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INTRODUCTION

The characterization of the trace spaces (on the boundary of a domain) of Sobolev spaces
and other function spaces has a long history. It can be traced back to [17] by Gagliardo
in 1957, which gave a characterization of the trace space of the first order Sobolev space
WEP(RT), 1 < p < oo, R i= {(x,7) : 2 € R",r > 0}, in terms of the convergence
of a suitable double integral of the boundary values. More precisely, for any function
u € WIP(RH), define the trace operator T’ by setting

Tu(x) = rll%lJr u(z,r)

for those # € R", for which this limit exists. Then the trace operator 7' : WP(RH!) —
B;,_pl/ P(R™) is linear and bounded for 1 < p < oo and there exists a bounded linear

extension operator that acts as a right inverse of 7'. Here the space B;;,l/ P(R™), consisting
of all measurable functions f on R™ with

S
1117 Lp(R7) +/ /n = |n+(1 o dz dy < oo,

is nowadays commonly called a Besov space or a fractional Sobolev space. Actually,
Gagliardo also proved in [17] that the trace operator T' : WI(RY™) — LYR™) is a
bounded linear surjective operator with a non-linear right inverse. Peetre showed in [41]
that one can not find a bounded linear extension operator that acts as a right inverse of
T : WHYRTH) — LY(R™).

It is natural to seek for the trace spaces of Sobolev spaces associated with weights
or the trace spaces for other function spaces, like Orlicz-Sobolev spaces. Early results
considering the trace spaces of Sobolev spaces with weights of the form z — dist(z, R™)*
were given by Nikolskii, Lizorkin and Vasarin, see [31, 37, 56]. More recently, Tyulenev
studied in [52, 53, 54, 55] the trace spaces of Sobolev spaces associated with more general
Muckenhoupt A,-weights. We also refer to [4, 27, 35, 41, 47, 49, 50] for more information on
the traces of (weighted) Sobolev spaces. For the traces of Orlicz-Sobolev spaces (associated
with weights), we refer to [12, 13, 16, 28, 39, 11, 29, 40].

Over the past two decades, analysis in general metric measure spaces has attracted a lot
of attention as exhibited by [5, 7, 21, 22, 23, 24, 25]. The trace theory in the metric setting
has been under development. Maly proved in [32] that the trace space of the Newtonian

space N'?(Q) is the Besov space Bp,"/?(992) provided that  is a John domain for p > 1
(uniform domain for p > 1) that admits a p-Poincaré inequality and whose boundary 052
is endowed with a codimensional-§ Ahlfors regular measure with 6 < p. We also refer
to the paper [44] for studies on the traces of Hajlasz-Sobolev functions to porous Ahlfors
regular closed subsets via a method based on hyperbolic fillings of a metric space, also see

[9, 48]. It was shown in [30, 33] that the trace space of BV () (functions of bounded
5




6 INTRODUCTION

variation) is L'(0X) whenever Q is a bounded domain supporting 1-Poincaré inequality
and the boundary 0f) is endowed with a codimensional-1 Ahlfors regular measure.

In this thesis, we study the traces of function spaces on metric measure spaces. In
the paper [A], we revisit the Euclidean setting, viewing the upper half space R as a
particularly nice metric space endowed with a weighted measure, and give characterizations
of trace spaces of first order Sobolev spaces, Besov spaces and Triebel-Lizorkin spaces
via dyadic norms. We then study the trace problem in papers [B] and [D] on regular
trees, dealing with first order Sobolev spaces and those Orlicz-Sobolev spaces whose Young
function is of the form #”log*(e 4 t). In the paper [C], we work on the relations of the
traces among Newton-Sobolev, Hajlasz-Sobolev and bounded variation functions on metric
measure spaces, and show that the trace spaces of those function classes coincide under
suitable assumptions on the domain in question.

1. REVISITING THE EUCLIDEAN SETTING

In this section, we deal with the upper half space R’frﬂ associated with the measure
(where ae > —1) defined by

,ua(E>:/wadmn+la
E

where w,, : ]Ri+1 — (0,00) is the weight (21,29, -, xye1) = min(l, |z,41])* and my,4 is
the standard Lebesgue measure on R?fl. Then a straightforward calculation shows that

Lot (B(l’,?")) ~ Tn—i—l—‘ra

for all z € R x {0} and 0 < r < 1.
First, we give the definitions of the relevant function spaces.

Definition 1.1. Suppose that p is a Borel-regular measure on R" such that every Euclidean
ball has positive and finite p-measure.

Let p € [1,00). Then WP(R", ) is defined as the normed space of all the measurable
functions f € L{_(R™) such that the first-order distributional derivatives of f coincide with

loc

functions in L{ (R") and

loc
1w @a = I Flleo@e ) + [V fl o @n (1.1)

is finite.
The space WHP(REH 11, is defined similarly, by replacing R™ and g in (1.1) with R+
and i, respectively.

In order to introduce the dyadic norms for the relevant fractional smoothness spaces, we
recall the standard dyadic decompositions of R™ and ]R’frl. Denote by 2, the collection of
dyadic semi-open cubes in R", of the form @) := 2*’“((0, 1]”+m), where k € Z and m € Z",
and by 2 for the cubes in 2,, which are contained in the upper half-space R~ x (0, 0o).
Write £(Q) for the edge length of Q € 2, i.e. 27% in the preceding representation, and
D, for the cubes Q € 2, such that ((Q) = 27%. If z € R" (resp. z € R'™") and k € Z,
we write write Qf for the unique cube in 2, (resp. 2 ,) such that z € Q and ¢(Q) = 27",
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We say that @ and Q' in 2, are neighbors and write @ ~ Q" if 3 < ¢(Q)/¢(Q’) < 2 and
QN Q" #0. Note that every @ has a uniformly bounded number of neighbors.

Definition 1.2. Suppose that p is a Borel-regular measure on R™ such that every Euclidean
ball has positive and finite py-measure.

Let s € (0,1), p € [1,00] and ¢q € (0,00]. Then the Besov space B; (R", ) is defined
as the normed (or quasi-normed when ¢ < 1) space of all the functions f € Li. (R") such
that

d a/p\ V4
Bs (RPp) 1= | fll e ) + <22k8q( Z Q) Z |fQ7u - fQ',u‘p) ) (1.2)

k=0 QEZ, i Q~Q

/1

(standard modification for p = oo and/or ¢ = o0) is finite.

Here and in the following, we use the notation

fou ::][Qfduz @/Qfdu.

We omit ;o from the notation and write fo when g is the standard Lebesgue measure.

Definition 1.3. Suppose that p is a Borel-regular measure on R™ such that every Euclidean
ball has positive and finite y-measure.

Let s € (0,1), p € [1,00) and ¢ € (0,00]. Then the Triebel-Lizorkin space F;  (R", u) is
defined as the normed (or quasi-normed when ¢ < 1) space of all the functions f € Li..(R")
such that

> p/q 1/p
1l 5= Wl + ([ (22 5 Vo= forsl”) ")) (1)
k=0 Q'~Qf

(standard modification for ¢ = co) is finite.

The spaces B;’q(Riﬂ, o) and EF;q(RTI, lte) are defined similarly, by replacing R™ and
p with R = R" x (0, 00) and p, in (1.2) and (1.3), respectively, and omitting the terms
corresponding to the cubes Q € 2,41\ 2,1, and Q' € 2,11\ 2/ ;.

In case p is the standard Lebesgue measure on R", we omit p from the notation of
these three function spaces above and simply write W'?(R"), B? (R") and F5 (R"). The
spaces B, (R") and T (R") coincide with the standard Besov space B, (R") and the
standard Triebel-Lizorkin space F}; (R"), see [A, Section 7.2]. We also refer to the seminal
monographs [42] by Peetre and [49] by Triebel for spaces B; (R") and F; (R").

Next, we introduce the Whitney extension which plays a central role in the paper [A].
Given Q € 2,1, k € Z, let #(Q) :=Q x (27%,27%1] ¢ Q:{H,k' Then it is easy to check
that {#(Q) : Q € 2,} is a Whitney decomposition of R = R"™ x (0, 00) with respect
to the boundary R™ x {0}. Here we refer to [45, 25] for more information about Whitney
decompositions. Further, let 2° := U502k
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For each Q € 29, pick a smooth function 1o : R — [0, 1] such that Lipyg < 1/4(Q),

(Q)

inf e (@) Yo(z) > 0 uniformly in @ € 29, supp g is contained in an -neighborhood

of #(Q) and
d =1 in |J 7@

Qe2l Qe2l

Let us point out that the sum above is locally finite — more precisely, it follows from the
definition that

supp Yo Nsupp g # O if and only if Q ~ Q'

Definition 1.4. (i) Let f € L}
defined by setting

(R™). Then the Whitney extension &f: R — R is

loc

ef(x) = ][fdmn Jéo(@)

Qe29

This definition gives rise in the obvious way to a linear operator €: L (R?) — C®(R%).
(ii) Let X C L .(R") be a quasinormed function space on R", and let Y be a quasinormed

function space on the weighted half-space (R:™, 11). We say that (X, Y) is a Whitney trace-

extension pair if € maps X continuously into Y, if the trace function Rf defined by

Rf(x) = lim f(y) du(y),

r—0 B((z,0) ,r)ﬁRi'H

is for all f € Y well defined almost everywhere and belongs to L
continuously into X and if additionally

(R™), if R maps Y

loc

REF) =1
pointwise almost everywhere for all f € X.

In the paper [A], we gave the following trace results for the Sobolev spaces W'P(R 1u,,),
Besov spaces B (R, 1,) and Triebel-Lizorkin spaces F5 (R, 1q).

Theorem 1.5. (i) Let 1 <p < oo and —1 < a < p—1. Then (’Bl (e 1)/p (R, WIP(RT 1))
15 a Whitney trace-extension pair.

(1)) Let 0 < s < 1,1 < p <00, 0<¢q< o0and -1 < a < sp—1. Then
(fB;,_q(aH)/p(R"), B (RY, 1a)) is a Whitney trace-extension pair.

(i) Let 0 < s < 1,1 < p < 00,0 < q< o0 and -1 < a < sp—1. Then
(BZ;(QH)/”(R”), F5 J(RY pa)) is a Whitney trace-extension pair.

The above result deals with the traces of functions defined on R%™ to R™. It can be
generalized to the case of R"™ and R", where m € N, m > 1. We refer to [A, Section 7.4]
for more details.
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2. TRACE RESULTS ON REGULAR TREES

In this section, we study the trace problem on regular trees. First, we introduce regular
trees and their boundaries.

A graph G is a pair (V, E), where V is a set of vertices and E is a set of edges. Given
vertices x,y € V are neighbors if x is connected to y by an edge. The number of the
neighbors of a vertex x is referred to as the degree of x. A tree G is a connected graph
without cycles.

We call a tree G a rooted tree if it has a distinguished vertex called the root, which we
will denote by 0. The neighbors of a vertex x € GG are of two types: the neighbors that
are closer to the root are called parents of x and all other neighbors are called children of
x. Each vertex has a unique parent, except for the root itself that has none. A K-regular
tree is a rooted tree such that each vertex has exactly K children.

Let G be a K-regular tree with a set of vertices V' and a set of edges E for some K > 1.
For simplicity of notation, we let X = V U E and call it a K-regular tree. We consider
each edge as a geodesic of length one. For x € X let |z| be the length of the geodesic
from 0 to x, where we consider each edge to be an isometric copy of the unit interval. The
geodesic connecting x,y € V is unique. We refer to it by [z, y], and to its length by |z —y|.
We write z < y if x € [0,y]. Then |x —y| = |y| — |z|. We say that a vertex y # z is a
descendant of the vertex x if x <y.

Towards defining the metric of X, let € > 0, and set

ix(og) = [ e,
[z,y]

Here d |z| is the natural measure that gives each edge Lebesgue measure 1; recall that each
edge is an isometric copy of the unit interval. Notice that diamX = 2/¢ if X is a K-ary
tree with K > 2.

The boundary 0.X of a tree X is obtained by completing X with respect to the metric
dx. An element ¢ € 0X can be identified with an infinite geodesic starting at the root 0.
Equivalently we employ the labeling £ = 0zy25 - - -, where x; is a vertex in X with |x;| = 4,
and x;,1 is a child of x;. The extension of the metric to d.X can be realized in the following
manner. Given &, ( € X, pick an infinite geodesic [€, (] connecting £ and (. Then dx (&, ()
is the length of the geodesic [, (]. Indeed, if £ = 0zy25--- and ¢ = 0y1y2 - - -, let k be the
integer with xp = y, and xp1 # yrr1. Then

+oo 2
dx(&,¢) =2 / e~ dt = Sk,
k €

For more details, see [6, 8, 10]. For clarity, we use &, (,w to denote points in 0X and z,vy, 2
points in X.
We define a weighted measure u) on the K-regular tree X by setting
din(x) = e (|z] + ) dla (2.1)

where 5 > log K, A € R and C' > max{2|\|/(f—log K), 2(log4)/e}. We refer to [B, Section
2.2] for detailed discussions about the measure py. Then in [B] and [D], the trace spaces
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of the Newtonian space N'P(X, 1), 1 < p < oo and the Orlicz-Sobolev space NV* (X 1)
with Young function ®(¢) = t?log (e +t), 1 < p,00, N € R have been characterized.
Before going into details, let us give some necessary definitions, including the definitions
of NYP(X, puy) and NY®(X uy).

Let uw € LL (X, p). We say that a Borel function g : X — [0,00] is an upper gradient
of u if

u(z) — u(y)| < /gdSX (2.2)

.
whenever z,y € X and 7 is the geodesic from z to y, where dsx denotes the arc length
measure with respect to the metric dx. In the setting of a tree any rectifiable curve with
end points z and y contains the geodesic connecting z and y, and therefore the upper
gradient defined above is equivalent to the definition which requires that inequality (2.2)
holds for all rectifiable curves with end points z and y. We refer interested readers to
[21, 24, 25, 46] for a more detailed discussion on upper gradients.

Definition 2.1. (i) The Newtonian space N'P(X, uy), 1 < p < oo, is defined as the
collection of all the functions for which

1/p
filviscn = ([ P ai+nt [ @) <o
X 9 Jx

where the infimum is taken over all upper gradients of w.
(ii) Let ® be a Young function. Then the Orlicz space L?(X) is defined by setting

L*(X, py) = {u : X — R : u measurable, / O (alul) dpy < 400 for some a > 0} .
b

The Orlicz space L®(X, p1)) is a Banach space equipped with the Luxemburg norm

[l Lo (x ) —inf{k >0: /X<I><|ul/k) dpy < 1}.

(iii) For any Young function @, the Orlicz-Sobolev space NV ®(X, ) is defined as the
collection of all the functions u for which the norm of u defined as

sy = o + 0 lglzo ey
is finite, where the infimum is taken over all upper gradients of w.

We refer to [51, section 2.2] and [38, 43] for more details about Young functions.

We equip 0X with the natural probability measure v by distributing the unit mass
uniformly on 9X. Then the boundary (0X,v) is an Ahlfors Q-regular space with Hausdorff
dimension Q = 62X Hence

v(Box (7)) 19 = ro e

for any £ € 0X and 0 < r < diam(0X). For more details about the measure v, we refer
to [6, Lemma 5.2].
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Inspired by the Euclidean setting, we try to characterize the trace spaces of N*P(X 1)
and N>® (X, uy) by using dyadic-type norms. Towards this, we give a dyadic decomposition
on the boundary 0.X of the K-ary tree X: Let V,, = {27 : j = 1,2,--- , K"} be the set of
all n-level vertices of the tree X for any n € N, where a vertex z is of n-level if |z| = n.
Then we have that

v=Ww

neN

is the set containing all the vertices of the tree X. For any vertex x € V| denote by I, the
set

{€ € 0X : the geodesic [0, ) passes through x}.
Let 2 ={I,:x€V}and 2, ={l,:x € V,} for any n € N. Then 2, = {0X} and we

have
2=]2.

neN
The set 2 is called a dyadic decomposition of 0X. Clearly, for any n € N and I € 2,
there is a unique element T in 2,1 such that I is a subset of it. It is easy to see that if
I = I, for some x € V,,, then 7= I, with y the unique parent of x in the tree X. Hence
the structure of the tree X gives the structure of our dyadic decomposition of 9.X.
In [B] and [D], we introduced the following Besov-type spaces.

Definition 2.2. (i) For 0 < # < 1, p > 1 and A € R, the Besov-type space B/*(0X)
consists of all the functions f € LP(0X) for which the 39”\—dyadic energy of f defined as

1 /10 o) = ZemﬂpnAZ ) |-

1e2,

is finite. The norm on BJ*(9X) is
||f||gg»*(ax) = || fllzrox) + ”f”ﬁgv*(ax)-

(ii) Let ® be the Young function ®(t) = #log™ (e++t) with p > 1,\; € Rorp =1, > 0.
Then the Orlicz-Besov space B (0X) consists of all the functions f € L®(0X) whose
norm defined as

||f||3f}”\2(ax) = HfHL‘I’({)X) + inf {]f >0: |f/k|1';f}ﬂ2(ax) < 1}

is finite, where for any g € Li,.(0X), the pr’)‘?-dyadic energy is defined as

= en(o— 91 — 97
lsgoaony = 307 3 WD (—‘ ;_mf') -

Ie2,

The study of traces on regular trees was initiated in [6], which dealt with the measure
py in (2.1) when A = 0. It was shown that the trace space of N'(X, 1) is the Besov
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space Bg,p(aX ), where the smoothness exponent of the Besov space is

g-1-8/=C@ 4_g_1

p

Here the space BY (0X) consists of all the functions f € LP(9X) for which the seminorm
HfHB@(aX deﬁned as

NGk
171, /ax/axdxcgepv B dx (€8 S O
is finite.

Here and in the rest of this section, for given Banach spaces X(0X) and Y(X), we
say that the space X(0X) is a trace space of Y(X) if and only if there is a bounded
linear operator 7' : Y(X) — X(0X) and there exists a bounded linear extension operator
E : X(0X) — Y(X) that acts as a right inverse of T', i.e., To ' = Id on the space X(0X).

It was observed in [B, Proposition 2.13] that B (0X) = B%°(9X). Our first result from
[B] generalized the above trace result.

Theorem 2.3. Let X be a K-ary tree with K > 2. Fix f > logK, € > 0 and A € R.
Suppose that p > 1 and p > (8 — log K)/e. Then the Besov-type space Bz”\(ﬁX) is the
trace space of N¥P(X, uy) whenever § =1 — (8 —log K)/ep.

Another motivation for the above theorem was to study the dyadic energy defined by
[26], introduced for the regularity of space-filling curves. This dyadic energy turns out to
be equivalent to a 32”\(8)( )-energy. We refer the interested reader to the introduction of
the paper [B] for more details.

In [D], we further generalized the above result to the Orlicz case where the Young
function is of the form ®(t) = t?log*(e + t).

Theorem 2.4. Let X be a K-ary tree with K > 2 and let ®(t) = tPlog (e + t) with
p>1L, M eERorp=1, A >0. Fiz Ay € R and assume that p > (8 —log K)/e > 0. Then
the trace space of NY®(X, y,) is the space BY*(0X) where § =1 — (f — log K) /ep.

The next result from [D] identifies the Orlicz-Besov space B4 (8X) as the Besov space
BIAMNOX).
p

Proposition 2.5. Let A\, A\, s € R. Let ®(t) = tPlog™ (e + t) with p > 1,\; € R or
p=1,\ >0. Assume that \y+ Xy = X. Then the Banach spaces BO*(0X) and BE2(HX)
coincide, i.e., BOMNIX) = B2 (9X).

By combining Theorem 2.4 and Proposition 2.5, we obtain the following result.

Corollary 2.6. Let X be a K-ary tree with K > 2. Let \, A\, Ao € R. Assume that
p>(B—1logK)/e >0 and let = 1 — (§ —logK)/ep. Let ®(t) = t?log™ (e + t) with
p>1. A\ €eRorp=1,\A\ > 0. Then the Besov-type space BZV’\(&X) 1s the trace space of
NY®(X uy,) whenever Ay + Xg = .
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Let us go back to the trace result for the Newtonian space N'P(X,u). Recall that
we required in Theorem 2.3 (actually also in Theorem 2.4 and Corollary 2.6) that p >
(8 —logK)/e > 0. The assumption that 5 — log K > 0 is necessary in the sense that
we need to make sure that the measure p) on X is doubling; see [B, Section 2.2]. The
requirement that p > (8 — log K')/e will ensure that # > 0. So it is natural to consider the
case p = (8 —log K)/e > 1. We obtained the following result in [B].

Theorem 2.7. Let X be a K-ary tree with K > 2. Fix > logK, € > 0 and A € R.
Suppose thatp = (B—log K)/e > 1 and A > p—1ifp>1o0rX>0ifp=1. Then thereisa
bounded linear trace operator T : NYP(X, uy) — LP(0X), defined via limits along geodesic
rays. Here, A > p — 1 is sharp in the sense that for any p > 1,0 >0 and A =p—1—6,
there exists a function u € N'P(X, uy) so that Tu(€) = oo for every £ € 0X.

Moreover, for any p = (8 —log K)/e > 1, there exists a bounded nonlinear extension
operator E : LP(0X) — N*(X) so that the trace operator T defined via limits of E(f)
along geodesic rays for f € LP(0X) satisfies ToE=1d on LP(0X).

A result similar to Theorem 2.7 for the weighted Newtonian space N'P(Q,w du) with a
suitable weight w was also established in [32] under the assumption that € is a bounded
domain that admits a p-Poincaré inequality and whose boundary 02 is endowed with a p-
co-dimensional Ahlfors regular measure. In Theorem 2.7, for the case p = (f—log K)/e > 1,
we required that A > p—1 to ensure the existence of limits along geodesic rays. In the case
p=(6—log K)/e =1, these limits exist even for A = 0, and there is a nonlinear extension
operator that acts as a right inverse of the trace operator, similarly to the case of Wh! in
Euclidean setting; see [17, 41].

Notice that N'P(X, pu,) is a strict subset of N'?(X) when A > 0. Hence except for
the case p = 1 and A = 0, Theorem 2.7 does not even tell whether the trace operator T'
is surjective or not. The following result shows that the trace operator 7' is actually not
surjective when p = (8 —log K)/e = 1 and A > 0, and gives a full characterization of
the trace spaces of the Newtonian space N'1( X uy). Towards stating the result, we first
define a Besov-type space.

Definition 2.8. For A > 0, the Besov-type space By (0X) consists of all the functions
f € LY(0X) for which the B®*-dyadic energy of f defined as

o0

1fllsg0x) = > @) Y (D)l fr = fil

n=1 Ieﬂa(n)
is finite. Here a(n) = 2" and for any I = I, € 2y, with 2 € V() and n > 1, we denote
I = I, where y € V,(,,—1) is the ancestor of z in X. The norm on Bf(9X) is
[ lse0x) = Il Fllrox) + ([ ll500x)-
We obtained the following characterization in [B].

Theorem 2.9. Let X be a K-ary tree with K > 2. Fiz f > logK, ¢ > 0 and A > 0.
Suppose that p =1 = (8 —log K)/e. Then the trace space of NV (X, uy) is the Besov-type
space B (0X).
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We stress that B(0X) and B)*(0X) are different spaces. More precisely, BY(9X) is
a strict subspace of B(0X), see Proposition 3.8 and Example 3.9 of [B]. Trace results
similar to Theorem 2.9 in the Euclidean setting can be found in [18, 54].

3. TRACES oF N1, MU1 AND BV

Let us first recall some existing trace results. In [30], the authors studied the boundary
traces, or traces for short, of BV functions in suitably regular domains. Typically, the
boundary trace Tuw of a function v in a domain €2 is defined by the condition

lim lu — Tu(z)|dp =0

r—0% B(z,r)nQ
for a.e. = € 9Q with respect to the codimension-1 Hausdorff measure H. In [33] the
authors considered the corresponding extension problem, that is, the problem of finding
a function whose trace is a prescribed L'-function on the boundary. They showed that
in sufficiently regular domains, the trace operator for BV functions is surjective, and that
in fact the extension can always be taken to be a Newton-Sobolev function. This implies
that the trace space of both BV(Q) and N*'(Q) is L'(9X). In the Euclidean setting, it
is know by [3] and [17] that the trace spaces of WHH (R and BV(RH) coincide with
each other, namely with the space L'(R™).

We would like to consider boundary traces from a different viewpoint. Unlike in the
usual literature, we assume very little regularity of the domain, meaning that traces need
not always exist. We are nonetheless able to show in various cases that for a given function,
it is possible to find a more regular function that “achieves the same boundary values”. In
particular, if the original function has a boundary trace, then the more regular function
has the same trace. This sheds further light on the extension problem. Not only consid-
ering BV- and N'!-functions, we include M'!-functions into discussion. We begin with
necessary definitions.

In this section, we assume that (X, d,p) is a complete metric space equipped with a
doubling measure p and supporting a (1, 1)-Poincaré inquality. Here we call u a doubling
measure if there exists a constant Cy > 1 such that

0 < u(B(x,2r)) < Cyu(B(z,1)) < 00

for every ball B(z,r) := {y € X : d(y,x) < r}. By iterating the doubling condition, for
every 0 <r < R and y € B(x, R), we have
/,L(B(y,?")) Z 4—8 (L)s7 (31)
n(B(z, R)) R
for any s > log, Cy. See [21, Lemma 4.7] or [5] for a proof of this. We fix such an s > 1 and
call it the homogeneous dimension. We say that X supports a (1,1)-Poincaré inequality,

meaning that there exist constants Cp > 0 and A > 1 such that for every ball B(x,r),
every u € L (X), and every upper gradient g of u, we have

loc
][ |U - uB(ac,r)| dlu' S CPT][ g duv
B(z,r) B(z,Ar)
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where

1
UB(z,r) :][ udp = —/ udp.
B(z,r) u(B(xu T)) B(x,r)

Let 2 C X be a nonempty open set. We can regard it as a metric space in its own right,
equipped with the metric induced by X and the measure p|o which is the restriction of
to subsets of . This restricted measure p|q is a Radon measure, see [25, Lemma 3.3.11].

Definition 3.1. (i) We say that an open set (2 satisfies a measure density condition if there
is a constant ¢,, > 0 such that

W(B(2,1) N Q) > cppu(Blz, 7)) (3.2)

for every € Q and every r € (0, diam(Q2)).
(il) We say that  satisfies a measure doubling condition if the measure pulq is a doubling
measure, i.e., there is a constant c¢; > 0 such that

0 < p(B(x,2r)NQ) < cqu(B(z,r)NQ) < 00 (3.3)
for every x €  and every r > 0.

Notice that if ) satisfies the measure density condition, then it satisfies the measure
doubling condition.

The Newtonian space N'1(€) is defined analogously as in Definition 2.1. So we only
present the definitions of BV(Q2) and M (€).

Given a function u € Li..(£2), we define the total variation of u in Q by

|| Dul|(€2) := inf {liginf/ Gu; A= ug € N2HQ), u — w in L%OC(Q)} ,
1—00 [¢)

where each g,, is the minimal 1-weak upper gradient of u; in 2. We say that a function
u € LY(Q) is of bounded variation, and denote u € BV(Q), if ||[Dul|(2) < co. The BV
norm is defined by
[ullvie) == [lulli) + [ Dul| (),

We refer to [1, 2, 14, 15, 19, 34, 57] for more information about bounded variation functions.

Towards the Hajtasz-Sobolev space, we define M1(2) to be the set of all the functions
u € L'(Q) for which there exists 0 < g € L'(Q) and a set K C Q of measure zero such
that for all z,y € Q\ K we have the estimate

u(z) —u(y)| < d(z, y)(9(z) + 9(y))- (3.4)
The corresponding norm is obtained by setting

[wllaria@y = |lullzr) + inf [|g]lL1 @),
where the infimum is taken over all admissible functions g in (3.4). We refer to [20, 21]
for more properties of the Hajlasz-Sobolev space M (2). The space M_:!(Q) is defined
exactly in the same manner as the space M (£2) except for one difference: in the definition
of M11(9Q), the condition (3.4) is assumed to hold only for points z,y € Q\ K that satisfy
the condition
d(z,y) < ey - min{d(z, X \ Q),d(y, X \ Q)}, (3.5)
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where 0 < cyg < 1 is a constant.
We define the codimension-1 Hausdorff measure H of A C X as

H(A) = 311_%1+ Hr(A),

where

: w(B(zj,r5))

H = _ . . < .

r(A) = inf {Z - Ac UB(x],m), r; <R, ICN
Jel jeI

We give the following definitions for the boundary trace, or trace for short, of a function

defined on an open set ).

Definition 3.2. Let 2 C X be an open set and let u be a p-measurable function on €.
(1) A number Tu(x) is the trace of u at € 0X if we have

lim |u — Tu(x)| dp = 0.
r—0* B(z,r)NQ
We say that u has a trace T'u in 09 if Tu(z) exists for H-almost every z € 90X
(i) Let X(€2) be a function function space on Q2. A function space Y(0X,H) on 0X is

the trace space of X(Q) if the trace operator u — Tu defined in (i) is a bounded linear
surjective operator from X(£2) to Y(9X, H).

(iii) Let 3 be a measure on .X. Let X(£2) be a Banach function space on §2. A Banach
space Y(0X,H) on 0X is the trace space of X(£2) with respect to H, if the trace operator

u — Tu defined ~in (i) by replacing H by H is a bounded linear surjective operator from
X(Q) to Y(0X,H).

For BV functions we proved the following results in [C].

Theorem 3.3. Let u € BV(Q) and let s be the homogeneous dimension in (3.1).
(i) There exists v € NV1(Q) N Lip,,.(Q) such that

][ lv—ulCVdy—0 asr— 0t
B(z,r)NQ

uniformly for all x € 0N).
(ii) Let 1 < q < co. Then there exists v € NY(Q) such that

][ v —ul?dp — 0 asr — 0"
B(z,r)NQ

uniformly for all x € 0S2.

Whenever there exists a BV extension of a given function defined on the boundary, it
is possible to also find a Newtonian-Sobolev extension. We obtained in [C] the following
corollary from above theorem.

Corollary 3.4. The trace spaces of BV(Q) and N1(Q) are the same.
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Here and in the rest of this section, for two Banach function spaces X(€2) and Y(€2), that
the trace spaces of X(§2) and Y(£2) are the same means that if the Banach function space
Z(0X) is the trace space of X(£2), then it is also the trace space of Y(2), and vice versa.

Corollary 3.4 is stronger than we expected; it says that we can obtain the existence of
the trace and the trace space of BV(Q2) by only knowing the existence of the trace and the
trace space of NY1(Q), which is nontrivial, since N*1(€2) is a strict subset of BV(Q).

For the spaces N'(Q) and M*'(Q2), we obtain the following result in in [C].

Theorem 3.5. Suppose 2 satisfies the measure density condition (3.2). Then there exists
0 < cg < 1 such that for any w € NY(Q), there is v € M2I(Q) N Lip1oc(Q) satisfying
[0l g1 () S NJullara() and

lim v —u|dp =0

r—0* B(z,r)nQ

for H-a.e. x € 09, where H is the codimension-1 Hausdorff measure.
If additionally Q is a uniform domain, then v can be chosen in M (Q) N Lip 1,(Q).

Here a domain Q2 C X is called uniform if there is a constant ¢y € (0, 1] such that every
pair of distinct points z,y € € can be connected by a curve v: [0, £,] — € parametrized
by arc-length such that v(0) = =, v(¢,) =y, £, < ¢;'d(z,y), and

dist(y(¢), X \ Q) > ¢y min{¢, £, — ¢t} for all ¢ € [0,4,].

More generally, instead of only studying the codimension-1 Hausdorff measure, we may
study any arbitrary boundary measure H on 0X. Then we prove the following result.

Theorem 3.6. Suppose Q) satisfies the measure doubling condition (3.3). Let H be any
Radon measure on 9Q. Suppose that, for a given u € NYY(Q), there exists a function Tu
such that

lim |u —Tu(z)|dp =0

r—0* B(z,r)NQ

for H-a.e. © € OQ. Then there exist 0 < ¢y < 1 and v € M2HQ) N Lip1oc(Q) such that
HUHMgg(Q) S Jul|pri) and

lim |v — Tu(z)|dp =0

r—0* B(z,m)NQ

for H-a.e. x € 0.
If additionally Q is a uniform domain, then v can be chosen in M (Q) N Lip 1,c(9).

Similarly to Corollary 3.4, from Theorem 3.5 and Theorem 3.6 we obtain the following
corollary.

Corollary 3.7. Let 2 C X be a uniform domain and suppose that § satisfies the measure
doubling condition (3.3). Then, for any given boundary measure H, the trace spaces of
NYY(Q) and MYH(Q) with respect to any boundary measure H on X are the same.
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A direct consequence of Corollary 3.4 and Corollary 3.7 is that under a proper setting,
the trace spaces of BV, Newton-Sobolev space N%!, and Hajlasz-Sobolev space M! are
the same. Hence we can obtain many trace results directly from the trace results for the
Newton-Sobolev spaces in the literature.

Since (R, 11,) and the weighted regular tree (X, ) are uniform and support an (1,1)-
Poincaré inequality (see Example 5.7 and Example 5.10 of [C]) and the trace operator we
used here is equivalent to the one in [B] on regular trees (see [36]), the trace results
obtained for Sobolev spaces W1 (R" ™ 1,) in [A] and for Newtonian spaces NV (X, uy) in
[B] can be applied directly to BV(R™", 1), MY (R 1) and BV(X, py), MUHX, py),
respectively. We refer to [C, Section 5] for more applications of Corollary 3.4 and Corollary
3.7.
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TRACES OF WEIGHTED FUNCTION SPACES: DYADIC NORMS
AND WHITNEY EXTENSIONS

PEKKA KOSKELA, TOMAS SOTO, AND ZHUANG WANG

ABSTRACT. The trace spaces of Sobolev spaces and related fractional smoothness
spaces have been an active area of research since the work of Nikolskii, Aronszajn,
Slobodetskii, Babich and Gagliardo among others in the 1950’s. In this paper we
review the literature concerning such results for a variety of weighted smoothness
spaces. For this purpose, we present a characterization of the trace spaces (of frac-
tional order of smoothness), based on integral averages on dyadic cubes, which is well
adapted to extending functions using the Whitney extension operator.

1. INTRODUCTION

In 1957, Gagliardo [13] gave a characterization of the trace space of the first order
Sobolev space W'P(Q), 1 < p < oo, on a given Lipschitz domain Q C R? in terms of the
convergence of a suitable double integral of the boundary values. This work extended
the earlier results by Aronszajn [1] and Slobodetskii and Babich [45] concerning the

case p = 2. The trace space By /" (092), consisting of all (d — 1)-Hausdorff measurable
functions u on 9§2 with

u(y)l
ol o+ [ ] tHa (Mo () <00 (1)

is nowadays commonly called a fractional Sobolev space, a Slobodetskii space or a Besov
space. Actually, Gagliardo also verified that the trace space of W1(Q) is L'(99) (see
also [32] for a different proof of this fact). The norm estimates for the trace functions
were obtained via Hardy inequalities, while the extension from the boundary was based
on a Poisson-type convolution procedure. We refer to the seminal monographs by
Peetre [40] and Triebel [49] for extensive treatments of the Besov spaces and related
smoothness spaces.

A natural variant of this problem asks for the trace spaces associated to weights.
Already in 1953, Nikolskii [38] had considered the trace problem for Sobolev spaces
(for p = 2) with weights of the form z — dist (z, 92)%, where —1 < a < 1. Other
early related results were given by Lizorkin [29] and Vasarin [56]; see [37] and [33] for
further references. More recently, Tyulenev [51, 52, 53, 54] has identified the traces of
Sobolev and Besov spaces associated to more general Muckenhoupt A,-weights. For
related results concerning the traces of weighted Orlicz-Sobolev spaces, we refer to
[11, 27, 39, 7, 8] and the references therein.

