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Highlights

• Presents a modified Chua’s circuit with three stable node-foci and two
unstable saddles.

• Hidden attractors have very small attraction basins not being connected
with any fixed point.

• Hidden attractors coexist with point attractors in the entire period-doubling
bifurcation route.

• Circuit simulations and DSP-assisted experiments validate the hidden at-
tractors and multistability.
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Abstract

The first hidden chaotic attractor was discovered in a dimensionless piecewise-linear Chua’s system with
a special Chua’s diode. But designing such physical Chua’s circuit is a challenging task due to the
distinct slopes of Chua’s diode. In this paper, a modified Chua’s circuit is implemented using a 5-segment
piecewise-linear Chua’s diode. In particular, the coexisting phenomena of hidden attractors and three
point attractors are noticed in the entire period-doubling bifurcation route. Attraction basins of different
coexisting attractors are explored. It is demonstrated that the hidden attractors have very small basins
of attraction not being connected with any fixed point. The PSIM circuit simulations and DSP-assisted
experiments are presented to illustrate the existence of hidden attractors and coexisting attractors.

Keywords: Chua’s diode; Chua’s circuit; Chaos; Hidden attractor; Initial condition; Multistability;
Attraction basin

1. Introduction

For many years, it has been generally accepted that the attraction basin of an attractor is connected
with system’s unstable equilibrium, and thus initial orbits starting from the unstable manifold of a neigh-
borhood of equilibrium can easily reach the oscillation. However, some counterexamples were found in
dynamical systems, in which the attraction basins of the attractors do not intersect with neighborhoods of
unstable equilibria (if exists) and are located far away from such points [1]. This category of attractors are
difficult to be located via standard procedure of compute simulation and are defined as hidden attractors.
Recently, it has been shown that hidden attractors are connected with the multistability phenomenon
[2, 3]. A variety of dynamical systems with multistability and hidden attractors have been discovered
[4–10]. Some dynamical systems with only stable equilibrium, stable line equilibrium, or with no equilib-
rium are intentionally and easily constructed for generating hidden attractors [11]. By contrast, finding
hidden attractors in physical systems is difficult as system itself has specific physical properties cannot be
changed arbitrarily [12]. Thus, finding hidden attractors and identifying the dynamics of such systems is
a challenging work.

Chua’s circuit is the first electronic circuit exhibiting chaos and provided the evidence of the existence
of chaos in the physical world [13]. In 2010, Leonov and Kuznetsov discovered the first hidden chaotic
attractor in Chua’s system with piecewise-linear Chua’s diode [14–16]. Afterwards, hidden chaotic attractor
was also demonstrated in a modified Chua’s system with a smooth nonlinearity [17]. In 2014, Li et al.
restudied the Chua’s system proposed in [16] and shown that twin hidden attractors can coexist in this
system for some parameters [18]. In 2017, Zhao et al. reported the coexistence of stable equilibria and
hidden periodic limit cycle in a modified smooth Chua’s system [19]. All these results, without exception,
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Figure 1: Chua’s circuit with modified Chua’s diode.

Table 1: Parameters of the modified Chua’s circuit

Parameters Significations Values

C1 Capacitance 12 nF
C2 Capacitance 96 nF
L Inductance 18.5 mH
R Resistance 1.7 kΩ
R1 Resistance 1 kΩ
R2 Resistance 7.5 kΩ
R3 Resistance 880 Ω
R4 R5 Resistance 200 Ω
Esat Saturation output voltage of U1 and U2 13 V

were found based on dimensionless Chua’s systems of coupled ODEs, rather than practical electronic
circuits. It was expected to expand this research in practical circuits.

