeric heath

forest
y = 0.0000018927x4

− 0.0000772079x3 + 0.0012286067x2 +

0.0087162361x + 0.0067653140
31.8

17 Picea abies 3
Xeric heath

forest
y = 0.0000007434x5

− 0.0000389231x4 + 0.0007562472x3

− 0.0060387418x2 + 0.0369600166x − 0.0055048664
24.8

18 Picea abies 3
Barren heath

forest
y = 0.0000018814x5

− 0.0000895617x4 + 0.0015570974x3

− 0.0110989030x2 + 0.0500584897x − 0.0068869694
21.8

19 Picea abies 4 Herb-rich forest
y = 0.0000001362x5

− 0.0000089326x4 + 0.0002173264x3

− 0.0021928022x2 + 0.0227845402x − 0.0043775857
33.7

20 Picea abies 4
Herb-rich heath

forest
y = 0.0000049058x4

− 0.0002520313x3 + 0.0043429636x2

− 0.0095134968x + 0.0253623319
31.3

21 Picea abies 4
Mesic heath

forest
y = 0.0000038422x4

− 0.0001752678x3 + 0.0028749856x2 +

0.0007796390x + 0.0148666980
29.8

22 Picea abies 4
Sub-xeric heath

forest
y = 0.0000015843x5

− 0.0000734457x4 + 0.0012755734x3

− 0.0091984010x2 + 0.0464506582x − 0.0076350317
21.4

23 Picea abies 4
Xeric heath

forest
y = 0.0000050816x5

− 0.0001963719x4 + 0.0028507686x3

− 0.0173939950x2 + 0.0655229900x − 0.0088755793
17.4

24 Picea abies 4
Barren heath

forest
y = 0.0000000094x5

− 0.0000016212x4 + 0.0001104195x3

− 0.0035850719x2 + 0.0628358948x − 0.0934533866
15.6
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25
Pinus sylvestris

