
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY-NC-ND 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

Functional connectivity of major depression disorder using ongoing EEG during music
perception

© 2020 Elsevier

Accepted version (Final draft)

Liu, Wenya; Zhang, Chi; Wang, Xiaoyu; Xu, Jing; Chang, Yi; Ristaniemi, Tapani;
Cong, Fengyu

Liu, W., Zhang, C., Wang, X., Xu, J., Chang, Y., Ristaniemi, T., & Cong, F. (2020). Functional
connectivity of major depression disorder using ongoing EEG during music perception. Clinical
Neurophysiology, 131(10), 2413-2422. https://doi.org/10.1016/j.clinph.2020.06.031

2020



Journal Pre-proofs

Functional connectivity of major depression disorder using ongoing EEG dur-
ing music perception

Wenya Liu, Chi Zhang, Xiaoyu Wang, Jing Xu, Yi Chang, Tapani Ristaniemi,
Fengyu Cong

PII: S1388-2457(20)30416-8
DOI: https://doi.org/10.1016/j.clinph.2020.06.031
Reference: CLINPH 2009314

To appear in: Clinical Neurophysiology

Received Date: 25 November 2019
Revised Date: 7 May 2020
Accepted Date: 29 June 2020

Please cite this article as: Liu, W., Zhang, C., Wang, X., Xu, J., Chang, Y., Ristaniemi, T., Cong, F., Functional
connectivity of major depression disorder using ongoing EEG during music perception, Clinical Neurophysiology
(2020), doi: https://doi.org/10.1016/j.clinph.2020.06.031

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology.

https://doi.org/10.1016/j.clinph.2020.06.031
https://doi.org/10.1016/j.clinph.2020.06.031


Functional connectivity of major depression disorder using 
ongoing EEG during music perception

Wenya Liua,b, Chi Zhanga, Xiaoyu Wanga, Jing Xuc, Yi Changc, Tapani Ristaniemib, Fengyu Conga,b,d,e

aSchool of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian 
University of Technology, 116024, Dalian, China

bFaculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland

cDepartment of Neurology and Psychiatry, First Affiliated Hospital, Dalian Medical University, 
116011, Dalian, China

dSchool of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, 
Dalian University of Technology, 116024, Dalian, China

eKey Laboratory of Integrated Circuit and Biomedical Electronic System, Liaoning Province. Dalian 
University of Technology, 116024, Dalian, China

Corresponding author: 

1. Fengyu Cong, School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, 
Dalian University of Technology, 116024, Dalian, China

Email: cong@dlut.edu.cn

2. Jing Xu, Department of Neurology and Psychiatry, First Affiliated Hospital, Dalian Medical 
University, 116011, Dalian, China 

Email: xujing_doc@aliyun.com

3. Yi Chang, Department of Neurology and Psychiatry, First Affiliated Hospital, Dalian Medical 
University, 116011, Dalian, China

Email: changee99@gmail.com

Highlights:

Major depression causes altered connectivity in delta and beta bands during music perception.

Beta band connectivity is a promising biomarker for the diagnosis of major depression disorder.

Naturalistic music stimuli lead to frequency-specific functional connectivity.

mailto:cong@dlut.edu.cn


Abstract

Objective: The functional connectivity (FC) of major depression disorder (MDD) has not been well 
studied under naturalistic and continuous stimuli conditions. In this study, we investigated the 
frequency-specific FC of MDD patients exposed to conditions of music perception using ongoing 
electroencephalogram (EEG).

Methods: First, we applied phase lag index (PLI) method to calculate the connectivity matrices and 
graph theory-based methods to measure the topology of brain networks across different frequency bands. 
Then, classification methods were adopted to identify the most discriminate frequency band for the 
diagnosis of MDD. 

Results: During music perception, MDD patients exhibited a decreased connectivity pattern in the delta 
band but an increased connectivity pattern in the beta band. Healthy people showed a left hemisphere-
dominant phenomenon, but MDD patients did not show such a lateralized effect. Support vector 
machine (SVM) achieved the best classification performance in the beta frequency band with an 
accuracy of 89.7%, sensitivity of 89.4% and specificity of 89.9%. 

Conclusions: MDD patients exhibited an altered FC in delta and beta bands, and the beta band showed 
a superiority in the diagnosis of MDD. 

Significance: Our study provided a promising reference for the diagnosis of MDD, and revealed a new 
perspective for understanding the topology of MDD brain networks during music perception.

Keywords: functional connectivity, ongoing EEG, major depression disorder, music perception, 
naturalistic stimuli.