2010 Mathematics Subject Classification. Primary: 46E35, 42B35.
Key words and phrases. Trace theorems, weighted Sobolev spaces, Besov spaces, Triebel-Lizorkin
spaces.
The authors were supported by the Academy of Finland via the Centre of Excellence in Analysis
and Dynamics Research (project No. 307333).
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On the other hand, a notable amount of recent research has focused on extending
the theory of Sobolev spaces and related fractional smoothness spaces to the setting of
metric measure spaces (including fractal subsets of FEuclidean spaces); see e.g. [22] and
the references therein as well as [18]. Works focusing on trace theorems for fractals
and related subsets of a Euclidean space include [25, 41, 42, 50, 44, 23, 24, 5, 17]
(we also refer to [55] for a recent result concerning traces on non-regular subsets of
R?), while trace theorems in more general metric settings have been considered e.g. in
[14, 43, 28, 31, 30]. In fact, the characterizations of fractional smoothness spaces as
retracts of certain sequence spaces in [12], [18, Section 7] and [4, Proposition 6.3] can
also be seen as abstract trace theorems.

Motivated by these works, we revisit the Euclidean setting, viewing the upper half-
space R‘fl = R?x (0, 00) as a particularly nice metric space endowed with a weighted
measure. We shall introduce equivalent norms for the Besov spaces based integral
averages on dyadic cubes. These norms are well adapted for studying the extension of
functions defined on R? to Riﬂ via the natural Whitney extension. In contrast, the
extension operator e.g. in [33] is based on the Poisson kernel.

Let us begin with a concrete example. We consider functions defined on the real
line, but as we will later see, the discussion below generalizes to the setting of higher
dimensions as well.

Given u € L{ (R) and an interval I C R, set

1
u(l) = 7 /Iu(x)dx,

where || is the length of the interval I. For each k € Ny, fix a dyadic decomposition
of R into closed intervals {/j;}icz so that each I ; has length 27% and Ij,; N I.; # 0
exactly when |i — j| < 1. Consider the condition

lullZemy + Y > [ullis) = w(lxisn)]* < oo (2)
keNy i€Z
Now write Qp; = Ir; x [27%,27%1] for all admissible k¥ and 4. Then these squares
give us a Whitney decomposition of the upper half-plane Ri. Pick a partition of unity
in Ukl Qi consisting of functions p; € C*°(R?%) such that |V, <5 - 2% and the
support of ¢ ; is contained in a 27*~2-neighborhood of Qy ;. For u € L} _(R), define

Eu = Z u(lg i) Pri- (3)

keNo, i€Z
Given f € WH2(R?%), the trace function u := Rf: R* — C, defined by

1
Rf(r) = limy / F(w)dma(y).
=0 1My (B((l’, 0)7 T) N Ri) B((x,O),T)ﬁRi
where my stands for the 2-dimensional Lebesgue measure, is well-defined pointwise
almost everywhere and satisfies the condition (2). Conversely, if u € L{ (R) satisfies
(2), we have Eu € WH?(R2) with the expected norm bound and R(Eu) = u pointwise
almost everywhere.

We conclude that v € Lj, (R) belongs to the trace space of W?(R3) if and only

loc

if (2) holds. Hence the condition (2) should characterize the space B;/ *(R). This is
indeed the case; a direct proof is given in Subsection 7.2 of the Appendix.
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Let us next consider the following generalized form of the condition (2):

[ull? g + D> 27527y u(Ths) — ulli )P < oo, (4)

keNg 1€Z

where 1 < p <oocand (0 < s < 1. Above we saw that the choice p = 2 and s = 1/2 yields
the trace space of W'?(R%). Similarly, it turns out that the condition (4) characterizes
the trace space of W'?(R%) when s = 1 —1/p. Where does this value of s come from?
The so-called differential dimension of the space By over an n-dimensional Euclidean
space is s —n/p, and the same holds for the space W? with 1 in place of s; see e.g. [49,
Section 3.4.1]. Hence the order of smoothness s of the trace space should satisfy

1 2
s§——=1-—,
p p
which rewrites as s =1 —1/p.
Let us now try to extend a function u € L
requiring that

J

where o« > —1 and Eu is as defined as above. It turns out that when o € (—=1,p — 1),
the condition (5) is satisfied when u satisfies (4) with s =1 — (v + 1)/p. On the other
hand, since

1
loc

(R) to a weighted Sobolev space, by

|Eu(z)|Pdist (z, R x {0})"dz + /

g [V (Eu)(z)[Pdist (z,R x {0})"dz < 00,  (5)

2
= +

tta (B((z,0),7) NRY) ~ 7>t

for all z € R and r > 0, where p, is the measure associated to the weight =
dist (z, R)*, we also see that a + 1 = (2 + ) — 1 appears as a local codimension of R
with respect to the metric measure space (Ri, fte). Hence the drop in the order of the
derivative from one to the fractional order s is determined by p and this codimension.

Would the condition (2) allow us also to extend functions from R to a higher-
dimensional weighted Euclidean space, e.g. (R3, u,)? If so, then the correct condition
for the parameter o would be a@ > —2 and the role of 2 + o above should be taken
by 3 + a. We recover s = 1/2 when (o + 2)/p = 1/2, which for p = 2 gives a = —1.
This indeed works: (2) holds exactly when u is in the trace of Wh?(R?, u_;), where
the measure p_; is associated to the weight = + dist (z, R x {0})~! in R?, and in this
case u can be extended as a function in W1H2(R3, ;) with a suitable modification of
the Whitney extension operator (3).

Can we find yet further function spaces whose traces are characterized by the condi-
tion (2) or the condition (4)? Towards this, let us mention that the space characterized
by (4) coincides with the diagonal Triebel-Lizorkin space F; (R). The scale of Triebel-
Lizorkin spaces fzf’q(Rd) on the d-dimensional Euclidean space, where 1 < p < oo,
0 <qg<ooand0 < s < 1, is another widely-studied family of fractional smoothness
spaces that arise e.g. as the complex interpolation spaces between LP(R?) and W'*(R?).
The discussion above concerning the traces of weighted Sobolev spaces, with suitable
modifications for the parameter ranges, turns out to hold for the traces of these function
spaces as well. In particular, when s € (0,1) and o € (—1, sp — 1), the condition (4)
with s — (a+1)/p in place of s characterizes the traces of the functions in F  (R%, f1q)
for any admissible ¢q. A similar trace theorem for the scale of Besov spaces BI“;’q(Ri, o)
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is formulated as Theorem 1.2 below. The precise definitions of these spaces are given
in the next section.

Let us summarize the above discussion. The Whitney extension operator £ extends
a Besov space B,(R) := B; (R) with given smoothness s € (0,1) linearly and con-
tinuously to a number of different (weighted) smoothness spaces defined on R?, the
trace of all of whose equals B; (R). Moreover, given n € N, a suitable variant of the
Whitney extension operator £ gives us a similar extension from B, (R) to a variety
of (weighted) function spaces defined on R'*™; this is discussed in detail in Subsection
74.

To finish discussion, let us state our main results more precisely. Given a pair of
function spaces (X, Y’), we say that they are a Whitney trace-extension pair if X is the
trace space of Y in the usual sense and the extension from X to Y is obtained using the
natural Whitney extension — this notion is also defined more precisely in Definition
2.6 below. The measure /i, (where a > —1) below stands for the measure on R%™

defined by
ol E) = / wo dmgys, (6)
E

where w,, : Rff“l — (0,00) is the weight (21,29, - ,Zgy1) — min(l, |zg1|)® and mgyq
is the standard Lebesgue measure on Riﬂ. Finally, the definitions of the relevant
function spaces are given in Section 2 below.

First off, we have the following trace theorem for the first-order Sobolev spaces.

Theorem 1.1. Let 1 < p < oo and —1 < a < p—1. Then (B;;,(O‘H)/p(Rd), WP (RE 1))
is a Whitney trace-extension pair.

The analogous trace theorem for the Besov scale reads as follows.

Theorem 1.2. Let 0 < s < 1,1 <p<o0,0<qg<ooand —1 < a < sp—1. Then
(B;;(QH)/ P(RY), B (RT, 1)) is a Whitney trace-extension pair.

Finally, the trace theorem for the Triebel-Lizorkin spaces reads as follows.

Theorem 1.3. Let 0 < s < 1,1 <p<oo,0<qg<o0and -1 <a < sp—1. Then
(B;;,(a+1)/p(Rd), f;vq(R‘fl, [ta)) is a Whitney trace-extension pair.

We present a refinement of the case p = 1 of Theorem 1.1, where the Sobolev
space WH(RE™ 1) is replaced by a Hardy-Sobolev space h“' (R4 11,), in Section
6. The variants of the results above with higher Euclidean codimension are given in
Subsection 7.4 of the Appendix.

The paper is organized as follows. In Section 2 we give the definitions relevant to our
main results and recall some basic properties of the spaces and measures in question.
Sections 3 through 6 contain the proofs of the aforementioned trace theorems. The
Appendix (Section 7) deals with various technicalities that we saw fit to postpone from
the other sections.

2. DEFINITIONS AND PRELIMINARIES

In this section we present the definitions of the relevant function spaces and the
Whithey extension operator. Before this, let us introduce some notation that will be
used throughout the paper.
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Notation. (i) The majority of this paper will deal with extensions of functions defined
on the Euclidean space R? to the half-space RE™ := R? x (0,00). The dimension
deN:={1,2,3,---} will be fixed throughout the paper. The d-dimensional Lebesgue
measure will be denoted by my;. When talking about measures i defined on Rﬁlfl, we
may abuse notation by writing y(B(z, 7)) for u(B(z,7)NREI™) when e.g. x € R? x {0}.

(i) If (X,p) is a measure space and A is a p-measurable subset of X with 0 <
p(A) < oo, we shall write

fan = fdui= e | s

whenever the latter quantity is well-defined, i.e. when f € L'(A,u) or f(z) > 0 for
p-almost every x € A. We may omit p from the notation and simply write f4 when p
is the Lebesgue measure on an Euclidean space and there is no risk of confusion.

(iii) While L} _(R?) stands for the space of (complex-valued) locally integrable func-
tions on R? in the usual sense, we use the notation L (R%™) with a slightly different
meaning: it refers to the space functions that are integrable on bounded subsets of
R,

(iv) If f and g are two non-negative functions on the same domain, we may use the
notation f < ¢ with the meaning that f < Cg in the domain, where the constant
C > 0 is usually independent of some parameters obvious from the context. The
notation f ~ g means that f < gand g < f.

Definition 2.1. Suppose that u is a Borel regular measure on R? such that every
FEuclidean ball has positive and finite u-measure.
Let p € [1,00). Then WP(RY, ) is defined as the normed space of measurable
functions f € Li (RY) such that the first-order distributional derivatives of f coincide
(R?) and

with functions in L{._

HfHWLP(Rd,p) = HfHLP(Rd,,u) + HVfHLP(]Rd,p) (7)

is finite.
The space WP (R*, 1) is defined similarly, by replacing R? with RT™ in (7).

In order to formulate the dyadic norms of the relevant fractional smoothness spaces,
we recall the standard dyadic decompositions of R? and Rff“l. Denote by 2, the
collection of dyadic semi-open cubes in R?, i.e. the cubes of the form @Q := 2% ((O, 14+
m), where k € Z and m € Z¢, and 2 for the cubes in 2, which are contained in the
upper half-space R4~ x (0,00). Write £(Q) for the edge length of Q € 2, i.e. 27% in
the preceding representation, and 2, for the cubes Q € 2, such that £(Q) = 27%. If
x € R? (resp. x € Rﬁlr“) and k € Z, we may write write @} for the unique cube in 2,
(resp. 2. ,) such that € Q and £(Q) = 27"

We say that @ and @' in 2, are neighbors and write Q ~ Q' if % <Q)/UQ) <2
and Q N Q" # 0. Note that every @ has a uniformly finite number of neighbors.

Definition 2.2. Suppose that u is a Borel regular measure on R? such that every
FEuclidean ball has positive and finite u-measure.
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Let s € (0,1), p € [1,00] and q € (0,00]. Then the Besov space B ,(R?, 1) is defined
as the normed (or quasi-normed when q < 1) space of functions f € LIOC(Rd) such that

> a/p
1f |53, ey = 1S || Lo(ra ) + <22k8q< > Z |\ fou = forul” > ) (8)
k=0

QEZq i,
(standard modification for p = oo and/or ¢ = c0) is finite.
Definition 2.3. Suppose that u is a Borel regular measure on R? such that every
FEuclidean ball has positive and finite u-measure.
Let s € (0,1), p € [1,00) and q € (0,00]. Then the Triebel-Lizorkin space F (R, 1)

is defined as the normed (or quasi-normed when q < 1) space of functions f € L10C (R%)
such that

p/q 1/p
oo = Wiz + ([ (22 3 oz el ) duto)) 0

k=0 Q/NQJC

/]

(standard modification for ¢ = co) is finite.

The spaces B ,(RT™, p) and F3 (R, 1) are defined similarly, by replacing R? with
R = R? x (0,00) in (8) and (9) respectively, and omitting the terms corresponding
to the cubes Q € 2411\ 25, and Q' € Luy1 \ 25, ;.

Remark 2.4. One routinely checks that Bj (R?, 1) and F; (R?, ) are quasi-Banach
spaces (Banach spaces for ¢ > 1). Fubini’s theorem implies that

Fop(RY ) = B (R, )
with equivalent norms for p € [1,00), and the monotonicity of the ¢4-norms shows that
B (RY p) € BS (R p) and  Fj (R ) € F3 . (RY, o)

with continuous embeddings when ¢’ > ¢. All this of course holds with R‘fl in place
of R?.

In case y is the standard Lebesgue measure on R%, we shall omit x from the notation
of the three function spaces above and simply write W'?(R?), B; (R?) and F; (RY)
where appropriate.

Remark 2.5. (i) A Besov quasinorm that is perhaps more standard in the literature
is given by

P Wb+ ([T ([ f 1w i) )" o

A straightforward calculation using Fubini’s theorem shows that if ¢ = p and u = my,
then then the pth power of this this quasinorm is comparable to

/() = F@)I”
110 ey // ‘x_ |d+sp Pt dady,

which is of the same form as the quantity (1) in the introduction.
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(ii) To justify the Definitions 2.2 and 2.3 above, let us point out that if the measure
i is doubling with respect to the Fuclidean metric, i.e. if there exists a constant ¢ > 1
such that

p(B(x,2r)) < cu(B(z,r)) for all 2 € R and r > 0,

then the quasi-norm (8) is comparable to the quasi-norm (10) above. We refer to
Subsection 7.2 of the Appendix for details.

(iii) Quasinorms similar to (8) and (9) in the setting of metric measure spaces were
also considered in [43, Definition 5.1] in terms of a hyperbolic filling of R%. Another
similar variant in the weighted Euclidean setting has been considered in [54].

We now give the definitions corresponding to the Whitney extensions discussed in
the introduction. To this end, we have to define a partition of unity corresponding to
the standard Whitney decomposition of the half-space Ri“. For QQ € 2y, k € Z,
write #/(Q) := Q x (27%,27"1] € 27, . To simplify the notation in the sequel, we
further define 29 := Ug>0244-

It is then easy to see that {#(Q) : @ € 24} is a Whitney decomposition of
R? x (0, 00) with respect to the boundary R? x {0}. For all Q € 29, define a smooth
function ¢g: R — [0, 1] such that Lipvg < 1/4(Q), infren (@) Yo(x) > 0 uniformly
in Q € 29, supp1)g is contained in an @—neighborhood of #(Q) and

Z Yog=1 in U v (Q).

Qe2Y Qe2Y

Let us point out that the sum above is locally finite — more precisely, it follows from
the definition that

supp g Nsupp g # 0 if and only if Q ~ Q' (11)

Definition 2.6. (i) Let f € L. (R?). Then the Whitney extension £ f: RT™" — C is
defined by

£f@)= 3 (f sama)valr)

Qe2l

This definition gives rise in the obvious way to the linear operator £: Li (RY) —
Co(RY).

(ii) Let X C L} (R?) be a quasinormed function space on R? and let Y be a
quasinormed function space on the weighted half-space (R4, 11). We say that (X,Y)
is a Whitney trace-extension pair if £ maps X continuously into Y, if the trace function

R [ defined by

Rf(e) = liny [ F)duly). (12)
B((x,0),r)NRIH

r—0

is for all f € Y well-defined almost everywhere and belongs to Ll _(RY), if R maps Y
continuously into X and if

R(ES) =T

pointwise almost everywhere for all f € X.
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For the proofs of our main results, let us recall some basic facts about the weights
w, and measures p, defined in (6). First, it is well-known that for a > —1, the weight
w,, belongs to the Muckenhoupt class A, for all r > max(a + 1, 1), which implies that
the measure p,, satisfies the doubling property with respect to the standard Fuclidean
metric (see e.g. [21, Chapter 15] or [9]). This in particular means that

Ha (Q) ~ Ha (Q/) it @~ Q/-
A straightforward calculation also shows that
fia(B(z, 1)) ~ rétite (13)

for all z € RY x {0} and 0 < r < 1.

Finally, let us recall the standard (1, 1)-Poincaré inequality satisfied by the functions
that are locally Wll-regular in the upper half-space. If ) is a cube in R‘fl such that
dist (Q,R? x {0}) > 0 and f € W1(Q), we have

][ |f = foldma < CK(Q)][ |V fldmgi (14)
Q Q

for some constant C' independent of () and f.

3. PROOF OF THEOREM 1.1

Proof. (1) Let us first prove the desired norm inequality for the Whitney extension
Ef of f € B;;(aJrl)/p(Rd). We begin by noting that if Q@ € 29, it follows directly
from the definitions that w, ~ ¢(Q)* in #(Q), and hence we have u,(#(Q)) =~

0(Q)mar1 (W (Q)) ~ £(Q)* 1+, Since the supports of the functions 1o have bounded
overlap, the Lp(Rff“l, o )-norm of € f is thus easy to estimate:

[ €8s 3 ma (@) paman 3 a@rt [ (spam,
Ry QEQO Qe2) @
=32 2 [ ippamg= e [ g,
k>0 Qegdk k>0
= > 2D, oy = (15)
k>0

In order to estimate the LP(R™, i, )-norm of |V (£ f)|, we divide the half-space R%™
into two parts: X := UPefzg W (P)and X, := RE™M\ X, Nowifz € Xy, ie. v € #(P)
for some P € 29, we have that ZQng Yg(x) =1, and as noted in (11), the terms in
this sum are nonzero at most for the cubes ) such that () ~ P. Hence

—ﬁjmw ffwmwg ffWM

Qe2Y

=y (][ fdmy —][ fdmd>"¢Q =Y (fo— fr)val2),

Q~P Q~P
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and the Lipschitz continuity of the functions Q,DQ yields
V(N < [Lip (€@ = [Lip (££0) ~ £ Fdma) o)
<Y lho -~ IrllLip W)@ § Y 7 gy o = vl (16)

Q~P Q~P

This means that

vENra =3 [ vEpring Y P) Y glfe— It

X1 Pe2y Pe2?
~ d+1+oz p
D UpyEy g |
Pe2y Q~P
_ a+1
~ > up) ¢ Z |fq — frl”
pPe2y Q~P
S (17)

If on the other hand x € X5, we can have ¢ (z) # 0 only for Q € 2,;,. Thus,

-y ][ fdma)io(r) = 3 favals

Q€24 QEeZ4
supp z/Jan

and using the Lipschitz continuity of the functions ¢ as above, we get

VEN@| < LipEN@I< Y alllip@)@) S Y [falXewpue(@):

Q€240 QeZ2,4 0
supp Q3

Since fiq(supp ¥g) = pa(#(Q)) ~ 1 for all Q € 2,0, the estimate above yields

JovEnrans < 3 [ ipim= 1, 08)

QeZa QeZa,o0
Combining (15), (17) and (18), we arrive at

HngLP(Rd“Jr,ua) + Hv(gf)HLP(Rd‘HJr,ua) S Hf|’5117;7(04+1)/17(Rd);

which is the desired norm inequality.

(ii) Let us now consider the existence and norm of the trace function R f of a function
f e WWwRE ). For k € Ny, define the function %f R¢ — C by

Tif = Y ][ fma) v

QEZ i

where A (Q) = 2#/(Q) = {y € R{™ : dist (y, #(Q)) < (Q)} — note that the
functions ., f are well-defined, since f € L'(A(Q), uto) implies f € LY (A (Q), mg11)
for all Q € 29. We first show that the limit limy ., 7 f exists pointwise mg4-almost
everywhere in R? (and, in fact, in LP(R?)). The limit function will be called R f for
now even though it is not of the same form as in Definition 2.6 — we shall return to
this point in part (iii) below.
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To verify the existence of the limit in question, it suffices to show that the function

=) | Tt = Bt |+ | %o f]

k>0

belongs to LP(R?).
Let P € 2,. Because mgy1 (A (P)) =~ 1 and p, ~ 1 in A (P), we get

[irram s [ |3 (Fs@) - @) amato) + [ |fPdme
P PliSo

N (P)

~ [ |3 (Fhsfto) = 2 @) [t + [ ifrdu.

N (P)

/P ZQ ke/p‘le/p %Hf T) — %f(x))|)pdmd($)+//y(m | fIPdpa

k>0

SE 2 [ 1Faf@) - As@ i)+ [P (9

k>0

where € :=p — (a+ 1) > 0 and the last estimate uses Holder’s inequality.
In order to estimate the kth integral above, recall that for x € RY Q% stands for
unique cube in 2, that contains x. By the definition of the 47 (Q)’s, the intersection

of A#(QF) and A (QF,,) contains a cube Q with edge length comparable to 27%. We
thus have the estimate

\,%f( ) yIc+1f \ = ‘][ fdmgp —][ fdmay
N(QF) N (Q% 1)

‘][ o) Jdmay —][ fdmaia

+ ‘][ Jdmaia —][ Jdmai
G N Q)

5][ |f = frn | dman +][ |f = frp, )l dmati.
@ H Q)

We have w,(y) ~ 275 for ally € A4 (Q%), and hence also p1, (A (QF)) & 27 may 1 (A (QF))
as in part (i) above. We may therefore use the Poincaré inequality (14) in conjunction
with Holder’s inequality to estimate the first integral from above by

1/p
2—k][ IV f| dmg, ~ Q—k][ IV f|dps < 27F (][ |Vf|pd,ua) .
A(QF) A(QF) A(QF)

A similar estimate obviously holds for the second integral. We thus get

1/p

1/p
70~ TSl ST, wsra) 2 (s o)
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and hence
[ 1Fast@) = Zp@) dmato) = Y / | f(2) — Fif (@) dima()
P QEZy 1
QcP

<Y @ Y (a@f’f Vi e+ 0@ \Vf\pdua)
QE2q s, Q€24 ki1 A(Q) N (Q")
QCP Q'cQ

< 9—k(d+p) Z ][ \Vf\pd,ua:Q’kE / \Vf\pdua

QeZg rU2q k11 QEJdeJdk+1 A(@)
Qcr QcP

Plugging this into (19) and summing over P € 2,,, we arrive at

T S SIS / ey / [P

PEJd o k>0 QEJd kUJd k41 PEJ
QcP

~ 3 / Vi da+ S / i

Qe2) P2y,

Sy s

Here the last inequality follows from the fact that ZQG 20 XAH(Q) <2

Hence f*(z) < oo for mg-almost every x € R?, so the limit Rf(z) := limy oo Z3f(z)
exists at these points. In the remainder of this proof, we shall abuse notation by
writing simply f for Rf. Since |f| < |f*| almost everywhere in R?, the estimate above
immediately gives

1|y S If i @ )

Now to estimate the B},;Ha)/p—energy of f, let Q € Z4; with £ > 0 and write
Q@ :=QUlUgy .o« We get

dlfe—fol"S D] (\f@ —fr@l +fo = fran] +|fr@ - ﬁA/(Q'>|p)
Q'~Q Q'~Q

5][ |f(z) = T f(2)| dmg(x Z |f v — fre
e Q~Q

Note that m.(Q*) ~ m4(Q), that the collection of cubes {Q* : @ € 24} has bounded
overlap (uniformly in k) and that mg(Q)/ua(A(Q)) ~ 2Fe+D . Using these facts
together with an estimate similar to (20), we get

> ma@Q) D |fo - fol”

QeZg 1, Q'~Q

S/RJf( — Ff (@)["dma(z)
| gkla+D) Z 110 (A (Q)) Z \fr@ — Fran|

QEZq i Q'~Q
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S [ 1@ = Aif @) dmafa) + 220010 [ IV f Py
Rd Ug*k*lg[(Ql)ﬁg*k«klf/V(Q/)
=: I} + 2kt
so that
_at+l a+1
ZQk(l )P Z ma(Q) Z |fQ — for p < ZQk(l p[k‘i‘sz (22)
k>0 QEQdyk Q' ~Q k>0 k>0
We have
DT S U (23)
k>0

because the domains of integration in the definition of the I;’s have bounded overlap.
To estimate the terms Ij, we may take € € (0,p—a—1) and proceed as in the estimates
following (19):

1< 3 alnhe / (T f () = T f (@) dma()

n>k
<Y or b 3 ][ V117 dp
n>k Q€24 1024 nir” V(@
SHYPLERE Y / V1P
n>k Q€241U2q sy V(@)
B 22(71 Beg-nlp—a—1)y
n>k

so that

Z Qk(lfo‘Tfl)p[k 5 Z 2n(o¢+1—p+e)07l’b Z 2k(p—a—1—e) ~ Z 07,1

k>0 n>0 0<k<n n>0

S Hf”leP(Rfl,ua)

where the last estimate follows from the definition of the norm. Plugging this and (23)
into (22), we get the desired energy estimate for R f.

(iii) Let R be as in part (ii) above. Since mg-almost all points of R? are Lebesgue
points of a function f € B;,,;(Ha)/p, it is evident from the definition of R that R(Ef) = f
pointwise mg-almost everywhere.

We are now done with the proof of the Theorem, with the exception that the trace
operator R considered in part (ii) is not of the form required by Definition 2.6. This is
in fact a cosmetic difference — by a well-known argument, if f € WHP(R 11,), then
the point (x,0) is for mg-almost all z € R? in a sense a u,-Lebesgue point of f. We
refer to Subsection 7.1 for details. Keeping this fact in mind, it is easily seen that the

function Rf considered in part (ii) coincides almost everywhere with the function in
(12) (with g = pq). O
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4. PROOF OF THEOREM 1.2

Proof. For simplicity, we only consider the case ¢ = p < oo. The cases where ¢ € (0, 00]
and/or p = oo can be proven by simple modifications of the arguments below.

(i) We first establish the desired norm inequality for the function £f for f €

B;;(O‘H)/ P(R?). To begin with, since the parameters p, s and « are also admissible
for Theorem 1.1, the estimate (15) therein tells us that

1EF ot oy S IS llzoe): (24)
Now to estimate the Bs (R, 1q)-energy of £ f, we divide the dyadic cubes in RT™
into three classes that will be considered separately. For k > 0, write 2; for the
collection of dyadic cubes @ in 27, with edge length 27* such that dist (Q, R?x{0}) >
2, 22 for the collection of dyadic cubes @ in thrl with edge length 2% such that
27F < dist (Q,R? x {0}) < 2 and 2} for the collection of dyadic cubes in 27, with
edge length 2*"g whose closures intersect R? x {0}. Also write o@i* for the collection
of cubes in UF" 7max(k L O)Q? that are contained in Uge 22@Q.

We thus want to estimate

Y 1@ D 1E N — ENarpal” + D 1@ D 1(EN@wa = (€Nl

Qe2} Q'~Q Qe.2? Q'~Q
Qeay*

(1 2 3
+ 3 1@ D €N — (ENgu| = 0 + 02 + 07 (25)
Qe Q~Q

at each level k > 0 — the reason why we can omit the terms corresponding to @' ¢ QZ*
in the middle sum is that a comparable term is contained in O,il), O,ig), O,(jgl or O,(Cljl.
We first note that O,(;) can for k € {0, 1} be simply estimated by

NSt pay = NI oy

Now suppose that Q € 2} with £ > 2 and @' ~ Q. Using the Lipschitz continuity of
the bump functions 1p and noting that we can only have supp ¥p N (Q U Q') # 0 if
Pe 2,0, we get

Py — ENam]” < ][ ][ E£(2) — £ ()P dpta(2)dpia(y)
QRJIQ
st X A iflam)

PGQd 0
supp ¢ pN(QUQ")#D

<o} / FPdma.

Pe240
supp ¥ pN(QUQ)£D
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Since the admissible cubes Q above are relatively far away from R, we have 11,(Q) ~

9-k(d+1) g
O(l) < gkd+1tp) Z Z Z /|f|pdmd7

Qe2 Q'~Q Pe2,40
supp ¢ pN(QUQ")#D

and since each P € 2, appears at most some constant times 20@+DF times in the
above triple sum, we get

1 _
OIE;) 5 9—kp / |f|pdmd =27 kp“f”LP(Rd,md)'
Pe2,
Thus,
s (1 s—
S 200 £ S BEDI A S 1 (26)
k>0 k>0

Now suppose that Q € 22, @' € 27" and Q ~ Q'. Let P and P’ be the (unique)
cubes in 29 such that Q C #(P) and Q" C # (P'). We evidently have ((# (P)) > 27"
and ((# (P')) = ¢(# (P)). Using the Lipschitz continuity of the bump functions in the
definition of £ f in conjunction with the fact that the bump functions form a partition
of unity in Q U ', we get

(ENase— ENawl 5 f [ 160~ 1)) = €7~ ) dia(writ)
9k
(P)p

>, \fp— fal" (27)

Re29
W (R)N(W (PYIH (P7))£0

2-hp
S g(p)z»( ZO |[feo = fal” + ZO |fP’_fR|p)-
Re2; Re2,
W (R)NH (P)#0 W (R)NW (P40

Since w,, ~ £(P)* in # (P), we have y,(Q) ~ 27+ ¢(P)* 5o

Ha(@(E Naue = ENul” STH (P> 3 |fp = fal

Re 29
W (R)NW (P)#£0

+ (PP Z | fr — fR|p>-
Re29
TR (PT)£0

Now summing over admissible () and ()’, geometric considerations imply that the terms
P e 2%and P’ € 29 (with ¢(P) > 27% and ¢(P’) > 27*) will appear at most a constant
times (27(P))?*! times in the resulting triple sum, so

> (@) D [(ENGu. — EPrp ]
Qe2? Q(i?@g*
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S27 Z ((p)THitasr Z \fp = fr|"

Pe2) Re2;
L(P)>27F W (R)YNW (P)#0
52”“1’ Z 9~ dt1+a—p) Z Z ‘fP_fR‘p
0<n<k Pe2y Re29
(R)NY (P)#0
S o S P S e gl
0<n<k Pe2y, Re29
W (R)NH (P)0

2—kp Z 2—n(1+a—p)O7I’L'

0<n<k
Multiplying this by 2**? and summing over k > 0, we get
ksp ) (2) —n(l4+a—p) k(s—1)p ~ n(s—<typ D
22 pOk 5 22 OnZQ ~ 22 P On 5 ||f||8;;?(a+1)/P(Rd)’(28)
k>0 n>0 k>n n>0

where the last estimate follows from the definition of the norm.

Finally, let us consider the terms in the sum O,(f’). Let Q € 23 and Q' ~ Q. Define
P := Py € 2, as the projection of @ on R?, and let P’ be a neighbor of P in 2, —
we will specify the choice of P’ later. We have

10 (ENua = ENrpal”
< / €F — foldua + / € — fo e+ 1@ fr — for?. (29)
Q Q'

To estimate the first integral above, note that

/ €f = foldpa = 3 / £F — ol dp

Re2,
RCP

=S Z/ €7 — ol dpa.

n>k RE2y
RCP

For R € 2, as in the sum above, denote by RY), k < j < n, the (unique) cube in
2,,; that contains R. Taking e € (0,14 «), we get

€5 ) = fol” S1Ef@) = fal" + (3 [fw = fwr])”

j=k+1

< zw DSOS e Sl

R EQd R'~R!

R’DR
2<" 7egid ma(R) \fr—f
N d R/ RN
R'€2, R'"~R’

R'DR
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=((R)"" Z ((R)~™my(R') Z | frr = frr|”
Re2, R/'~R!
RCR'CP

and since o (# (R)) ~ ((R)¥F* we arrive at

/Q Ef = fplldpa S D LR ST UR)Y T m(R) D> | e = far]

Re2, Re2y R'~R/
RCP RCR'CP
= > (AR maR) Y = fw|) D U
R'e2y RI'~R Re2y
R'CcP RCR/

Geometric considerations again imply that every ¢(R) € {{(R'),((R')/2,((R)/4,---}
in the innermost appears (¢(R')/¢(R))? times, and since 1 + a — € > 0, the sum in
question is comparable to ¢(R')4t1Ta=¢ Thus,

/ £f = fo'dpa S Y UR) T ma(R) > | fw = farl’. (30)
Q RIEQd R'~R!
R'cP

Now to estimate the second term in (29), we have to specify the choice of P’. If
Q" NR? x {0} # 0, we define P analogously to P, and the integral in question can
be estimated by the right-hand side of (30), with @ replaced " and P replaced by
P'. If on the other hand Q' NR? x {0} = ), we can take P’ € 243 U 2441 so that
Q' =W (P’), which yields

/Q Jef = ol e S ual@) X 1 = ol (P muP) S | for = i

P~ P! P~ P!
Finally, the estimate for the third term in (29) is obvious:

Q)| fp = frr|" = U(P) ' ma(P)|fp — for|” (31)
Putting together (30), (31) and a suitable estimate for the second term in (29), we get

Z{ Qua 5f Q’ua{p< Z K(R’ m R/ Z ‘fR’_ R” )

Q’NQ RIEQd R'~R!
R’ch2

where P; := P Up_pP'. Since each R’ € 24 (with /(R') < min(27% 1)) is
contained in a finite number of admissible cubes ), we thus have

3) < Z 9—n n(l4+a) Z md(R/> Z ‘fR’ _fR“ p _. Z 9= n(l-&-oc)O;:7

n>(k—1)4 R'E€2,,, RI'~R/ n>(k—1)4
and so
ksp ) (3) —n(1+a) ksp (s—L£2)p »
D 2TOP Y 2o 3 2R Yy 2 ORI ey (32)
k>0 n>0 0<k<n-+1 n>0

Combining the estimates (24), (26), (28) and (32), we finally get
IEfIIP < HSfHLp Ri+, a)—|—22k5p 1)+02)+O3))

By (R{ o
p;p kZO

s O‘+1>/p(Rd)
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(ii) Now let f € B (Rd+1, le), and for k € Ny write

Ty f = Z (

Q€241 N(Q)

where N(Q) = Q X (0,4(Q)] € Lyy14 for all Q € 29. The operators T, will play a
role similar to that of the operators .7, in the proof of Theorem 1.1.

