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Two themes have puzzled the research on developmental and learning disorders for
decades. First, some of the risk and protective factors behind developmental challenges
are suggested to be shared and some are suggested to be specific for a given condition.
Second, language-based learning difficulties like dyslexia are suggested to result from
or correlate with non-linguistic aspects of information processing as well. In the current
study, we investigated how adults with developmental dyslexia or ADHD as well as
healthy controls cluster across various dimensions designed to tap the prominent non-
linguistic theories of dyslexia. Participants were 18–55-year-old adults with dyslexia
(n = 36), ADHD (n = 22), and controls (n = 35). Non-linguistic theories investigated with
experimental designs included temporal processing impairment, abnormal cerebellar
functioning, procedural learning difficulties, as well as visual processing and attention
deficits. Latent profile analysis (LPA) was used to investigate the emerging groups and
patterns of results across these experimental designs. LPA suggested three groups: (1)
a large group with average performance in the experimental designs, (2) participants
predominantly from the clinical groups but with enhanced conditioning learning, and (3)
participants predominantly from the dyslexia group with temporal processing as well as
visual processing and attention deficits. Despite the presence of these distinct patterns,
participants did not cluster very well based on their original status, nor did the LPA
groups differ in their dyslexia or ADHD-related neuropsychological profiles. Remarkably,
the LPA groups did differ in their intelligence. These results highlight the continuous and
overlapping nature of the observed difficulties and support the multiple deficit model
of developmental disorders, which suggests shared risk factors for developmental
challenges. It also appears that some of the risk factors suggested by the prominent
non-linguistic theories of dyslexia relate to the general level of functioning in tests
of intelligence.

Keywords: dyslexia, ADHD, temporal processing, procedural learning, eyeblink conditioning, visual processing,
visual attention, comorbidity
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INTRODUCTION

Comorbidity between developmental and learning disorders is
very common. Accordingly, it has been suggested that various
developmental challenges result from risk and protective factors,
some of which are shared and some specific for a given condition
(Pennington, 2006; Pennington and Bishop, 2009). Related to
this, language-based learning difficulties like dyslexia have been
suggested to result from or correlate with non-linguistic aspects
of information processing. In the current study, we investigate
how adults with developmental dyslexia (dyslexia, DD) or
attention deficit hyperactivity disorder (ADHD) and controls
cluster across various dimensions designed to tap the prominent
non-linguistic theories of dyslexia.

Developmental dyslexia is among the most intensively
investigated developmental challenges. Despite the amount of
research, the causative, correlative, and resulting as well as
shared and differentiating factors with other developmental
challenges, such as ADHD, are yet to be confirmed. Dyslexia is
most often considered to belong to a continuum of language-
based developmental and learning difficulties and impaired
phonological processing is considered to be its proximal cognitive
cause (Wagner, 1986; Torgesen et al., 1994; Snowling, 1995;
Boets et al., 2013). Some researchers suggest, however, that
impaired phonological processing is only an endophenotype
that increases the risk for dyslexia (Snowling and Melby-Lervåg,
2016) or that the phonological processing and reading difficulties
that characterize dyslexia could result from a more general
cognitive—but non-linguistic—processing impairments.

One of the oldest non-linguistic hypotheses of dyslexia
suggests that a general temporal processing impairment results
in poorly defined phonological representations and, therefore,
in difficulties in grapheme–phoneme mapping and ultimately
in poor reading (Tallal, 1980). Another hypothesis suggests that
dyslexic readers suffer from abnormal cerebellar functioning,
which results in articulatory problems that lead to poor
phonological representations and processing as well as to
poor general skill and knowledge automatization (Nicolson
and Fawcett, 2007, 2011). Related to this, dyslexia has been
suggested to be explained by impaired procedural but intact
declarative learning (the procedural deficit hypothesis) (Ullman,
2004; Ullman and Pullman, 2015). Finally, difficulties in visual
processing and especially attention have been suggested to result
in poor reading as well, because reading is a process that stresses
the visual system.

Consensus as to whether dyslexia is caused by a purely
phonological deficit or if more general, non-linguistic, deficits are
involved has not been reached at this point. Proponents of the
phonological deficit hypothesis suggest that other difficulties are
comorbid or result from the phonological and reading difficulties
or from reduced reading experience (Goswami, 2015; Huettig
et al., 2018). On the other hand, the more general non-linguistic
explanations of dyslexia have been defended based on findings
suggesting that (i) the phonological representations in dyslexia
might not be impoverished (Ramus and Szenkovits, 2008; Boets
et al., 2013), (ii) not all those with dyslexia have phonological
difficulties (Valdois et al., 2011), and (iii) some who have

phonological difficulties do not have dyslexia (Snowling, 2008;
Snowling and Melby-Lervåg, 2016). Thus, phonological skills
alone do not fully explain variation in reading abilities (Kibby
et al., 2014). Likewise, no single cognitive factor alone can explain
all the behavioral variation in every individual with dyslexia
(Ramus and Ahissar, 2012). All this suggests that characteristics
of developmental disorders are multiple, continuous, and
possibly shared with other developmental challenges.

