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ABSTRACT:

Despite rising interest among scientists for over two centuries, parental care behavior has not been as thoroughly studied in

amphibians as it has in other taxa. The first reports of amphibian parental care date from the early 18th century, when Maria Sibylla Merian went
on a field expedition in Suriname and reported frog metamorphs emerging from their mother’s dorsal skin. Reports of this and other parental
behaviors in amphibians remained descriptive for decades, often as side notes during expeditions with another purpose. However, since the 1980s,
experimental approaches have proliferated, providing detailed knowledge about the adaptive value of observed behaviors. Today, we recognize
more than 30 types of parental care in amphibians, but most studies focus on just a few families and have favored anurans over urodeles and
caecilians. Here, we provide a synthesis of the last three centuries of parental care research in the three orders comprising the amphibians. We
draw attention to the progress from the very first descriptions to the most recent experimental studies, and highlight the importance of natural
history observations as a source of new hypotheses and necessary context to interpret experimental findings. We encourage amphibian parental
care researchers to diversify their study systems to allow for a more comprehensive perspective of the behaviors that amphibians exhibit. Finally,
we uncover knowledge gaps and suggest new avenues of research using a variety of disciplines and approaches that will allow us to better
understand the function and evolution of parental care behaviors in this diverse group of animals.

Key words:

Tue DEVELOPMENT of a scientific field (or subfield) is an
intricate process involving detours, failures, and unexpected
flukes. It usually starts with random observations noted in
the margins during an unrelated study. Something peculiar
catches the eye, awakens interest, and opens doors to a
whole new field of research. This process is often sluggish
and punctuated; for example, the outstanding importance of
DNA was not realized until 75 yr after Miescher first
discovered it (Dahm 2008).

In the biological sciences, new subfields generally start
with purely descriptive work, which builds an essential
foundation of knowledge: new species, morphological
structures, histological features, or unique behaviors. These
descriptions start to draw pictures of potential function and
significance, forming hypotheses to be tested, which
thereupon lead to new questions, hypotheses, and discover-
ies that ultimately create new scientific subfields. For
example, the field contemporarily known as “evo-devo”
was catalyzed in the 1980s when parallel observations in
fields such as evolutionary genetics, molecular biology, and
embryology were first transformed into “how” questions
about the integrative mechanisms underlying the signifi-
cance and function of evolutionary development (Love
2015).

Within the field of animal behavior, numerous subfields
have emerged in the last few decades. Many started because
a particular organism exhibited extraordinary characteristics.
Over time, similar behaviors were found in other species,
and the classification of the behavior shifted from a unique
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anomaly to a widespread pattern. For example, initial
observations of recently hatched chicks following a hen
(Spalding 1873) propagated subfields focused on imprinting
and animal learning (e.g., Moore 2004; Dukas 2013;
Martinho and Kacelnik 2016). Anecdotal observations are
also the origin of the study of parental care behavior (e.g.,
Lottinger 1776; Jiménez de la Espada 1872; Lydekker 1895),
which has since been broadly investigated with diverse
approaches including genetic, neurological, ecological, and
hormonal studies.

Despite their widespread occurrence across the animal
kingdom, parental behaviors have been investigated in detail
mostly in mammals (e.g., Gubernick and Klopfer 1981;
Rilling and Young 2014; Wu et al. 2014) and birds (see
Stahlschmidt 2011). Many other vertebrate and invertebrate
groups demonstrate unique and incredibly diverse parental
care behaviors (e.g., insects, Fetherston et al. 1990; Gilbert
and Manica 2010; crustaceans, Dick et al. 1998; Thiel 2007;
arachnids, Simpson 1995; Yip and Rayor 2014; fish, Goodwin
et al. 1998; Steinhart et al. 2008; Buckley et al. 2010;
amphibians, Crump 1996, 2015; Gomes et al. 2012; Kupfer
et al. 2016; reptiles, O’Connor and Shine 2004; Vergne et al.
2009), but these groups have received much less attention in
the animal behavior literature. However, many recent
advances in parental care have emerged from research in
these lesser studied groups. For example, a deeper
understanding of the roles of hormones, neurobiology,
experience, and social impact in parental care mechanisms
and strategies has emerged from work with insects and fish
(O’Connell et al. 2012; Wong et al. 2013; Samuk et al. 2014;
Santangelo 2015; Schrader et al. 2015).
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As part of the reproductive cycle, parental care is often an
essential component of an individual’s fitness (Gross 2005),
and parents need to balance their investments between
current offspring, further mating opportunities (Székely and
Cuthill 2000), future offspring (e.g., parent—offspring con-
flict; Trivers 1974), and predation risk. For this reason, the
strategies utilized among—and sometimes within—different
species vary substantially, and selective pressures for
alternative parental care strategies among taxa can shape
other traits, such as habitat choice, morphological structures,
or cognitive abilities.

In this review, we chronicle the development of parental
care research in a group that has been identified as one of
the most neglected (see Stahlschmidt 2011 for comparison
among different animal groups): the amphibians. This
group—comprised of gymnophionans (caecilians), urodeles
(newts and salamanders), and anurans (frogs and toads)—in
fact exhibits one of the most diverse assemblages of parental-
care behaviors known to date (Crump 1996). As explained by
Crump (1996), parental care is sometimes defined as a
behavior that increases survivorship of young (Clutton-Brock
and Vincent 1991), but more generally refers to nongametic
investments in offspring that incur a cost to the parent. Here,
we consider presumably costly behaviors that parents
perform for the benefit of offspring both prior to hatching,
oviposition, or birth (e.g., nest construction, intrauterine
feeding) and after (e.g., egg attendance or brooding, tadpole
transport) as parental care, but we do not include
reproductive modes (e.g., viviparous, oviparous). Although
in many taxa the true nature of parental costs remains to be
defined or quantified, we have included cases for which
future research seems likely to reveal that parents incur
costs.

A series of review papers have strived to classify parental
behaviors into types, expanding the list when new forms of
care have been discovered and merging similar forms when
obvious coincidences are identified (e.g., Wunder 1932;
McDiarmid 1978; Wells 1981; Crump 1996; Lehtinen and
Nussbaum 2003; Haddad and Prado 2005). Because of new
discoveries, the percentage of species recognized as provid-
ing parental care steadily rises; up to 10% of anuran and 20%
of urodelian species care for their offspring after fertilization
(Balshine 2012; Crump 2015). It is assumed that most
caecilians provide some form of parental care, but informa-
tion about the reproductive behavior of this group is
relatively scarce. Among the review papers, some offer
generalized overviews (e.g., Crump 1996, 2015), whereas
others pursue specific research questions, such as relation-
ships between parental care and egg size (Nussbaum and
Schultz 1989; Summers and McKeon 2006), phylogenetics
(Lehtinen and Nussbaum 2003), and fetal or larval
morphology (Altig and Johnston 1989; Wake 2015). Although
some reviews list parental-care modes of all amphibians
(Salthe and Mecham 1974; Crump 1996), several focus
purely on anurans (Lamotte and Lescure 1977; Duellman
1992; Beck 1998; Crump 2015). Only a few works review
urodelian parental care (Ryan 1977; Nussbaum 1985, 1987;
Kupfer et al. 2016), and—to the best of our knowledge
only one review touches on parental care in caecilians
(Gomes et al. 2012).

Here, we try to draw a comprehensive picture of parental
care in amphibians, including all three orders across
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centuries of research. Our review not only summarizes the
known parental-care modes, but also recounts the progress
of amphibian parental care research since it was first
reported in the late 17th century. We recap the full
ontogeny, from early natural history descriptions, to the
hypothesis-based knowledge that budded out from those
descriptions, and finally to modern synthetic approaches that
are bound to trigger a metamorphosis in our understanding
of the function and evolution of amphibian parental care.

MATERIALS AND METHODS

This review aims to provide a comprehensive resource
and synthesize research papers and books describing or
studying parental-care behaviors in amphibians. We con-
ducted a thorough literature search on Web of Science in
2017, using the search terms “anura*, frog*, toad*, tadpole*,
froglet*, salamander*, newt*, urodela®, caudata®, caecilia*,
gymnophiona*, or amphibia*” in combination with “paren-
tal care, guard*, attend®, paternal®, maternal*, egg-feed*,
oophagous, begg* or provision.” We also combined the first
five search terms with “transportation.” We carefully
checked all search results, and cross-referenced them with
previous reviews (see introduction). To search for very old
records (given that this review covers over 300 yr of
research), we examined old reports and searched the
Biodiversity Heritage Library as well as archive.org.

RESuLTS AND DISCUSSION

Our search revealed a total of 685 studies. All references
were used for data analyses, but only a subset could be cited
in the text of this review. We identified over 30 parental care
modes, some of which overlap between the three orders. We
defined a total of four caecilian, eight urodelian, and 28
anuran parental care modes, and for each of those we tried
to seek the first description, which ranged from 1705 to 2017
(see Table 1 and corresponding examples in the text). To
allow for comparisons among groups, we further condensed
these behaviors into the following nine parental care modes:
(1) foam/bubble nest construction, (2) nest construction
(digging, wrapping, or covering eggs), (3) egg attendance
(defending, cleaning, hydrating), (4) larvae/tadpole/froglet
guarding, (5) egg transport/brooding on body or in skin, (6)
offspring transport/brooding in vocal sac/stomach, (7)
tadpole/froglet transportation on body, (8) feeding of free-
living larvae/tadpoles, and (9) feeding of larvae/tadpoles
inside the parent (in uterus or skin pouches). By mapping
these modes onto a modified cladogram of currently
accepted amphibian families, we found that parental-care
behavior is known in 56 of 76 families (see Fig. 1). Of those,
44 families show some form of egg attendance, making it the
most phylogenetically widespread parental care mode in
amphibians. Twenty-nine families show one or more other
parental care mode(s) besides egg attendance. One parental-
care mode, feeding of free-living larvae/tadpoles, is known
from 10 families, 9 of which also display egg attendance.

Most of the parental care modes defined in Table 1 are
only found in one of the three amphibian orders. For
example, offspring transportation is only known in anurans,
and some forms of transport are only found in single families
or genera within a family. The same is true for foam- or
bubble-nest building (only in anurans) or aquatic egg-rolling
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TaBLE 1.

(Caecilia = C1-4, Urodela = U1-8, Amphibia = A1-28).