We first show that the limit limg_ ., T} f exists pointwise mg-almost everywhere in
R? by estimating the LP(R%)-norm of the function

fr= 0 | T f = Tf | + | Tof|.

k>0

Now if P € £, the definition of 7 shows that

[ir@pams < [ (3 [Tt @) - Ts@)) dmato) + [ e

SY 2 [ [Taf@) = Tt @)Pdmata) + [ e @

k>0

fdia) o

where € := sp —a — 1 > 0. To estimate the k-th integral above, note that

/P‘Tkzﬂf( r) = Tif(z |dmd Z /‘Tk-i—lf — Ty f(z ‘dmd( )

Q€24
QcP
S D ma@Q) D @ — for”
QEZq Qe2f
ecr Q'~N(Q)

=27 N N | v@ue — farua]”

+
QE2y 1, Qe2] |

QP /N (Q)

By this and (33), we can estimate ||f*||’£p(Rd) by

ST NN v _fQ,Ha|p+HfHLP(Rd+1 "

k>0 Q€2ak Q'e2f
Q'~N(Q)
~ 2D Y (V@) Y @ = Sl I g
E>0 QEZa,k Q’GQLI
Q'~N(Q)
52 5 @) X o~ fon W By, (39
k>0 QE2y Qe2l
Q'~N(Q)
SIAI

d .
B;,p(R++lvMa)

This shows that f* < oo pointwise mg-almost everywhere, so that the limit Rf :=
limg .. T} f exists at these points. We may abuse notation by writing f for Rf in the
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remainder of this proof. Since |f| < f* pointwise mg-almost everywhere, the estimate
above plainly implies
||f||LP(Rd) S ||f||3;,p(ugi+1,“a)-
Now to estimate the By, ™"/ (R%)-energy of f, let k € Ny and recall that, by a
calculation similar to (13), ma(Q)/ua(N(Q)) = 28D for all Q € 2,,.. The estimate

(21) in the proof of Theorem 1.1 (with 7" and N in place of .7 and .4 respectively)
yields

> ma@Q) Y |fo - fol”

QeZg 1, Q'~Q
S/d | f(x) = Th.f () [Pdma(z) + 2M+Y Z 1 (N(Q)) Z | N @ e — N@ )|
R Qe 1, Q'~Q

= ]k —f- 2k<a+1)0k,

so that

s—atl s—atl s

SFEEINT ma(Q) Y | fo — fof $D 2L 4> 20, (35)
k>0 QE2q Q'~Q k>0 k>0

We have

> 2kr0, < || (36)

k>0

p
d+1
B;,p(RJ,:‘r 7//"&)

by definition. To estimate the terms I, take € € (0, sp — a — 1) and proceed as in the
estimates following (33) to obtain

B 320 [T @) = Tof @) dmata)

n>k
5 Z 2(n—k)62—nd Z Z {fN(Q),ua . fQ’,ua‘p
n>k Qe2qn Q/GQJ_H
Q'~N(Q)
~ Z 9(n—k)egn(a+1) Z Lo (N(Q)) Z ‘fN(Q),,ua . fQ’,ua |P
n>k Qe2y Q/EQL_I
Q'~N(Q)

—. Z 2(n—k)52n(oz+1)01 7

n>k
so that

Z 2k(s—aT+1)pIk 5 Z 2n(o¢+1+5)0; Z Qk(sp—oc—l—e) ~ Z 2n5p0;L

k>0 n>0 0<k<n n>0

S Hf”va,p(RiH»#a)’ (37)

where the last estimate again follows from the definition of the norm. Plugging (36)
and (37) into (35) leads to the desired energy estimate.

(iii) We plainly have R(£f) = f for all f € By, *"/P(RY).
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As in the proof of Theorem 1.1, the remaining question is whether the trace operator
R constructed above is of the correct form. We again refer to Subsection 7.1 in the
Appendix for details on this. O

5. PROOF OF THEOREM 1.3

Let us recall that in the proof of Theorem 1.2, N(Q) for Q € 29 was defined as
Q % (0,0(Q)] € £29.,. Before giving the proof of Theorem 1.3, let us introduce the
auxiliary seminorm [f]s , 4., defined by

p/q
[f]]s),p,q,a = /R (Z kaq Z Z ‘fN(P - fQ’,ua ‘qXN(P) (55)) d:uoz(‘r)a

=0 Pe2,, Q’E,JO
Q'NN(P)

where f € Li (R pu,) and the parameters p, ¢, s and a as in the statement of
Theorem 1.3. We obviously have [f]s 4.0 < ||f]

]:;’q (RdJrl 7Ha) and

sppa_Zkap Z Ha N(P)) Z ‘fN(P)vlia _leuua‘p

Pe2q Qe2y,,

Q'~N(P)
for all admissible values of the parameters. We shall omit « from the notation and
write [f]s .4 if there is no risk of confusion.
For the proof of Theorem 1.3, we shall need the following lemma concerning the
seminorms [f]s .q-

Lemma 5.1. Suppose that 0 < s < 1,1 <p<o0,0<gq, ¢ <oo and o > —1. Then
for any f € Li (RE™ 1), we have

[flspae = [flspaa

with the implied constants independent of f.

Proof. 1t suffices to consider the case ¢’ = p. First, in order to estimate [f];, , from
above, write
D(P):=D(f,P):=" > |fvim — form]
Q'~N(P)
for P € 29, so that

g~ /]R o (szsq > DY @) dpae)

PEQdk

(because the sum defining D(P) is uniformly finite).

Note that (Jpegg N(P) = R? x (0,1] = U, Upeso,, #/(P). Moreover, from the
definitions it is easily seen that for R, P € 29, we have N(P) N #(R) # 0 if and
only if R is a proper subset of P, and in this case also #'(R) C N(P). Thus, taking
e € (0,1 + a) and using Holder’s inequality (or the subadditivity of ¢ — /9 if p < q)
leads to

qu Z Z / Zkaq Z P)qXN(P)(x))p/qdﬂa@)

_]>1 RGQd PeQd k
PDOR
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g (Zkaq Z P)q>p/q

IVM

Pe2g i
PDR
] 1
,S Z 2 62ksp Z D(P)?
j>1 RE2, k:O Pe2y
PDR
3 ok s)( S pepy e Y MQ(W(R)))
k>0 Pe2, >k RED,
RCP

As in the previous proofs, each term p,(# (R)) in the innermost sum above is compa-
rable to 2774142 and the sum has 2075 such terms. This together with the choice
of € yields

IS sz(sp d— s)( Z D(P)pZQj(E—Oé—l))

k>0 Pe2y J>k

r Y 2Rrmdmet N D(Py
k>0 Pe2,

~ > 2 3" (N(P))D(PY
k>0 PEDg 1

~ [l

For the other direction, write W(P) := P x (3((P),{(P)] for all P € 29. Note that
W(P) C N(P) and MQ(W(P)) pa(N(P)) for all P, and that the cubes W (P) are
pairwise disjoint. We get

1~ Y 287 N o (W(P))D(P)

k>0 PE24
RPN NG )" du,

k>0 Pe2q,
<Y [ (TP Y @) @)

k>0 PE2q 1 j=>0 Qe ;

/
—/ (X2 3 p@"wia)@) dpaa)
3=0 QE2q,

= [l pe 0

Proof of Theorem 1.3. (i) Let us first establish the relevant norm inequality for the

Whitney extension of a function f € By, *""/?(R?). By Theorem 1.2 and Remark 2.4,
it suffices to consider the case ¢ < p. As in (24), we again have

||€f||LP(Ri+1,ua) S ”fHLP(]Rd)-
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Now for the F* (R, pu,)-energy of £f, it suffices to estimate
P\t H

/ (ZQM > |ENepm = (€Nl )p/qdua(:c), (38)

k=ko  Q~QE

where kg > 4 is a fixed integer (we will specify the choice of kq later), since the
corresponding integral with Zzozk replaced by 220;01 is easily estimated by

HE At ) S NI gay.

To this end, we divide the cubes in Q;{H into several classes as in the proof of
Theorem 1.2, but this time we need to consider four different cases. More precisely,
for k > ko write 2} for the dyadic cubes Q in 2, with edge length 2% such that
dist (Q,R? x {0}) > 2 — 2772 22 for the cubes @ with edge length 27% such that
2R < dist (Q,RY x {0}) < 2 —27F+2 93 for the cubes with edge length 27* such
that 27% < dist (Q, R x {0}) < 27%! and 2} for the cubes with edge length 27* whose
closures intersect R? x {0}. With these choices, the quantity (38) is comparable to

4

p/q
> [ (22 5 3 €0~ o Prale) ") = 300

h=ho  Qeol Q'~Q

The necessary estimates for the term O* are already contained in Lemma 5.1 and
Theorem 1.2:

O = [Sf]g,pq [gf]sppw HSf'

BS (Rd+1 B~ 0‘+1>/p(Rd)

The term O3 can be estimated in a similar manner as O*, since the quantity O3 is
also essentially independent of the parameter ¢. This is because the cubes in (5, 23
have bounded overlap.

In order to estimate O, let us specify k: it can be taken such that whenever Q € 2}
with & > ko and Q' ~ @, supp¢p N (Q U Q') # 0 can only hold for P € 2;,. Using
this property together with the Lipschitz continuity of the bump functions ¢p, we get

(€.~ ENaal’ < ([ £ 1670) ~ 1@
st Y fiidm)

PGQd 0
supp ¢ pN(QUQ")#0D

sk ) /\f|dmd = 27M .

Pe24
supp ¢ pN(QUQ’)£D

Take ¢ € (0,1 — s) and ¢* > 1 so that 1/¢* + ¢/p = 1. Using the estimate above
together with Holder’s inequality yields

(Zkaq o D |ENema = (ENam | xole )p/q

k>ko Qe2] Q'~Q
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5( Z 2k(s 1+e)p Z Z QQ/ ) < Z 2k6qq*)p/(q(1*)

k>ko Qe2; Q'~Q k>ko
~ k(s—1+¢)
2 20D Taax
k>ko Qegl Q'~Q

Hence we have

o' < Z 2k(s 14-€)p Z ,ua Z Lo

k>ko Qe2} Q~Q
< Z ok(s—1—e)p—k(d+1) Z Z Z / | f[Pdma,
k>ko Q€2 Q'~Q  PeZag

supp Y pN(QUQ’)#

d+1)k

and since each P € 2, appears at most some constant times 2 times in the

above triple sum, we arrive at

O' 5 Y 2k 3T / flrdmame S 2O F A 2, i

k>ko PEQdO k>ko

Finally let us estimate O%. Suppose that Q € 27 and Q ~ @'. Since dist (Q, R? x
{0}) > 271 (@) <20(Q) =27%1 and Q' N Q # (), we have Q' NRY x {0} =0). As
in the proof of Theorem 1.2, we can therefore take P := Py and P’ to be the cubes
in 29 such that Q C #(P) and Q' C # (P’). Moreover, the definition of 27 implies
that QU Q" C Upe 29 # (R), and the bump functions ¢p form a partition of unity of

the latter set. As in (27), we thus get

q 27
{(gf)Q,ua - (5f)Q’,ua‘ N ((P)e

> \fp — fal".

Re 29
W (R)N(W (PYUW (PT))#£0

and hence
2~ kq q
Z | Ef)aua — (Ef)e ua|q (PQ)q< Z |fPQ _fRD )
Q'~Q Re2)
R~~Pg

where the notation R ~~ Py means that there exists R’ € 29 such that R ~ R’ and
R’ ~ Pq. The latter sum obviously has a uniformly finite number of terms |fp, — fx|.
In order to apply this estimate to O?  note that by the definition of the 2%’s, we

have
UJzicl»7e

k>ko Pea

and that if a point = belongs to one of the #(P)’s above, we can have xg(x) # 0 for
some Q € U=y, 25 only if Q C #/(P), and in this case also £(Q) < ((P). Using these
facts and Holder’s inequality (with € € (0,1 — s) as in the estimate for O' above), we
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get
p/q
0? < (22 3 3 [EDow ~ Do a@) " dia)
720 Pe2y ; k>3 QRe2it1,k Q€23
Qcw/(P)
p/q
S / (e 3 (X 1 ) o) dala)
. 7 (P) / E(Pq
j>0 P2y ; k>j Q€EZqy1 k Re29
Qcw (P) R
A q p/q
— 9ip Z / (Zka 1)q Z ( Z ‘fP_fR{) XQ(:E)) dpie ()
7>0 Pe2, k>j QE€Z2411,k  Re2Y

QCW(P) R~~P

< S oo 57N okear SN @) S | fe — fal”

j=0 Pe2y; k>j QE2gt1,k Re29
Qcw(P) R P
= 2/(1=p Z Ma(V/(P))( Z |fP - fR‘p) 22’“(3*”6)1’
§>0 PE2y, Re2" k>j
ReorP
Yy 20 Z 11 (W (P)) Z |fp — fr|”
i>0  Pe2,, Re2)
R~~P
Z o (s=)p ma(P) Z ‘fP_fR{p-
J=0 Pe2,; Re29
R~~P

Finally, since for each P above we have R ~~ P for a (uniformly) finite number of
cubes R, the above quantity is easily estimated by ||f||’l;s_(a+1)/p(Rd).
p,p
Combining the estimates for O, O?, O3 and O* with the LP-estimate for £f, we
conclude that

||gf||f5’q(Ri+l7ua) S.; ||f||B;;(a+1)/p(Rd)

(ii) In order to establish the existence of the trace of a function f € F (Rd+1, o),

we proceed as in the proof of Theorem 1.2 (ii). Let f € F, (Rdﬂ, L), deﬁne Ty f for
k € Ny as in that proof and put

Fr=) T = Tf | + | To f|.

k>0
By the estimate (34) and Lemma 5.1, we have
”f*”LP(Rd) S Hf”LP(Rfrl,ua) + [fs EN N2 ”f“Lp(Rd“ ta) + [fs 5pq = ||f||fs JRE 1) < 00,

so the trace Rf := limy_,o Tif is well-defined mgy-almost everywhere in R?. The
estimates (34), (35) and (37) then imply

B O/P(Ray S HfHLP R pia) + [flspp = Hf”LP(]Rd‘H ) T [Fspa S IS Fs (R 1)
( p.a B

which is the desired norm estimate.
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(iii) That R(Ef) = f for all f € By, *™/?(R4) again follows plainly from the defi-
nition of R. Concerning the fact that R is actually of the form required by Definition
2.6, we again refer to Subsection 7.1 of the Appendix. 0

6. THE TRACE OF A WEIGHTED HARDY-SOBOLEV SPACE

In this section we present a refinement of the case p = 1 of Theorem 1.1, where
Wl’l(R‘fl, le) is replaced by a weighted Hardy-Sobolev space on Rff“l.

The real-variable Hardy spaces HP(RY), 0 < p < 1, were defined for a general
dimension d and exponent p in the seminal paper by Fefferman and Stein [10]. They
have since been studied extensively, as many results of harmonic analysis that fail for
p < 1 work for these spaces. We refer to [47] for an extensive treatment of these spaces.

A localized version of the space HP, better suited e.g. for studying functions on
domains, was introduced by Goldberg [16]. A variety of similar spaces, including
spaces on domains, weighted spaces on domains and Sobolev-type spaces based on the
HP norm, have since been studied e.g. in [34, 48, 35, 36, 57, 6, 206].

Let us now define the Hardy-Sobolev space relevant to us. Fix a function & €
C°°(R4) such that supp ® C B(0,1) and [ ®dmgyq = 1. Following Miyachi [34, 35],
for f € LL . (RT™ mgy1), define the radial maximal function f: R4 — [0, oc] by

fra)= sup  |(f*P)(2)],
0<t<min(zgy1,1)
where x4y, is the (d + 1)-th coordinate of  and ®; := =TV ®(./t). If p is a Borel
regular and absolutely continuous measure on Riﬂ, define the localized Hardy space
hl(Riﬂ, ) as the space of locally mgy-integrable functions f on Rff“l such that

Hf”hl(Ri“,u) = Hf+HL1(]Ri+l,u)

is finite. We clearly have | f(x)| < |f*(2)| for almost all z, so R} (R 1) € LY (RE, 1)
with a continuous embedding.

It follows from Miyachi’s results (see also (41) below) that for the measures u relevant
to us, the space defined above is independent of ® in the sense that two admissible
choices yield the same space with equivalent norms. In fact, it will be convenient for
us to choose ® so that supp ® C B(0,1/8).

Now the Hardy-Sobolev space h"! (R, 1) is defined as the space of functions f €
LL (RT™ myy 1) such that the first-order distributional derivatives 9;f, 1 < j < d+1,
also belong to L (R myy 1) and

loc

d+1
1 ety = 1 D assr oy + D105 s
j=1

is finite.
The trace theorem for these spaces then reads as follows.

Theorem 6.1. Let o € (—1,0) Then (Bi‘l"(Rd),hl’l(Rfl,ua)) is a Whitney trace-
extension pair.

Before proving this Theorem, let us formulate a sampling lemma which is essentially
folklore. For the convenience of the reader, a proof is presented in Subsection 7.3 of
the Appendix.
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Lemma 6.2. Suppose that ) is an open subset of R?, that u is a doubling measure
on ) such that every Euclidean ball (restricted to §2) has positive and finite u-measure
and that 0 < A < 1. Then there is a constant C' depending only on the dimension d,
the doubling constant of u and A such that the following statement holds.

For every cube Q € Q and f € LY(Q), there exists a cube Q C Q with £(Q) = M(Q)

such that
F 17 = Jauldu < Of |f = g, i
Q Q

Proof of Theorem 6.1. (i) In order to estimate the A (RE™, p,)-norm of the Whitney
extension of a function f € By ¢(R%), we proceed as in the proof of Theorem 1.1. First,
the L'-norm of £ f can be estimated as in (15). In order to estimate the h*(RH, 11,,)-
norm of a partial derivative 0; f, write X1 := Uge 0%/ (Q) and X, := REIN X,

Suppose first that € X, i.e. 2 € #(P) for some @, and 0 < ¢t < min(z441,1). We
plainly have

(B5(£0)) i) = (85(ES = fr) ) * @ula).

Now since z441 < 20(Q) and we assumed the support of ® to be contained in B(0,1/8),
we see that

supp ®,(z — ) € SH(Q).

and hence supp 1g Nsupp @,(x —-) # 0 can only hold if Q ~ P. Since also the L'-norm
of ®,(z — -) does not depend on ¢, we get

(B(EN) (1)< swp /W(Q) > 1o = fell0; (W) W)|Pu(a — y)ldmas (y)

0<t<min(zg41,1) Q~P
1
S D alfe— fel
2@

This is estimate corresponds to (16) in the proof of Theorem 1.1, so [[(0;(E ) || L1 (x, pa)
can be estimated in the same way as in that proof.

Now if x € X3 and 0 < ¢ < min(zg4q, 1), we can only have supp 1o Nsupp @,(z—-) #
0if Q € 25 4. Thus,

N o< [ 3 1allo e wlede - pldymas

+ QGQdyo
S > |fol < > |/l
Q€240 QeZ40
supp ¢ Nsupp P (z—-)#0D supp ¢oNB(x,1/8)#0

Since the p,-measures of the é—neighborhoods of the supports of 1 above are compa-
rable to 1, we get

HOHEN o) S Y ol S I llzagey.
QeZ,4 0

That R(Ef) = f is then checked as in the previous proofs. This finishes the proof of
part (ii).
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(ii) Let us recall some notation from the proof of Theorem 1.1. For Q € 29, write
7(Q) = Q x [£(Q),20(Q)) € 25, and A (Q) = 2#(Q).

Now in order to verify the existence of the trace of a Hardy-Sobolev function and
estimate its norm, the argument in part (ii) of the proof of Theorem 1.1 applies here as
well, as long as we can verify that every f € hl’l(Rﬁlfl, [te ) satisfies a suitable Poincaré-
type inequality on cubes that are relatively far away from the boundary R?. More
precisely, it suffices to show that there exists a measurable function ¢: R‘fl — [0, o]
such that

][ |f = fr@ldman S ﬁ(Q)][ gdm (39)
A(Q) N (Q)

for all Q € 29 (with the implied constant independent of f) and
HgHLl(R‘iﬂ),p S ||f||h1a1(Ri+1,ua)' (40)

To this end, let us recall the definition of the grand mazimal function related to the
space h'. For h € LL _(R™) and N € N, define the function Mih: RE™ — [0, oc] by

loc

vh(z) = sup
Qﬁe]:]\](x)

Lo 0¥t
where
Fn(x) :{¢ € O®(REM) : there exist y € RT™ and 7 € (0,1) such that
x € B(y,r) C R suppy € B(y,r) and [0%y] < = (@)1
for all multi-indices 5 such that |5| < N }

We claim that
d+1

g:=> M;©;f)

Jj=1

satisfies (39) and (40).
Now by [26, Theorem 7], there exists a constant ¢ depending only on the dimension
d such that

1f(x) = f(W)] < clz—yl(g(x) + g(y))

for all z, y € RT™ such that |x — y| < min(z4y1, yar1, 1). We can apply this estimate
in a cube .4(Q) as follows. Since dist (./(Q), RY) =~ £(A(Q)), we can use Lemma 6.2
to find a cube @ C A(Q) such that £(Q) ~ (A (Q)),

][ |f = fr@ldman 5][ |f = foldma
A(Q) Q

and |z — y| < min(zgy1, yar1, 1) for all z, y € Q. Thus,

][ 1~ Frldmen < ][ ][ 1 — 4 (g(x) + g(y))dydsr < ﬂ(@)f gdmass,
A(Q) QIQ N (Q)

which is (39).
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As for (40), we denote by g;, 1 < j < d + 1, the function on R*"! that is obtained
by extending (9;f)* as zero on R4\ RE™. Then by [34, Corollary 2], there exists an
exponent ¢ € (0,1) and a constant C' independent of f € hY1(R% 1u,) such that

Mi@; 1)) < (M@ )" (41)

for all x € Riﬂ, where M stands for the standard Hardy-Littlewood maximal operator
on R, Because o € (—1,0), w, can be extended in a natural way as an A; /,-weight
on R which in particular means that M is bounded on LY4(R%! 1,). Thus,

IMTO5 ) r ettt ooy S 95l 2 st pia) = N0 F s i)

and summing up over j yields (40).

(iii) As in the previous proofs, we have R(E f) = f for all f € B{{(R?). The discus-
sion concerning the form of the trace operator R is again postponed until Subsection
7.1 of the Appendix. O

7. APPENDIX

In this section we present some details which were, for the sake of presentation,
omitted in the previous sections.

7.1. Coincidence of trace operators. Recall that it was not a priori obvious that
the trace operators constructed in the proofs of Theorems 1.1, 1.2, 1.3 and 6.1 are of
the form required by Definition 2.6. In this subsection we explain why this is the case.

Suppose that f € B;Q(R‘fl, lo) OF f € .7:;7(1(1[%1“, o) With the parameters p, ¢ and
a admissible for the trace theorems concerning these spaces. Then, because of (13)
and the fact that the measure p, is doubling on R‘fl, we have that for mg-almost all
x € R%, there exists a number ¢ € C such that

lim () — eldpa = 0. (42)
"=0JB((2,0),r)
In fact, the set of points x for which this does not hold has Hausdorff dimension at
most max(d + 1+ «a — sp,0) < d. This follows from a well-known covering argument
and a Poincaré-type inequality for the function spaces in question; we refer to e.g. [43,
Lemma 3.1 and Remark 3.2] for details. By the same argument and the Poincaré
inequality established e.g. in [2, Theorem 4], the same holds if f € W'P(R%T 4,) and
s above is replaced by 1. Finally, the aforementioned argument in [43, Lemma 3.1 and
Remark 3.2] also applies for functions f € hl’l(Rff“l, Ita ), since by a modification of the
proof of [26, Theorem 16], f has a local Hajlasz gradient in L'(R%™, p1,,), which yields
a suitable (1, 1)-Poincaré inequality for f.
From (42), it is then easy to see that the limits defining each trace operator in the
above-mentioned proofs can be rewritten in the form (12).

7.2. Equivalence of norms. Here we present a direct proof of the equivalence of the
(quasi-)norm (8) with the standard Besov quasi-norm (10).
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Proposition 7.1. Let 1 be a Borel regular measure on R? such that every Euclidean
ball has positive and finite measure, and such that p is doubling with respect to the
Euclidean metric. If 0 < s < 1,1 <p< oo and( < q < oo, then

R » afpdt\
gtz = e+ ([ 0o( [ 18@ - fo)Pantan)"" S
0 ReJ B(z,r)

for all f € L (R, ), where the implied constants are independent of f.

1/

Proof. Let us denote the standard Besov quasi-norm (10) by [|f|ss ). We first

prove that || f||ss  ®eu < I f]
the rest of this proof.

The doubling property of p implies that pu(Q) ~ p(Q') if @ and Q' are cubes in 2,
with @ ~ @Q’. Thus,

S @) > |fou— foul” < Z][ (y)|Pdyda

B, (Rd ). To simplify the notation, write dx for du(z) for

QeZ, i, Q'~Q QEQd k
E E ] — 1 Pdyd
N QeDy) O'm (( ?) / Q' | (:L‘) (y)| yax

) / /B(m M) = F)Pdydz

QEQ Q’

<y / ][ )~ )Py

Qee@d k

- /J[() [F(@) = f(y)Pdyde,

where C' = 4v/d and the doubling property of ;1 was again used in the second-to-last
line. This leads to

S0 Y @) S Vs Sl

k>0 QE2q 1, Q'~Q

0o a/p
< 2’“‘1(/ ][ flx)— fly pdyd:v)
2.2 ], BMH)\ () = f(w)]
2kt ar g
<
Z/ (/Rd][ xt) ”pdydx) thtsa
a/p dt
Pdyd —_—
/ (/]Rd][B(xt )‘ Y :U) thtsa’

which implies that || f{[s; ) S [1f s, @
In order to prove that || f{| s @a 0 S |1l @), we first note that a straightforward
application of Fubini’s theorem in conjunction with the doubling property of u yields

qa/p dt
Pdyd )
/ /Rd][ B(z,t) )‘ v thtsq
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<[ orses Lo, )i

~ HfHLP(Rd,M)

To estimate the corresponding integral from 0 to 1, use the doubling property of p to

get
a/p dt
Pdyd )
/ /Rd]i(xt )‘ yar ti+sa

<y / / N o @ = Sy ar) "

k>0
a/p
< ksq B )
;2 / Jim_k) (@) = FW)IP dyde)
a/p
= ksq ,
kz>o2 ( ezfzd /]{3(962 - — f(y)] dyd:p) '

Let @ € 2,4, for some k > 0. For z € () we obviously have B(z, 2_’“) C UQ,NQ Q' and
p(B(z,27%)) = p(Q). Thus,

/][ o F(2) = Fw)lP dy da
/ Q,| (y)|P dydz.
—Q///V( fQu|pdydx—|—Z // o — forlP dyd

// \forw — f(W)]P dydx

=04 + OQ + OQ,

so that

/]

a/p\ V1
By (R, ) 5 ||f||LP(]Rd,M) + (Zkaq( Z (Oé2 + Oé + O%)) )

k>0 QE2q 1,

A 1/q
S llzr@e g + Z <22k5q< Z Oé)q/p)

j=1,2,3 k>0 QEQM
=: ”fHLP(Rd,u) + Hy + Hy + Hs. (43)

We first estimate the quantity H,. For each () € 2, the doubling property yields

02Q = Z M(Q/>|fQ7H - fQ’,u P N(Q) Z ‘fQ,u — fQ/“u‘p,

@~ Q~Q
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and hence

a/p\ V4
g (T2 5 Q) X aw—taut)”) 511

k>0 QE2q 1, Q~Q

B;yq(Rd,u) . (44)

Next we estimate H;. For any x € R? and n € Ny, define Q% as the (unique) cube in
24, that contains z. By the Lebesgue differentiation theorem for doubling measures
20, Theorem 1.8], we have lim,,, fo: , = f(x) for p-almost every z € R Hence, if
Q € 2y and = € @, we have

|f(@) = foul” < (Z |fQ%,u - fQﬁﬂ»u‘)p S 27k szv%w - fQ£+1»u|p>
n=k

n=k

where € > 0 is chosen so that € < sp/2. Applying this estimate to Oé? and using the
fact that every cube has a (uniformly) finite number of neighbors, we get

oS Z %Q_I“ZWA \fazn— Tz, ul dx
$242 S o fogal e

n= k Q'eE24
QHCQ
o0
SO 2N (@) D S — foral”
n=k Q'ELun Q~Q"
QIICQ

In order to use this to estimate H;, we consider two possible cases for the parameter
q. First, if 0 < ¢ < p, the subadditivity of the function ¢ + t9/? and the fact that
s —¢€/p >0 yield

a/p
Hq < ZkaqZQE n— k)‘l/p( Z Z M(Q//) Z |f ST fQIII>#|p)

k>0 QE24r Q"'€E2y 0 QM ~Q"
Q//CQ
q/p
< Z QGHQ/T’(Z Qkfl(sfe/p)) ( Z /’L(Q//) Z ‘f "o fQ///M‘p)
kf 0 Q”anzd’n Q///NQN

0 q/p
=Y (XS w@law—Toal) < 161 anr

n=0 QReZy, Q'~Q

If on the other hand p < ¢ < oo, we may use Holder’s inequality and the fact that
s —2¢/p > 0, to obtain

/
Hi] 5 szsq(ZQ e(n—k) q/p226(n k) Z Z Z |fQ//“u B fQ,,,M‘p)q P

k=0 QeZak Q€24 Q" ~Q"
Q//CQ
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q/p
< Z oksq Z o2¢(n—Fk) q/p( Z Z Z |fQ”,u - fQ”Uu‘p)

k>0 Q€24 Q"2 Q' ~Q"
Q//CQ

- n q/p
< 2226"61/?(22“(526/1’))( >oow@y Y |k ff,u—fQ"au!p)

n:O k:0 Q//egd’n Q/NNQN

q/p

= (S Qo oul) < 111 a

n>0 Qe24, Q'~Q

which is the desired estimate for H;. Finally, the terms O% are essentially symmetric to
with the terms O}, so H3 can be estimated using the same argument as ;. Combining
these estimates with (44) and applying them to (43), we arrive at

1l e S I1F]

By (R, )+ U

7.3. Proof of Lemma 6.2. Here we present the proof of the sampling lemma that
was used in the proof of Theorem 6.1.

Proof. Let @ and f be as in the statement. Let us first consider the case A = 3/4.
Let Q; C Q, 1 <i < 2% be the cubes with edge length %E(Q) that are situated at the
corners of Q. Then Q" := (),;.5a Q; is a cube with edge length %K(Q) By doubling,

we get
]é 1 = Sl dn s][ 1~ foun

max ][{f le,u{M""fQ“u fQ*M{)

1<2<2d

dp =~ max][ ‘f—fQ*vu‘d,u

1<i<2d

and again using the doubling property of u to estimate the latter term in the paren-
theses, we arrive at

<i<2d

V7 = S < e e f 15 faulan
Q Qi
where the constant ¢ depends only on d and the doubling constant of p.

Now suppose that A € (0,1) as in the statement of the Lemma. Write k) for the
positive integer such that (3/4)" < X < (3/4)Fx~1. Tterating the argument above k)
times yields a cube Q" C @ such that £(Q") = (3/4)"¢(Q) and

][V_fQ’Ad“SCh][ |f = faraldre.
Q QFx

Now one can simply take a cube Q C Q that contains @* and has edge length \¢ (Q).
By doubling, the integral on the right-hand side above can then be estimated by a
constant times

F 1= fauldu =
Q
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7.4. Extending functions from R? to R%*". Here we present the generalizations of
Theorems 1.1 through 1.3 for Euclidean codimensions higher than 1. The dimensions
d € N and d+ n, n € N, will be fixed in the sequel. For convenience we also write R?
for R? x {0} C R4 when there is no risk of confusion.

The spaces WHP(R™", i), By (R™" 1) and F5 (R, 1) are as in the Defintions

2.1 through 2.3. In what follows, we consider the measures p,, a > —n, on R™"
defined by

,ua(E) :/wadmd+n7
E

where w, € Ll _(R4™) stands for the weight = + min(1, dist (z, RY)).
In order to define the Whitney extension of a function on R? to R*", we introduce
some additional notation. For ) € 2,4, k € Z, define

Ay = {P € Dupni: P C (Q x [~27HH1 27HH) \ (Q x (—27F, z—k)n)}
It is then evident that #.4/) = 4" — 2" ~ 1, and that

U “

Qe2y
is a Whitney decomposition of the the space R4 \ R? with respect to the boundary
R?. We define the bump functions ¢¥p: R¥*" — [0,1] for all P € UQEQS 2/ so that
Lipyp < 1/0(P), infcptpp(x) > 0 uniformly in P, supp ¢'p is contained in an ¢(P)/4-

neighborhood of P and
> wp=1 n | P

Qe Peayg Qe2Y Pedq

Definition 7.2. (i) Let f € Li (R?). Then the Whitney extension & f: R — C is
defined by

TOEDIDS (]é Fadmy ) e ().

QGQS PEMQ
This definition gives rise in the obvious way to the linear operator £: Li (RY) —
Coo(Rd-i—n).
(i) Let X C LL_(R?) be a quasinormed function space on R, and let Y be a

loc

quasinormed function space on the weighted space (R4 ). We say that (X,Y) is a
Whitney trace-extension pair if they satisfy the conditions in Definition 2.6 with R+"
in place of Rff“l and with £ as defined above.

We then have the following trace theorems.

Theorem 7.3. Let 1 < p < oo and —n < a < p—n. Then (Bll,;,(aJrn)/p(Rd), WEP(R™ 1,)
is a Whitney trace-extension pair.

Theorem 7.4. Let 0 < s < 1,1 <p<o0,0<qg< o0 and —n < a < sp—mn. Then
(B;;I(Mrn)/ P(RY), B (R4, [ta)) is a Whitney trace-extension pair.

Theorem 7.5. Let 0 < s < 1,1 <p<o0,0<qg<o0and —n < a < sp—mn. Then
(B;;(Mrn)/ P(RY), Fs (RH™ ) is a Whitney trace-extension pair.
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These results can be proven by suitable modifications of the arguments in the proofs
of Theorems 1.1 through 1.3. For the reader’s convenience, we sketch the modified
arguments below.

Proof of Theorem 7.3. (i) Let us estimate the weighted Sobolev norm of the Whitney

extension of a function f € By, OHrn)/p(Rd) First, if P € a7/ for some Q € 29, it is
easily seen that pi,(P) =~ 0(Q)*mgin(P) ~ E(Q)‘””“‘ Since the supports of the bump
functions ¢p in the definition of £ above have bounded overlap and #.7; ~ 1 for all
Q € 2, we get

[P s 35 ][ fPdma~ 3 6@ / frama 5 [ | 1frdms
R Q20 Pedy QeJO

Now to estimate the weighted LP-norm of |V(Ef)|, write X; := UQGQS Upew ()P

and X, := R\ X;. If # € Xy, i.e. € Upey ()P for some Q € 29, we have
ZQ,GQS ZPE%QI Yp(x) =1, and the inner sum can only be nonzero for Q' ~ @. Thus,

IVEN@) < D > Ifq— folllip (Vp)(z \<Z£ \fo — fal.

Q'~Q Ped
Since o (Upew () = €(Q)"T*mq(Q), we arrive at
/ VENFda S Y UQM " mal@) Y 1o = forl” S UFIL wimin g
Qe2y Q'~Q

If on the other hand = € X5, we can only have ¢p(z) # 0 if P € o for some Q € 2,
so estimating as in the part (i) of the proof of Theorem 1.1, we get

JvEN@ldn s 3 [ 11Pdma = 11 e,

Q€240
Combining these estimates yields the desired norm inequality for the function £ f.

ii) Let us now show that the trace of a function f € W' P(R™", 1,) exists and
i
estimate its Besov norm. To this end, write

P(Q)=Q x (((Q),20Q)]" € oty and AN (Q) =
for all Q € 2,4, and for k € Ny write

Gif= Y ][ Fmas,)x

QEZq

To establish the existence of the trace function, we thus want to estimate the LP-norm

of the function
=S| %f = Fonrf| + | %f].

k>0
Then, since o (A (Q)) = £(Q)*Marn (N (Q)) = £(Q)4T T for all Q € 29, an estimate
similar to the one in the part (ii) of the proof of Theorem 1.1 yields

| T f(x) = Toa f(2)] S 27° Qéf(@?) \Vf\pdua) N v Qé/(@f

k+1)

2
@

1/p
IV f \pdua> ,
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and since p — (n + a) > 0, an estimate similar to the one in the part (ii) of the proof
of Theorem 1.1 again yields

RS / VP + Y / Pt S 17 1B s

Qe2l Pe2,0

Hence the trace function Rf € LP(R?) exists in a suitable sense and has the correct
bound for its L” norm. In the sequel, we shall simply write f for Rf.