To resolve some of these open questions, Project DyAdd1

tested the prominent non-linguistic theories of dyslexia, at
different levels of analysis, in adults with developmental
dyslexia or ADHD as well as in healthy controls with the
main objective of defining the differentiating and shared
characteristics. Neurocognitive difficulties were investigated with
clinical neuropsychological methods (behavioral level) (Laasonen
et al., 2009c, 2010; Kivisaari et al., 2012), and basic cognitive
functions were assessed with experimental methods (cognitive
level). Biological measures used in the project were serum lipid
fatty acids and measures of cerebellar functioning (biological
level). Abnormalities in fatty acid metabolism have been
suggested to contribute to both ADHD and dyslexia as well as
their cognitive and behavioral profiles (as reviewed by Laasonen
et al., 2009a,b). Similarly, the cerebellum has been implicated
to contribute to the behavioral and cognitive profile of dyslexia
(Nicolson et al., 2001). Associations between neuropsychological,
experimental, and biological measures were studied as well
(Laasonen et al., 2009a,b). The experimental paradigms of
Project DyAdd targeted the prominent non-linguistic theories of
developmental dyslexia, that is, temporal processing impairment,
abnormal cerebellar functioning, procedural learning difficulties,
as well as visual processing and attention deficits.

Below, we shortly describe our previous results for the four
paradigms used in the current study. These include group
differences between healthy controls, adults with developmental
dyslexia or ADHD, as well as correlations between the
performance in the experimental paradigms and dyslexia-related
and ADHD-related cognition.

Temporal processing was assessed with tasks where the
participant judged the order or the simultaneity/non-
simultaneity of visual stimuli (Sarkio, 2009). The group
differences have not been published, but in our other studies
with similar tasks, impaired temporal processing has been found
in adults with dyslexia across sensory modalities and their
combinations (Laasonen et al., 2001, 2002a,b; Virsu et al., 2003).
Further, in our previous studies, temporal processing has been
shown to correlate with phonological processing in both dyslexic
and fluent readers (Laasonen et al., 2001, 2002b, 2012c; Laasonen,
2002; Virsu et al., 2003). Taken together, we have shown that
temporal processing impairment associates with dyslexia and
dyslexia-related cognition of phonological processing.

We investigated the role of the cerebellum with two
paradigms of classical eye-blink conditioning (Laasonen et al.,
2012a). The group with dyslexia was slower overall in their
learning compared to the control group and had pronounced
difficulties in a medio-temporal-dependent paradigm compared

1https://www.helsinki.fi/en/researchgroups/project-dyadd
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to the more cerebellum-dependent paradigm. Over all groups,
responses in the cerebellum-dependent paradigm correlated
positively with reading performance and, within those who
acquired conditioned behavior, responses of the medio-temporal-
dependent paradigm correlated positively with spelling. Taken
together, we showed that cerebellum-based classical eye-blink
conditioning did not associate with dyslexia, although it did relate
to dyslexia-related cognition of reading.

Procedural learning was investigated by us with two
paradigms (Laasonen et al., 2014). The groups with dyslexia
and ADHD did not differ from each other or controls in
sequence learning, but only the control group learned the
grammar in an artificial grammar learning (AGL) task. Total
group correlations indicated that explicit knowledge of the
grammar correlated positively with phonological processing and
reading performance. No correlations were found for the implicit
knowledge. Taken together, in our previous study, impaired
procedural learning was associated with both dyslexia and ADHD
but only with dyslexia-related cognition, that is, phonological
processing and reading.

We investigated visual attention processes with three
paradigms (Laasonen et al., 2012b). Adults with dyslexia were
not impaired in their capacity of visual attention but had
difficulties in temporal and spatial aspects. The ADHD group did
not have any difficulties in the tasks. When all the participants
were analyzed together, spatial and capacity of visual attention
positively predicted performance in phonological processing and
reading. Taken together, we showed that visual attention was
associated with dyslexia and dyslexia-related cognition, that is,
phonological processing and reading.

In Figure 1, we present a summary of the published results
of Project DyAdd across the behavioral, cognitive, and biological
levels of analysis. Results presented in Figure 1 and those
detailed above indicate that performance in tasks tapping the
prominent non-linguistic theories of developmental dyslexia
correlates with dyslexia-related cognition when inspected over
all participants, that is, phonological processing and reading.
However, those with dyslexia are not always impaired in
these same tasks compared to controls and it is difficult to
differentiate individuals with dyslexia from those with ADHD.
All this suggests that the characteristics related to dyslexia
are continuous in a way that the associations emerge also in
other populations and that the risk factors across developmental
difficulties are shared in a way that makes them difficult to
differentiate from each other. One possible explanation for the
findings is the Pennington’s multiple deficit model (Pennington,
2006; Pennington and Bishop, 2009), which suggests that the
continuous nature of a given developmental disorder cannot
be explained by a single gene or cognitive factor. Instead,
developmental disorders share many probabilistic genetic and
environmental risk and protective factors, and this leads to the
high comorbidity between them both at the neural, cognitive, and
behavioral levels.