1. Introduction
Major depression disorder (MDD) is currently one of the most prevalent psychiatric disorders, and it 
substantially disrupts patients’ lives. MDD patients are usually characterized by deficits of affective 
and cognitive functions (Kaiser et al. 2015; Li et al. 2018; Xia et al. 2018). Although many researchers 
have dedicated themselves to the exploration of the pathophysiology of MDD, the neural mechanisms 
of its etiology and pathogenesis are still not fully understood. Currently, there are no biomarkers for the 
clinical diagnosis of MDD (Fingelkurts and Fingelkurts 2015; Gao et al. 2018; Nugent et al. 2019). 
Conventionally, the clinical diagnosis of MDD frequently depends on some public criteria, such as 
Diagnostic and Statistical Manual of Mental Disorders V (DSM-5), which makes the diagnosis of MDD 
very subjective due to human factors and causes faulty diagnostic results (Mumtaz et al. 2015; Nugent 
et al. 2019). For this reason, noninvasive neuroimaging techniques, such as electroencephalogram 
(EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), are 
urgently needed as more effective and intelligent diagnostic tools. EEG is an inexpensive technique that 
benefits from high temporal resolution. EEG is able to record electrical activity at frequencies related 
to neuronal activity and to capture the dynamic changes at a millisecond scale. These advantages make 
EEG a very promising technique for commonly use in the diagnosis of MDD (Baskaran et al. 2012; 
Mumtaz et al. 2015, 2017).

Many fMRI studies have demonstrated that the pathogenesis of MDD is the abnormality of large-scale 
brain networks, such as default mode network (DMN) (Zhu et al. 2012; Wu et al. 2013) and affective 
network (AN) (Avery et al. 2014), or the dysconnectivity of some brain regions, such as corticolimbic 
pathways (Nugent et al. 2019), rather than the dysfunction of an individual brain region. So, functional 
connectivity (FC) has proven to be effective to investigate network dysfunction in MDD. FC provides 
a new line of thought for the diagnosis of MDD patients, and many studies, especially fMRI and EEG 
studies, have focused on the classification of MDD based on FC analysis (Wang et al. 2017; Gao et al. 
2018; Sakai and Yamada 2019). However, FC analysis and MDD classification always focus on resting-
state or highly controlled and repeated stimuli, but the differences in FC under naturalistic and 
continuous stimuli between healthy people and MDD patients have not been well studied. Compared 
with resting state, listening to continuous music is more closely related to real-world experience (Wang 
et al. 2020), and emotional arousal can be induced for affective processing (Mikutta et al. 2012). Music 
therapy has become an attractive tool for MDD treatment, so understanding the mechanism of the brain 
response during listening to music is the basis for the diagnosis and treatment of MDD (Michael et al. 
2005; Maratos et al. 2008). An increasing amount of literature has demonstrated that human brain 
networks are different across frequency bands in both resting-state and task conditions, and networks 
in specific frequency bands may reveal different brain functions (Brookes et al. 2012, 2016; Hillebrand 
et al. 2012, 2016). Previous studies have demonstrated altered FC in MDD in different frequency bands, 
so FC analysis across different frequency bands is important to the diagnosis of MDD (Mumtaz et al. 
2015; Knott et al. 2001; Whitton et al. 2018). Some studies have found that frequency-specific and 
large-scale brain networks will emerge during music perception to sustain ongoing cognitive tasks 
(Alluri et al. 2012; Cong et al. 2013; Wang et al. 2020). A review by Maratos et al. emphasized that 
music therapy was associated with improvements in mood to treat depression (Maratos et al. 2008). 
Some researchers have already focused on frequency-specific brain responses to music in depression 
patients and other psychiatric disorders and have found that music therapy can alter FC and modulate 
brain responses (Michael et al. 2005; Ramirez et al. 2015; Dharmadhikari et al. 2018). These previous 
studies support our assumption that altered FC exists in different frequency bands during music 
perception in MDD patients. However, few studies have investigated the mechanism of dysconnectivity 
and brain responses of MDD patients during music perception.  

For electrophysiological neuroimaging techniques, like EEG, the collected signals from one scalp 
sensor are actually from the whole brain due to the volume conduction effect (Van Den Broek et al. 



1998; Schoffelen and Gross 2009; Brunner et al. 2016). Brain connectivity in sensor space is usually 
confounded by volume conduction, and even with the conduction of source reconstruction methods, 
source leakage still exists due to the ill-posed nature of the inverse problem (O’Neill et al. 2018). An 
increasing number of studies have demonstrated that the communication of brain regions or neural 
populations depends on phase interactions (Womelsdorf et al. 2007; Palva and Palva 2012; He et al. 
2019). A zero-lag interaction is considered to be the consequence of volume conduction because signal 
leakage is instantaneous. Among the phase synchronization methods, phase lag index (PLI) discards 
the interactions resulting from phase differences of zero, so PLI is not sensitive to the volume 
conduction effect; thus, it is commonly used in the FC analysis of EEG and MEG studies (Stam et al. 
2007; Vinck et al. 2011; Wu et al. 2012). Ruiz-Gómez et al have demonstrated that PLI could reduce 
the bias introduced by the spurious influence of volume conduction and was superior to the other seven 
FC synchronization measures (Ruiz-Gómez et al. 2019).