Now to estimate the By, T ™/P-energy of f, recall that ma(Q)/ pra (N (Q)) = £(Q)~ (7).
Hence, replacing a + 1 by a+ n in (22), we get

ZQk(l—aTT")p Z ma(Q) Z ‘fQ — fo P

k>0 QE24k Q'~Q

SZQk(l—"TT")p/RdV( — T f(x { dmg(x +Z/ |V f|Pdpia

k>0 k>0 Uy— k—lge(Q/)gz—k-*-l'/V(Q/)

S TA .

which is the desired estimate.

(iii) As in the proofs of Theorems 1.1 through 1.3, it remains to verify that the trace
operator Rf above coincides with the one in Definition 7.2. This again follows from
the discussion in Subsection 7.1. O

Proof of Theorem 7.4 (sketch). Again, we only consider the case ¢ = p < oo. In the
following proof, we shall use the notation

U RcC Rd—‘rn
RG.Q{Q

for all Q € 2.

(i) We first establish the desired norm inequality for the extension of a function
fe B;;I(aJrn)/p(Rd). As in the proof of Theorem 7.3 above, we have

1€ fllzoarny S 11f | oqre)-

To estimate the BygT™/?(R?)-energy of € f, we divide the cubes in 2y, into three
separate classes accordmg to their distances to R?. For Q € 24, define

dist*(Q,R%) :=inf { max |z;—y|: z€Q, ye R x {0}"},

1<i<d+n

where z; and y; stand for the ith coordinates of = and y respectively. For k > 0, write
2, for the collection of dyadic cubes in 2y, such that dist*(Q,R?) > 2, 22 for the
collection of dyadic cubes such that 27% < dist*(Q, R?) < 2 and 23 for the collection
of dyadic cubes whose closures intersect R?. Also write Q,z* for the collectino of cubes
in Ufiilax(k—l,O) 2? that are contained in UQe 22 (. With these definitions, it suffices
to estimate the quantity in (25) at each level k& > 0.



DYADIC NORMS AND WHITNEY EXTENSIONS 35

We then have O (1 < 115, (ray for k€ {0,1}, and for & > 2 we may estimate O,(:)
essentially as in part (i ( ) of the proof of Theorem 1.2. One gets

(g — ENap S277 Y Z / fPdmy

Pe24
supp ¢p/ﬁ(QUQ )70

for all cubes @ € 2} and Q' ~ Q. Now i, (Q) =~ 27%(@+™) and summing the previous
estimate over @), each term P’ will appear in the resulting triple sum at most a constant
times 2(4t™* times, so

s (1 s—
ZQk pO ) < ZQk l)p”fHLP Rd) ||f||L17 (R4)-

k>0 k>0

Now to estimate the terms Ol(f), suppose that Q € 2% and Q' € QZ* for some k£ >0
and that Q" ~ Q. Denoting by P and P’ the unique cubes in 29 such that Q € %p
and Q' € %p+, the argument used in (27) yields.

ENose— EDanl S o S lr—saf+ X Ui sal)

Re2) Re2)
URNUp 20D URNU p1 70

Now multiplying this estimate by 11, (Q) ~ 27*@+)¢(P)* and summing over admissible
Q@ and (', it can be seen that the terms P and P’ will appear in the resulting sum at
most a constant times (2¥/(P))?+" times. Thus, the estimates for the terms O,E;Q) in the
proof of Theorem 1.2 apply here as well, with o + 1 replaced by a + n.

Finally, let Q € 23 and Q' ~ Q. Write P := Py for the projection of @ on R?, and
let P’ be a neighbor of P (to be specified later). We have

1a( @) (E o — EN e
< / EF — folduat [ 1EF = forPdpa + 1alQ)|fo — forl”
Q Q'

(45)

The first integral can be written as

> 3 3 [ ler— sl

n>k REQy ., Q*Edln
RCP Q*CQ

and this sum can be estimated like the corresponding sum in the proof of Theorem 1.2,
again with 1 4+ a replaced by n + «, so

/ Ef = folPdpa S > URY T ma(R) Y | fr = frr|”
Q RIEQd R'~R'
R'cP

The second term in (45) can (with an appropriate choice of P’) be estimated either
like the first term, or by

(P o mg(P') Y |fer = forl”.

P!~ P!
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Putting together these estimates and recalling (for the third term in (45)) that p.(Q) ~
E(P)”*O‘md(P) we get

Z | ENaua = €1 pa ‘ Z LR ma(R) Z ‘fR’ — far|’

Q'~Q R'€2, R'~R!

/ *
R CPQ

Y

where P} := P UJp,.p P'. Part (i) of the proof can then be finished as in the proof
of Theorem 1.2.

(ii) Now for f € B (Rd+",ua) and k € Ny, write
Qe2yk

][ fdua XQ:
where N(Q) := @ x (0,4(Q)]", and
Fr=) T = Tif | + | To f|.
k>0

Repeating the corresponding argument in the proof of Theorem 1.2 (with € = sp—a—n
instead of € = sp — a — 1), we get

1N ey
SO 2 Y wa(NQ) D [ v@ue = farwa” + NI g (46)
k>0 Qe2y 1 Q'€24n
Q'~N(Q)
< ”f”RdJrn a7
so the trace Rf := limy_, Tpf exists in Lp(Rd) and pointwise mg-almost every-

where, with the correct bound for its LP-norm. For the energy estimate, recall that
ma(Q)/pa(N(Q)) ~ £(Q)~®*™ and proceed as in the proof of Theorem 1.2 (with
1 + « replaced by n + «).

(iii) To see that the trace operator R constructed above can be written in the form
required by Definition 7.2, we again refer to Subsection 7.1. O

For the proof of Theorem 7.5, let us introduce the sets
Np ={Q € Latpny: QNP #0}
for all P € 244, k € Ny, and the quantities
p/q
<f>€,p,q = <f>€,p,q,a :_/ (Zkaq Z Z Z {fQ we — o, ua{ XQ ) dpia(x)
BRI DE20 Pe2yk Qetp QnQ

for all f € Li, (R™*", pa). We then have (f)spgo < [ fllr;, @), and

f>1;,p,p,oz = Z Z Z MG(Q) Z |fQ7Ma - fQ'vMa‘p

k=0 PEdek QE./VP QINQ

for all admissible values of the parameters. We also have

<f>s,p,q,a ~ <f>s,p,q’,oz (47)
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for all admissible values of the parameters, with the implied constants independent of
f, which can be proven like Lemma 5.1.

Proof of Theorem 7.5 (sketch). (i) In order to estimate the Triebel-Lizorkin norm of
the extension of a function f € Bi,*™™/P(R%), recall first that

HngLP(]Rf'",N ) S e ay-

For the energy estimate, it suffices to consider the quantity

/ (22 Y Y ENaw -~ ENa o) duale)  (38)

k=ko QEZgyn ik Q' ~Q

with a suitably chosen kg € N (independent of f). To this end, recall that the distance
dist*(Q, R?) for Q € 2,,, was defined in the proof of Theorem 7.4 above. Now for k >
ko, write 2] for the collection of cubes @ in 244, such that dist*(Q, RY) > 2 —27F+2
22 for the collection of cubes @ in 2y, with 2757 < dist*(Q, RY) < 27%+2 23 for
the collection of cubes @ in 24, with 27% < dist*(Q,RY) < 27F+1 and 2} for the
collection of dyadic Q in @y, such that @ NRY # (. Then (48) can be estimated
from above by O! + O? + O3 + O*, where each O’ is defined as the quantity (48) with
Qi; in place of 244, in the middle sum. As in the proof of 1.3, it turns out that by
(47), the quantities O* and O? are essentially independent of the parameter ¢, so the
desired norm estimate for them follows from Theorem 7.4. The quantities O! and O?
can be estimated by a suitable modification of the argument in the proof of Theorem
1.3, the details being omitted.

(ii) To obtain the existence and norm inequality for the trace function of f €
F;’q(RdJ“", lo), one defines R := limg_,o, T} f, where T} f is as in the proof of The-
orem 7.4, and the limit exists in LP(R?) with the correct norm bound. From the proof
of Theorem 7.4 and (47), one further deduces that

IRl gs=ormrngay S || Lo@een i) +(Fspp = N ll Lo @asn o) H(Fspa S I1fll 75 @aen o)

(iii) To see that the trace operator R constructed above can be written in the form
required by Definition 7.2, we again refer to Subsection 7.1. U
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Abstract

In this paper, we study function spaces defined via dyadic energies on the boundaries of
regular trees. We show that correct choices of dyadic energies result in Besov-type spaces
that are trace spaces of (weighted) first order Sobolev spaces.
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1 Introduction

Over the past two decades, analysis on general metric measure spaces has attracted a lot of
attention, e.g., [2, 4, 12, 13, 15-17]. Especially, the case of a regular tree and its Cantor-type
boundary has been studied in [3]. Furthermore, Sobolev spaces, Besov spaces and Triebel-
Lizorkin spaces on metric measure spaces have been studied in [5, 25, 26] via hyperbolic
fillings. A related approach was used in [23], where the trace results of Sobolev spaces and
of related fractional smoothness function spaces were recovered by using a dyadic norm
and the Whitney extension operator.

Dyadic energy has also been used to study the regularity and modulus of continuity of
space-filling curves. One of the motivations for this paper is the approach in [20]. Given a
continuous g : S — R”, consider the dyadic energy
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Here, {I; j :i e N,j =1,--- , 2!} is a dyadic decomposition of S' such that for every
ﬁmdieNJAJ:j:1,~,f}mammmuﬁmmoﬂmghmwf“mhujgj:SL
The next generation is constructed in such a way that for each j € {1,---,2!*!}, there
exists a umque number k e{l, --,21, satisfying 1;11,; C I; x. We denote this parent of

liy1,j by Il+1 j and set 11 = S1 for j=1,2.Byga, AC Sl we denote the mean value
ga=Ff,8 dH! = Hl(A) fi8 dH'. One could expect to be able to use the energy Eq. 1.1
to characterize the trace spaces of some Sobolev spaces (with suitable weights) on the unit
disk. On the contrary, the results in [23] suggest that the trace spaces of Sobolev spaces
(with suitable weights) on the unit disk should be characterized by the energy

2i

+0oo
E(g: p,2) =) i* Y g, — &n,417, (1.2)

i=1 j=I

where 1; o = I; »i, and the example g(x) = xy, ; shows that E(g; p, 1) is not comparable to
E(g; p, M.

Notice that the energies (1.1) and (1.2) can be viewed as dyadic energies on the boundary
of a binary tree (2-regular tree). More precisely, for a 2-regular tree X in Section 2.1 with
€ = log 2 in the metric (2.1), the measure v on the boundary d X is the Hausdorff 1-measure
by Proposition 2.10. Furthermore, there is a one-to-one map s from the dyadic decomposi-
tion of S! to the dyadic decomposition of dX defined in Section 2.4, which preserves the
parent relation, i.e., h(l ) = h(I ) for all dyadic intervals I of §". I Since every point in § Uis
the limit of a sequence of dyadic intervals, we can define a map / from S' to 3X by map-
ping any point x = [ reny JkIn S ! to the limit of {h(I;)}xen (f the limit is not unique for
different choices of sequence {/;} for x, then just pick one of them). It follows from the
definition of d X that the map h is an injective map. Since the measure v is the Hausdorff 1-
measure and X \ 2(S!) is a set of countably many points, it follows from the definition of
Hausdorff measure that v(d X \ h(S )) = 0. Since diam(/) ~ diam(k(/)) for any dyadic
interval I of S' and we can use dyadic intervals to cover a given set in the definition of a
Hausdorff measure, there is a constant C > 1 such that

éHl(A) <v(h(4)) < CH'(A)

for any measurable set A C S'. Then one could expect to be able to use an energy similar
to Eq. 1.2, the IE'B},/ P ’)”-energy given by

gl W:—Z Z\gw,,) eniti |’ (1.3)

i=1 j=1

to characterize the trace spaces of suitable Sobolev spaces of the 2-regular tree. This turns

out to hold in the sense that any function in L”(dX) with finite IB%},/ P ’A—energy can be
extended to a function in a certain Sobolev class.

However, there exists a Sobolev function whose trace function has infinite IE'B},/ P ’)”—energy.
More precisely, let O be the root of the tree X and let x1, x be the two children of 0. We
define a function u on X by setting u(x) = 0 if the geodesic from 0 to x passes through
x1, u(x) = 1 1f the geodesic from O to x passes through x, and define u to be linear on
the geodesic [x1, x2] = [0, x1] U [0, x2]. Then u is a Sobolev function on X with the trace
function g = xn(s, ) whose B},/ P ’A-energy is not finite for any A > —1, since the energy
(1.2) of the function xy, , is not finite for any A > —1. But the energy (1.1) of the function
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X1, 1s finite. Hence, rather than studying the energy (1.3), we shall work with an energy

similar to Eq. 1.1. We define the dyadic B},/ P energy by setting

00 2 00
: p ‘
I8Wyns = 27 3 Jenay =~ i p| = 200" 2 ler g7l

i=1  j=1 i=1 e

where £ = U;cnZ; is a dyadic decomposition on the boundary of the 2-regular tree in
Section 2.4.

Instead of only considering the above dyadic energy on the boundary of a 2-regular tree,
we introduce a general dyadic energy Bf,’k in Definition 2.12, defined on the boundary
of any regular tree and for any 0 < 6 < 1. It is natural to ask whether the Besov-type
space Bf;k(a X) in Definition 2.12 defined via the Bf,’k—energy is a trace space of a suitable
Sobolev space defined on the regular tree. We refer to [1, 9, 10, 14, 18, 19, 23, 24, 27-30]
for trace results on Euclidean spaces and to [3, 21, 25] for trace results on metric measure
spaces.

In [3], the trace spaces of the Newtonian spaces N L.r(X) on regular trees were shown to
be Besov spaces defined via double integrals. Our first result is the following generalization
of this theorem.

Theorem 1.1 Let X be a K-ary tree with K > 2. Fix B > log K, € > 0 and A € R. Suppose
that p > 1 and p > (B —log K) /€. Then the Besov-type space Bf,’}‘(BX ) is the trace space
of NVP(X, ju;) whenever 0 = 1 — (B —log K) /ep.

The measure p; above is defined in Eq. 2.2 by
ds(x) = e P(x| + Ot dlxl,

and the space N':7(X, uy) is a Newtonian space defined in Section 2.3. If A = 0, then
N“P(X, uy) = NP (X) and Theorem 1.1 recovers the trace results from [3] for the New-
tonian spaces N7 (X). Here and throughout this paper, for given Banach spaces X(dX)
and Y(X), we say that the space X(dX) is a trace space of Y(X) if and only if there is a
bounded linear operator 7 : Y(X) — X(0X) and there exists a bounded linear extension
operator E : X(0X) — Y(X) that acts as aright inverse of 7', i.e., T o E = Id on the space
X(0X).

We required in Theorem 1.1 that p > (8 — log K)/e > 0. The assumption that 8 —
log K > 0 is necessary in the sense that we need to make sure that the measure p; on X is
doubling; see Section 2.2. The requirement that p > (8 — log K)/e will ensure that 6 > 0.
So it is natural to consider the case p = (8 —log K)/e > 1.

Theorem 1.2 Let X be a K-ary tree with K > 2. Fix B > logK, ¢ > 0and » € R.
Suppose that p = (B —logK)/e > land A > p—1ifp > 1lori >0if p = 1. Then
there is a bounded linear trace operator T NYP(X, ) — LP(X), defined via limits
along geodesic rays. Here, A > p — 1 is sharp in the sense that for any p > 1, § > 0 and
A = p — 1 =28, there exists a function u € NP (X, ;) so that Tu(§) = oo for every
& eodX.

Moreover, for any p = (B — log K)/€ > 1, there exists a bounded nonlinear extension
operator E : LP(3X) — NP (X) so that the trace operator T defined via limits of E(f)
along geodesic rays for f € LP(dX) satisfies T o E = Id on L?(3X).
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A result similar to Theorem 1.2 for the weighted Newtonian space N7 (2, w d ) with
a suitable weight @ has been established in [21] provided that 2 is a bounded domain
that admits a p-Poincaré inequality and whose boundary 02 is endowed with a p-co-
dimensional Ahlfors regular measure. In Theorem 1.2, for the case p = (8 —log K)/e > 1,
we require that A > p — 1 to ensure the existence of limits along geodesic rays. In the case
p = (B —log K)/e = 1, these limits exist even for A = 0, and there is a nonlinear exten-
sion operator that acts as a right inverse of the trace operator, similarly to the case of W !
in Euclidean setting; see [10, 24].

However, except for the case p = 1 and A = 0, Theorem 1.2 does not even tell whether
the trace operator T is surjective or not: N Lp(X, uy) is a strict subset of N7 (X) when
A > 0.Inthecase p = (B—log K)/e = 1 and A > 0, the trace operator T is actually not sur-
jective, and we can find a Besov-type space BY (0 X) (see Definition 2.14) which is the trace

space of the Newtonian space NV(x, ). We stress that B‘f‘ (0X) and B?’A(BX) are dif-

ferent spaces. More precisely, Bﬁ”(a X) is a strict subspace of B (0 X), see Proposition 3.8
and Example 3.9.

Theorem 1.3 Let X be a K-ary tree with K > 2. Fix 8 > log K, € > 0and ) > 0. Suppose
that p = 1 = (B — log K) /€. Then the trace space of NV1(X, ;) is the Besov-type space
Bf (0X).

Trace results similar to Theorem 1.3 in the Euclidean setting can be found in [11, 30]. The
second part of Theorem 1.2 asserts the existence of a bounded nonlinear extension operator
from L?(3X) to N7 (X) whenever p = (B —log K)/e > 1. Nonlinearity is natural here
since results due to Peetre [24] (also see [8]) indicate that, for p = 1 and A = 0, one can
not find a bounded linear extension operator that acts as a right inverse of the trace operator
in Theorem 1.2. On the other hand, the recent work [22] gives the existence of a bounded
linear extension operator E from a certain Besov-type space to BV or to N!-! such that
T o E is the identity operator on this Besov-type space, under the assumption that the domain
satisfies the co-dimension 1 Ahlfors-regularity. The extension operator in [22] is a version
of the Whitney extension operator. This motivates us to further analyze the operator E from
Theorem 1.1: it is also of Whitney type. The co-dimension 1 Ahlfors-regularity does not
hold for our regular tree (X, 1, ), but we are still able to establish the following result for
NP (X, uy) with p > 1 for our fixed extension operator E.

Theorem 1.4 Let X be a K -ary tree with K > 2. Fix B > log K, € > 0and A € R. Suppose
that p = (B —logK)/e > 1land ) > p—1if p > 1orA > 0if p= 1. Then the operator
E from Theorem 1.1 is a bounded linear extension operator from B%A(aX) to NP (X, Ua)
and acts as a right inverse of T, i.e., T o E is the identity operator on Bg’}‘ (0X), where T is
the trace operator in Theorem 1.2.

Moreover, the space B?;*(ax ) is the optimal space for which E is both bounded and
linear, i.e., if X C L}O -(0X) is a Banach space so that the extension operator E : X —
NYP(X, ) is bounded and linear and so that T o E is the identity operator on X, then X
is a subspace ofBg’)”(aX).

The optimality of the space Bﬁ’;k(ax ) is for the explicit extension operator E in Theo-

rem 1.4. The space Bg’)‘ (0 X) may not be the optimal space unless we consider this particular
extension operator. For example, for p = 1 and A > 0, the optimal space is B{ (d X) rather
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than 3(1“ by Theorem 1.3. This splitting happens since the two extension operators from
Theorems 1.3 and 1.4 are very different: the latter one is of Whitney type in the sense that
the extension to an edge is based on the average of the boundary function over the dyadic
“shadow” of size comparable to that of the edge, while the former one uses the average over
a dyadic boundary element for the definition of the extension to several edges of different
sizes.

The paper is organized as follows. In Section 2, we give all the preliminaries for the
proofs. More precisely, we introduce regular trees in Section 2.1 and we consider the dou-
bling condition on a regular tree X and the Hausdorff dimension of its boundary dX. We
introduce the Newtonian spaces on X and the Besov-type spaces on dX in Sections 2.3
and 2.4, respectively. In Section 3, we give the proofs of all the above mentioned theorems,
one by one.

In what follows, the letter C denotes a constant that may change at different occurrences.
The notation A &~ B means that there is a constant C such that 1/C-A < B < C - A. The
notation A < B (A 2 B) means that there is a constant C suchthat A < C-B (A > C - B).

2 Preliminaries
2.1 Regular Trees and Their Boundaries

A graph G is a pair (V, E), where V is a set of vertices and E is a set of edges. We call
a pair of vertices x, y € V neighbors if x is connected to y by an edge. The degree of a
vertex is the number of its neighbors. The graph structure gives rise to a natural connectivity
structure. A tree is a connected graph without cycles. A graph (or tree) is made into a metric
graph by considering each edge as a geodesic of length one.

We call a tree X a rooted tree if it has a distinguished vertex called the root, which we
will denote by 0. The neighbors of a vertex x € X are of two types: the neighbors that are
closer to the root are called parents of x and all other neighbors are called children of x.
Each vertex has a unique parent, except for the root itself that has none.

A K-ary tree is a rooted tree such that each vertex has exactly K children. Then all
vertices except the root of a K -ary tree have degree K + 1, and the root has degree K. In
this paper we say that a tree is regular if it is a K-ary tree for some K > 1.

For x € X, let |x| be the distance from the root O to x, that is, the length of the geodesic
from O to x, where the length of every edge is 1 and we consider each edge to be an isometric
copy of the unit interval. The geodesic connecting two vertices x, y € V is denoted by
[x, y], and its length is denoted |x — y|. If |[x| < |y| and x lies on the geodesic connecting 0
to y, we write x < y and call the vertex y a descendant of the vertex x. More generally, we
write x < y if the geodesic from O to y passes through x, and in this case |[x —y| = |y| —|x]|.

Let € > 0 be fixed. We introduce a uniformizing metric (in the sense of Bonk-Heinonen-
Koskela [6], see also [3]) on X by setting

dx(x,y) = / e Iz 2.1)
[x,y]

Here d |z| is the measure which gives each edge Lebesgue measure 1, as we consider each
edge to be an isometric copy of the unit interval and the vertices are the end points of this
interval. In this metric, diamX = 2/¢ if X is a K-ary tree with K > 2.

Next we construct the boundary of the regular K-ary tree by following the arguments
in [3, Section 5]. We define the boundary of a tree X, denoted 0 X, by completing X with
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respect to the metric dy. An equivalent construction of X is as follows. An element & in
0X is identified with an infinite geodesic in X starting at the root 0. Then we may denote
& = Oxyjxo---, where x; is a vertex in X with |x;| = i, and x;1 is a child of x;. Given
two points &, ¢ € 09X, there is an infinite geodesic [, ¢] connecting & and ¢. Then the
distance of & and ¢ is the length (with respect to the metric dx) of the infinite geodesic
(€, ¢]. More precisely, if § = Ox1x2--- and ¢ = Oyyy; - - -, let k be an integer with x; = yi
and xx41 # Yr+1- Then by Eq. 2.1

+00 2
dx(€,0) = 2/ e~ dt = Ze~¢k,
k €

The restriction of dy to 0 X is called the visual metric on 0 X in Bridson-Haefliger [7].

The metric dy is thus defined on X. To avoid confusion, points in X are denoted by Latin
letters such as x, y and z, while for points in d X we use Greek letters such as &, ¢ and w.
Moreover, balls in X will be denoted B(x, r), while B(&, r) stands for a ball in 0 X.

Throughout the paper we assume that 1 < p < +o00 and that X is a K-ary tree with
K > 2 and metric dy defined as in Eq. 2.1.

2.2 Doubling Condition on X and Hausdorff Dimension of d X

The first aim of this section is to show that the weighted measure
dps(x) = e PHl(|x] + Ot dlx] (2.2)

is doubling on X, where f > log K, > € Rand C > max{2|A|/(B —log K), 2(log4)/e} are
fixed from now on. Here the lower bound of the constant C will make the estimates below
simpler. If A = 0, then
dpo(x) = e Pl d|x] = du(v),
which coincides with the measure used in [3]. If 8 < log K, then u; (X) = oo for the
regular K-ary tree X by Eq. 2.4 below. Hence X would not be doubling as X is bounded.
Next we estimate the measures of balls in X and show that our measure is doubling. Let

Bx,r)={ye X :dx(x,y) <r}
denote an open ball in X with respect to the metric dx. Also let
F(x,r)y={yeX:y>xand dxy(x,y) <r}

denote the downward directed “half ball”.
The following algebraic lemma and the relation between a ball and a “half ball” come
from [3, Lemma 3.1 and 3.2].

Lemma 2.1 Leto > 0andt € [0, 1]. Then

min{l,o}t <1— (1 —1)° <max{l, o}r.

Lemma 2.2 For every x € X andr > 0 we have
F(x,r) C B(x,r) C F(z,2r),
where 7z < x and

1 €lx|
|z| = max {|x| — — log(l +€ere*™"),0¢ . (2.3)
€

In the above lemma, z is the largest (in the < relationship) common ancestor of B(x, r),
i.e., we have z < y forany y € B(x, r).
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We begin to estimate the measure of the ball B(x, r) and of the half ball F(z, r).

Lemma 23 IfO0<r < e*'Z'/e, then

i (F(z, 1)) ~ e Pllrz] + Ot

Proof Let p > 0 be such that

lzl+p 1
/ e dt = —e (1 — ™) = 7.
lz| €

Note that for each |z| < t < |z| 4+ p, the number of points y € F(z,r) with |y| = 1 is
approximately K’~12l. Hence

lz|+p |z]

+p
K'~Fle=P (400t dr = K"Z'/ eU0e k=Pl (1 Oy dr. (2.4)

]

pr(F(z, 1)) *f

|z|

Since
< 1 e(log K—,B)t(t + C))»)/ — e(lOgK—ﬂ)l(t + C)}\. (1 + A ) ,
logK — B (t+ C)(logK — B)
then for C > 2|A|/(B — log K ), we have

A
(t + C)(log K — B)

Vit >0.

1
< _
-2

Hence we obtain that
K~ 2l +p+C\
F(z, ~ - pog K=P)lz| OV [ 1 = plogk=pyp (KL TP T ‘ 25
ur(F(z,r)) 3 —logKe (Iz]1 +C) e EFYe (2.5)
It is easy to check that for any p > 0 and z € X, we have that

1 < l+p+C <p+C < e/,

z|l+C — C —
Therefore,
A
e_%‘p < (M) Se%p Vze X, p>0.
lz] + C

Since C > 2|A|/(B — log K), we obtain that

A
o3logK—p)p _ (|Z| +po+ C)

= (e < e 200eK=B0 o e X p> 0. (2.6)
<

Then for any z € X and p > 0,

3
<c< -,
-T2

A
oog K=B)p (M) ~ e€10eK=P)P for some %

lz| + C

Hence we obtain that
=zl _ _
W (F(z,r)) ~ ,Bflme(logl( ﬁ)|Z|(|Z| + C))‘ (1 _ ocllogK ,B)p)
o—Bll

= 356e & (21 + O (1 = (1 — erecllychloeK)/e)

for some ¢ € [1/2,3/2]. Lemma 2.1 with t = ere€l?l implies that
Wi (F (2, r) = e PRl(Iz] + O)rere e PEIr (2] + O
O
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Corollary 2.4 If0 < r < e ™l /¢, then
i (B(x, 1)) = PRl (x| 4 O & P (12] 4+ O)*

Proof Forany x € X and 0 < r < e_6|x|/e, let z be as in Lemma 2.2. If z = 0, then
B(x,r) C F(O,r + p), where
1
p=dx(0.x)=-(1—-e")<r
€

andr + p < 1/e = e €%l /e. For z > 0 we have

e_€|x|(1 _l_ereelxl) €_€|Z|

€ €

2r <
Moreover, in both cases, since r < e €| /€, by Lemma 2.2, we have

1 1
2l < Ixl < Jz] + ~ log(1 + eref*ly < |z + ~log?2,

C A
<|x|+ ) ~ 1. 2.7
lz| + C

Combing Eq. 2.7 with the fact that in both cases 1 < eI=1l < (1 4 erecPhl/e ~ 1,
the result follows by applying Lemma 2.3 to F(x,r) and F(z,2r) (or F(0,r + p) for
z=0). O

which implies

Lemma 2.5 Letz € X and x € X with z < x. Then
wi([z, x]) ~ w(F(z,dx(z, x))).

where [z, x] denotes the geodesic in the tree X joining x and z.

Proof Since [z, x] is a subset of F(z,dx(z,x)) by definition, we have wu;([z,x]) <
uxr(F(z,dx(z, x))). Hence it remains to show that

[z, x1) 2 wa(F(z, dx (z, x))).

Foranyz € X and x € X with z < x, we have that

|x]

m([z,x])=f e Pt + ) dt,

|z
where |x| = oo if x € dX. Then by using an argument similar to the estimate in Lemma 2.3,
since C > 2|A|/(B —log K) > 2|1|/B, we have that
1

L'S_ VIZO,
t+0O)B| 2

which implies that for any t > 0,
1 /
(—Ee—ﬁf(r + C)’\) =e P+ 0) (1

Hence we obtain that

x| —Blzl A
Y A€ A —Bxl-lzp (X +C
e Bt + O di ~ Izl +C) [1—e (— . @8
‘[Z| B ( lz| + C

A

- %_ﬂt A
,B(t—l—C)) e Pt + O)".
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Comparing the estimate (2.8) with the estimate (2.5), since p = |x| — |z|, ¢?1°2X > 1 and
K ~lzlelog K=plzl — =PIzl e have that

x|
f e Pt +C)dt Z pa(F(z,r) with r =dx(z, x),
|

z|

which induces that

pallz, xD) 2 ua(F(z,r)) = pa(F(z, dx (2, x))).

U
Corollary 2.6 Let x € X and z be as in Lemma 2.2. Then if
—elx| 1
S <rs-(-eh, (29)
€ €

we obtain
mr(B(x, 1) ~ e PE(1z] + O* ~ rPle(|z] + O)*.

Proof Since r > e‘f|x|/6, by Lemma 2.2, we have

—e|z|
B(x.r) C F(z, 00) = F(z, ¢ - >

Then Lemma 2.3 implies
i (B(x, 1) < pa(F(z,00) S e Plle=<ll(z] + €)* = e PHl(I2| + ©)* (2.10)
Towards the another direction, by Eq. 2.3 and Lemma 2.5, we have that
pa(B(x, 1) = willx, 2) 2 w(F(z, 1) = " PWlr(z] + O = e (1] + C) ey,
Moreover, we have
t 1
= — > —,
e(l+1) — 2
where 1 = ereP*!. Here in the last inequality we used the fact that ere€”*! > 1. Hence we
obtain that

e“Flr = ey L gme W=D = pel¥lp (1 4 epechy~!

wi(B(x, 1) 2 e PEl(Iz] + O,
Combing the above inequality with Eq. 2.10, we finish the proof of

wi(B(x, 1) ~ e Pl (12 + O
Since eref*! > 1, we know that
ereM <1+ ere™l < 2eref.
It then follows from Eq. 2.3 that
e Pl = o BII(] 4 ereclil)Ble n pBle

Hence we obtain that

e PRIzl + O ~ rPle(lz] + O,
which finishes the proof. U
Lemma 2.7 Letx € X and (1 — e €Y /e < r < 2diamX. Then

i (B(x,r)) ~r.

In particular, if x = 0, then this estimate holds for all r > 0.
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Proof We have 0 € B(x, r) by assumption, and hence
B(x,r) C F(O,2r).
From Lemma 2.3, we have that

pa(B(x, 1)) < up(F(0,2r)) Sr.
As for the lower bound, if r < 1/€, since 0 € B(x, r), letting

log(1 —€r)

€

and x < x” with |x’| = p, then the estimate (2.5) and Lemma 2.3 imply

pr(B(x, 1)) = un([0,x'1) 2 win(F(,r) ~r.
If 1/e <r <2diamX = 4/¢, then by Lemma 2.5, we have that

AT

N | =

mi(B(x,r)) = un(F(0, 1/€)) ~

O

Proposition 2.8 Let x € X, 0 < r < 2diamX, Ry = e ! /e and z be as in Lemma 2.2. If
|x] < (log2)/e, then

pr(B(x,r)) ~r.
If |x| = (log?2)/e, then

PR + O, 1 < Ry

(B, 1) ~ { Pzl + O r=Ro.

Proof If |x| < (log?2)/e, then e~ Pl ~ [ (x| + C)* ~ 1 and the result follows from
directly from Corollary 2.4 and Lemma 2.7.

If |x| > (log2)/e and r < (1 — D) /€, then the estimate follows directly from Corol-
laries 2.4 and 2.6. For r > (1 — e~ *l) /e > 1/2¢, since |z| = 0, we have by Lemma 2.7
that

i (B(x,r) ~r~1=rPlez| + C)*.

Corollary 2.9 The measure v, is doubling, i.e., it (B(x, 2r)) < pua(B(x, r)).

Proof 1In the case |x| < (log2)/e and the case |x| > (log2)/e with 2r < Ry, the result
follows directly from Proposition 2.8.
In the case |x| > (log2)/e with 2r > Ry, if r > Ry, then

rBle ~ (2r)Ple.

if r < Ry, then

(2r)P/e r
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Let z, and z», be defined as in Lemma 2.2 with respect to r and 2r. From Corollary 2.4 and
the above estimates, the doubling condition of u, follows once we prove that
el +C
|z2r| + C

Ifr > (1 —e<Py/e, then |z,| = |zo,| = 0 give Eq. 2.11. If 2r > (1 — e~<"l) /e > r, then
r > (1 — eIy /2¢ implies that

(2.11)

1 1 1
|mL+C:Lﬂ——bgl+ﬂfm)+C§LH——ngU+%mhy+C
€ €

log2 1 log 2
922 _ llog(l + Wy < ¢ 4 28
€

= |x[+C+ ~ C = |z +C,

€
which gives Eq. 2.11. If 2r < (1 — e~y /¢, for C > 2(log2) /€, we obtain that

€

1 elxly 2 elx|
2(|z2-| + C) = (Jz;| +C) = |x| + C + glog(l + ere™) — glog(l + 2ere™

1 elxly 2 €lx|
> |x| +C + —log(l +ere®™') — —log(2(1 4 ere "))
€ €

2log2 1
g~ log(1 + erely
€

= |x|+C —
2log?2

which gives that |z,| + C < 2(]z2-|+ C). Combining with the fact that |z>,| < |z,|, Eq. 2.11
is obtained. Therefore we finish the proof of this corollary. O

The following result is given by [3, Lemma 5.2].

Proposition 2.10 The boundary 0 X is an Ahlfors Q-regular space with Hausdorff dimen-
sion |
og K
0= :

€

Hence we have an Ahlfors Q-regular measure v on 9 X with
(B, )~ r¢ = rloek/e,
forany £ € X and 0 < r < diamo X.

2.3 Newtonian Spaces on X

Letu € L)

1oc (X5 12). We say that a Borel function g : X — [0, oo] is an upper gradient of
u if

u(z) —u(y)l S/gde (2.12)

Y
whenever z, y € X and y is the geodesic from z to y, where dsx denotes the arc length
measure with respect to the metric dy. In the setting of a tree any rectifiable curve with end
points z and y contains the geodesic connecting z and y, and therefore the upper gradient
defined above is equivalent to the definition which requires that inequality (2.12) holds for
all rectifiable curves with end points z and y.
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The notion of upper gradients is due to Heinonen and Koskela [16]; we refer interested
readers to [12, 17] for a more detailed discussion on upper gradients.

