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SEMMES SURFACES AND INTRINSIC LIPSCHITZ GRAPHS IN THE

HEISENBERG GROUP

KATRIN FÄSSLER, TUOMAS ORPONEN, AND SÉVERINE RIGOT

ABSTRACT. A Semmes surface in the Heisenberg group is a closed set S that is upper
Ahlfors-regular with codimension one and satisfies the following condition, referred to as
Condition B. Every ball B(x, r) with x ∈ S and 0 < r < diamS contains two balls with
radii comparable to r which are contained in different connected components of the com-
plement of S. Analogous sets in Euclidean spaces were introduced by Semmes in the late
80’s. We prove that Semmes surfaces in the Heisenberg group are lower Ahlfors-regular
with codimension one and have big pieces of intrinsic Lipschitz graphs. In particular, our
result applies to the boundary of chord-arc domains and of reduced isoperimetric sets.
The proof of the main result uses the concept of quantitative non-monotonicity devel-
oped by Cheeger, Kleiner, Naor, and Young. The approach also yields a new proof for the
big pieces of Lipschitz graphs property of Semmes surfaces in Euclidean spaces.
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1. INTRODUCTION

A study of quantitative rectifiability has recently been initialised in the Heisenberg
groups Hk, modelled after the Euclidean theory of uniformly rectifiable sets, developed by
David and Semmes [15, 16] in the 90’s. A starting point for the theory in Hk is the notion
of intrinsic Lipschitz graphs introduced by Franchi, Serapioni, and Serra Cassano [21, 22],
see also [19]. Some evidence already suggests that intrinsic Lipschitz graphs are suitable
building blocks for developing a theory of quantitative rectifiability, see for instance the
papers of Naor and Young [30, 31] and of the first two authors with Chousionis [11] (we
note that the class of intrinsic Lipschitz graphs studied in [21, 11] coincides with the class
considered in [30, 31], see Remark 2.5). The present paper continues this line of research
and provides further evidence in this direction.

We focus on Semmes surfaces in Hk. These sets were introduced in Euclidean spaces
by Semmes [32] in connection with the study of the boundedness of certain singular
integrals. David [17] proved that Semmes surfaces in Rn are uniformly rectifiable, and
they even satisfy the stronger property of having big pieces of Lipschitz graphs. The main
result in the present paper is the Heisenberg analogue of this theorem.

Before discussing the results more thoroughly, we recall some definitions. We refer to
Section 2.1 for more details about the Heisenberg group Hk, which agrees with R2k × R

as a set and which can be viewed as a metric space of Hausdorff dimension 2k + 2 when
equipped with the Korányi metric.

Definition 1.1 (Upper and lower Ahlfors-regular sets). Let k ∈ N and 0 ≤ s ≤ 2k + 2.
A closed set E ⊂ Hk is upper Ahlfors-regular with dimension s if there is a constant C > 0
such that

Hs(B(p, r) ∩ E) ≤ C rs, p ∈ H
k, r > 0. (1.2)

Similarly, a closed set E ⊂ Hk is lower Ahlfors-regular with dimension s if there is a constant
c > 0 such that

Hs(B(p, r) ∩ E) ≥ c rs, p ∈ E, 0 < r < diamE. (1.3)

If E is both upper and lower Ahlfors-regular with dimension s, then E is called Ahlfors-
regular with dimension s.
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We will mostly be concerned with Ahlfors-regular sets with dimension 2k + 1. So we
will shorten the terminology and say that a closed subset of Hk is upper/lower Ahlfors-
regular, without specifying the dimension, to mean that it is upper/lower Ahlfors-regular
with dimension 2k + 1.

We denote by Ac := Hk \A the complement of a set A ⊂ Hk.

Definition 1.4 (Condition B). A closed set S satisfies Condition B if there is a constant
c > 0 such that the following holds. For all p ∈ S and 0 < r < diamS, there exist q1, q2 in
different connected components of Sc such that

q1, q2 ∈ B(p, r) and min{dist(q1, S),dist(q2, S)} > c r. (1.5)

Semmes surfaces are then defined as follows.

Definition 1.6 (Semmes surfaces). A closed set S ⊂ Hk is called a Semmes surface if S is
upper Ahlfors-regular and satisfies Condition B.

We refer to Definition 2.3 for the definition of intrinsic L-Lipschitz graphs in Hk and
give below the definition of a set with big pieces of intrinsic Lipschitz graphs.

Definition 1.7 (BPiLG). A closed set S ⊂ Hk has big pieces of intrinsic Lipschitz graphs (or
BPiLG in short) if there exist constants L > 0 and c > 0 such that the following holds.
For all p ∈ S and 0 < r < diamS, there exists an intrinsic L-Lipschitz graph Γ such that

H2k+1(B(p, r) ∩ S ∩ Γ) ≥ c r2k+1.

As in the Euclidean setting, BPiLG is a scale-invariant and quantitative notion of recti-
fiability. It implies (2k + 1)-dimensional H-rectifiability, or equivalently HL-rectifiability,
in the sense of [33, Definition 4.101]. Namely, up to a set of null H2k+1 measure, a closed
Ahlfors-regular set with BPiLG can be covered by countably many intrinsic Lipschitz
graphs, but the BPiLG condition is significantly stronger than H-rectifiability.

Our main result reads as follows.

Theorem 1.8. Semmes surfaces in Hk are lower Ahlfors-regular and have big pieces of intrinsic
Lipschitz graphs.

The constants L and c in the BPiLG property can be chosen depending only on k, and
on the upper Ahlfors-regularity and Condition B constants for the Semmes surface. The
lower Ahlfors-regularity constant only depends on k, and the Condition B constant. The
lower Ahlfors-regularity of closed sets satisfying Condition B actually holds in much
more general metric measure spaces than Hk, see Remark 4.3.

Before we give an outline of the proof of Theorem 1.8, we give some applications. We
first recall the corkscrew condition for open sets.

Definition 1.9 (Corkscrew condition). An open set Ω ⊂ Hk satisfies the corkscrew condi-

tion if for every p ∈ ∂Ω and 0 < r < diam ∂Ω, there exist points q1 ∈ Ω and q2 ∈ Ω
c

satisfying (1.5) with S := ∂Ω.

It is clear that the boundary of an open set satisfying the corkscrew condition satisfies
Condition B. However, there are Semmes surfaces that do not arise as the boundary of
some open set satisfying the corkscrew condition, see Section 8.1 for more comments in
this direction. Going back to the corkscrew condition, Theorem 1.8 has the following
immediate consequence.
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Corollary 1.10. Let Ω ⊂ Hk be an open set satisfying the corkscrew condition whose boundary
is upper Ahlfors-regular. Then ∂Ω is lower Ahlfors-regular and has BPiLG.

Corollary 1.10 should be viewed as a quantitative counterpart of the following qual-
itative statement. If Ω ⊂ Hk is an open set satisfying the corkscrew condition whose
boundary has locally finite H2k+1 measure, then ∂Ω is (2k+1)-dimensional H-rectifiable,
or equivalently HL-rectifiable, in the sense of [33, Definition 4.101]. This follows from
the theory of finite H-perimeter sets in Hk, developed by Franchi, Serapioni, and Serra
Cassano in [20], by noting that the topological boundary of such a set coincides with its
measure-theoretic boundary.

We recall that NTA domains are examples of domains satisfying the corkscrew condi-
tion together with an additional (interior) Harnack chain condition. In Euclidean spaces,
NTA domains were introduced in 1982 by Jerison and Kenig [24] and have found nu-
merous applications, in particular in the study of harmonic functions and in the theory
of elliptic equations and free boundary problems. The boundary of an arbitrary NTA
domain need not be rectifiable, let alone have big pieces of Lipschitz graphs. Imposing
the additional assumption that the boundary is Ahlfors-regular leads to the notion of
a chord-arc domain, as stated in Definition 1.11 below in the Heisenberg setting. For
more information and references, we refer for instance to the recent papers [2] of Azzam,
Hofmann, Martell, Nyström, and Toro, [1] of Azzam, and [3] of Badger in the Euclidean
setting. NTA domains in Hk have been investigated by Capogna and Tang [8], and in
more general Carnot groups by Capogna and Garofalo [5] and Monti and Morbidelli
[29]. See also the survey [7] by Capogna, Garofalo and Nhieu.

Definition 1.11 (Chord-arc domains). An NTA domain with Ahlfors-regular boundary
in Hk is called a chord-arc domain.

Corollary 1.10 applies in particular to chord-arc domains.

Corollary 1.12. The boundary of a chord-arc domain in Hk has BPiLG.

To illustrate Corollary 1.12, we next discuss a simple example of a chord-arc domain in
Hk that is not an intrinsic Lipschitz domain, even though it has smooth boundary in the
Euclidean sense. The same example was presented in [5, Proposition 15] as a motivation
for studying NTA domains in H1.

Example 1.13. Let Ω := {(v, t) ∈ Hk : t > 0} be the upper half-space whose boundary is
H := R2k×{0}. It is easy to see that H∩B(0, r) is not an intrinsic Lipschitz graph for any
r > 0. Nevertheless, we now check that Ω is a corkscrew domain with upper Ahlfors-
regular boundary, so H has BPiLG by Corollary 1.10. First, Ω is actually an NTA domain.
This follows for instance from a result of Monti and Morbidelli [29] since H is smooth.
Alternatively, one can check that Ω satisfies the corkscrew condition via direct geometric
arguments. Next, the upper Ahlfors-regularity of H follows directly from [6, Theorem
1.2], or can be deduced from [20, Corollary 7.7(i)]. Indeed, using left translations and
dilations, the upper Ahlfors-regularity of H is equivalent to

sup
p∈H

H2k+1(B(0, 1) ∩ p ·H) < +∞.
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If P := p · H for some p ∈ H , then P is the boundary of a C1 domain, and it follows
from [20, Corollary 7.7(i)] that

H2k+1(B(0, 1) ∩ P ) ∼k

∫

B(0,1)∩P
|C(q)n| dH2k

Euc(q)

where n denotes the unit Euclidean normal to P , the expression of |C(p)n| is given
in (4.11), and H2k

Euc denotes the 2k-dimensional Hausdorff measure with respect to the
Euclidean distance. Since B(0, 1) is contained in a Euclidean ball with radius 2, it fol-
lows that H2k+1(B(0, 1) ∩ P ) .k 1 which proves the upper Ahlfors-regularity of H . The
lower Ahlfors-regularity of H will be proven in (4.12), or follows again from [6, Theorem
1.2]. This last remark together with the previous ones hence show that Ω is a chord-arc
domain.

Other examples of Semmes surfaces in Hk are given by the boundaries of reduced
isoperimetric sets. We recall that a measurable set E ⊂ Hk is said to be isoperimetric if

PerH(E,Hk) ≤ PerH(F,H
k)

for every measurable set F ⊂ Hk such that H2k+2(F ) = H2k+2(E), where PerH denotes
the H-perimeter. We refer to [20] for the definition of H-perimeter. The existence of
isoperimetric sets in Hk, and more generally in any Carnot group, has been proven by the
third author with Leonardi [26, Theorem 3.2]. It is still an open question to find explicitly
which sets are isoperimetric in this setting. One of the reasons why this question remains
open is the difficulty of proving a priori regularity estimates for isoperimetric sets. It was
however shown in [26] that every isoperimetric set E is equivalent to a unique open set
Ω, meaning that H2k+2(E △ Ω) = 0, which satisfies the corkscrew condition and whose
boundary is Ahlfors-regular [26, Theorem 3.3]. Such a set Ω is still isoperimetric and is
called a reduced isoperimetric set. Corollary 1.10 can hence be applied to boundaries of
reduced isoperimetric sets.

Corollary 1.14. The boundary of a reduced isoperimetric set in Hk has BPiLG.

We give now an outline of the proof of Theorem 1.8, the details of which can be found
in Sections 3 to 7. As already mentioned, Theorem 1.8 is the Heisenberg analogue of
David’s Euclidean result [17, Proposition 2]. Several different proofs for the Euclidean
result, besides [17], are available in the literature and can be found in [14] and [18]. The
general strategy of our proof is inspired by the strategy in [18]. However, as far as we
can tell, the arguments to make this strategy work in the Euclidean setting do not eas-
ily translate to Hk, and neither do the other known proofs of the Euclidean analogue
of Theorem 1.8. Our arguments to implement the strategy in the Heisenberg setting
will hence be quite different from Euclidean ones, and are inspired by the concept of
non-monotonicity introduced by Cheeger, Kleiner and Naor in [10], and by some of the
techniques developed by Naor and Young in [31].

Following the general strategy of [18], we prove that a Semmes surface S is lower
Ahlfors-regular and has BPiLG by showing that S has the following properties. First,
S is lower Ahlfors-regular by Proposition 4.1. This will be obtained as a consequence
of the relative isoperimetric inequality in Hk. Next, S has big vertical projections (BVP),
see Definition 4.4 and Proposition 4.6. Roughly speaking, BVP is a uniform and scale
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invariant way of requiring that, for every ball B centred on S, there is a vertical sub-
group onto which B ∩ S has a large projection in H2k+1 measure. Finally, S satisfies the
weak geometric lemma (WGL) for vertical hyperplanes, see Definition 6.1 and Proposition 6.3.
Informally, WGL for vertical hyperplanes states that S can be well-approximated by ver-
tical hyperplanes at most points and scales. For closed Ahlfors-regular sets in Hk, the
implication

BVP + WGL for vertical hyperplanes =⇒ BPiLG

is the Heisenberg analogue of a Euclidean result due to David and Semmes [18, The-
orem 1.14]. It has been proven in H1 by the first two authors with Chousionis in [11].
The extension of this result to higher dimensional Heisenberg groups will be given in
Section 7, see Theorem 7.1, and this will allow us to conclude the proof of Theorem 1.8.

A challenge in Hk is to deduce from Condition B, which does not include any refer-
ence to the horizontal distribution of the Heisenberg group, information about the family
of vertical projections and their fibers, which are horizontal lines. This challenge is not
present in Rn, where lines in all directions appear as fibers of orthogonal projections.
Moreover, unlike orthogonal projections in Rn, group projections onto a vertical sub-
group are not Lipschitz maps when both Hk and the vertical subgroup are equipped
with the Korányi distance. Consequently, while showing that a Semmes surface in Rn

has big projections is a rather immediate consequence of Condition B, proving the cor-
responding results in Hk is not so simple. Complications related to the fact that we are
dealing with a restricted family of lines also appear in the proof of WGL for vertical
hyperplanes.

We introduce in Section 3.1 the notion of horizontal width as a central tool in the proof
of both BVP and WGL for vertical hyperplanes. This notion is inspired by the con-
cept of non-monotonicity, introduced by Cheeger, Kleiner, and Naor in [10]. The non-
monotonicity of a given set is indeed controlled by the horizontal width of its boundary,
see Lemma 3.4 and Proposition 3.7. The novelty here is that horizontal width turns out
to be a suitable tool to deal with Semmes surfaces that do not necessarily arise as bound-
aries of sets satisfying the corkscrew condition.