(L.)
1 Herb-rich forest

y = 0.0000004623x4
− 0.0000222413x3 + 0.0001927273x2 +

0.0120210416x − 0.0075600744
48.3

26 Pinus sylvestris 1
Herb-rich heath

forest
y = 0.0000000098x5 + 0.0000001796x4

− 0.0000515518x3 +

0.0015055128x2
− 0.0006701712x + 0.0042664418

46.7

27 Pinus sylvestris 1
Mesic heath

forest
y = 0.0000013512x4

− 0.0001013567x3 + 0.0023850056x2

− 0.0060850485x + 0.0064301561
46.7

28 Pinus sylvestris 1
Sub-xeric heath

forest
y = 0.0000012252x4

− 0.0000893534x3 + 0.0021243604x2

− 0.0042316368x + 0.0101178798
45.1

29 Pinus sylvestris 1
Xeric heath

forest
y = 0.0000012644x4

− 0.0000693070x3 + 0.0010995711x2 +

0.0077363288x − 0.0045700136
41.8

30 Pinus sylvestris 1
Barren heath

forest
y = 0.0000000283x5 + 0.0000006755x4

− 0.0001089991x3 +

0.0024651722x2
− 0.0018870714x + 0.0052463026

37.1

31 Pinus sylvestris 2 Herb-rich forest
y = 0.0000009335x4

− 0.0000663941x3 + 0.0014401761x2 +

0.0015466061x + 0.0000349890
48.3

32 Pinus sylvestris 2
Herb-rich heath

forest
y = 0.0000006174x4

− 0.0000326284x3 + 0.0004487432x2 +

0.0105988127x − 0.0075041933
46.2

33 Pinus sylvestris 2
Mesic heath

forest
y = 0.0000229170x3

− 0.0010204842x2 + 0.0216302498x −
0.0105496624

45.7

34 Pinus sylvestris 2
Sub-xeric heath

forest
y = 0.0000010166x4

− 0.0000676667x3 + 0.0014820782x2 +

0.0015167476x + 0.0046006516
44.3

35 Pinus sylvestris 2
Xeric heath

forest
y = 0.0000020094x4

− 0.0001301944x3 + 0.0026234281x2

− 0.0040767151x + 0.0070796259
41.7

36 Pinus sylvestris 2
Barren heath

forest
y = 0.0000030626x4

− 0.0001696886x3 + 0.0029412809x2

− 0.0017420282x + 0.0028058062
36.5

37 Pinus sylvestris 3 Herb-rich forest
y = 0.0000003836x4

− 0.0000136713x3
− 0.0000543905x2 +

0.0147055443x − 0.0115382974
47.2

38 Pinus sylvestris 3
Herb-rich heath

forest
y = 0.0000000581x5

− 0.0000047820x4 + 0.0001280600x3

− 0.0011291177x2 + 0.0132446600x + 0.0021001166
44.6

39 Pinus sylvestris 3
Mesic heath

forest
y = 0.0000005446x4

− 0.0000164774x3
− 0.0001563580x2 +

0.0170326122x − 0.0151731205
43.7

40 Pinus sylvestris 3
Sub-xeric heath

forest
y = 0.0000012675x4

− 0.0000882199x3 + 0.0020954396x2

− 0.0031922096x + 0.0113978403
42.2

41 Pinus sylvestris 3
Xeric heath

forest
y = 0.0000000485x5

− 0.0000019886x4
− 0.0000093689x3 +

0.0010724885x2 + 0.0036876387x + 0.0065684616
39.3

42 Pinus sylvestris 3
Barren heath

forest
y = 0.0000003745x5

− 0.0000274009x4 + 0.0007016601x3

− 0.0072645366x2 + 0.0404266958x − 0.0025942599
34.5

43 Pinus sylvestris 4 Herb-rich forest
y = 0.0000201272x3

− 0.0007666773x2 + 0.0187609364x −
0.0056661884

43.7

44 Pinus sylvestris 4
Herb-rich heath

forest
y = 0.0000225723x3

− 0.0006202513x2 + 0.0177580701x −
0.0011832482

38.1

45 Pinus sylvestris 4
Mesic heath

forest
y = 0.0000127058x3 + 0.0001898738x2 + 0.0042006395x +

0.0443521300
36

46 Pinus sylvestris 4
Sub-xeric heath

forest
y = 0.0000116647x3 + 0.0000042624x2 + 0.0117378253x +

0.0070122178
36.3

47 Pinus sylvestris 4
Xeric heath

forest
y = 0.0000038240x4

− 0.0001528377x3 + 0.0019583311x2 +

0.0093019582x − 0.0011384075
30.2

48 Pinus sylvestris 4
Barren heath

forest
y = 0.0000759311x3

− 0.0018448651x2 + 0.0292579425x −
0.0051270841

27.8

49
Betula pendula

(Roth)
1 Herb-rich forest

y = 0.0000000698x5
− 0.0000029907x4 + 0.0000126208x3 +

0.0006443447x2 + 0.0081154853x + 0.0028446742
36.8

50 Betula pendula 1
Herb-rich heath

forest
y = 0.0000004286x5

− 0.0000315153x4 + 0.0008107264x3

− 0.0084532404x2 + 0.0439597902x − 0.0043918714
34.5

51 Betula pendula 1
Mesic heath

forest
y = 0.0000004916x5

− 0.0000342620x4 + 0.0008300406x3

− 0.0080614969x2 + 0.0409280753x − 0.0062904828
33.1
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52 Betula pendula 1
Sub-xeric heath