In the current study, we re-analyzed the data from Project
DyAdd with latent profile analysis (LPA) using measures from
the experimental designs probing the prominent non-linguistic
theories of dyslexia, that is, temporal processing impairment,

abnormal cerebellar functioning, procedural learning difficulties,
and visual attention deficits. We investigate how adults with
developmental dyslexia or ADHD and a healthy control group
cluster when all the experimental designs are considered at
the same time and whether specific profiles of difficulties can
be identified. The profiles of the groups emerging from LPA
are investigated further across domains of neuropsychological
functioning that characterize dyslexia and ADHD as well
as general level of functioning in tests of intelligence. We
hypothesize that dyslexia and ADHD will not emerge as
separate groups in the LPA with the possible exception
of time-constrained sequential processing (see the summary
of Figure 1). The neuropsychological profiles of the LPA
groups are expected to reflect this as well. Consequently, we
expect not to find dyslexia-specific or ADHD-specific profiles
in the LPA groups.

MATERIALS AND METHODS

Description of the general methods of project DyAdd can be
found in a previous article (Laasonen et al., 2009c).

Participants
Participants in the current study were those who participated
in project DyAdd and its experimental tasks (Laasonen et al.,
2012a,b, 2014). General inclusion criteria were as follows: Finnish
as the native language, age between 18 and 55 years, and
Wechsler Abbreviated Scale of Intelligence–Full intelligence
quotient, WASI FIQ (Wechsler, 1999, 2005), over 70 because
of the ICD-10 criteria for specific reading disorder (World
Health Organization, 1998). General exclusion criteria were
brain injury, somatic or psychiatric condition affecting cognitive
functions (including major depression), psychotropic drugs
affecting cognitive functions, and substance abuse. Blood samples
were collected to rule out endocrinopathies (e.g., dysfunction of
the thyroid gland), diabetes, renal dysfunction, abuse of alcohol,
and similar somatic states that might compromise cognitive
functions. Laboratory tests included hemoglobin, red blood
count, white blood count, platelet count, thyroid stimulating
hormone, serum creatinine, alanine aminotransferase, gamma-
glutamyltransferase, and fasting blood glucose.

Participants in the dyslexia group (n = 36) had a
history of reading difficulties and a prior diagnosis. Their
phonological processing and reading performance were
assessed at the time of the study. All performed 1 SD below
the mean in both, with the exception of one participant
with poor residual phonological processing only (Laasonen
et al., 2009c) as assessed with phonological naming [rapid
alternate stimulus naming (RAS) speed/accuracy, Wolf,
1986], phonological awareness (phonological synthesis
accuracy, Laasonen et al., 2002b), phonological memory
(WAIS digit span forward length, Wechsler, 2005), and
reading (oral reading speed/accuracy, task details in Laasonen
et al., 2002b). ADHD diagnosis and a history of ADHD-
related difficulties were exclusion criteria. The latter was
screened with the Wender Utah Rating Scale (WURS)
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FIGURE 1 | Summary of the published results of project DyAdd. Named difficulties indicate significant differences compared to controls. Asterisks indicate
differences where those with dyslexia differed not only from controls but also from those with ADHD. FIQ, full Intelligence quotient; PIQ, performance intelligence
quotient; VIQ, verbal intelligence quotient; VC, verbal comprehension; and WM, working memory from the Wechsler Adult Intelligence Scale (Wechsler, 2005). NB,
nota bene. Temporal processing is not included in the figure. References to the original articles (Laasonen et al., 2009a,b,c, 2010, 2012a,b, 2001).

(Ward et al., 1993) and the Adult Problem Questionnaire
(APQ) (De Quiros and Kinsbourne, 2001).

Participants with ADHD (n = 22) had a history of ADHD-
related difficulties and a prior diagnosis based on the DSM-
IV criteria (American Psychiatric Association, 1994) using
CAADID (Epstein et al., 2001) by a medical doctor specialized
in neuropsychiatry (author SL or PT in most cases). Participants
with any of the three subtypes of ADHD were eligible for
the study. Confounding psychiatric disorders were excluded by
structured diagnostic interviews (SCID-I and SCID-II) (First
et al., 1996, 1997). Dyslexia diagnosis and a history of dyslexia-
related difficulties were exclusion criteria. The latter was screened
with Adult Reading History Questionnaire (ARHQ) (Lefly and
Pennington, 2000). Participants with ADHD participated in the
project unmedicated. A wash-out period of at least 1 week
was required before and during the study appointments if
they were using methylphenidate. Those with medication with
a longer half-life were excluded from the project. Exclusion
criteria for the Control group (n = 35) were a history of

reading or ADHD-related difficulties or a prior diagnosis of
dyslexia or ADHD.