Network analysis methods based on graph theory are widely used to reveal the topology of brain 
networks (Sporns 2018; Ren et al. 2019). In EEG sensor space, the brain networks are constituted by 
nodes representing electrodes and edges representing FC strength between every pair of nodes. The 
various network properties are efficient measures used to quantify brain functional integration and 
functional segregation (Rubinov and Sporns 2010; Liao et al. 2017). Degree, which is a measure of 
influence, clustering coefficient, which is a measure of functional segregation, and characteristic path 
length, which is a measure of functional integration, are network properties that are commonly used to 
quantify the efficiency of information processing (Achard et al. 2006; He et al. 2007; Gong and He 
2015). In this study, we applied degree, clustering coefficient and characteristic path length to quantify 
the differences between healthy people and MDD patients.

In this study, we collected EEG data from healthy people and MDD patients under conditions of music 
perception, and used the PLI method to calculate FC across five typically analyzed frequency bands: 
delta, theta, alpha, beta and gamma bands. After statistical analysis using the network-based-statistic 
(NBS) method, we compared the two groups through connectivity matrices and graph-theory based 
network properties in delta and beta frequency bands, which exhibited significant differences. Finally, 
machine learning methods were used to perform the classification.

2. Methods
2.1 Data acquisition
Nineteen healthy adults (fourteen females and five males) aged 24 to 65 years in the control (CON) 
group and twenty adults (fourteen females and six males) with MDD aged 23 to 58 years in the MDD 
group were recruited for this experiment. All the patients were from the First Affiliated Hospital of 
Dalian Medical University in China. This study was approved by the ethics committee of the hospital, 
and all the participants signed the informed consent before their enrollment. None of the participants 
reported hearing loss or formal training in music. MDD patients were primarily diagnosed by a clinical 
expert, and the course of the disease varied from 2 and 36 months. All the participants were tested 
according to Hamilton Rating Scale for Depression (HRSD), Hamilton Anxiety Rating Scale (HAMA) 
and Mini-Mental State Examination (MMSE). The means and standard deviations (SD) of age, gender, 
education and clinical measures for both groups are listed in Table 1. During the experiment, 
participants were told to sit comfortably in a chair and listen to a piece of music. An 8.5-minute long 
musical piece of modern tango by Astor Piazzolla was used as the stimulus due to its rich musical 
structure and high range of variation in musical features, such as dynamics, timbre, tonality and rhythm 
(Alluri et al. 2012, 2013).

The EEG data were recorded by the Neuroscan Quik-cap device with 64 electrodes arranged according 
to the international 10-20 system. Electrodes placed at the left and right earlobes were used as the 
references. The data were down-sampled to 256 Hz for further processing and visually checked to 
remove obvious artifacts from head movements. Eye movements artifacts were rejected by independent 



component analysis (ICA), and 50-Hz artifacts were removed by short time Fourier transform (STFT). 
STFT was applied to filter the data into five typically analyzed frequency bands, namely, the delta 
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-80 Hz) bands, for further 
analysis. 

2.2 Phase synchronization
In this study, phase synchronization was measured between all the pairs of channels by the PLI method, 
which is an asymmetry index that measures the distribution of phase differences (Stam et al. 2007; 
Vinck et al. 2011). Due to the instantaneous spread of current, the same sources collected by two 
electrodes are considered to cause a zero-lag phase difference, which is rejected by PLI. Therefore, PLI 
is less sensitive to the volume conduction effect, and it can reveal the true coupling strength between 
pairs of channels.

For an EEG signal  from one channel, the analytical signal  can be constructed 𝑥(𝑡), 𝑡 = 1,2,3,⋯,𝑇 𝑧(𝑡)
by Hilbert transform,

𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑥(𝑡) =
1
𝜋𝑃𝑉∫

∞

―𝑥

𝑥(𝜏)
𝑡 ― 𝜏𝑑𝜏,   #(1)

where  is the imaginary part, and  refers to the Cauchy principal value. Then, the instantaneous 𝑥(𝑡) 𝑃𝑉
amplitude  and the instantaneous phase  can be computed as follows: 𝐴(𝑡)  φ(𝑡)

{𝐴(𝑡) = [𝑥(𝑡)]2 + [𝑥(𝑡)]2

𝜑(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑋(𝑡)
𝑥(𝑡).

