JYU DISSERTATIONS 264

Terhi Moisala

Unraveling Intrinsic Geometry of
Sets and Functions in Carnot groups

¢
|

UNIVERSITY OF JYVASKYLA

FACULTY OF MATHEMATICS
AND SCIENCE



JYU DISSERTATIONS 264

Terhi Moisala

Unraveling Intrinsic Geometry of Sets
and Functions in Carnot groups

Esitetadn Jyvaskylan yliopiston matemaattis-luonnontieteellisen tiedekunnan suostumuksella
julkisesti tarkastettavaksi elokuun 20. paivana 2020 kello 12.

Academic dissertation to be publicly discussed, by permission of

the Faculty of Mathematics and Science of the University of Jyvaskyla,
on August 20, 2020 at 12 o'clock noon.

)
H

JYVASKYLAN YLIOPISTO
UNIVERSITY OF JYVASKYLA

JYVASKYLA 2020



Editors

Enrico Le Donne

Department of Mathematics and Statistics, University of Jyvaskyla
Paivi Vuorio

Open Science Centre, University of Jyvaskyla

Copyright © 2020, by University of Jyvaskyla

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-8252-2

ISBN 978-951-39-8252-2 (PDF)
URN:ISBN:978-951-39-8252-2

ISSN 2489-9003



ACKNOWLEDGEMENTS

[ want to express my deepest gratitude for Enrico Le Donne for being
my guide into the world of mathematics and mathematicians. I will
always remember his dedication and hospitality along the journey. I
also want to thank all the people in the Department of Mathematics
and Statistics for the warm and supporting atmosphere, especially the
present and former inhabitants of the sub-Riemannian world and its
surroundings. I have found a wonderful bunch of coworkers and friends
in them.

I wish to thank my collaborators Sebastiano Don, Sean Li and Davide
Vittone. I thank Constante Bellettini and Séverine Rigot for careful
pre-examination of my thesis. I also want to mention the financial
support I received from the Department of Mathematics and Statistics
of Jyvéskyld and the Finnish Cultural Foundation.

I feel privileged to have so many people outside academia that have
been there for me during (and before) this process. I am sure my friends
and family recognize themselves and I want to thank all of them for
being part of my life.

Jyvaskyld, August 12, 2020
Department of Mathematics and Statistics
Terhi Moisala

iii



iv TERHI MOISALA

LIST OF INCLUDED ARTICLES

This dissertation consists of an introductory part and the following
three articles:

[A] Enrico Le Donne, Sean Li and Terhi Moisala, Infinite-Dimensional Carnot
Groups and Gdteauz Differentiability, J. Geom. Anal. (2019).
https://doi.org/10.1007/s12220-019-00324-x

[B] Sebastiano Don, Enrico Le Donne, Terhi Moisala and Davide Vittone, A
rectifiability result for finite-perimeter sets in Carnot groups, arXiv e-prints
(2019), arXiv:1912.00493. To be published in Indiana U. Math. J.

[C] Enrico Le Donne and Terhi Moisala, Semigenerated Carnot algebras and appli-
cations to sub-Riemannian perimeter, arXiv e-prints (2020), arXiv:2004.08619.

The author of this dissertation has actively taken part in the research
of the articles.


https://doi.org/10.1007/s12220-019-00324-x

INTRODUCTION 1

CONTENTS
1. Background 1
2. Carnot groups 2
2.1.  Carnot groups as metric measure spaces 3
2.2.  Pansu-differentiability 4
3. Rectifiabilty in Carnot groups 5
3.1. Sets of Finite Perimeter and Blow-up 6
3.2.  Sets with Constant Horizontal Normal 9
3.3. Cone property and Intrinsic Lipschitz rectifiability 10
3.4. Intrinsic C'l-rectifiability and semigenerated Lie algebras 14
4. Infinite-dimensional Carnot groups 17
4.1. Definition and examples 18
4.2. Rademacher’s theorem 21
References 23

1. BACKGROUND

Analysis in metric spaces is a rapidly developing area of study in
mathematics, which was initiated in its modern form a couple of decades
ago. Pioneers of the field include Pansu [46], Heinonen and Koskela
[32], Cheeger [15], and Ambrosio and Kirchheim [4, 5], who successfully
brought fundamental concepts of Geometric Analysis into non-Euclidean
metric measure spaces. Analysis is, by its very definition, first order
calculus and needs a notion of differential in order to exist. Various
forms of differentiability have been introduced in metric measure spaces
of different generality. However, a notion of differential can give rise
to a meaningful theory only if it respects the geometry of the ambient
space. Studying this interplay of differential and metric structure is the
core of this thesis.