Experimental Designs
Detailed description of the experimental tasks and procedures
can be found in previous articles (Laasonen et al., 2012a,b, 2014).
Below, we present the variables used and, in case of composites,
their Cronbach’s alpha reliabilities.

Temporal processing (Sarkio, 2009) was assessed with two
visual tasks, which were both realized with gray or green stimuli
on a black background. (1) Temporal order judgment (TOJ)
assessed participant’s 74% correct threshold in milliseconds in
assessing the order of two visual stimuli that were presented
one above the other. (2) Temporal processing acuity (TPA)
estimated the 74% correct threshold for assessing correctly the
simultaneity/non-simultaneity of streams of three visual stimuli,
which were presented one stream above the other. For this study,
we collapsed four variables (thresholds: gray or green × TPA or
TOJ) into a single measure using a principal component analysis
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(PCA) over all the groups (α = 0.55, removing the threshold for
green TPA resulted in α = 0.7). To that end, we calculated and
saved the regression-based component scores.

Cerebellar functions were assessed with two classical eye-blink
conditioning tasks (Laasonen et al., 2012a). Both included a
preconditioning phase (20 trials: randomly presented 10 tones
and 10 air puffs to the corner of the eye), a conditioning phase (80
trials: blocks of tones and tones + air puffs), and an extinction
phase (20 trials: tones only). Eye-blink responses were recorded
with EMG. (1) In the delay conditioning paradigm (DCP), the
800-ms tone and the 100-ms air puff ended simultaneously in
the conditioning phase. (2) In the trace conditioning paradigm
(TCP), the 100-ms tone and the 100-ms air puff were separated by
an interval of 600 ms. The DCP assesses mostly cerebellum-based
procedural learning, while the TCP measures mostly declarative
learning involving also the medio-temporal areas. Outcome
measures were the number of conditioned responses as well
as their peak amplitude, peak latency, and magnitude. For this
study, we kept two variables: number of conditioned responses in
the DCP and in the TCP.

Procedural learning (Laasonen et al., 2014) was assessed with
two tasks. (1) The serial reaction time (SRT) task was a choice
reaction time task in which the participants did not know that
the presentation order of stimuli was defined by a grammar
(Knowlton et al., 1992). Stimuli were geometrical non-linguistic
shapes, each presented at a constant spatial location, that were
presented in blocks (block 1: random, 2–11: structured, 12:
random, 13: structured). Learning was expected to result into
faster reaction time in the structured compared to random blocks.
The outcome measures were the average percentage of erroneous
answers and the average reaction time for correct answers
per block. Implicit procedural learning was operationalized by
comparing the performance in the last random block to the
average of the adjacent structured blocks. (2) AGL was assessed
with a task where the participants had to memorize horizontal
strings of 2–6 geometrical non-linguistic shapes. Afterwards,
they were told that the strings followed a set of rules (Abrams
and Reber, 1988; Knowlton and Squire, 1996) and classified a
new set of strings into grammatical and non-grammatical. The
outcome measures were the percentage of correct grammatical
and similar answers. The latter was defined by chunk strength,
which is based on fragment overlap. Implicit procedural learning
was operationalized as better than chance performance in
grammatical accuracy. For this study, we used the following four
variables. For SRT, we kept accuracy in the last random block
divided by average accuracy in adjacent blocks and reaction time
in the last random block divided by average reaction time in
adjacent blocks; for AGL, we kept grammatical accuracy and
similarity ratings.

Visual processing and attention (Laasonen et al., 2012b) were
assessed with three tasks. (1) Spatial characteristics of visual
attention were estimated with useful field of view (UFOV) where
the participant fixated centrally and conducted a yes/no decision
to detect the presence or absence of a target (control condition).
Some trials required locating an additional peripheral target
without distractors (experimental condition without distractors)
or with them (experimental condition with distractors). The

four outcome measures for each condition were the presentation
duration of the stimuli to reach a 79.3% correct threshold for both
the central and peripheral task with and without distractors. (2)
Temporal characteristics of visual attention were estimated with
the attentional blink (AB) paradigm using a similar method to
Green and Bavelier (2003). Again, the participant fixated centrally
and was presented with black letters (presentation time 26.7 ms
with 106.7 ISI), a white letter, the first target to be identified
(T1), other black letters, and a black X to be detected, the second
target (T2), that appeared in 50% of the trials. A trial consisted of
16–24 letters. Outcome measures were the proportion of correct
detection of T2 (baseline), the proportion of correct identification
of T1 while correctly detecting T2 (dual task), and, finally, T2
detection accuracy as a function of T1–T2 lag when T1 was
correctly identified (dual task), which were used to estimate
the four parameters of Cousineau and colleagues (Cousineau
et al., 2006): lag-1 sparing, width, amplitude, and minimum.
(3) Capacity of visual attention was estimated with multiple
object tracking (MOT), where the participant fixated centrally
and tracked peripherally 16 randomly moving dots. One, three,
five, or seven of the tracked dots were blue and the rest were
yellow. After 2 s of movement, all the dots turned yellow and
moved for another 5 s. After this, movement stopped, and one
of the dots turned white, and the participant made a yes/no
decision whether the white dot had been one of the blue targets.
The outcome measures were the percent correct as a function of
the number of dots to be tracked. For this study, we aggregated
the four UFOV variables (thresholds for the four conditions:
distractors or no distractors × peripheral stimulus at 7◦ or 21◦)
into a single variable by inserting them into a PCA over all the
groups (α = 0.6). We also kept for the temporal characteristics two
variables: Cousineau parameters for AB length (width) and depth
(minimum). Lastly, one variable for capacity was kept: Percent
correct for the four MOT conditions (1, 3, 5, or 7 dots to follow)
were inserted into a PCA over all the groups in order to get one
measure for the four conditions (α = 0.8).