The Newtonian space N Lp (X, uyp), 1 < p < o0, is defined as the collection of all the
functions for which

1/p
letllnrr x sy += (/ |ul? duy +inf/ g? dﬂx) < 00,
X 8 Jx

where the infimum is taken over all upper gradients of u.
Throughout the paper, we use NP (X) to denote N1-P(X, ;) if » = 0.

2.4 Besov-Type Spaces on d X via Dyadic Norms

We first recall the Besov space Bf,’ » (0X) defined in [3].

Definition 2.11 For 0 < 6§ < 1 and p > 1, The Besov space Bg’ p(aX) consists of all
functions f € L?(dX) for which the seminorm || f|| B9 (s x) defined as
P

— FOI=f@r
17 Mg ax) /ax/ax X E)PPu(B(L, dy (¢, V& IV E)

is finite. The corresponding norm for B?;’ »(0X) 18

1A sy ,ox) = 1 lier@x) + 11 g ax)-

Next, we give a dyadic decomposition on the boundary 0 X of the K-ary tree X: Let
V, = {x;? :j=1,2,---, K"} be the set of all n-level vertices of the tree X for any n € N,
where a vertex x is n-level if |x| = n. Then we have that

v=_Jw

neN
is the set containing all the vertices of the tree X. For any vertex x € V, denote by I, the set

{& € 0X : the geodesic [0, &) passes through x}.

We denote by 2 the set {I, : x € V} and 2, the set {I, : x € V,} for any n € N. Then
2y = {0X} and we have
2=|]2.
neN

Then the set 2 is a dyadic decomposition of dX. Moreover, for any n € Nand I € 2,,
there is a unique element / inA 2,1 such that [ is a subset of it. It is easy to see that if
I = I, for some x € V,, then I = I, with y the unique parent of x in the tree X. Hence the
structure of the tree X gives a corresponding structure of the dyadic decomposition of 9.X
which we defined above.

Since we want to characterize the trace spaces of the Newtonian spaces with respect to
our measure (., we introduce the following Besov-type spaces B?,’A(BX ).

Definition 2.12 For 0 < 6 < 1 and p > 1, the Besov-type space Bf,’k(aX ) consists of all
functions f € L?(dX) for which the dyadic Bz’}‘—energy of f defined as

oo
1 Wy 7= 2 e 3 v |1 = £l
n=1

1e2,
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is finite. The norm on Bg’k(aX) is
||f||B<;,A(3X) = fllLrex) + ||f||3%x(ax)-

Here and throughout this paper, the measure v on the boundary 0 X is the Ahlfors regular
measure in Proposition 2.10 and f; is the mean value fl fdv = ﬁ f ; fdv.

The following proposition states that the Besov space BZ’A (0X) coincides with the Besov
space Bf,’ »(0X) whenever 0 < 6 < 1 and A = 0. The proof of this proposition follows by
using [3, Lemma 5.4] and a modification of the proof of [23, Proposition A.1]. We omit the
details.

Proposition 2.13 Ler0 <6 < land p > 1. Forany f € L} (3X), we have

loc

1 8g ,ox) ~ 1F g0

For A > 0, we next define special Besov-type spaces with & = 0 and p = 1. Before the
definition, we first fix a sequence {«(n) : n € N} such that there exist constants c; > co > 1
satisfying

(< ——=<¢c¢1, YneN. (2.13)
A simple example of such a sequence is obtained by letting o (n) = 2".

Definition 2.14 For A > 0, the Besov-type space B (0X) consists of all functions f €
L'(3X) for which the B{ -dyadic energy of f defined as

£ N geaxy = D_am* D v(DIfr = f7]
n=1 1€2,m)

is finite. Here for any I = I, € Zy ) withx € Vy(n) and n > 1, we denote I= I, where
y € Vg(n—1) is the ancestor of x in X. The norm on Bf (9 X) is

I sy @x) = I1f lLax) + 112 @x)-

Remark 2.15 Actually, the choice of the sequence {«(n)},cn Will not affect the definition
of B (0X): by Theorem 1.3 we obtain that any two choices of the sequences {c(1)},en
lead to comparable norms, for more details see Corollary 3.7.

It is easy to check that BY (0X) = B?’}‘(BX) if we let @(n) = n. But the sequence {«(n)}
with a(n) = n does not satisfy Eq. 2.13. Actually, we show in Proposition 3.8 and Example

3.9 that B?’A(a X) is a strict subset of BY (d.X) whenever Eq. 2.13 holds.
3 Proofs
3.1 Proof of Theorem 1.1

Proof Trace Part: Let f € NU'P(X, ;). We first define the trace operator as

Tr f(£) := f(€) = lim gf<x>, £edX, 3.1)

[0,6)ox—
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where the limit is taken along the geodesic ray [0, £). Then our task is to show that the
above limit exists for v-a.e. £ € dX and that the trace Tr f satisfies the norm estimates.

Let & € 0X be arbitrary and let x; = x;(§) be the ancestor of & with [x;| = j. To show
that the limit in Eq. 3.1 exists for v-a.e. £ € dX, it suffices to show that the function

X&) = 1£0)] +f grds (3.2)
[0,8)

isin L?(0X), where [0, &) is the geodesic ray from O to & and g 7 is an upper gradient of f.

To be more precise, if f* € L?(0X), we have |f*| < oo for v-a.e. £ € 90X, and hence the
limit in Eq. 3.1 exists for v-a.e. § € 9X.
Setrj = 2e/¢/e. Then on the edge [x;, xj+1] we have the relations

ds ~ e~ jThdpy ~ 7P TR and pa(lxgxal) ~ eV (33)
where the comparison constants depend on €, 8. Then we obtain the estimate

fr@ = |f(0)|+/ grds = |f(0)|+Z/ g5 ds

joXj+1]

f(0>|+Z Jhie '—Af

[xj,xj+1]

¢y dis ~ f<0>|+2r,][ ¢ di.

jXj+1]
(3.4)

Since§ =1 — (B —logK)/(pe) > 0, we may choose 0 < k < 6. Then for p > 1, by
the Holder inequality and Eq. 3.3, we have that

TGS |f<0>|"+2 rd “)]{ & dus

—+00
1—k)— .
SO 4+ 3 PO A/ g duy.
j=0

[xj,xj+1]

For p = 1, the above estimates are also true without using the Holder inequality. It follows
that for p > 1,

400
r 1—k)— .
T SO+ 30 [ g,
j=0 [xj.xj+1]
Integrating over all § € 9.X, since v(0X) = 1, we obtain by means of Fubini’s theorem that

/ TRGLEIRS If(O)I”+/ Z pio=ple '—A/ g5 dpy dv(€)
X [x; (&), xj+1(8)]

“+00
FOI7 + / g7 ()" f ST T @y @01 () V() dpa ().
X X 20

Notice that x[x;(),x;,,&)](x) 1s nonzero only if j < |x| < j + 1 and x < §. Thus the last
estimate can be rewritten as

/a POy SO + [ g 0 E ) du o),

where E(x) = {§ € 0X : x < &} and j (x) is the largest integer such that j(x) < |x]|.
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It follows from [3, Lemma 5.1] that E(x) = B(£,r) forany £ € E(x) and r ~ ¢~ ),
Hence we obtain from Proposition 2.10 that v(E(x)) ~ er Since p(1 — k) > B/e —
log K /e = B/e — Q, then for any j(x) € N, we have that

1 + -
pPO—O=BIHC =k <,

which induces the estimate
/ |F*@1P dv S| FO)] +/ gr ()P duy(x).
X X

Hence we obtain that f *isin LP (0 X), which gives the existence of the limit in Eq. 3.1 for
v-a.e. £ € 9X. In particular, since | f| < f*, we have the estimate

f |f|Pdv§f Iflpder/ gl du,
X X X

and hence the norm estimate

_ 1/p
I Flron < ( /X 717 dias + /X gf”dm) I (BS)

To estimate the dyadic energy || f ||p 25 (5%)" forany I € 2,,& e [ and ¢ € 1, we have
p

that

+00 +oo
IFE = F@OI< D 1f @) = Fnl+ Y 1) — fGiel,
j=n—1 Jj=n—1
where x; = x;(§) and y; = y;(¢) are the ancestors of & and ¢ with |x;| = [y;| = J,
respectively. In the above inequality, we used the fact that x,_1(§) = y,—1(n). By using
Eq. 3.3 and an argument similar to Eq. 3.4, we obtain that

17 = FOIS Z r]][ grdus + Z rj][ gf diy.

iS5 I ©x @) iSO ©)]

Choose 0 < k¥ < 6 and insert r}? rj_K into the above sum. If p > 1, then the Holder inequality
and Eq. 3.3 imply that

—+00 —+00
~ 1— 1-
@& = F@Irsrr 3l “)][ gl dus+ril S ! ”)][ grP du
ionet [x; (§),x41 ()] e [y (©),3j+1 (D]
+00
1—k)— —
D D S / gf”dm+/ g dus |
i [x; (§),x11(6)] [y (©)yj41(]

For p = 1 the estimates above is also true without using the Holder inequality. It follows
from Fubini’s theorem and from v(/) =~ v([) that

D o vDIfi—f7lP < vu)][][ 17 = F©IP dv(&) dv(g)
€2,

le2, 1

+00
1—k)— .
g/ e rf( D=l A/ gl dus dv(§)
X jen1 : [xj(§).xj+1(8)]

1— L
=r’fp1/ / Z PUTIBIE s oo () dv(E) dpia (x).
Xﬂ{lx\znfl}

j=n—1
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Using the notation E(x) and j (x) defined before, the above estimate can be rewritten as

- ~ 1—k)— . _
S vIfr - fil £ 7 f gr? i TP j ) T (E () dis
1€2, XN{|x|>n—1}

1 + _
SJ r;{flf gfp jp((x) k)—B/€e Q](x) )\'d//t/)\,'
XN{|x|>n—1}

Since e " &~ r,_1 and p — /€ + Q = Op, we obtain the estimate

o5 PA—=B/e+0
1717 i f gs” JOo) " ds
By @X) ™~ Z XNflx|=n—1) e
+o00
0 69— .
=Y "+ ) Z/ gy T
= XN{j+1>]x|>j}
+00 J
_ Zf g TP i A | e 4+ )
T Ixogszn T 70
400
< Z/ 8" dus =/ 8r" dita.
im0 Y X0 +1> k1= ) X

Here the last inequality employed the estimate

J
) R VT T e
n=0

which comes from the facts r,, = 2¢7¢"" /e and kp — 6p < 0. Thus, we obtain the estimate
1oy S 1841y < IF Iwtoncx -

which together with Eq. 3.5 finishes the proof of Trace Part.
Extension Part: Let u € B (3X). For x € X with |x| = n € N, let

u(x) =][ udv, (3.6)
Iy

where I, € 2, is the set of all the points & € dX such that the geodesic [0, &) passes
through x, that is, /, consists of all the points in d X that have x as an ancestor. By Egs. 3.1
and 3.6 we notice that Tru(§) = u(&) whenever £ € 90X is a Lebesgue point of u.

If y is a child of x, then |y| = n + 1 and I, is the parent of /,. We extend u to the edge
[x, y] as follows: For each ¢ € [x, y], set

o BG) —ak) ey, —ug) e(ur, —ug)
gi(t) = dx(x,y) o (1 —e€)e—en = (1 —e—€)e—en (3.7
and
(1) = ii(x) + ga()dx (x, ). (3.8)

Then we define the extension of u to be .
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Since g; is a constant and u is linear with respect to the metric dy on the edge [x, y], it
follows that |g;| is an upper gradient of # on the edge [x, y]. We have that

n+1
f |gal? duy ~ f ug, — ug |Pe PTH (r + O) dr
[xvy] n Y
A ARt ) 4 1)A|Uly — ”1Ay|p' (3.9)
Now sum up the above integrals over all the edges on X to obtain that

+00
[ gl i~ Y S ey~ g

n=11e2,
For I € 2, the estimate

Py ([) 2 (= (BlogK)[€)=enQ o n(ep—F)

implies that

+o0
f Igal? dus ~ Y et Y v(Duy — upl? = Jul”, (3.10)
X n=1

0 .
B, (0X)
1€2, b

To estimate the L”-norm of &, we first observe that
la@)] < la(x)| + |galdx (x, y) = [u ()| + |a(y) — a(x)| < lug, |+ lug,| (3.11)

for any ¢t € [x, y]. Then we obtain the estimate

/ @017 dps S o ([, YD) (lug, |2 + Jug |P) S e PHenla* [ uiPdv. (3.12)
[x,y] I

Here the last inequality used the facts v(Iy) ~ v(ly) ~ e"Q and w; ([x, y]) ~ e Pn’.
Now sum up the above integrals over all the edges on X to obtain that

+00 +00
la ()P duy < e PrtenQph f lu|? dv = e_ﬁ”Jrf”QnA/ lu|? dv.
/ 3D , )3 N

n=0171e2, n=0

Since B —€Q = B —log K > 0, the sum of e~ #"+<"Cp* converges. Hence we obtain

the LP-estimate
/ lie|P d;, 5/ lul? dv. (3.13)
X X

Combing Eq. 3.10 with Eq. 3.13, we obtain the norm estimate

il prr(x, ) S “”“Bf;k(axy

3.2 Proof of Theorem 1.2
Proposition 3.1 Let p = (B —logK)/eand ) > p—1ifp>1loriA>0ifp = 1. Then

the trace operator Tr defined in Eq. 3.1 is a bounded linear operator from NVP (X, uy) to
LP(0X).
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Proof Let f € NP (X, uy). We first show that the limit in Eq. 3.1 exists for v-a.e. § € 9X.
It suffices to show that the function f* defined by Eq. 3.2 is in L? (9 X). By estimates (3.3)
and (3.4), we obtain that

400
5@ S 110 +Zr,~]€ &rdus
j=0 XjaXj+1

Insert j~*/P j*/P into the above sum. If p > 1, the Holder inequality gives us that

p—1

e ) =X =, )
IFF@P SIFOF+ D 7 Y orl g’ dus
j=0 j=0 [xj.xj+1]

jXj+1]

+o0

SIFO)F + > PP f g’ dus.,
. [x
j=0

since p([xj, xj411) = r;.g/ejA and for A > p — 1, the sum j %P~ converges. If p = 1,

then the Holder inequality is not needed and the estimate is simpler. It follows that
+00
IFAEIP SIFO)F + Y PP / g’ du
=0 [xj,xj+1]

forany A > p — 1if p = 1 orfor A > 0if p = 1. Integrating over all £ € d X we obtain by
means of Fubini’s theorem that

+o00
[ 1r@ra sirors [ S| ¢r” s dv(®)
X X =0 [x; (&), xj+1(5)]

+o0
|f(0)|”+/ng(X)” /aXZrf_ﬂ/e)([x,-(s),xj“(g)](X)dV(f;‘)dm(x)
j=0

SO+ [ gy JvE ) din )

S 1O + fX gr @) Prl BT dp, (o) = | £O)7 + /X 27 ()P dp (x).

Here in the above estimates, the notations E(x)~and j(x) are the same ones as those we
used in the proof of Theorem 1.1. It follows that f* is in L” (9 X) with the estimate

/ |f|f’dv5f Iflpd,ux+/gfpdm-
0X X X

Hence the limit in the definition of our trace operator exists, i.e., the trace operator is well-
defined, and we also have the estimate

. 1/p
I fllrax) S (/ | f1P d s, +/ gr? dMA) = FlINtrx )
X X
which finishes the proof. U

Example 3.2 Let f be the continuous function on X given by f(x) = log(|x| 4+ 1). Then
the function gr(x) = el /(|x| 4 1) is an upper gradient of f on X with respect to the
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metric dy. For p = (B —logK)/e > 1land A = p — 1 — 6 with § > 0 arbitrary, we have
the estimates

400 +o00 — +00
eben e(pe B+log K)n 1
p o~ K" Pyt » _— =
/ng d . r;)(n—l—l)PKe n ,;) PRI n_lnl+8<oo

and

+00 I
/ |f1Pdus =~ Y logl (n+ DK"e Pin* ~ Y " el TPHe Ky 1ogP (n 4 1) < o
X n=0 n=0

Hence we have f € NP (X, ;). On the other hand, f(x) > ocoasx — 0X.

Lemma 3.3 Letu € L' (8X) and it be defined by Eqs. 3.6, 3.7 and 3.8. Then

/ al?du S réﬂ_logK)/gf ul? dv,
XN{|x|>=n} X

wheren € N, p > 1l andr, = 27" /e.

Proof By using the estimate (3.11), for x, y € X with y a child of x and |x| = j, we obtain
that

f ()P die < pllx, yD(lug, P + lur,|?) se—ﬁf'+ff'Qf |ulP dv.
[x,y] I

Summing up the integrals over all edges of X N {|x| > n}, we obtain that

+00 +00
/ P du < Z Z e_m“]Q/Iqudv = Ze‘ﬁ]“]Q/ lul? dv
XN{|x|>n} 1 j=n X

j=nle2;

~ e—<f’—l°g’<>"/ |u|pdv%’r,$ﬂ_logK)/6/ ul” dv.
X X

O

Lemma 3.4 Let u be Lipschitz continuous on 0 X and u be defined by Eqs. 3.6, 3.7 and 3.8.
Then

/ 1gal? du < PR P (u, 9 x)P,
XN{[x|zn)

wherer, =2e "¢ /e, p > 1 and

LIP (u, 3X) = Ju(®) = u@l
greaxtAr  dx(§,0)
Proof For x,y € X with y a child of x and |x| = j, since g; is a constant on the edge

[x, y], we obtain the estimate
JHUug, —ug P L
/ |gﬁ|PdM%/ '—3e—,37d1— %e—ﬂj-i-fjpmly _uIAV|p'
[x,y] J ’

e—€Jp
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Summing up the above integrals over all edges of X N {|x| > n}, we obtain that

+00
[ lrdus Y P g
X0flx|=n}

j=n+11€2;
Since u is Lipschitz on d X, then for any &, ¢ € 0X,
| f (&) — f(O)| <LIP (u, 0X)dx (&, ¢).

Hence, for any I € 2 j» we have that

s —url? < ][I ]élf(é‘) @ dvE) dv(Q) < ][I ][TLIP (. 0X)Pdx (£, £)P dv(&) dv(¢)
< LIP (u, 8X)? diam(1)” ~ ¢ /P LIP (u, 9 X)”.

It follows that

+00
/ lgal? dp < Z K7 e(=PFeP)i o= IPLIP (u, 9 X)P
XN{lx|=n} j=n+1
400
= Y e FoeKILIP (u, 0 X)P
j=n+1

A e BlogKnp 1p (y 9 X)P ~ rr(lﬂ_logK)/éLIP (u, 0X)P.

O

Proposition 3.5 Let p = (B — logK)/e > 1. Then there exists a bounded non-linear
extension operator Ex from LP(3X) to NVP(X) that acts as a right inverse of the trace
operator Tr in Eq. 3.1, i.e., Tr o Ex = Id on L?(9X).

The construction of the extension operator is given by gluing the N7 extensions in
Lemma 3.4 of Lipschitz approximations of the boundary data with respect to a sequence
of layers on the tree X. The main idea of the construction is inspired by [21, Section 7]
and [22, Section 4] whose core ideas can be traced back to Gagliardo [10] who discussed
extending functions in L'(R") to Wl*l(]R':r]).

Proof of Proposition 3.5 Let f € LP(0X). We approximate f in L”(dX) by a sequence of
Lipschitz functions {fk},j':f such that || fr+1 — fellLrox) < 22_k||f||Lp(ax). Note that this
requirement of rate of convergence of fi to f ensures that fy — f pointwise v-a.e. in 0.X.
For technical reasons, we choose f1 = 0.

Then we choose a decreasing sequence of real numbers { ,ok},jzocl> such that

pr € {e " /e :n € N}
0 < pr+1 =< ox/2;
o > pkLIP(fx,9X) < CllfliLrax)-

These will now be used to define layers in X. Let

Ok —dist(x,BX)”
, x € X.
Pk — Pk+1

Y (x) = max {O, min {1,
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We denote — log(epy) /€ by [pr]. This is a integer satisfying e “¢?%] /e = p;. Then we obtain
0 < ¢ < 1 and that

0, x| = [pkl;
x) = 3.14
Vi) {1, x> [pitl G149
For any Lipschitz function fi, we can define the extension fi of fi by using Egs. 3.6, 3.7
and 3.8. Then we define the extension of f as

400 oo
) =) @100 = Yr0)) fier) = ) v () (fre1 (x) = fie(x). (3.15)
k=2 k=1

It follows from Eq. 3.14 that for any x € X with |x| [pr], we have f(x) = f~k_1(x).
Since for the trace operator Tr defined in Eq. 3.1, Tr fk fx forv-a.e.in X, the pointwise
convergence fy — f v-a.e.in dX implies that Tr f = f for v-a.e. in X, since {[px }
is a subsequence of N. Hence the extension operator defined by Eq. 3.15 is a right i 1nverse
of the trace operator Tr in Eq. 3.1.

It remains to show that f e NP (X) with norm estimates. Lemma 3.3 allows us to obtain
the LP-estimate for f. Since the extension operator that we apply for each fj is linear, we

have that fiy1 — fi = fk+1 fx. Therefore, it follows from (8 — log K)/e = p that

+00 +0oo
1 lerco < Y Ik (firt = fllrcy < D 1 fert = fallLexngxl=Loa

k=1 k=1
+00 I

<Y ol feet = fillrox) = Y ol firt — fillLrox)
k=1 k=1

+o00
S et = fllerox) S I Fllrox)-

In order to obtain the LP-estimate of an upper gradient of £, it suffices to consider the
LP-estimate of Lip f, where for any function u, Lip u(x) is defined as

Lipu(s) = timsup “22 1

We first apply the product rule for locally Lipschitz function, which yields that

Lip f = Z(|fk+1 FelLip Y + ¥aLip (fir1 — £0))

|fk—|—1 Jelxgxi= '
5 Z( R 4 st Lip (i — f0) )

=1 Pk — Pk+1
Thus,
o0
- | firr = fiel ip (firl —
ILip FllLrox) < Z( P + [ILip (fx+1 — S llLrxnfixizloa1h | -
= k= PR b xnfix )= [oe1h
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It follows from Lemma 3.3 that

Z |fk+1 Sl

i || Pk~ Pk+1

S Z ||fk+1 JellLrax)

LP(Xnf|x|=[pxk]})

—+00
~ D e = fllrox) S 1 fllrox).-

k=1

Recall that u is affine one any edge of X, with “slope” g;, for the extension u given via
Egs. 3.6, 3.7 and 3.8, for any function u. Hence Lipu = g;. Therefore, it follows from
Lemma 3.4 that

+00

Z||L1p<fk+1 follLrxngxiztoan S D ALIP (feat = fies 90
k=1
+o00

< Y ok (LIP (fi1, 0X) + LIP (fi, 9X))
k=1

S I fllLrox)-
Here in the last inequality, we used the defining properties of { ,Ok}z_;xf. Thus, we have shown
that
ILip fllrox) S IflLr@x)-
Altogether, we obtain that

Ity < I FlLrxy + ILip Fllirox) S 1 lr@x)-
[l

Proof of Theorem 1.2 The boundedness and linearity of the trace operator follows from
Proposition 3.1 and the sharpness of A > p — 1 follows from Example 3.2. The extension
operator is given in Proposition 3.5. U

Remark 3.6 For p = (B—logK)/e > 1and A > p—1, Theorem 1.2 only tells us that there
exists a bounded linear trace operator (3.1) from N7 (X, ;) to L?(3X). It is unknown
whether this trace operator is surjective or not. All we know is that there exists a nonlinear
bounded extension operator from L”(dX) to N L.P(X) that acts as a right inverse of the
trace operator (3.1). Since A > p — 1 > 0 implies N'7(X, uy) € N'P(X), we have an
open question: Which space does the bounded linear trace operator (3.1) map N7 (X, 11;)
surjectively onto?

3.3 Proof of Theorem 1.3

Proof of Theorem 1.3 Trace Part: Let f € N'1(X, ;) with A > 0 and let g ¢ be an upper

gradient of f. By Proposition 3.1, we know that the trace operator Tr f = f defined in
Eq. 3.1 is well-defined and that f satisfies the norm estimate

I rexy S NN -

@ Springer



Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees

Then the remaining task is to establish the estimate on the dyadic energy || f I B2 (0X)" For
any I € Do), § €land ¢ € Ie Zam—1), we obtain that

+00 oo
fFO—-FOl< Y If@)—Ffadl+ D 1fG) = FOil
Jj=a(n—1) Jj=a(n—1)
+00 T
S D grd+ Y Vj][ gfd,
j=a(n—1) [-xj5xj+l] j=a(n—1) [ij))jJrl]
where x; = x;(§) and y; = y;(¢) are the ancestors of & and ¢ with |x;| = [y;| = J,

respectively. For any I € 2, and any function & € L'(3X), we have

v(I) ~ ( To(n) )Q ~ e@=D—am)logK , pan—1)—a)

v(IN) Fa(n—1)
and
) fﬁ(o dv(g) = k¥~ / h(g)dv(Q). (3.16)
IEQO,(") 1 9X
Hence it follows from the fact that w; ([x;, x;j+1]) ~ rf /€ j* and Fubini’s theorem that

> wwifi- i = ¥ vof fife - foiveao

Iega(n) Iega(,’)
+o00
: Z/ 2 ’f][ gr dudv(§)
IEQa(H) Ij:a(l’l—l) [xf(s)’ijr](g)]
+o0
+ Z Ka(n—l)—a(n)ﬁ rj][ gfduxdv(g)
1€ 2aw T iamety i ©yi@]
+o00
Q’/ > rj][ grdus dv(&)
X i _q—1) YXEx+15)]

+00
1— -
~ f gy / T Ry ) 0 () dV(E) dpa ().
XN{|x|=a(n—1)} X j=a(n—1)

Using the notation E(x) and j(x) defined in the proof of Theorem 1.1, the above estimate
can be rewritten as

- ~ 1— . -
S wDIfi - f7l 5/ g7 o J ) TV (E)) dps
1€ Zam) XN{lx[za(m—1)

1—B/e+0 ., «—
5/ grricy i) du,
XN{lx|za(n—1)}

= f grj) " du;.
XN{lx|>a(n—1)}
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It follows that
o0 o0 —+00
doamt Y vDIfi = f1 S ey Y / | gyt
n=1 IGQQ(") n=1 j=(x(n—1) Xﬂ{]+1>|x|2]}
00 +00
= Za(n+1) Z f | .gfj_’\dﬂk
n=0 j=a(n) XN{j+1>|x]|>j}
+00 ™' ()
= Zf grirdw [ Y at+ 1M,
=0 Y XN +1>Ix]=J} =0

where a1 (j) is the largest integer m such that a(m) < j. Since A > 0 and

we obtain the estimate
a~ () a1 ()

+00
Yoo+ Yt <) e S N
k=0

Hence we obtain the estimate

0 +0oo
||f~||3¢1¥(ax) = X:Ol(”l))L Z v(D|fr — f7| S Z/;( gfdli)»
n=1 j=0

. o
1€24n) Nj+1>1x|=j}

= /;(gf du; = ||gf||L1(x,M)-
Thus, we obtain the norm estimate

1A B @x) = 1/ Nroxy + 1 g ax) S NNt x )

which finishes the proof of the Trace Part.
Extension Part: Let u € B‘l" (0X). Since «(0) is not necessarily zero, we let ¢ (—1) = 0.
Forany x € X with |x| = a(n) and —1 <n € Z, let

u(x) :][ udv,
Ix

where I, € 2 is the set of all the points & € 3 X such that the geodesic [0, &) passes through
x, that is, I, consists of all the points in d X that have x as an ancestor.

If y is a descendant of x with |y| = a(n + 1), then there exists y € X which is the parent
of y. We extend u to the edge [x, y] as follows: For each t € [x, y], set u(t) = u(x) and
gi(t) = 0;foreacht € [y, y], set

u(y) —u(x) . e(u[y —ur,) _ E(I/t]/V —u;y)
dx(3,y) (€€ — 1)e—cantl) — (g€ — |)e—caln+l)

gi(t) =

and
u(t) = u(x) + ga(®)dx (y, 1).
Then we define u to be the extension of u. Notice that Tru(§) = u(£) whenever £ is a
Lebesgue point of u.
Now on the geodesic [x, y], g; is zero and u is a constant; on the edge [y, y], g; is a
constant and # is linear with respect to the metric on the edge [y, x]. It follows that |g;| is
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an upper gradient of # on the geodesic [x, y]. Then for x € X with |x| = a(n), n > 0, we
obtain the estimate

a1l fuy, —uy | _pe N
f |gﬁ|dﬂ)» = / |gﬁ|d,u)» ~ / Tme t+C)tdr
[x,y] [y,y] an+)—1 €

~ e(E—ﬂ)Ot(n-l-l)a(n + 1))\|uly _ u7)| (3.17)

For x = 0 and |y| = «a(0), since v(lp) ~ v(ly) ~ 1, we have the estimate
/ |gii| dpex =/ lgaldpa ~ |ugy —ur,| < lug| + lur,| S f luldv.  (3.18)
[0,¥] [y,y] D¢

Now sum up the estimates (3.17) and (3.18) over all edges of X to obtain that

/ lgaldmy = / |ga|dm+/ lgal d s
X XN{lx|<a(0)} XN{|x|>a(0)}

+o0
< Y /[O il + ) Z/ g2l du
Y

yEVa(o) n=1 yEVa(,,) [x’y]

+oo
< K“(O)f lu| dv + Z Z Py ()M luy — ugl.
X n=11e2yy)

Since for any I € Z(»), we have that

v(l) ~ raQ( ~ e—ea(n)logK/e _ e—oc(n)logK _ e(e—ﬂ)(x(n)'

n)

Hence we obtain the estimate

i s [ wlave Yawt ¥ volsi- s

n=1 Iee@a(,,)
= ”””Ll(aX) + ||u||311¥(ax) = ||u||l3‘1"(8X)- (3.19)
Towards the L'-estimate for ii, by the construction, we know that |i(¢)| = |ii(x)| on the

geodesic [x, y] and that |u(z)| < |a(x)| + |a(y)| on the edge [y, y]. Then forn > —1, we
have the estimate

luldpy = |l d s

/?fﬂ{a(n)SIXIS(X(n-Fl)} /Xﬂ{a(n)SIXISOl(nJrl)—l}

+/ | d
XN{a(n+1)—1<|x|<a(n+1)}

Y luo)|ua(F (x, dx (x, 0X)))

x€Vaum)

+ Y (a@|+ @) (F, y) =: Hf + Hj.
YEVa(n+1)

[A

By Lemma 2.3, we obtain the estimate

H]n < Z e(—ﬂ‘HOgK)Ot(n)a(n)k |M|dV — e(_'B_HOgK)O{(n)(X(I’l))L/‘ |Lt|dl)
X

Y
X€Vym) L
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For Hj', by Eq. 3.16 and relation Eq. 3.3, we have that

H; S Z e(—,B+10gK)(x(n+1)a(n_|_ 1))»( |l/l|d1) 4+ Koz(n)—ot(n-i—l)‘/; |M|dU>
I

yevot('H»l) 1,\’

< e(—/3+10gK)a(n+1)a(n + 1))» luldv.
X
Sum up the above estimate with respect to n to obtain via e = B — log K that

+00 I
lu|du;, = / lu|duy = H!' + H}
»/X ,Z_:l XN{a(n)<|x|<a(n+1)} Z : ’

n=—1

—+00
< Z e(—ﬁ—f—logK)(X(n)a(n))\/ |lu| dv
_ 0X
n=—1
+oo
=y e_E“(")a(n)’\/- |u|dv5f uldv = llull 1sx).  (3.20)
n=—1 0X 0X

By the estimates (3.19) and (3.20), we obtain the norm estimate

il vt xS lullseox)-
Ol

Corollary 3.7 For given sequences {a1(n)},en and {a1(n)},en satisfying the relation
(2.13) with respect to different pairs of (co, c1), the Banach spaces B‘lxl (0X) and B‘fz (0X)
coincide.

Proof For any function u € B‘l)” (0X), by the Extension part in the proof of Theorem 1.3,
there is an extension Eu = u such that
”IZHN“(X,M)L) 5 ”u”lg‘;‘l @X)"

Sinceu = T o Eu = T (u), it follows from the trace part in the proof of Theorem 1.3 that
we have the estimate
el o2 0y S vt
Thus, we obtain
o < o .
”M”B]Z(ax) ~ ”u”lgll(ax)
The opposite inequality follows analogously and the claim follows. O

Next, we compare the function spaces B (dX) and B?’A(a X).

Proposition 3.8 Let . > 0. The space B?’)‘(aX) is a subset of B (3X), i.e., for any f €
LY(8X), we have

1/ e ax) < ||f||3?*(aX)'

Proof Let f € L'(3X). For any I € Dy (,) with n € R, define the set
Jr={I'e2:1crcl.
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Then it follows from the triangle inequality that

\fr=fi1< D 1fr = fal.

I'eJ;

Hence, by using Fubini’s theorem, we have that

dTovDifr= = Y v Y Ifr - f7l

1€e2,m) 1€2,m) I'eJ;
a(n)
= > 2 l=ff X X0
m=a(n—1)+11'e2,, 1€e2ym) I'eJr

Notice that for any I € Dy, we have v(I) ~ e <™ = K~%) and that for any
I' € 2, the number of the dyadic elements I € Py, with I’ € Jris K a(m)=m Therefore,

Z Z l)(]) ~ Ka(n)—m—oz(n) — K" — e—eoc(n)Q ~ I)(I/).
1e24m) I'eJr

Hence, we have the estimate

a(n)
dYoovDIfi—AS ), D vUDIfr = fal,
1€24(m) m=a(n—1)+11'€ 2y,

and therefore the estimate

+00
1 £ lgexy = D e@* Y vDIfi = ff
n=1

1e24m)
400 a(n)
< Za(n))‘ Z Z v frr — id
n=1 m=an—-1)+11'e2,,
+00
< lmk Z v frr — fpl = ||f||3‘1’**(aX)'

m= l'e2,,

Here in the last inequality, we used the fact that m* > an — D* > a(n)’/ ci‘ whenever
m > o(n — 1), where the constant ¢ is from the condition (2.13). l

Example 3.9 Let X be a 2-regular tree. We may identify each vertex of X with a finite
sequence formed by 0 and 1. For example, the children of the root can be denoted by 00 and
01. The children of the vertex x = Oty --- 73 is Oty - - - 70 and Oty - - - 7 1, where 7; € {0, 1}.
Moreover, each element & of the boundary d X can be identified with an infinite sequence
formed by 0 and 1. We denote £ = Oty1> - - - with 7; € {0, 1} when the geodesic from O to &
passes through all the vertices x; = Oty - - - 74, k € R.
We define a function f on dX as follows: for § = Otj1p--- € 90X where t; € {0, 1}, we
define
— (=D

f(E)=ZﬂT-

i=1
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Since the sum of 1/i**! converges for A > 0, f is well defined for all £ € 93X and is
bounded. Moreover, for any vertex x = 0ty - - - 7, it follows from the definition of f that

k

_ )T
fi =]€ Feyave) =Y S (321)

i=1

Therefore, for the vertex x above, we have
1
| f1. — f Tx| = [y R

Hence the B(l)’)‘—energy of fis

+00
1l g0y = 2_n" D v(DIf = £l

n=1 1e2,
+00 1 ooy
_ A _ .
I DGR SN
n=1 1€e2, n=1
On the other hand, for any I € 2, (n)>» we have
a(n) .
(=D)"
=di= X e (3.22)
i=a(n—1)+1

where 7; € {0, 1} depends on /. We define a random series Xy ;) by setting

a(n)

Oj
ey = D, Tam
i=a(n—1)+1
where (0;); are independent random variables with common distribution P(o; = 1) =
P(o; = —1) = 1/2. Since the measure v is a probability measure which is uniformly

distributed on 0 X, it follows from Eq. 3.22 that
> vDIfr = fil = E(Xaw)D.