More specifically, we study differentiability of both sets and functions
on metric spaces of sub-Riemannian nature that are equipped with
group structure and dilation automorphisms. Combining algebraic and
metric-measure theoretic points of view is crucial in our methods. In
the first two articles |B] and |C| we consider Carnot groups, which are
sub-Riemannian Lie groups with rich, Euclidean-like metric-measure
structure. Due to the Euclidean-like properties, many notions and
questions of Geometric Measure Theory generalize there naturally
when the intrinsic sub-Riemannian geometry is taken into account.
Carnot groups appear in many different fields of mathematics and
physics, like in Control Theory, Mechanics and Robotics to mention
some. In Analysis, besides of their independent interest, they serve
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as valuable examples of metric measure spaces of fractal nature. In
the last article [A| we work in a class of metric spaces that generalize
Carnot groups into infinite dimensions.

2. CARNOT GROUPS

We start with a brief introduction to Carnot groups. For a more
comprehensive presentation of Carnot groups as metric groups, we refer
to [37]. A Carnot group G is, by definition, a simply connected Lie
group whose Lie algebra g admits a stratification. A Lie algebra g is
said to be stratified or Carnot if it admits a decomposition

g=Vio- -V

into vector subspaces satisfying Vi, = [V1, Vi] and V; # {0}. Stratifica-
tion of a Lie algebra is unique up to an isomorphism, and so Carnot
groups are in one-to-one correspondence to stratified Lie algebras. A
Carnot group G and its Lie algebra g can be identified via a diffeo-
morphic exponential map exp: g — G, and we often talk about them
interchangeably.

The natural number s indexing the last layer of the stratification is
also the nilpotency step of g, which we simply call the step of g. The
subspace V) (also called the first layer or the horizontal layer) plays a
special role in theory of Carnot groups. It is crucial that, by definition
of stratification, the horizontal layer generates g as a Lie algebra. The
dimension of V; is called the rank of g.

Due to the existence of stratification, every Carnot group can be
equipped with a unique one-parameter family of dilation automorphisms
(0x)xer , which are defined on the Lie algebra level by

H(X)=MX for XeV,.

The horizontal layer can, therefore, also be characterized in terms of its
dilations. Indeed, the horizontal layer is the distinguished subspace of g
where the intrinsic dilations agree with the linear vector-space scalings.

Here we have chosen an abstract viewpoint to Carnot groups, fol-
lowing [37]|, and defined them as Lie groups with certain algebraic
properties. This starting point is also natural for purposes of Section
4. However, in the literature another route is often chosen (see e.g.
[54, 12]), which has its own benefits and is often more easily applied,
too. Since a Carnot group G can be identified with its Lie algebra
through the diffeomorphic exponential map, it can be represented by
R™, where n is the topological dimension of G, equipped with a suit-
able group product. Hence, every Carnot group also has a Euclidean
structure that comes with global coordinates, Euclidean metric and
Lebesgue measure. Especially when the group product can explicitly be
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expressed in terms of coordinates, like in the case of Heisenberg groups,
this approach provides a priceless toolbox. However, it will be evident
also in the context of this introduction that often Euclidean concepts
describe poorly the geometry of Carnot groups. This obstruction leads
to a need of finding suitable intrinsic counterparts, which are invariant
under group translations and dilations, regardless of the point of view
chosen. The rest of this section is devoted to defining the building
blocks of intrinsic Geometric Measure Theory in Carnot groups.

2.1. Carnot groups as metric measure spaces. For an introduc-
tion to Differential Calculus and Geometric Measure Theory in Carnot
groups, see |14, and [54] for a cross-section of the state of the art.
Every Carnot group can be equipped with a sub-Riemannian structure
by fixing a scalar product (-, -) on the horizontal layer V;. As opposed
to Riemannian geometry where the scalar product is defined on the
whole tangent space, on a sub-Riemannian Carnot group the geometry
is restricted such that the only allowed directions of travel are those
lying in V. Therefore, a curve 7: [0,1] — G has finite length if and
only if it is horizontal, i.e., it is absolutely continuous and () € V; for
almost every ¢ € [0, 1]. The length of a horizontal curve is defined as
the integral of its speed, and the obtained length structure induces a
distance function

1
dec(z,y) = inf{/ |5(¢)]] dt : 7 is horizontal, v(0) = = and (1) = y}.
0

The generating property of V; ensures by Chow-Rashevsky theorem
[18, 51| that the distance function de¢ is finite and induces the ma-
nifold topology of G. Hence dc¢ defines a metric (called the Carnot-
Caratheodory-metric or CC-metric for short) on G. This metric is
geodesic and invariant under left-translations of the group. Moreover,
it turns the dilation automorphisms of G into metric scalings by

dcc((;)\(.f),(s)\(y)) = )\dcc(l’,y) Ve,y € G, A € R. (1)

We call left-invariant metrics satisfying equation (1) invariant. Also
other invariant metrics (often explicitly defined in coordinates and
hence more convenient in computations) are used on Carnot groups
in the literature. They are, however, all bi-Lipschitz equivalent and
therefore often interchangeable when considering problems in Geometric
Measure Theory.