Domains of Neuropsychological and
General Level of Functioning
These tests were included into the neuropsychological assessment
battery that was divided into two separate sessions. Detailed
description of the neuropsychological tasks can be found in
previous articles (Laasonen et al., 2012b). For this study, we
used the neuropsychological domains of phonological processing
(average of awareness, memory, and naming speed), technical
reading (average of speed and accuracy), reading comprehension
(average of speed and accuracy), spelling (accuracy), arithmetic
(accuracy), executive functions (average of set shifting, inhibition,
and planning), and attention (average of sustained and
divided). These are presented in more detail in Supplementary
Appendix 1. Cronbach’s alpha reliabilities conducted over the
variables were acceptable, except for the domain of executive
functions. Removing variables from this composite did not
enhance its internal consistency.

To assess general level of functioning, we used intelligence,
more specifically, four indices from the Wechsler Intelligence
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Scale for Adults, third revision (Wechsler, 2005). These
were verbal comprehension (subtests: similarities, vocabulary),
working memory (subtests: arithmetic, digit span, letter–
number sequencing), perceptual organization (subtests: block
design, matrix reasoning), and processing speed (subtest: digit-
symbol coding).

Statistical Analyses
The variables of the experimental designs are described above.
To remove the effect of extreme values in the data, we used
90% winsorizing over all the groups and then substituted the
remaining extreme values with the value of the poorest non-
outlier. After this, the few missing values were imputed using
expectation maximization (EM) techniques over all experimental
design variables and participants with the group as two dummy
variables. Finally, the variables were z-standardized based on
the control group values and, when needed, inverted to indicate
better performance with positive values resulting in variables with
the mean of 0 and SD of 1.

The variables of the neuropsychological domains and
general level of functioning are described above. The same
neuropsychological composite variables were used as in the
previous studies; that is, the scores of all participants were
transformed based on the age-corrected performance of the
control group and converted, if necessary, to indicate better
performance with a larger positive value resulting in variables
with a mean of 10 and an SD of 3 (Laasonen et al., 2012b).
Regarding intelligence, the standardized norms that are based
on the age-corrected performance of the normative group were
used and the scores were converted to the same scale as the
neuropsychological domains, that is, their mean was also 10
and SD was 3. After this, the few missing values were imputed
using EM techniques over all neuropsychological and intelligence
composites and participants with the group as two dummy
variables. Finally, the neuropsychological composites were
restricted to the same scale as the intelligence composites (1–19).

For statistical analyses, LPA was used in order to investigate
how the original groups clustered based on the variables
retrieved from the experimental designs. Differences in the
distribution of participants into the LPA groups as well as
differences in the background variables between the LPA groups
were analyzed with Chi-squared tests and ANOVAs. The LPA
group profiles in the experimental designs as well as domains
of neuropsychological and general level of functioning were
analyzed with multivariate ANCOVA (a Wilks test) and, in
the case of a significant main effect, with one-way ANCOVAs.
Level of significance was set at p = 0.05 with Bonferroni
correction for the post hoc tests. More detailed description can
be found in the results.

For the literature search presented in the discussion, we
searched the Web of Science on December 10, 2019 with the
following syntax: TOPIC:(dyslexia) AND ALL FIELDS:(temporal
OR implicit OR procedural OR cerebellum OR cerebellar
OR vision OR visual). Timespan: Last 5 years. Indexes: SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-
SSH, ESCI, CCR-EXPANDED, IC.

RESULTS

Latent Profile Analysis
Latent profile analysis was used in order to investigate how the
original groups (dyslexia, ADHD, control) clustered based on the
11 variables retrieved from the experimental designs. R version
3.2.1 (R Core Team, 2018) with mclust version 5.2 (Scrucca et al.,
2016) was used for the analyses. In a nutshell, LPA tries to fit
a certain number of multivariate normal distributions on the
data so as to maximize the fit. The number of distributions is
varied (from 1 to 9); there are also various constraints that are
tested (e.g., equal variance, absence of covariance, etc.). The most
successful yet parsimonious model, as assessed by a BIC index
of fit, is retained. The solution found was a mixture of three
distributions (each having zero covariance but distinct variances;
e.g., a VII solution; see Scrucca et al., 2016). Loglikelihood was
−1462.55 for 55 free parameters.