Further observations of hidden Chua’s attractors in physical circuits were presented sequentially [20–24].
A comprehensive review and study of scenario of the hidden Chua’s attractors were collated by Stankevich
et al. [25]. The above mentioned Chua’s circuit variants vary in a large range. In [20], the use of a
first-order hybrid Chua’s diode made the whole system to be fourth-order. In [21], the authors only taken
the inner three segments of 3-NIC-based Chua’s diode into consideration and omitted the dynamics caused
by other potential segments [21]. The system proposed in [23] employed two nonlinearities implemented
by one-stage op-amp-based NIC and two anti-parallel diodes, respectively. In [24], the Chua’s nonlinearity
was implemented by using the ‘Arbitrary Source’ (voltage-controlled current source) instead of a practical
implementation. To better identify the hidden dynamics of the Chua’s circuit, it is meaningful to design
a piecewise-linear Chua’s diode with desired segments. For this purpose, a modified Chua’s circuit with a
5-segment piecewise-linear Chua’s diode is presented, in which hidden attractors and coexisting attractors
are identified.

The remainder of the paper is organized as follows. In Section 2, the circuit description and basic prop-
erties analyses are performed. Dynamics analyses and simulations are presented in Section 3. The PSIM
circuit simulations and DSP-assisted verifications are provided in Section 4. The last section concludes
the paper.

2. Modified Chua’s circuit

In this section, we first propose a modified Chua’s diode with 5-segment piecewise-linearity. Using the
Chua’s diode, a Chua’s circuit with three stable node-foci and two unstable saddles is further implemented,
as shown in Fig. 1.

2.1. Design of Chua’s doide

As Chua’s diode is the part of Chua’s circuit forming activity and nonlinearity of the whole system,
changing its characteristics is an effective way to generate different types of attractors, e.g. hidden at-
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Figure 2: The v − i characteristic curves of three nonlinear resistors with different nonlinearities (a) nonlinear
resistor with positive inner segment slope and outer segment slope (b) nonlinear resistor with negative inner
segment slope and positive outer segment slope (c) modified 5-segment piecewise-linear Chua’s diode via parallel
connection of the first two nonlinear resistors.

tractors [16, 25] or multi-scroll attractors [26]. For piecewise-linear Chua’s diode, the breakpoints and
slopes are important parameters determining their characteristics. The most classical implementation of
piecewise-linear Chua’s diode is the parallel connection of two op-amp-based negative impedance converters
(NIC) [13].

In dimensionless Chua’s equations, the segment slopes and breakpoints of Chua’s nonlinearity can
be arbitrarily set. But the parameters of Chua’s diode in practical Chua’s circuit are interrelated. The
saturation output voltages of the op-amps are constant when fixing power supplies, which means that the
breakpoints can only be adjusted by resistors. Meanwhile, the variation of resistance will result in a change
of segment slopes. In order to achieve the desired segment slopes and breakpoints, the Chua’s diode should
be implemented in subtle ways. Thus, we consider the following two existing nonlinear resistors to design
a new Chua’s diode.

Comprehensive review of two nonlinear resistors. In [26], a passive nonlinear resistor with positive inner
segment slope and outer segment slope is designed. The implemented circuit of such nonlinear resistor
only contains two linear resistors R1, R2, and one op-amp U1, as shown in the right part of the port ‘1−1′’
of Fig. 1. The v− i characteristic of the nonlinear resistor is featured by three parameters and represented
as

i1 = h1(vN) = Gb1vN + 0.5(Ga1 −Gb1)(|vN +Bp1| − |vN −Bp1|), (1)

where

Ga1 =
1

R1

, Gb1 =
1

R1 +R2

, Bp1 =
R1

R2

Esat

denote the inner slope, outer slope, and breakpoint, respectively. Fig. 2(a) plots the v − i characteristic
curve, in which two slopes satisfy Ga1 > Gb1 > 0.

Another nonlinear resistor with negative inner segment slope and positive outer segment slope is pro-
posed in [22]. The implemented circuit is a saturated NIC containing three linear resistors R3, R4, R5,
and one op-amp U2, as shown in the most right part of Fig. 1. As the use of saturation output property
of the op-amp, the nonlinear resistor shows piecewise-linearity. The v − i characteristic of the nonlinear
resistor is represented as

i2 = h2(vN) = Gb2vN + 0.5(Ga2 −Gb2)(|vN +Bp2| − |vN −Bp2|), (2)

where Ga2, Gb2, and Bp2 are the inner slope, outer slope, and breakpoint, respectively. When R4 = R5,
one has

Ga2 = − 1

R3

, Gb2 =
1

R4

, Bp2 =
R3

R3 +R4

Esat.