In fact, admitting geodesic left-invariant distance and metric dilations
is characteristic for Carnot groups. In [36] it was proven that Carnot
groups are the only metric spaces (X,d) that are locally compact,
geodesic, isometrically homogeneous, and self-similar. Here X is said
to be isometrically homogeneous if for every two elements z,y € X,
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there exists an isometry f: X — X mapping f(z) = y, and self-similar
if there exists a A > 1 such that (X, d) is isometric to (X, Ad). Observe
that if G is a Carnot group and p, ¢ € G, then the left-translation L,
is an isometry mapping p to q. Moreover, the dilation §,: G — G is an
isometry between (G, d) and (G, A\d) for every invariant metric d on G
and for every \ > 0.

Recall that every topological group admits a Haar measure, which is
unique up to a multiplicative constant. The Haar measure of a Carnot
group is the Q-dimensional Hausdorff measure H® built with respect
to an invariant distance, where () is defined by

Q=> kdimV.
k=1
The quantity @ is called the homogeneous dimension of G. Notice that )
is strictly larger than the topological dimension of G for every nonabelian
Carnot group, giving them a fractal nature. The homogeneity of the
distance passes down to the measure; it is indeed straightforward to

show that, for every ball B(z,r) in the group with center x and radius
r, it holds

HO(B(z,7)) = rPH9(B(0,1)).

In particular, (G,dcc, HP) is an Ahlfors Q-regular metric measure
space, equipped with a homogeneous group structure and dilation
automorphisms.

2.2. Pansu-differentiability. The question of differentiability of Lip-
schitz maps in Carnot groups is fully solved by Pansu [46] with a class of
functions that we nowadays call Pansu-differentiable. A map f: G — H
between Carnot groups G and H is Pansu-differentiable at a point p € G
if the maps fp,

Sor(v) =815 (f ()~ f(poa(v))

converge uniformly on compact sets as A — 0 and the limiting func-
tion df,: G — H is a continuous homomorphism. The celebrated
Pansu-Rademacher theorem states that every function between Carnot
groups that is Lipschitz with respect to the intrinsic distances is Pansu-
differentiable almost everywhere.

Recall that the Lie algebra g of G is, by definition, the space of left-
invariant vector fields on G. Seeing vector fields as first order differential
operators on G and the horizontal layer V; of g as a subbundle of the
tangent bundle of G, Pansu differentiability of a continuous function
f: G — R can be described via the action of horizontal vector fields
on f. Indeed, given a basis {Xj,...,X,,} of the first layer V] of the
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Lie algebra and assuming that each one of the partial derivatives X f
exists, one defines the horizontal gradient of f as

Vof =Y (X)X,
i=1

which is a section of the horizontal bundle. Then f is continuously
Pansu-differentiable if and only if the component functions X; f, ..., X,, f
of the horizontal gradient are continuous. We denote by C§(U) the class
of continuously Pansu-differentiable real valued functions on an open
subset U C G, as opposed to the family of continuously differentiable
functions C*(U) on U with respect to the ambient Euclidean structure
of G. From the characterization of continuously Pansu-differentiable
functions in terms of horizontal gradient, it is immediate that every
function in C'(Q) is in the class C4(Q). The inclusion is, however,
strict.

3. RECTIFIABILTY IN CARNOT GROUPS

Rectifiability is a classical and unquestionably important notion in
Geometric Measure Theory and in Calculus of Variations. Indeed,
rectifiable sets are a natural relaxation of smooth surfaces in the con-
text of Geometric Measure Theory, being the weakest notion of sets
having Lusin property with C''-surfaces and a notion of tangent bundle.
Classically, a set £ C R™ is said to be (n — 1)-rectifiable if it can be cov-
ered, up to measure zero, by a countable collection of C'-hypersurfaces.
Due to Rademacher’s theorem, this definition remains unchanged if we
replace ‘C"” by ‘Lipschitz’, or even by a priori weaker geometric notion,
that we call the cone property and which will be defined in Section 3.3.
For a self-contained description of rectifiability and Geometric Measure
Theory in Euclidean spaces, we refer to [43].

The celebrated rectifiability theorem of De Giorgi [19, 20| states
that the (reduced) boundary of a set of finite perimeter £ C R" is
(n—1)-rectifiable. Generalizing De Giorgi’s theorem into Carnot groups
is a difficult problem, which has been under intense investigation since
the seminal work of Franchi, Serapioni and Serra-Cassano in |25, 26|, as
part of the general program of developing Geometric Measure Theory
in Carnot groups. This work is vastly motivated by a new notion of
differentiability for L!-valued maps on the Heisenberg group introduced
by Cheeger and Kleiner [16, 17].