forest
y = 0.0000848874x3

− 0.0025538279x2 + 0.0357856249x −
0.0197727664

29.7

53 Betula pendula 1
Xeric heath

forest
y = 0.0000026167x5

− 0.0000929878x4 + 0.0011342487x3

− 0.0054258503x2 + 0.0332693801x + 0.0003155131
19.8

54 Betula pendula 1
Barren heath

forest
y = 0.0000124704x5

− 0.0004611922x4 + 0.0060537298x3

− 0.0328496818x2 + 0.0907612742x − 0.0041143955
17

55 Betula pendula 2 Herb-rich forest
y = 0.0000023886x4

− 0.0001199093x3 + 0.0017604835x2 +

0.0064533491x + 0.0003928322
36.8

56 Betula pendula 2
Herb-rich heath

forest
y = 0.0000001835x5

− 0.0000111267x4 + 0.0002244220x3

− 0.0016810971x2 + 0.0179017119x + 0.0010852197
34.4

57 Betula pendula 2
Mesic heath

forest
y = 0.0000006281x5

− 0.0000454954x4 + 0.0011532698x3

− 0.0118540667x2 + 0.0561558320x − 0.0080901647
33

58 Betula pendula 2
Sub-xeric heath

forest
y = 0.0000800245x3

− 0.0022774568x2 + 0.0326993896x −
0.0144578193

29.5

59 Betula pendula 2
Xeric heath

forest
y = 0.0000041677x5

− 0.0001574013x4 + 0.0020859079x3

− 0.0112566189x2 + 0.0463268449x − 0.0010374605
19.3

60 Betula pendula 2
Barren heath

forest
y = 0.0000129718x5

− 0.0004756278x4 + 0.0061959914x3

− 0.0334149409x2 + 0.0918745245x − 0.0041449752
16.8

61 Betula pendula 3 Herb-rich forest
y = 0.0000000812x5

− 0.0000025757x4
− 0.0000173798x3 +

0.0010223015x2 + 0.0081035278x + 0.0043284919
34.1

62 Betula pendula 3
Herb-rich heath

forest
y = 0.0000007434x5

− 0.0000509956x4 + 0.0012244189x3

− 0.0119180632x2 + 0.0550499985x − 0.0089540976
31.4

63 Betula pendula 3
Mesic heath

forest
y = 0.0000044906x4

− 0.0001489538x3 + 0.0013133137x2 +

0.0156569208x − 0.0038277485
28.6

64 Betula pendula 3
Sub-xeric heath

forest
y = 0.0000843469x3

− 0.0014555367x2 + 0.0237551975x +

0.0050821260
25.2

65 Betula pendula 3
Xeric heath

forest
y = 0.0000134762x5

− 0.0004836110x4 + 0.0061431121x3

− 0.0320798098x2 + 0.0873219905x − 0.0061012210
16.6

66 Betula pendula 3
Barren heath

forest
y = 0.0000276450x5

− 0.0008898351x4 + 0.0101340238x3

− 0.0473476725x2 + 0.1086884842x − 0.0051200733
14.7

67 Betula pendula 4 Herb-rich forest
y = 0.0000142294x3 + 0.0006851383x2 + 0.0038379153x +

0.0305639777
28.5

68 Betula pendula 4
Herb-rich heath

forest
y = 0.0000821947x3

− 0.0013489222x2 + 0.0225653406x +

0.0086468736
25.2

69 Betula pendula 4
Mesic heath

forest
y = 0.0001487373x3

− 0.0032477261x2 + 0.0384672973x −
0.0112808847

23.5

70 Betula pendula 4
Sub-xeric heath

forest
y = 0.0000237811x4

− 0.0006969965x3 + 0.0063541234x2 +

0.0058201682x + 0.0066524128
20.7

71 Betula pendula 4
Xeric heath

forest
y = 0.0000341585x5

− 0.0010567167x4 + 0.0115821628x3

− 0.0522670867x2 + 0.1164330642x − 0.0110599387
14.1

72 Betula pendula 4
Barren heath

forest
y = 0.0000607977x5

− 0.0017280977x4 + 0.0173812267x3

− 0.0718177791x2 + 0.1399870537x − 0.0109816278
12.8

73
Betula pubescens

(Ehrh.)
1 Herb-rich forest

y = 0.0000005147x5
− 0.0000397530x4 + 0.0010706348x3

− 0.0116114394x2 + 0.0563842058x − 0.0081785677
34.6

74 Betula pubescens 1
Herb-rich heath

forest
y = 0.0000008478x5

− 0.0000578998x4 + 0.0013844346x3

− 0.0134123160x2 + 0.0598250568x − 0.0064807858
30.8

75 Betula pubescens 1
Mesic heath

forest
y = 0.0000008494x5

− 0.0000570531x4 + 0.0013427466x3

− 0.0128234040x2 + 0.0577501024x − 0.0077276424
30.4

76 Betula pubescens 1
Sub-xeric heath

forest
y = 0.0000011998x5

− 0.0000697299x4 + 0.0014158143x3

− 0.0115995601x2 + 0.0505531563x − 0.0090827056
27.2

77 Betula pubescens 1
Xeric heath

forest
y = 0.0000195064x5

− 0.0006349216x4 + 0.0073406555x3

− 0.0351181493x2 + 0.0908986831x − 0.0032060826
15.2

78 Betula pubescens 1
Barren heath

forest
y = 0.0000016683x5

− 0.0000969083x4 + 0.0021895457x3

− 0.0235631730x2 + 0.1367625836x − 0.1076733924
13.2
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79 Betula pubescens 2 Herb-rich forest
y = 0.0000005078x5