Iee@a(n)

Here E(|Xym)|) is the expected value of |&y(,|. By the Cauchy-Schwarz inequality,
E(|Xem) < (]E(X(f(n)))l/z, we have that

172

) Bgo)

- 2 1/2 _ L)
Z v(DIf1 = f71 = E(Xy,) 2= Z P AT
1€24n) i,j=a(n—1)+1
o) NE i) 1/2
E(o;°) 1
- Z ;2542 - Z ;2042
i=a(n—1)+1 i=a(n—1)+1

Here the second to last equality holds since o; and o; are independent for i # j and
E(oijo;) =E(0;)E(oj) = 0fori # j. Define a(n) = 2". Then we obtain that

172 12
2]’[ 1 2” 1 1
Z v(DIfr = f71 = Z 1272 = Z H(n—1)(2i+2) T H-hHo+1/D)”

Ie,@m(n) i=2n—141 j=2n—141
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Therefore the B‘f‘ (0 X)-energy of f is estimated by

—+00
1 Flgeaxy = D_am* D v(DIfr = f7l
n=1

1e24m)
+00 1 +00 oL
ni _
=22 Y—DOF1/2) > njp < T
n=1 n=0

Hence f € BY(3X) while f ¢ BY*(8X), and it follows that BY*(8X) is a strict subset
of BY(3X).

3.4 Proof of Theorem 1.4

Proof Let p = (B —logK)/e and A > p—1ifp > lorix > 0if p = 1. From
Proposition 3.1, the trace operator 7 : N Lrx, i) — LP(9X) in Theorem 1.2 is bounded
and linear. Now we define an extension operator E by using Eqs. 3.6, 3.7 and 3.8. It is easy
to see that the extension Eu is well defined for any function u € Llloc(aX )and that T o E

is the identity operator on Lfoc(a X).
Repeating the estimates in Extension Part of the proof of Theorem 1.1, for60 =1 — (8 —
log K)/(pe) = 0, we also have the following estimates:

_|P ~ p
fxlgul dy IIuIIBg,A(aX) (3.23)

and

/|ﬁ|1’du§/ u|? dv. (3.24)
X 0X

Hence the extension operator E is bounded and linear from B?;A(a X)to N'P(X, ).
Moreover, since u is the trace of i, by Theorem 1.2 and Proposition 3.1, we have

lullLrox) S M@l x, -

Combining the above inequality with Eqgs. 3.23 and 3.24, we obtain the estimate
||u||3%)~(ax) ~ “i’z”Nl’P(X,MA)' (325)

Hence the B?ﬂ(ax )-norm of u is comparable to the N L.r(X, uy)-norm of i = Eu. Thus
B%A(a X) is the optimal space for which E is both bounded and linear. U
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Traces of Newton-Sobolev, Hajtasz-Sobolev,
and BV functions on metric spaces *

Panu Lahti, Xining Li, and Zhuang Wang

Abstract

We study the boundary traces of Newton-Sobolev, Hajtasz-Sobolev, and BV (bounded
variation) functions. Assuming less regularity of the domain than is usually done in
the literature, we show that all of these function classes achieve the same “boundary
values”, which in particular implies that the trace spaces coincide provided that they
exist. Many of our results seem to be new even in Euclidean spaces but we work in a
more general complete metric space equipped with a doubling measure and supporting
a Poincaré inequality.

1 Introduction

Boundary traces for various function classes, especially functions of bounded variation
(BV functions), have been studied in recent years in the setting of metric measure spaces
(X,d, ). In [28], the authors studied the boundary traces, or traces for short, of BV
functions in suitably regular domains. Typically, the boundary trace Tu of a function u in
a domain {2 is defined by the condition

lim |lu —Tu(z)|du =0 (1.1)
r=0")B(z,r)NQ

for a.e. x € 09 with respect to the codimension 1 Hausdorff measure H. In [30] (see
also references therein for previous works in Euclidean spaces) the authors considered the
corresponding extension problem, that is, the problem of finding a function whose trace is a
prescribed L!-function on the boundary. They showed that in sufficiently regular domains,
the trace operator of BV functions is surjective, and that in fact the extension can always
be taken to be a Newton-Sobolev function. This implies that the trace space of both
BV(Q2) and NY1(Q) is L1(0€2). This trace and extension problem is motivated by Dirichlet
problems for functions of least gradient, in which one minimizes the total variation among
BV functions with prescribed boundary data, see [5, 11, 22, 31, 36].

In the current paper, we consider boundary traces from a different viewpoint. Unlike in
the existing literature, we assume very little regularity of the domain, meaning that traces

*2010 Mathematics Subject Classification: 46E35, 26B30, 30L99
Keywords: boundary trace, function of bounded variation, Newton-Sobolev function, Hajlasz-Sobolev func-
tion, metric measure space



need not always exist. We are nonetheless able to show in various cases that for a given
function, it is possible to find a more regular function that “achieves the same boundary
values”. In particular, if the original function has a boundary trace, then the more regular
function has the same trace. This sheds further light on the extension problem. To prove
our results, we apply some existing approximation results for BV and Newton-Sobolev
functions, and develop some new ones.

We will always assume that (X, d, u) is a complete metric space equipped with a dou-
bling measure p and supporting a (1,1)-Poincaré inquality. Let © C X be a nonempty
open set. For BV functions we prove the following three theorems. The exponent s is
sometimes called the homogeneous dimension of the space. N1'1(Q) is a generalization of
the Sobolev class W11(2) to metric spaces; see Section 2 for definitions.

Theorem 1.2. Let u € BV(Q). Then there exists v € N%1(Q) N Lipy,.(Q) such that
][ o= Vdy =0 asr—0F
B(z,r)nQ

uniformly for all x € 052.

In particular, whenever there exists a BV extension of a given function defined on
the boundary, it is possible to also find a Newton-Sobolev extension. If we give up the
requirement that v is locally Lipschitz, we can replace s/(s — 1) by an arbitrarily large
exponent.

Theorem 1.3. Let u € BV(Q) and let 1 < g < co. Then there ezists v € NL1(Q) such
that

][ v —uldp —0 asr— 0"
B(z,r)NQ
uniformly for all x € 0S).

If we also allow v to have a small (approximate) jump set S,, then we can include the
case ¢ = oo. The class of special functions of bounded variation, denoted by SBV(2), is
defined as those BV functions whose variation measure only has an absolutely continuous
part (like Sobolev functions) and a jump part. The class was introduced by De Giorgi and
Ambrosio [2] as a natural class in which to solve various variational problems, e.g. the
minimization of Mumford—Shah functional.

Theorem 1.4. Let u € BV(Q) and let € > 0. Denote Q(r) := {x € Q: dist(z, X \ Q) > r}
for r > 0. Then there exists v € SBV(Q) such that H(S,) < € and

v —ul|pee(@\@yy = 0 asr— 0%,

Note that v € SBV(2) belongs to N'(Q) if and only if H(S,) = 0 (see [21, Theorem
4.1], (2.13), and [16, Theorem 4.6]). Thus we could equivalently require

e v € SBV(Q) NLipy,.(©2) (in particular, S, = @) in Theorem 1.2,

e v € SBV(Q) with #(S,) =0 in Theorem 1.3, and



e v € SBV(Q) with H(S,) < ¢ in Theorem 1.4,

illustrating how we get better boundary approximation by relaxing the regularity require-
ments on v.
From Theorem 1.2 (or Theorem 1.3), we obtain the following corollary.

Corollary 1.5. The trace spaces of BV(Q) and NV1(Q) are the same.

The definitions of trace and trace space are given in Definition 2.16 and Definition 2.18.
Here and throughout this paper, for two function spaces X(€2) and Y(Q2), that the trace
spaces of X(02) and Y(Q2) are the same means that if the function space Z(95?) is the trace
space of X(2), then it is also the trace space of Y(Q2), and vice versa.

Corollary 1.5 is stronger than we expected; it says that we can obtain the existence of
the trace and the trace space of BV(€2) by only knowing the existence of the trace and the
trace space of N11(Q), which is nontrivial, since N1'}(Q) is a strict subset of BV(2).

The so-called Hajtasz-Sobolev space MP(Q2), p > 1, introduced in [12], is a subspace
of N'P(Q). For p > 1 and Q supporting a (1,p)-Poincaré inequality and a doubling
measure, we have N'P(Q) = MYP(Q) with equivalent norms, see [13], and hence the
traces of M1P(Q)) and N'P() will be the same. But for p = 1, even under these strong
assumptions, M51(2) is only a strict subspace of Nb1(2) and it seems that trace results
for MY are lacking in the literature. One can also define a local version Mcll;l(ﬂ), see
Section 2 and Remark 4.9 for more information. For these classes, we prove the following
results.

Theorem 1.6. Suppose ) satisfies the measure density condition (2.4). Then there exists
0 < ¢y < 1 such that for any u € NV(Q), there is v € M. () N Lipy(Q) satisfying
ol () S Nl oy and

lim v —uldp=0
r=0%) B(z,r)NQ
for H-a.e. x € 00, where H is the codimension 1 Hausdorff measure.
If additionally Q is a uniform domain, then v can be chosen in M1 () N Lip;,.(Q).

With the exception of this theorem, our results are not written in terms of the codi-
mension 1 Hausdorff measure H (defined in (2.2) and (2.3)) which is used in most existing
literature. In Theorems 1.2—-1.4, the results hold for every point on the boundary. On the
other hand, the space or domain may be endowed with a measure p for which the codimen-
sion 1 Hausdorff measure is not o-finite on the boundary of the domain (see Example 5.7).
More precisely, in Example 5.7 we define a weighted measure on the Euclidean half-space
]R?|r whose codimension 1 Hausdorff measure is infinity for any open interval of OR2 = R.
But on R2, it is natural to study instead the trace with respect to the 1-dimensional
Lebesgue measure on R, which we do in Example 5.9. Another motivation for us is that
in certain Dirichlet problems one needs to consider the trace with respect to a measure
different from H, see [22, Definition 4.1].

More generally, instead of only studying the codimension 1 Hausdorff measure, we may
study any arbitrary boundary measure H on 9. In order to study such problems, we first



replace the codimension 1 Hausdorff measure H _with H in the previous definition of trace
to give the definition of trace with respect to H, see Definition 2.19. Then we prove the
following result.

Theorem 1.7. Suppose Q0 satisfies the measure doubling condition (2.5). Let H be any
Radon measure on O). Suppose that for a given u € NY1(Q), there exists a function Tu
such that

lim lu — Tu(z)|dp =0
r=0%) B(z,r)NQ

for H-a.e. © € OQ. Then there exist 0 < cgp < 1 and v € MY} (Q) N Lipy, () such that
[Vl 321 () S Mlull vy and

lim |v — Tu(x)| dp =0
r—07, B(z,r)NQ

for H-a.e. x € 0.
If additionally Q is a uniform domain, then v can be chosen in M1 (2) N Lip;,.(Q).

Similarly to Corollary 1.5, from Theorem 1.6 and Theorem 1.7 we obtain the following
corollary.

Corollary 1.8. Let 2 C X be a uniform domain and suppose that §) satisfies the measure
doubling condition (2.5). Then for any given boundary measure H, the trace spaces of
NUYY(Q) and MY (Q) with respect to any boundary measure H on OS2 are the same.

The paper is organized as follows. In Section 2, we give the necessary preliminaries.
In Section 3, we study the traces of N'' and BV and give the proofs of Theorems 1.2-1.4
and Corollary 1.5. In Section 4, we study the traces of N'! and M*'! and give the proofs
of Theorem 1.6, Theorem 1.7, and Corollary 1.8. Finally, in Section 5, apart from giving
several examples that we refer to in Section 3 and Section 4, we also discuss some trace
results and examples obtained as applications of Corollary 1.5 and Corollary 1.8.

Acknowledgments. The authors would like to thank Pekka Koskela and Nageswari
Shanmugalingam for reading the manuscript and giving comments that helped improve
the paper.

X. L. is supported by NNSF of China (No. 11701582). Z. W. is supported by the
Academy of Finland via Centre of Excellence in Analysis and Dynamics Research (No.
307333) and partially supported by the grant 346300 for IMPAN from the Simons Foun-
dation and the matching 2015-2019 Polish MNiSW fund.

2 Preliminaries

In this section we introduce the notation, definitions, and assumptions used in the paper.

Throughout this paper, (X,d, ) is a complete metric space that is equipped with a
metric d and a Borel regular outer measure u satisfying a doubling property, meaning that
there exists a constant Cy > 1 such that

0 < pu(B(x,2r)) < Cau(B(x,r)) < 0o



for every ball B(z,r) := {y € X : d(y,z) < r}. By iterating the doubling condition, for
every 0 <r < R and y € B(x, R), we have

BB _ (Y’
e 2 (w) =0

for any s > log, Cy. See [13, Lemma 4.7] or [6] for a proof of this. We fix such an s > 1
and call it the homogeneous dimension.

The letters ¢, C' (sometimes with a subscript) will denote positive constants that usually
depend only on the space and may change at different occurrences; if C depends on a, b, .. .,
we write C'= C(a,b,...). The notation A ~ B means that there is a constant C' such that
1/C-A < B<C(C-A. The notation A < B (A 2 B) means that there is a constant C' such
that A<C-B(A>C"-B).

All functions defined on X or its subsets will take values in [—o00,00]. A complete
metric space equipped with a doubling measure is proper, that is, closed and bounded sets
are compact. For an open set 2 C X, a function is in the class L%OC(Q) if and only if it is
in LY(€Y') for every open Q' € Q. Here Q' € Q means that €’ is a compact subset of (2.
Other local spaces of functions are defined similarly.

For any set A C X and 0 < R < oo, the restricted spherical Hausdorff content of
codimension 1 is defined as

Hp(A) := inf ZM: Ac|JB(zjr), 1 <R, ICNy. (2.2)

jeI "j jeI
The codimension 1 Hausdorfl measure of A C X is then defined as

H(A) == lim Hp(A). (2.3)

Given an open set {2 C X, we can regard it as a metric space in its own right, equipped
with the metric induced by X and the measure u|q which is the restriction of p to subsets
of Q. This restricted measure p|q is a Radon measure, see [20, Lemma 3.3.11].

We say that an open set () satisfies a measure density condition if there is a constant
Cm > 0 such that

(B, N Q) > cppu(Ba, 7)) (2.4)

for every z € Q and every r € (0,diam(2)). We say that Q satisfies a measure doubling
condition if the measure u|g is a doubling measure, i.e., there is a constant ¢; > 0 such
that

0 < p(B(x,2r)NQ) < cqu(B(z,r)NQ) < 00 (2.5)

for every x € Q and every » > 0. Notice that if Q satisfies the measure density condition,
then it satisfies the measure doubling condition.

By a curve we mean a rectifiable continuous mapping from a compact interval of the
real line into X. A nonnegative Borel function g on X is an upper gradient of a function
u on X if for all nonconstant curves -, we have

|M@—u@ﬂ§/g®, (2.6)

v



where x and y are the end points of v and the curve integral is defined by using an arc-length
parametrization, see [19, Section 2] where upper gradients were originally introduced. We
interpret |u(xz) — u(y)| = oo whenever at least one of |u(x)|, |u(y)| is infinite.

We say that a family of curves I' is of zero 1-modulus if there is a nonnegative Borel
function p € L'(X) such that for all curves v € T, the curve integral f7 pds is infinite. A
property is said to hold for 1-almost every curve if it fails only for a curve family with zero
1-modulus. If g is a nonnegative py-measurable function on X and (2.6) holds for 1-almost
every curve, we say that g is a 1-weak upper gradient of u. By only considering curves =
in A C X, we can talk about a function g being a (1-weak) upper gradient of u in A.

Given a p-measurable set H C X, we let

lullj ey = llull gy +inf gl 2oy,

where the infimum is taken over all 1-weak upper gradients g of u in H. The substitute
for the Sobolev space W1 in the metric setting is the Newton-Sobolev space

NUHH) = {u s [full via gy < oo},

which was first introduced in [35]. It is known that for any u € Nﬁ)’cl (H) there exists a
minimal 1-weak upper gradient of v in H, always denoted by g,, satisfying g, < g u-a.e.
in H, for any 1-weak upper gradient g € L] (H) of u in H, see [6, Theorem 2.25].

Next we present the basic theory of functions of bounded variation on metric spaces.
This was first developed in [1, 32]; see also the monographs [3, 9, 10, 11, 42] for the classical
theory in Euclidean spaces. We will always denote by {2 an open subset of X. Given a

function u € L{ .(£2), we define the total variation of u in © by

loc

|Dul|(2) := inf {lim inf/ Gu; A : u; € Nl’l(Q),ui — uin L%OC(Q)} , (2.7)
11— 00 [¢)

where each g, is the minimal 1-weak upper gradient of u; in Q. (In [32], local Lipschitz
constants were used in place of upper gradients, but the theory can be developed similarly
with either definition.) We say that a function u € L'(Q) is of bounded variation, and
denote u € BV(R), if || Dul[(©2) < co. For an arbitrary set A C X, we define

||Dul|(A) := inf{||Du||(W): A C W, W C Xis open}.

Proposition 2.8 ([32, Theorem 3.4]). If u € LL (), then || Dul|(-) is a Borel measure on
Q.

For any u,v € L{ _(Q), it is straightforward to show that
1D (u +0)[[(2) < | Dul[(2) + [ Dof[(£2). (2.9)
The BV norm is defined by

ullBv (o) = [lullLr ) + [[Dul|(€2).



We will assume throughout the paper that X supports a (1,1)-Poincaré inequality,
meaning that there exist constants Cp > 0 and A > 1 such that for every ball B(x,r),
every u € L1 (X), and every upper gradient g of u, we have

loc
][ U — up(er du < CPT][ gdu,
B(z,r) B(z,Ar)

where
1

UB(p.r) = ud ::/ wdyt.
Blzr) ][B(ac,r) : ,U(B(Z‘,T)) B(z,r) :

Recall the exponent s > 1 from (2.1). The (1, 1)-Poincaré inequality implies the so-called
Sobolev-Poincaré inequality, see e.g. [6, Theorem 4.21], and by applying the latter to
approximating locally Lipschitz functions in the definition of the total variation, we get
the following Sobolev-Poincaré inequality for BV functions. For every ball B(x,r) and
every u € LL (X), we have

loc

(s—1)/s
Dul|(B(z, 2)
(é ( )|u_u3(xvr)|s/<s_1>du> c e IDulBE )

u(B(z, 2xr))

where Cgp = Csp(Cq,Cp, ) > 1 is a constant.
For an open set 2 C X and a p-measurable set F C X with || Dxgl/(©2) < oo, we know
that for any Borel set A C €2,

IDxel) = [ opan (2.11)
0*ENA

where 0g: X — [a, Cy] with a = a(Cy,Cp, A) > 0, see [1, Theorem 5.3] and [4, Theorem
4.6]. The following coarea formula is given in [32, Proposition 4.2]: if Q C X is an open
set and v € L (), then

loc

|Dul|(22) = / P({u > t},Q)dt. (2.12)
—0o0
The lower and upper approximate limits of a function w on €2 are defined respectively
by
. <t}NB(z,1))
MNx) = teR: 1 piu : =0
e = {t R iy HEEE A
and

Vi) e iy PHu >0 Bz, 1))
u’(x) .—1nf{t€R.}1_r>% (B.1) —0}.

Then the jump set S, is defined as the set of points z € Q for which v (z) < u(z). It is
straightforward to check that v and «" are Borel functions.

By [4, Theorem 5.3], the variation measure of a BV function can be decomposed into
the absolutely continuous and singular part, and the latter into the Cantor and jump part,



as follows. Given an open set  C X and u € BV(Q2), we have for any Borel set A C Q

[Dul[(A) = [|Dul[*(A) + || Dul|*(A)
= || Dul|*(A) + || Dul|*(A) + || Dull? (A)

uY (z)
— [adus D@+ [ [ g ) dtan(a),
A ANSy u/\(x)

(2.13)

where a € L*(Q) is the density of the absolutely continuous part ||Dul||%(A) of || Dul|(A)
and the functions 0,~ € [a, Cy4] are as in (2.11).

Next, we introduce the Hajtasz-Sobolev space. Let 0 < p < co. Given a py-measurable
set K C X, we define M'P(K) to be the set of all functions u € LP(K) for which there
exists 0 < g € LP(K) and a set A C K of measure zero such that for all z,y € K\ A we
have the estimate

u(x) —u(y)| < d(z,y)(9(x) + 9(y))- (2.14)
The corresponding norm (when p > 1) is obtained by setting

HUHMLP(K) = HUHLP(K) + inf ”gHLI’(K)a

where the infimum is taken over all admissible functions g in (2. 14) We refer to [12, 13] for
more properties of the Hajlasz-Sobolev space MP. The space Mc P(K) is defined exactly
in the same manner as the space M'P(K) except for one difference: in the definition of
MAP(K), the condition (2.14) is assumed to hold only for points z,y € K \ A that satisfy
the condition

d(x7y) SCH'min{d(xvx\K)vd<an\K)}v (2'15)

where 0 < ¢y < 1 is a constant.
We give the following definitions for the boundary trace, or trace for short, of a function
defined on an open set §2.

Definition 2.16. Let 2 C X be an open set and let u be a p-measurable function on €.
A number Tu(z) is the trace of u at z € 99 if we have

lim |u — Tu(z)|dp = 0. (2.17)
r—=0%) B(z,r)nQ

We say that u has a trace Tu in 0 if Tu(x) exists for H-almost every x € 0f2.

Moreover, we give the following definitions for the trace space of a function space defined
on an open set ().

Definition 2.18. Let 2 be an open set and let X(Q2) be a function space on Q. A function
space Y(0€2, H) on 0 is the trace space of X(2) if the trace operator u — Tu defined in
Definition 2.16 is a bounded linear surjective operator from X(Q2) to Y(0€, H).

Definition 2.19. Let Q be an open set and 7 be a measure on 0€2. Let X(£2) be a function
function space on Q. A function space Y(0€2,H) on 02 is the trace space of X(§2) with
respect to H, if the trace operator u +— T'u defined in Definition 2.16 by replacing H by H
is a bounded linear surjective operator from X(Q) to Y(0€2, H).



3 Traces of N (Q) and BV(Q)

In this section, let 2 C X be an arbitrary nonempty open set. Recall the definition of the
number s > 1 from (2.1).

Lemma 3.1. Let u € L (Q) with |Dul|(Q) < co. Then there exists a sequence (u;) C

loc

Lipy,.(Q2) such that u; — u in Lfo/(sfl)(ﬂ) and

C
1Dul(@) = Jim [ g, do
1—00 0

Proof. By the Sobolev-Poincaré inequality (2.10), we have u € Li{c(sfl)(Q). Take open
sets 1 € Qp € ... € Q=29 Nowu € Lo/(s=1(Q;) for each j € N. Define the
truncations

upr = min{ M, max{—M,u}}, M >O0.

For each j € N we find a number M; > 0 such that [Juag — ullps/c-1q,) < 1/j. From
the definition of the total variation, take a sequence (v;) C Lip,.(£2) such that v; — u in
L} .(Q) and

1Dul(@) = Jim [ g, dn
1—>00 Q

Then also (v;)n; — up, in Ls/(sfl)(Qj) for all j € N. Thus we can pick indices i(j) > j
such that || (vi())a; — wagyllpsr-1(q,) < 1/ for each j € N. Defining u; := (v;(;))a;, we
now have

|u; — UHLS/(s—l)(Qj) <2/j forall j €N

s/(s=1)

and so u; — v in L))" 7'(£2). Moreover, since truncation does not increase energy,

timsup [ g, du < [ Du(©).
j—00 Q
But by lower semicontinuity, also || Dul[(€2) < liminf; oo [, gu; dp. O
We have the following standard fact; for a proof see e.g. [16, Proposition 3.8].

Lemma 3.2. Let u € L (Q) with || Dul|(2) < co and let (u;) C Ni)cl(Q) with w; — w in
L1, and

| Dull(©) = lim / g A
71— 00 0

Then we also have the weak* convergence gy, du — d| Du)|.

Lemma 3.3. Let ) € Q3 € ... € U;’;l Q; = Q be open sets, let Qy := 0, and let
nj € Lip.(Q;) such that 0 <n; <1 on X and n; =1 in Q1 for each j € N, with n; = 0.
Let 1 < q < co. Moreover, let u € Li (Q) with |Dul/(Q) < oo, and for each j € N let

loc

(uj;) € NY(Qy) such that uj; —u — 0 in LI(8;) and

lim Guj; dp = ”DUH(QJ)’
Q2

1—00

9



where each gy, ; is the minimal 1-weak upper gradient of u;; in Q;. Finally, let ; > 0 for
each j € N, and let € > 0. Then for each j € N we find an index i(j) such that letting
uj = wj ;) and

Z = 1j-1)uj,

j=2
we have
max{[[v —ul|p1 o\, 1) v — ullza@pe, )} <d; forallj €N,
and [¢, go dp < || Dul[(Q2) + .
Note that neither u nor the functions u;; need to be in L9(€);), only in L'(£;), but

still we can have u;; —u — 0 in L9(Q;) for each j € N. We can also see that in ; \ Q;_1,
the function v can be written as the finite sum (let 79 = 0)

o

> i = mim)ui = (nj — nj—1)uj + (i1 — mi)ujer = nyu; + (1= nj)uj41. (3.4)
=2

Proof. By Lemma 3.2, for each j € N we have g, ; du X d||Du|| as i — oo in ;. For each
J €N, let L; > 0 denote a Lipschitz constant of 7;; we can take this to be an increasing
sequence. Set 6o := 1, Lo := 1. Letting u; := u;;(; for suitable indices i(j) € N, we get
max{||uj — ull L (o)), 1wy — ullpao,)} < min{d;_1,8;,27 7 e/L;}/2 (3.5)
for all 7 € N, and
=i, e < [ oy =m0 diDul + 27 (36)
j j

forall j =2,3,.... We get for all j € N

v = ullza\, 1) = ||Z = Ni—1)ui — ullLae,\0; 1)

(34)
Hﬁj“ﬁ + (1 —mj)ujt1 — UHLq(Qj\ijl)

= [Inju; + (L = nj)ujs1 — nju — (1 = nj)ullLaono, )

< luj —ullLan0,-) + 1w+ — ullLaoo, )

< (Sj
by (3.5) as desired, and similarly for the L'-norm. Let vy := ug in g, and recursively
Vg1 = N0 + (1 — mi)uipr in Q1. We see that v = lim;_,o v; (at every point in 2). By
the proof of the Leibniz rule in [6, Lemma 2.18], the minimal 1-weak upper gradient of v
in Q3 satisfies

Gos < G U2 — Ul + M2guy + (1 = 12)Gus-
Inductively, we get for i = 3,4, ...

Gv; < Zgn]|uj uj1] + Z —Nj-1 guj (1= mi-1)gu, in Qi

10



to prove this, assume that it holds for the index i. Then we have by applying a Leibniz
rule as above, and noting that g,, can be nonzero only in ©;\ Q;_; (see [6, Corollary 2.21]),
where v; = u;,

g’U—L+1 S g?]i|vi - ui+1‘ + nzgvl + (1 - ni)guzurl
= gﬂi |ul - ui+1| + Thgvz + (1 - ni)guiﬂ

i—1
Induction
< gni‘ui — Uiy 1| +Zg77j‘uj *Uj+1’
=2
1—1
+ Z(nj - nj—l)guj + (ni - 771‘—1)9ui + (1 - ni)gui-ﬂ
j=2

= Zgn]‘uj ujp| + Z = 1j-1)9u; + (1 = 0i)Gu;yy 0 Qigr.

This completes the induction. In each ©; \ Q;_1, by (3.4) we have
v =njuj + (1= nj)uj = v + (L= nj)uje1 = vjy,

and so in fact v = vj41 in £, for each j € N. Thus the minimal 1-weak upper gradient of
v in Q; satisfies

= Guip1 < ZQUJWJ ujr1] + Z = 1j-1)Gu;-

Thus
/gvdu<2/ sl = uﬁudwz/ ~ 1),

<ZL lwj = wjsrllr@ne,- 1)+Z (/ (nj = nj—1) dl| Dul| + 27 Jé) by (3.6)
Jj=

j=2
< e/2+ | Dul|(Q) +¢/2 by (3.5), (3.6)
= || Dul|(R2) + «.

Note that g, does not depend on i, see [6, Lemma 2.23], and so it is well defined on €. Since
gy is the minimal 1-weak upper gradient of v in each 2;, it is clearly also (the minimal)
1-weak upper gradient of v in 2. Then by Lebesgue’s monotone convergence theorem,

/ godp < | Dul|(9) +
Q

Theorem 1.2 of the introduction follows from the following theorem.

11



Theorem 3.7. Let uw € LL () with |[Dul|(2) < oo and let € > 0. Then there exists

1,1 .
v € Nioo (@) N Lipyo(Q) such that |v — ullpie) < & v = ull ey <& fogudp <

| Dul|(2) + €, and

lo—u|Vdy -0 asr—0F
B(z,r)NQ2

uniformly for all x € 0.

Note that if u € BV(Q) as in the formulation of Theorem 1.2, then v € L'() and so
ve NHL(Q).

Proof. Fix zg € X. Define Qp := () and pick numbers d; € (277,277%1), j € N, such that
the sets
Q= {xeQ: dz,X\Q)>d;j}N B(xo,d; ")

satisfy ||Dul|(0€2;) = 0. For each j € N, take n; € Lip,.(€2;) such that 0 <n; <1 on X and
n; = 1in Q;_1, and 71 = 0. Note that for a fixed r > 0, the function

x = pu(Blx,r)NQ), z e,

is lower semicontinuous and strictly positive. Since 992 N B(xo, dj_l) is compact for every
7 € N, the numbers

Bj = inf{u(B(z,27)NQ): 2 € 9Q ﬁE(xg,dj_iQ)}, jeN,
are strictly positive. Set

0j = 277 min {E, B;/(S_l)} .

By Lemma 3.1 we find functions (u;) C Lip},.(€2) such that u; — u in Ls/(sfl)(Q) and

loc

lim [ gy, dp = | Dul|(2).
Q

1—00

Then also u; — v in LS/(S_l)(Qj) for every j € N, and by Lemma 3.2 and the fact that
| Dul|(0€2;) = 0 we get

1—00

lim [ gu, du = | Dull(2).
Q;

Then apply Lemma 3.3 to obtain a function v € Lipy,.(£2). By the lemma, we have
Jo 9vdp < ||Dul|(2) + € as desired, and from the condition

max{[|v — ull L1 o\0, 1) [0 = ullpre-va, 1y} <6 <277 forall jeN

we easily get [[v — ul|p1q) < € and || — ulpe/-1) () < €. In particular, v € Nlacl(Q) as
desired.
Fix z € 09Q. Choose the smallest [ € N such that z € B(arg,dljrlz). Note that then

B(z,1) N B(wg,d; ") =0 (if I > 2) and so for any k € N,

o

B({L’, 27k+1) nQ = B(az, 27k+1) N ( U (Q] \ Qj1)> .

j=max{k,l}

12



Now

1 / s/(s—1)
v—Uu du
w(B(z,27F) N Q) B(z,27F+1)NQ | |

1 oo

—k

1 N / s/(s=1)
v—u dp
1W(B(z,27F) N Q) j_mzax{k,l} o v —ul

1 - (s—1)/s
)
B Q—k ake) Z J
M( (.%‘, ) j=max{k,l}

/ v — u|8/(871) du
B(w,2*k+1)ﬁQj\Qj,1

IN

IN

IN

Pl w(B(z,277)NQ)

D
j=max{k,l}

Now it clearly follows that
][ lo—ul¥Vdy -0 asr— 0"
B(z,r)NQ

uniformly for all z € 99Q. O
We have the following approximation result for BV functions in the L¢-norm.

Theorem 3.8. Let u € L (Q) with || Dul|(Q) < 0o and let 1 < q < co. Then there exists

loc

a sequence (u;) C N2N(Q) such that u; —u — 0 in L'(Q) N LY(Q) and

loc

[ 9w~ 1Dul(@).

Q

Proof. For each k =0,1,... define the truncation of u at levels k and k + 1
ug := min{l, (u — k)4 }.

Then uy € L () N L®(Q) for each k = 0,1,... and up = Y oy ug. Also note that by

loc
the coarea formula (2.12),

0 k+1
1Dul(@) = [ P> 0.0 = [ P{u>0)d
—00 k
For each k = 0,1,..., from the definition of the total variation we get a sequence (v;) C
Ni)i(Q) with vg; — wy, in L (Q) and

/ Goy.,; At — || Dug|(Q2)  as i — oo.
Q

13



In the proof of Theorem 3.7 we saw that in fact we can get vy ; — u — 0 in L'(2). Since
0 < ug < 1, by truncation we can assume that also 0 < vg; < 1. Then also vg; — up — 0
in L9(€2). Let ¢ > 0. For a suitable choice of indices i = i(k), for vy := vy ;) we have
2—k—2 27F=2¢ and

vk — ugllL1 (@) < &, [lvk — ukllLa(o) <

k+1
/ Gop At < || Dug || (Q) +27F e = / P({u>t},Q)dt + 27 ¢
Q k

Then for v := Y72 g v we have ||v — uy |11y < /2 and [|v — uy | L) < £/2. Moreover,
using e.g. [6, Lemma 1.52] we get g, < > 77 g, and then

/ngd,u<;)/ﬂgvkdﬂ<kzzo< i

_ /OOP({u = 11,Q)d + /2
0

— | Du () +&/2

k+1
P({u>t},Q)dt + 2"“‘%)

again by the coarea formula. Similarly we find a function w € Nﬁ)’cl () with |lw—u_|[11(q) <
/2, lw —u_||re) < &/2, and [, g dp < ||Du_||(Q) +¢/2. Then for h := v — w we have

Ih— U||L1(Q) <é, [|h—ullpa) <e, and

/Qgh dp < |[Dut||[(Q) +e/2 + [ Du—[|(Q) + /2 = [[Dul|(2) + &

using the coarea formula once more. In this way we get the desired sequence. O

Theorem 1.3 of the introduction follows from the following theorem. In Example 5.1
we will show that here we cannot take u to be continuous or even locally bounded in §2.

Theorem 3.9. Let u € Li () with ||Dul|(2) < oo, let 1 < q < 0o, and let € > 0.
Then there exists v € Nﬁ)’(}(ﬂ) such that [[v —ulp1q) < & v —ullpa) <&, [q9udp <
| Dul|(2) + €, and

][ lv—uldp —0 asr—0F
B(z,r)NQ
uniformly for all x € 0.

Proof. The proof is essentially the same as for Theorem 3.7; the difference is that here we
apply Theorem 3.8 to find sequences (u;;); C NV1(Q;), j € N, such that [uj; —ul| e,y —
0 and limy o foy g dia = [ Dull () a5 i — oc. m

We say that w € SBV(Q) if w € BV(Q2) and ||[Dw][|(2) = 0 (recall the decomposition
(2.13)). Recall also that the jump set S, is the set of points z € Q for which v (z) < u"(z).
Denote (r) := {x € Q: dist(z, X \ Q) > r}. We have the following approximation result
for BV functions by SBV functions.

Theorem 3.10. Let u € BV(QQ) and let € > 0. Then there exists w € SBV(2) such that
lw —ullpi) <& lw—ullpe@) <& [Dw|[() < |[[Dull(Q) +¢&, H(Sw \ Su) =0, and

T_1>%1+||w |l oo (\Q(r))
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Proof. This is given in [26, Corollary 5.15]; for the above limit see [26, Eq. (3.7), (3.10)]. O

The following approximation result for BV functions by means of functions with a jump
set of finite Hausdorff measure is given as part of [27, Theorem 5.3].