We show that if the horizontal width of a Semmes surface S is small inside a ball,
then S is well-approximated, in a bilateral way, by a hyperplane inside a slightly smaller
ball, Corollary 3.24. Our proof goes through a first step, Corollary 3.13, which combines
the control of the non-monotonicity of every connected components of the complement
of S by the horizontal width of S with a result due to Naor and Young [31, Proposi-
tion 66]. Naor and Young’s result is itself inspired by a deep stability theorem for mono-
tone sets due to Cheeger, Kleiner and Naor. Condition B first appears in the second step
of the proof of Corollary 3.24 and allows us to prove that if S satisfies the conclusion
of Corollary 3.13, namely, if all connected components of its complement are measure-
theoretically close to half-spaces inside a ball, then S is rather flat in a slightly smaller
ball, see Proposition 3.15.

With Corollary 3.24 in hand, we can then proceed to the proof of BVP and WGL for
vertical hyperplanes. The proof of BVP is given in Section 4. Then Section 5 is devoted
to the proof of the validity of the bilateral weak geometric lemma (BWGL) for vertical
hyperplanes, see Definition 5.8 and Proposition 5.11. BWGL is stronger than WGL and
obviously implies WGL for vertical hyperplanes, see Section 6. Our proof of the validity
of BWGL for vertical hyperplanes relies on the following facts. First, we prove that, for
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a closed upper Ahlfors-regular set, balls with large horizontal width satisfy a Carleson
packing condition, Proposition 5.1. Combined with Corollary 3.24, this implies that a
Semmes surface is well-approximated, in a bilateral way, by arbitrary hyperplanes at
most points and scales, Proposition 5.7. Then we upgrade this approximation by arbi-
trary hyperplanes to a similar approximation by vertical hyperplanes, Proposition 5.11.
We explicitly note in Section 5.3 that the validity of BWGL for vertical hyperplanes for
a closed Ahlfors-regular set is equivalent to the validity of BWGL for arbitrary hyper-
planes, Theorem 5.10. The proof of this latter fact is already essentially contained in the
work of Naor and Young [31].

We end the paper with a section where we first comment on connections as well as
differences, between Naor and Young’s work [31, Section 9] and the setting and results
of the present paper. This suggests further questions to better understand the theory
of “uniform rectifiability” that is now emerging in the Heisenberg setting. In the final
Section 8.2, we go back to Euclidean spaces and note that the method of the current
paper applies to the Euclidean setting, too, and gives a direct proof of the validity of the
bilateral weak geometric lemma for Semmes surfaces in Rn. As a consequence, it also
gives a new path for the proof of the big pieces of Lipschitz graphs property for Semmes
surfaces in Euclidean spaces.

2. PRELIMINARIES

In this section, we introduce some of the concepts frequently used in the rest of the
paper and state notational conventions.

2.1. The Heisenberg group. For a fixed integer k ≥ 1, we identify the Heisenberg group
Hk with R2k × R equipped with the group law

(v, t) · (v′, t′) :=
(
v + v′, t+ t′ + ω(v, v′)/2

)
, (v, t), (v′, t′) ∈ H

k,

where ω(v, v′) :=
∑k

j=1 vjv
′
j+k − vj+kv

′
j for v = (v1, . . . , v2k), v′ = (v′1, . . . , v

′
2k) ∈ R2k.

We equip Hk with the Korányi norm ‖ · ‖ and Korányi metric d defined respectively by

‖(v, t)‖ := 4
√

|v|4 + 16t2 and d(p, q) := ‖q−1 · p‖,

where | · | denotes the Euclidean norm in R2k.
The metric d is homogeneous, meaning that it is left-invariant, that is, d(p · q, p · q′) =

d(q, q′) for all p, q, q′ ∈ Hk, and one-homogeneous with respect to the Heisenberg dilations
(δr)r>0 given by

δr : H
k → H

k, δr(v, t) := (rv, r2t),

that is, d(δr(p), δr(q)) = rd(p, q) for all p, q ∈ Hk and r > 0. We recall that the family
(δr)r>0 of dilations is a one-parameter group of group automorphisms of Hk. We also
recall that any two homogeneous distances on Hk are biLipschitz equivalent.

For s ≥ 0, we denote by Hs the Hausdorff measure of dimension s with respect to the
Korányi metric. We recall that H2k+2 is a Haar measure on Hk and is (2k + 2)-uniform.
In particular (Hk, d) is a metric space of Hausdorff dimension 2k + 2. A thorough intro-
duction to (Hk, d) can be found for instance to the monograph [4].

Unless otherwise explicitly stated, all metric notions in Hk will always be defined with
respect the Korányi metric. In particular, we write B(p, r) := {q ∈ Hk : d(p, q) ≤ r} for a
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closed ball in (Hk, d) centred at p ∈ Hk with radius r > 0. By default, a ball will refer to a
closed ball.

2.2. Subgroups, projections, and intrinsic Lipschitz graphs. We denote by S2k−1 the
Euclidean unit sphere in R2k. Given A ⊂ R2k, we denote by A⊥ the linear subspace
orthogonal to A in the Euclidean sense in R2k.

Given ν ∈ S2k−1, we set

Lν := Rν × {0} and Wν := ν⊥ ×R.

These sets are complementary homogeneous subgroups of Hk which means that both Lν

and Wν are subgroups of Hk closed under the family of dilations (δr)r>0 and every point
p ∈ Hk can be uniquely written as p = pWν · pLν for some pWν ∈ Wν and pLν ∈ Lν . We
call horizontal subgroup a set of the form Lν for some ν ∈ S2k−1 and vertical subgroup a set
of the form Wν for some ν ∈ S2k−1.

Given ν ∈ S2k−1, we define the vertical and horizontal projections onto Wν and Lν re-
spectively by

πWν : Hk → Wν , πWν (p) = pWν

πLν : Hk → Lν, πLν (p) = pLν .

Note that, given ν ∈ S2k−1 and p = (v, t) ∈ Hk, we have

πWν (p) = (v − 〈v, ν〉ν, t− ω(v, 〈v, ν〉ν)/2) , (2.1)

πLν (p) = (〈v, ν〉ν, 0), (2.2)

where 〈·, ·〉 denotes the Euclidean scalar product in R2k. Unlike orthogonal projections
in Euclidean spaces, vertical projections πWν are not Lipschitz maps from (Hk, d) to Wν

equipped with the restriction of the Korányi distance.
Given γ > 0 and ν ∈ S2k−1, we define the Heisenberg cone with vertex at origin, opening

γ and direction ν by

Cγ(ν) := {p ∈ H
k : ‖πWν (p)‖ ≤ γ‖πLν (p)‖}.

Definition 2.3 (Intrinsic Lipschitz graphs). Let L > 0 and ν ∈ S2k−1. We say that a set
Γ ⊂ Hk is an intrinsic (L, ν)-Lipschitz graph (over Wν) if πWν (Γ) = Wν and

(p · C1/L(ν)) ∩ Γ = {p} for all p ∈ Γ. (2.4)

We say that Γ ⊂ Hk is an intrinsic L-Lipschitz graph if it is an intrinsic (L, ν)-Lipschitz graph
for some ν ∈ S2k−1, and we say that Γ ⊂ Hk is an intrinsic Lipschitz graph if it is a intrinsic
(L, ν)-Lipschitz graph for some L > 0 and ν ∈ S2k−1.

This definition was introduced by Franchi, Serapioni and Serra Cassano, see for in-
stance [21, 22]. An intrinsic (L, ν)-Lipschitz graph Γ as in Definition 2.3 can be written as
Γ = {p · ϕ(p) : p ∈ Wν} for some map ϕ : Wν → Lν . Moreover, if Γ ⊂ Hk satisfies (2.4)
for some L > 0 and ν ∈ S2k−1, then there is L′ > 0, depending only on L, and an intrinsic
(L′, ν)-Lipschitz graph Γ′ (over Wν) as in Definition 2.3 such that Γ ⊂ Γ′. A detailed
discussion of intrinsic Lipschitz graphs and their properties can be found for instance in
Serra Cassano’s lecture notes [33].

The class of intrinsic Lipschitz graphs given by Definition 2.3 is invariant under a
change of homogeneous norm on Hk. Namely, since any two homogeneous norms on
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Hk are bilipschitz equivalent, replacing the Korányi norm by any other homogeneous
norm in the definition of the cones Cγ(ν) gives rise to the same class of intrinsic Lipschitz
graphs.

Remark 2.5. A different definition for intrinsic Lipschitz graphs was given by Naor and
Young in [31, Section 2.3] using the cones

C̃λ(ν) := {p ∈ H
k : λdSR(p, 0) < dSR(πLν (p), 0)},

where ν ∈ S2k−1 and dSR denotes the sub-Riemannian distance. According to this defi-
nition, a set Γ ⊂ Hk is an intrinsic Lipschitz graph if there exist λ ∈ (0, 1) and ν ∈ S2k−1

such that
(p · C̃λ(ν)) ∩ Γ = ∅ for all p ∈ Γ. (2.6)

It is easy to see that intrinsic Lipschitz graphs in the sense of (2.6) are intrinsic Lipschitz
graphs in the sense of Definition 2.3. Conversely, an intrinsic Lipschitz graph in the sense
of Definition 2.3 is an intrinsic Lipschitz graph in the sense of (2.6) as we explain now.
We note that, although the class of intrinsic Lipschitz graphs given by Definition 2.3 is
independent of the choice of the homogeneous norm, the Korányi norm will nevertheless
play a role for the definition of the cones Cγ(ν) in the following argument. This argument
works with some other choices of homogeneous norms, but does not work for every
arbitrary choice. The Korányi norm has indeed the useful property that there exists ǫ > 0
such that for every ν ∈ S2k−1, one has

‖p‖4 ≥ ‖πLν (p)‖
4 + ǫ‖πWν (p)‖

4 for all p ∈ H
k. (2.7)

This sort of strict convexity property is not true for arbitrary homogeneous norms. For
instance N(v, t) := max{|v|,

√
|t|} defines a homogeneous norm on Hk for which there

exists a point p with πWν (p) 6= 0, yet N(p) = N(πLν (p)). Inequality (2.7) for the Korányi
norm implies for every γ > 0 the existence of λ ∈ (0, 1) such that

C̃λ(ν) ⊂ Cγ(ν) \ {0}

as can be seen by the following simple computation. For p /∈ Cγ(ν), one finds

‖p‖4 ≥ ‖πLν (p)‖
4 + ǫ‖πWν (p)‖

4 ≥ ‖πLν (p)‖
4 + ǫγ4‖πLν (p)‖

4,

so that

dSR(p, 0)
4 ≥ ‖p‖4 ≥

(
1 + ǫγ4

)
‖πLν (p)‖

4 =
(
1 + ǫγ4

)
dSR(πLν (p), 0)

4,

and hence p /∈ C̃λ(ν) for λ = (1 + ǫγ4)−1/4.

2.3. Horizontal lines.

Definition 2.8 (Horizontal lines). A horizontal line in Hk is a left-translate of a horizontal
subgroup, that is, a set of the form p · Lν for some p ∈ Hk and ν ∈ S2k−1. We denote by L
the family of all horizontal lines in Hk.

Considering horizontal lines in the Heisenberg setting is natural in light of the specific
geometry of Hk. Restricted to a horizontal subgroup, the Korányi metric agrees with
the Euclidean distance. Using left-translations, it follows that horizontal lines endowed
with the restriction of the Korányi metric are isometric to the real line with its standard
Euclidean distance and consequently have Hausdorff dimension 1 in (Hk, d). Moreover,
one finds for every horizontal line ℓ ∈ L and for every segment I ⊂ ℓ that H1(I) =
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diam(I). On the contrary, non-horizontal lines have Hausdorff dimension 2 with respect
to the Korányi metric.

Up to a multiplicative constant, there exists a unique non-trivial left-invariant measure
h on L, in H1 see [10, Section 4.2]. The following expression for h will be convenient for
our purposes. For a Borel set A ⊂ L, we write

h(A) :=

∫

S2k−1

H2k+1({p ∈ Wν : p · Lν ∈ A}) dν (2.9)

where dν denotes the surface measure on S2k−1.
Measures of this form appear in the kinematic formula given for Carnot groups in [28,

Proposition 3.13], but the presentation simplifies in our setting. It can indeed easily be
checked that (2.9) defines a non-trivial measure h on L. Moreover, h is left-invariant, as
we verify in Lemma 2.11. By uniqueness, h coincides, up to a multiplicative constant,
with the left-invariant measures on L used in [10] and [31]. For a related discussion,
see [10, Section 11.1]. Note that h has the following homogeneity property,

h(δr(A)) = r2k+1h(A), for every Borel set A ⊂ L, r > 0.

As an immediate consequence of (2.9), we also note for future reference that

h(L(A)) =

∫

S2k−1

H2k+1(πWν (A)) dν (2.10)

where L(A) := {ℓ ∈ L : ℓ ∩A 6= ∅} denotes the set of horizontal lines meeting A ⊂ Hk.

Lemma 2.11. The measure h is left-invariant. Namely, for every Borel set A ⊂ L and p ∈ Hk,
one has h(p · A) = h(A).

Proof. Start by writing

h(A) =

∫

S2k−1

H2k+1({p ∈ Wν : p · Lν ∈ A}) dν =

∫

S2k−1

H2k+1(Aν) dν, (2.12)

where Aν := {p ∈ Wν : p · Lν ∈ A}. Now, for ν ∈ S2k−1 and p ∈ Hk fixed, we define the
map Φp,ν : Wν → Wν by

Φp,ν(q) := πWν (p · q) = p · q · πLν (p)
−1, q ∈ Wν .

Note that
Φp−1,ν = (Φp,ν)

−1. (2.13)

Then, we recall a result of Franchi and Serapioni [19, Lemma 2.20], which states that Φp,ν ,
seen as a map of R2k, has Jacobian identically equal to 1, which implies that

H2k+1(Φp,ν(Aν)) = H2k+1(Aν), p ∈ H
k, ν ∈ S

2k−1.

Then, we write

Φp,ν(Aν) = {Φp,ν(q) ∈ Wν : q · Lν ∈ A}

= {q ∈ Wν : Φp−1,ν(q) · Lν ∈ A}

= {q ∈ Wν : πWν (p
−1 · q) · Lν ∈ A}

= {q ∈ Wν : q · Lν ∈ p · A},
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using (2.13) in the passage to the second line. Consequently, by (2.12),

h(A) =

∫

S2k−1

H2k+1(Φp,ν(Aν)) dν

=

∫

S2k−1

H2k+1({q ∈ Wν : q · Lν ∈ p · A}) dν = h(p · A),

as claimed. �

2.4. Notations. For A,B > 0, we write A .k B to mean that there is a constant C > 0
whose value depends only on the dimensional parameter k of Hk such that A ≤ CB.
We write A .reg B to mean that the value of C is allowed to depend also on the regu-
larity, that is, upper/lower Ahlfors-regularity and/or Condition B, constants of the set
or measure under consideration, in addition to the dimensional parameter k. Given an
auxiliary parameter h, distinct from the dimensional parameter k, we write A .h B to
mean that the value of C is allowed to depend also on h, in addition to the data men-
tioned above. We abbreviate the two-sided inequalities A .k B .k A, A .reg B .reg A,
and A .h B .h A by A ∼k B, A ∼reg B and A ∼h B respectively. We shall also of-
ten shorten the terminology, saying that a constant depends only on the upper/lower
Ahlfors-regularity and/or Condition B constants of a given set, and/or on other auxil-
iary parameters, when the constant may also depend on the dimensional parameter k.