It is not yet, however, fully understood what is the correct notion
of rectifiability in Carnot groups. There exists a general definition for
rectifiability in metric spaces that goes back to Federer [23], which
involves covering the set by Lipschitz images of a Euclidean space.
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However, in [5], Ambrosio and Kirchheim showed that every non-abelian
Carnot group is purely Q-unrectifiable in the sense of Federer, where ()
stands for the homogeneous dimension of the group. Since one cannot
meaningfully compare the size of Carnot-subsets to Euclidean ones, the
question of rectifiability in Carnot groups becomes more subtle.

At the moment we are after an intrinsic definition for rectifiability
in Carnot groups. In the Euclidean setting, rectifiable sets are those
that can be countably covered by regular surfaces of certain dimension.
To this end, we need to find a suitable invariant notion of a regular
submanifold of a Carnot group. It is nowadays evident that Pansu’s
regularity theory for functions between Carnot groups fits poorly to
functions defined within a Carnot group. Currently there exists a well
established notion of G-reqular hypersurface, and the corresponding
intrinsic C*-rectifiability in Carnot groups due to Franchi, Serapioni
and Serra Cassano |25, 26]. Also Lipschitz rectifiability and the cone
property mentioned in the beginning of this section have their corre-
sponding natural counterparts in Carnot groups. However, we do not
yet know if these different definitions of rectifiability in Carnot groups
agree. Among these the C'-rectifiability is supposedly most restrictive,
and the geometric cone property the broadest. We shall make a more
detailed analysis of different notions of regular Carnot-subsets and their
mutual connections in Sections 3.3 and 3.4.

Also other suggestions for the definition of rectifiability exist in
Carnot groups: in [47| Pauls introduced a notion of rectifiability in
the spirit of Federer, where the model Euclidean space is replaced by
a (subset of a) Carnot group. Recently, progress in this direction was
made in [8], where they study the relation of rectifiability in the sense
of Pauls and the intrinsic C''-rectifiability after [25] by proving that
there exist C''-regular hypersurfaces that are not Pauls rectifiable.

3.1. Sets of Finite Perimeter and Blow-up. The study of sets of
finite perimeter was initiated by Caccioppoli and later developed and
deeply studied by De Giorgi. The classical notion of finite-perimeter sets
builds on theory of functions of bounded variation, which are a natural
generalization of Sobolev functions. Therefore, sets of finite perimeter
enjoy good compactness and approximation properties, which makes
them useful e.g. in the study of minimal surfaces. For a comprehensive
introduction to the Euclidean theory of bounded-variation functions,
see for instance [3].

In Carnot groups functions of bounded variation and sets of finite
perimeter were for the first time defined in [13]. Our discussion on
finite-perimeter sets in Carnot groups follows [6]. Given a Carnot group
G and a function u € L}, (G), the distributional derivative of u in the
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direction of X € g is defined as
(Xu, f) = —/qudHQ, where f € C°(G).
G

A function u € L}, (G) is said to be of locally bounded variation if the
distributional derivatives Xu are representable by Radon measures for
all X € Vi; that is, if for every X € V] there exists a Radon measure p

such that
eu.g) = [ fan,
G

for all functions f € C°(G). A set E C G is said to have locally finite
perimeter if its characteristic function 1 is of locally bounded variation.
We stress that in the definition of finite-perimeter sets we only require
regularity along the horizontal directions, as opposed to the sets with
finite Euclidean perimeter.

Let us then fix a scalar product and an orthonormal basis { X7, ..., X,,}
for V4. If E C G has locally finite perimeter, then we denote by |D1g|
the total variation of the vector-valued Radon measure (X;1g, ..., X,,1g).

The measure |D1g| plays then the role of perimeter measure of E. In-
deed, following the approach of De Giorgi, one defines the reduced bound-
ary FE of E as the set of points p € G such that |D1g|(B(p,7)) > 0
for all » > 0, and there exists

r=0 [D1g|(B(p, 7))

with |vg(p)| = 1. The function vg is called the measure theoretical
(horizontal) inner normal of E. Tt is immediate that the reduced
boundary is contained in the topological boundary of E and also in the
support of |[D1g|. On the other side, by a result of Ambrosio (see [2]),
the perimeter measure is concentrated on the reduced boundary, i.e.,
|D1g|(G\ FE) = 0. In fact, the result of Ambrosio is even stronger:
it states that for |[D1g|-a.e. p € G and for sufficiently small scales
r = r(p), the measure |D1g|(B(p,r)) of a ball B(p,r) is comparable

Q=1 up to multiplicative constants that only depend on the group

= vp(p) (2)

to r~~
G. Hence, the perimeter measure of a finite-perimeter set is equivalent
to the (Q — 1)-dimensional Hausdorff measure 9! for subsets of the
reduced boundary.