Fig. 2(b) plots the v − i curve of the nonlinear resistor, in which the slopes satisfy Ga2 < 0 and Gb2 > 0.
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Figure 3: The v − i characteristic of the proposed Chua’s diode expressed by (3), where the 5 intersection points
of the piecewise-linear curve and the straight load line indicate 5 equilibira of system (6).

New 5-segment piecewise-linear Chua’s diode. By parallel connecting the above two nonlinear resistors, a
new piecewise-linear Chua’s diode can be designed. When Bp2 6= Bp1, the v − i curve of the new Chua’s
diode is 5-segment piecewise-linear, expressed as

iN = h(vN) = GcvN + 0.5(Ga −Gb)(|vN +Bp1| − |vN −Bp1|)
+ 0.5(Gb −Gc)(|vN +Bp2| − |vN −Bp2|),

(3)

where Ga, Gb, Gc, Bp1, and Bp2 are the inner slope, middle slope, outer slope, inner breakpoint, and outer
breakpoint, respectively. Specifically, the five parameters are

Ga = Ga1 +Ga2 =
1

R1

− 1

R3

,

Gb = Gb1 +Ga2 =
1

R1 +R2

− 1

R3

,

Gc = Gb1 +Gb2 =
1

R1 +R2

+
1

R4

,

Bp1 =
R1

R2

Esat,

Bp2 =
R3

R3 +R4

Esat.

(4)

When Bp2 > Bp1 and −Ga2 > Ga1, the v− i curve is shown in Fig. 2(c). It is found from Fig. 2(c) that
the slopes Ga and Gb of the inner three segments are negative and satisfy Ga > Gb, which has the similar
characteristic with the Chua’s diode in [16]. We here choose the circuit parameters of Fig. 1 as listed in
Table 1. The specific parameters of (4) are

Ga = −0.1364 mS, Gb = −1.0187 mS, Gc = 5.1176 mS,

Bp1 = 1.7333 V, Bp2 = 10.5926 V.
(5)

The v − i characteristic of the proposed Chua’s diode. To simulate the v − i curve of the modified Chua’s
diode, the sinusoidal function vN = Vmsin(2πft) with Vm = 13 V and f = 100 Hz is used as the driven
signal. When the parameters in Table 1 are used, the simulated loci in the vN − iN plane is shown in
Fig. 3. The negative inner segment slopes satisfy |Ga| < |Gb|, which is completely different from that
of the classical Chua’s diode satisfying |Ga| > |Gb| [13]. Besides, the modified Chua’s diode has simpler
implementation than that reported in [21].
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2.2. Circuit state equation

The state equations of Fig. 1 are written as





dv1
dt

= − v1
RC1

+
v2
RC1

− h(v1)

C1

,

dv2
dt

=
v1
RC2

− v2
RC2

+
i3
C2

,

di3
dt

= −v2
L
,

(6)

where h(v1) is the Chua’s nonlinearity expressed by (3). The system is invariant under the transformation
(v1, v2, i3)↔ (−v1,−v2,−i3), i.e., it is symmetric about origin.

2.3. Equilibrium point and stability

To calculate the DC equilibria of the modified Chua’s circuit, let three equations of (6) be zero. It is
easy to obtain

−v1
R

= h(v1) = i3, and v2 = 0. (7)

The first equation of (7) means that the solutions of −v1/R = h(v1) can be calculated by the intersections
between the Chua’s nonlinearity h(v1) and the load line −v1/R. When Gb + (Ga−Gb)Bp1/Bp2 < −1/R <
Ga (i.e., 1.1437 kΩ < R < 7.3333 kΩ), the circuit has five equilibria.

As the Chua’s diode is piecewise-linear, system (6) has nonsmooth points (i.e., the breakpoints), where
the Jacobian matrix is not defined. The circuit equation can be separated into five sub-equations for each
segment by planes v1 = Bp1, v1 = −Bp1, v1 = Bp2, and v1 = −Bp2. The corresponding five distinct affine
regions are 




D0 = {(v1, v2, i3) | −Bp1 ≤ v1 ≤ Bp1},
D1 = {(v1, v2, i3) | Bp1 < v1 ≤ Bp2},
D2 = {(v1, v2, i3) | −Bp2 ≤ v1 < −Bp1},
D3 = {(v1, v2, i3) | v1 > Bp2},
D4 = {(v1, v2, i3) | v1 < −Bp2}.