3. APPROXIMATING SEMMES SURFACES WITH SMALL WIDTH BY HYPERPLANES

In this section, we introduce the notion of horizontal width and prove a bilateral ap-
proximation by hyperplanes for Semmes surfaces with small width. See Corollary 3.24
that will be a key tool in the proof of both BVP and BWGL for Semmes surfaces.

3.1. Horizontal width. Given a horizontal line ℓ ∈ L, we define the horizontal width of a
set E ⊂ Hk with respect to ℓ in a ball B by

widthB(E, ℓ) := diam(B ∩ E ∩ ℓ).

Recall that balls in this paper are closed, unless otherwise specified. The definition of
width is inspired by the notions of non-convexity and non-monotonicity introduced by
Cheeger, Kleiner and Naor in [10, Section 4.2]. Given ℓ ∈ L, a set A ⊂ Hk such that A ∩ ℓ
is H1 measurable, and a ball B ⊂ Hk, the non-convexity NCB(A, ℓ) of A with respect to ℓ
on B is defined by

NCB(A, ℓ) := inf

{∫

B∩ℓ
|χA − χI | dH

1 : I ⊂ ℓ is an interval
}

where we allow the interval I to be empty in the infimum above. The non-monotonicity
NMB(A, ℓ) of A with respect to ℓ on B is then defined by

NMB(A, ℓ) := NCB(A, ℓ) + NCB(A
c, ℓ).

For a fixed line ℓ ∈ L, the relationship between the non-monotonicity of a set and
the horizontal width of its boundary is given by Lemma 3.4 below. We start with the
following observation regarding non-convexity. Recall that L(A) := {ℓ ∈ L : ℓ ∩ A 6= ∅}
denotes the set of horizontal lines meeting A ⊂ Hk.
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Lemma 3.1. Let A ⊂ Hk, let B be a ball, and let ℓ ∈ L(B ∩ ∂A) be a line such that A ∩ ℓ is H1

measurable. Then,

NCB(A
c, ℓ) ≤ H1(A ∩ J),

where, picking any orientation for ℓ, we denote by J the segment from min(B ∩ ∂A ∩ ℓ) to
max(B ∩ ∂A ∩ ℓ).

Proof. Note that since B is Euclidean convex when identifying Hk with R2k × R, the set
B ∩ ℓ is an interval. We may assume that B ∩Ac ∩ ℓ 6= ∅, otherwise NCB(A

c, ℓ) is trivially
zero. Let I be the (possibly degenerate) segment from inf(B ∩ ℓ ∩Ac) to sup(B ∩ ℓ ∩Ac).
We observe that

|χAc(p)− χI(p)| ≤ χA∩I(p), p ∈ B ∩ ℓ. (3.2)

Indeed, if the expression on the left-hand side is non-zero, then either p ∈ Ac \ I or
p ∈ I \ Ac. But the first case cannot occur, since B ∩ Ac ∩ ℓ ⊂ I by definition of I . In the
second case, p ∈ A ∩ I as claimed.

FIGURE 1. The set A, and segments I and J .

Next, we note that
A ∩ I ⊂ A ∩ J. (3.3)

To see this, it suffices to argue that I \ J ⊂ Ac. We write a := min(B ∩ ∂A ∩ ℓ) and
b := max(B ∩ ∂A ∩ ℓ) so that J = [a, b], see Figure 1. Note that I \ J consists of at most
two half-open segments I l and Ir; one to the left of a, and one to the right from b. Since
there are no points of B ∩ ∂A to the left of a, the segment between min(B ∩ ℓ) and a –
including I l – lies entirely in A, or in Ac. In the latter case we are done. In the former
case, the definition of I implies that min I ≥ a, and hence I l = ∅. A similar reasoning
shows that Ir ⊂ Ac.

Now, we may combine (3.2) and (3.3) to deduce

NCB(A
c, ℓ) ≤

∫

B∩ℓ
|χAc − χI | dH

1 ≤ H1(A ∩ J),

which concludes the proof of the lemma. �

Lemma 3.4. Let A ⊂ Hk, let B be a ball, and let ℓ ∈ L such that A ∩ ℓ is H1 measurable. Then,

NMB(A, ℓ) ≤ widthB(∂A, ℓ).
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Proof. Assume that ℓ ∈ L(B ∩ ∂A), otherwise the lemma is trivial. Pick any orientation
for ℓ and write J for the segment from a := min(B ∩ ∂A ∩ ℓ) to b := max(B ∩ ∂A ∩ ℓ).
Since ℓ ∈ L is a horizontal line, we have H1(J) = diam(J) = widthB(∂A, ℓ). Then apply
Lemma 3.1 to A and Ac. Since ∂A = ∂Ac, we obtain

NCB(A
c, ℓ) ≤ H1(A ∩ J) and NCB(A, ℓ) ≤ H1(Ac ∩ J),

and hence,

NMB(A, ℓ) = NCB(A, ℓ) + NCB(A
c, ℓ) ≤ H1(J) = widthB(∂A, ℓ),

as claimed. �

Next, following [10], we define the non-monotonicity of a measurable set A ⊂ Hk in a
ball B of radius r > 0 by

NMB(A) :=
1

r2k+2

∫

L

NMB(A, ℓ) dh(ℓ). (3.5)

The quantity NMB(A) is invariant under left translations and scaling (of both B and A
simultaneously). We remark, leaving the details to the reader, that if A ⊂ Hk is measur-
able, then A ∩ ℓ is H1 measurable for h almost every ℓ ∈ L, so NMB(A, ℓ) is well defined
h almost surely, and the map ℓ ∈ L 7→ NMB(A, ℓ) is h-measurable.

In a similar fashion, for a closed set E ⊂ Hk, we define the horizontal width of E in a
ball B of radius r > 0 by

widthB(E) :=
1

r2k+2

∫

L

widthB(E, ℓ) dh(ℓ), (3.6)

We justify briefly the h-measurability of the map ℓ ∈ L 7→ widthB(E, ℓ). Since we assume
that E is closed, the intersection E∩B is compact. Hence, for any n ∈ N, we can cover E∩
B by finitely many balls of radius 1/n. If the union of these balls is denoted by En, then
it is clear that ℓ ∈ L 7→ widthB(En, ℓ) is h-measurable, and widthB(En, ℓ) ց widthB(E, ℓ)
for any fixed line ℓ ∈ L, by the compactness of E ∩ B. Hence ℓ ∈ L 7→ widthB(E, ℓ) is
h-measurable.

By Lemma 3.4, every measurable set A ⊂ Hk satisfies NMB(A) ≤ widthB(∂A). We
apply now this inequality to the connected components of the complement of a given
closed set E, noting that their boundaries are contained in E.

Proposition 3.7. Given a closed set E ⊂ Hk, one has

NMB(Ω) ≤ widthB(E) for all connected components Ω of Ec.

Next, we recall that, given ℓ ∈ L, a set I ⊂ ℓ is said to be a monotone subset of ℓ if its
characteristic function is a monotone function on ℓ, up to a null set. Equivalently, up to a
null set, I and ℓ \ I are intervals. As the terminology suggests, the non-monotonicity of a
set A ⊂ Hk with respect to a horizontal line ℓ ∈ L on a ball B gives a way to measure how
A∩ℓ differs from being a monotone subset of ℓ inside B, see Lemma 3.10. A set A ⊂ Hk is
said to be monotone if for h almost all ℓ ∈ L, the intersection A∩ ℓ is a monotone subset of
ℓ. These definitions are due to Cheeger and Kleiner [9]. For the sake of completeness, we
recall below the classification of monotone sets in Hk proved in [9] for k = 1 and in [31]
for k ≥ 2.



14 KATRIN FÄSSLER, TUOMAS ORPONEN, AND SÉVERINE RIGOT

Theorem 3.8. [9, Theorem 5.1 (k = 1)] [31, Proposition 65 (k ≥ 2)] If a measurable set
A ⊂ Hk is monotone, then, up to an H2k+2 null set, either A = ∅, A = Hk or A is a half-space.

Here a half-space denotes an open subset of Hk whose boundary is an affine hyper-
plane when identifying Hk with R2k × R as a real vector space.

Remark 3.9. A slightly different definition of non-monotonicity, denoted by ÑMB(A, ℓ)
below, is given in [31]. Namely, given ℓ ∈ L, a measurable set A ⊂ Hk such that A ∩ ℓ is
H1 measurable, and a ball B ⊂ Hk,

ÑMB(A, ℓ) := inf

{∫

B∩ℓ
|χA − χI | dH

1 : I is a monotone subset of ℓ
}
,

and

ÑMB(A) :=
1

r2k+2

∫

L

ÑMB(A, ℓ) dh(ℓ)

where r > 0 denotes the radius of B. As an immediate consequence of the definitions,
one has NCB(A, l) ≤ ÑMB(A, ℓ) and ÑMB(A, ℓ) = ÑMB(A

c, ℓ), hence NMB(A) ≤

2 ÑMB(A). Conversely, Lemma 3.10 below shows that ÑMB(A) ≤ NMB(A). Hence
the two notions of non-monotonicity are comparable.

Lemma 3.10. Let A ⊂ Hk, let B be a ball, and let ℓ ∈ L such that A ∩ ℓ is H1 measurable. For
every ǫ > 0, there is a monotone subset I of ℓ such that

∫

B∩ℓ
|χA − χI | dH

1 ≤ NMB(A, ℓ) + ǫ.

Proof. Assume that ℓ ∈ L(B), otherwise I can obviously be taken to be the empty set. Let
I1, I2 ⊂ ℓ be intervals such that

∫

B∩ℓ
|χA − χI1 | dH

1 ≤ NCB(A, ℓ) + ǫ/2,

∫

B∩ℓ
|χAc − χI2 | dH

1 ≤ NCB(A
c, ℓ) + ǫ/2.

Pick any orientation for ℓ and let a := min(B ∩ ℓ), b := max(B ∩ ℓ). If a ∈ I1, then
I := (−∞,max I1] is a monotone subset of ℓ with I ∩ B = I1 ∩ B. Hence I gives the
required conclusion by the choice of I1. Similarly, if b ∈ I1, then I := [min I1,+∞) gives
the required the conclusion. If a ∈ I2, then J := (−∞,max I2] is a monotone subset of ℓ
with J ∩B = I2 ∩B. Hence, setting I := Jc, we get

∫

B∩ℓ
|χA − χI | dH

1 =

∫

B∩ℓ
|χAc − χI2 | dH

1,

and I gives the required conclusion by the choice of I2. Similarly, if b ∈ I2, then I :=
(−∞,min I2] gives the required conclusion. It remains now to consider the case where I1
and I2 are strict non-empty subintervals of B ∩ ℓ. If min I1 ≤ min I2, see Figure 2, we set
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I := (−∞,max I1]. We have [a,min I1) ⊂ Ic2 ∩ I , hence,
∫

B∩ℓ
|χA − χI | dH

1 ≤

∫

[a,min I1]
|χA − χIc

2
| dH1 +

∫

[min I1,b]
|χA − χI1 | dH

1

≤

∫

B∩ℓ
|χAc − χI2 | dH

1 +

∫

B∩ℓ
|χA − χI1 | dH

1

≤ NMB(A, ℓ) + ǫ

by the choice of I1 and I2. If min I2 < min I1, we set I := [max I2,+∞). We have

a b

I1

I2
min I1

min I2

A

A
c

FIGURE 2. The intervals I1 and I2.

[a,min I2) ⊂ Ic1 ∩ Ic, hence,
∫

B∩ℓ
|χA − χI | dH

1 ≤

∫

[a,min I2]
|χA − χI1 | dH

1 +

∫

[min I2,b]
|χA − χIc

2
| dH1

≤

∫

B∩ℓ
|χA − χI1 | dH

1 +

∫

B∩ℓ
|χAc − χI2 | dH

1

≤ NMB(A, ℓ) + ǫ

by the choice of I1 and I2. �

3.2. The approximation. The main goal of this section is Corollary 3.24, which roughly
states that a Semmes surface with small width in a given ball can be bilaterally approxi-
mated by a hyperplane in a slightly smaller ball.

Corollary 3.24 is obtained by combining Propositions 3.11 and 3.15. The former
states that a set with upper Ahlfors-regular boundary and small non-monotonicity in
some ball is measure-theoretically close to a half-space in a slightly smaller ball. This
result is due to Naor and Young [31, Proposition 66]. It is inspired by a deep result of
Cheeger, Kleiner, and Naor, [10, Theorem 4.3]. Proposition 3.11 is less quantitative than
[10, Theorem 4.3], but sufficient for our purposes. The statement of Proposition 3.11 dif-
fers slightly from [31, Proposition 66], however, taking into account Remark 3.9, the proof
given in [31] can be verbatim rephrased to give a proof of Proposition 3.11 as stated here.
The argument uses indeed only upper Ahlfors-regularity rather than Ahlfors-regularity
of the boundary and is based on Theorem 3.8 together with a compactness argument.

A hyperplane in Hk is an affine hyperplane when identifying Hk with R2k × R as a real
vector space. In the rest of the paper, a hyperplane will be typically denoted by P . A
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hyperplane is either vertical, which means that there is ν ∈ S2k−1 such that P = p ·Wν for
every p ∈ P , or horizontal, which means that there is a unique p ∈ P such that P = p ·H
where H := R2k ×{0}. Given a hyperplane P , the two half-spaces with boundary P will
be denoted by P− and P+.

In the next statement, we say that a set is C-upper Ahlfors-regular if the set is upper
Ahlfors-regular (with dimension 2k + 1) and C is a positive constant for which (1.2)
holds with s = 2k + 1.

Proposition 3.11. [31, Proposition 66] For every C > 0 and δ > 0, there exists 0 < γ < 1
such that the following holds. If F ⊂ Hk is measurable with C-upper Ahlfors-regular boundary,
p ∈ Hk, r > 0, and NMB(p,r)(F ) ≤ γ2k+3, then there is a half-space P− ⊂ Hk such that

H2k+2([F △ P−] ∩B(p, γr))

H2k+2(B(p, γr))
≤ δ. (3.12)

Thanks to Proposition 3.7, we infer that if a closed upper Ahlfors-regular set has small
horizontal width in some ball, then one can apply Proposition 3.11 to every connected
component of its complement and one gets the following corollary.

Corollary 3.13. Let S ⊂ Hk be a closed upper Ahlfors-regular set. For every δ > 0, there is
0 < γ < 1, depending only on δ, k and the upper Ahlfors-regularity constant for S, such that
the following holds. If p ∈ Hk, r > 0, and widthB(p,r)(S) ≤ γ2k+3, then, for every connected

component Ω of Sc, there is a half-space P−

Ω ⊂ Hk such that

H2k+2([Ω△ P−

Ω ] ∩B(p, γr))

H2k+2(B(p, γr))
≤ δ. (3.14)

Condition B first appears in Proposition 3.15 below. It states that a closed set satisfying
Condition B whose complementary components are measure-theoretically close to half-
spaces in some ball is itself close to a hyperplane in a slightly smaller ball.