As mentioned above, De Giorgi proved in [19, 20] that every subset
E of R™ with locally finite perimeter has (n — 1)-rectifiable reduced
boundary. We briefly recall here main steps of his blow-up method (see
[3] for more details). The first step is to show that for all x € FE, as
r — 0T, the translated and scaled sets (E — x)/r converge in L _ to a

loc

half-space H,, ) defined by the normal vg(z). Then by theorems of
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Lusin and Egoroff, the reduced boundary is divided (up to measure zero)
into sets Kj, h € N, where vg(z) is continuous and the convergence of
the blow-up sets is uniform. By careful estimates on the convergence,
one can prove that the normal vg satisfies assumptions of Whitney
extension theorem on each Kj,, providing f;, € C*(R™) such that
fh‘Kh =0 and th‘Kh = VE(.%‘) 7é 0.

Consequently, each K} is contained in a zero level set of some f; €
C1(R™), which defines a C'-regular hypersurface in R". So the reduced
boundary of F is covered up to a null set by graphs of smooth surfaces
and is therefore (n — 1)-rectifiable.

In their seminal work [25, 26] on rectifiability in Carnot groups,
Franchi, Serapioni and Serra-Cassano studied the generalization of De
Giorgi’s approach into Carnot groups. In particular, they proved a
version of Whitney’s extension theorem and studied the structure of
intrinsic blow-up sets at points of the reduced boundary of a finite-
perimeter set. Regarding the latter, they proved the following theorem.

Theorem 3.1 (Franchi-Serapioni-Serra Cassano). Let G be a Carnot
group and let E C G have locally finite perimeter. Then for every p €
FE and for every sequence (ry)n, rn — 07, there exists a subsequence
($n)n C (rn)n and a finite-perimeter set F' C G such that

15, 01y = 1p in L},.(G), as n — oo.

Moreover, the set F' has constant horizontal normal vp(z) = vg(p) for
|D1g|-a.e. x.

The authors discovered in [26] that the only obstruction for applying
De Giorgi’s method in Carnot groups lies in the fact that, in general, sets
having constant horizontal normal may fail to be (vertical) half-spaces,
as they show by an example in the Engel group. Hence, the convergence
to a constant-normal set I’ does not provide sufficient control on the
normal vg(x) for applying the Whitney extension theorem.

Based on the work of Franchi, Serapioni and Serra-Cassano, there are
a few ways to proceed with the study of rectifiability of finite-perimeter
sets in Carnot groups. In [6] it was proved that at |D1g|-a.e. point,
there exists a half-space in the set of all possible blow-ups of E at x.
Hence we are missing a uniqueness result for the blow-up sets. This
approach seems, however, very difficult to follow.

Another possibility is to study in which Carnot groups the only
constant-normal sets are the vertical half-spaces, and where the proof of
De Giorgi can therefore be applied. In [26] it was shown that this is the
case in all step-2 Carnot groups and later, in [42], in Carnot groups of
so called type (%). In article [C] we have chosen this approach. Finally,
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one can concentrate on studying regularity of sets of constant horizontal
normal in Carnot groups and, using them, prove some possibly weaker
form of rectifiability for finite-perimeter sets in a broader class of Carnot
groups. This is the starting point in article [B]. We take next a closer
look at properties of constant normal sets in Carnot groups, which will
be crucial in both of our rectifiability results.

3.2. Sets with Constant Horizontal Normal. Recall that a set E
in a Carnot group G is said to have constant (horizontal) normal if the
measure-theoretic normal vg(x) defined in (2) is constant as a function
of x € FE. Equivalently, F has constant normal if there exists a
half-space W in V; (i.e., the closure of either of the two parts into which
a hyperplane divides V}) such that £ is monotone along all directions in
W. In this case, we say that F is W-monotone. Formally one requires,
in the sense of distributions,

X1l >0 VX el

In [11], properties of such sets are studied. The consideration boils
down to certain kinds of W-monotone sets with respect to a horizontal
half-space W, which are the semigroups generated by exp(W). The
semigroup generated by exp(W) is denoted by Sy . By definition,
semigroup is a set that is closed under group multiplication, so Sy, has
the form

o0
Sw = U exp(W)F.

k=1
The key point is that semigroups generated by horizontal half-spaces
are the minimal constant normal sets with respect to set inclusion.
The fact that the set Sy, is W-monotone and that every W-monotone
set contains a translated copy of Sy, as a subset can be heuristically
explained as follows. Recall that p - exp(tX) is the flow of the left-
invariant vector field X starting from p at time ¢. Let us think for a
moment, for the sake of the argument, that 1 is a smooth function.
Then 1 is increasing in the direction of X (i.e., we have X1p > 0) if
and only if the flow line of X does not exit the set £ once it has entered.
In other words, if E is X-monotone, then p - exp(tX) C F for every
p € E. Since Sy is just a union of composed flow lines in the directions
in W, we immediately have the containment of a translated copy of Sy
in a W-monotone set E. Vice versa, since Sy contains all flow lines of
W by construction, it is increasing with respect to all directions in W,
so W-monotone. In [11] the authors prove that for every W-monotone

set E there exists a representative (a set F such that the symmetric
difference EAFE has measure zero) for which the previous argument
can be made formal, even with respect to the closure of Sy :
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Theorem 3.2 (Bellettini-Le Donne). A subset E of a Carnot group
has constant normal with respect to a horizontal half-space W if and
only if E has a representative E satisfying

p-Cl(Sw)CE Vpek.