Parental care modes in Amphibians and (one of) their first mention(s) in the literature. The different modes are numbered by amphibian order

Order Number Parental care mode Species First mention
Caecilia Cl  Guarding of terrestrial eggs (female) Ichthyophis glutinosus Sarasin and Sarasin (1887)
C2  Intrauterine feeding (female) Schistometopum sp. Parker (1956)
C3  Dermatotrophic offspring feeding (and Geotrypetes seraphini O'Reilly et al. (1998)
simultaneous guarding of larvae; female)
C4  Alloparental dermatotrophic feeding (female) Boulengerula taitana Kupfer et al. (2008)
Urodela Ul  Egg rolling/wrapping in aquatic leaves (female)  Notophthalmus viridescens (as Diemyctylus) Gage (1891)
U2 Guarding of terrestrial eggs (female) Amphiuma tridactylum Hay (1888)
U3 Guarding of terrestrial eggs (male) Andrias japonicus (as Megalobatrachus maximusi ~ Kerbert (1904)
U4 Guarding of aquatic eggs while on land (until Ambystoma opacum Noble (1931)
pond fills; female)
U5 Alloparental guarding of terrestrial eggs Hemidactylium scutatum Blanchard (1934)
(attendance by a nonparental adult)
U6 Guarding of terrestrial eggs and juveniles Speleomantes strinatii Oneto et al. (2010)
(female)
U7 Guarding of aquatic eggs and juveniles (male) Siren intermedia Hubbs (1962)*
[sex initially unknown]
US Intrauterine feeding (female)” Salamandra atra Czermak (1843)
Anura Al Construction of foam nests (for protection, Leptodactylus mystaceus (as Cystignathus) Hensel (1867)
nutrition, etc.)
A2 Construction of hollows/caves for nests (for Leptodactylus sp. (as Cystignathus ocellatus) Hensel (1867)
protection)
A3 Construction of leave-pouch nests (for Phyllomedusa iheringii von IThering (1886)
protection)
A4 Construction of bubble nest (biparental) Chiasmocleis leucosticta Haddad and Hodl (1997)
A5 Usage of interspecific nests (i.e., heterospecific  Allobates sumtuosus Kok and Ernst (2007)
brood parasitism)
A6 Covering the eggs with dirt (camouflage; female) Brachycephalus ephippium Pombal et al. (1994)
A7 Guarding of terrestrial eggs (male; originally Eleutherodactylus coqui (as “co-qui” Hylides) Bello (1871)
described as females)]
A8 Guarding of terrestrial eggs (female) Leptodactylus sp. (as L. ocellatus) Fernindez and Ferniandez (1921)
A9 Guarding of tadpoles (female) Leptodactylus sp. (as L. ocellatus) Fernindez and Fernandez (1921)
A10  Guarding of froglets Cophixalus parkeri Simon (1983)
All Transportation of tadpoles (male) Ameerega trivittata (as Hylodes lineatus) Wyman (1857)
Al2  Transportation of tadpoles (female) Colosthetus inguinalis Wells (1977)
Al13  Transportation of freshly hatched (direct- Eleutherodactylus cundalli Diesel et al. (1995)
developed) froglets (females)
Al4 Transportation of freshly hatched (direct- Sphenophryne cornuta; S. schlaginhaufeni Bickford (2002)
developed) froglets (males)
Al5 Brooding of eggs on legs; released as tadpoles Alytes obstetricans (not named yet in 1741) Demours (1741)
(male)
A16 Brooding of eggs on in dorsal pouches/basins; Fritziana goeldii (as Hyla) Goldi (1895)
released as tadpoles (female)
Al17 Brooding of eggs in dorsal pouches; released as  Gastrotheca ovifera (as Notodelphys) Weinland (1854)
froglets (female)
A18 Brooding of eggs embedded in dorsum of aquatic Pipa pipa (not named yet in 1705) Merian (1705)
species; released as froglets (female)
Al9 Brooding of eggs in dorsum depressions, froglets Hemiphractus bubalus (as Cerathyla) Boulenger (1903)
attached to back with special gills (female)
A20  Brooding of eggs exposed on the dorsum; Stefania evansi (as Hyla) Boulenger (1904)
released as froglets (female)
A21  Brooding of eggs in stomach; released as froglets Rheobatrachus silus Corben et al. (1974)
(female)
A22  Brooding of eggs (in late developmental stage) ~ Rhinoderma darwinii Jiménez De La Espada (1872)
and tadpoles in the vocal sac; released as
froglets (male)
A23  Brooding of freshly hatched tadpoles on the Cycloramphus stejnegeri (as Craspedoglossa) Heyer and Crombie (1979)
dorsum; released as froglets (female)
A24 Brooding of freshly hatched tadpoles on the Anomaloglossus degranvillei (as Colostethus) Lescure (1984)
dorsum; released as froglets (male)
A25  Brooding of freshly hatched tadpoles in inguinal ~ Assa darlingtoni (as Crinia) Straughan and Main (1966)
pouches; released as froglets (males)
A26  Intrauterine feeding (female) Nimbaphrynoides occidentalis (as Nectophrynoides) Vilter and Lugand (1959)
A27 Feeding of tadpoles with eggs (female) Oophaga pumilio (as Dendrobates) Graeff and Schulte (1980)
A28 Feeding of tadpoles with eggs (biparental) Ranitomeya imitator (as Dendrobates reticulatus) — Kneller (1982)

* Aquatic egg guarding (but not juvenile guarding) was already described in Andrius japonicas by Kerbert (1904).

b Suggested nutritive uptake from thickened uterine walls with gills instead of teeth.
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Fic. 1.—Cladogram of amphibian families (modified after Pyron and Wiens 2011, with data from Frost 2019) with a simplified list of known parental care
behaviors. (A) Chiromantis xerampelina (Rhacophoridae) building foam nests (photo: P. Byrne); (B) female Cynops pyrrhogaster (Salamandridae) wrapping
eggs in leaves (photo: M. Sparreboom); (C) Eurycea cirrigera (Plethodontidae) during egg attendance (photo: B.D. Todd); (D) Leptodactylus insularum
(Leptodactylidae) female guarding tadpoles (photo: K. Hurme); (E) Cryptobatrachus boulengeri (Hemiphractidae) female brooding directly developing eggs
on her back (photo: L.A. Rueda); (F) Rhinoderma darwinii (Rhinodermatidae), a species with tadpole development inside the male’s vocal sac (photo: H.
Werning); (G) Ameerega bassleri (Dendrobatidae) transporting tadpoles (Photo: E. Twomey); (H) Boulengerula taitanus (Herpelidae) feeding larvae with
skin (photo: A. Kupfer); (I) Typhlonectes natans (Typhlonectidae) female with offspring, dissected during intrauterine feeding (photo: A. Kupfer). A color
version of this figure is available online.
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Fic. 2—Number of studies about parental care behaviors in caecilians, urodeles, and anurans after 1900 that were identified in our literature review. A

color version of this figure is available online.

(only in urodelians), as well as egg-feeding (only in anurans)
or dermatotrophic feeding (only in caecilians; Table 1). On
the other hand, some parental-care modes are found across
several families within all three amphibian orders. It has
been suggested that the most common behavior, female
terrestrial egg guarding (Table 1), has evolved convergently
across different families and orders (Crump 1996). Intra-
uterine feeding also appears to have evolved multiple times
in unrelated species (Wake 1993). Ideally, patterns that
emerge in the cladogram (Fig. 1) will stimulate future
research on the evolution of parental care modes across
amphibians.

This literature review aims to go beyond depicting the
currently described forms of parental care (Table 1; Fig. 1),
and also focuses on the discovery and approaches to
understanding these behaviors over the history of research.
Therefore, it is structured chronologically: starting with
observations from the early past (1705-1950), followed by
hypothesis- and experiment-based approaches of the recent
past and present (since 1951), and finishing with future
perspectives that emphasize multidisciplinary approaches
and applications of parental care studies in times of habitat
destruction and climate change.
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Tt EARLY Past: (1705-1950): FIRST OBSERVATIONS AND
ANECDOTAL REPORTS

The first descriptions of parental care in amphibians
appeared in the 18th century, with a subsequent exponential
increase in publication rate over the last 275 yr (Fig. 2). Prior
to 1950, most of the amphibian literature consisted of either
descriptive natural history notes—oftentimes as anecdotal
side notes within travel reports—or studies focused on
taxonomy, morphology, or anatomy. Some of these observa-
tions about parental care became important later, sparking
more profound studies, and others still represent the only
information available about the parental behavior of a given
species. Such limited knowledge is concerning, given recent
worldwide declines of amphibian populations, including the
presumed extinction of species with very special parental
behaviors such as Rheobatrachus silus, Rhinoderma rufum,
Gastrotheca coeruleomaculatus, and Nectophrynoides poyn-
toni (see below).

Caecilians
Because of their hidden and often subterranean lifestyle,

caecilians are the least understood of the three amphibian
orders, which is reflected in the relatively low amount of
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parental care research in this group (Fig. 2). However,
caecilian parental behavior was first mentioned as far back as
the late 19th century, when Sarasin and Sarasin (1887)
described female Ichthyophis glutinosus coiling around eggs.
The authors were already proposing hypotheses about
adaptive benefits of this behavior via protection from
desiccation and predation. They observed that females lost
and embryos gained weight, and speculated that females may
give nutrients in form of skin secretions to their young.

Brauer (1897) disagreed with the idea that females could
provision nutrients to offspring while describing the
maternal behavior of oviparous Hypogeophis rostratus and
Grandisonia alternans. An anecdotal description of maternal
care in the direct developing Siphonops annulatus was given
by Goldi (1899), reporting a female coiled around her eggs.
More than 30 yr later, Parker (1936) and Sanderson (1937)
described female Idiocranium russeli coiling around direct
developing eggs. Sanderson (1937) furthermore observed
that females spit at intruders (although this could not be
confirmed in later studies; Gower et al. 2015). He also gave
the first report of parental care by a viviparous caecilian,
Geotrypetes seraphini, describing a female “wrapped around
a bundle of smaller replicates of herself” (Sanderson
1937:229).

Only one of four caecilian parental care modes was
reported in these early observations: female guarding of
terrestrial eggs (caecilian parental care mode C1; Table 1).
Another mode—maternal dermatotrophic offspring feeding
(mode C3; see below)—was foreshadowed in I. glutinosus
(Sarasin and Sarasin 1887), although this species does not
exhibit this behavior. Dermatotrophic feeding is exhibited by
Geotrypetes seraphini, but was described as guarding
behavior in early studies of this species (Sanderson 1937),
and was not officially reported until much later (O’Reilly et
al. 1998).

Urodeles

Even though urodeles are much easier to find than
caecilians, parental care in this group was barely mentioned
before the 20th century. Hay (1888:315), for example,
described a female “congo snake” (Amphiuma tridactylum)
coiled around her eggs. He wondered how hatchlings reach
the water from a terrestrial nest, proposing female transport
“as a dog carries a bone”—a speculative and unconfirmed
theory. Following this report, parental behavior in the family
Amphiumidae went unexplored for half a century (Parker
1937; Weber 1944; Baker 1945).

In the early 20th century, egg guarding was reported in
both aquatically and terrestrially breeding urodele families.
In the Cryptobranchidae, male Cryptobranchus alleganien-
sis and Andrias japonicus were observed defending eggs
against potential predators and even against mothers
(Kerbert 1904; Smith 1907; Stejneger 1907). In the
Plethodontidae, female (or biparental) terrestrial egg guard-
ing was reported in several species (Ritter 1903; Strecker
1908; Piersol 1910; Wilder 1913, 1917; Bishop 1919).

A few studies in plethodontids went further than just
describing behavioral observations. For example, Piersol
(1910) noticed that fewer eggs became moldy when attended
by female Plethodon cinereus, and suggested that parental
skin has antifungal or antibacterial properties. Wilder (1913)
noted that female Desmognathus fuscus found their way
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back to their eggs, even if their surroundings were changed.
She proposed testing for offspring recognition by switching
clutches between females, possibly being the first scientist to
suggest hypothesis-based experiments in amphibian parental
care behavior. Two years later, she conducted similar
experiments, demonstrating that female D. fuscus will care
for a foster clutch after exchange (Wilder 1917). With the
exception of one other study in this same species (Noble and
Evans 1932), an experimental approach like that of Wilder
(1917) was (to the best of our knowledge) not further
developed in the following decades.

In 1920-1950, additional descriptions (and sometimes
speculations) dominated the literature, mainly regarding
terrestrial egg guarding and moistening by females (e.g.,
Storer 1925; Bishop 1926; Blanchard 1934; Henry and
Twitty 1940; Kessel and Kessel 1942; Miller 1944; Baker
1945; Storm 1947), and some males (Tago 1929; Bishop
1941). The first observations of alloparental egg guarding
(attendance by a nonparental adult; Blanchard 1934) and
terrestrial guarding of aquatic eggs (Noble 1931) were
published. But experimental work with urodeles was lacking.