Proposition 3.15. There is a dimensional constant ǫ > 0 such that the following holds for
every 0 < ǫ < ǫ. Assume that S ⊂ Hk is a closed set satisfying Condition B. There exists
δ > 0, depending only on ǫ, k and the Condition B constant for S, such that if p ∈ S and
0 < r < diamS are such that for every connected component Ω of Sc, there exists a half-space
P−

Ω ⊂ Hk with

H2k+2([Ω△ P−

Ω ] ∩B(p, r))

H2k+2(B(p, r))
≤ δ, (3.16)

then, there exists a hyperplane P ⊂ Hk such that dist(q, P ) ≤ ǫr for all q ∈ S ∩B(p, r/80) and
dist(q, S) ≤ ǫr for all q ∈ P ∩B(p, r/80).

Proof. Fix ǫ > 0, which we may assume to be sufficiently small, depending only on k,
for the following arguments to work. Left translations and dilations send connected
components to connected components, hyperplanes to hyperplanes, and half-spaces to
half-spaces, and also preserve the relative size of balls from Condition B, so we may
assume that p = 0 ∈ S and r = 1. We will prove that there is a universal constant
c > 0 such that, for every ǫ > 0 fixed small enough, depending only on k, there exists
a hyperplane P (= P1) ⊂ Hk such that dist(q, P ) ≤ cǫ for all q ∈ S ∩ B(0, 1/40) and
dist(q, S) ≤ 2cǫ for all q ∈ P ∩ B(0, 1/80), provided δ in (3.16) is chosen small enough,
see (3.22) and (3.23).
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We start with the following observation. For every connected component Ω of Sc,
points in S ∩ P−

Ω ∩ B(0, 1/2) must lie close to the boundary PΩ of P−

Ω . Indeed, pick
q ∈ S ∩ P−

Ω ∩ B(0, 1/2) and assume that dist(q, PΩ) > ǫ. Since q ∈ S, we may apply
Condition B to the ball B(q, ǫ) ⊂ P−

Ω ∩B(0, 1) to find inside B(q, ǫ) two balls in different
connected components of Sc with radii ∼reg ǫ. In particular, one of the balls, say B, lies
in [P−

Ω \Ω] ∩B(0, 1) which gives the lower bound

H2k+2([Ω△ P−

Ω ] ∩B(0, 1)) ≥ H2k+2([P−

Ω \Ω] ∩B(0, 1)) ≥ H2k+2(B) &reg ǫ
2k+2.

So, taking δ much smaller than ǫ2k+2 in (3.16), this gives a contradiction. Hence, for every
connected component Ω of Sc, we have

dist(q, PΩ) ≤ ǫ for all q ∈ S ∩ P−

Ω ∩B(0, 1/2). (3.17)

Next, we would like to find one connected component Ω of Hk \ S for which we can
reach a similar conclusion for points q ∈ S ∩ P+

Ω ∩ B(0, 1/40). To this end, we start
by singling out two connected components Ω1, Ω2 of Sc in the following way. Let 0 <
ρ < 1 be a suitable constant, to be chosen small later depending only on ǫ. Then, apply
Condition B to the ball B(0, ρ) to find two distinct connected components Ω1,Ω2 of Sc,
and two balls

B1 ⊂ Ω1 ∩B(0, ρ) and B2 ⊂ Ω2 ∩B(0, ρ)

with radii ∼reg ρ. Then, let P−
1 , P−

2 be the half-spaces, with boundary P1, P2 respectively,
associated to Ω1 and Ω2 as in (3.16), namely,

H2k+2([Ω1 △ P−
1 ] ∩B(0, 1)) .k δ and H2k+2([Ω2 △ P−

2 ] ∩B(0, 1)) .k δ. (3.18)

If δ is small enough, we claim that both hyperplanes P1 and P2 intersect B(0, ρ). To
see this, assume for instance that this fails for P1. Then both balls B1, B2 lie either in
P+
1 or P−

1 . Both cases lead to a contradiction. First, if B1 lies in P+
1 , then B1 ⊂ Ω1 \

P−
1 ⊂ Ω1△P−

1 , which violates the first part of (3.18) for δ much smaller than ρ2k+2, since
H2k+2(B1) ∼reg ρ2k+2. Similarly, if B2 lies in P−

1 , then B2 ⊂ P−
1 \ Ω1 ⊂ Ω1 △ P−

1 , which
once again violates the first part of (3.18).

Now let BEuc denote the Euclidean ball centred at the origin with radius 1/20 so that

B(0, 1/40) ⊂ BEuc ⊂ B(0, 1/2).

We claim that the hyperplanesP1 and P2 lie very close to each other inside BEuc, provided
ρ was chosen small enough compared to ǫ . We quantify this by claiming that P2 ∩ BEuc
lies in the closed Euclidean ǫ2-neighbourhood P1,Euc(ǫ

2) of P1, that is,

P2 ∩BEuc ⊂ P1,Euc(ǫ
2). (3.19)

The argument to prove (3.19) is completely Euclidean. To see what is going on, it is help-
ful to first visualise what happens if the hyperplanes P1, P2 both contain 0. In this case,
if P2 ∩BEuc 6⊂ P1,Euc(ǫ

2), then the intersection P−
1 ∩ P−

2 ∩ BEuc contains a Euclidean ball
B′

Euc with radius ∼k ǫ2, see Figure 3. Then, we note that the same remains true if P1, P2

intersect the small ball B(0, ρ), provided ρ was chosen sufficiently small compared to ǫ.
We indeed start by translating both planes in the Euclidean sense by ≤ cρ for some uni-
versal constant c > 0 so that they contain 0. This is possible since dEuc(p

′, q′) ≤ cd(p′, q′)
for p′, q′ ∈ B(0, 1/2) and for some universal constant c > 0. Then we find a Euclidean ball
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ε
2

FIGURE 3. The planes P1, P2 and the ǫ2-Euclidean ball B′
Euc ⊂ P−

1 ∩ P−
2 ∩

BEuc drawn in black.

with radius ∼k ǫ2 as above, and finally shift back, making the ball a bit smaller if neces-
sary. Since H2k+2 coincides, up to a multiplicative constant, with the (2k+1)-dimensional
Lebesgue measure on R2k × R, we have H2k+2(B′

Euc) ∼k ǫ4k+2 and we get

H2k+2(P−
1 ∩ P−

2 ∩B(0, 1)) &k ǫ4k+2.

But if δ is chosen much smaller than ǫ4k+2, this contradicts (3.18). Indeed, writing A :=
P−
1 ∩ P−

2 ∩B(0, 1), we have

H2k+2(A) = H2k+2(A ∩Ω1) +H2k+2(A \ Ω1)

≤ H2k+2([P−
2 \Ω2] ∩B(0, 1)) +H2k+2([P−

1 \ Ω1] ∩B(0, 1))

≤ H2k+2([Ω2 △ P−
2 ] ∩B(0, 1)) +H2k+2([Ω1 △ P−

1 ] ∩B(0, 1)) .k δ.

(3.20)

Hence (3.19) holds. As a corollary, we now show that

P+
1 ∩ P+

2 ∩BEuc ⊂ P1,Euc(ǫ
2). (3.21)

To see this, let U1 and U2 be the two connected components of BEuc \ P1,Euc(ǫ
2), labelled

so that U1 ⊂ P−
1 and U2 ⊂ P+

1 , see Figure 4. By (3.19), the hyperplane P2 also separates
U1 and U2, hence, either U1 ⊂ P−

2 and U2 ⊂ P+
2 , or U1 ⊂ P+

2 and U2 ⊂ P−
2 . Arguing by

P
1

P
2

U
1

U
2

P
1,Euc

(ε
2
(

BEuc

FIGURE 4. The planes P1, P2 and the components U1, U2.

contradiction, if P+
1 ∩P+

2 ∩BEuc 6⊂ P1,Euc(ǫ
2), then P+

1 ∩P+
2 ∩BEuc meets U2. In particular,
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U2 ∩ P+
2 6= ∅ and it follows that U2 ⊂ P+

2 and U1 ⊂ P−
2 . Hence U1 ⊂ P−

1 ∩ P−
2 ∩ BEuc.

On the other hand, assuming that ǫ is sufficiently small, then H2k+2(U1) ∼k 1 and we get
that H2k+2(P−

1 ∩P−
2 ∩B(0, 1)) &k 1. Choosing δ small enough, this contradicts (3.20) and

hence (3.21) holds.
Now we can conclude the proof of the proposition. Recall that we already know

by (3.17) applied to Ω1 that dist(q, P1) ≤ ǫ for all q ∈ S ∩ P−
1 ∩ B(0, 1/2). Next, pick

q ∈ S ∩ P+
1 ∩B(0, 1/40). First, if q ∈ P+

2 then q ∈ P+
1 ∩ P+

2 ∩ BEuc ⊂ P1,Euc(ǫ
2) by (3.21),

hence dist(q, P1) ≤ c′ǫ for some universal constant c′ > 0. Indeed recall that P1,Euc(ǫ
2)

refers to the Euclidean ǫ2-neighbourhood of P1 and that d(p′, q′) ≤ c′dEuc(p
′, q′)1/2 for

p′, q′ ∈ B(0, 1/2) and for some universal constant c′ > 0. The same obviously still works
if q ∈ P2 by (3.19). Finally, if q ∈ S∩P−

2 ∩B(0, 1/40), then dist(q, P2) ≤ ǫ by (3.17) applied
to Ω2. But P2 ∩ BEuc ⊂ P1,Euc(ǫ

2), hence dist(q, P1) ≤ (1 + c′)ǫ. So we have now proven
that

S ∩B(0, 1/40) ⊂ P1(cǫ) (3.22)

for some universal constant c > 0 and where P1(cǫ) denotes the closed cǫ-neighbourhood
of P1 in the Korányi metric. In other words, S is close to P1 inside B(0, 1/40).

We show now that also P1 is close to S inside a slightly smaller ball, namely,

P1 ∩B(0, 1/80) ⊂ S(2cǫ) (3.23)

where S(2cǫ) denotes the closed 2cǫ-neighbourhood of S in the Korányi metric. This will
complete the proof of the proposition choosing P := P1.

We denote by U ′
1 and U ′

2 the two connected components of B(0, 1/40)\P1(cǫ), labelled
so that U ′

1 ⊂ P−
1 and U ′

2 ⊂ P+
1 . Since U ′

1 is connected and does not meet S by (3.22), it is
contained in some connected component of Sc, that must be Ω1 by the first part of (3.18).
Indeed, otherwise U ′

1 ⊂ [P−
1 \ Ω1] ∩ B(0, 1) and since H2k+2(U ′

1) ∼k 1, at least if ǫ is
sufficiently small, depending only on k, this contradicts the first part of (3.18) choosing
δ small enough. Hence U ′

1 ⊂ Ω1. By (3.19) and the choice of the universal constant c,
we have P2 ∩ B(0, 1/40) ⊂ P1,Euc(ǫ

2) ⊂ P1(cǫ), hence either U ′
1 ⊂ P+

2 or U ′
1 ⊂ P−

2 . We
have that U ′

1 ⊂ P+
2 , because otherwise U ′

1 ⊂ [P−
2 \Ω2] ∩B(0, 1) and this contradicts now

the second part of (3.18). Since P2 separates U ′
1 from U ′

2, it follows that U ′
2 ⊂ P−

2 . Then,
arguing in a similar way as we did for U ′

1 and using the second part of (3.18), we get that
U ′
2 ⊂ Ω2. In particular U ′

1 and U ′
2 are contained in different connected components of

Sc. Going back to the proof of (3.23), we argue by contradiction and assume that there
is q ∈ P1 ∩ B(0, 1/80) with dist(q, S) > 2cǫ. Then, choosing ǫ small enough, we get
that B(q, 2cǫ) ⊂ B(0, 1/40) \ S. On the other hand, B(q, 2cǫ) meets both U ′

1 and U ′
2, and

since U ′
1 and U ′

2 are contained in different connected components of Sc, the ball B(q, 2cǫ)
should meet S, a contradiction. �

Combining Corollary 3.13 and Proposition 3.15 shows that small horizontal width for
a Semmes surface implies flatness.

Corollary 3.24. There is a dimensional constant ǫ > 0 such that the following holds for every
0 < ǫ < ǫ. Let S ⊂ Hk be a Semmes surface. There is 0 < γ < 1, depending only on ǫ, k and
on the upper Ahlfors-regularity and Condition B constants for S, such that the following holds.
If p ∈ S, 0 < r < diamS, and widthB(p,r)(S) ≤ (80γ)2k+3, then there is a hyperplane P ⊂ Hk
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such that

sup
q∈S∩B(p,γr)

dist(q, P ) + sup
q∈P∩B(p,γr)

dist(q, S) ≤ ǫγr.

4. LOWER AHLFORS-REGULARITY AND BIG VERTICAL PROJECTIONS

We first prove in this section that closed subsets of Hk satisfying condition B, and
therefore Semmes surfaces, are lower Ahlfors-regular.

Proposition 4.1 (Lower Ahlfors-regularity for sets satisfying condition B). Let S ⊂ Hk be a
closed set satisfying condition B. Then S is lower Ahlfors-regular with a lower Ahlfors-regularity
constant depending only on k and the Condition B constant of S.

Proof. The proof follows from the relative isoperimetric inequality in Hk. Recall indeed
that there is λ ≥ 1 such that, given E ⊂ Hk measurable, p ∈ Hk, and r > 0, we have

min{H2k+2(B(p, λ−1r)∩E),H2k+2(B(p, λ−1r) \E)}
2k+1

2k+2 .k H2k+1(U(p, r)∩ ∂E) , (4.2)

where U(p, r) denotes the open ball with center p and radius r. This follows from [23,
Theorem 1.18], recalling that the Korányi distance is biLipschitz equivalent to the sub-
Riemannian distance together with the following fact. If H2k+1(U(p, r)∩∂E) < +∞, then
PerH(E,U(p, r)) .k H2k+1(U(p, r) ∩ ∂E) where PerH denotes the H-perimeter. Now let
S ⊂ Hk be a closed set satisfying condition B, p ∈ S and 0 < r < diamS. It follows from
condition B that there are two distinct connected components Ω1, Ω2 of Sc such that

min{H2k+2(B(p, λ−1r) ∩ Ω1),H
2k+2(B(p, λ−1r) ∩ Ω2)} &k r2k+2.

Together with (4.2) we get

H2k+1(B(p, r) ∩ S) ≥ H2k+1(U(p, r) ∩ ∂Ω1)

≥ min{H2k+2(B(p, λ−1r) ∩Ω1),H
2k+2(B(p, λ−1r) \ Ω1)}

2k+1

2k+2

≥ min{H2k+2(B(p, λ−1r) ∩Ω1),H
2k+2(B(p, λ−1r) ∩ Ω2)}

2k+1

2k+2

&k r2k+1

which concludes the proof of the proposition. �

Remark 4.3. The proof of Proposition 4.1 can be extended, with minor modifications, to
get codimension one lower Ahlfors-regularity for closed sets satisfying condition B in
complete doubling metric measure spaces supporting a weak (1, 1)-Poincaré inequality.
Variants of the relative isoperimetric inequality hold indeed true in such spaces, see for
instance [25], which allow to mimic the proof of Proposition 4.1 in this more general
setting.

We next prove that Semmes surfaces in Hk have big vertical projections. We first recall
the definition of the big vertical projections property.