− 0.0000396260x4 + 0.0010777939x3

− 0.0118120982x2 + 0.0575682212x − 0.0096812959
34.9

80 Betula pubescens 2
Herb-rich heath

forest
y = 0.0000007892x5

− 0.0000545302x4 + 0.0013190001x3

− 0.0129279489x2 + 0.0586627985x − 0.0068225071
31.1

81 Betula pubescens 2
Mesic heath

forest
y = 0.0000009307x5

− 0.0000626945x4 + 0.0014860637x3

− 0.0143806824x2 + 0.0637802760x − 0.0046716255
30.1

82 Betula pubescens 2
Sub-xeric heath

forest
y = 0.0000013047x5

− 0.0000748816x4 + 0.0015031182x3

− 0.0121962798x2 + 0.0522196363x − 0.0092041945
26.8

83 Betula pubescens 2
Xeric heath

forest
y = 0.0000199097x5

− 0.0006442758x4 + 0.0074117015x3

− 0.0353237563x2 + 0.0913360115x − 0.0032317430
15.1

84 Betula pubescens 2
Barren heath

forest
y = 0.0000434301x5

− 0.0012348638x4 + 0.0125008008x3

− 0.0525099819x2 + 0.1142383729x − 0.0022700043
13.1

85 Betula pubescens 3 Herb-rich forest
y = 0.0000008926x5

− 0.0000586134x4 + 0.0013438732x3

− 0.0124500644x2 + 0.0553706773x − 0.0088025839
30.1

86 Betula pubescens 3
Herb-rich heath

forest
y = 0.0000011983x5

− 0.0000734126x4 + 0.0015788582x3

− 0.0138170861x2 + 0.0589918348x − 0.0079444343
27.9

87 Betula pubescens 3
Mesic heath

forest
y = 0.0000024729x5

− 0.0001290246x4 + 0.0023699864x3

− 0.0177546791x2 + 0.0658269113x − 0.0055008469
23.9

88 Betula pubescens 3
Sub-xeric heath

forest
y = 0.0003131284x3

− 0.0068869653x2 + 0.0632760365x −
0.0340467609

20

89 Betula pubescens 3
Xeric heath

forest
y = 0.0000469941x5

− 0.0013264440x4 + 0.0132503785x3

− 0.0542358803x2 + 0.1129146343x − 0.0040491170
13

90 Betula pubescens 3
Barren heath

forest
y = 0.0000973178x5

− 0.0024765182x4 + 0.0223414139x3

− 0.0827234057x2 + 0.1457634078x − 0.0033752688
11.5

91 Betula pubescens 4 Herb-rich forest
y = 0.0001056533x3

− 0.0018595467x2 + 0.0276357197x +

0.0014319387
23.7

92 Betula pubescens 4
Herb-rich heath

forest
y = 0.0000135491x4

− 0.0002887099x3 + 0.0014516350x2 +

0.0247671329x − 0.0038273969
20.5

93 Betula pubescens 4
Mesic heath

forest
y = 0.0000520241x4

− 0.0015190382x3 + 0.0140511857x2