In sum, six of eight urodelian parental care modes were
described before 1950: four variations on egg guarding (U2
U5 in Table 1), egg-wrapping behavior in aquatic newts
(Gage 1891; Ul, see below), and intrauterine feeding (US).
Czermak (1843) was the first to suggest that Salamandra atra
offspring receive nutrition from thickened uterine walls (via
the gills rather than the teeth). Several other authors
supported this possibility (Schwalbe 1896; Hirzel 1909;
Wunderer 1910), but the nutritive mechanism and maternal
tissue was identified only recently (Guex and Chen 1986;
Guex and Greven 1994; see below).

Anurans

Among the amphibian orders, parental behavior has
always been best documented in anurans. To our knowledge,
the first report of parental behavior in any amphibian was of
a frog in the early 18th century. After a journey to Suriname
in 1699, German naturalist and artist Maria Sibylla Merian
(1705) published her famous book Metamorphosis insecto-
rum Surinamensium. Although primarily filled with out-
standing drawings of insects, this book also offered the first
illustration and description of metamorphic Pipa pipa
crawling out of a female’s dorsal skin (Merian 1705; Fig.
3). Given both the remoteness of Suriname at the time and
the elusive aquatic habits of P. pipa, it is surprising that this
was the first-ever description of amphibian parental care.
Aside from depicting ovaries along the female’s back,
Merian’s description and drawing are accurate, and were
confirmed more than 50 yr later by the Swedish and Dutch
naturalists von Linné (1758) and Fermin (1765), who noted
that female P. pipa hatches its young by laying them on its
back. Thirty years after Merian’s observations, the egg-
carrying behavior of the European Midwife Toad, Alytes
obstetricans, was described by Demours (1741, 1778). But
his reports were met with disbelief, and he did not receive
credit until a century later when de I'Isle du Dréneuf (1876)
described the same behavior in these frogs.

In the 19th century, Boulenger (1886) gave the first
review of parental behavior in anurans, listing seven species
that transport their offspring. The list included the mouth-
brooding frog, Rhinoderma darwinii, which was thought to
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Fic. 3.—(A) Maria Sibylla Merian (1647-1717), first scientist to describe parental behavior in an amphibian, Pipa pipa. It is noteworthy that the discovery
was made by a woman, especially at that time. (B) Illustration from Merian’s book, Metamorphosis insectorum Surinamensium, showing adult female P. pipa
with metamorphic offspring on its back and young juvenile behind her in the water. A color version of this figure is available online.

be viviparous until Jiménez de la Espada (1872) recognized
that males actually incubate offspring in the vocal sac
(Howes 1888; Weltner 1896; Wiedersheim 1900; Janvier
1935). The list also included Gastrotheca ovifera, first
reported to carry eggs in dorsal pouches by Weinland
(1854). Although not yet included in Boulenger’s list, other
species had been seen carrying eggs on their backs without
pouches, such as an unknown bromeliad-dwelling species
discovered by Miiller (Darwin 1879) and Fritziana goeldi,
described in the same year by Goldi (1895) and Boulenger
(1895).

Boulenger (1895) also noted tadpole transport in den-
drobatid poison frogs. This behavior was first described by
Wyman (Wyman 1857, 1859; Boulenger 1888a), who had
heard about this unusual parental care mode from a
colleague (Mr. G. O. Wacker) before observing it in
Suriname. Early observations of tadpole carrying in poison
frogs were also made by Kappler (also in Suriname; Kappler
1885; Boulenger 1888b) and Smith (1887), who was
informed about this behavior by native hunters in western
Brazil. In an early review, Sampson (1900) summarized
tadpole transport behavior of several dendrobatid species.
Deposition of poison frog tadpoles into tree holes was first
described by Eaton (1941). Brauer (1899) also reported
tadpole transport behavior in male Seychellen frogs,
Sooglossus sechellensis. He further observed these frogs
guarding their eggs before transportation.
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Early on, some authors hypothesized that frogs staying
close to their eggs might be protecting them (Peters 1876).
Von Thering (1886) observed Phyllomedusa iheringii build-
ing nests by gluing leaves together, which was supported by
similar observations in other species of the same genus
(Mole and Urich 1894; Budgett 1899; Bles 1905; Agar 1909).
Hensel (1867) observed leptodactylids digging nest sites
outside of large water bodies and constructing foam nests,
suggesting they might protect larvae from fish predators—a
theory that reappears much later in the anuran parental care
literature (see below). Some reports unintentionally describe
egg guarding, such as when von Thering (1886:462) stated,
“The adult animal is a stupid creature, and will let itself be
taken without attempting to escape.” Most early descriptions
of egg guarding assumed that care-giving parents were
female (e.g., Bello 1871), but true female egg guarding was
not described until the early 20th century in Leptodactylus
sp. (Ferndndez and Fernandez 1921).

In the first half of the 20th century, descriptions of
parental care in anurans became more abundant (e.g.,
Biirger 1905; Krefft 1911; Noble 1926; Dunn 1941), and in
some cases became the main focus of publications (e.g.,
Andrews 1901; Brandes and Schoebnichen 1901; Deixner
1924). For example, Boulenger (1903, 1904) described egg
brooding on or in depressions of the female dorsum.
However, some reports remain unconfirmed. For example,
ventral egg transport in Pseudophilautus reticulatus (An-



78 Herpetological Monographs 34, 2020

drews 1901), female mouth-breeding in Leptopelis brevir-
ostris (Boulenger 1906), and nest building with aromatic
resins in Trachycephalus resinifictrix (Goldi 1907) are three
parental-care modes that are not known today (Schiesari et
al. 2003).

Prior to 1950, 14 of 28 anuran parental care modes were
described (Table 1). Wunder (1932) offered a solid review of
the known parental-care modes at the time, separating
offspring guarding and offspring transport, and further
dividing transport into seven brood-care categories (long-
and short-term tadpole transport, egg development in body
cavities, etc.). These categories have been reorganized
several times up to the present day (Table 1; Crump
2015). Wunder (1932) was also the first to link intensive
parental care with fewer and larger eggs (see Summers and
McKeon 2006) and to note that most parental-care modes
are found in the tropics. Lutz (1947) also discussed the
tropical biogeography of parental-care modes, and, together
with her father, described several new species that conduct
parental care (reviewed in Schulte and Rédder 2016). Lutz
(1947) posed a key hypothesis about the evolution of brood
care in anurans that is still supported today (Brown et al.
2010): that aquatic predator pressure and larval competition
promoted the evolution of new breeding modes in smaller
water bodies, on land, or directly on parents’ bodies, and
thus stimulated the evolution of complex parental behavior
in anurans.

Tue RECENT PasT AND PRESENT (SINCE 1951): HYPOTHESIS-
AND EXPERIMENT-BASED APPROACHES

After 1950, remarkable amphibian parental behaviors
migrated from the margin into the spotlight of scientific
reports. As in many budding fields, anecdotal descriptions
were replaced by hypothesis-testing experiments. Accord-
ingly, the number of publications about parental care in
amphibians has increased dramatically over the last seven
decades (Fig. 2).

Caecilians

During the second half of the 20th century, accumulating
observations of caecilian reproductive behavior led to the
hypothesis that most caecilians exhibit some form of parental
care (Wake 1992; Gower et al. 2008). Oviparous species with
aquatic larvae generally exhibit clutch guarding (Nishikawa
et al. 2008; Bei et al. 2012), which is considered the ancestral
form of parental care in caecilians (Wilkinson and Nussbaum
1998; C1, Table 1). Some direct-developing species provide
postpartitive maternal care, and some viviparous species—
those that retain young in the maternal reproductive tract
and give birth after metamorphosis—provide intraoviductal
(also referred to as “intrauterine”; see Wake 1993) or
epithelial nutrition (Wake 1992; Gower et al. 2008; Lodé
2012). In fact, all viviparous and some oviparous caecilian
young have specialized, deciduous fetal dentition (e.g.,
Parker 1936, 1956; Parker and Dunn 1964) used for scraping
the thickened oviduct lining and/or skin of the mother (e.g.,
Wake 1992; Kupfer et al. 2006; C2 and C3). Intrauterine
feeding facilitates offspring growth in the oviduct (Parker
and Dunn 1964; Wake 1977a, 1980; Welsch et al. 1977) and
teeth scraping may stimulate the secretion of nutritive
epithelia (Wake 1977b; Gomes et al. 2012). However, young
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may also be nourished in the oviduct via highly vascularized
gill structures functioning as a pseudo-placenta (e.g.,
Typhlonectes, Delsol et al. 1981). In contrast, offspring that
use their teeth to scrape off maternal skin or skin secretions
after birth are born much smaller than species with
intrauterine feeding (O'Reilly et al. 1998). Maternal
dermatotrophy has been demonstrated in several distantly
related direct-developing oviparous species via ex situ
behavioral experiments and histological examinations (Kup-
fer et al. 2006; Wilkinson et al. 2008, 2013; Kouete et al.
2012). Genetic parenthood analysis further revealed that
even though this parental-care strategy is very cost intensive,
parents do not discriminate care to their own offspring (i.e.,
alloparenting; Kupfer et al. 2008; C4).

Reproductive and parental care modes are known for
about 25% of the approximately 200 described caecilian
species. Recently, San Mauro et al. (2014) integrated life-
history traits with modern phylogenetic tools to reconstruct
caecilian life-history evolution. Also, Kupfer et al. (2016)
conducted a character-state reconstruction to investigate the
evolutionary relationships between reproductive modes,
parental investment, and offspring size and quality. Togeth-
er, these studies suggest that the concurrent evolution of
direct development and juvenile teeth gave rise to skin-
feeding—likely a precursor of oviduct feeding—and thus
enabled the independent evolution of viviparity at least four
times within Gymnophiona (Lodé 2012). Although caecilians
are the least-investigated amphibians, contemporary studies
combining natural history and genomics are broadening our
understanding of parental-care evolution.

Urodeles

Parental care in urodeles has been described as simple
and limited to egg attendance (Salthe and Mecham 1974;
Nussbaum 1985; Crump 1996; U2-5 in Table 1). However,
egg attendance is difficult to demonstrate, because spatial
proximity alone does not ensure either a benefit to offspring
or a cost to parents (Crump 1996). The terms “brooding,”
“attendance,” and “guarding” have been used inconsistently
across the literature (Crump 1996), further confusing the
adaptive significance of the spatial association between
adults and their clutches.

Despite its relative simplicity, parental care is abundant in
urodeles, appearing in up to 20% of species (Balshine 2012)
from eight of nine families (all except Rhyacotritonidae),
including in about 80% of plethodontid salamanders.
Surprisingly, recent reviews about parental care in verte-
brates barely touch on urodeles (cf. Balshine 2012).
Information about urodele parental care was reviewed
extensively in the 1980s and 1990s (Salthe 1969; Nussbaum
1985; Verrell 1989; Crump 1996).

Salamanders are an ideal group for studying the evolution
of parental strategies because of their diverse fertilization
mechanisms, lifestyles, mating systems, and habitats, and
also because parental care has probably evolved indepen-
dently many times in this group (Salthe and Mecham 1974;
Nussbaum 1985, 2003). Maternal care is generally found in
species with internal fertilization whereas paternal care is
mainly associated with external fertilization and male
territoriality (Gross and Shine 1981; Verrell 1989). Further-
more, both brooding and nonrandom selection of oviposition
sites are strongly associated with breeding habitat (Salthe
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1969); pond breeders typically deposit many small, exposed
eggs in standing water and provide no postoviposition
parental care, whereas stream breeders usually deposit few
eggs at hidden, protected locations and one or both parents
attend the clutch. Terrestrial breeders (e.g., plethodontid
salamanders, some newts) generally lay clutches of eggs in
hidden locations, have prolonged brooding periods, produce
direct developing larvae, and aggressively defend their eggs
against predators (Salthe 1969; Crump 1996). Nussbaum
(1985, 1987) hypothesized that parental care evolved in
stream- rather than pond-breeding species because foraging
in stream currents requires larger and stronger larvae, in
turn allowing consumption of the larger prey found in lotic
ecosystems. For stream-dwelling larvae to grow larger, they
must spend more time in the egg (Salthe and Duellman
1973; Salthe and Mecham 1974), and parental egg guarding
could have evolved in response to predation risk during the
extended egg phase.