Definition 4.4 (BVP). We say that a set E ⊂ Hk has big vertical projections (or BVP in short)
if there is c > 0 such that, for all p ∈ E and 0 < r < diamE, there is ν ∈ S2k−1 such that

H2k+1(πWν (B(p, r) ∩ E)) ≥ c r2k+1. (4.5)

This rest of this section is devoted to the proof of the following proposition.
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Proposition 4.6 (BVP for Semmes surfaces). Let S ⊂ Hk be a Semmes surface. Then S has
BVP. Moreover, the constant c on the right-hand side of (4.5) can be chosen depending only on k
and the upper Ahlfors-regularity and Condition B constants of S.

Remark 4.7. Note that lower Ahlfors-regularity for a Semmes surface S ⊂ Hk can also be
recovered as a consequence of Proposition 4.6. Although projections πWν are not Lips-
chitz with respect to the Korányi distance, it however follows from [19, Lemma 2.20], see
also [21, Lemma 3.14] and [11, Lemma 3.6], that, for every ν ∈ S2k−1 and A ⊆ Hk, one
has H2k+1(πWν (A)) .k H2k+1(A). Then lower Ahlfors-regularity follows applying this
for A := B(p, r) ∩ S together with (4.5).

We begin the proof of Proposition 4.6. We will actually prove the following slightly
stronger result: we will find a constant c > 0, depending only on k and on the upper
Ahlfors-regularity and Condition B constants for the Semmes surface S, such that, for all
p ∈ S and 0 < r < diamS,

∫

S2k−1

H2k+1(πWν (B(p, r) ∩ S)) dν ≥ c r2k+1. (4.8)

The expression on the left-hand side of (4.8) can be thought of as a Heisenberg version
of the Favard length of B(p, r) ∩ S. The proof of (4.8) for an arbitrary Semmes surface
will follow from its validity for hyperplanes, Lemma 4.9, together with a compactness
argument, Lemma 4.13, and Corollary 3.24.

Lemma 4.9. There is a dimensional constant c > 0 such that if P ⊂ Hk is a hyperplane, p ∈ P ,
and r > 0, then ∫

S2k−1

H2k+1(πWν (B(p, r) ∩ P )) dν ≥ c r2k+1.

Proof. It follows from (2.10) that
∫

S2k−1

H2k+1(πWν (B(p, r) ∩ P )) dν = h(L(B(p, r) ∩ P )).

Using dilations, left translations, and Lemma 2.11, we may assume with no loss of gen-
erality that r = 1 and p = 0 ∈ P .

Next, we use the notion of H-perimeter measure PerH(E, ·) of a measurable set E ⊆
H2k+1 to evaluate this expression further. See for instance [20] for the definition and
properties of H-perimeter. We take E := P− to be one of the two half-spaces bounded by
P . Since P is of class C1 in the Euclidean sense, P− is of locally finite H-perimeter. We
apply to P− and the open ball U(0, 1) the kinematic formula originally due to Montefal-
cone [28], see also [10, (6.1)] and [31, (112)]. Specialized to our setting, this ensures the
existence of a dimensional constant 0 < ck < +∞ such that∫

L

Per(P− ∩ ℓ, U(0, 1) ∩ ℓ) dh(ℓ) = ck PerH(P
−, U(0, 1)).

On the one hand, we note that∫

L

Per(P− ∩ ℓ, U(0, 1) ∩ ℓ) dh(ℓ) = h(L(U(0, 1) ∩ P )). (4.10)

Indeed, since P− is a half-space bounded by P , then Per(P− ∩ ℓ, U(0, 1) ∩ ℓ) = 1 for
horizontal lines ℓ ∈ L meetingP transversally inside U(0, 1), and Per(P−∩ℓ, U(0, 1)∩ℓ) =
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0 otherwise, that is, if either ℓ ⊂ P or ℓ 6∈ L(U(0, 1) ∩ P ). Since h({ℓ ∈ L : ℓ ⊂ P}) = 0,
(4.10) follows, and thus

h(L(U(0, 1) ∩ P )) = ck PerH(P
−, U(0, 1)).

On the other hand, we show that PerH(P−, U(0, 1)) is uniformly bounded away from
zero for all hyperplanes P containing the origin. Indeed, there exists ρ > 0 such that
U(0, 1) contains a Euclidean ball with radius ρ, hence P ∩ U(0, 1) contains a Euclidean
2k-dimensional ball B2k

Euc(0, ρ) and it follows from [20, Corollary 7.7(i)] that

PerH(P
−, U(0, 1)) &k

∫

B2k
Euc

(0,ρ)
|C(p)n| dH2k

Euc(p)

where H2k
Euc denotes the 2k-dimensional Hausdorff measure with respect to the Euclidean

distance, n = (n1, . . . , n2k+1) is the Euclidean outward unit normal vector to P−, and

|C(p)n| =

√√√√
k∑

i=1

(
ni −

1

2
vi+kn2k+1

)2

+

(
nk+i +

1

2
vin2k+1

)2

(4.11)

for p = (v, t) ∈ Hk with v = (v1, . . . , v2k) ∈ R2k. Denoting by S2k the Euclidean unit
sphere in R2k+1, the map

n ∈ S
2k 7→

∫

B2k
Euc

(0,ρ)
|C(p)n| dH2k

Euc(p)

is continuous and non-vanishing. Hence, by compactness of S2k, we have

inf
n∈S2k

∫

B2k
Euc

(0,ρ)
|C(p)n| dH2k

Euc(p) > 0,

and it follows that
PerH(P

−, U(0, 1)) &k 1. (4.12)
This yields

∫

S2k−1

H2k+1(πWν (B(0, 1) ∩ P )) dν ≥ h(L(U(0, 1) ∩ P ))

&k PerH(P
−, U(0, 1)) &k 1

and concludes the proof. �

Estimates similar to (4.12) are also valid in more general Carnot groups, see [6, The-
orem 1.2]. The next lemma comes as a consequence of Lemma 4.9 via a compactness
argument.

Lemma 4.13. There is a dimensional constant ǫ > 0 such that the following holds for every
0 < ǫ < ǫ. Let P ⊂ Hk be a hyperplane, p ∈ P and r > 0. Let U1, U2 denote the two connected
components of B(p, r) \ P (ǫr) where P (ǫr) denotes the closed ǫr-neighbourhood of P . Then,

h(L(U1) ∩ L(U2)) ≥ ǫ r2k+1.

Proof. Using left translations and dilations, we may assume with no loss of generality
that p = 0 ∈ P and r = 1. First, for a fixed hyperplane P ∋ 0, Lemma 4.9 together
with (2.10) implies the existence of some ǫP > 0 such that

h(L(U1(ǫP )) ∩ L(U2(ǫP ))) &k 1 (4.14)
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where U1(ǫP ) and U2(ǫP ) are the two connected components of B(0, 1) \ P (ǫP ). Indeed,
each line ℓ ∈ L hitting P transversely inside U(0, 1), where U(0, 1) is the unit open ball
centred at the origin, must pass through both U1(ǫℓ,P ) and U2(ǫℓ,P ) for some ǫℓ,P > 0
small enough, so (4.14) follows from Lemma 4.9 by measure-theoretic considerations.

Next, if (4.14) holds for some hyperplane P ∋ 0 and some ǫP > 0, it also holds for all
hyperplanes P ′ ∋ 0 in an (ǫP /2)-neighbourhood of P , where the latter means that P ′ ∩
B(0, 2) ⊂ P (ǫP /2), and for the connected components U ′

1(ǫP /2) and U ′
2(ǫP /2) of B(0, 1)\

P ′(ǫP/2), simply using P ′(ǫP /2) ∩ B(0, 1) ⊂ P (ǫP ) ∩ B(0, 1) for such P ′. Finally, the
(ǫP /2)-neighbourhoods form an open cover of the compact set of hyperplanes {P ⊂ Hk :
0 ∈ P}, so one may pick a finite subcover. Then choosing ǫ > 0 less than the minimum of
the numbers ǫP/2 occurring in this finite cover, and less than the dimensional constant
implicit in (4.14) proves the lemma. �

We now turn to the proof of (4.8) from which Proposition 4.6 follows.

Proof of (4.8). Using left translations and dilations, we may assume with no loss of gen-
erality that p = 0 ∈ S and r = 1. Let ǫ > 0 be a suitable constant to be chosen small
enough later, depending only on k and the Condition B constant of S. Let λ > 0 be
another suitable constant to be chosen small enough, depending on ǫ, k, and on the up-
per Ahlfors-regularity and Condition B constants of S. We argue by contradiction and
assume that

λ ≥

∫

S2k−1

H2k+1(πWν (B(0, 1) ∩ S)) dν = h(L(B(0, 1) ∩ S)) (4.15)

where the last equality follows from (2.10). Recalling the definition (3.6) of the horizontal
width of S in B(0, 1), we get

widthB(0,1)(S) ≤ 2 h(L(B(0, 1) ∩ S)) ≤ 2λ.

Assuming that ǫ < ǫ where ǫ is the dimensional constant given by Corollary 3.24, we
now let 0 < γ < 1 be given by Corollary 3.24 applied to the parameter ǫ and we let
λ be small enough so that 2λ ≤ (80γ)2k+3. Then the previous inequality together with
Corollary 3.24 imply the existence of a hyperplane P ⊂ Hk such that

B(0, γ) ∩ S ⊂ P (ǫγ) (4.16)

where P (ǫγ) denotes the closed ǫγ-neighbourhood of P . Replacing ǫ by 2ǫ, we may
assume with no loss of generality that 0 ∈ P .

To reach a contradiction, we show now that if S ∋ 0 is a closed set with diamS > 1
satisfying Condition B and (4.16) for some hyperplane P ∋ 0, then

L(U1) ∩ L(U2) ⊂ L(B(0, γ) ∩ S) (4.17)

where U1 and U2 denote the two connected components of B(0, γ) \ P (ǫγ), provided ǫ
is chosen small enough. To see this, we prove that U1 and U2 are contained in different
connected components of Sc. Indeed, apply Condition B to the ball B(0, γ) to find two
distinct connected components Ω1, Ω2 of Sc and two balls B1 ⊂ Ω1 ∩ B(0, γ) and B2 ⊂
Ω2 ∩ B(0, γ) with radii ∼reg γ. If ǫ > 0 is chosen small enough, depending on the radii
of these balls, it follows that both balls B1, B2 intersect either U1 or U2. Moreover, if B1

intersects U1, say, then B2 cannot intersect U1. Indeed, otherwise B1, B2 lie in the same
connected component of Sc as a consequence of (4.16). Hence B2 intersects U2. Then it
follows, once again from (4.16), that U1 ⊂ Ω1 and U2 ⊂ Ω2. Now, fix ℓ ∈ L(U1) ∩ L(U2),
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and let uj ∈ ℓ∩Uj for j ∈ {1, 2}. It follows from the previous argument that the segment
[u1, u2] has its end points in different connected components of Sc and hence must cross
S. Moreover, by Euclidean convexity of B(0, γ), the segment [u1, u2] crosses S inside
B(0, γ) and this concludes the proof of (4.17).

If ǫ > 0 was chosen small enough, we then get from Lemma 4.13

h(L(B(0, 1) ∩ S)) ≥ h(L(B(0, γ) ∩ S)) ≥ h(L(U1) ∩ L(U2)) ≥ ǫ γ2k+1

for some dimensional constant ǫ > 0, which contradicts (4.15) provided λ was chosen
small enough. This concludes the proof of (4.8). �

5. THE BILATERAL WEAK GEOMETRIC LEMMA

The main result in this section is the validity of the bilateral weak geometric lemma
for vertical hyperplanes, Definition 5.8, for Semmes surfaces in Hk, see Proposition 5.11.

5.1. Width is integrable. The aim of this section is to prove that if E ⊂ Hk is a closed
upper Ahlfors-regular set, then balls with large horizontal width are quite rare. Namely,
they satisfy the following Carleson packing condition.

Proposition 5.1. Let E ⊂ Hk be a closed upper Ahlfors-regular set. Then,
∫ R

0
H2k+1({q ∈ E ∩B(p,R) : widthB(q,s)(E) > ǫ})

ds

s
.reg

R2k+1

ǫ

for all ǫ > 0, p ∈ E, and R > 0.

Proposition 5.1 is a consequence of the following stronger result, which states that
the map (q, s) 7→ widthB(q,s)(E) is L1-integrable under mild assumptions. In the next
proposition, an upper Ahlfors-regular measure µ (with dimension 2k + 1) is a locally finite
Borel measure for which there exists C > 0 such that

µ(B(p, r)) ≤ C r2k+1, p ∈ H
k, r > 0.

Theorem 5.2. Assume that E ⊂ Hk is a closed set and µ is an upper Ahlfors-regular measure.
Then ∫

∞

0

∫

Hk

widthB(q,s)(E) dµ(q)
ds

s
≤ CH2k+1(E),

where C > 0 depends only on the upper Ahlfors-regularity constant of µ.

The only tool needed in the proof of Theorem 5.2 is the following Crofton-formula
type upper bound proven in [12, Lemma 5.3] in H1, whose proof easily extends to all
higher dimensional Heisenberg groups. Namely, for every ν ∈ S2k−1, one has

∫ ∗

Wν

card(E ∩ π−1
Wν

{p}) dH2k+1(p) .k H2k+1(E), E ⊂ H
k.

Here
∫ ∗ stands for the upper integral, see [27, Chapter 1]. It is not hard to see that the

integrand p 7→ card(E ∩ π−1
Wν

{p}) is a Borel function when E ⊂ Hk is closed. Now,
recalling the definition (2.9) of the measure h, it follows that

∫

L

card(E ∩ ℓ) dh(ℓ) =

∫

S2k−1

∫

Wν

card(E ∩ π−1
Wν

{p}) dH2k+1(p) dν .k H2k+1(E) (5.3)

for E ⊂ Hk closed.
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Proof of Theorem 5.2. With no loss of generality, assume that H2k+1(E) < +∞. Note that
width is approximately monotone in the sense that

widthB(E) .k widthB′(E)

for all balls B ⊂ B′ with comparable radii (see (3.6)). In particular, we have
∫

∞

0

∫

Hk

widthB(q,s)(E) dµ(q)
ds

s
.k

∑

n∈Z

∫

Hk

widthB(q,2n)(E) dµ(q). (5.4)

Next, for n ∈ Z fixed, pick a maximal 2n-net {qn0 , q
n
1 , . . .} ⊂ Hk, and write Bn

i :=
B(qni , 2

n+1). Then

widthB(q,2n)(E) .k widthBn
i
(E), q ∈ B(qni , 2

n).

Since the balls B(qni , 2
n), i ∈ N, cover Hk, we can further estimate as follows,

(5.4) .k

∑

n∈Z

∑

i∈N

widthBn
i
(E) · µ(B(qi, 2

n)) .reg

∑

n∈Z

∑

i∈N

widthBn
i
(E) · 2(2k+1)n

.reg

∑

n∈Z

∑

i∈N

∫

L

diam(E ∩Bn
i ∩ ℓ)

2n
dh(ℓ) =

∫

L

∑

n∈Z

∑

i∈N

diam(E ∩Bn
i ∩ ℓ)

2n
dh(ℓ),

where the implicit constants in the two last inequalities depend only on k and the upper
Ahlfors-regularity constant of µ. Now, fix a horizontal line ℓ such that card(E ∩ ℓ) =:
N < +∞. This is true for h almost every line, since H2k+1(E) < +∞. Let a1, . . . , aN be
an enumeration of the points in E ∩ ℓ, in increasing order for some fixed orientation of ℓ.
Write Ij := [aj, aj+1] for 1 ≤ j ≤ N − 1, and note that

diam(E ∩Bn
i ∩ ℓ) =

∑

Ij⊂Bn
i

diam(Ij), n ∈ Z, i ∈ N.