− 0.0150064164x + 0.0165457552
18.4

94 Betula pubescens 4
Sub-xeric heath

forest
y = 0.0000946763x4

− 0.0025073073x3 + 0.0211413109x2

− 0.0274326999x + 0.0237633916
16.1

95 Betula pubescens 4
Xeric heath

forest
y = 0.0001112251x5

− 0.0027012577x4 + 0.0231219019x3

− 0.0808900733x2 + 0.1407658016x − 0.0085794462
11.1

96 Betula pubescens 4
Barren heath

forest
y = 0.0002010279x5

− 0.0045434558x4 + 0.0360747028x3

− 0.1164661501x2 + 0.1750207637x − 0.0087745744
10.2

97
Populus tremula

(L.)
1 Herb-rich forest

y = 0.0000004911x5
− 0.0000364224x4 + 0.0009463543x3

− 0.0099537068x2 + 0.0497723271x − 0.0052573545
33.7

98 Populus tremula 1
Herb-rich heath

forest
y = 0.0000006389x5

− 0.0000448857x4 + 0.0011066815x3

− 0.0110807294x2 + 0.0529277624x − 0.0053017914
31.9

99 Populus tremula 1
Mesic heath

forest
y = 0.0000079795x4

− 0.0004296518x3 + 0.0072278336x2

− 0.0222549155x + 0.0216449596
31.4

100 Populus tremula 1
Sub-xeric heath

forest
y = 0.0000025340x5

− 0.0001252167x4 + 0.0021839468x3

− 0.0155782893x2 + 0.0596280231x − 0.0065490851
23

101 Populus tremula 1
Xeric heath

forest
y = 0.0000113631x5

− 0.0004077298x4 + 0.0051975367x3

− 0.0273533659x2 + 0.0790810564x − 0.0031555977
16.8

102 Populus tremula 1
Barren heath

forest
y = 0.0000233258x5

− 0.0007620291x4 + 0.0088408222x3

− 0.0423768934x2 + 0.1028515013x − 0.0028496552
15

103 Populus tremula 2 Herb-rich forest
y = 0.0000004952x5

− 0.0000373045x4 + 0.0009829351x3

− 0.0104664729x2 + 0.0520280776x − 0.0067635479
34

104 Populus tremula 2
Herb-rich heath

forest
y = 0.0000005734x5

− 0.0000429847x4 + 0.0011286691x3

− 0.0120179552x2 + 0.0581328449x − 0.0081317520
33.5

105 Populus tremula 2
Mesic heath

forest
y = 0.0000084733x4

− 0.0004459214x3 + 0.0073424690x2

− 0.0218166161x + 0.0214580688
30.8

106 Populus tremula 2
Sub-xeric heath

forest
y = 0.0000026447x5

− 0.0001281296x4 + 0.0021927625x3

− 0.0153685162x2 + 0.0588012658x − 0.0058806919
22.7
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107 Populus tremula 2
Xeric heath