Viviparity in urodeles is considered an adaptation to
protect vulnerable offspring from water shortages, caused by
either harsh high-altitude climates or droughts (Vilter and
Vilter 1964; Joly et al. 1994; Lodé 2012; but see Dopazo and
Korenblum 2000). Although in general the Fire Salamander
(Salamandra salamandra) is ovoviviparous (mothers retain
eggs in the oviduct until hatching without nutritional
exchange, and several weeks of aquatic development are
required after birth; Buckley et al. 2007), some subspecies
(Salamandra salamandra fastuos, Salamandra salamandra
bernadezi) are decidedly viviparous and give birth to fully
metamorphosed offspring (Dopazo and Alberch 1994; Joly et
al. 1994; Garcia-Paris et al. 2003). The same is the case for
the Black Salamander (Salamandra atra; Vilter and Vilter
1960). The suggestion that alpine salamanders exhibit
intrauterine feeding was made centuries ago (US). More
recently, integrative approaches have identified specialized
maternal tissues known as “oviductal epithelium” or “zona
trophica,” which provides embryos nutrition after yolk
depletion (epitheliophagy; Guex and Chen 1986; Guex and
Greven 1994).

Newts (salamanders from the subfamily Pleurodelinae)
were long considered to lack parental behavior (cf. Crump
1996). However, some terrestrial breeding newts exhibit
parental behavior, such as the Himalayan newt (Tylototriton
verrucosus) in which females coil around their eggs (Kuzmin
et al. 1994). Furthermore, numerous aquatic breeding newts
such as those in the genera Triturus and Lissotriton exhibit
parental behavior, although it is limited to egg rolling (or also
“egg wrapping”; Bell and Lawton 1975; Bell 1977; Diaz-
Paniagua 1989; Miaud 1994; U1). This behavior was either
not considered true parental behavior or was seen as a
primitive form of parental care (Miaud 1993), in part
because there is no parental care after eggs have been
wrapped in a leaf (Bell 1977; Beebee and Griffiths 2000),
and was originally described only as a reproductive mode
(Mode I: many eggs are laid singly on supports such as
aquatic plants; Salthe 1969). However, lab and field
experiments tested the protective function of egg wrapping
and confirmed its adaptive significance (Ward and Sexton
1981; Miaud 1993, 1994; Orizaola and Brana 2003), as well
as time and energy costs to the parent (Diaz-Paniagua 1989;
Miaud 1994). In fact, wrapped eggs have a much higher
survival rate because they are less visible and accessible to
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predators (Miaud 1993, 1994; Orizaola and Brana 2003), and
suffer from less mechanical destruction (Ward and Sexton
1981), fungal infection, and damaging UV-B radiation
(Kiesecker and Blaustein 1995; Green 1999; Marco et al.
2001). Thus, there is considerable support that egg wrapping
in newts is in fact a real parental behavior.

Egg-wrapping strategies vary among (and within; Téth et
al. 2011) Lissotriton species (Miaud 1995; Orizaola and
Brana 2003; Norris and Hosie 2005; Dvordk and Gvozdik
2009; 2010; Kurdikova et al. 2011) such that larger females
are more skilled in egg-laying and wrapping than smaller
females, and individual female behavior influences offspring
survival (Diaz-Paniagua 1989; Téth et al. 2011). However, a
comparative understanding of the behavioral repertoires of
individuals and species is lacking. Use of standardized
ethograms—such as that created by Norris and Hosie
(2005) to compare oviposition behavior in Lissotriton
helveticus and Lissotriton vulgaris—would improve our
ability to compare behaviors across taxa.

Oviposition behavior in aquatic breeding newts has
received increasing attention in recent decades because of
the decline of newt populations globally (Waldmann and
Tocher 1998; Marco et al. 2001). Apart from broad stressors
such as habitat fragmentation and loss, acidification of water
by pollutants such as the fertilizer ammonium nitrate are
detrimental to egg development and alter female wrapping
behavior (Ortiz-Santaliestra et al. 2007). Changes in water
temperature, such as those associated with a shifting climate
regime, also negatively affect oviposition performance
(Dvordk and Gvozdik 2009, 2010; Kurdikova et al. 2011).

Relative to the newts, only limited and anecdotal reports
exist about another aquatic breeding urodele family,
Sirenidae. Based on observations of two breeding pairs in
captivity, Siren intermedia territorial males guard, move, and
oxygenate (via fanning) their clutches, and aggressively
defend developing and recently hatched larvae against
intruders (Reinhard et al. 2013, 2015)—a parental care
mode first described by Hubbs (1962; U7). In contrast,
parental behavior was not observed in Pseudobranchus
striatus (Kowalski 2004). Because parental care is otherwise
rare in male and aquatic breeding urodeles, Sirenidae
represents an important taxon for studying the evolutionary
drivers of maternal and paternal care, but more information
about the behavior and natural history of this group is
needed before selective pressures can be evaluated.

Even though most species in the family Ambystomatidae
(represented by a single genus Ambystoma) lack parental
care, this family is a valuable target for comparative
approaches given its diverse range of life-history patterns,
ecology, and reproductive modes (Petranka 1990). Brooding
has not been documented in most Ambystoma species, in
contrast to many plethodontids, even though both groups
breed terrestrially next to streams (Anderson and Williamson
1976; Petranka and Petranka 1981; Nussbaum 1985).
However, adult Marbled Salamanders (Ambystoma opacum)
migrate to breeding sites and females actively select
oviposition sites inside dry pond beds, coiling around their
clutches until the ponds fill with rainwater (Noble 1931;
Figiel and Semlitsch 1995). Both brooding and active nest
site selection improve offspring survival in A. opacum
(Petranka and Petranka 1981; Jackson et al. 1989; Petranka
1990; Croshaw and Scott 2005). Interestingly, the costs of



80 Herpetological Monographs 34, 2020

brooding appear to be low or even absent, as females did not
appear to lose weight during the brooding period (Kaplan
and Crump 1978). That costs are low is particularly
surprising because female marbled salamanders frequently
abandon nest sites before pools fill up with rainwater
(Kaplan and Crump 1978); the underlying causes of this
behavior remain unclear.

Even less is known about parental behavior in Crypto-
branchidae, one of the oldest salamander lineages (Pyron
and Wiens 2011). Species in this group are fully aquatic,
secretive, and have well-hidden nest sites. They are also
rapidly declining worldwide. Although historical anecdotes
described egg fanning and defense, recent field observations
and video monitoring have revealed an extended period of
pre- and posthatching parental care in the Japanese giant
salamander, Andrias japonicus (Okada et al. 2015; Takahashi
et al. 2017). Large males (“den-masters”) occupy nesting
burrows along stream banks, performing tail fanning,
agitation, filial hygienic cannibalism, and active predator
defense (Okada et al. 2015), both before hatching (1-2 mo)
and with juveniles (up to 5 mo; Takahashi et al. 2017).
Unfortunately, small sample sizes (n = 2) impede inferences
about the causes, correlates, and function(s) of these
behaviors.

Parental care is particularly widespread in the family
Plethodontidae, which includes over 70% of extant urodele
species. Life in stressful environments has likely been a
major factor in the development of parental strategies in this
group (Wilson 1975). Nonetheless, the distribution and
diversity of plethodontid parental behaviors is probably
underestimated, as the reproductive biology of many species
is unknown, and most research is limited to 7 of 476 species
in this family (Plethodon cinereus; Desmognathus ochro-
phaeus; Hemidactylium scutatum; Speleomantes strinatii;
Bolitoglossa mexicana; Plethodon albagula; D. fuscus; Frost
2019). Egg attendance (or the secondary loss thereof),
however, has also been reported in many other species in the
group (e.g., Ensatina eschscholtzi, Stebbins 1954; Batracho-
seps nigriventis, Jochusch and Mahoney 1997; Bolitoglossa
rostrata, Houck 1977; Aquiloeurycea cafetalera, Aguilar-
Lépez et al. 2017). Plethodontid salamanders have internal
fertilization (via retrieval of male spermatophores with
female cloacal muscles), terrestrial clutches, and predomi-
nantly female parental care (Verrell 1989). Because mothers
do not leave the nest to eat and they face higher predation
risk, egg brooding and guarding are considered quite costly
(Forester 1981; Bachmann 1984; Hom 1988; Harris et al.
1995; Ng and Wilbur 1995; Yurewicz and Wilbur 2004). Egg
production and brooding may consume almost half of a
female’s annual energy budget (Fitzpatrick 1973).

The adaptive benefits of plethodontid maternal behaviors
are diverse (Forester 1979). Brooding females provide active
and passive defense against conspecific and heterospecific
predators (Highton and Savage 1961; Bachmann 1964; but
see Carrefio and Harris 1998), move and turn their eggs to
increase oxygenation and prevent adhesive malformations
(Stebbins 1954; Vandel and Bouillon 1959; Durand and
Vandel 1968; Salthe and Mecham 1974), and moisten eggs
during periods of drought (Forester 1984). Furthermore,
mothers ingest infected eggs to prevent the spread of fungal
infection (Snyder 1971; Tilley 1972; Salthe and Mecham
1974). Although most fungi develop on nonviable eggs (Villa

Downloaded From: https://bioone.org/journals/Herpetological-Monographs on 06 Aug 2020
Terms of Use: https://bioone.org/terms-of-use

1979), some pathogenic fungi infect healthy eggs (Villa 1979;
Warkentin et al. 2001). An antimicrobial function of
salamander skin was hypothesized long ago (Piersol 1910),
but the mechanisms were not experimentally verified until
100 yr later (Lauer et al. 2007; Banning et al. 2008; Brucker
et al. 2008). Chemical and molecular analyses have shown
that peptides and alkaloids produced in skin glands inhibit
fungal growth (Simmaco et al. 1998; Rollins-Smith et al.
2002). In addition, amphibian skin harbors bacteria that
produce antibiotic compounds, which could be transferred
from mothers to clutches to enhance embryo survival (Lauer
et al. 2007, 2008).

Although microbe transmission is generally considered to
be a cost of group living in mammals and birds, transmission
of antifungal skin bacteria may have favored the evolution of
communal nesting in several plethodontids (Banning et al.
2008). For example, in Hemidactylium scutatum, a few
females deposit clutches in the same nest and one of them
remains for nest brooding (Harris and Gill 1980; Harris et al.
1995). Brooding may facilitate the transmission of antifungal
bacteria to embryos (Banning et al. 2008), and although joint
brooding females exhibit preferential care for their own
clutch, their energy expenditure is not considerably higher
than females with solitary nests (Carrefio and Harris 1998).
The adaptive significance and function of communal nesting
in plethodontids is barely understood, but it has not been
found to be a behavioral response to habitat limitation or
high population density (Emlen 1982; Hatchwell and
Komdeur 2000), conspecific brood parasitism, or high
predation threat requiring group nest defense (cf. Harris et
al. 1995).

Cross-fostering experiments in solitary nesting pletho-
dontids have elucidated some adaptive benefits of parental
care. Infrared cameras and manipulations of parents and
clutches in the Northwest Italian Cave Salamander, Speleo-
mantes strinatii revealed that postoviposition care influences
offspring size more than preoviposition care, and that
mothers attend and guard young for weeks after hatching
(Oneto et al. 2010; UG6). Although a substantial body of
literature has illustrated many aspects of parental care in
urodeles and particularly in plethodontids (Forester 1979,
1983; Nussbaum 1987; Verrell 1989; Jaeger and Forester
1993; Crespi and Lessing 2004; Trauth et al. 2006; Banning
et al. 2008), we still have minimal knowledge about the
diversity and abundance of parental behaviors in many
families (Fig. 1). Integrative work that combines observa-
tional, experimental, genetic, and modeling approaches is
needed to identify the mechanisms underlying the diversity
of urodele parental strategies.