Consequently,
∑

n∈Z

∑

i∈N

diam(E ∩Bn
i ∩ ℓ)

2n
=

N−1∑

j=1

∑

n∈Z,i∈N,
Ij⊂Bn

i

diam(Ij)

2n

For j ∈ {1, . . . , N − 1} fixed, the summation over n can be restricted to those values with
2n+2 = diam(Bn

i ) ≥ diam(Ij). Moreover, for every such n fixed, the balls Bn
i , i ∈ N, have

bounded overlap, so Ij ⊂ Bn
i can occur only for .k 1 indices i ∈ N. These observations

yield
N−1∑

j=1

∑

n∈Z,i∈N,
Ij⊂Bn

i

diam(Ij)

2n
.k N − 1 .k card(E ∩ ℓ),

so finally
∫ ∞

0

∫

Hk

widthB(q,s)(E) dµ(q)
ds

s
.reg

∫

L

card(E ∩ ℓ) dh(ℓ) .reg H
2k+1(E),

using (5.3), and the proof is complete. �

Now we prove Proposition 5.1.
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Proof of Proposition 5.1. For p ∈ E and R > 0 fixed, we apply Theorem 5.2 with µ :=
H2k+1|E∩B(p,R). Note that whenever q ∈ B(p, r) and 0 < r < R, one has

widthB(q,s)(E) = widthB(q,s)(E ∩B(p, 2R)).

This yields

∫ R

0
H2k+1({q ∈ E ∩B(p,R) : widthB(q,s)(E) > ǫ})

ds

s

≤
1

ǫ

∫ ∞

0

∫

Hk

widthB(q,s)(E ∩B(p, 2R)) dµ(q)
ds

s
.reg

H2k+1(E ∩B(p, 2R))

ǫ
.

This completes the proof by the upper Ahlfors-regularity of E. �

5.2. Bilateral weak geometric lemma for arbitrary hyperplanes. In this section, we
prove that a Semmes surface satisfies the bilateral weak geometric lemma for arbitrary
hyperplanes. Roughly speaking, this means that it is bilaterally well-approximated by
hyperplanes at most scales and locations, see Definition 5.5 and Proposition 5.7.

Given E ⊂ Hk, p ∈ E, and s > 0, we define the bilateral β-number bβE(p, s) for arbitrary
hyperplanes inside a given ball B(p, s). We mimic here the Euclidean definition, see for
instance [16, I.2.1], and set

bβE(p, s) := inf
P

{
sup

q∈B(p,s)∩E

dist(q, P )

s
+ sup

q∈B(p,s)∩P

dist(q,E)

s

}

where the infimum runs over all hyperplanes P ⊂ Hk. This definition takes into account
the distance from points in E to hyperplanes P , as well as the distance from points in P
to E.

Definition 5.5 (BWGL for arbitrary hyperplanes). We say that a set E ⊂ Hk satisfies the
bilateral weak geometric lemma (or BWGL in short) for arbitrary hyperplanes if

∫ R

0
H2k+1({q ∈ E ∩B(p,R) : bβE(q, s) > ǫ})

ds

s
.ǫ R

2k+1 (5.6)

for all ǫ > 0, p ∈ E, and R > 0.

The fact that Semmes surfaces satisfy BWGL for arbitrary hyperplanes comes as a
rather immediate consequence of Corollary 3.24 combined with Proposition 5.1.

Proposition 5.7 (BWGL for arbitrary hyperplanes for Semmes surfaces). Let S ⊂ Hk be
a Semmes surface. Then S satisfies BWGL for arbitrary hyperplanes. Moreover, the implicit
constant on the right-hand side of (5.6) can be chosen depending only on ǫ, k and on the upper
Ahlfors-regularity and Condition B constants of S.

Proof. Let 0 < ǫ < ǫ be fixed, where ǫ is the dimensional constant given by Corollary 3.24,
and let 0 < γ < 1 be given by Corollary 3.24. Let q ∈ S and s > 0 be such that bβS(q, s) >
ǫ. It follows from Corollary 3.24 that widthB(q,γ−1s)(S) > (80γ)2k+3. Then we get from
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Proposition 5.1 that
∫ R

0
H2k+1({q ∈ S ∩B(p,R) : bβS(q, s) > ǫ})

ds

s

≤

∫ γ−1R

0
H2k+1({q ∈ S ∩B(p, γ−1R) : widthB(q,γ−1s)(S) > (80γ)2k+3})

ds

s

.γ (γ−1R)2k+1

which concludes the proof since γ depends only on ǫ, k and the upper Ahlfors-regularity
and Condition B constants of S. �

5.3. Bilateral weak geometric lemma for vertical hyperplanes. In this section, we up-
grade Proposition 5.7 from the previous section to a similar statement concerning ap-
proximation by vertical hyperplanes, Proposition 5.11. We actually note that, more gen-
erally, the validity of BWGL for arbitrary hyperplanes, recall Definition 5.5, for a closed
Ahlfors-regular set in Hk is equivalent to the validity of BWGL for vertical hyperplanes,
see Definition 5.8 and Theorem 5.10. A proof of a result close to Theorem 5.10 is already
implicitly contained in the reduction from [31, Proposition 75] to [31, Proposition 68], so
we will only give an outline of the proof here and refer to [31] for part of the details.

Given E ⊂ Hk, p ∈ E, and s > 0, we define the bilateral β-number βv,E(p, s) for vertical
hyperplanes in a similar way than the bilateral β-number for arbitratry hyperplanes except
that we restrict the infimum to run over vertical hyperplanes. Namely, we set

bβv,E(p, s) := inf
W

{
sup

q∈B(p,s)∩E

dist(q,W)

s
+ sup

q∈B(p,s)∩W

dist(q,E)

s

}

where the infimum runs over all vertical hyperplanes W ⊂ Hk, that is, hyperplanes of
the form W = p′ ·Wν for some p′ ∈ Hk and ν ∈ S2k−1.

Definition 5.8 (BWGL for vertical hyperplanes). We say that a set E ⊂ Hk satisfies the
bilateral weak geometric lemma (or BWGL in short) for vertical hyperplanes if

∫ R

0
H2k+1({q ∈ E ∩B(p,R) : bβv,E(q, s) > ǫ})

ds

s
.ǫ R

2k+1 (5.9)

for all ǫ > 0, p ∈ E, and R > 0.

Note that, since bβE(q, s) ≤ bβv,E(q, s) for every q ∈ E and s > 0, it is immediate that
BWGL for vertical hyperplanes implies BWGL for arbitrary hyperplanes. As already
mentioned, it turns out that both versions of the bilateral weak geometric lemma are
equivalent for Ahlfors-regular sets in Hk.

Theorem 5.10. Let E ⊂ Hk be a closed Ahlfors-regular set. Then E satisfies BWGL for vertical
hyperplanes if and only if it satisfies BWGL for arbitrary hyperplanes.

Going back to Semmes surfaces, we know from Proposition 4.1 that they are lower
Ahlfors-regular, and hence Ahlfors-regular, and from Proposition 5.7 that they satisfy
BWGL for abitrary hyperplanes. Hence the validity of BWGL for vertical hyperplanes
follows from Theorem 5.10.
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Proposition 5.11 (BWGL for vertical hyperplanes for Semmes surfaces). Let S ⊂ Hk be a
Semmes surface. Then S satisfies BWGL for vertical hyperplanes. Moreover, the implicit constant
in (5.9) can be chosen depending only on ǫ, k and on the upper Ahlfors-regularity and Condition B

constants of S.

We give now an outline of the proof of Theorem 5.10 which is based on arguments
developed in [31, Section 9.4]. Recall that if a hyperplane P ⊂ Hk is not vertical, then it
is horizontal and there is a unique p ∈ Hk such that P = p · H (see the comment before
Proposition 3.11). In other words, a horizontal hyperplane P coincides with the set of all
horizontal lines passing through some point p ∈ Hk which we call the centre of P . As
observed by Naor and Young, inside a ball far from its center, a horizontal hyperplane
is close to some vertical hyperplane, see [31, Corollary 73]. Hence, if a set E is close to a
horizontal hyperplane P in a ball far from the center of P , then E is close to some vertical
hyperplane in a slightly smaller ball.

Before proceeding further, and mainly for technical convenience, we recall the notion
of David cubes on Ahlfors-regular sets. A system of David cubes on a closed Ahlfors-
regular set E is a collection D of subsets of E with the following properties. We set J := Z

if E is unbounded, and J := {j ∈ Z : j ≤ n} where n ∈ Z is such that 2n ≤ diamE < 2n+1

if E is bounded. First, D = ∪j∈JDj where, for each j ∈ J, the letter Dj denotes a family
of disjoint subsets of E such that H2k+1(E \ ∪Q∈Dj

Q) = 0. Next, for every j ∈ J and
Q ∈ Dj , we have diamQ .reg 2j , and there is a ball BQ = B(cQ, c2

j), centred at some
point cQ ∈ Q and called the centre of Q, such that BQ ∩ E ⊂ Q. The constant c > 0
depends only on the Ahlfors-regularity constants of E. Finally, for i, j ∈ J with i ≤ j, if
Q ∈ Di and Q′ ∈ Dj , then either Q ∩ Q′ = ∅ or Q ⊂ Q′. For j ∈ J and Q ∈ Dj , we set
ℓ(Q) := 2j . One should think of ℓ(Q) as a substitute for the “side-length” of the cube Q.
The existence of systems of David cubes on Ahlfors-regular sets in Euclidean spaces has
been proven in [17]. The construction has been extended to spaces of homogeneous type
in [13], to which we refer for more details.

To prove the non-trivial implication in Theorem 5.10, we let E ⊂ Hk be a closed
Ahlfors-regular set satisfying BWGL for arbitrary hyperplanes and D be a system of
David cubes on E. We fix a constant C0 ≥ 2, depending only on the Ahlfors-regularity
constants for E, such that

2 diamQ < C0ℓ(Q), Q ∈ D. (5.12)

For Q ∈ D, we set bβE(Q) := C0 bβE(cQ, C0ℓ(Q)), that is,

bβE(Q) = inf
P

{
sup

p∈B(Q)∩E

dist(p, P )

ℓ(Q)
+ sup

p∈B(Q)∩P

dist(p,E)

ℓ(Q)

}

where the infimum runs over all hyperplanes P ⊂ Hk and B(Q) := B(cQ, C0ℓ(Q)). Sim-
ilarly, we set bβv,E(Q) := C0 bβv,E(cQ, C0ℓ(Q)), that is,

bβv,E(Q) = inf
W

{
sup

p∈B(Q)∩E

dist(p,W)

ℓ(Q)
+ sup

p∈B(Q)∩W

dist(p,E)

ℓ(Q)

}

where the infimum runs over all vertical hyperplanes W ⊂ Hk.
As a classical fact, it is easy to reformulate the BWGL conditions in terms of the num-

bers bβE(Q) and bβv,E(Q). Namely, a closed Ahlfors-regular set E ⊂ Hk satisfies BWGL
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for arbitrary, respectively vertical, hyperplanes if and only if, for every ǫ > 0 and Q0 ∈ D,
∑

Q∈D(Q0)

bβE(Q)>ǫ

ℓ(Q)2k+1 .ǫ ℓ(Q0)
2k+1, (5.13)

respectively ∑

Q∈D(Q0)

bβv,E(Q)>ǫ

ℓ(Q)2k+1 .ǫ ℓ(Q0)
2k+1. (5.14)

Here D(Q0) := {Q ∈ D : Q ⊂ Q0}.

Remark 5.15. The precise value of the constant C0 in the definition of bβE(Q) and bβv,E(Q)
does not matter here. More precisely, the validity of (5.13), respectively (5.14), for a sys-
tem of David cubes D on E and a choice of C0 > 0 such that diamQ < C0ℓ(Q) for Q ∈ D
implies the validity of BWGL for arbitrary, respectively vertical, hyperplanes, which is
in turn equivalent to (5.13), repectively (5.14), for every system of David cubes D on E
and every choice of C0 > 0 such that diamQ < C0ℓ(Q) for Q ∈ D. The implicit constants
in (5.13) and (5.14) will then naturally depend on C0. Our choice of C0, recall (5.12), lies in
this admissible range and is also suitable for our proof of Theorem 5.10 (see in particular
the proof of Lemma 5.20).

Let E and D be as above. Fix ǫ > 0 and a cube Q0 ∈ D, and let η > 0 be another
parameter, to be fixed later small enough depending only on ǫ, k, and on the Ahlfors-
regularity constants for E. By Remark 5.15, the family of cubes

B0(η) := {Q ∈ D(Q0) : bβE(2Q) ≥ η}

satisfies the Carleson packing estimate
∑

Q∈B0(η)

ℓ(Q)2k+1 .η ℓ(Q0)
2k+1,

where bβE(2Q) := 2C0 bβE(cQ, 2C0ℓ(Q)). We set G0(η) := D(Q0)\B0(η) and we are going
to define a subset B1(ǫ) of G0(η) in such a way that, for all Q ∈ G0(η) \ B1(ǫ),

bβv,E(Q) .reg ǫ, (5.16)

and B1(ǫ) will satisfy the Carleson packing estimate
∑

Q∈B1(ǫ)

ℓ(Q)3 .ǫ ℓ(Q0)
3, (5.17)

provided η is chosen small enough, depending only on ǫ, k, and on the Ahlfors-regularity
constants of E. This will complete the proof of Theorem 5.10.

As in [31], given p ∈ Hk and a hyperplane P ⊂ Hk, we set

αp(P ) :=

{
dEuc(π(p), π(q)) if P = q ·H is horizontal,
+∞ if P is vertical.

Here π : Hk → R2k stands for the projection π(v, t) := v which is a 1-Lipschitz mapping
between (Hk, d) and (R2k, dEuc). By definition, αp(P ) is a number in [0,+∞] and αp(P ) =
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+∞ if and only if the hyperplane P is vertical. On the other hand, when αp(P ) is finite,
then the hyperplane P is horizontal and one has

∠(T, p−1 · P ) = arctan(2/αp(P ))

where ∠(T, p−1 · P ) denotes the minimum Euclidean angle between the vertical axis
T := {(0, t) ∈ Hk : t ∈ R} and a line in p−1 · P that passes through the point where
T intersects p−1 · P . Here we interpret "arctan(2/0)" as "π/2". This can be deduced from
the definition of αp(P ) together with elementary computations. It follows that large val-
ues of αp(P ) imply that, inside every ball centred at p, the hyperplane P is quantitatively
close to some vertical hyperplane, see [31, Corollary 73]. In particular, we get from [31,
Corollary 73] combined with [31, Lemma 52(3)] that, for every Q ∈ D, every q ∈ Q, and
every hyperplane P , there is a vertical hyperplane V such that

sup
p∈2B(Q)∩P

dist(p, V ) + sup
p∈2B(Q)∩V

dist(p, P ) .reg ℓ(Q)2/αq(P ) (5.18)

where 2B(Q) := B(cQ, 2C0ℓ(Q)).
We go back now to G0(η). We associate to every Q ∈ G0(η) a hyperplane PQ with

sup
p∈2B(Q)∩E

dist(p, PQ) + sup
p∈2B(Q)∩PQ

dist(p,E) ≤ ηℓ(Q). (5.19)

We set

α(Q) := inf
p∈Q

αp(PQ)

ℓ(Q)

and
B1 (ǫ) := {Q ∈ G0(η) : α(Q) < 1/ǫ}.