The above theorem proves fruitful in the study of finite-perimeter
sets in Carnot groups. The reason is that the semigroup Sy is an
intrinsic object with explicit representation, and has therefore several
useful properties. First, since W is invariant under intrinsic dilations,
also the set Sy satisfies 9, (Sw) = Sw, for all A > 0. Secondly, the set
Sw has some convenient topological properties; most importantly, it
has nonempty interior. This last fact is a consequence of the classical
Krener’s theorem in Geometric Control Theory, as W is a generating
subset of the Lie algebra g (see [1, Theorem 8.1] for more details). These
two features of the semigroups are in the core of the weak rectifiability
results in [B].

In addition to the geometric viewpoint to semigroups, they can be
seen as algebraic objects. In this approach it is convenient to work on
the Lie algebra side: given a semigroup S in G, we shall denote by s
the set log(S) C g. There are two geometric subsets of s which play an
important role in our study. Namely, the largest Euclidean cone in s
is called the wedge of s, and the largest vector subspace in s is called
the edge of s. We denote these subsets by t(s) and e(s), respectively.
They have the following expressions:

w(s) ={X €g : Ry X Cs};
e(s) = (s) N (—ro(s)) =to(s) Nto(—s).

Lie semigroups and their tangent wedges are a classical object of study
in Lie group theory, and we refer to [33| for more information. One can
verify that e(s) is a Lie subalgebra of g and that, if s is closed, then
(s) is closed and convex with respect to the vector space structure
of g. We exploit repeatedly these two attributes of semigroups in [C],
which contributes to the C'-rectifiability problem in Carnot groups.

3.3. Cone property and Intrinsic Lipschitz rectifiability. In this
and the following section we focus on different forms of intrinsic recti-
fiability in Carnot groups. Our approach differs from the customary
introductions to the subject and proceeds from the weak and most
recent notion of cone property, introduced in [B], to the classical, strong
rectifiability in the sense of [25].

In what follows, we call a set C' C G a cone if C' has non-empty
interior and it is invariant under intrinsic dilations, i.e., ,(C) = C for
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all A > 0. We say that a set I' C G satisfies the C-cone property if
there exists a cone C' C G such that

'Nnp-C =10, foreverypel.

In article [B] it is shown that, in every Carnot group G and for every
set of locally finite perimeter £ C G, there exists a family {C}, : h € N}
of open cones in G and a family {I';, : h € N} of subsets of G such that
each I'j, satisfies the C-cone property and

FE = Urh.

heN

The main ingredients behind this result are the blow-up theorem (The-
orem 3.1) and the minimality of semigroups as constant-normal sets
(Theorem 3.2). Namely, by Theorem 3.1, in small scales the finite-
perimeter set F is well approximated around a point p € FE by a
set F', which has constant normal equal to v = vg(p). By Theorem
3.2, up to changing representative, the cone p - S,. is contained in F.
Then it is possible to find an open cone C, that is compactly contained
in the interior of S,., for which FFE satisfies the C-cone property in
some small neighborhood of p (see Figure 1). The final result is then
obtained by a compactness argument and a careful division of FE into
suitable subsets I'}, that satisfy the cone property for some fixed cone
Ch.

We stress that the result is valid without any restriction on the Carnot
group G. Notice that the cone property is indeed a regularity condition
for the set I'. In fact, if G = R™ and I' has the cone property with some
cone C, then I' is locally a Lipschitz graph where the Lipschitz constant
is determined by the opening of the cone C it follows from basic algebra
that if T’ has the C-cone property, then it satisfies TNp- (CUC™!) =)
for every p € I'. Here p- (CUC™!) represents an hour-glass shape whose
closure intersects I' only at its vertex p. Since any Lipschitz map defined

FIGURE 1. Illustrative picture for the cone property of
finite-perimeter sets.
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on an open subset  C R"! can be extended to the whole of R*™!, we
deduce that every Euclidean set with the cone property is contained in
a graph of a Lipschitz map. However, in non-abelian Carnot groups this
implication is not so straightforward, the reason being that the notion
of graph is more convoluted. Indeed, existence of graphs depends on
the possibility of dividing the group into complementary subgroups,
mimicking the division of R" into Cartesian product of its subspaces.
We next define graphs in Carnot groups and investigate under which
conditions on the Carnot group G the geometric cone property can be
enhanced to the property of being contained in a(n intrinsic) Lipschitz
graph.