forest
y = 0.0000108433x5

− 0.0003926531x4 + 0.0050555795x3

− 0.0269215264x2 + 0.0788169919x − 0.0034048924
17

108 Populus tremula 2
Barren heath

forest
y = 0.0000245697x5

− 0.0007935809x4 + 0.0091121621x3

− 0.0432970898x2 + 0.1043628446x − 0.0028581742
14.8

109 Populus tremula 3 Herb-rich forest
y = 0.0000005817x5

− 0.0000388786x4 + 0.0009104427x3

− 0.0086232657x2 + 0.0433743113x − 0.0060358705
31.2

110 Populus tremula 3
Herb-rich heath

forest
y = 0.0000008455x5

− 0.0000541241x4 + 0.0012171283x3

− 0.0111218403x2 + 0.0512982223x − 0.0068051191
29.4

111 Populus tremula 3
Mesic heath

forest
y = 0.0001562745x3

− 0.0046067531x2 + 0.0537072162x −
0.0412866515

26

112 Populus tremula 3
Sub-xeric heath

forest
y = 0.0003543187x3

− 0.0078771000x2 + 0.0700779711x −
0.0376300965

19.6

113 Populus tremula 3
Xeric heath

forest
y = 0.0000206683x5

− 0.0006761866x4 + 0.0078290083x3

− 0.0371976946x2 + 0.0928146663x − 0.0049042456
15.2

114 Populus tremula 3
Barren heath

forest
y = 0.0000439513x5

− 0.0012918402x4 + 0.0134394830x3

− 0.0573061683x2 + 0.1192271055x − 0.0040964012
13.4

115 Populus tremula 4 Herb-rich forest
y = 0.0000048016x4

− 0.0001117991x3 + 0.0003543209x2 +

0.0226836786x − 0.0063111968
25.8

116 Populus tremula 4
Herb-rich heath

forest
y = 0.0000919159x3

− 0.0013406533x2 + 0.0229964151x +

0.0086222734
23.7

117 Populus tremula 4
Mesic heath

forest
y = 0.0001862663x3

− 0.0038237204x2 + 0.0422245854x −
0.0127054555

21.8

118 Populus tremula 4
Sub-xeric heath

forest
y = 0.0000116611x5

− 0.0003967235x4 + 0.0047990655x3

− 0.0240006334x2 + 0.0726713154x − 0.0077883137
16.3

119 Populus tremula 4
Xeric heath

forest
y = 0.0000449284x5

− 0.0013038827x4 + 0.0133998791x3

− 0.0566353526x2 + 0.1195635316x − 0.0100572770
13.3

120 Populus tremula 4
Barren heath

forest
y = 0.0000843400x5

− 0.0022248614x4 + 0.0207460282x3

− 0.0793170088x2 + 0.1446013272x − 0.0096399207
11.9

121
Alnus glutinosa
((L.) Gaertn.)

1 Herb-rich forest
y = 0.0000074496x5

− 0.0003525090x4 + 0.0059404760x3

− 0.0415701978x2 + 0.1244785725x − 0.0023168716
20.5

122 Alnus glutinosa 1
Herb-rich heath

forest
y = 0.0000128704x5

− 0.0005507459x4 + 0.0084512065x3

− 0.0543659749x2 + 0.1493117306x − 0.0015781598
18.3

123 Alnus glutinosa 1
Mesic heath

forest
y = 0.0000120440x5

− 0.0004985693x4 + 0.0073668242x3

− 0.0453107979x2 + 0.1239013027x − 0.0021327974
18.1

124 Alnus glutinosa 1
Sub-xeric heath

forest
y = 0.0000988573x5

− 0.0026154349x4 + 0.0245845858x3

− 0.0956244366x2 + 0.1696714860x − 0.0020026933
11.8

125 Alnus glutinosa 1
Xeric heath

forest
y = 0.0004043769x5

− 0.0089613217x4 + 0.0712133327x3

− 0.2367022954x2 + 0.3241998142x − 0.0006634528
9.37

126 Alnus glutinosa 1
Barren heath

forest
y = 0.0053924930x3

− 0.0590984236x2 + 0.2201961376x −
0.0256368371

8.4

127 Alnus glutinosa 2 Herb-rich forest
y = 0.0000075081x5

− 0.0003506327x4 + 0.0058294432x3

− 0.0402069148x2 + 0.1199446382x − 0.0026136340
20.3

128 Alnus glutinosa 2
Herb-rich heath

forest
y = 0.0000145047x5

− 0.0006014285x4 + 0.0089383388x3

− 0.0556707462x2 + 0.1490098749x − 0.0016618983
17.8

129 Alnus glutinosa 2
Mesic heath

forest
y = 0.0000132149x5

− 0.0005805631x4 + 0.0091730318x3

− 0.0610986544x2 + 0.1701848768x − 0.0011818426
18.5

130 Alnus glutinosa 2
Sub-xeric heath

forest
y = 0.0019794703x3

− 0.0307260916x2 + 0.1574728842x −
0.0118975512

12

131 Alnus glutinosa 2
Xeric heath

forest
y = 0.0004318896x5

− 0.0094351732x4 + 0.0739824124x3

− 0.2429702683x2 + 0.3295543992x − 0.0006597002
9.23

132 Alnus glutinosa 2
Barren heath

forest
y = 0.0057173199x3

− 0.0617247899x2 + 0.2259910364x −
0.0255182941

8.26

133 Alnus glutinosa 3 Herb-rich forest
y = 0.0000082551x5

− 0.0003559860x4 + 0.0054499415x3

− 0.0344546810x2 + 0.1004627207x − 0.0032690688
19.2

134 Alnus glutinosa 3
Herb-rich heath

forest
y = 0.0000141998x5

− 0.0005663320x4 + 0.0080472709x3

− 0.0475170982x2 + 0.1254229615x − 0.0030199959
17.5
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135 Alnus glutinosa 3
Mesic heath