# (2)

Therefore, the phase difference  of two signals  and  at time  can be formulated as:∆𝜑(𝑡) 𝑥𝑎(𝑡) 𝑥𝑏(𝑡) 𝑡

∆𝜑(𝑡) =  𝜑𝑎(𝑡) ― 𝜑𝑏(𝑡).  #(3)

Then, the PLI index can be defined via

𝑃𝐿𝐼 = | < 𝑠𝑖𝑔𝑛[∆𝜑(𝑡)] > |, 𝑡 = 1…𝑇.  #(4)

The value of PLI index varies between 0 and 1. A value of 0 indicates no coupling or coupling with a 
phase difference centered around 0 mod , and a value of 1 indicates perfect phase synchronization 𝜋
between two signals at a constant lag except 0 or . 𝜋

In this study, for the 8.5-minute EEG data with a sampling frequency of 256 Hz, we first removed four 
unusable electrodes. Then, we removed the first and last 10 seconds of the EEG data to avoid transition 
effects, and we segmented the EEG data into non-overlapping epochs by a time window of 10 seconds, 
so there were a total of 49 epochs. Then, an adjacency matrix of  was calculated by PLI for 60 × 60
each epoch and each frequency band. 

2.3 Network analysis 
Graph theory is normally used after the calculation of the adjacency matrix to quantify the topology of 
brain networks. In this study, we used three commonly used network measures to quantify influence, 
functional segregation and functional integration, including degree, clustering coefficient and 
characteristic path length. All the network measures mentioned above were computed using the Brain 
Connectivity Toolbox (Rubinov and Sporns 2010) (http://www.brain-connectivity-toolbox.net).

For an adjacency matrix , with  nodes,  represents the connection strength between node  and 𝑮 𝑁 𝑤𝑖𝑗 𝑖
node , where . The diagonal elements mean self-connections of nodes, so 𝑗 0 ≤ 𝑤𝑖𝑗 ≤ 1 𝑤𝑖𝑖 = 0, 𝑖 = 1,

.2,⋯,𝑁

http://www.brain-connectivity-toolbox.net


2.3.1 Degree 

Degree is considered an important marker of network development and resilience, and for a weighted 
network, the degree of node  can be defined as follows:𝑖

𝑘𝑖 = ∑
𝑗 ∈ 𝑁

𝑤𝑖𝑗  #(5)

2.3.2 Clustering coefficient

Clustering coefficient is a measure of functional segregation which is a reflection of the local 
organization of a network by depicting the tendency of a node forming local triangles (Rubinov and 
Sporns 2010), and its definition for a weighted network of node  is described as follows:𝑖

𝐶𝑖 =
2𝑡𝑖

 𝑘𝑖( 𝑘𝑖 ― 1),   #(6)

where  is the geometric mean of triangles around . The clustering coefficient 𝑡𝑖 =  
1
2∑

𝑗,ℎ ∈ 𝑁(𝑤𝑖𝑗𝑤𝑖ℎ𝑤𝑗ℎ)
1
3 𝑖

for the whole network is defined as the mean of clustering coefficient for all nodes, 

𝐶 =
1
𝑁∑

𝑖 ∈ 𝑁
𝐶𝑖. #(7)

2.3.3 Characteristic path length

Characteristic path length is the average of shortest path length between all pairs of nodes and is 
commonly used to measure functional integration. Characteristic path length is a reflection of the 
efficiency of a network (Bullmore and Sporns 2009). The definition is described as follows:

𝐿 =
1
𝑁∑

𝑖 ∈ 𝑁

∑
𝑗 ∈ 𝑁,  𝑗 ≠ 𝑖𝑑𝑖𝑗

𝑁 ― 1 ,  #(8)

where  is the shortest path length between node  and node , and  is the shortest 𝑑𝑖𝑗 = ∑
𝑎𝑢𝑣 ∈ 𝑔𝑤

𝑖⟷𝑗

1
𝑤𝑢𝑣

𝑖 𝑗 𝑔𝑤
𝑖⟷𝑗

weighted path between  and . 𝑖 𝑗

2.4 Statistical analysis
To determine in which frequency band a significant difference exists between the CON group and MDD 
group, Network Based Statistic Toolbox was applied in this study (Zalesky et al. 2010). The NBS 
method can control the family-wise error when multiple univariate testing is performed at each 
connection of a network. NBS method is used to identify significant brain network substructures formed 
by some suprathreshold links but not to identify individual links as being significant. The threshold is 
used on the test statistic computed for each pairwise connection, and different thresholds can construct 
different level of sparse graphs. After averaging the adjacency matrices across time windows for each 
subject, statistical analysis was performed between the CON group and MDD group for each frequency 
band. A significance level of corrected  and a nonparametric permutation test of 5000 𝑃 < 0.05
permutations were used in this study. T-test was selected for the statistical test, and different test statistic 
thresholds (t-statistic) were tested to identify the most significant brain network substructures. 