Graphs in Carnot groups were first, implicitly, exploited in [25] and
then formally introduced in |28, 29]. For an exhaustive introduction to
intrinsic (Lipschitz) graphs in Carnot groups, see [30]. Two subgroups
W.L C G are said to be complementary subgroups of G if they are
homogeneous (i.e., invariant under dilations) and if G = W - L with
WNL = {0}. Under these conditions, every element g € G has a unique
expression as ¢ = w - [ for some w € W and [ € L. For purposes of this
thesis, we are only interested in graphs of codimension 1, that is, in the
case when L is one-dimensional. Then L is necessarily a horizontal line.
This observation will be crucial later in this section.

Given complementary subgroups W and L in G and a function f: U C
W — L, we define its graph as the set

graph(f) = {p- f(p) : p € U}.
It would be natural to define a Lipschitz graph in a Carnot group to
be a graph of a function that is Lipschitz with respect to an invariant
distance on G. This approach does not, however, lead to an intrinsic
concept, since this notion is not invariant under group translations. An
intrinsic definition is obtained by a more geometric alternative: we say

that ¥ C G is an intrinsic Lipschitz graph if there exist complementary
subgroups W and L in G and 8 > 0 such that

(i) for every p € ¥ one has
snp- |J B, 8d0,0) = 0;
LeL\{0}
(il) mw(2) = W.
Naturally, if ) is the homogeneous dimension of G, we say that E

is intrinsically Lipschitz (QQ — 1)-rectifiable if there exists a countable
family {3, : h € N} of intrinsic Lipschitz graphs such that

HO! (E\ U zh> = 0.

heN
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Also other equivalent definitions for an intrinsic Lipschitz graph exist
in the literature, see e.g. [30, 56| as well as [45, 52| for different notions
in the Heisenberg groups. This definition suits our purposes as it shows
clearly the connection with the cone property defined above. Indeed, on
the one hand, since the set Ugep\ (03 B(¢, 8d(0,¢)) is obviously dilation
invariant and has nonempty interior, it is a cone and so every intrinsic
Lipschitz graph has the cone property by (i). On the other hand, if the
set I' has the cone property with some cone C, then we claim that I is
contained in an intrinsic Lipschitz graph if there exists some X € V)
for which exp(X) € int(C).

To prove the claim, notice that exp(RX) =: L is a one-dimensional
horizontal subgroup which is complementary to the subgroup exp(X+@®
lg,9]) = W. Being exp(X) in the interior of C, there exists r > 0 such
that B(exp(X),r) C C. Since C' is invariant under dilations, condition
(i) follows now from the C-cone property of I'. By the extension theorem
[56, Proposition 3.4] (see also [30]), the set I' is then contained in some
entire intrinsic Lipschitz graph .

We recall that in [B] it was shown that in every Carnot group G, the
reduced boundary of a finite-perimeter set can be countably covered
by sets I'y,, where each I'y, has Cp-cone property and where each C},
is an open subset of some semigroup Sy, generated by a horizontal
half-space Wj,. In fact, it is pointed out in [B| that if the Carnot group
G satisfies: for every semigroup Sy generated by a horizontal half-space
W it holds int(Sy ) Nexp(Vy) # 0, then the reduced boundary of every
finite-perimeter set is intrinsically Lipschitz rectifiable.

It may indeed happen that int(Sy ) Nexp(V;) = 0 for every horizontal
half-space W, as shown in [11, Section 5| by the free Lie algebra of
rank 2 and step 3. In [B] the property int(Sy) Nexp(Vi) # 0 is
related to some mild regularity properties of the end-point map, which
associates to a horizontal curve 7: [0,1] — G its end point y(1). In
particular, it is shown that if G admits a non-abnormal horizontal line (a
condition on the end-point map that can be verified algebraically), then
every semigroup Sy satisfies int(Sy) Nexp(V;) # 0 and the Lipschitz
rectifiability for finite-perimeter sets is achieved. As a corollary, the
Lipschitz-rectifiability result is obtained e.g. in filiform groups (see |B]
for definition and properties). In addition, it is verified in |C| that every
Engel-type group, which will be introduced in Section 3.4, admits a
large collection of non-abnormal horizontal lines.

It would be interesting to see under which conditions on G the
end-point map has sufficient regularity to ensure that the semigroups
have horizontal lines in their interior. Admitting a non-abnormal
horizontal line is indeed only a sufficient condition: if G has step 2
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and dim V5 > dim Vj, then every horizontal line of G is abnormal, but
still every step-2 Carnot group is known to have strong rectifiability
properties, as we shall discuss in Section 3.4. In [34] some milder
condition on the end-point map (called pliability) is connected to
the Whitney extension property on curves (see also [53]). In fact,
also pliability of the Carnot group is enough to provide the Lipschitz
rectifiability result. Resembling “deformability” properties of curves are
related also to universal differentiability sets in [48].