(8)

Then the equilibria in each of the above subsets are calculated as





S0 = (0, 0, 0),

S1,2 = (±RI1, 0,∓I1),
S3,4 = (±RI2, 0,∓I2),

(9)

where

I1 =
(Gb −Ga)Bp1

1 +RGb

,

I2 =
(Gb −Ga)Bp1 + (Gc −Gb)Bp2

1 +RGc

.

The stability condition here is investigated for each linear parts of D0, D1,2, and D3,4. The matrices of
linearizations at the corresponding equilibria have the form

J =



− 1

RC1
− H

C1

1
RC1

0
1

RC2
− 1

RC2

1
C2

0 − 1
L

0


 , (10)
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Figure 4: The real parts loci of the eigenvalues of (11) for R ∈ [1.69 kΩ, 1.8 kΩ], and other parameters fixed in
Table 1 (a) for the equilibrium S0 (b) for the equilibria S1,2 (c) for the equilibria S3,4.

where H = Ga for S0 in the D0 region, H = Gb for S1,2 in the D1,2 regions, and H = Gc for S3,4 in the
D3,4 regions, respectively.

The characteristic equation at the equilibrium is

P (λ) = det(1λ− J) = λ3 + a1λ
2 + a2λ+ a3 = 0, (11)

where

a1 =
1 +RH

RC1

+
1

RC2

,

a2 =
1

LC2

+
H

RC1C2

,

a3 =
1 +RH

RLC1C2

.

The Routh-Hurwitz conditions for the cubic polynomial are given by





a1 =
1 +RH

RC1

+
1

RC2

> 0,

a3 =
1 +RH

RLC1C2

> 0,

a1a2 − a3 =
LH(C1 + C2) +RLC2H

2 +RC2
1

R2LC2
1C

2
2

> 0.

(12)

Here, stability condition will be discussed in the parameter interval R ∈ [1.69 kΩ, 1.8 kΩ], which are
related with the hidden dynamics to be considered in the following sections. With the parameters in
Table 1 and R ∈ [1.69 kΩ, 1.8 kΩ], one has:

• For the equilibrium S0, H = Ga. Because 1 +RGa > 0, the first two conditions of (12) are obviously
satisfied. Besides, due to LGa(C1 +C2) +RLC2G

2
a +RC2

1 > 0, the third condition of (12) is satisfied
as well. Thus, S0 is stable.
• For the equilibria S1,2, H = Gb. In view of 1 +RGb < 0, the second condition of (12) is not satisfied.

Thus, S1,2 are two unstable equilibria.
• For the equilibria S3,4, H = Gc. Due to Gc > 0, the three conditions of (12) are all satisfied for any

positive parameters of Table 1, implying that S3,4 are always stable.
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With the parameters in Table 1, the eigenvalues associated with five equilibria are calculated as





S0 : λ1,2 = −84± j22048, λ3 = −43616,

S1,2 : λ1 = 40819, λ2,3 = −5536± j21545,

S3,4 : λ1,2 = −2745± j23554, λ3 = −476128.

(13)

Hence S0 and S3,4 are three stable node-foci, whereas S1,2 are two symmetric unstable saddles.
When the resistance R is chosen as an adjustable parameter, it has a wide parameter interval in which

the equilibria S0 and S3,4 are always three stable node-foci, and another two equilibria S1,2 are always
unstable saddles. Using the parameters that listed in Table 1, the numerical solutions of the eigenvalues
of (11) for R ∈ [1.69 kΩ, 1.8 kΩ] are shown in Fig. 4. It is found from Fig. 4(a) and (c) that the real parts
of the eigenvalues of (11) for the equilibria S0 and S3,4 are always negative, thus these three equilibria are
stable for R ∈ [1.69 kΩ, 1.8 kΩ]. However, Fig. 4(b) shows that there always exists one eigenvalue with
positive real part for the equilibria S1,2, implying unstable state.