2.5 Classification
Considering the limitations of using sliding windows without overlapping, which will lead to the 
problem that FC topology may not been well described within one fixed time window (Liuzzi et al. 
2019), we averaged every six time windows (the connectivity matrices within one minute) to generate 



one classification sample to highlight the main connectivity patterns during music perception. To 
improve classification performances, we constructed sparse networks based on the notion of connected 
graphs to remove redundant information, which can ensure that every node has a connection to another 
node for a sparse network. The detailed method for threshold selection can be found in reference (Atay 
and Biyikoǧlu 2005).

In this study, we used the adjacency matrices obtained by PLI to perform classification, and we 
compared the classification performance using original networks and sparse networks between delta 
and beta frequency bands and six classifiers, including decision tree (DT), Gaussian mixture model 
(GMM), k-nearest neighbor (KNN), naïve Bayes (NB), random forest (RF) and support vector machine 
(SVM). We unfolded the adjacency matrix to a vector as one sample. Because of the symmetry property 
of the adjacency matrix, we can obtain  variables for each sample. 𝑁(𝑁 ―1)/2 = 60(60 ― 1)/2 = 1770
Therefore, we can get 152 samples for the CON group and 160 samples for the MDD group. To avoid 
overfitting, principal component analysis (PCA) was applied for dimension reduction before 
classification.

To assess the performance of classification, we calculated some statistical evaluation measurements 
including accuracy, sensitivity, and specificity (Yan et al. 2019), which can be calculated by:

accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁,  #(9)

sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁,  #(10)

specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃,          #(11)

where TP, TN, FP and FN represent true positive, true negative, false positive and false negative, 
respectively. To obtain a reliable classification result, we shuffled the data order, used 10-fold cross 
validation, and ran 10 times for each classifier. Then, we averaged the classification results to calculate 
the final performance for each classifier and each frequency band.

3. Results 
3.1 Phase synchronization
After statistical analysis by NBS for each frequency band, a significant difference only existed in two 
frequency bands: delta and beta bands (delta: , theta: , alpha: , beta: 𝑃 = 0.0450 𝑃 = 0.2386 𝑃 = 0.3447

, gamma: ). The adjacency matrices for these two frequency bands of the CON 𝑃 = 0.0344 𝑃 = 0.0649
group and MDD group are shown in Figure 1. For the delta frequency band, the connectivity strength 
increased in the MDD group (delta: , ) compared to the CON group (delta: mean = 0.0867 SD = 0.0197

, ;). However, for the beta frequency band, the connectivity strength of mean = 0.0853 SD = 0.0178
the MDD group ( , ) decreased compared with that of the CON group mean = 0.0408 SD = 0.0133
( , ). From Figure 1, we can see that short-distance synchronization was mean = 0.0485 SD = 0.0143
stronger than long-distance synchronization, and the whole brain connectivity was formed by many 
small modules.

The significant brain network connections between the CON group and the MDD group in delta and 
beta frequency bands are shown in Figure 2. We can see that there were 13 significant connections in 
the delta band distributed within right central brain areas and between right temporal and left parietal 
brain regions. While in the beta band, there were 43 significant connections characterized mostly by 
long-distance edges, which were distributed mostly within frontal brain areas and between frontal and 
parieta-occipital brain areas. The substructures were considered to be important indicators of the 



differences between the two groups, which can be promising biomarkers for MDD under conditions of 
music perception.

3.2 Network analysis
We calculated the degree of each node in delta and beta frequency bands for both groups, as shown in 
Figure 3. We obtained the lateralization index (LI) by the formula: , where  and 𝐿𝐼 = (𝐿 ― 𝑅)/(𝐿 + 𝑅) 𝐿

 represented the degree of left and right hemisphere, respectively (Desmond et al. 1995). Then, we 𝑅
performed t-test for both delta and beta bands, and we obtained  for the delta band and 𝑃 = 0.0114

 for the beta band. For the CON group, there was a lateralization effect to the left hemisphere, 𝑃 < 0.0001
but for the MDD group, there was no such lateralization effect. From Figure 3, we can conclude that 
the degree increased in the delta frequency band for the MDD group (delta: , mean = 0.0867

;) compared with the CON group (delta: , ), but it decreased SD = 0.0040 mean = 0.0854 SD = 0.0022
in the beta frequency band for the MDD group ( , ) compared with the mean = 0.0402 SD = 0.0032
CON group ( , ); this finding was consistent with the results from the mean = 0.0480 SD = 0.0031
adjacency matrices as shown in Figure 1. Figure 4 shows a boxplot of clustering coefficient and 
characteristic path length in delta and beta frequency bands of both the CON group and the MDD group. 
From this finding, we can see that the beta frequency band was the most discriminate for classifying 
the CON group and the MDD group; therefore, next, we will test the classification performance of each 
frequency band.