Anurans

The study of parental care in anurans has recently come
of age, with the number of descriptive natural history and
hypothesis-testing reports in our literature search rising
since the 1980s (Fig. 2). The number of parental-care modes
doubled from 14 to 28 in the last few decades (Table 1). In
fact, more than two-thirds (456 of 685) of the papers that we
found about parental care in amphibians were published
since 1950 and focus on anurans. However, recent
experimental work in anuran parental care is heavily biased
toward Neotropical taxa, and in particular toward Dendro-
batidae (Fig. 4). This family exhibits particularly complex
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Fic. 4—Number of hypothesis-testing parental care studies in anurans
(that were identified in our literature review) published in the last five
decades, colored by family. Note how some families such as Dendrobatidae
have received more attention than others. A color version of this figure is
available online.

forms of parental care, and significant research effort has
strived to cultivate a deep understanding of their functions
and origins, in contrast to other anuran families where, in
most cases, parental care research is merely scratching the
surface. Few other taxa have played a substantial role in
anuran parental-care research, including Allobates femoralis
(Aromobatidae, from the same superfamily as Dendrobati-
dae), Kurixalus eiffingeri, Alytes obstetricans (Alytidae),
Eleutherodactylus coqui (Eleutherodactylidae), Leptodacty-
lus bolivianus (Leptodactylidae), and Kurixalus eiffingeri and
Feihyla hansenae (both Rhacophoridae). Additionally, stud-
ies using comparative methods among various centrolenid
species have revealed new perspectives on the adaptive
significance of anuran parental care (Delia et al. 2017).
Given the extreme diversity of parental-care modes in
anurans (Table 1; Fig. 1), a wider comparative scope in
other families would strengthen our understanding of
adaptive and mechanistic functions, especially outside of
the most commonly studied behaviors: tadpole transport, egg
attendance, site choice, and nutritive provisioning.
Research on parental care in anurans after 1950 can be
categorized as either “descriptive,” revealing fascinating
aspects of natural history, or “hypothesis-testing,” probing
deeper into established natural history. Generally, descrip-
tive studies rely on observational field or lab work, whereas
hypothesis-testing studies integrate methods from behavior,
phylogenetics, genetics, morphology, neuroendocrinology,
and chemistry to assess ultimate and proximate hypotheses.
Observations of diverse parental behaviors.—Recent
descriptive studies have revealed new modes of parental
care, better knowledge of poorly understood species, and
new details about well-studied species. Several types of
parental care have been discovered in distinct geographical
regions, hinting at striking, yet underexplored, examples of
evolutionary convergence. For example, guarding of eggs—
that will either develop directly into froglets or hatch into
aquatic tadpoles—has been reported in taxa as diverse as the
South African Bullfrog (Cook et al. 2001), African hyperolids
(Stevens 1971), New Zealand leiopelmids (Bell 1978),
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Papuan and Australian microhylids and myobatrachids
(Pengilley 1971; Roberts 1984; Bickford 2004; Hoskin
2004; Giinther 2006), Bornean dicroglossids (Inger and
Voris 1988), and many South American species in the
families Craugastoridae, Eleutherodactylidae, Centroleni-
dae, and Dendrobatidae. In some cases, egg guarding is
further derived: (1) building of mud, foam, bubble, or leaf-
pouch nests (Al-4, Table 1; Gladiator Frog, Kluge 1981;
Tingara Frog, Ryan 1985; Gray Foam-Nest Tree Frog, Coe
1974; Santa Catarina Humming Frog, Haddad and Hodl
1997; Reticulate Leaf Frog, de Oliveira 2017); (2) use of
heterospecific nests (A5; Allobates sumtuosus, Kok and Ernst
2007); (3) camouflaging eggs with dirt (A6; Spix’s Saddleback
Toad, Pombal et al. 1994); (4) carrying eggs wound around
the legs until hatching (A15; Midwife Toad, Méarquez 1992);
(5) carrying eggs in a dorsal pouch-like structure (A16-18;
e.g., marsupial frogs like Gastrotheca, del Pino 1989); or (6)
carrying eggs on the back with no protective structure (A19-
20; e.g., backpack frogs like Cryptobatrachus, del Pino
1989).

Species with external fertilization, like most anurans,
typically use organs other than the oviduct to carry embryos,
because zygotes are ingested or deposited only after
fertilization. Very few anuran species exhibit internal
fertilization, and thus oviductal retention is rare in frogs
(but see Sever et al. 2001, Iskandar et al. 2014, Wake 2015;
A26). It has been hypothesized that nonoviductal retention
was derived from parental care of juveniles, and that
oviductal retention is ancestral to viviparity (Lodé 2012).
The protection of embryos in maternal organs other than the
oviduct (e.g., skin, mouth, stomach) resembles ovoviviparity
or viviparity in various ways (see sections on viviparity in
caecilians and salamanders above). For instance, male
Rhinoderma darwinii ingest their embryos and keep them
in their vocal sac, where the tadpoles feed on their yolk and
secretions from the male’s sac until metamorphosis (A22;
Goicoechea et al. 1986). Likewise, female Rheobatrachus
silus give birth to metamorphic young via propulsive
vomiting (A21; Corben et al. 1974; Tyler and Carter 1981).
Such gastric brooding is possible because developing young
secrete a chemical substance that prevents stomach acid
production by the mother (Fanning et al. 1982). Unfortu-
nately, further exploration of this fascinating mode of
parental care is not possible, as this frog is reportedly
extinct, last seen in 1981 (IUCN 2018).

Although egg-brooding anurans often continue parental-
care behaviors during tadpole or froglet stages, most egg-
attending species do not provide posthatching care, because
their eggs are deposited near water and then hatchlings swim
away (e.g., Hyalinobatrachium fleischmanni: Jacobson 1985).
However, a few species do protect their tadpoles or froglets
after hatching (Leptodactylus insularum, Hurme 2011;
Cophixalus parkeri, Simon 1983). Other species of parental
anurans carry recently hatched tadpoles to bodies of water
(A11-12), or hold them on their dorsum or in inguinal
pouches, where they are protected until metamorphosis
(A23-25; Cycloramphus stejnegeri, Heyer and Crombie
1979; Assa arlingtoni, Straughan and Main 1966). In some
directly developlng species that lack a free-living tadpole
stage, mothers or fathers transport newly hatched froglets to
appropriate habitats (A13-14; Eleutherodactylus cundalli,
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Diesel et al. 1995; Sphenophryne schlaginhaufeni, Bickford
2002).

In the Neotropical poison frogs (families Dendrobatidae
and Aromobatidae), male tadpole transport was known from
natural history observations for over a century (All;
reviewed in Weygoldt 1987), when back-to-back discoveries
revealed female offspring transportation (A12) followed by
provisioning with unfertilized nutritive eggs in Oophaga
pumilio (A27; Graeff and Schulte 1980; Weygoldt 1980) and
biparental tadpole feeding in Ranitomeya imitator (A2S;
Kneller 1982, as Dendrobates reticulatus). These and many
other parental behaviors in this group were first described by
private breeders (e.g., Polder 1974; Lescure and Bechter
1982; Zimmermann and Zimmermann 1984), who made
priceless contributions to the study of amphibian parental
care. Observations in situ soon confirmed these data,
expanding the knowledge of egg-guarding, tadpole-transpor-
tation, and egg-feeding behaviors in many species (e.g.,
Aichinger 1991; van Wijngaarden and Bolafios 1992; Brust
1993; Junca et al. 1994; Caldwell 1997; Fandifio et al. 1997).
The accessibility of brightly colored and diurnal poison frogs
in captivity and in the wild, in combination with their wide
array of behaviors, makes them ideal model species for
parental-care studies (Weygoldt 1987; Summers and Tu-
multy 2014; Stynoski et al. 2015). As such, numerous studies
have been conducted in this family (Fig. 4), on a diversity of
questions, both ultimate (e.g., correlations between the
evolution of parental care and egg size or ecological factors;
Summers and McKeon 2006; Brown et al. 2010) and
proximate (e.g., neural basis of parental decisions; Roland
and O’Connell 2015).

Hundreds of important observational studies have added
to our knowledge of the natural history and diversity of
parental care in anurans in recent decades, and we strongly
encourage researchers to continue reporting such crucial
observations. On the other hand, since 1950, the study of
anuran parental care has truly blossomed in the use of
experimental data to test hypotheses directly.

Ultimate questions about adaptive significance.—
Rigorous laboratory and field studies have begun to unravel
the relative costs and benefits of anuran parental care from
the perspectives of both the parent and the offspring. Such
research has identified many of the ecological factors and
interactions that impact the form, intensity, and diversity of
parental care among anuran lineages. It has also illustrated
the adaptive significance and selective pressures that have
led to the evolution of behaviors and morphologies that
facilitate care of offspring.

A fundamental question about the adaptive significance of
parental care is whether behavior that appears to play a role
in offspring success truly provides measurable benefits.
Numerous classic studies have used parent removal exper-
iments to tease apart the adaptive benefits of egg attendance
by mothers or fathers and the sources of mortality when a
parent experimentally abandons its eggs. Prior to these
experiments, many speculated whether egg attendance
reduces dehydration, predation, pathogenic infection, or
other sources of offspring mortality (e.g., Salthe and Duell-
man 1973; Vaz-Ferreira and Gehrau 1974; Woodruff 1977;
McDiarmid 1978; Jacobson 1985).

The first experimental evidence for benefits of parental
egg attendance was found in Cophixalus parkeri (Simon
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1983) and E. coqui (Townsend et al. 1984), in which removal
of males from clutches led to high egg mortality via
cannibalism, desiccation, fungal infection, and arthropod
predation. Similar adaptive benefits have been demonstrated
experimentally in many glass frogs (Hyalinobatrachium
fleischmanni, Hayes 1991; Delia et al. 2013, 2014; Hyalino-
batrachium wvalerioi, Vockenhuber et al. 2009; Hyalinoba-
trachium orientale, Lehtinen et al. 2014; Ikakoaz tayrona,
Bravo-Valencia and Delia 2016; Cachmnella Umnulosa and
Teratohyla pulverata, Delia et al. 2017) and “other anuran
families (Hylophorbus rufescens and Oreophryne sp.,
Bickford 2004; K. eiffingeri, Chen et al. 2007, 2011; Cheng
and Kam 2010; F. hansenae, Poo and Bickford 2013; R.
imitator, Tumulty et al. 2014; O. pumilio, Dugas et al. 2016a;
Thoropa taophora, Consolmagno et al. 2016). These
experiments have shown that the source of mortality
depends on the selection pressures acting on parents and
offspring in a given habitat (Bickford 2004; Bravo-Valencia
and Delia 2016), with weather variation (Deha et al. 2013;
Lehtinen et al. 2014) and offspring development (Vock-
enhuber et al. 2009; Bravo-Valencia and Delia 2016; Dugas
et al. 2016a) playing important roles in the relative value of
parental care. Although the majority of parent removal
experiments have been based on studies in which the male
adult performs most or all of the egg attendance, some
studies have also demonstrated clear adaptive benefits when
the female (Poo and Bickford 2013; Bravo-Valencia and
Delia 2016; Delia et al. 2017) or both parents (Tumulty et al.
2014) attend offspring.