3. Numerical simulations of dynamical behaviors

In this section, we investigate the phase portraits, bifurcation diagrams, and attraction basins using
numerical simulations. Fourth-order Runge-Kutta algorithm with time step of 2 µs is used.

3.1. Hidden chaotic attractor

The modified Chua’s circuit has multiple stable and unstable equilibria. It is different from the multi-
scroll Chua’s circuit with only unstable equilibria [26] and the Chua’s circuit with two stable node-foci
and one saddle [22]. Referring to the Chua’s nonlinearity reported in [16], it is possible to generate hidden
attractor from the modified Chua’s circuit via configuring appropriate parameters and special initial states.

Using the parameters in Table 1 and different initial conditions (ICs), four different attractors are
simulated in Fig. 5(a). It is found that the orbits starting from ICs (4,−2, 0), (6, 3, 0), (−6,−3, 0) are
asymptotically stable to equilibria S0, S3 and S4, finally form three point attractors A1, A2 and A3. The
orbit starting from IC (0,−1.9, 0) demonstrate a chaotic attractor A4. Attraction basin is an effective tool
to search and visualize hidden attractors in the phase space [27]. The corresponding attraction basins in
different sections are plotted in Fig. 5(b), (c), and (d), respectively. The cyan, yellow, and blue basins
correspond to the point attractors that located in the equilibria S4, S3, and S0, respectively. The orange
basin does not intersect with small neighborhoods of all equilibria and corresponds to a hidden attractor,
in which the black orbits are the cross section of the hidden attractor.

3.2. Bifurcation diagrams

Two-parameter bifurcation. We first compute two-parameter bifurcation diagrams to show parameter-
related dynamical behaviors of the Chua’s circuit. Due to the existence of stable equilibria, it is believed
that the orbits excited from the small neighborhoods of these stable equilibria will asymptotically converge
to the equilibria. In order to compute the potential bifurcation diagram with complex dynamics, some
special initial values being located far away from the small neighborhoods of stable equilibria are configured.

The initial conditions we used here are v1(0) = 0 V, v2(0) = 1.9 V, and i3(0) = 0 A. Besides, the
nonlinearity of the Chua’s diode is expected to be unchanged, thus the parameters of Chua’s diode are
fixed. The two-dimensional bifurcation diagrams of Fig. 6 show rich dynamical behaviors in different
two-parameter spaces. The numbers in colorbar indicate the periodicity, dynamical areas marked by P0

and CH indicate point attractor and chaos, respectively. From Fig. 6, different periodic and chaotic areas,
routes to chaos via period-doubling bifurcation, and complex bifurcation boundaries are easily identified.
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Figure 5: Coexistence of points and hidden chaotic attractor and their attraction basins, where the attractors are
excited from different initial conditions (IC) with fixed parameters in Table 1. The cyan, yellow, and blue basins
correspond to the point attractors located in the equilibria S4, S3, and S0, respectively. The orange basin does
not intersect with a neighborhood of all equilibria and corresponds to a hidden chaotic attractor, in which the
black orbits are the cross section of the hidden attractor (a) phase portraits of different coexisting attractors (b)
attraction basin for the section i3(0) = 0 (c) attraction basin for the section v2(0) = 0 (d) attraction basin for
the section v1(0) = 0.

Coexisting bifurcations. To compute a single-parameter bifurcation diagram, we trace the dynamics for
the interval marked by the white dotted line in Fig. 6, i.e., C1 = 12 nF, C2 = 96 nF, L = 18.5 mH,
and R ∈ [1.69 kΩ, 1.8 kΩ]. Taking the coexisting attractors and basin attractions in Section 3.1 into
consideration, different initial conditions are set to show the coexisting bifurcations. Here, we choose five
sets of ICs (0,±1.9, 0), (±6,±3, 0), and (4,−2, 0) to plot the local maxima of v1 versus parameter R. The
corresponding bifurcation diagrams are shown in Fig. 7.