It follows from (5.18) and (5.19) that every Q ∈ G0(η) \B1(ǫ) satisfies (5.16), provided η
is chosen small enough, depending only on ǫ, k, and on the Ahlfors-regularity constants
of E. To conclude the proof, it thus remains to prove that the Carleson packing esti-
mate (5.17) holds, provided η is chosen even smaller if necessary, and depending only on
ǫ, k, and on the Ahlfors-regularity constants of E.

The proof of (5.17) runs essentially in the same way as the end of the proof of [31,
Proposition 75], but we rephrase a few details. They are virtually the same as in [31], but
our set-up is quite different from that in [31, Proposition 75] (see Section 8.1 for further
comments). Also, our notion of “close to a hyperplane” is somewhat different from the
notion of “close to a half-space” employed in [31].

Following [31], we say that a cube R ∈ G0(η) is a good descendant of Q ∈ G0(η), if all the
cubes Q′ ∈ D with R ⊂ Q′ ⊂ Q lie in G0(η). For Q ∈ G0(η), we denote by G(Q) the good
descendants of Q, and we write

G(Q, ǫ) := {R ∈ G(Q) : α(R) < 1/ǫ}.

The next lemma is an analogue of [31, Lemma 76].

Lemma 5.20. Let 0 < ǫ < 1. If η > 0 is sufficiently small, depending only on ǫ, k, and on
the Ahlfors-regularity constants for E, then G(Q, ǫ) is a tree for all Q ∈ G0(η). More precisely,
whenever R ∈ G(Q, ǫ) and Q′ ∈ D with R ⊂ Q′ ⊂ Q, then Q′ ∈ G(Q, ǫ). Further, the cubes in
any fixed tree G(Q, ǫ), Q ∈ G0(η), satisfy a Carleson packing condition,

∑

R∈G(Q,ǫ)

ℓ(R)2k+1 .ǫ ℓ(Q)2k+1.
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Proof. To prove the tree property, fix Q ∈ G0(η) and R ∈ G(Q, ǫ). It suffices to show
that the parent of R, say Q′, lies in G(Q, ǫ). First, since R ∈ G(Q) by definition, also
Q′ ∈ G(Q). So, it remains to show that α(Q′) < 1/ǫ. Since α(R) < 1/ǫ, we can find a
point p ∈ R with

αp(PR) < ℓ(R)/ǫ.

Now, we would like to argue that

αp(PQ′) < ℓ(Q′)/ǫ

if η > 0 is sufficiently small. Since p ∈ R ⊂ 2B(R) ∩ E, we have by the choice of PR that
dist(p, PR) ≤ ηℓ(R). By our choice of the constant C0, we also have B(p, ℓ(R)) ⊂ B(R) ⊂
2B(R) ⊂ 2B(Q′). By the choice of PR and PQ′ , it follows that

sup
q∈B(p,ℓ(R))∩PR

dist(q, PQ′) + sup
q∈B(p,ℓ(R))∩PQ′

dist(q, PR) ≤ 3ηℓ(R),

at least provided η is small enough, depending only on C0, and hence only on the
Ahlfors-regularity constants for E. This forces in particular the Euclidean angle between
PR and PQ′ to be small and, taking into account that αp(PR) < ℓ(R)/ǫ, it follows from the
proof of [31, Lemma 74] that αp(PQ′) < 2ℓ(R)/ǫ = ℓ(Q′)/ǫ, provided η is chosen small
enough, depending only on ǫ, k, and on the Ahlfors-regularity constants for E. This
proves that α(Q′) < 1/ǫ, hence Q′ ∈ G(Q, ǫ) and the tree property has been established.

The rest of the proof is now verbatim the same as in [31, Lemma 76], noting that, as
we just did in the previous argument, the U -local distance between the half-spaces P+

Q

and P+
R considered in [31] (see [31, Definition 51]) has to be replaced by quantities of the

form
sup

p∈U∩PQ

dist(p, PR) + sup
p∈U∩PR

dist(p, PQ)

in our setting. We will thus not repeat further the details. �

With Lemma 5.20 in hand, the remainder of the proof of Theorem 5.10, that is, the
proof of (5.17), is precisely the same as the end of the proof of [31, Proposition 75], so we
also omit the details. This concludes the proof of Theorem 5.10.

6. SEMMES SURFACES HAVE BIG PIECES OF INTRINSIC LIPSCHITZ GRAPHS

We conclude in this section the proof of Theorem 1.8. We know from Proposition 5.11
that Semmes surfaces satisfy the bilateral weak geometric lemma for vertical hyper-
planes. As an immediate consequence, we get the validity of the weak geometric lemma
for vertical hyperplanes of which we recall now the definition.

Given E ⊂ Hk, p ∈ E, and s > 0, we define the β-number βv,E(p, s) for vertical hyper-
planes in a similar way than the bilateral β-number except that we only take into account
the distance from points in E to vertical hyperplanes inside a given ball B(p, s), that is,
we set

βv,E(p, s) := inf
W

sup
q∈B(p,s)∩E

dist(q,W)

s

where the infimum runs over all vertical hyperplanes W ⊂ Hk.
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Definition 6.1 (WGL for vertical hyperplanes). We say that a set E ⊂ Hk satisfies the
weak geometric lemma (or WGL in short) for vertical hyperplanes if

∫ R

0
H2k+1({q ∈ E ∩B(p,R) : βv,E(q, s) > ǫ})

ds

s
.ǫ R

2k+1 (6.2)

for all ǫ > 0, p ∈ E, and R > 0.

Since βv,E(q, s) ≤ bβv,E(q, s) for every q ∈ E and s > 0, it is immediate that BWGL for
vertical hyperplanes implies WGL for vertical hyperplanes and the following proposition
is then a straightforward consequence of Proposition 5.11.

Proposition 6.3 (WGL for vertical hyperplanes for Semmes surfaces). Let S ⊂ Hk be a
Semmes surface. Then S satisfies WGL for vertical hyperplanes. Moreover, the implicit multi-
plicative constant in the right-hand side of (6.2) can be chosen depending only on ǫ, k, and on the
upper Ahlfors-regularity and Condition B constants for S.

To conclude the proof of Theorem 1.8, recall that we also know from Propositions 4.1
and 4.6 that Semmes surfaces are lower Ahlfors-regular, and hence Ahlfors-regular, and
have big vertical projections. We then use the fact that a closed Ahlfors-regular set with
BVP and satisfying WGL for vertical hyperplanes in Hk has big pieces of intrinsic Lip-
schitz graphs. In H1, this result is due to the first two authors with Chousionis [11,
Theorem 3.7]. The extension of this result to all Heisenberg groups is given in Section 7,
see Theorem 7.1.

7. BVP + WGL FOR VERTICAL HYPERPLANES IMPLY BPILG

It has been proven in [11, Theorem 3.7] that a closed Ahlfors-regular set with big ver-
tical projections (BVP, Definition 4.4) and satisfying the weak geometric lemma (WGL)
for vertical hyperplanes (Definition 6.1) in H1 has big pieces of intrinsic Lipschitz graphs
(BPiLG, Definition 1.7). We extend in this section the proof given in [11] to all Heisenberg
groups.

Theorem 7.1. Let k ≥ 1 and E ⊂ Hk be a closed Ahlfors-regular set. Assume that E has BVP
and satisfies WGL for vertical hyperplanes. Then E has BPiLG.

The proof given in [11] for k = 1 relies on two steps, [11, Lemma 3.8] and [11, Theo-
rem 3.9], together with a concluding argument. The proof of [11, Theorem 3.9] and the
concluding argument can be verbatim extended to Hk, so we omit the details. The higher
dimensional version of [11, Lemma 3.8] is given in Lemma 7.2.

Lemma 7.2. Let E ⊂ Hk be a closed Ahlfors-regular set. For every c > 0 and M > 1, there
are ǫ > 0 and γ > 0, depending only on c, M , k, and the Ahlfors-regularity constants for E,
such that the following holds. Let D be a system of David cubes on E and Q ∈ D. Assume that
H2k+1(πWν (Q)) ≥ cH2k+1(Q) for some ν ∈ S2k−1 and βv,E(Q) ≤ ǫ. Then, for every p ∈ Q
and q ∈ B(Q) ∩E such that M−1l(Q) ≤ d(p, q) ≤ Ml(Q), one has q 6∈ p · Cγ(ν).

Here βv,E(Q) := C0 βv,E(cQ, C0ℓ(Q)), that is,

βv,E(Q) = inf
W

sup
q∈B(Q)∩E

dist(q,W)

ℓ(Q)

where the infimum runs over all vertical hyperplanes W. Recall from Section 5.3 that
B(Q) := B(cQ, C0ℓ(Q)).
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Proof. We assume that the conclusion of the lemma fails in the following sense. We con-
sider a closed Ahlfors-regular set E ⊂ Hk with a system of David cubes D and Q ∈ D
such that

• 0 ∈ Q and ℓ(Q) = 1,
• H2k+1(πWν (Q)) ≥ cH2k+1(Q) for some ν ∈ S2k−1,
• βv,E(Q) ≤ ǫ, and
• there exists q ∈ B(Q) ∩ E such that M−1 ≤ d(0, q) ≤ M and q ∈ Cγ(ν).

We will show that these conditions lead to a contradiction. It is not difficult to reduce
the general case to this one, see the beginning of the proof of [11, Lemma 3.8] for more
details.

Here is a sketch of the proof. If γ is very small, then q ∈ Cγ(ν) implies that q ≈ πLν (q).
Since also q ∈ Q and d(0, q) ∼ 1, it follows that a small neighbourhood of the well-
approximating vertical hyperplane Wν′ – guaranteed by βv,E(Q) ≤ ǫ – must contain
Lν ∩ B(0, C0). But πWν (Lν) = {0}, so πWν (Wν′ ∩ B(0, C0)) is contained in a small
neighbourhood of a codimension-1 subspace of Wν . But Q is well-approximated by
Wν′ ∩B(0, C0), so also πWν (Q) is contained in a small neighbourhood of a codimension-1
subspace of Wν . This contradicts H2k+1(πWν (Q)) ≥ cH2k+1(Q) ∼ 1.

We turn to the details. Let q′ ∈ Hk and ν ′ ∈ S2k−1 be such that

sup
p′∈B(Q)∩E

dist(p′, q′ ·Wν′) ≤ 2ǫ. (7.3)

We first show that there is u ∈ S2k−1 such that Ru ⊂ π(Wν′) and the unoriented
Euclidean angle ∠(u, ν) between u and ν satisfies ∠(u, ν) .M (γ + ǫ), provided ǫ and γ
are chosen small enough depending only on M . On the one hand, we have q = (v, t) ∈
Cγ(ν), that is,

‖πWν (q)‖ ≤ γ‖πLν (q)‖

with πWν (q) = (v−〈v, ν〉ν, t−ω(v, 〈v, ν〉ν)/2) and πLν (q) = (〈v, ν〉ν, 0), see (2.1) and (2.2).
Then, taking into account that, by assumption, d(0, q) ∼M 1, computations similar to
those used to obtain [11, (3.8)] give |v| ∼M 1, provided γ is chosen small enough. On
the other hand, by [11, Remark 3.4], which extends to the Hk setting, we know that (7.3)
implies that, for all p′ ∈ B(Q) ∩E,

dist(p′,Wν′) ≤ 4ǫ. (7.4)

In particular, since q ∈ B(Q) ∩E, there is (v′, t′) ∈ Wν′ such that d(q, (v′, t′)) ≤ 4ǫ. Hence
|v − v′| ≤ d(q, (v′, t′)) ≤ 4ǫ. Since |v| ∼M 1, it follows that |v′| ∼M 1 provided ǫ is chosen
small enough depending only on M . Then we get

|v′ − 〈v′, ν〉ν| ≤ |v − 〈v, ν〉ν|+ |(v′ − 〈v′, ν〉ν)− (v − 〈v, ν〉ν)| .M (γ + ǫ)|v′|.

Hence u := v′/|v′| ∈ S2k−1 is such that Ru ⊂ π(Wν′) and ∠(u, ν) .M (γ + ǫ) as required.
We set Wν := π(Wν) = ν⊥ and Wν′ := π(Wν′). By the previous argument, we get that,

for ǫ and γ chosen small enough depending only on M , we have Wν +Wν′ = R2k. Thus
dim(Wν ∩Wν′) = 2k − 2 and Wν′ = Ru⊕ (Wν ∩Wν′). We set V := (Wν ∩Wν′) × R and
we next show that there is a constant Λ > 0 depending only on the Ahlfors-regularity
constants for E, such that, for every τ ∈ (0, 1), one can choose ǫ and γ small enough
depending only on τ , M , and on the Ahlfors-regularity constants for E, so that

πWν (Q) ⊂ (V ∩B(0,Λ))τ := {p′ ∈ Wν : dist(p′,V ∩B(0,Λ)) ≤ τ}. (7.5)
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Indeed, let p′ ∈ Q ⊂ B(Q)∩E. By (7.4) there is (w′, s′) ∈ Wν′ such that d(p′, (w′, s′)) ≤ 4ǫ.
We have w′ = au + ŵ for some a ∈ R and ŵ ∈ Wν ∩ Wν′ . We set w′′ := aν + ŵ and
p′′ := (w′′, s′). Then

πWν (p
′′) = (w′′ − 〈w′′, ν〉ν, s′ − ω(w′′, 〈w′′, ν〉ν)/2)

= (ŵ, s′ − ω(ŵ, aν)/2).

Hence πWν (p
′′) ∈ V. Furthermore, we have

‖πWν (p
′′)‖ ≤ 2d(0, p′′)

with d(0, p′′) ≤ d(0, (w′, s′)) + d((w′, s′), p′′). Since p′ ∈ Q and d(p′, (w′, s′)) ≤ 4ǫ, we
have d(0, (w′, s′)) .reg 1. Next, this implies that |a〈u, ν〉| ≤ |w′| ≤ d(0, (w′, s′)) .reg 1.
Since ∠(u, ν) .M (γ + ǫ), one can choose ǫ and γ small enough depending only on M so
that 1/2 ≤ 〈u, ν〉 ≤ 1 and |u − ν| ≤ (γ + ǫ). Then we get |a| .reg 1 and it follows that
|w′′ − w′| = |a(ν − u)| .reg (γ + ǫ). We also have |ŵ| = |au− w′| ≤ |a|+ |w′| .reg 1 and

ω(w′, w′′) = ω(au+ ŵ, aν + ŵ)

= a2ω(u, ν) + aω(u− ν, ŵ)

= a2ω(u− ν, ν) + aω(u− ν, ŵ),

hence,
|ω(w′, w′′)| ≤ a2|u− ν| |ν|+ |a| |u − ν| |ŵ| .reg |u− ν| .reg γ + ǫ.