Other studies have demonstrated other complex ways that
parental care can benefit offspring: larger size of brooding
males in A. obstetricans and Alytes cisternasii (Raxworthy
1990; Marquez 1993), sequential vs. nonsequential clutch
attendance in K. eiffingeri (Cheng et al. 2012), and
differences expressed among allopatric color morphs in O.
pumilio (Dugas and Richards-Zawacki 2015). Such findings
suggest that we are only beginning to understand the
complex interactions between parental care and offspring
fitness in anurans.

The evolution of parental behaviors depends not only on
the benefits to offspring, but also the relative costs of that
care to parents, who must balance investment in current
offspring with investment in future offspring and their own
survival (Trivers 1974). For example, Townsend (1986)
demonstrated that male E. coqui attending eggs lost
signiﬁcant mass and missed numerous mating opportunities,
although those costs were compensated by a net fitness gain
because of dramatic improvements in offspring survival.
Field studies with O. pumilio showed that females invest
more time in parental care and have a lower potential
reproductive rate than males (Prohl and Hodl 1999). Also, a
series of studies based on captive O. pumilio demonstrated
that the provisioning of nutritive eggs by female frogs is
costly and limiting: tadpoles in larger broods received fewer
eggs, and females produced fewer clutches when already
caring for tadpoles (Dugas et al. 2015a). Furthermore,
reproductive rate was negatively correlated with the duration
of adult survival (Dugas et al. 2015b), and reproductive
success did not improve with parent age or experience
(Dugas et al. 2015c¢). Similarly, K. eiffingeri tadpoles in larger
clutches grew less, suggesting that nutritive egg production is
a limiting factor in maternal care (Kam et al. 1998).
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The degree of parental investment in a given species is
intricately related to its mating system, and therefore also to
the degree of territoriality, resource defense, and mating
competition displayed by either of the sexes. In the 1990s
and 2000s, a number of reports aimed to quantify and
elucidate the relative roles of male and female anurans in
light of the impact that investment in parental care could
have on the evolution of mating systems. For example,
studies have measured territory and home range sizes,
reproductive success or skew, choosiness of mates, features
of quality such as body size or call traits, and defensive
behavior to evaluate whether these factors can be predicted
by the intensity of parental care displayed by either males or
females. Such hypotheses have generally been tested in
dendrobatid and aromobatid species (A. femoralis, Roith-
mair 1992; Ursprung et al. 2011; Ringler et al. 2012;
Dendrobates leucomelas, Dendrobates auratus, Summers
1989, 1990; Oophaga histrionica, Summers 1992; Ranito-
meya ventrimaculata, Summers and Amos 1997; O. pumilio,
Haase and Prohl 2002; Prohl 2002, 2005; Meuche et al. 2011,
2013), and occasionally in other anuran families as well (A.
obstetricans, Verrell and Brown 1993; R. darwinii, Valen-
zuela-Sanchez et al. 2014; H. valerioi, Mangold et al. 2015).
Research with R. imitator, Ranitomeya variabilis, and
Ranitomeya vanzolinii has also explored the relationship
between biparental care and a monogamous or pair-bonded
mating system (Caldwell 1997; Caldwell and de Oliveira
1999; Brown et al. 2008a,b, 2009). This work, along with
comparative analyses across anurans, suggest that selection
to rear offspring in particularly small phytotelmata is
associated with biparental care and, accordingly, pair-
bonded mating systems (Caldwell and de Oliveira 1999;
Brown et al. 2010).

Male tadpole transport without provisioning is thought to
be the ancestral form of parental care in dendrobatid frogs
(Weygoldt 1987; Summers and Tumulty 2014). Exclusively
female or biparental care are thought to be derived (Tumulty
et al. 2014). However, parental roles can be flexible. Other
anurans, such as Eleutherodactylus johnstonei, display
dynamic rather than fixed parental roles (amphisexual care;
Bourne 1998; Lehtinen 2003), and when male A. femoralis
were experimentally removed, females stepped in to initiate
tadpole transport (Ringler et al. 2015a). Compensatory
flexibility may be widespread, considering frequent anec-
dotal observations of biparental care with high sex bias (see
Killius and Dugas 2014; Tumulty et al. 2014). Behavioral
flexibility could be a crucial step in the evolutionary
transition from uniparental to biparental care in poison
frogs (Brown et al. 2010; Ringler et al. 2015a).

Proximate questions about mechanisms.—Proximate
studies that clarify the mechanisms and ontogeny underlying
anuran parental care have become popular in recent
decades. Such work can be categorized into three general
themes: (1) histological, physiological, and endocrinological
studies to understand the biological tissues and substances
associated with parental care; (2) spatial, genetic, and
behavioral studies to understand how parent frogs choose
where to deposit their eggs or tadpoles; and (3) behavioral,
ecological, and chemical studies to understand the provi-
sioning of food, water, and other resources.

Many anurans brood offspring using specialized pouches
or organs with modified tissues. For example, in R. darwinii,
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the male swallows egg clutches and rears the young in a
pouch in his vocal sac (see above), which becomes extremely
distended when brooding young (Garrido et al. 1975).
Histological studies examining the ultrastructure of the
epithelium and vascularization of the father’s pouch as well
as the delayed development of the tadpole digestive tract
suggest that tadpoles respire and acquire nutrients from
fathers while in the pouch (Garrido et al. 1975; Jorquera et
al. 1982). Also, Goicoechea et al. (1986) injected fathers with
tracers and found those tracers in skin and digestive tract
tissues of tadpoles, further supporting transfer of nutrients
from fathers to offspring via the brood pouch. Similarly, R.
silus mothers swallow and hold young in their stomach,
where embryos secrete prostaglandin E,, which inhibits
gastric secretions and, along with egg jelly, prevents
digestion (Tyler et al. 1983).

Frogs in the family Hemiphractidae have brood pouches
in the skin where offspring undergo differing degrees of
development (Table 1). These pouches have been classified
into six types (del Pino 1980), and produce mucosal
secretions in specialized glands to aid the development and
attachment of embryos and tadpoles (del Pino 1980; De
Pérez and Ruiz 1985). A recent study in Gastrotheca
excubitor used labeled isotopes to show that both gases
and liquids containing nutrients are transferred from highly
vascularized maternal pouch tissues to embryos (Warne and
Catenazzi 2016).

Anurans in the families Leptodactylidae and Rhacophor-
idae produce foam nests during oviposition. These nests
provide an extra layer of protection for embryos and early-
stage tadpoles by providing insulation from desiccation and
temperature fluctuations (Engystomops pustulosus, Dobkin
and Gettinger 1985; Dalgetty and Kennedy 2010; Rhaco-
phorus viridis, Tanaka and Nishihira 1987; Rhacophorus
arboreus Kusano et al. 2006; Physalaemus fischeri, Lep-
todactylus fuscus, and Leptodactylus knudseni, Méndez-
Narvdez et al. 2015,). Moreover, by eating the material that
forms the foam nest, tadpoles gain nutritional benefits and
grow more than when reared outside of the foam nest
(Tanaka and Nishihira 1987; Kusano et al. 2006). In E.
pustulosus, the foam nest is derived from six key proteins
that are secreted by oviduct cells into a foam precursor fluid
that is beaten during oviposition; some of these foam
proteins have antibacterial and antipredator functions
(Fleming et al. 2009; Dalgetty and Kennedy 2010).

Anurans are a model system for hormonal control of
mating and communication (reviewed in Arch and Narins
2009), so it is surprising that relatively few studies have
explored the endocrinology of parental care. Moore et al.
(2005) extensively reviewed the literature on the hormonal
regulation of behavior in amphibians and did not once
mention the words “parent” or “care.” A few classic studies
offer some clues about the roles that hormones play in the
modulation of parental care. For example, estradiol causes
the formation of the brood pouch in female Gastrotheca
riobambae (Jones et al. 1973). Also, brooding male E. coqui
show lower circulating androgen levels than nonbrooding
and calling males (Townsend and Moger 1987). However,
implanting males with testosterone pellets did not alter
brooding behavior, suggesting that the drop in androgen
levels is a consequence rather than a cause of parental care
(Townsend et al. 1991). Similarly, male Limnonectes blythi,
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which have lost secondary sex characteristics and transport
tadpoles dorsally, exhibit considerably lower levels of
androgens than related species that do not exhibit such
parental care (Emerson et al. 1993; Emerson 1996).

More recently, Ten Eyck and Haq (2012) demonstrated
that arginine vasotocin (AVT, the amphibian homolog of
mammalian vasopressin), which generally promotes calling
behaviors in anurans, stimulated brooding males to call but
not to abandon their egg clutches. Additionally, Schulte and
Summers (2017) found that in R. imitator, exogenous AVT
actually reduced intense egg-care behaviors (but did elevate
the expression of some general care behaviors), and that
exogenous mesotocin (the amphibian homolog of mamma-
lian oxytocin) reduced the likelihood that males transported
tadpoles. They suggest that other hormones such as steroids
or prolactin are likely important for the stimulation of early
parental behaviors in dendrobatids (Schulte and Summers
2017). However, the hormonal mechanisms that trigger
tadpole transport, egg swallowing, and nonparental, mating,
and egg-provisioning phases in different taxa remain
unexplored. Additionally, it is not known why in some
anuran groups the hormonal and morphological prerequi-
sites for parental care appear only in males (e.g., R. darwinii,
Anomaloglossus degranvillei, Assa darlingoni, and D. aur-
atus), only in females (e.g., Gastrotheca, Flectonotus, and
Pipa), or in both sexes (e.g., R. imitator, and Osteocephalus
oophagus).

Many studies have investigated the biotic and abiotic
factors that determine where parent frogs choose to deposit
eggs or tadpoles. For example, various studies have used
experimental pools to show that mother frogs avoid
depositing eggs in sites with potential predators (Dryophytes
chrysoscelis, Resetarits and Wilbur 1989; Lithobates sylva-
ticus, Hopey and Petranka 1994; Anaxyrus americanus,
Petranka et al. 1994; R. sirensis, von May et al. 2009;
Dendropsophus ebraccatus, Touchon and Worley 2015),
infectious pathogens (Dryophytes versicolor, Kiesecker and
Skelly 2000), or pesticides (D. versicolor complex, Takahashi
2007).

Parent frogs also seek out oviposition sites that are less
likely to experience desiccation. For example, in Crinia
nimbus, an Australian direct developer that deposits eggs in
sphagnum moss, sites with dense and moist nest material are
essential for embryo survival (Mitchell 2002). Phytotelm
breeders O. pumilio, Ranitomeya amazonica, and K.
eiffingeri are more likely to reproduce in months of the year
when desiccation risk is reduced (Donnelly 1989a; Poelman
and Dicke 2007; Lin et al. 2008). Also, R. amazonica is more
likely to deposit eggs and tadpoles in sites with larger water
volumes, as well as those that contain detritus, presumably as
a food source for offspring (Poelman et al. 2013). Mother
frogs are more likely to oviposit in experimental pools with
deep water than with shallow water (Isthmohyla pseudopu-
ma, Crump 1991; Hoplobatrachus occipitalis, Spieler and
Linsenmair 1997; Phrynobatrachus guineensis, Rudolf and
Rodel 2005; D. ebraccatus, Touchon and Worley 2015; R.
sirensis, von May et al. 2009).

Mother frogs also avoid ovipositing in sites that contain
potential conspecific competitors or cannibals. For example,
mothers were more likely to deposit egg clutches in control
pools than in experimental pools with older conspecifics in
the water (D. chrysoscelis, Resetarits and Wilbur 1989; L
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pseudopuma, Crump 1991; H. occipitalis, Spieler and
Linsenmair 1997; Phrynobatrachus guineensis, Rudolf and
Rodel 2005; Pleurodema borellii, Halloy 2006; Rana
Jjaponica, Iwai et al. 2007; K. eiffingeri, Lin et al. 2008; R.
ventrimaculata, Summers 1999), but not in all cases (R.
variabilis, Schulte 2014).