3.3 Classification results
We tested six classifiers on delta and beta frequency bands, and the classification results are listed in 
Table 2. The top three classification accuracy results are marked in bold font. From Table 2, we can see 
that SVM demonstrated the best classification performance, with a classification accuracy of 89.7% 
among the six classifiers in the beta frequency band using sparse adjacency matrices. Therefore, we can 
conclude that the beta frequency band was the most discriminate for distinguishing the CON group and 
MDD group, which was in agreement with the results in Figure 4. For the best classification 
performance, we obtained , , and .accuracy = 89.7% sensitivity = 89.4% specificity = 89.9%

The classification performance of sparse networks was better than that of original networks for all the 
six classifiers and both delta and beta bands. The top three classification performances were all from 
sparse networks, which meant that adding a threshold to remove some redundant information can 
efficiently improve the classification performance. In network analysis, it is reasonable to remove weak 
connections, which are considered to result from the effect of noise and not to represent the true 
connections between brain regions.

4. Discussion
To the best of our knowledge, this study is the first attempt to investigate the differences in connectivity 
between healthy people and MDD patients using frequency-specific ongoing EEG FC analysis under 
conditions of music perception and then to apply classification methods for diagnosis. First, we 
calculated FC by PLI, which can efficiently decrease the volume conduction effect for each time 
window and each frequency band. Then, NBS analysis was applied to identify the significant brain 
network substructures for each frequency band, and we found that significant substructures only existed 
in delta and beta frequency bands. Then, network properties, including degree, clustering coefficient 
and characteristic path length, were calculated for delta and beta bands to explore the differences of in 
the topology between CON and MDD groups. Based on the network analysis, we found that the beta 
frequency band was the most discriminate for MDD diagnosis. Therefore, we compared the 
classification performance with six classifiers between those two frequency bands, and the beta band 
reached the highest classification accuracy through the SVM classifier after constructing sparse 
networks.



Some previous EEG studies have demonstrated that the perception of music was associated with the 
synchronization of different frequency bands (Bhattacharya et al. 2001; Ruiz et al. 2009; Wu et al. 2012; 
Cong et al. 2013). After statistical analysis of connectivity matrices for each frequency band, we found 
significant brain network connections in delta and beta bands. From the perspective of music, both the 
delta and beta bands are associated with music perception. An MEG study has demonstrated that beta 
rhythms coupled with entrained delta-theta oscillations underpin accuracy in musical processing 
(Doelling and Poeppel 2015). Arnal et al. also found that delta-beta coupled oscillations were associated 
with temporal processing (Arnal et al. 2015). Regarding the importance of delta and beta bands during 
music perception, an altered FC in those two frequency bands may provide an efficient tool for the 
diagnosis of MDD. 

The delta band exhibited increased connectivity in the MDD group with 13 significant connections, and 
the beta band exhibited decreased connectivity in the MDD group with 43 significant connections, 
which were mostly constructed by long-distance edges. This contrast between delta and beta bands was 
also reported in Leuchter’s research, which reported that in a resting-state EEG study, the delta band 
exhibited increased connectivity in the MDD group in fewer highly significant and shorter-distance 
edges, and the beta band exhibited more significant connections with longer-distance edges (Leuchter 
et al. 2012). We found that the increased significant connections in the delta band mainly distributed 
within right central brain areas and between right temporal and left parietal brain regions. The delta 
band was demonstrated to have a substantial influence on the identification of natural speech fragments 
in an MEG study (Koskinen et al. 2013). The delta band was already found to be more prominent in the 
right hemisphere than in the left hemisphere of depressed patients (Kwon et al. 1996), and the delta 
inter-hemispheric coherence contributed to the classification of MDD patients and healthy controls 
(Knott et al. 2001). Those findings were consistent with our results that the significant connections in 
the delta band distributed mostly in the right hemisphere. We also found decreased connectivity 
distributed mostly within frontal brain areas and between frontal and parietal-occipital brain areas in 
the beta band in MDD patients. The beta band has been demonstrated to be the predominant frequency 
band for music perception (Jäncke and Alahmadi 2016), and Alavash et al. found that networks of the 
listening brain showed higher segregation of frontal control regions relative to those under task-free 
resting states, which may support that MDD patients were less involved in listening in our study 
(Alavash et al. 2019). Many fMRI (Veer et al. 2010; Kaiser et al. 2015) and EEG (Fingelkurts et al. 
2007; Fingelkurts and Fingelkurts 2015) studies have demonstrated that some brain regions and some 
specific brain networks indicated decreased FC in the MDD group. Olbrich et al. have demonstrated 
that MDD was characterized by altered EEG FC within frontal brain areas (Olbrich et al. 2014). With 
hierarchical brain architectures, global integration indicates higher cognition mediated by long-distance 
connections. Music perception is a high cognition process in the brain, and global integration is needed. 
Global integration by modulating long-distance connectivity is crucial for task-dependent functions 
(Markov et al. 2011; Park and Friston 2013). The decreased long-distance connectivity in the beta band 
reported in our results, which suggests less communication between remote brain regions, may provide 
an important biomarker in MDD diagnosis.