Since (w′, s′)−1 · p′′ = (w′′ − w′,−ω(w′, w′′)/2), we get

d((w′, s′), p′′) .reg (γ + ǫ)1/2.

It follows that ‖πWν (p
′′)‖ .reg 1. Hence, there is Λ > 0, which depends only on the

Ahlfors-regularity constant for E, such that πWν (p
′′) ∈ B(0,Λ) provided ǫ and γ are

chosen small enough depending only on M . Remembering that vertical projections are
locally 1/2-Hölder continuous, we then get

dist(πWν (p
′),V ∩B(0,Λ)) ≤ d(πWν (p

′), πWν (p
′′))

.reg d(p
′, p′′)1/2

.reg (d(p
′, (w′, s′)) + d((w′, s′), p′′))1/2 .reg (γ + ǫ)1/4,

which concludes the proof of (7.5).
To conclude the proof of the lemma, we first note that H2k+1(V ∩ B(0,Λ)) = 0. This

can be seen from the fact that V is a (2k − 1)-dimensional linear subspace of Wν and
H2k+1|Wν coincides, up to a multiplicative constant, with the 2k-dimensional Lebesgue
measure when identifying Wν with R2k−1 × R. Hence

lim
τ→0

H2k+1((V ∩B(0,Λ))τ ) = 0.

It follows that one can choose τ > 0 small enough, depending only on c and on the
Ahlfors-regularity constant for E, so that, for ǫ > 0 and γ > 0 chosen small enough
accordingly, and hence, depending only on c, M , and on the Ahlfors-regularity constant
for E, one has H2k+1(πWν (Q)) ≤ H2k+1((V∩B(0,Λ))τ ) < cH2k+1(Q) (recall that ℓ(Q) = 1
and hence H2k+1(Q) ∼reg 1) and this gives a contradiction. �
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8. COMMENTS

8.1. Regular triples and corona decompositions. Mimicking the terminology introduced
in [31], given a measurable set E ⊂ Hk, we say that (E,Ec, ∂E) is regular if there is c > 0
such that

H2k+2(B(p, r) ∩ E) ≥ c r2k+2, p ∈ E, 0 < r < diam ∂E, (8.1)

H2k+2(B(p, r) \E) ≥ c r2k+2, p ∈ Ec, 0 < r < diam ∂E, (8.2)

and ∂E is Ahlfors-regular (with dimension 2k + 1, see Definition 1.1).
Local versions of regular triples, for which (1.2), (1.3), (8.1) and (8.2) are required to

hold for r ∈ (0, r0] for some r0 > 0, have been considered in [31]. We could also have
considered local versions for the definition of a Semmes surface S, where (1.2) and (1.5)
are required to hold for r ∈ (0, r0] for some r0 > 0. Our arguments in the present paper
also apply in this case to give big pieces of intrinsic Lipschitz graphs inside balls centred
on S with radius r ∈ (0, r0]. For the sake of simplicity, we discuss here the link between
(global) regular triples and (global) Semmes surfaces, noting that these links can be easily
extended for the local versions.

The link between regular triples and open sets satisfying the corkscrew condition, Def-
inition 1.9, is given in the next proposition.

Proposition 8.3. Let S ⊂ Hk. The following are equivalent.

(i) There is a measurable set E ⊂ Hk such that (E,Ec, ∂E) is regular with S = ∂E.
(ii) The set S is a closed upper Ahlfors-regular set and there is an open set Ω ⊂ Hk satisfying

the corkscrew condition such that S = ∂Ω.

Proof. If (ii) holds, then E := Ω satisfies (8.1) and (8.2) as a rather immediate consequence
of the corkscrew condition. Moreover, when (ii) holds, then S = ∂Ω is a Semmes surface
and we know from Proposition 4.1 that S is lower Ahlfors-regular and hence Ahlfors-
regular. It follows that (Ω,Ωc, ∂Ω) is regular and hence (i) holds.

To prove the converse implication, we let E ⊂ Hk be measurable such that (E,Ec, ∂E)
is regular with S = ∂E. We denote by Ω the interior of E and we prove that S = ∂Ω
and Ω satisfies the corkscrew condition. Since ∂Ω ⊂ ∂E = S, to prove the first claim,
we only need to check that S ⊂ ∂Ω. Let p ∈ S. Then (8.1) and (8.2) imply that for every
0 < r < diamS, we have

min{H2k+2(B(p, r) ∩E),H2k+2(B(p, r) \E)} &reg r
2k+2,

where &reg means here that the implicit multiplicative constant depends on k and on the
regularity constant c coming from (8.1) and (8.2). Since ∂E is Ahlfors-regular, we have
H2k+2(∂E) = 0, hence

H2k+2(E △ Ω) = H2k+2(E △ Ω) = 0.

It follows that

min{H2k+2(B(p, r) ∩Ω),H2k+2(B(p, r) \ Ω)}

= min{H2k+2(B(p, r) ∩ E),H2k+2(B(p, r) \ E)} &reg r
2k+2

for every 0 < r < diamS. Hence p ∈ ∂Ω and S ⊂ ∂Ω as claimed.
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To prove that Ω satisfies the corkscrew condition, we let p ∈ ∂Ω and 0 < r < diam ∂Ω.
It follows from the previous argument that

min{H2k+2(B(p, r/4) ∩ Ω),H2k+2(B(p, r/4) \ Ω)} &reg r
2k+2. (8.4)

Let 0 < t < 1/4 and A be a maximal family of points in S ∩B(p, r/2) at mutual distance
> tr. Since the balls B(q, tr/2), q ∈ A, are disjoint and contained in B(p, r), we get from
the Ahlfors-regularity of S = ∂Ω that

(tr)2k+1 cardA .reg

∑

q∈A

H2k+1(S ∩B(q, tr/2))

.reg H
2k+1(S ∩B(p, r)) .reg r

2k+1,

and hence cardA .reg t
−(2k+1). Next, since

{q′ ∈ B(p, r/4) : dist(q′, S) ≤ tr} ⊂
⋃

q∈A

B(q, 2tr),

we get

H2k+2({q′ ∈ B(p, r/4) : dist(q′, S) ≤ tr}) .reg tr
2k+2.

Choosing t small enough, depending only on the regularity constants for (E,Ec, ∂E),
this last estimate together with (8.4) implies the existence of q1 ∈ B(p, r/4) ∩ Ω and
q2 ∈ B(p, r/4)\Ω with dist(qi, S) > tr, i = 1, 2. Hence Ω satisfies the corkscrew condition
and this concludes the proof of the proposition. �

It follows from Proposition 8.3 that ∂E is a Semmes surface whenever (E,Ec, ∂E) is
regular. However, as already mentioned in the introduction, there are Semmes surfaces
that do not arise as the boundary of some open set satisfying the corkscrew condition. A
simple example is given by the union of the unit sphere ∂B(0, 1) with the intersection of
the unit ball B(0, 1) with a hyperplane through the origin. Also, a connected component
of Sc where S is a Semmes surface may not satisfy the corkscrew condition. Examples
in the Euclidean setting can for instance be found in [1]. Hence the setting in the present
paper includes boundaries of sets E for which (E,Ec, ∂E) is regular, or equivalently,
boundaries of open sets satisfying the corkscrew condition with upper Ahlfors-regular
boundary, but is slightly more general.

It is proven in [31, Section 9] that if (E,Ec, ∂E) is regular then the pair (E, ∂E) ad-
mits a “corona decomposition”. We will not enter the details of the definition of such a
decomposition here, and refer to [31, Definition 53], and [16, I.3] for its Euclidean ana-
logue. In Euclidean spaces, having big pieces of Lipschitz graphs (BPLG) for a closed
Ahlfors-regular set implies the existence of a corona decomposition. The latter is one of
several characterisations of uniform rectifiability in Rn and it is equivalent to the validity
of the bilateral weak geometric lemma. In the Euclidean setting, it is also known that
BPLG is stronger than uniform rectifiability, as there are examples of uniformly rectifi-
able sets without big projections, and hence, without BPLG. In the Heisenberg setting,
the possible links, or differences, between the analogues of these various notions are not
well understood at the time. Understanding them better would be one further step in
the development of the theory of “uniform rectifiability” in Heisenberg groups.
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8.2. Semmes surfaces in Euclidean space. In this section, we discuss the analogues of
our arguments in the Euclidean setting. We recall that a Semmes surface in Rn is a closed
upper Ahlfors-regular set with dimension n−1 that satisfies Condition B. The definitions
of upper Ahlfors-regularity with dimension n−1 and of Condition B in Rn are analogous
to the versions we stated for the Heisenberg group in Definition 1.1 and Definition 1.4,
except that all metric concepts are now, as well as in the rest of this section, defined with
respect to the Euclidean distance. We refer to [16, Definition 2.2] or (8.10) below for the
definition of the bilateral weak geometric lemma in Rn.

We first recall that a set S satisfying Condition B in Rn is automatically lower Ahlfors-
regular, and hence Ahlfors-regular, with dimension n − 1 and even has big projections.
This is a rather immediate consequence of the definitions together with the fact that or-
thogonal projections onto subspaces are Euclidean Lipschitz maps. Then, the fact that
Semmes surfaces in Rn satisfy BWGL has been proven by David and Semmes through
an intermediate “local symmetry condition” [18, Theorem 1.20] together with [15, Propo-
sition 5.5]. We record here that the method of the current paper works in Rn, too, and
hence gives a new and direct proof of BWGL for Semmes surfaces in Euclidean spaces.

The definitions of width, non-convexity, and non-monotonicity with respect to a line
in a ball are verbatim the same in Rn as in Hk, except that we consider all possible lines,
that is, all one-dimensional affine subspaces of Rn. The conclusion of Lemma 3.4 holds
for every line in Rn since every line ℓ has now the crucial feature that for all line segments
I ⊂ ℓ, one has diam(I) = H1(I).

It is well-known that there exists a unique, up to a multiplicative constant, non-trivial
isometry-invariant measure on the set LRn of all lines in Rn. We denote such a measure
by η. Then, in perfect analogy with (3.5) and (3.6), we define

NMB(x,r)(A) :=
1

rn

∫

LRn

NMB(x,r)(A, ℓ) dη(ℓ)

and
widthB(x,r)(E) :=

1

rn

∫

LRn

widthB(x,r)(E, ℓ) dη(ℓ)

for measurable sets A ⊂ Rn and closed sets E ⊂ Rn. The conclusion of Proposition 3.7
can then obviously be rephrased in the Euclidean setting using these latter definitions.

We recall now that the classification of monotone sets in Rn is much easier than its
analogue in Hk and can for instance be found in [31, Lemma 64], see also [9, Lemma 4.2].
Then the proof of Lemma 3.10 and Proposition 3.11 can be easily translated to the Eu-
clidean setting to give the following

Proposition 8.5. For every C > 0 and δ > 0, there exists 0 < γ < 1 such that the following
holds. If F ⊂ Rn is measurable with C-upper Ahlfors-regular boundary with dimension n − 1,
p ∈ Rn, r > 0, and NMB(p,r)(F ) ≤ γn+1, then there is a half-space P− ⊂ Rn such that

Hn([F △ P−] ∩B(x, γr))

Hn(B(x, γr))
≤ δ.

Next, the proof of Proposition 3.15 can be translated to the Euclidean setting without
any modifications, except for the trivial ones, to give the following

Proposition 8.6. There is a dimensional constant ǫ > 0 such that the following holds for every
0 < ǫ < ǫ. Assume that S ⊂ Rn is a closed set satisfying Condition B. There exists δ > 0,
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depending only on ǫ, n and the Condition B constant for S, such that if p ∈ S and 0 < r <
diamS are such that for every component Ω of Sc, there exists a half-space P−

Ω ⊂ Rn with

Hn([Ω△ P−

Ω ] ∩B(p, r))

Hn(B(p, r))
≤ δ,

then, there exists a hyperplane P ⊂ Rn such that dist(q, P ) ≤ ǫr for all q ∈ S ∩B(p, r/80) and
dist(q, S) ≤ ǫr for all q ∈ P ∩B(p, r/80).

As a consequence, one gets the following Euclidean version of Corollary 3.24.

Corollary 8.7. There is a dimensional constant ǫ > 0 such that the following holds for every
0 < ǫ < ǫ. Let S ⊂ Rn be a Semmes surface. There is 0 < γ < 1, depending only on ǫ, n and
on the upper Ahlfors-regularity and Condition B constants for S, such that the following holds.
If p ∈ S, 0 < r < diamS, and widthB(p,r)(S) ≤ (80γ)n+1, then there is a hyperplane P ⊂ Rn

such that

sup
q∈S∩B(p,γr)

dist(q, P ) + sup
q∈P∩B(p,γr)

dist(q, S) ≤ ǫγr.

Finally, the proof of Theorem 5.2 and Proposition 5.1 can be rephrased to give the
following statements in Rn.

Theorem 8.8. Assume that E ⊂ Rn is a closed set and µ is an upper Ahlfors-regular measure
with dimension n− 1 in Rn. Then∫

∞

0

∫

Rn

widthB(x,s)(E) dµ(x)
ds

s
.reg H

n−1(E).

Proposition 8.9. Let E ⊂ Rn be a closed upper Ahlfors-regular set with dimension n−1. Then,
∫ R

0
Hn−1({q ∈ E ∩B(p,R) : widthB(q,s)(E) > ǫ})

ds

s
.reg

Rn−1

ǫ

for all ǫ > 0, p ∈ E, and R > 0.

The only noticeable difference in the proof of Theorem 8.8 is that (5.3) should be re-
placed by ∫

LRn

card(E ∩ ℓ) dη(ℓ) .n Hn−1(E),

which holds by the same argument as for (5.3).
We recall now the definition of the bilateral weak geometric lemma for sets with codi-

mension one in the Euclidean setting [16, Definition 2.2]. Given E ⊂ Rn, p ∈ E, and
s > 0, we define

bβE(p, s) := inf
P

{
sup

q∈B(p,s)∩E

dist(q, P )

s
+ sup

q∈B(p,s)∩P

dist(q,E)

s

}
,

where the infimum runs over all hyperplanes P ⊂ Rn. We say that a set E ⊂ Rn satisfies
the bilateral weak geometric lemma (or BWGL in short) if

∫ R

0
Hn−1({q ∈ E ∩B(p,R) : bβE(q, s) > ǫ})

ds

s
.ǫ R

n−1 (8.10)

for all ǫ > 0, p ∈ E, and R > 0.
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The validity of BWGL for Semmes surfaces in Rn can now be obtained as an easy
consequence of Corollary 8.7 and Proposition 8.9, following the arguments given for the
proof of Proposition 5.7.

To conclude, we go back to the analogue of Theorem 1.8 in the Euclidean setting. As
already said, as an easy consequence of Condition B, Semmes surfaces in Rn have big
projections and are lower Ahlfors-regular. Since BWGL obviously imply WGL (see for
instance [18, Definition 1.16] for the Euclidean version of the weak geometric lemma),
one can implement the arguments described above to recover that Semmes surfaces in
Rn have big pieces of Lipschitz graphs (BPLG), the last step of the proof being given
by [18, Theorem 1.14] which states that a closed Ahlfors-regular set with big projections
and satisfying WGL in Rn has BPLG.
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