Theorem 3.11. Let u € BV(Q) and let £,0 > 0. Then we find w € BV(Q) such that
w—ullL1q) <e,

[D(w —w)[[(Q) < 2| Duf ({0 < u” —u" <d}) + ¢
lw = ul| ooy < 108, and H(Sy \ {u" —u" > 4d}) =0.
We apply this theorem first to obtain the following proposition.

Proposition 3.12. Let v € BV(Q2) and let ¢ > 0. Then we find v € BV(Q) such that
lv—ullgv) <& llv—ullLe@) <&, H(Sy) < oo, and

T_I)%LHU || oo (\Q(r))

Proof. Take numbers d; \, 0, 0 < §; < /20, such that
3 IDull({0 < u¥ — " < 8;}) < i (3.13)
j=2

Note that by the decomposition (2.13), H({u" — u”" > t}) < oo for all £ > 0. Thus we
can take a strictly decreasing sequence of r; \, 0 so that the sets Q; := Q(r;) satisfy (let

QO = @)
H(Q\ Qo) N{u’ —u > 6;}) <H(Q\ Qo) N {u’ —u >4§;}) <277

for all j =3,4,.... Then

i% Qi \ Qo) N{u” —u" > §;}) < H{u' —u" > 8}) +e. (3.14)
Jj=2

Also choose functions n; € Lip(X) supported in ©;, j € N, such that 0 < n; <1 on X
and n; = 1 in Q;_, with 7; = 0. For each j € N, apply Theorem 3.11 to find a function
vj € BV(Q) satisfying

max{|lgn, + gn; [l 1} - [[v; = ull iy <2777 e (3.15)

as well as '
ID(v; —w)[|(Q) < 2| Dul|({0 < u’ — v < §;}) +277 e, (3.16)

vj — ull oo () < 1085, and H (S, \ {u” —u" > d;}) = 0. Let

o0

=) (= mj-1)v;. (3.17)

Jj=2
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Then

o0 [e.e] o0
o=l = IS5 = i) — W)l < S oy — ullpaey < 3279 1e = /4.
j=2 j=2 Jj=2
Since [lv; — ul|feo(q) < 1005 < /2, also [[v — ul|p=(q) < €. It is also easy to check that
lim, o+ [[v = ul| Lo (@\0(r)) = 0-
Clearly Z?:z(ﬁj —nj—1)(vj —u) = v—uin L{ () as k — oo. Thus by lower
semicontinuity and a Leibniz rule (see [17, Lemma 3.2]),

I1D(v —u)|[(2) < liminf
k—ro0

k
‘D > (= nj-1)(v; —w)
j=2

D((nj = nj-1)(v; —u))[[(€) by (2.9)

Z (IID j—u ||(Q)+/(gnj + gy )| — 4l dﬂ)

8||M8

o
< Z 2IDul|({0 < u” —u* < 8;}) +27 7 e) + > 2777 e by (3.16), (3.15)
j=2 =2
<e/2+¢e/4+¢e/4 by (3.13)
=e.
Finally we want to show that H(S,) < oco. Note that (3.17) is a locally finite sum. If

T € S(y;—n;_1)v;» then we get @ € Sy, and so S, C UjZy (Su; N (€25 \ Qj—2)). By the fact
that H(Sy, \ {u¥ —u”" > d;}) =0 for all j € N and by (3.14), we find that

o) <D H(Sy, N\ Q2) < ) H{u" —u" > 630 (Q5\ Q-2))
—2

j=2
<H{u" —u" > 8}) +e < oo,
as desired. ]

Now we can prove Theorem 1.4 of the introduction. In Example 5.2 we will show that
here we cannot have H(S,) = 0.

Proof of Theorem 1.4. First apply Proposition 3.12 to find w € BV(Q2) such that ||& —
ullpy (o) <e/4, H(Sp) < oo, and

1i - o =0.
Jim, |0 — ull oo (\0(r)

Then apply Theorem 3.10 to find w € SBV(Q) such that [|w — @11y < £/4, [[Dwl[|(R2) <
| Dw]|(2) + /4, H(Sw \ S5) = 0, and

Jim, lw — || oo (\00r))
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In total, we have w € SBV(Q) such that [[w — u||z1(q) < &/2, [[Dw||(Q) < ||Dul|(22) +¢/2,
H(Sy) < oo, and
Jim {fw = ull oo o))

Take Q' € Q such that [[Dw[[(Q\ Q) < &/2 and H(S, \ ) < g, and take a function
n € Lip.(Q) with0 <7 <1on X andn =1in Q. From the definition of the total variation,
take a sequence (w;) C Lipjo.(2) such that w; — w in LL () and lim; o || Dw;[|(2) =
[[Dw||(2). Define for each ¢ € N

v = nw; + (1 —nw.

Then clearly lim; o [|v;i — w|[1() = 0 and by a Leibniz rule (see [17, Lemma 3.2]) and
since g, is bounded,

[ Dvil|(2) < /Q |wi — w|gy dp+ [[Dwi[[(Q) + | Dw]| (2 \ )
= [Dwl[(Q) + [ Dw](2\ Q) < || Dul[(Q) +&.

Thus if we choose v := v; for suitably large i € N, we have ||[v—ul|1(q) < € and || Dvl[|(Q2) <
[Dul|(2) + €, and so in particular v € BV(Q). It is then easy to check that in fact
v € SBV(Q). Since S, = 0 for all i € N, we have S,, C S, \  for all i € N, and since
H(Sw \ ) < ¢, in fact H(S,) < e. Finally,

Jim o =l o \o(ry) = M flw = ull Lo (@\0(r)) = 0

as required. O

To complete this section, we give the proof of Corollary 1.5 by using Theorem 3.7 (or
Theorem 3.9).

Proof of Corollary 1.5. Assume that Z(0S2, H) is the trace space of BV(Q2), i.e., the trace
operator u +— T'u in Definition 2.16 is a bounded linear surjective operator from BV (Q) to
Z(092,H). From the definition of the total variation (2.7) we immediately get N>1(Q) C
BV(Q) with || - lgv(q) < || - [[N11(q)- Thus the trace operator u — T is still a bounded
linear operator from N11(Q) to Z(9€, H). Hence it remains to show the surjectivity. For
any f € Z(0Q,H), we know that there is a function v € BV(Q) such that Tu = f. Tt
follows from Theorem 3.7 (or Theorem 3.9) that there is a function v € N'1(£2) such that
Tv="Tu= f, since

lim o~ f(z)]dp < lim = vl + u— £(z)|dp
=0t/ B(2,r)nQ r—=0%) B(2,r)nQ
(s=1)/s
< lim ][ lu—v|** L dp + lim lu— f(x)|du
=0t \JB(z,r)NQ =0t/ B(z,r)nQ
=0, for H-a.e. x € 0N. (3.18)

This gives the surjectivity as desired.
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Conversely, assume that Z(0,H) is the trace space of N11(Q), i.e., the trace operator
u + T in Definition 2.16 is a bounded linear surjective operator from N1 (Q) to Z(99, H).
Then for any h € BV (§2), without loss of generality, we may assume that ||A[|gy () > 0. By
Theorem 3.7, choosing & = ||h||lgy(q)/2, there is a function v € N1(€) with [Jv]|y11(q) <
2|[hllgv (e and

][ lo—h|¥EVdy -0 asr—0F
B(z,r)N2

uniformly for all x € 9Q2. Then we have that Th = T'v by a similar argument to (3.18),
and that

TRl z@aom) = TV]z@0,7) S Vvt < 2hByve)-
Hence the trace Th exists for any h € BV(2) and the trace operator h — Th is linear and

bounded from BV (Q) to Z(092, H). Moreover, the surjectivity of the trace operator follows
immediately from N11(Q) € BV(£2). Thus Z(9€, H) is also the trace space of BV(Q). [

Remark 3.19. The trace spaces of BV(Q2) and N*'(Q) are also the same with respect to
any given boundary measure H under Definition 2.19.

4 Traces of N1'1(Q) and M11(Q)

In this section, let 2 C X be an arbitrary nonempty open set with nonempty complement.

We will work with Whitney coverings of open sets. For a ball B = B(x,r) and a
number a > 0, we use the notation aB := B(z,ar). We can choose a Whitney covering
{Bj = B(zj,1;)};2; of Q such that:

1. for each j € N,
r; = dist(z;, X \ ©Q)/100A,

2. for each k € N, the ball 20ABj, meets at most Cyp = Co(Cy) balls 20AB; (that is, a
bounded overlap property holds),

3. if 20ABy, meets 20AB;, then r; < 2ry;

see e.g. [20, Proposition 4.1.15] and its proof. Given such a covering of Q, we find a
partition of unity {¢; }]Oil subordinate to the covering, that is, for each j € N the function
¢; is ¢/r;-Lipschitz, ¢ = ¢(Cyq), with spt(¢;) C 2B;j and 0 < ¢; < 1, such that Ej ;=1
on ; see e.g. [20, p. 103]. We define a discrete convolution uy of u € L%OC(Q) with respect
to the Whitney covering by

o)
uw = E qu¢j~
Jj=1

In general, uy € Lipy. () C LL ().

loc

Theorem 4.1. For any function u € N1 (Q), there exists a constant 0 < cy = cg(\) < 1
such that the discrete convolution uw of u with respect to the Whitney covering {B; =
B(xj,mj)}32, is in ML) with the norm estimate

ol grs1 gy < Nl -
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Proof. First we consider the L'-norm of wy. By the bounded overlap property of the
Whitney covering {B; = B(w;,7;)}32,, it follows from the facts spt(¢;) C 2B; and 0 <

oo o0
luw 1) < ZM(QBJ‘)][ lul dp < CdZ/ lul dp S [Jull o)
j=1 B; j=1"B;

Next, for the minimal 1-weak upper gradient g, of u, we will give an admissible function
g that satisfies (2.14) when the pair of points x, y satisfy (2.15) with ¢y = 1/50X. We claim
that the admissible function g can be defined as follows: for any point x € 2, we define

g(z) :=C ; XB; (:v)]éowj Ju dp (4.2)

with C' = C(Cy,Cp, \). Indeed, for any pair of points z,y € Q satisfying (2.15), without
loss of generality, we may assume that dist(z, X \ Q) < dist(y, X \ Q) and = € Bj, y € B;
for some 7, j € N. Recalling the properties of the Whitney covering, we have that

dist(z, X \ Q) < dist(z;, X \ Q) +r; = (100X + 1)r;.
Hence we have
1
d(y,z;) < d(z,y) +r; < 0N dist(z, X \ Q) +1r; < 4rj,

which means y € 4B;. Hence 20AB; N 20AB; # (), and so r; < 2r;. Hence B; C 10B;.
Moreover, if 2B, N B; # 0, then i, < 2r; and so By, C 6B; C 20B;. Recall that the function
¢ is ¢/r-Lipschitz for any k € N and that ), ¢ = 1 on 2. Then by the bounded overlap
property of the Whitney covering and the Poincaré inequality for u and g,, we have that

uw () — uw (y)| =

> up,dr(r) = up,dk(y)
k=1 k=1

=1 (up, —up,)ér(x) =Y _(up, —up,)dr(y)
k=1 k=1
< |uBk _qu||¢k(x) _¢k(y)|
k=1
C
{k:2ByN(B;UB;)#0}
C
S d(z, y)][ lu — u20p, | du (4.3)
TjJ20B;
< Cd(x,y)][ Gu dpt,
20AB,;

where C' is a constant depending on A, ¢, Cy,Cp and Cjy only, and thus in fact only on
Cy,Cp, A. Thus, the function g defined in (4.2) is an admissible function for uyy .
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At last, we show the L'-norm estimate for g. It follows from the bounded overlap
property of the Whitney covering that

[o@an@ <X [ s@due) s uB)f gud

20AB,;

j=17Bi j=1
<3 / gu(2) du(2) < / 9u(2) dpr(z) = [lgull 1)
i1 /200B; Q

Recall the homogeneous dimension s > 1 from (2.1).

Theorem 4.4 ([13, Theorem 9.2]). Let 0 > 1 and let B = B(x,r) be a ball in X. If
u € MY (aB,d, ;1) and g is an admissible function in (2.14), where p > s/(s + 1), then

1/p
][ |u—uB|d,u§Cr<][ gpdu> , (4.5)
B oB

with C depending on Cy, p, and o only.

Next we will consider the relationship between Mc:!(Q) and M1 (Q). The next theorem
shows that when Q C X is a uniform domain, M. (Q) and M(Q) are the same. The
case X = R", i.e. the Euclidean case was proved in [23, Theorem 19]. Before stating the
theorem, we first give the definition of uniform domain.

Definition 4.6. A domain 2 C X is called uniform if there is a constant ¢y € (0, 1] such
that every pair of distinct points x,y € Q can be connected by a curve v: [0,4,] —
parametrized by arc-length such that v(0) = z, v(¢y) =y, £, < c&ld(x, y), and

dist(y(t), X \ Q) > cy min{t, ¢, —t} for all t € [0,4,]. (4.7)

Theorem 4.8. Assume Q2 C X is a uniform domain. Then for any 0 < cyg < 1, we have
MENQ) = MYY(Q) with equivalent norms.

Proof. Choose arbitrary x,y € ). By modifying the standard covering argument in uniform
domains (see [14, 15, 23] for details), from the uniformity condition we deduce easily that
there is a chain of balls By resembling a cigar that joins the points x and y. More precisely,
there are balls By := B(zg,ri) with k € Z and z; € Q such that for each k one has for
some ¢ = (N, ¢, cu)

1
15\ /egBr € 2 and  rp > gmin{d(zk,x),d(zk,y)},

with also By N Br1 # 0, and /2 < rpyq < 2rg. In addition, limy_, o d(z, Bx) = 0 =
limy,_, oo d(y, By). Finally, we may assume that -, ., < C'd(z,y).

Let u € M2} (Q) with admissible function g € L*(Q). We can zero extend g outside €.
Since 15\ /ey By C  and ¢y < 1, then for any g, yo € 5ABj, we have

d(xo,y0) < 10Arg < cg (15X /cg — 5N < eg min{dist(xg, X \ ), dist(yo, X \ Q)}.
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Hence, for any zg,yo € 5ABy, the condition (2.15) is satisfied. Thus, u € MY (5ABy,) for
any k € Z. It follows from the Poincaré inequality in Theorem 4.4 on the ball 5B with
o = A that

(s+1)/s
|UBk - uBk+1‘ 5][ |u - U53k| 5 Tk (][ gs/(s+1) d:u)
5B} 5A\By

(s+1)/s
Sk (f g+ du)
(5A+2¢) By,
(s+1)/s (s+1)/s
S (Moo 0@) T 4 (g 0) ).

where s is the associated homogeneous dimension. Here the last inequality follows from
the fact that either x or y is contained in 2¢'By C (5\ + 2¢) Bg.

If z,y are Lebesgue points of u, we have |u(z) — u(y)| < > .czlup, — up,,,|- By
summing over k, it follows that

u(z) —u(y)| < d(z,y)(9(x) + 3(y)),
~ o s/(s+1) (s+1)/s . .
where g(z) = 2C (Mg (z)) . The conclusion follows from the Hardy-Littlewood
maximal inequality. O

Remark 4.9. From the proof of Theorem 4.8, we know that if X is a geodesic space, i.e., for
any x,y € X, there exists a curve vy in X such that ¢, = d(x,y), then ML Q) = MG Q)
with equivalent norms for any two constants 0 < ¢1,ce < 1. This fact coincides with the
case ) C R™ where R"” is a geodesic space. When Q) C R", for any 0 < cy < 1, we obtain
ML Q) = Mblélll(ﬂ) Here we refer to [23, 41] for more details about the space MblC’L}l(Q)

To “achieve” the boundary values, we need the following proposition.

Proposition 4.10 (28, Proposition 6.5]). Let u € BV(Q2). Then the discrete convolution

uw of u satisfies
1

lim / uy —uldu =0
A G B@) Jaenna Y Y

for H-a.e. x € ON.

The above proposition considers the measure H on 0f2, that is, the codimension 1
Hausdorff measure. But this may not be the measure we really want to study. For ex-
ample, a classical problem is to study the trace spaces of weighted Sobolev spaces on
Euclidean spaces. For the half plane @ = R? := {z = (z1,22) € R? : 25 > 0} and
the measure du(z) = wy(z)dmo(z) with my the 2-dimensional Lebesgue measure and
wy (z) := log® (max{e, e/|r2|}), A > 0, the codimension 1 Hausdorff measure on 9R? = R
is not even o-finite and hence is not the 1-dimensional Lebesgue measure that we usually
study, see Example 5.7. Thus, it is reasonable to consider the equivalence of the traces of
NLL(Q) and M1(Q) under any general boundary measure H on 9. Thus, we introduce
the following lemma.
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Lemma 4.11. Assume (2 satisfies a measure doubling condition (2.5), i.e., jiq is doubling.
Let u € L () and z € 9Q. Assume that there is a € R such that

lim |u —a|dp = 0.
=0t/ B(2,r)NQ
Then the discrete convolution uw of u satisfies
lim luw — a|dp = 0.
=0t B(z,r)NQ
Proof. In the Whitney covering {By}7°,, recall that for any By = B(xy,7;) we have
ri = dist(zg, X \ Q)/100A. If 2By, N B(z,7) # 0, then
2r +r > d(zk, z) > dist(xg, X \ Q) = 100\,

which implies

U By, C B(z,2r).
{keN: 2B,NB(z,r)#0}

Then we have

o0
/ luw — al dp = / > (drup, — ¢ra)| du
B(z,r)NQ B(z,r)NQ |
< |¢xllup, —aldp
B(z,r)NQ kz—l i
[e.o]
< X2B |uB - a| du
/B(z,r)ﬁﬂ ; g g
o0
< XQB][ |u —a| dpdp
B(z,r)NQ kz—l g By

< Cy Z / lu — a| du
By,

{keN: 2B,NB(z,r)£0}

S[ o ju-da
B(z,2r)NQ

by the bounded overlap property. Thus, the doubling property of o gives the estimate

][ |uw—a|d,u§][ |lu — al dp.
B(z,r)NQ B(z,2r)NQ2

The result follows by passing to the limit. O

Proof of Theorem 1.6, Theorem 1.7, and Corollary 1.8. Theorem 1.6 follows immediately
by combining Theorem 4.1, Theorem 4.8 and Proposition 4.10, while Theorem 1.7 follows
immediately by combining Theorem 4.1, Theorem 4.8 and Lemma 4.11.

For Corollary 1.8, by adapting the proof of Corollary 1.5, we obtain the result using
Theorem 1.7. Note that M (Q) € N1(Q) with ||-||y1i) < |- [larr1(q), see [13, Theorem
8.6]. O
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5 Examples and applications

The following example shows that in Theorem 1.3 we cannot take a function v € Lip;,.(€2),
or even v € L® ().

loc

Example 5.1. Let X = R? (unweighted) and let Q := B(0,1). We find a sequence {x}
that is dense in B(0,1). Take

up(x) = |z — | VE kel

Then |lug||f1(q) < oo and the minimal 1-weak upper gradient satisfies (see [6, Proposition
A.3])

9up () = [Vug(z)] = (=1 + 1/k)|x — x| 72F/*

and so

/ Guy dz S / |z — x| 2V R e < / 2|72k d < .
B(0,1) B(0,1) B(0,2)

u(z) == 227]“ el

p lurll v (so,y)

Let

Then using e.g. [6, Lemma 1.52] we see that u has a 1-weak upper gradient

Z 2—k Guy,

A HUkHNl«l(B(o,n)’

which implies v € NY1(B(0,1)). We know that the homogeneous dimension s of R? is 2,

and then —*; = 2. On the other hand, we can see that for any ¢ > 2, we have for all

sufficiently large k € N

/ lug|?de = oo for all r > 0,
B(zy,r)NB(0,1)

and then for all balls BNB(0, 1) # () we have meB(o 1 |u|?dx = oo. Givenv € Lip,,.(B(0,1)),

we know that v € L _(B(0,1)). Therefore we have [[v — |l o(pnp(0,1)) = oo for all balls

BN B(0,1) # 0, which contradicts the desired conclusion in Theorem 1.3.

The following example shows that in Theorem 1.4 we cannot take a function v with
H(S,) = 0.

Example 5.2. Let X = R? (unweighted) and let  := (—1,1) x (0,1). Define u € BV(Q)

by
0 when z1 <0
u(zy, z2) ==
1 when z; > 0.

Let v € BV(Q) with #(S,) = 0. Since H({0} x (0,1)) > 0, it is now easy to check that
||'U - UHLOO(Q\Q(T)) > 1/2 for all » > 0.
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A direct consequence of Corollary 1.5 and Corollary 1.8 is that under a proper setting,
the trace spaces of the BV space, Newton-Sobolev space, and Hajtasz-Sobolev space are
the same. Hence we can obtain many trace results for the BV and Hajlasz-Sobolev space
directly from trace results for the Newton-Sobolev space obtained in the literature. In
particular, from [29, Theorem 1.1] we are able to obtain the following result.

Theorem 5.3. Let Q) C X be a bounded uniform domain satisfying the measure doubling
condition (2.5). Assume also that (2, d, ulq) admits a (1,1)-Poincaré inequality. Let 0
be endowed with an Ahlfors codimension 0-reqular measure v for some 0 < 6 < 1. Then
the trace spaces of NV (Q, p), BV(Q, 1) and MYY(Q, p) are the same, namely the Besov
space Bi;@(a(z, v).

We say that 92 is endowed with an Ahlfors codimension f-regular measure v if there
is a o-finite Borel measure v on 9f) and a constant cg > 0 such that

p(B(z,r) N )

(B NQ)
< r@

70

o v(B(z,r)NON) < ¢y (5.4)
for all z € 92 and 0 < r < 2diam 2. The Besov space Bhe(aQ, v) consists of L!-functions

of finite Besov norm that is given by

7) ~ uly) d
g omy = Villson + [ [ f O ) avi §

The above theorem seems to be new even for BV and M! functions in the (weighted)
Euclidean setting. As an illustration, we give an example in weighted Euclidean spaces.

Example 5.5. Let Q = D C R? be the unit disk with 9Q = S' the unit circle. Take the
measure du(z) = dist(x,S') =% dma(x) with 0 < a < 1 and ms two-dimensional Lebesgue
measure. Then by a direct computation, dist(z,S')™® with 0 < o < 1 is an Aj-weight and
hence p supports a (1,1)-Poincaré inequality, see [18, Chapter 15]. Moreover, it is easy
to check that the 1-dimensional Hausdorff measure H' on S' is an Ahlfors codimension
(1 — a)-regular measure, i.e., H' on S! satisfies (5.4) with § = 1 — . Hence we obtain from
Theorem 5.3 that the trace spaces of N1(D, 1), BV(D, i), and M>1(D, ) are Bt (SY,HY).
It is also known from the classical trace results of weighted Sobolev spaces that the trace
space of NL1(DD, 1) is the classical Besov space Bﬁl(Sl, HY). Here we refer to [33, 38, 39] for
the trace results for weighted Sobolev spaces on Euclidean spaces and refer to the seminal
monographs by Triebel [37] for more information on Besov spaces.

On the other hand, using our theory it is also possible to obtain new trace results
for Hajlasz-Sobolev or Newton-Sobolev functions from the known trace results for BV
functions. In particular, from [30, Corollary 1.4] we are able to obtain the following trace
results.

Theorem 5.6. Let Q2 C X be a bounded uniform domain that satisfies the measure density
condition (2.4) and admits a (1,1)-Poincaré inequality. Assume also that the codimension
1 Hausdorff measure H is Ahlfors codimension 1-reqular. Then we have that the trace
spaces of BV(Q, 1), NV (Q, 1) and MYY(Q, i) are the same, namely the space L*(92,H).
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When Q =D, 9Q = S!, u = my the 2-dimension Lebesgue measure and H ~ H' the
1-dimension Hausdorff measure, the above theorem coincides with the classical results that
the trace spaces of BV(D) and N''(D) are both L'(S'). Moreover, the above theorem
gives that L'(S!) is also the trace space of M11 (D), which seems to be new even in this
case.

The above Theorem 5.3 and Theorem 5.6 both require that the boundaries are endowed
with some codimension Ahlfors regular measure. In the following, we will give an example
where the measure on the boundary do not satisfy any codimension Ahlfors regularity.

Example 5.7. Let Q = RY := {z = (21,22) € R? : 29 > 0} and take the mea-
sure du(x) = wy(x) dma(x) with mg the 2-dimensional Lebesgue measure and wy(z) =
log® (max{e,e/|z2]}), A > 0. For any 2 € R = 9Q and 0 < r < e~2*, let Q(z,r) denote
the cube parallel to the coordinate axes with center x and sidelength r. Then we have the
estimate

/2

roopr/2 r
Q1)) = 2 /0 /0 log (¢ |za]) s dary = 21 /0 log? (e /1) dt ~ 12 log*(e/r). (5.8)

Here the last equality holds since we have

(tlog’\(e/t)>, = log(e/t) (1

A
— ———— ) =log*(e/t), for 0 <t<r<e A
log(e/t)> og™(e/t), for <r<e
By using the estimate (5.8), it follows from the definition of the codimension 1 Hausdorff
measure (2.3) that for any nonempty interval [a,b] in R = ORZ, we have that

Hlla,b) = Jim Hela,b) ~ lim |a—bllog)(e/R) = <.

Hence the codimension 1 Hausdorff measure H on R is not even o-finite and is not the
1-dimensional Lebesgue measure that we usually study.

Moreover, the weight wy defined above is a Muckenhoupt A;-weight, since it is easy to
check from estimate (5.8) that

B
W S :JcGiBn(E',r) wy(z), for any z € RZ and r > 0.

We refer to [8] and [18, Chapter 15] for definitions, properties and examples of Muckenhoupt
class weights.

Example 5.9. Let €2, i be as in the above example. Then it is easy to check from estimate
(5.8) that the 1-dimensional Lebesgue measure on R does not satisfy the condition (5.4) for
any 6. We denote by Q the collection of dyadic semi-open intervals in R, i.e. the intervals
of the form I := 27%((0,1] + m), where k € N and m € Z. Write {(I) for the edge length
of I € Q,i.e. 2% in the preceding representation, and Qy for the cubes Q € Q such that
0Q) = 27k For any I € Qy;, denote by I the interval in Qsj—1 containing the interval
I. By applying the methods used in [39] and [25, Theorem 1.3], we are able to use the
dyadic norm similar with the ones used in [24] and [25] to characterize the trace space of

25



Nl’l(Ri, u), which is the Besov-type space B7(R). The Besov-type space B3 (R) consists
of functions in L!(R) of finite dyadic norm that is given by

+o00o
—\i _ 9]
l[ullprmy = HU||L1(R)+Z2 ! Z 27 Jur — ugl.
J=1 I€Q,;

We omit the detailed proof here. Since Ri is uniform domain and satisfies the measure
doubling condition (2.5), hence we obtain that the trace spaces of BV(R%, 1), NV (R?, p)
and M11(R2, 1) are the same, the Besov-type space B7(R).

Example 5.10. The recent papers [7, 25, 40] studied trace results on regular trees. We
refer to [7, Section 2] or [25, Section 2.1] for the definition of regular trees. It is easy
to check that a regular tree is uniform and that it supports (1, 1)-Poincaré inequality by
modifying the proof in [7, Theorem 4.2] under the setting in [7, 25]. Even the definition
of trace in [7, 25, 40] looks different from the one we used here, but [34] shows that they
are equivalent. Hence the trace results of N> in [7, 25] can be immediately applied to BV
and MY!. We omit the detail here and leave it to the interested reader.
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Zhuang Wang

Abstract

In this paper, we study the traces of Orlicz-Sobolev spaces on a regular rooted tree.
After giving a dyadic decomposition of the boundary of the regular tree, we present a
characterization on the trace spaces of those first order Orlicz-Sobolev spaces whose
Young function is of the form ¢P logA(e + t), based on integral averages on dyadic
elements of the dyadic decomposition.

1 Introduction

The problem of the characterization of the trace spaces (on the boundary of a domain)
of Sobolev spaces has a long history. It was first studied in the Euclidean setting by
Gagliardo [13], who proved that the trace operator T : W1P(R7H!) — B,l,;,l/ P(R™), where

B;;l/ P (R™) stands for the classical Besov space, is linear and bounded for every p > 1
and that there exists a bounded linear extension operator that acts as a right inverse of T'.
Moreover, he proved that the trace operator 1" : Wl’l(R?fl) — L'(R") is a bounded linear
surjective operator with a non-linear right inverse. Peetre [40] showed that one can not
find a bounded linear extension operator that acts as a right inverse of 1" : Wl’l(RT'l) —
L'(R™). We refer to the seminal monographs by Peetre [41] and Triebel [47,48] for extensive
treatments of the Besov spaces and related smoothness spaces. In potential theory, certain
types of Dirichlet problem are guaranteed to have solutions when the boundary data
belongs to a trace space corresponding to the Sobolev class on the domain. In the Euclidean
setting, we refer to [1,33,36,45,50,51] for more information on the traces of (weighted)
Sobolev spaces and [8-10,12,29,30,38,39] for results on traces of (weighted) Orlicz-Sobolev
spaces.

Analysis on metric measure spaces has recently been under active study, e.g., 2,4,
16-20]. Especially the trace theory in the metric setting has been under development.

Maly [34] proved that the trace space of the Newtonian space N1P(Q) is the Besov space

B},;e/ P(0Q) provided that €2 is a John domain for p > 1 (uniform domain for p > 1) that

admits a p-Poincaré inequality and whose boundary 052 is endowed with a codimensional-6
Ahlfors regular measure with 8 < p. We also refer to the paper [43] for studies on the traces
of Hajlasz-Sobolev functions to porous Ahlfors regular closed subsets via a method based

2010 Mathematics Subject classfication: 46E35, 30L05
Key words and phases: regular tree, trace space, dyadic norm, Orlicz-Sobolev space
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on hyperbolic fillings of a metric space, see [6,46]. For the trace result of BV (bounded
variation) functions, we refer to [31,32,35].

The recent paper [3] dealt with geometric analysis on Cantor-type sets which are uni-
formly perfect totally disconnected metric measure spaces, including various types of Can-
tor sets. Cantor sets embedded in Euclidean spaces support a fractional Sobolev space
theory based on Besov spaces. Indeed, suitable Besov functions on such a set are traces of
the classical Sobolev functions on the ambient Euclidean spaces, see Jonsson-Wallin [21,22].
The paper [3,25] established similar trace and extension theorems for Sobolev and Besov
spaces on regular trees and their Cantor-type boundaries. Indeed, for a K-regular tree X
with K > 2 and its Cantor-type boundary 0X (see Section 2.1 for the definitions), if we
give the uniformizing metric (see (2.1))

dx(2,y) = / e~l#l 2|
[z,y]

and the weighted measure (see (2.2) )
(L1) dr () = ¥l (ja] + €)Y d o]

on X, then the Besov space Bg”\((?X ) in Definition 2.4 below is exactly the trace of the
Newton-Sobolev space N'P(X, uy) defined in Section 2.3, see [25, Theorem 1.1] and [3,
Theorem 6.5]. Here the smoothness exponent of the Besov space is
p—1_Pl<=Q 0<6<1,
p

where ) = log K /e is the Hausdorff dimension of the Cantor-type boundary and /e — @
is a “codimension” determined by the uniformizing metric dx and the measure p on the
tree.

In Euclidean spaces, the classical Besov norm is equivalent to a dyadic norm, and the
trace spaces of the Sobolev spaces can be characterized by the Besov spaces defined via
dyadic norms, see e.g. [24, Theorem 1.1]. Inspired by this, we give a dyadic decomposition
of the boundary X and define a Besov space Bf,(aX ) on the boundary 0X by using a
dyadic norm, see Section 2.4 and Definition 2.5. We show in Proposition 2.7 that the
dyadic Besov spaces Bg(aX ) coincide with the Besov space Bgm(&X ) and the Hajtasz-
Besov space Ngyp(aX ), see Definition 2.3 and Definition 2.6 for definitions of Bgyp(aX )
and Ng,p(E)X). We refer to [3,14,15,23,26,27] for more information about Besov spaces
Bg,p(') and Hajlasz-Besov spaces Ng’p(') on metric measure spaces.

By relying on dyadic norms, we define the Orlicz-Besov space BZ’AQ((?X ), A2 € R for
the Young function ®(t) = t? log™ (e+t) with p > 1,A\; € Ror p = 1, A\; > 0, see Definition
2.8. Our first result shows that the Orlicz-Besov space B(%’\z(aX ) is the trace space of the
Orlicz-Sobolev space NV® (X, uy,) defined in Section 2.3.

Theorem 1.1. Let X be a K-reqular tree with K > 2 and let ®(t) = t?log™ (e + t) with
p>1L, M eERorp=1,A > 0. Fizx Ay € R and let uy, be the weighted measure given by
(1.1). Assume that p > (8 —log K)/e > 0. Then the trace space of NY®(X, uy,) is the
space B%)‘Q (0X) where 0 =1 — (5 —log K)/ep.
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In this paper, for given function spaces X(0X) and Y(X), we call the space X(0X) a
trace space of Y(X) if and only if there exist a bounded linear operator 7' : Y(X) — X(0X)
and a bounded linear extension operator E : X(0X) — Y(X) such that 7o E' = 1d on the
space X(0X).

Our next result identifies the Orlicz-Besov space Bg’)‘g (0X) as the Besov space Bg’A(aX ).

Proposition 1.2. Let \, A1, do € R. Let ®(t) = tPlogM(e +t) with p > 1,A\ € R
orp =1, > 0. Assume that A\ + Ay = X. Then the Banach spaces Bg)‘((?X) and
B(%)‘Q((?X) coincide, i.e., Bg’A(GX) = B(%)‘Q((‘)X).

By combining Theorem 1.1 and Proposition 1.2, we obtain the following result.

Corollary 1.3. Let X be a K-reqular tree with K > 2. Let A\, A1, s € R. Assume that
p>(B—-1logK)/e >0 and let § = 1 — (3 —logK)/ep. Let ®(t) = t?log™ (e + t) with
p>1,A €Rorp=1,A > 0. Then the Besov-type space Bg”\(BX) is the trace space of
NY®(X, py,) whenever A\j + Ag = A.

When A; = 0 and A2 = A, the above result coincides with [25, Theorem 1.1], which
states that the Besov-type space B;‘,’A(ax ) is the trace space of N'P(X, uy) for a suitable
f. The above result shows that the Besov-type space Bg’)‘(aX ) is not only the trace space
of NP(X, uy,) but actually the trace space of all these Orlicz-Sobolev spaces N ®(X, uy,)
(including N'P(X, uy)) for suitable 0, Ao and ®. It may be worth to point out here that
these Orlicz-Sobolev spaces N 1’(I’(X , [y, ) are different from each other.

The paper is organized as follows. In Section 2, we give all the necessary preliminaries.
More precisely, we introduce regular trees in Section 2.1 and we consider a doubling prop-
erty of the measure p on a regular tree X and the Ahlfors regularity of its boundary 0.X.
The definition of Young functions is given in Section 2.2. We introduce the Newtonian and
Orlicz-Sobolev spaces on X and the Besov-type spaces on X in Section 2.3 and Section
2.4, respectively. In Section 3, we give the proofs of Theorem 1.1 and Proposition 1.2.

2 Preliminaries

Throughout this paper, the letter C' denotes a constant that may change at different
occurrences. The notation A ~ B means that there is a constant C' such that 1/C' - A <
B < C - A. The notation A < B (A 2 B) means that there is a constant C' such that
A<C-B(A>C"-DB).

2.1 Regular trees and their boundaries

A graph G is a pair (V, E), where V is a set of vertices and E is a set of edges. Given
vertices z,y € V are neighbors if x is connected to y by an edge. The number of the
neighbors of a vertex x is referred to as the degree of z. A tree G is a connected graph
without cycles.