In addition to egg deposition, some frogs (e.g., dendro-
batids and aromobatids) must also decide which tadpoles to
transport (i.e., their own offspring) and where to deposit
them. Ranitomeya variabilis use chemical cues to distinguish
between conspecific and heterospecific tadpoles and to avoid
placing tadpoles in dangerous sites with conspecifics
(Schulte et al. 2011, 2013, 2015; Schulte and Lotters 2013,
2014; Schulte 2016). Other experimental studies have shown
that R. amazonica males do not differentiate between their
own and foreign clutches (Poelman and Dicke, 2007),
whereas O. pumilio females (Stynoski 2009) and A. femoralis
females (Ringler et al. 2016) use indirect recognition via
spatial location of clutches and tadpoles to discriminate
between their own and unrelated progeny. Research in a few
species has shown puzzling evidence of parents preferring to
deposit tadpoles along with older tadpoles that are likely to
kill and consume their offspring (D. auratus, Ryan and Barry
2011; Dendrobates tinctorius, Rojas 2014, 2015; Adelpho-
bates castaneoticus, Caldwell and Myers 1990; Caldwell and
Araujo 1998; R. ventrimaculata, Poelman and Dicke 2007).
Such a strategy could be intended as food supplementation
for older tadpoles, especially when there is more pressure to
metamorphose as the wet season ends (R. amazonica,
Poelman and Dicke 2007; R. variabilis, Schulte and Lotters
2013), but not in all cases (D. tinctorius, Rojas 2014, 2015).
Species differences may exist, however; the larvae of some
species eat conspecific eggs and tadpoles (D. auratus,
Summers 1990; R. variabilis, Schulte 2014; D. tinctorius,
Rojas 2014; Dendrobates truncatus, BR, personal observa-
tion) and benefit nutritionally (R. ventrimaculata, Summers
and Amos 1997), whereas other species kill younger intruder
tadpoles but do not eat them and larval aggression is
unaffected by tadpole hunger level (O. pumilio, Dugas et al.
2016b). In some cases, parents avoid depositing tadpoles
with conspecifics when given a choice of pools (R.
ventrimaculata, Summers 1999; R. sirensis, Von May et al.
2009; R. variabilis, Schulte et al. 2011, 2013; Schulte and
Lotters 2014), regardless of relatedness (R. variabilis,
Schulte and Veith 2014). However, in other cases, cannibal-
istic tadpoles are deposited irrespective of or even preferring
the presence of conspecifics (Mannophryne trinitatis,
Downie et al. 2001; D. tinctorius, Rojas 2014), perhaps
because the presence of older tadpoles indicates safety at
that site from predators or desiccation (but see K. eiffingeri,
Chen et al. 2001).

Some species of phytotelm-breeding frogs avoid placing
tadpoles in sites with predators (M. trinitatis, Downie et al.
2001; R. wvariabilis, Brown et al. 2008b; A. femoralis,
McKeon and Summers 2013) or low (or too high) volumes
of water (R. sirensis, Von May et al. 2009; A. femoralis,
McKeon and Summers 2013; R. wvariabilis, R. imitator,
Brown et al. 2008b), whereas phytotelm position seems less
crucial (Von May et al. 2009; Schulte et al. 2010). The
number of sites available for rearing tadpoles generally limits
population density, and adding tadpole rearing sites
increases local adult density and reproductive activity,



SCHULTE ET AL.—PARENTAL CARE IN AMPHIBIANS 85

whereas adding leaf litter does not (O. pumilio, Donnelly
1989b; D. tinctorius, Rojas 2015; A. femoralis, Ringler et al.
2015b). The distribution of appropriate tadpole rearing sites
strongly impacts the distribution of adults in Dendrobatidae
(O. pumilio, Prohl and Berke 2001; R. amazonica, Poelman
and Dicke 2008) and Mantellidae (Heying 2004).

Phytotelm-breeding aromobatids have excellent spatial
memory, and use it to return to sites where they deposited
egg clutches and tadpoles (A. femoralis, PaSukonis et al.
2016, 2017; Ringler et al. 2016). Telemetry has shown that A.
femoralis follows direct memorized paths to known deposi-
tion sites (Beck et al. 2017; Pasukonis et al. 2017). This non-
egg-feeding species may use a mental map of tadpole-rearing
sites to execute a bet-hedging strategy, distributing the
tadpoles from a given clutch among a number of pools to
reduce the risk at any one site (Ringler et al. 2013; Erich et
al. 2015). Egg-feeding species also use spatial location to
identify their tadpoles for intermittent provisioning of
nutritive eggs, as opposed to relying on direct offspring
recognition (K. eiffingeri, Chiu and Kam 2006; O. pumilio,
Stynoski 2009). It is poorly understood whether spatial
memory differs among the sexes, although given evidence of
plasticity among the sexes in tadpole transport behavior,
spatial abilities may be similar (A. femoralis, Ringler et al.
2013, 2015a; Pasukonis et al. 2017). In a visual discrimination
task in a laboratory maze, D. auratus used a win-stay/lose—
shift strategy, demonstrating serial reversal learning and
lending further support that dendrobatid frogs have
advanced spatial memory (Liu et al. 2016). It remains
unclear how flexible anuran spatial abilities are, and whether
frogs are capable of planning ahead to optimize risks and
costs.

In some species, anuran parental care goes beyond
deposition of eggs or tadpoles, to provisioning of eggs. For
example, direct developing E. coqui fathers provide moisture
to eggs, which take up a significant amount of liquid from the
father’s body (Taigen et al. 1984). Also, Cycloramphus
fuliginosus males have an iliac gland in the inguinal region
that may provision antimicrobial mucus and protein
secretions to offspring during egg attendance (Gongalves
and de Brito-Gitirana 2008). In Xenopus laevis, antibodies
produced in response to an antigen-specific immune
challenge in mother frogs were later detected in the eggs
(Poorten and Kuhn 2009). In contrast, even though the
bacterial assemblages of father Hyalinobatrachium colymbi-
phyllum and their eggs were very similar, removal of fathers
did not influence egg bacterial assemblages, suggesting that
extended parental care does not influence offspring micro-
biomes (Hughey et al. 2017). Provisioning can also take the
form of active defense against predators, such as with mother
F. hansenae, which physically interrupt feeding attempts by
large arthropods to protect eggs (Poo et al. 2016).

Provisioning can also occur after tadpoles hatch. For
example, some species intermittently visit tadpoles to feed
them unfertilized nutritive or trophic eggs (reviewed in
Weygoldt 1987). In some cases, tadpoles are obligatorily
oophagous; they do not readily eat other food items, and stop
growing and die before metamorphosis if abandoned by
mothers (O. pumilio, Brust 1993; Pramuk and Hiler 1999; K.
eiffingeri, Kam et al. 1997; Liang et al. 2002). In some non-
egg-feeding dendrobatids and aromobatids, tadpoles retain
yolk that allows them to grow during parental transport for
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up to a week (Colostethus inguinalis, Wells 1980; M.
trinitatis, Downie et al. 2005).

Many species of anurans provision their eggs with
chemical defenses (reviewed in Gunzburger and Travis
2005), but generally such predator defenses diminish as
offspring develop. In contrast, nutritive eggs provided by
mother O. pumilio contain alkaloid chemical defenses that
mothers acquire from their own diet of leaf-litter arthropods
(Stynoski et al. 2014a). The alkaloids transferred to tadpoles
accumulate in poison glands as soon as glands begin to
mature around Gosner stage 40 (Stynoski and O’Connell
2017). The chemical defenses are effective in defending
tadpoles against spider and ant predators (Stynoski et al.
2014a,b), but not against snake predators (Stynoski et al.
2014b).

Many egg-feeding anurans display complex parent-
offspring communication: when the parent frog arrives at
the phytotelm, the tadpole exhibits vigorous vibration
behavior. In K. eiffingeri, tadpoles determine the presence
of the adult frog using chemical and tactile—but not visual—
cues (Kam and Yang 2002), whereas in O. pumilio, tadpoles
recognize adults based on visual and tactile—but not
chemical-—cues (Stynoski and Noble 2012). In both species,
multimodal cues that confirm parental presence are needed
to stimulate a full begging response, which likely serves to
prevent the expression of conspicuous vibration behavior in
the presence of a predator (Kam and Yang 2002; Stynoski
and Noble 2012). Begging behavior is a reliable indicator of
tadpole hunger (R. imitator, Yoshioka et al. 2016) and/or
quality (O. pumilio, Dugas et al. 2017). Mother frogs use
tadpole begging signals to make decisions about the
allocation of eggs to tadpoles, giving more food to tadpoles
that beg more intensely (Yoshioka et al. 2016; Dugas et al.
2017). The fact that tadpole begging is costly, in terms of
growth and development (Yoshioka et al. 2016), may have
played a role in the maintenance of signal honesty during the
evolution of mother—offspring communication in these frogs.

FUTURE PERSPECTIVES

It is increasingly evident that amphibians are an excellent
system to address timely and relevant questions about the
evolution of reproductive strategies, including parental care
(i.e., Kupfer et al. 2006; Brown et al. 2010; Poo and Bickford
2013; Reinhard et al. 2013; Stynoski et al. 2014b; Tumulty et
al. 2014; Vargas-Salinas et al. 2014; Lehtinen et al. 2014;
Rojas 2014; Bravo-Valencia and Delia 2016; Yoshioka et al.
2016; Delia et al. 2017; Ringler et al. 2017; Schulte and
Mayer 2017; Stynoski et al. 2018). The advent of new
technologies has broadened the range of questions that can
be addressed concerning the molecular and physiological
underpinnings of parental behaviors (Roland and O’Connell
2015; Fischer et al. 2019). These advances, together with
natural history observations, open promising avenues for
future research on amphibian parental care. Even more
broadly, this research could expand to questions regarding
the evolutionary consequences of ancestral parental care for
derived taxa, how the evolution of novel parental behaviors
influences interspecific relationships (e.g., predator—prey
relationships or microbial skin symbionts), and ecological
niche use across biological kingdoms (e.g., within ecosystems
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like phytotelmata). We identify four areas of research that we
believe will see rapid progress in the near future.

Multidisciplinary Approaches

Recent work has pushed the envelope on research
directions in amphibians given the great variety of repro-
ductive modes, macro- and microhabitats, and life histories
that they encompass. Studies on parental care are evolving
into multidisciplinary projects that draw a more complete
picture by integrating perspectives such as behavioral (what
the animals are doing), physiological (how they do it),
ecological (in which environments they do it), and evolu-
tionary (how or why did these behaviors evolve and what are
the benefits). Such multifaceted issues are best addressed by
researchers from many fields working together. We foresee
great advances with regards to both the proximate factors
influencing parental behaviors and the context in which they
evolved. For example, attaching tracking devices to poison
frogs has elucidated the movement of individuals around the
complex environment of the forest, allowing us to establish
where fathers deposit their tadpoles and how far deposition
sites are from core areas (Beck et al. 2017; PaSukonis et al.
2019). Tracking methods could also be used to quantify the
physiological costs of tadpole transport, and to compare
parental investment among species that differ in transport
distances. Physiological assays will shed light on the
mechanisms underlying hatching plasticity, a behavioral
flexibility which is vital for the survival of some glass and
hylid frogs (Warkentin 1995, 2011). Likewise, through
physiological techniques, we could get a better grasp of the
hormonal triggers underlying parental-care behaviors, as
well as the parental-care adaptations that have emerged in
some amphibian groups in spite of the constraints imposed
by ectothermy (Beekman et al. 2019).