It is found from Fig. 7(a) that with the decrease of parameter R, system (6) shows the period-doubling
bifurcation route to chaos. Especially, for R ∈ [1.7103 kΩ, 1.7594 kΩ], system (6) undergoes coexisting
chaos, coexisting period-16, -8, -4, -2 and -1 states, respectively. When R decrease to 1.7103 kΩ, the coex-
isting chaotic orbits disappear and manifest robust chaos. When R increase to 1.7594 kΩ, two symmetric
period-1 limit cycles merge into a single limit cycle. For R ∈ [1.69 kΩ, 1.695 kΩ] ∪ [1.7913 kΩ, 1.8 kΩ], the
oscillations disappear and form point attractor located in the origin. The corresponding largest finite-time
Lyapunov exponents with IC (0, 1.9, 0) are calculated on time interval [0, 0.2 s] and shown in Fig. 7(a) (see
the green orbits). The consistence between the Lyapunov exponents and the bifurcation diagrams just
emulate the rich dynamics of period-doubling bifurcation route and chaos in system (6).

In Fig. 7(b), the bifurcation orbits v1max excited by ICs (±6,±3, 0) and (4,−2, 0) asymptotically
converge to the equilibria S3, S4, and S0, respectively, and finally form three point attractors. With R
increasing, the point attractors located in S3 and S4 are keeping away from the origin, the specific locations
can be calculated by (9). For these three sets of ICs, the largest Lyapunov exponents are all negative,
indicating asymptotically converge motions.
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(a) (b)

(c)

Figure 6: Two-parameter bifurcation diagrams (a) in the R− L plane for C1 = 12 nF and C2 = 96 nF (b) in the
R−C1 plane for C2 = 96 nF and L = 18.5 mH (c) in the R−C2 plane for C1 = 12 nF and L = 18.5 mH, where the
periodicity corresponds to the number in colourbar, P0 and CH indicates point attractor and chaos, respectively.

3.3. Coexisting attractors and attraction basins

As the definition of hidden attractor makes clear, numerical check of the attraction basins and equilibria
(if exists) is the most direct way for attractor identification. Especially, for dynamical system owing
multiple stable and unstable equilibria (e.g., in the Rabinovich-Fabrikant system [27], two equilibria are
stable but another three ones are unstable for the parameters a = 0.1 and b = 0.2876), visualization of
the attraction basins of all attractors is particularly important.

System (6) has five equilibria including three stable node-foci and two unstable saddles. All five
equilibria are located in the plane v2 = 0, which is identified by (9). In order to explore the high quality
graphics of attraction basins, the section v2(0) = 0 with 360000 pixel points are used. Besides, the IC space
v1(0)× i3(0) = (−5 V, 5 V)× (−8 mA, 8 mA) are considered to plot attraction basins in the neighborhoods
of unstable equilibria. When choosing R as 1.78 kΩ, 1.74 kΩ, 1.72 kΩ, 1.7185 kΩ, 1.716 kΩ and 1.7 kΩ,
attraction basins of different coexisting attractors are presented in Fig. 8. As shown in Fig. 8, attraction
basins of point attractors that being located in the equilibria S4, S3, and S0 are marked by cyan, green, and
blue, respectively. These three attraction basins are relatively big and almost occupy the whole section
space. In contrast, the hidden attractors have very small attraction basins marked by orange/yellow.
According to (9), it is calculated and shown that the locations of all five equilibria are far away from
the orange/yellow attraction basins. Consequently, it will be very difficult to reach the oscillations when
choosing initial values near any equilibrium point.

The local detail views of the hidden attractors overplotted on corresponding attraction basins are
presented in Fig. 9. It is seen from Fig. 9(a) that there emerges oscillation of a single period-1 limit
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Figure 7: Bifurcation diagrams with respect to R, where the typical parameters in Table 1 are used. (a) v1max

excited by two sets of initial conditions (0,±1.9, 0) and the largest finite-time Lyapunov exponent spectra excited
by IC (0, 1.9, 0) (b) v1max excited by three sets of initial conditions (±6,±3, 0) and (4,−2, 0).

cycle for R = 1.78 kΩ. Afterwards, coexisting oscillations occur and arise twin period-1 limit cycles for
R = 1.74 kΩ. Correspondingly, the attraction basin of the original single limit cycle is split into two
complex basins, as shown in Fig. 9(b). Fig. 9(c), (d), and (e) show the similar attraction basins, for
which system undergoes the coexisting period-doubling bifurcation routes and generates twin period-2
limit cycles (for R = 1.72 kΩ), twin period-4 limit cycles (for R = 1.7185 kΩ), and twin chaotic attractor
(for R = 1.716 kΩ), respectively. With R decreasing, the twin chaotic attractors merge into a single
hidden chaotic attractor. Local view of the hidden attractor overplotted on corresponding attraction basin
is shown in Fig. 9(f).