forest
y = 0.0000162769x5

− 0.0005859380x4 + 0.0075014554x3

− 0.0397237899x2 + 0.1025931440x − 0.0025992132
16.3

136 Alnus glutinosa 3
Sub-xeric heath

forest
y = 0.0001040101x5

− 0.0027123121x4 + 0.0250222206x3

− 0.0946173574x2 + 0.1625612077x − 0.0038541966
11.6

137 Alnus glutinosa 3
Xeric heath

forest
y = 0.0003465269x5

− 0.0075489957x4 + 0.0583114029x3

− 0.1852030100x2 + 0.2496181502x − 0.0024301401
9.47

138 Alnus glutinosa 3
Barren heath

forest
y = 0.0006307148x5

− 0.0127831695x4 + 0.0918602416x3

− 0.2716487035x2 + 0.3275330978x − 0.0017410250
8.66

139 Alnus glutinosa 4 Herb-rich forest
y = 0.0000109015x5

− 0.0004002291x4 + 0.0052118785x3

− 0.0279047711x2 + 0.0799147601x − 0.0042342366
17.1

140 Alnus glutinosa 4
Herb-rich heath

forest
y = 0.0000232563x5

− 0.0007786065x4 + 0.0092497879x3

− 0.0451945856x2 + 0.1074552414x − 0.0040762029
15.2

141 Alnus glutinosa 4
Mesic heath

forest
y = 0.0000222440x5

− 0.0007248221x4 + 0.0083510986x3

− 0.0394504590x2 + 0.0966699136x − 0.0079985370
15

142 Alnus glutinosa 4
Sub-xeric heath

forest
y = 0.0001195714x5

− 0.0029180046x4 + 0.0250762833x3

− 0.0880100258x2 + 0.1496041466x − 0.0094044374
11.1

143 Alnus glutinosa 4
Xeric heath

forest
y = 0.0003526446x5

− 0.0074890484x4 + 0.0557315217x3

− 0.1679583885x2 + 0.2211855538x − 0.0091879247
9.41

144 Alnus glutinosa 4
Barren heath

forest
y = 0.0049165839x3

− 0.0569047042x2 + 0.2187235843x −
0.0565417242

8.77

145
Other

broadleaved
1 Herb-rich forest

y = 0.0000159331x5
− 0.0006551323x4 + 0.0096463222x3

− 0.0594495816x2 + 0.1557082599x − 0.0009990372
17.6

146
Other

broadleaved
1

Herb-rich heath
forest

y = 0.0000205100x5
− 0.0007254342x4 + 0.0093421540x3

− 0.0512173513x2 + 0.1319081391x − 0.0004774367
15.4

147
Other

broadleaved
1

Mesic heath
forest

y = 0.0000401044x5
− 0.0013620237x4 + 0.0166251208x3

− 0.0854673359x2 + 0.1885573057x − 0.0007201616
14.6

148
Other

broadleaved
1

Sub-xeric heath
forest

y = 0.0002650248x5
− 0.0060471431x4 + 0.0492898767x3

− 0.1672909525x2 + 0.2451454027x − 0.0006349294
9.91

149
Other

broadleaved
1

Xeric heath
forest

y = 0.0026390485x4
− 0.0378261877x3 + 0.1704826425x2

− 0.1726942108x + 0.0023550176
7.95

150
Other

broadleaved
1

Barren heath
forest

y = 0.0093497583x3
− 0.0837830610x2 + 0.2517833753x −

0.0135120058
7.01

151
Other

broadleaved
2 Herb-rich forest

y = 0.0000154781x5
− 0.0006291426x4 + 0.0091523543x3

− 0.0556536543x2 + 0.1459033017x − 0.0011735548
17.5

152
Other

broadleaved
2

Herb-rich heath
forest