The three LPA groups (see Table 1) differed greatly in their
size, and the distribution of participants in the LPA groups did
not mirror very well the participant’s original group [χ2(4) = 8.25,
p = 0.083]. Analyses on the background variables indicated that
gender, handedness, and level of education did not differentiate
the LPA groups, but age did (see Table 1). Bonferroni-corrected
post hoc tests showed that those in the LPA3 were older than those
in LPA1 (p = 0.037) or LPA2 (p < 0.001). Thus, age was used as a
covariate in the following analyses.

LPA Group Profiles in Experimental
Designs
The profiles of the LPA groups were inspected with a multivariate
ANCOVA (a Wilks test) where the LPA group was the between-
subjects factor and the variables of the experimental designs
were the multivariate factors (in z-scores) of the dependent
measure and age as the covariate. The difference between the
LPA groups was significant, F(22,158) = 11.37, p < 0.001,
3 = 0.15, and η2

p = 0.61. This result indicates that the LPA
groups differed strongly in their overall pattern of performance
in the experimental designs. Using the temporal processing
composite with better internal consistency did not affect
the results [F(22,158) = 10.75, p < 0.001, 3 = 0.16, and
η2

p = 0.60]. In follow-up ANCOVAs for the experimental designs,
significant differences between the LPA groups emerged in
temporal processing [F(2,89) = 19.63, p < 0.001, η2

p = 0.31]
where those in the LPA3 group were slower compared to the
other groups (Bonferroni-corrected comparisons for estimated
marginal means, all ps < 0.001), cerebellar functions [delay
conditioning, F(2,89) = 43.65, p < 0.001, η2

p = 0.50, with LPA2
having more conditioned responses than the other groups (all
ps < 0.001)], trace conditioning [F(2,89) = 23.47, p < 0.001,
η2

p = 0.35, with LPA2 having again more conditioned responses
than the other groups (all ps < 0.001)], procedural learning [SRT
accuracy, F(2,89) = 3.39, p = 0.038, η2

p = 0.07, with the Bonferroni
corrections, comparisons for estimated marginal means were
not significant], and visual processing and attention [UFOV,
F(2,89) = 58.55, p < 0.001, η2

p = 0.57, with LPA3 being poorer
than the other groups (all ps < 0.001); MOT, F(2,89) = 6.48,
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TABLE 1 | Number of participants in the original and LPA groups as well as
background variables.

LPA-generated groups Total F/x2

LPA1 LPA2 LPA3

Original groups

Dyslexia 19 (53%) 7 (19%) 10 (28%) 36

ADHD 16 (73%) 5 (23%) 1 (5%) 22

Control 27 (77%) 4 (11%) 4 (11%) 35

Total 62 (67%) 16 (17%) 15 (16%) 93

Age in years Mean 35.60 29.25 42.80 (2,90) = 7.40**

SD (10.43) (8.23) (8.46)

Gender

Female Count 29 7 8 (2) = 0.31

Male Count 33 9 7

Handedness

Right Count 54 16 13 (2) = 2.33

Left Count 8 0 2

Ambi Count 0 0 0

Education1

Basic Count 28 9 6 (4) = 2.87

Middle Count 14 4 6

High Count 19 3 3

**p < 0.01. 1Basic, primary and secondary education; middle, vocational high
school; high, university.

p = 0.002, η2
p = 0.13, with LPA3 poorer than LPA1 (p = 0.003)].

Figure 2 depicts the LPA group’s mean performance in the
experimental designs. LPA1 performed on average within −1 to
+1 SD in all assessed areas. LPA2 performed on average within
−1 to +1 SD in all areas, except for the number of conditioned
responses that were large. LPA3 was poor in visual processing and
attention as well as temporal processing.

LPA Group Profiles in Domains of
Neuropsychological and General Level of
Functioning
Next, we inspected the profiles of the LPA groups across
the neuropsychological domains, again, with a multivariate
ANCOVA (a Wilks test) where the LPA group was the between-
subjects factor and the neuropsychological domains as the
multivariate factors (in standardized scores) of the dependent
measure and age as the covariate. The main effect of LPA
group was not significant, F(14,166) = 1.288, p = 0.219,
3 = 0.81, and η2

p = 0.098, indicating that the groups did not
differ in their dyslexia- or ADHD-related neuropsychological
performance. Removing the executive functioning composite
with poor internal consistency from the analysis did not affect
the results [main effect of LPA group, F(12,168) = 1.44, p = 0.153,
3 = 0.822, and η2

p = 0.093]. Further, a multivariate ANCOVA
(a Wilks test) over the separate executive function variables
of the composite, described in Supplementary Appendix 1,
resulted in a non-significant main effect of LPA group as well
[F(14,160) = 1.46, p = 0.130, 3 = 0.786, and η2

p = 0.114].

Figure 3 depicts the LPA groups’ performance in the domains
neuropsychological functioning (the seven points to the left of the
plot). All the LPA groups performed on average within −1 to +1
SD in all assessed areas, except in technical reading and spelling.