The properties based on the graph theory are the quantification of network comparisons. In this study, 
we compared two network properties, including clustering coefficient and characteristic path length, in 
delta and beta bands between CON and MDD groups, and those measures have been used in previous 
studies to identify altered network organizations in MDD patients (Ajilore et al. 2014; Ye et al. 2015). 
From Figure 4, we can see that more differences appeared in the beta band, which was identical to our 
results showing that the beta band exhibited more significant connections than the delta band. In the 
delta band, the MDD group was characterized by higher clustering coefficient and longer characteristic 
path length, which meant that MDD patients had lower information transfer efficiency and a tendency 
of regular networks in the delta band. The MDD group showed higher local efficiency in the delta band, 
and a fMRI study obtained the same findings in MDD patients (Ye et al. 2015). Differently in the beta 
band, the MDD group presented smaller clustering coefficient and shorter characteristic path length, 



indicating that the MDD group had a poor local organization ability and a trend toward random 
networks. Singh et al. also found that depressed patients displayed smaller clustering coefficient in gray 
matter networks (Singh et al. 2013). Therefore, the topological changes in brain connectome were 
significant reflections of patients with MDD (Ye et al. 2015). 

Music perception has been demonstrated to have a cortical lateralization effect in the human brain, but 
based on the literature, different sounds appeared about which hemisphere of the brain does music 
processing more lateralize to (Ohnishi 2001; Kay et al. 2012). Toiviainen et al. found in a fMRI study 
that different musical features can cause different hemispheric asymmetry effects (Toiviainen et al. 
2014). In the present study, we revealed a left hemispheric lateralization effect in healthy people, and 
no lateralization effect in MDD patients under naturalistic music listening condition. Alluri et al. 
demonstrated that left hemispheric primary and supplementary motor areas were more activated than 
those of the right hemisphere when listening to purely instrumental music (Alluri et al. 2013). The 
results supported our findings of left hemisphere lateralization in the CON group because we also used 
a piece of music without lyrics. Furthermore, the left inferior frontal area was reported to be related to 
the memory of music (Watanabe et al. 2008), which also supported to the reliability of our results. Many 
studies have reported a lateralized hemispheric dysfunction in major depression (Uytdenhoef et al. 1983; 
Bench et al. 1993), and this dysfunction was well demonstrated by our results that no hemispheric 
lateralization effect exists in MDD patients during music perception. Music is capable of inducing 
emotional arousal (Mikutta et al. 2012), and the left hemisphere predominates during states of low 
arousal and positive affect (Craig 2005). EEG studies have found that depressed participants showed a 
hypoactivation in the left frontal lobe, which was related to the elicitation and recognition of emotions 
and caused diminished positive affect (Wheeler et al. 1993; Punkanen et al. 2011). This may cause the 
deficiency of affective processing in depressed patients during music processing. 