Summarizing, all equilibria of the modified Chua’s circuit are not intersect with the attraction basins of
hidden attractors. Moreover, the coexisting phenomena of hidden attractors and three point attractors are
noticed in the entire period-doubling bifurcation route. Up to five coexisting attractors exist in this Chua’s
circuit. Review the existing studies on multistability of Chua’s system, this is the maximum number of
coexisting attractors (including the self-excited and hidden attractors) that can be generated in the Chua’s
system [22, 25].

4. Circuit simulations and DSP-assisted validations

Some circuit simulation platforms, for examples, NI Multisim [26, 28], Pspice [29–31], and PSIM [21, 32]
et al. are widely used to validate the dynamics of nonlinear circuits. Especially, PSIM can provide effective
operation environments for verifications of initial condition-induced coexisting behaviors. When analog
circuit experiment is carried, it is easy to obtain the three point attractors as they have big attraction basins
being connected with corresponding equilibria. However, the hidden attractors have very small attraction
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(a) (b) (c)

(d) (e) (f)

Figure 8: General view of attraction basins in the section v2(0) = 0, where the cyan, green, and blue basins
correspond to the point attractors located in the equilibria S4, S3, and S0, respectively. The orange/yellow basins
with black cross trajectories correspond to hidden attractors. Coexistence of three point attractors with (a) one
hidden period-1 limit cycle for R = 1.78 kΩ (b) two symmetric hidden period-1 limit cycles for R = 1.74 kΩ (c)
two symmetric hidden period-2 limit cycles for R = 1.72 kΩ (d) two symmetric hidden period-4 limit cycles for
R = 1.7185 kΩ (e) two symmetric hidden chaotic attractors for R = 1.716 kΩ (f) one hidden chaotic attractor for
R = 1.7 kΩ.

basins located far away from all equilibria. It is difficult, at least for the time being, to accurately validate
the hidden attractors. In this section, we first use PSIM to verify the hidden attractors. Furthermore,
DSP-assisted validations are presented as the complement for experiments.

4.1. PSIM simulations

With the schematic diagram of Fig. 1, an analog electronic circuit model is built in PSIM 9.0.3,
as shown in Fig. 10. The setup of ‘Simulation Control’ is Timestep = 0.2 µs, Totaltime = 0.1 s, and
Printtime = 50 ms, respectively. The ‘Voltage Vs+’ and ‘Voltage Vs-’ for the op-amps are 13 V and
−13 V, respectively.

With the parameters and initial values of Fig. 10, the circuitry simulation results of phase portraits
and the time sequences of three variables are shown in Fig. 11. Fix other parameters in Table 1 and
set R as 1.78 kΩ, 1.74 kΩ, 1.72 kΩ, 1.7185 kΩ, 1.716 kΩ, and 1.7 kΩ, the circuitry simulation results are
shown in Fig. 12(a)-(f), where the magenta and black orbits are excited by initial values (0 V, 1.9 V, 0 A)
and (0 V,−1.9 V, 0 A), respectively. It is seen that the transitions from period-1 limit cycle to chaotic
attractor indicate a identical period-doubling bifurcation route to chaos. The circuit simulation results are
consistent well with the numerical analyses.

It is noted that numerical simulations of nonlinear ODEs systems suffer from errors due to time
discretization, and only the trajectories over a finite-time interval can be simulated [27, 33]. PSIM, as
well as any other simulator, also suffer from discretization effect, i.e., finite tolerance [24, 30]. In this
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(d) (e) (f)

Figure 9: Local view of hidden attractors overplotted on corresponding basins for (a) R = 1.78 kΩ (b) R = 1.74 kΩ
(c) R = 1.72 kΩ (d) R = 1.7185 kΩ (e) R = 1.716 kΩ (f) R = 1.7 kΩ.

contribution, a large number of simulations performed on PSIM show that discretization has limited
influence for finite-time dynamics with Timestep ≤ 0.2 µs.