For the measures of intelligence in standardized scores, the
results appeared somewhat different. Now, the main effect of
the LPA group was significant [F(8,172) = 2.086, p = 0.040,
3 = 0.83, η2

p = 0.09]. One-way ANCOVAs with age as a
covariate indicated that the LPA groups differed in all the
subdomains, that is, verbal comprehension [F(2,89) = 3.22,
p = 0.045, η2

p = 0.07], working memory [F(2,89) = 4.74, p = 0.011,
η2

p = 0.10], perceptual organization [F(2,89) = 4.96, p = 0.009,
η2

p = 0.10], and processing speed [F(2,89) = 5.39, p = 0.006,
η2

p = 0.11]. Bonferroni-corrected comparisons for estimated
marginal means indicated that LPA3 was poorer than the other
groups in working memory (ps < 0.045), perceptual organization
(ps < 0.026), and processing speed (ps < 0.026), and almost in
verbal comprehension (ps < 0.073). Figure 3 depicts the LPA
groups’ performance in the general level of functioning (the four
last points to the right of the plot). LPA1 and LPA2 performed on
average within 0 to +1 SD in all assessed areas, whereas those in
the LPA3 performed at−1 to 0.

DISCUSSION

In the current study, we investigated how adults with
developmental dyslexia, ADHD, and controls cluster across
various dimensions designed to tap the prominent non-
linguistic theories of dyslexia. Tested domains included temporal
processing impairment, abnormal cerebellar functioning,
procedural learning difficulties, and visual attention deficits. LPA
was conducted over all participants and experimental designs.

First, we hypothesized that dyslexia and ADHD would not
emerge as separate groups in the LPA with the possible exception
of time-constrained sequential processing (see the summary
of results in Figure 1). The results showed indeed that the
participants did not group very well based on their original status.
Instead, the LPA resulted in three groups: the largest LPA1 group
with 67% of the participants had average performance in the
experimental designs. This indicates that most participants do
not have difficulties in any of the experimental tasks whether they
belong to the group of controls, ADHD, or dyslexia. The second
LPA2 group with 17% of the participants consisted of participants
predominantly from the clinical groups who exhibited enhanced
conditioning learning. Age is one of the factors that is well
known to have an effect on conditioning learning (Woodruff-
Pak, 2002) and of the background variables, participants in the
LPA2 group were the youngest. However, as participant age was
controlled in the analyses, age or factors closely related to it
cannot explain the finding of enhanced conditioning. There are
multiple other factors that might have been unevenly distributed
across our LPA groups but were not, unfortunately, assessed.
For example, anxiety and the temperamental trait of behavioral
inhibition covary with enhanced conditioning learning (Caulfield
et al., 2013; Allen et al., 2019). The third LPA3 group with 16%
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FIGURE 2 | Latent profile analysis groups’ performance in the experimental designs (mean with SE). AB, attentional blink; AGL, artificial grammar learning; MOT,
multiple object tracking; SRT, serial reaction time; TPA, temporal processing acuity; TOJ, temporal order judgment; UFOV, useful field of view. NB, nota bene.
Presented values are not corrected for the covariate age.

of the participants, predominantly from the dyslexia group, had
difficulties in temporal processing as well as in visual processing
and attention, a finding in line with our expectations related to
time-constrained sequential processing. Also, these types of tasks
are known to be affected by increasing age (Laasonen et al., 2002a;
Virsu et al., 2003), and this group was the oldest one. However, as
noted above, age was used as a covariate in all the analyses.

Second, we expected that the neuropsychological profiles of
the LPA groups would reflect the fact that dyslexia, ADHD,
and healthy controls could not be separated in a way that
we would find dyslexia-specific or ADHD-specific profiles in
the LPA groups. The results confirmed this, as the LPA
groups did not differ in their dyslexia or ADHD-related
neuropsychological profiles.

These two sets of results together align with the suggestions
of Pennington’s multiple deficit model (Pennington, 2006;
Pennington and Bishop, 2009) as it appears that the original
groups of the current study share many risk and perhaps also
protective factors, which lead to overlapping LPA groups and to
the high similarity between LPA groups at the neuropsychological
level. Inherent to the multiple deficit model is that the risk and
protective factors are continuous. In line with this, we have
shown that those with developmental dyslexia are poorer in
temporal processing compared to fluent readers but in a way

that the distribution of their performance is restricted to the
areas of poor and mostly average performance, none of them
reaching the threshold of above average performance (Service
and Laasonen, 2019). Thus, the place of the distribution for risk
and protective factors might vary across conditions and with
sampling, sometimes resulting in significant group differences.

The most remarkable finding of the current study was that the
LPA groups that were formed based on their performance in tasks
designed to tap the non-linguistic theories of dyslexia differed
most clearly in their intelligence. The third LPA3 group with
difficulties in temporal processing as well as visual processing
and attention exhibited lower scores than the other groups across
the standardized and age-corrected IQ indices, that is, working
memory, perceptual organization, processing speed, and at a
trend level in verbal comprehension. This pattern of results
indicates differences in the levels of severity across the different
LPA groups and suggests that the group with the lowest IQ score,
although at average, also had difficulties in temporal processing
and in visual processing and attention. This finding did not
generalize to abnormal cerebellar functioning or procedural
learning difficulties.