y = 0.0010104419x3
− 0.0177529097x2 + 0.1097035692x −

0.0173601891
14.3

153
Other

broadleaved
2

Mesic heath
forest

y = 0.0009902020x3
− 0.0180949531x2 + 0.1133238427x −

0.0136136818
14.7

154
Other

broadleaved
2

Sub-xeric heath
forest

y = 0.0002614646x5
− 0.0059727446x4 + 0.0487995206x3

− 0.1663751121x2 + 0.2456566987x − 0.0006193862
9.92

155
Other

broadleaved
2

Xeric heath
forest

y = 0.0070031761x3
− 0.0686189565x2 + 0.2293861734x −

0.0180324391
7.67

156
Other

broadleaved
2

Barren heath
forest

y = 0.0096623996x3
− 0.0864707998x2 + 0.2587742488x −

0.0141651976
6.95

157
Other

broadleaved
3 Herb-rich forest

y = 0.0000191741x5
− 0.0007210959x4 + 0.0096521416x3

− 0.0536080315x2 + 0.1325356110x − 0.0018781810
16.5

158
Other

broadleaved
3

Herb-rich heath
forest

y = 0.0000341563x5
− 0.0011529939x4 + 0.0139572824x3

− 0.0707435928x2 + 0.1588258703x − 0.0012299346
14.7

159
Other

broadleaved
3

Mesic heath
forest

y = 0.0000440456x5
− 0.0013787066x4 + 0.0153463234x3

− 0.0707112495x2 + 0.1470997311x − 0.0013175106
13.9

160
Other

broadleaved
3

Sub-xeric heath
forest

y = 0.0002722786x5
− 0.0060045435x4 + 0.0469498663x3

− 0.1510238501x2 + 0.2142271115x − 0.0017976770
9.74

161
Other

broadleaved
3

Xeric heath
forest

y = 0.0009667794x5
− 0.0183945971x4 + 0.1240917529x3

− 0.3448562969x2 + 0.3852069122x − 0.0009318150
8.09

162
Other

broadleaved
3

Barren heath
forest

y = 0.0076237774x3
− 0.0730281879x2 + 0.2298242375x −

0.0247438319
7.54
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163
Other

broadleaved
4 Herb-rich forest

y = 0.0000323070x5
− 0.0010219432x4 + 0.0114310178x3

− 0.0524164810x2 + 0.1155566015x − 0.0031287472
14.4

164
Other

broadleaved
4

Herb-rich heath
forest

y = 0.0000634743x5
− 0.0018274664x4 + 0.0186526646x3

− 0.0783238736x2 + 0.1495900203x − 0.0025211789
12.8

165
Other

broadleaved
4

Mesic heath
forest

y = 0.0000571733x5
− 0.0015683402x4 + 0.0151450449x3

− 0.0595812600x2 + 0.1177980604x − 0.0055481454
12.7

166
Other

broadleaved
4

Sub-xeric heath
forest

y = 0.0003133823x5
− 0.0064099859x4 + 0.0458978425x3

− 0.1330159652x2 + 0.1814353937x − 0.0061431270
9.31

167
Other

broadleaved
4

Xeric heath
forest

y = 0.0007835618x5
− 0.0145607268x4 + 0.0942725426x3

− 0.2456538957x2 + 0.2703820828x − 0.0062743999
8.24

168
Other

broadleaved
4

Barren heath
forest

y = 0.0011059106x5
− 0.0200709884x4 + 0.1267110787x3

− 0.3214094244x2 + 0.3292721334x − 0.0068760501
7.94
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