4.2. DSP-assisted experiments

Additionally, the system model of (6) is implemented by using DSP. The system (6) is first discretized
by the fourth-order Runge-Kutta algorithm (the specific discretization process can refer to [34]). The
isolated emulator YXDSP-XDS100V3 in tandem with core DSP processing chip TMS320F28335 are used
for programming and emulation. In combination with the D/A converter DAC8552, two output signal
can be measured by the probes of digital oscilloscope. With the X-Y display mode, the experimental
result of hidden chaotic attractor is captured, as shown in Fig. 13. Moreover, with different R and initial
conditions, the phase portraits of periodic limit cycle, twin hidden attractors, and the typical hidden chaotic
attractors are measured and shown in Fig. 14(a)-(j), respectively. The DSP-assisted experimental results
are consistent with that obtained via numerical simulations and circuitry simulations, which validate the
existence of hidden attractors and coexisting attractors.

5. Conclusion

In this paper, the design and dynamics analysis of a modified Chua’s circuit have been presented. First,
by using two nonlinear resistors, a 5-segment piecewise-linear Chua’s diode was designed. The slopes of the
inner three segments satisfyGb < Ga < 0 and have the identical characteristics with the Chua’s nonlinearity
proposed in [16]. With this Chua’s diode, a modified Chua’s circuit with five equilibria including three
stable node-foci and two unstable saddles was further implemented. Rich dynamical behaviors such as
bifurcation and chaos were investigated by bifurcations diagrams and Lyapunov exponents. In addition to
these dynamics, the multistability phenomena of coexisting hidden attractors with point attractors were
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Figure 10: Modified Chua’s circuit built in PSIM
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Figure 11: PSIM simulations of hidden chaotic attractor. (a) phase portrait in v1 − v2 plane (b) phase portrait
in v1 − i3 plane (c) phase portrait in v2 − i3 plane (d) time sequences of v1(t), v2(t), and i3(t).

also noticed in the entire period-doubling bifurcation route. Up to five coexisting attractors including three
point attractors and two symmetric hidden attractors can be generated in this Chua’s circuit. It was also
demonstrated that the hidden attractors have very small basins of attraction not being connected with
any fixed point. Besides, the existence of hidden attractors and coexisting attractors have been validated
by the PSIM circuit simulations and DSP-assisted experiments.

Some open problems deserve further study. For examples, what is the maximum number of coexisting
attractors (including the self-excited and hidden attractors) that can be generated in the Chua’s system
[25], what is the application prospect for hidden chaotic dynamics in chaos-based secure communications
[35], and how to achieve an effective experimental method for validations of hidden attractors, et al.
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(a) (b) (c)

(d) (e) (f)

Figure 12: PSIM simulations of hidden attractors for different R, where the parameters in Table 1 are used. The
attractors marked with magenta and black are excited from ICs (0 V, 1.9 V, 0 A) and (0 V,−1.9 V, 0 A), respectively.
(a) period-1 limit cycle for R = 1.78 kΩ (b) twin period-1 limit cycles for R = 1.74 kΩ (c) twin period-2 limit
cycles for R = 1.72 kΩ (d) twin period-4 limit cycles for R = 1.7185 kΩ (e) twin chaotic attractors for R = 1.716 kΩ
(f) chaotic attractor for R = 1.7 kΩ.
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Figure 14: Experimental phase portraits of hidden attractors for different R, where the resistances and initial
conditions are given in corresponding sub-figures (a) period-1 limit cycle (b) hidden chaotic attractor (c) left
(twin) period-1 limit cycle (d) right (twin) period-1 limit cycle (e) left (twin) period-2 limit cycles (f) right (twin)
period-2 limit cycle (g) left (twin) period-4 limit cycle (g) right (twin) period-4 limit cycle (i) left (twin) chaotic
attractors (j) right (twin) chaotic attractors.
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