Let us fix a vertex that we refer to by 0. The neighbors of 0 will be called children of
0 and 0 is called their mother. If x is one of the children of 0, then the neighbors of x
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different from 0 are called children of x and we say that x is their mother. We continue
in the obvious manner to define the children and the mother for all y # 0. We then call
G a rooted tree with root 0 and say that G is K-regular if additionally each vertex has
precisely K children.

Let G be a K-regular tree with a set of vertices V and a set of edges F for some K > 1.
For simplicity of notation, we let X = VUF and call it a K-regular tree. We consider each
edge as a geodesic of length one and further consider each edge to be an isometric copy of
the unit interval. More precisely, for any edge £ € E and a homeomorphism ¢ : £ — [0, 1],
the distance of two point z,y € £ is the Euclidean distance of ¢(x) and ¢(y). For any
x € X, let |x| be the length of the geodesic from 0 to x. The geodesic connecting z,y € V
is unique. We refer to it by [z, y], and to its length by |z —y|. We write z < y if x € [0, y].
Then |z —y| = |y| — |z|. We say that a vertex y # z is a descendant of the vertex x if
x <.

Towards defining the metric of X, let € > 0, and set

(2.1) dx(z,y) = / el 2.
[z.y]

Here d |z| is the natural measure that gives each edge Lebesgue measure 1; recall that
each edge is an isometric copy of the unit interval. Notice that diamX = 2/e if X is a
K-regular tree with K > 2.

The boundary X of a tree X is obtained by completing X with respect to the metric
dx. An element £ € 90X is identified with an infinite geodesic starting at the root 0.
Equivalently we employ the labeling £ = 0xj22 - - -, where x; is a vertex in X with |x;| = 4,
and x;11 is a child of x;. The extension of the metric to X can be realized in the following
manner. Given £,¢ € 09X, if £ = Oxjze--- and ¢ = Oy1y2-- -, let k be the integer with

2 = Yk and Tpy1 # Ygy1- Then

+o0 2
dx(§,¢) = 2/ e~ tdt = ek,
k

€

For any £ € 0X, if £ = 0xqxo---, let

o0

[07 6) - U [07 mi]a

=1

where [0, x;] is the geodesic connecting 0 and x;. We call [0, &) the geodesic ray from 0 to
& We write z < £ if x € [0,&). For more details, see [3,5,7]. For clarity, we use &, (,w to
denote points in X and x,y, z points in X.

On the K-regular tree X, we use the weighted measure p introduced in [25, Section
2.2], defined by

(2.2) dpy(z) = e PPl (|z| + C) N d |2,

where > log K, A € R and C' > max{2|\|/(8 —log K),2(log4)/e}. For A = 0, this is the
measure used in [3].
It is proven in proposition below that u) is doubling, see [25, Corollary 2.9].
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Proposition 2.1. For any A € R, the measure uy is doubling, i.e., ux(B(z,2r)) <
ux(B(z,r)).

A metric space X is called Ahlfors Q-regular for some @ > 0 if it admits an Ahlfors
Q-regular measure [i, i.e., there is a constant C' > 0 such that

C™'R? < ji(Br) < CR®

for all closed balls Br of radius 0 < R < diam(X). If a metric space X is Ahlfors Q-
regular, then X has Hausdorff dimension precisely Q. We refer to [18, Section 8.3] for more
information about Hausdorff dimension and Ahlfors regularities of measures and metric
spaces.

The result in [3, Lemma 5.2] shows that the boundary 0X of the K-regular tree X
is Ahlfors regular with the regularity exponent depending only on K and on the metric
density exponent € of the tree.

Proposition 2.2. The boundary 0X is an Ahlfors Q-reqular space with Hausdorff dimen-
ston log K
0g
Q=22

€

Hence 0X is equipped with an Ahlfors Q-regular measure v:
v(Bax (&,1)) ~ rQ = plogK/e,

for any £ € 90X and 0 < r < diamdX.
Throughout the paper we assume that 1 < p < 400 and that X is a K-regular tree
with K > 2.

2.2 Young functions and Orlicz spaces

In the standard definition of an Orlicz space, the function ¢ of an LP-space is replaced
with a more general convex function, a Young function. We recall the definition of a Young
function. We refer to [49, section 2.2] and [42] for more details about Young functions and
we also warn the reader of slight differences between the definitions in various references.

A function @ : [0,00) — [0,00) is a Young function if it is a continuous, increasing and
convex function satisfying ®(0) = 0,

P(t
lim Q =0 and lim —* = +o0
t—0+ ¢t t—+oco

A Young function ® can be expressed as

B(t) = /0 6(s) ds,

where ¢ : [0,00) — [0,00) is an increasing, right-continuous function with ¢(0) = 0 and
lim ¢(t) = +o0.

t—4o00
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A Young function ® is said to satisfy the As-condition if there is a constant Cg > 0,
called a doubling constant of ®, such that

B(2t) < Cpd(t), ¥ t > 0.

If Young function ® satisfies the As-condition, then for any constant ¢ > 0, there exist
c1, ¢y > 0 such that
a®(t) < P(ct) < ca®(t) forall t>0,

where ¢; and ¢z depend only on ¢ and the doubling constant Cg. Therefore, we obtain
that if A =~ B, then ®(A) =~ ®(B). This property will be used frequently in the rest of
this paper.
Let @1, ®2 be two Young functions. If there exist two constants k£ > 0 and C' > 0 such
that
Oy (t) < Do(kt) for t>C,

we write
D < Po.
The function ®(t) = #? log*(e+1) with p > 1,A € Ror p = 1, A > 0 is a Young function
and it satisfies the As-condition. Moreover, it also satisfies that

(2.3) madp=oLl o @(p) < P +o

for any ¢ > 0.
Let ® be a Young function. Then the Orlicz space L?(X) is defined by setting

LY(X, ) = {u : X — R : u measurable, / P (arful) duy < 400 for some o > 0} .
X

As in the theory of LP-spaces, the elements in L®(X, i) are actually equivalence classes
consisting of functions that differ only on a set of measure zero. The Orlicz space L® (X, )
is a vector space and, equipped with the Luzemburg norm

ol = nt 1> 05 [ @ul/iydn <1},

a Banach space, see [42, Theorem 3.3.10]. If ®(t) = t? with p > 1, then L®(X,puy) =
LP(X, puy). We refer to [37,42,49] for more detailed discussions and properties of Orlicz
spaces.

2.3 Newtonian spaces and Orlicz-Sobolev spaces on X

We call a Borel function g : X — [0, 00] an upper gradient of u € L{ (X, ) if

(2.4) ju(z) — u(y)] < / gdsx

whenever z,y € X and +y is the geodesic from z to y, where dsx denotes the arc length
measure with respect to the metric dx. Since any rectifiable curve with end points z and
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y in our tree contains the corresponding geodesic, the above definition is equivalent to the
usual definition which requires that inequality (2.4) holds for all rectifiable curves with
end points z and y. See [2,16,19,20,44] for a more detailed discussion on upper gradients.

The Newtonian space Nl’p(X, 1y), 1 < p < oo, is the collection of all functions u for
which the norm of u defined as

1/p
ol = ([ din +nf [ g7dn)
X 9 Jx

is finite. Here the infimum is taken over all upper gradients of w.
For any Young function ®, the Orlicz-Sobolev space NY®(X,py) is defined as the
collection of all functions u for which the norm of u defined as

Jull Nre x ) = lullpexu,) + if;f 9l o (x00)

is finite, where the infimum is taken over all upper gradients of u.

For the Young function ®(t) = t?, 1 < p < oo, the Orlicz-Sobolev space NV ® (X, 1))
is exactly the Newtonian space N1P(X, uy). We refer to [49] for further results on Orlicz-
Sobolev spaces on metric measure spaces. If u € NYP(X, uy) (u € NY®(X, py) with &
doubling), then it has a minimal p-weak upper gradient (®-weak upper gradient) g,,, which
in our case is an upper gradient. The minimal upper gradient is minimal in the sense that
if g € LP(X, ) (g9 € L®(X, py)) is any upper gradient of u, then g, < g a.e. We refer
the interested reader to [16, Theorem 7.16] (p > 1) and [49, Corollary 6.9](® doubling) for
proofs of the existence of such a minimal upper gradient.

2.4 Besov-type spaces on 0X

Towards the definition of our Besov-type spaces, we recall a definition from [3].

Definition 2.3. For 0 < 6 < 1 and p > 1, The Besov space Bg’p(ﬁX) consists of all
functions f € LP(0X) for which the seminorm [ f[[ 3o x) defined as
P

Ol - O
1oy = [ | e aitm )

is finite. The corresponding norm for Bg’p((?X ) is

dv (&) dv(C)

1l sg,0x) = If L ax) + 11f 1 5y o)

We base our definition on a dyadic decomposition on the boundary 0.X of the K-regular
tree X, see also [25, Section 2.4]. Let Vi, = {2} : j = 1,2,--- , K"} be the set of all n-level
vertices of the tree X for each n € N, where a vertex x is of n-level if |z| = n. Then

V= U V,,.
neN

Given a vertex x € V, set

I, :={£ € 0X : the geodesic ray [0, &) passes through x}.
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Let 2 ={I,:x€V}and 2, ={I, : x € V,,} for each n € N. Then 2y = {0X} and our
dyadic decomposition 2 satisfies

2= 2.

neN

Given I € 2, there is a unique element Tin 2,—1 such that I C T.If I = I, for some
x €V, then I= I,, where y is the unique mother of x in the tree X. Hence the structure of
the dyadic decomposition of X is uniquely determined by the structure of the K-regular
tree X.

We recall a definition from [25].

Definition 2.4. For 0 <0 < 1,p > 1 and )\ € R, the Besov-type space Bz’)‘(aX) consists
of all functions f € LP(0X) for which the Bg’)‘—dyadic energy of f defined as

o
1 W gor o) = > e A N u(n) | fr - 7
n=1 1€e2,
is finite. The norm on Bz’)‘(é)X) is
£ g8 00, = Il ooy + 1l ooy

The measure v above is the Ahlfors regular measure given by Proposition 2.2 and
fr=A fdv= ﬁ J; f dv is the usual mean value.

Definition 2.5. For 0 < # < 1 and p > 1, The Besov space Bg(@X) consists of all the
functions f € LP(0X) for which the Bf,—dyadic energy of f defined as

£y, = 3™ 3 (D) | f1 — 7
P n=1 Ie2,

is finite. The norm of Bg(@X ) is
I Flsgox) = 1Fl12703) + 1 lsgcoy-

The Besov-type spaces Bz’)‘(E)X ) and Bg(@X ) were first introduced in [25]. Notice that
Bg(@X ) coincides with Bg”\((?X ) when A = 0. Next we introduce the Hajlasz-Besov spaces
N! ,(0X) first introduced by [27] on the boundary 0X.

Definition 2.6. (i) Let 0 < § < oo and let u be a measurable function on 0X. A sequence
of nonnegative measurable functions, § = {gx }rez, is called a fractional 0-Hajlasz gradient
of w if there exists Z C 0X with v(Z) = 0 such that for all £ € Z and (,{ € 0X \ Z
satisfying 2771 < dx (¢, €) < 27F,

u(¢) — w(®)] < [dx (¢, €)1°[gx () + g (€)].

Denote by DY (u) the collection of all fractional 6-Hajlasz gradients of u.
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(ii) Let 0 < @ < 0o and 0 < p < oo. The Hajlasz-Besov space Ng’p(ﬁX) consists of all
functions u € LP(0X) for which the seminorm ||u|| yo (ox) defined as
p,p

1/p
3 / (€ dv(¢ >>

lullxo ox) = g’eim%f(u) [ (lgxllr o) )kezllir =  inf (keZ

geD® (u)
. . 0 .
is finite. The norm of N, ,(9X) is
[ullng ,0x) = llullze@x) +lullxo ox)-
The following proposition states that these three Besov-type spaces Bg(@X ), Bgvp(aX )
and N, 0 »(0X) coincide with each other.

Pr0p051t10n 2.7. (i) Let 0< 0 <1 and p > 1. For any f € L (0X), we have

loc
||f||]'30(aX) ~ Hf“ge(ax) ~ ||f||N6 L(0X)"

(ii) Let 0 < s <O <1, \€ R and p > 1. For any f € L} (8X), we have

1F g0 S 1 g oy
Proof. (i): The first part ”fHBg(aX) % ]|f||52(ax) follows by [25, Proposition 2.13]. The
second part ”fHBg(aX) ~ ||f“Ng,p(aX) is given by [3, Lemma 5.4] and [15, Theorem 1.2].

(ii): From the definitions of the Besov-types norms, we have

171l 52 0x) = Zef’””r% S| -

1e2,
and
I1715500) = Z > vl = sl
Ie2,
For 0 < s < 6 < 1, we have e < eenepn/\ for all n € N. Hence the result ”fHBS(aX) <
P

1F 115 () Tollows.

O

The dyadic norms give an easy way to introduce Orlicz-Besov spaces by replacing t?
with some Zygmund function (logarithmic Orlicz function) ®(¢).

Definition 2.8. Let ® be the Young function ®(t) = t?log™ (e +t) with p > 1,A; € R or
p =1,A\1 > 0. Then the Orlicz-Besov space ng’\z(aX) consists of all f € L®(0X) whose
norm generally defined as

110 oy = 1 ooy + 8 {I > 01 /K| g ) <1}

is finite, where for any g € L] (0X), the B%)‘Z—dyadic energy is defined as

en g1 — 97
9l s %2 o) Ze (0—1)p, e Z v(I)® <|Ie—m1|>

Ie2,
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In this paper, we are only interested in the Young functions in the above definition.
Hence in the rest of this paper, we always assume that the Young function is ®(t) =
t?log™ (e +t) with p > 1,A\; € Ror p =1, > 0.

3 Proofs

3.1 Proof of Theorem 1.1

We prove Theorem 1.1 by two parts: trace part and extension part. In the trace part,
we give the definition of trace Tr f in (3.1) via limits along geodesic rays for any function
f € N (X, uy,). Then we prove the existence of the trace function Tr f and prove
the norm estimate || Tr fHBi,AQ(aX) S HfHNl,@(X’H&). For the extension part, we give the

definition of the extension Fu in (3.14)-(3.16) for any function u € Bg;’\Q(aX). Then we
show that Tr (Eu) = u (i.e., Tr o E' = Id ) and prove the norm estimate ||Eu||Nl,<1>(X7M2

)~
el 552 o

Proof. Trace Part: Let f € NH®(X). We follow an idea from [25] and set

(3.1) Tr f(€) == f(§) = lim @), geox,

- [0,6)32—

provided that the limit taken along the geodesic ray [0,&) exists. We begin by showing
that the above limit exists for v-a.e. £ € 0.X. )

Since gy is an upper gradient of f, it suffices to show that the function f* defined by
setting

(32 FO=1r)+ [ gpas

(0,6

belongs to L?(0X), where [0, &) is the geodesic ray from 0 to &. Indeed, if fxe L?(0X),
we have |f*| < oo for v-a.e. £ € X, and hence the limit in (3.1) exists for v-a.e. £ € dX.

Fix £ € 0X. Set rj = 2¢77¢/e and z; = x;(£) be the ancestor of ¢ with |z;| = j for
j € N. Recall from (2.1) and (2.2) that

ds(z) = e~ d 2|, duy,(x) ~ e’z d|z|.
Then for any y € [z;,xj41], we have that
—€)j — 1-8/e .— €.
(3:3)  ds(y) ~ eV Ay () =G g ), e (g a])
where [x;,j41] is the edge connecting z; = x;(§) and ;41 = xj41(&£). Thus

B “+o0
PO =110+ / gy ds
i=0"1

zj,%541]

5:Tj+1]

“+o0
~FO)] + S ri e /[ g5 diirg
J=0 @
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(3.4) FOl+ Zm][ 07 dps,

[z),%541]

Since § =1 — (8 —log K)/(pe) > 0, we may choose 1 < ¢ < oo such that max{(8 —
logK)/e,1} < q<pifp>1orqg=1=p. Let U(t) :=t?/710g™/9(e 4+ t). Then ¥4 = &
and V¥ is a Young function satisfying the As-condition. By the Jensen inequality and the
Aq property of W, since Zjﬁg rj ~ 1, we have that

B((€) S V(FO)) + T Zr]f g7 dpng

[5,2j+1]

(|7 (0)) +Zm][ W(gp) dpis,.

(5,241

Choose 0 < k < 1 — (8 —log K)/(ge). If ¢ > 1, by the Holder inequality, we obtain the
estimate

(35)  B(F*(E) = U ()" < B(F(0)]) + Zrﬁ - '”f W(gy) dpn,

[z5,25+1]
q
(3.6) < (If(0)]) + er‘”)q (][ U(gy) d/m)
j=0 [zj,2j41]
—+o00
(3.7) SB(FO))) + 3 rt el / B(gg) dpir,.
j=0 [zj,2541]

Second inequality follows from the fact that

+oo
Zr;q/(qfl) ~ 1.
=0

If ¢ =1, then ¥ = &, and hence the estimates (3.5)-(3.7) are not needed. We conclude
that

+oo
D(F*(€)) S B(FO))) + 3 rd /ey / B(gy) dpir,.

]:O [mjzrj+1]

Since v(0X) ~ 1, integration of this estimate over 0X together with Fubini’s theorem
gives

[zj,2541]

F = g —B/e—x
/M@(f () dv < B(F(0)]) + /BXXZJO j / B(gp) dyiny dv(€)

— = q—rq—B/€ -—\o
(3.8) 2(FON+ | 2gs(@) aXer 57 Xy y00) () AV (€) dpny ().
=0
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Since X[z ;4,](2) is nonzero only if j < |z[ < j+ 1 and x < &, our estimate (3.8) can be
reformulated as

39 [ S @) SRULOD+ [ War@)ri ST i) B ) dusy (o),

where E(z) = {£ € 0X : x < £} and j(x) is the largest integer such that j(z) < |z|.
By Proposition 2.2, we have v(E(z)) < Tz Since E(z) C B(¢,r) for any € € E(x)
and r = diam(E(z)) < e~ ~ Tjx)> see [3, Lemma 5.21]. This together with ¢ — kg —
B/e+ Q > 0 gives

PO S 1.

Consequently, (3.9) implies that
| @ £ 20D + [ Slagori s ) dus, o)
o0X X
S RSO + [ Dlos(e) dusy(2).

Actually, the value |f(0)] is not essential. For any y € {z € X : [z| < 1}, a neighborhood
of 0, we could modify the definition of f*(§) as

F5©) = 1fW)] + () — £0)] + /0 g7 ds.

75

Since py, (X) &~ 1, we have that

a(If () - fO)) < @ ( /[O’y] o ds) <o ([ apas) < [ oo dn,

By the same argument as above, we obtain the estimate

/ B(F(€)) dv(€) < B(fw))) + / B(gy) dpng.
0X X

for any y € {x € X : |z| < 1}. The fact that f € L®(X, uy,) gives us that ®(|f(y)|) < co
for py,-a.e. y € X. This shows that f**(f) is L*-integrable on X, which finishes the
proof of the existence of the limit in (3.1).

We continue towards norm estimates. Since | f | < f* for any modified f*, the above
arguments also show that for any y € {z € X : |z| < 1}, we have that

[ aG@)ane s 25w+ [ oo du.
0X X

Integrating over all y € {z € X : |z| < 1}, since py,({x € X : |z| < 1}) = 1, we arrive at
the estimate

(3.10) /8 RGOZEE /X (1) duay + /X B(gs) djin,.
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Assume that ||fHL<I>(X,M2) = t; and ||gf||L‘I>(X,M2) = t9. By the definition of Luxemburg
norms, we know that

[ ot mdm, <1 and [ @(gp/te) i, < 1.
X X

By estimate (3.10), there exists a constant C' > 0 such that

/ X@(f(&))du@)gc( J et dm, + [ <I><gf>dm2).

We may assume C' > 1, since if C' < 1, we choose C' = 1. Then we obtain that

[0 (sl ) =e ([o () o [ o () o)
<1 < [ o+ [ @(gf/t2>dm2> <1,

(3.11) ||J?||L*1>(ax) <20t +t2) = (| fllLe(x ) + 197ll2o s,) = IFINLe (X s, )-

which implies

Next, we estimate the dyadic energy |f|Be 2 (o) Given I € 2,, (€T and € f, we

have z,—1 = yn—1, where z; = z;(§) and y; = y;(¢) are the ancestors of { and ¢ with
|zj| = |y;| = j, and therefore

+00 +oo
(312) 1O = FOI< D flw) = flas)l+ D [Fwy) = Flyze)l.
j=n—1 j=n—1
By (3.3) and an argument similar to (3.4), we infer from (3.12) that
HGENIGIS Z 7“]][ gy dix, + Z 7“]][ g7 dit,.-
j=n—1 ijrﬁ—l j=n—1 y] yj+1
It follows from the Jensen inequality that
L U(gr)d )d
Z T, (97) dpx, + Z T 173 U(gy) dpx,,
e j=n—1 [%’»@Hl j=n—1 YjsYj+1]

since we have the estimate

+o0o
Tpo1 e "R E Tj.

j=n—1
By using the fact ® = ¥? and the Holder inequality if ¢ > 1, we get that

o <|f<§>€:j<<>|> _y (|f<5>e:j<<>|>
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< prtna Z - Ble=ra ;= (/ D(gy) dpn, +/ <I>(9f)dum>'
[&j,241] [v5yj+1]

j=n—1

If ¢ =1, then ® = ¥ and it is easy to check that the above estimate still holds. Since
v(I) ~ v(I) and I is the mother of I, it follows from Fubini’s theorem that

S e (m f1><z 1)][][ <|f f(<>|> (O) d(©)

12, I1e2
+o00 5
S [ e S g [ g dn, e
0X j=n—1 [zj,2541]
(3.13) —/ P(gy) 7“‘”“‘1/ E TPl ey (@) dv(€) dpng ().
XN{|z|>n—1} j=n—1

Note again that x[y; .;,,]() is nonzero only if j < |z[ < j+ 1 and < {. Recall that
E(z) = {¢ E 0X :x < &}, that j(x) is the largest integer such that j(x) < |z| and that
v(E(x)) S ](z) Hence (3.13) gives

/1 = /3l —gtrg a—Ble—Ka .1 \—2g
y e (V) < [ ot e et

1€2,

5/ (gg)r, 1 T (@) 72 duny (a).
Xn{|z|>n—1} J

Since e~ " =~ r,,_1, we conclude the estimate

+o0o
| o < r(l_ 0)p—q+rq )\2/ P pI—Ble—rat+Q X2 g -
|f|3§>*2(aX) ~ n—1 Xﬂ{|x|>n N (97)7 () J(x)7 "2 dpry ()

n=1

Z (Opmatea(n 4 q)he Z / (g )i MRy ()

Xn{j<|z|<j+1}

j
= Z / B(gp)rd TR dpy, () (E r(L=Op=atra (i 1)A2> _
Xn{j<le[<j+1}

n=0
Recall that r, = 2e7"¢/e and
(1—=0)p—q+rg=rg—(q—(B—logK)/e) =rq+ B/e —q—logK/e <0.

Hence we obtain that

J
Z,rr(Ll—e)p—q-i-nq(n Tl T;q+6/e—q—logK/e(j T T;q-i—ﬁ/e—q—Qj)\g_
n=0
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Therefore, our estimate above for the dyadic energy can be rewritten as

+oo
|f|B;’A2(8X) rg Z/
=0

Xn{j<]z[<j+1}

B(gs) djiny () = /X B(g7) dpry ().

By an argument similar to the one that we used to prove (3.11) after getting (3.10), we
have that

inf {k > 0 |F/kl o o) < 1) S 1970 (-

which together with (3.11) gives the norm estimate
[ T I

Extension Part: Fix u € ng’\Q(@X). Given z € X with |z| =n € N, set

(3.14) Eu(§) = u(x) :]{ udv,

where I, € 2, is the set of all the points £ € X such that the geodesic ray [0, &) passes
through x.

Let y be a child of . Then |y| =n+1 and I, is the mother of I,. We define @ on the
edge [z,y] by setting

o ly) —a(e) _e(ur, —ug,) el —ug)
(3.15) ga(t) :== dx (z,9) - (1—e€)en - (1—e€)e—en
and
(3.16) u(t) == a(x) + ga(t)dx (z,1t).

By repeating this procedure for all edges, we obtain an extension 4 of u. Then (3.1) and
(3.14) imply that Tra(§) = u(§) whenever £ € 0X is a Lebesgue point of u.
Simple integration shows that |g;| is an upper gradient of 4. Clearly

n+1 |u1 —UT|
/[ ]<I)(|g71|)d,u/\2 %/ () (eye(nJrl)y 6_57—(7"‘0))‘2 dr
.y n

lur, — up |
" —B(n+1) A v Iy
~e (n + 1) 0 ( e—€(n+1) ’

By summing over all the edges of X, we conclude that

—Bn A |ur — u[|
(3.17) / (lgal) du)\QNZ Ze " 2<I>< e

n=11e2,

We have that
v(I) ~e M@ = K
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whenever [ € 2,,, which implies that

The above estimates (3.17) and (3.18) give
- en(6—1)p, A2 |U[ — UT‘
(3.19) /X‘I’(|ga\)dﬂx\2 ~ e n Y w(I)® e ’U\ngz(a){y
n=1 1€2,
When obtaining the L®-estimate of @, notice that when || = n and y is the child of z,
(3.20) ()] < a(@)] + |galdx (2, y) = [a(@)] + |aly) — a(@)] S |ur,| + |ur,|

for any ¢ € [z,y]. Since wy,([z,y]) = e P2 and v(1,) =~ v(I,) ~ e~"?, this gives us

/[ B0 dn, S ) (@(0un]) + s, D) 5 e / B (|ul) dv

x

By summing over all the edges of X, we arrive at

JRCOITE T3 e, J @t

n=0I1€2,
:Ze_B"+E”Qn>‘2 / B(|ul) dv

The sum of e #?+"@nr2 converges, because f — eQ = B —log K > 0. It follows that

(3.21) /X B(ji(t)]) dprg < /8 o)

Applying the very same arguments that we used in proving (3.11) after getting (3.10)
0 (3.19) and (3.21), we finally arrive at the desired estimate for the norms

Hﬂ|’N1’¢(X“LL)\2) S HUHBZ;’\?(ax)

3.2 Proof of Proposition 1.2

In this section, we always assume that ®(t) = t?log* (e + t) with p > 1,A; € R or
D= 1, )\1 > 0.

Lemma 3.1. Let \,\1, o € R. Assume that \y + A2 = \. For any f € L'(0X),
have that the condition || f|| < 00 is equivalent to the condition |f],

whenever 0 < 6 < 1.

(0. 9]

BekaX) 0)‘2(8X) <
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Proof. When A; = 0, then the result is obvious since Hf||69 Mox) = ‘f|Bi,A2(aX).

When Ay > 0, first we estimate the logarithmic term from above. Since f € LY(0X),
for any I € 2, it follows from v(I) ~ v(I) ~ e "8 K that,

|fr — f3l |fil + | /7] £l ax
logMt <e+ e_iml <logM (e+ e—iml <logM e+ e—(eqtlioEgK))n < Cn™,

where C' = C(|f[|1(5x), M1, €, K). Hence we can estimate |f|Be A2 o B follows:

o en(0- |fr = 1l
|f|z§§;*2(ax) :nz::le O pns Z v(I)® ( o—en

1€2,

= 7;1 e€TOP A2 Z v(D)|fr — fﬁp log)‘l (e n H{?_—mff)

12,

<O e ST w(I)f1 = Fl = Ol g o

n=1 1€2,

where € = O((|f1(ax), e, K).
In order to estimate the logarithmic term from below, for any I € 2,,, we define

: N —en(6041)/2
(TL,I) _ { (1), if |f[ fI| >e

.22
(3.22) otherwise.

)

Then we have that

”fHB‘“(aX) Z et Y v fr = 7l

n=1 IEQn
Z “Omt Y v(Dx(n Dlfr = £l
n=1 IEJn
+ Zem"’%A > X(n, D)\ f1 = f7l”
1€ 2,
=P+ PB.

If | fr — f7 > e 0+1)/2 since § < 1 and A; > 0, we obtain that

log (e + M) > log (e + 66"(179)/2> > CnM,

efen

where C' = C(e, 0, A\1). Hence we have the estimate

enfp,, A2 |f f]|
P1<cze e S 151 = o (e 4TI ) = Gl

1€e2,
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For P, since ) ;. v(I) =~ 1, we have that

oo o0
Py < Zeenepn/\ Z V(I)efenp(éhkl)/? ~ Z eenp(Gfl)/Qn)\ — O < +00,
n=1 I€e2, n=1
where C' = C’(0,p, ). Therefore, we obtain
1
p _ !
(323) 6|f|52’)\2(3X) S HfHBZ’A(aX) - Pl + P2 S C‘f|Bg’A2(6X) + C ’

where C' and C” are constants depending only on €, 0, A1, A, p and || f||z19x)-
When A; < 0, in order to estimate the logarithmic term from above, using definition
(3.22), we obtain that

_ o enfp, A N ‘ff_fﬂ
‘f|3§;%2(ax) = z_:le PpA2 Z v(I)|fr — f7[Plog™ <e+6m

1e2,
— ieenepnx\a Z v(I)x(n, I)|f1 — f+Plog (e + 11— 1l
N n=1 Ie2 o ! ! ; e

+ nz_:l P2 7 (D)L= x(n, 1)\ fr — f7/Plog" (e " W>

I1e2,
=: P + P;.

If | fr — f7l > e~n(0+1)/2 gince < 1 and \; < 0, we have that

logh (e+ |f1 — ff|> < loght (e+€en(1—9)/2> < Cn,

e—en

where C' = C(e,0, A\1). Hence we have the estimate

POy et ST (DI = S = B

n=1 €2,

For P}, since log (e 4 t) < 1 for any t > 0 and > 1co, V(I) = 1, we obtain that

9 o0
P2/ < Zeenepn)\g Z V(I)e—enp(9+1)/2 _ Z 6enp(0—1)/2n)\2 - < +00,
n=1 I€e2, n=1

where C' = C(e, 0, A2).
Next, we estimate the logarithmic term from below. Since f € LY(0X) and \; < 0, for
any I € 2, it follows from v(I) ~ v(I) ~ e ™18 K that

log" (e + M) > log" <e + M) > log (e + ””Ll(ax)) > Cn,

e—€n - e—€n ~ e—(etlog K)n
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where C' = C([|fl|1(ax), M1, €, K). Now we get the estimate

Hf”%;‘M(aX) = Zeenepn/\2+)\1 Z v(D)| fr— f;P
n=1

Ie2,

< C’Zemepn)‘2 Z v(I)|fr — ff|p10g)\1 <€ + m;ﬁ)

n=1 Iegn
= C|f|Bi’/\2(8X)

Therefore, we obtain the estimate

(3.24) = P+ P, < C||f|" +C

1 p
EHfHBg,/\(aX) S |f|8§)’A2(6X) B’Z’)\(aX)

where C' and C” are constants depending only on €, 0, A1, A2 and || f||z1(5x)-
Combining the inequalities (3.23) and (3.24) which are respect to Ay > 0 and A\; < 0
. _ . p . .
with the case Ay = 0, we obtain that HfHBﬁ’*(aX) < 400 is equivalent to ‘f|B§;/\2(8X) <

+00. ]

Let us recall the following result from functional analysis, see for example [11].

Lemma 3.2 (Closed graph theorem). Let X,Y be Banach spaces and let T : X —Y be a
linear operator. Then T is continuous if and only if the graph > = {(x,T(z)) : x € X}
18 closed in X XY with the product topology.

Let L*(0X) N Bf,*(ax ) be the Banach space equipped with the norm

HfHL‘i(aX)ﬂBz”\(aX) = Hf”Lq)(aX) + ”fHBz’A((’)X)'
Using the same manner, we could define the space X NY for any two spaces X and Y.

Corollary 3.3. Let A\, A1, Ao and @ be as in Lemma 3.1. Then we have
L*(0X) N BIAN0X) = By (0X)
with equivalent norms.

Proof. Tt directly follows from Lemma 3.1 that L®(0X) OBZ’)‘(ﬁX ) and B(%)‘z(aX ) are the
same vector spaces. Next we use Lemma 3.2 (Closed graph theorem) to show that they
are the same Banach spaces with equivalent norms.

Consider the identity map Id : L®(0X)NBI(0X) — B%AQ (0X), i.e., Id () = x for any
r e L*(0X)N B{}A(ax ). Then the graph of Id is closed. Indeed, if (x,,x,) is a sequence
in this graph that converges to (z,y) in (L®(0X) N Bf,“(aX)) x (L®(0X) N 5’%)‘2 (0X))

with product topology, then x,, converges to x in || - HL‘I’(BX)OBZ’A(QX) norm and hence in

L?(0X). In the same manner, x, converges to y in || - and hence in L*(0X).

||B§;)‘2 (aX)
But the limits are unique in L*(0X), so = = y.

Applying Lemma 3.2 (Closed graph theorem), we see that the map Id is continuous
from L*(0X) N BYM9X) to B%AQ((?X); similarly for the inverse. Thus the norms || -

and || - are equivalent and the claim follows. O

||L<I>(8X)HB'§’)‘(8X) ”33;*2(3)()
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There is a not big difference between the results in Corollary 3.3 and Proposition 1.2,
since Bg”\(ﬁX) = LP(0X) N Bﬁ“(aX). To get Proposition 1.2 from Corollary 3.3, we
need some estimates between the LP-norm and L®-norm. Since v(0X) = 1, we have the
following lemma, see [28, Theorem 3.17.1 and Theorem 3.17.5].

Lemma 3.4. Let ®1, Py be two Young functions. If &9 < $1, then
||u||L‘I’2(8X) S ||U||L<1>1(8X)
for all u € L*1(0X).
By the relation (2.3), for any § > 0, we have

(3.25) |l

Lmaxtr-s1}9x) S |ullLe@x) S llullzevsax)

for all u € LPH(9X).
Recall that v(0X) ~ 1 and diam(0X) =~ 1. Since 90X is Ahlfors Q-regular where

Q= 1053; K we obtain the following lemma immediately from [23, Theorem 4.2]

Lemma 3.5. Let 0 <s<1landp>1. Let u € N1f7p(8X). IfO < sp< Q=185 then

u € LP (0X), p* = Q@Zp and

X 1/p*
3 _ AP < .
inf (f u=eP @) Sl o

Proof of Proposition 1.2. Let s = min{g, %}, where (Q = %. Then sp < 2sp < Q. Let

p* = chpsp and § = p* — p. Since s < 0/2 < 6, it follows from Proposition 2.7 that

BYAN0X) C By (0X) = Ny ,(0X).

By Lemma 3.5 and triangle inequality, we obtain that

. 1/p* . 1/p*
(][ lu — ugx |P dZ/) < 2inf (][ lu — c|? dy>
X ceR \Jox

S Nl ox) < lllgorox):

for any u € Bﬁ’A(aX), where upx = §,y udv. Since |u| < [u—ugx|+|upx| and v(0X) ~ 1,
it follows from the Minkowski inequality that

o ox) + llwax [l o= (ax)

. 1/p*
= <][ lu — ugx|? du> +][ udy
0X 0X

S llullzrox) + lell g o)

[l o (ax) < [lu = uax]
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for any u € By (0X). Since || - z1x) < I+ lrox) < |- [0 (9x) 18 trivial, we have that

LY0X) N BIAN0X) = BYM0X) = LP (0X) N BYA(9X).

Recall the relation (3.25) and 6 = p* — p. Hence we have that

Thus,

- 120 @X) S - e oxy S - e o)

0.\ _ 1 d 50,
BIANOX) = L*(8X) N BONOX).

Combining this with Corollary 3.3, i.e., the equivalences

LP(0X) N BIANOX) = L2(0X) N By (0X) = By (0X),

we finally arrive at

BIMNOX) = By (0X).
L]
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