We tested the classification accuracy of delta and beta bands by six classifiers, and the most commonly 
used SVM classifier exhibited the best performance in the beta band, which was consistent with the 
results in Figure 4. After eliminating weak connections, the classification performance improved for all 
the classifiers according to Table 2 because applying feature selection to remove redundant information 
was necessary for classification. An EEG study on male depression by Knott et al., also showed that 
the beta frequency band was the most discriminate for classification (Knott et al. 2001). Gao et al. 
conducted a comprehensive review of studies related to the classification of MDD based on magnetic 
resonance imaging data and compared the methods and classification accuracies of 66 representative 
studies (Gao et al. 2018). The classification performance in our study was better than that of 76% of the 
studies mentioned in Gao’s work. EEG was more suitable for clinical applications in MDD diagnosis 
due to its higher temporal resolution and lower cost than fMRI and MEG (Mumtaz et al. 2017). 
Furthermore, compared with that recorded under resting state conditions, EEG data recorded under 
naturalistic and continuous stimuli, such as listening to music, is more close to simulate real-world 
conditions (Wang et al. 2020), and music can induce emotional arousal, which is related to affective 
processing in MDD patients (Mikutta et al. 2012; Toiviainen et al. 2014). Therefore, music perception 
tasks may be superior for use in MDD diagnosis. However, it is still a long way to go for the clinical 
usability, because current studies are mostly based on small datasets (22 to 90 recordings) acquired 
under non-naturalistic conditions and highly controlled research settings, and the non-replicability of 
the research with different methods and experimental conditions also make it challenging for the 
generalization to clinical diagnosis. 

Taken together, when exposed to music listening conditions, both healthy controls and MDD patients 
exhibited different FC patterns across different frequency bands, and MDD patients were characterized 
by altered FC in delta and beta bands. Our results, shown above, were well supported by previous 
studies and can provide a promising perspective for the clinical diagnosis of MDD in the future. 



Some important limitations of this study should be declared. First, the analysis was based on the sensor-
space level, and the lack of a source reconstruction procedure limited further explanation of the results. 
Second, the neural correlates and dynamic neural processing of musical emotions are still not well 
understood (Toiviainen et al. 2014), and the selection of control stimuli, such as music type and duration, 
still needs further investigation. Furthermore, in the music processing task, how to extract the music-
induced activity from ongoing EEG data is quite challenging and still remains an open question (Wang 
et al. 2020), which is directly related to the reliability of the explanation of the results. 
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Figure legends



Figure 1.  Averaged adjacency matrices of the CON group and MDD group across time windows for 
delta and beta frequency bands. Each adjacency matrix is formed by a  matrix with zero values 60 × 60
in the diagonal. CON, control; MDD, major depression disorder.

Figure 2.  The significant brain network connections in delta and beta frequency bands of the CON 
group and MDD group. The results were conducted by the NBS method using 5000 permutations, 
corrected  value of , and maximum component threshold  for the delta band and 𝑝 𝑝 < 0.05 𝑡 > 3.1

 for the beta band. There are 13 significant connections in the delta band and 43 significant 𝑡 > 2.3
connections in the beta band. CON, control; MDD, major depression disorder; NBS, network based 
statistic.

Figure 3.  The degree of each node in delta and beta frequency bands for the CON group and MDD 
group. CON, control; MDD, major depression disorder.

Figure 4.  Boxplot of clustering coefficient and characteristic path length for the CON group and MDD 
group in delta and beta frequency bands. The upper and lower black lines represent the maximum value 
and the minimum value, respectively, and the red cross indicates outliers. The bottom and top edges of 
the blue box indicate the 25th and 75th percentiles, and the red line and rhombus in the box indicate the 
median value and the mean value, respectively. CON, control; MDD, major depression disorder.

Table 1. Means and standard deviations of age, gender, education and clinical measures of the CON 
group and MDD group.

CON group MDD group Analysis



Mean SD(Range) Mean SD(Range) -value𝑝
Age 38.4 11.8(24-65) 42.9 11.0(23-58) >0.05

Education 13.6 3.8(6-20) 12.8 3.4(6-16) >0.05
HRSD 2.4 1.3(0-4) 23.3 3.6(16-28) <0.01
HAMA 2.4 1.3(0-5) 19.2 3.0(15-25) <0.01
MMSE 28.2 0.9(27-30) 28.1 1.1(26-30) >0.05

Duration 0 0 12.8 8.5(2-36) -
Gender 14 females, 5 males 14 females, 6 males -

Abbreviations: CON, control; MDD, major depression disorder; SD, standard deviations; HRSD, 
Hamilton Rating Scale for Depression; HAMA, Hamilton Anxiety Rating Scale; MMSE, Mini-Mental 
State Examination.

Table 2. The classification accuracy of six classifiers in delta and beta frequency bands.

Network DT GMM KNN NB RF SVM
Original 54.7% 49.7% 65.7% 61.2% 62.0% 66.9%Delta Sparse 60.9% 53.2% 68.7% 62.5% 69.7% 72.9%
Original 61.4% 49.5% 77.4% 55.2% 70.9% 78.2%Beta Sparse 68.5% 54.8% 85.6% 56.7% 82.3% 89.7%

Abbreviations: DT, decision tree; GMM, Gaussian mixture model; KNN, k-nearest neighbor; NB, naïve 
Bayes; RF, random forest; SVM, support vector machine.