Inspired by this finding, we searched for original research and
review articles (as well as articles cited by these reviews) published
during the last 5 years on the topic of dyslexia and temporal
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FIGURE 3 | Latent profile analysis groups’ performance in the domains of neuropsychological and general level of functioning (mean with SE). IQ, intelligence
quotient (Wechsler, 2005). NB, nota bene. Presented values are not corrected for the covariate age.

processing, cerebellar functions, procedural learning, or visual
processing and attention. Surprisingly, a pattern emerged again.
For publications on temporal processing and visual processing
and attention, only very seldom were the group IQs reported
or compared in a way that group-level matching requires. Most
often, the groups were characterized as having normal IQ or
the exact values were not reported. For example, for temporal
or magnocellular processing, papers presented either no or
insufficient information on IQ, or group-level matching was
imperfect (Gori et al., 2016; Moll et al., 2016; Casini et al., 2018;
Fostick and Revah, 2018; Mascheretti et al., 2018; Stefanac et al.,
2019). For visual attention or processing, IQs were not reported
or matched between the groups (Bosse and Valdois, 2003; Bosse
et al., 2007; Germano et al., 2014; Lobier and Valdois, 2015;
Zoubrinetzky et al., 2016). Thus, conducting a meta-analysis on
the subject became impossible. This was reflected in our results,
where IQ appeared to covary with especially temporal processing
as well as visual processing and attention. Also in our previous
studies, performance in tasks of temporal processing (Laasonen
et al., 2001; Laasonen, 2002) as well as visual processing and
attention (unpublished analyses from Laasonen et al., 2012b) has
correlated with measures of intelligence. One has to ask, then,
whether some of the non-linguistic theories of dyslexia predict
also minor variations in intelligence. Historically, a discrepancy
between poorer reading and better intelligence was required for

the identification of a specific reading disability (Rutter and
Yule, 1975). Later, the importance of IQ has been emphasized
less (Morris and Fletcher, 1988). In the future, although strict
IQ or IQ-reading discrepancy criteria for dyslexia might not
be justifiable, research focusing on non-linguistic correlates of
dyslexia should consider the role of other possibly explaining
factors for their findings more rigorously, including age and
especially intelligence.

One intriguing possibility that could explain the current
findings is that intelligence and reading or its difficulties do
covary to some extent after all. Recent results in the area
of genetics provide support for this. For example, a general
genetic factor has been suggested that would explain variation in
both non-verbal intelligence and reading (Lazaroo et al., 2019),
and significant overlap between word reading and intelligence
has emerged in a recent genome-wide association study (Price
et al., 2020). Further, it has been shown for dyslexia that
there is an interrelation between genotype, brain anatomy, and
neurofunctionality (Skeide et al., 2015, 2016; Neef et al., 2017).
All this points to a multifactorial and multigenetic background
for dyslexia that has a role for both intelligence and perhaps also
non-linguistic processing.

In our statistical analyses, the clinical groups did not cluster
into corresponding LPA groups, nor did the LPA groups differ
in their neuropsychological functioning although intelligence
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differentiated between them. However, Table 1 suggests that there
were rather many dyslexic readers in the LPA3 group. Further,
Figure 3 suggests that the LPA groups could be interpreted
to reflect levels of severity across tasks of dyslexia-related and
ADHD-related cognition, in addition to intelligence. Specifically,
it appears that the LPA3 group with many dyslexic readers
had difficulties in temporal processing as well as in visual
processing and attention, that is, in time-constrained sequential
processing. LPA3 was the most impaired also across the areas
of neuropsychological functioning and intelligence, although,
in our analyses, the differences did not always reach statistical
significance. In the future, focusing on both the non-linguistic
aspects of performance as well as intelligence with larger sample
sizes may increase our understanding of the condition and
possibly form a fruitful basis for prediction and early diagnosis
(Mannel et al., 2015; Muller et al., 2016). Our current sample size
might not have been large enough to reveal all the significant
effects, and a preplanned sample size could have led to more
adequate power (Tabachnick and Fidell, 2014).

CONCLUSION

In the current study, we investigated how adults with
developmental dyslexia or ADHD and controls cluster across
various dimensions designed to tap the prominent non-
linguistic theories of dyslexia. Tested domains included temporal
processing impairment, abnormal cerebellar functioning,
procedural learning difficulties, and visual attention deficits. Our
results highlight the continuous and overlapping nature of the
observed difficulties and support the multiple deficit model of
developmental disorders, which suggests shared risk factors for
developmental challenges. Further, it appears that some of the
risk factors suggested by the prominent non-linguistic theories
of dyslexia are related to the general level of functioning in tests
of intelligence.
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