Molecular approaches are a powerful way to tackle long-
standing questions about animal behavior (Boake et al.
2002). Genotyping adults and young can illuminate parental
decisions about offspring distribution across the habitat
(Ringler et al. 2018), as well as the genetic relatedness of
individuals in the same water body; kinship between
offspring and care provider is often assumed but seldom
confirmed. Also, parentage analyses will clarify the role of
genetic relatedness in the evolution of communal nesting
and whether perceived paternity impacts parental-care
expression (cf. Neff and Gross 2001; Neff 2003 for similar
findings in fish). Going a step further, molecular tools allow
us to follow individual young through metamorphosis and
dispersal; by sampling individual larvae or tadpoles, any free-
living individuals can be subsequently identified genetically
at different ontogenetic stages, eliminating the extremely
challenging task of tracking each individual in the forest over
time (Ringler et al. 2015¢). This approach could enable us to
measure carry-over effects from the larval to the adult stage,
and to link phenotypic shifts across development or among
populations or species with genotypic differences.

With an updated amphibian phylogeny (e.g., Jetz and
Pyron 2018), it is now possible to delineate evolutionary
homologies or analogies among parental care behaviors.
Likewise, transcriptomics now allows for the quantification
of gene expression (Todd et al. 2016), which is a powerful
tool in evolutionary ecology for linking cellular processes
with phenotypic traits, behavior, and selection pressures
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(Sneddon et al. 2005; Wollenberg et al. 2007). The
combination of field and lab experiments with molecular
techniques will provide answers to questions that are
unreachable by either approach on its own, as seen in other
taxa such as insects (Benowitz et al. 2017). Therefore, we
hope to see the incorporation of transcriptomics in the study
of parental care behavior and modes within and across
amphibian taxa (Young et al. 2019).

Integrative Experimental Work

Much of the work on amphibian parental care has focused
on ultimate questions about its adaptive value and how it has
evolved. However, research on the proximate mechanisms
underlying how these behaviors function and develop over
ontogeny is more limited (Roland and O’Connell 2015;
Fischer et al. 2019), partly because they can rarely be
answered through observation alone. New technologies and
methodological approaches from fields like genomics,
endocrinology, and developmental biology hold promise for
shedding light on the ways that tissues, hormones, genes,
neurons, and regulation mechanisms allow amphibians to
perform and moderate the diverse array of parental
behaviors known today. Therefore, we emphasize the need
for more experimental studies on diverse parental behaviors
in amphibians. For example, experiments where begging
offspring are reared independently along with electrophys-
iology or gene expression studies can shed light on individual
variation in begging occurrence or intensity. Also, field
manipulations can be combined with systems biology
perspectives to understand decision making by parents that
deposit eggs or tadpoles in diverse microhabitats and how
they assess the mid-to-long-term stability of those sites.
Furthermore, by combining field manipulations with chem-
ical analysis (see Schulte et al. 2015) and controlled
experiments (Saporito et al. 2019), we can uncover the use
and significance of specific chemicals in parent—offspring
and tadpole-tadpole communication, including in the
context of paradoxical behaviors like larval cannibalism.
Questions about the direct or indirect benefits of the vertical
transfer of antipredator defenses (in O. pumilio, Stynoski et
al. 2014a,b; Saporito et al. 2019) or skin microbiomes (in H.
colymbiphyllum, Hughey et al. 2017) are ripe for study. And,
controlled manipulations such as translocation or cross-
fostering are needed to identify adaptive benefits of
communal nesting to parents and offspring.

Parental Care in Times of Population Declines

The world is experiencing an alarming wave of biodiver-
sity loss (Ceballos et al. 2015). In particular, amphibians have
declined dramatically in the last four to five decades (Stuart
et al. 2004). Approximately 43% of amphibian species
worldwide are experiencing population declines (Stuart et
al. 2004), due in great part to the spread of chytridiomycosis,
a deadly fungal disease (Lips et al. 2006; Lips 2016; Bower et
al. 2017; Scheele et al. 2019) and human-mediated habitat
loss (Cushman 2006; Becker et al. 2007). Deforestation, for
example, directly threatens species that use tree leaves (e.g.,
glassfrogs, hylids), epiphytes (e.g., some dendrobatids), or
tree-holes (e.g., some dendrobatids, hylids, bufonids, hyper-
oliids, mantellids, microhylids, etc.) to lay or rear offspring.
Furthermore, logging alters soils in ways that likely affect
terrestrial or burrowing amphibians (e.g., some salamanders
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and caecilians) and their terrestrial egg nests (Nussbaum
1985; Kupfer et al. 2016). Climate change further destabi-
lizes crucial microhabitats, making treeholes, phytotelmata,
and small ponds more prone to desiccation, and limiting the
time available for eggs and tadpoles to reach metamorphosis.

Likewise, we urge scientists to investigate the direct and
indirect effects of habitat loss and climate change on species
that perform parental care experimentally. Do parents alter
care behaviors to adapt to higher risk of desiccation? Can
parents assess this increasing risk? Do they shift the timing
of reproductive cycles to reduce risks? Do they switch to a
bet-hedging strategy? What costs do parents incur due to
extended searches for suitable offspring deposition sites?
Can parental decisions modulate the transmission of
infectious diseases among their offspring?

Get Back to Basics: It is Time to Revive Our Interest in
Natural History

Indisputably, the basis of everything we know about
amphibian parental care is natural history (Fig. 2). However,
unsettling formal and informal accounts have noted that
natural history is “falling out of vogue” (Anderson 2017:290),
and the number of organism-based courses at universities
has dropped (Tewksbury et al. 2014). This is troublesome,
because natural history is the foundation for new hypotheses
in ecology and evolution (Endler 2015). Discoveries of new
parental-care behaviors or new taxa exhibiting known
parental-care behaviors can lead to novel experimental
approaches, which advance our understanding about the
adaptive benefits of parental care. Furthermore, cumulative
effort in natural history studies permit comparisons across
taxa, and thus a more robust understanding of how and why
parental care evolved in diverse animal groups. For example,
rigorous natural history observations of 40 species along with
historical and functional analyses of clutch attendance
recently debunked existing beliefs that parental care is rare
among glass frogs (Centrolenidae) and is performed
exclusively by males (Delia et al. 2017). Likewise, although
A. femoralis exhibits predominantly male parental care, field
observations revealed that females carry out tadpole
transport in the male’s absence (Ringler et al. 2013,
2015b), and males cannibalize clutches of former territory
holders when taking over their territory (Ringler et al. 2017).
Whereas poison frog fathers call to attract additional mates
while concurrently caring for offspring, hours of thorough
field observations revealed that male Bornean smooth
guardian frogs (Limnonectes palavanensis) practically do
not move or eat for days while caring for clutches (Goyes
Vallejos et al. 2018). Considering that these dedicated
fathers forego future mating opportunities, it has been
suggested that this species is exhibiting sex role reversal
(Goyes Vallejos et al. 2018). Surely other instances of
unexpected behavioral patterns will be unveiled by thorough
observations of focal species in the wild.

Our plea to reinforce natural history observations also
applies to over 200 species of caecilians and 700 species of
salamanders (AmphibiaWeb 2017), many of which we do not
know much about. According to the IUCN (2018), 37% of
amphibian species are threatened and over 22% are so
poorly documented that we cannot assess their threat status.
So-called “basic” descriptive work is valuable and irreplace-
able, providing foundational information needed to refine
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hypotheses about the function and evolution of behaviors
and ecology, and thus must continue (e.g., Ferreira et al.
2019; Rojas and Pasukonis 2019; Ospina-L et al. 2019). For
example, natural history observations were essential for a
recent character state reconstruction illustrating the evolu-
tion of parental investment in caecilians (Kupfer et al. 2016),
and similar observations are needed to approach such
questions in frog and salamander groups.

The historical view of amphibians as simple animals that
drop eggs in a pond and hop away has shifted to a more
nuanced view of an animal group of over 7000 species
(AmphibiaWeb 2017) with incredibly diverse reproductive
modes. Most likely, additional novel forms of parental care
will be unveiled in the coming years. Clearly, amphibians
offer a precious opportunity to test long-standing as well as
newly arising hypotheses on evolution and behavior involving
an array of parental care modes, especially as amphibian
taxonomy is refined and the natural history literature grows.

No less important, amphibians and their fascinating
parental behaviors can bring science to a lay audience.
Stories about how frogs care for their babies are endearing,
and make for elegant outreach opportunities. By sharing
those stories through videos, museum exhibits, websites, and
colorful magazine and newspaper articles, we can inspire the
general public to care, and to take steps in the conservation
of threatened species. We encourage researchers in this area
to use amphibian parental care in science communication
and to have broader impacts outside of the community of
academic biologists. Collaborative (rather than competitive)
work across research groups, as well as integrative approach-
es, will further nourish the growth of understanding about
the behaviors of these fascinating animals.

Conclusions

Parental care has been studied broadly by many
researchers that employ multidisciplinary approaches across
many animal taxa. However, certain groups are underrepre-
sented in the literature; one such group is the amphibians.
There have been attempts to classify amphibian parental-
care behaviors, but because of a steady influx of descriptions
of novel behaviors, classifications change frequently. The
percentage of species recognized as providing parental care
also rises consistently because of new observations and
taxonomic discoveries. Currently, approximately 10% of
anuran and 20% of urodelian species are believed to provide
some type of parental care; there are no estimates for
caecilians yet.

In this review, we recognize 28 types of parental care
behaviors in frogs, 8 in salamanders, and 4 in caecilians.
Parental behaviors have evolved independently several times
within the amphibian clade. The focus of studies of
amphibian parental care has shifted over time. The first
descriptions of parental behavior in anurans, caecilians, and
urodeles appeared in the 18th century, followed by decades
of natural history notes and taxonomic descriptions. More
recently, varied experimental approaches and modern tools
have enriched our understanding of the adaptive function of
and proximate mechanisms underlying parental care.

It has been challenging to study parental care in caecilians
because they are fossorial, but natural history studies and
character state reconstruction have provided some insights.
The most ancestral form of care in this clade is egg
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attendance, which provides protection against desiccation
and predation, and other caecilian species feed their
offspring with intrauterine fluids or maternal skin. Urodeles
are an excellent target for studies on the evolution of
parental care because of their diverse fertilization mecha-
nisms, mating systems, and associated ecological traits.
Parental care has likely evolved independently many times
in this clade, with maternal care evolving in species with
internal fertilization and paternal care in those with external
fertilization. Widespread parental behaviors include egg
wrapping, different forms of egg attendance such as egg
fanning and coiling around clutches, and ingestion of
infected eggs to prevent fungal spread. The transmission of
antifungal bacteria to embryos may have favored the
evolution of communal nesting in some plethodontids, but
more research is needed to clarify those mechanisms. The
first description of parental care in anurans was written by a
woman, Maria Sibylla Merian, in 1705. Anuran parental care
is the most diverse and best studied among the amphibians,
consisting of 28 distinct parental modes. Among those
modes, egg attendance is the most widespread taxonomically
and geographically, both among direct developing species
and among species with tadpoles. Other modes include egg
transport, either in specialized sacs or attached to the
parent’s body, and construction of mud and foam nests to
protect embryos from predation and desiccation. Some
species perform tadpole transport and feeding. Depending
on the species, care providers can be female or male, and in
a few cases, biparental care has led to the evolution of
monogamy.

Anurans have stimulated more hypothesis-driven research
than urodeles or gymnophionans. Experimental approaches,
molecular tools, and refined phylogenetic relationships have
prompted great advances in our understanding of the
adaptive value of anuran parental care. In contrast, the
study of physiological and morphological correlates of these
behaviors has lagged behind. Some anuran clades have
received more attention than others, particularly in the
Neotropics. Looking to the future, we encourage multidis-
ciplinary experimental studies that explore the role of
parental care in adaptation to environmental change. We
also call for a revival in the importance of natural history
observations. We predict that these research directions will
lead to significant advances in the study of amphibian
parental care.
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