3.4. Intrinsic C'-rectifiability and semigenerated Lie algebras.
We define next G-regular hypersurfaces and intrinsic C''-rectifiability
following [26]. A subset S of a Carnot group G is called a G-regular
hypersurface if it is (locally) a non-critical level set of a continuously
Pansu-differentiable function, i.e., if there exists a neighborhood U C G
and a function f € C(U) such that

SNU={zxe€U: f(x)=0} and Vgf #0.

A subset T" of a Carnot group is said to be intrinsically ((Q — 1)-
dimensional) C'-rectifiable if there exists a countable union of intrinsic
C*-hypersurfaces (S;);en such that

HO (r \ G 53) = 0.

Notice that, unlike for sets with a cone property or for intrinsic
Lipschitz graphs introduced in the previous section, the definition of
a G-regular hypersurface is analytic. An implicit function theorem
for G-regular hypersurfaces was already shown in 27|, according to
which every G-regular surface is locally a graph of a function ¢: M — N
between complementary subgroups M and N. It follows also from
[27] that the map ¢ is intrinsically Lipschitz and that the metric
tangents of graph(¢) are homogeneous subgroups of G. The latter
geometric condition is nowadays called intrinsic differentiability and it
was introduced in [24]. Only recently, in [21] (see also [7]) it was proven
that being a graph of an intrinsic differentiable function in the sense of
[24] is a characterizing property of G-regular hypersurfaces. For more
information and references on regular submanifolds in Carnot groups,
see e.g. [39].

Until now the intrinsic C'-rectifiability of reduced boundaries of
finite-perimeter sets has been positively answered in step-2 Carnot
groups and in so called type () Carnot groups introduced by Marchi
in [42], the reason being that in these groups every set with constant
horizontal normal is a vertical half-space and so De Giorgi’s proof by
blow-up can be applied. A vertical half-space is, by definition, the
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exponential of the direct sum of a horizontal half-space and the derived
algebra [g,g]. In exponential coordinates, these sets are exactly the
half-spaces in g defined by a normal in V;, assuming [g, g] L V.

In article [C] we continue, from an algebraic point of view, the
classification of Carnot groups in which every constant-normal set
is a vertical half-space. Since the semigroups Sy, generated by the
exponentials of the horizontal half-spaces W are the minimal constant-
normal sets with respect to set inclusion (see Theorem 3.2), a Carnot
group has this property if and only if, for each horizontal half-space W,
the set sy == Cl(log(Sw)) is a vertical half-space. We call a horizontal
half-space W for which sy, is a vertical half-space semigenerating. A
stratified Lie algebra is semigenerated if every horizontal half-space in
it is semigenerating. Respectively, a Carnot group is semigenerated if
its Lie algebra is semigenerated. We note that, even if the notion of
semigenerated Carnot group is vastly motivated by the rectifiability
problem, the study of semigroups is also of its own independent interest,
with wide range of possible applications.

On the Lie algebra side, we may write the condition of being semi-
generated as

lg,9] C sw, for every horizontal half-space W.

Our main results are twofold. First, we introduce a class of semigen-
erated Carnot groups, called type (0), that is defined by an algebraic
condition and that strictly generalizes the class of type (%) algebras
due to Marchi. A stratified Lie algebra is said to be of type (%) if there
exists a basis {Xi,..., X,,} of V4 such that

adi, X; =0, Vij=1,...,m

A stratified Lie algebra is said to be of type (0) if, for every subalge-
bra b for which h NV} has codimension 1 in Vj, there exists a basis
{X1,..., X} of V] such that

ady X; € b and adjdwj (Xi) € b, (3)

for all i,7 = 1,...,m and k > 2. Therefore, every type-(x) algebra
trivially satisfies (3) for every subalgebra b of g. Our proof for the
fact that type (O) algebras are indeed semigenerated relies on some
algebraic properties of the wedge to(sy/) and edge e(sy ) of sy, for a
horizontal half-space W. Being ¢(sy/) the largest Lie subalgebra of g
in sy, we have that W is semigenerating if and only if [g, g] C e(sw).
Using the geometric and algebraic properties of w(sy) and e(sy ) and
considering a suitable Hall basis of the Lie algebra, we are able to
deduce that [g, g] C sy if and only if there exists a basis {X7,..., X, }
of Vi such that the terms in (3) are in e(sy). If g is of type (0), then
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choosing h = e(sy) in (3) gives the latter containment, and so W is
semigenerating.

In the second part of [C] we adopt a different strategy for char-
acterizing semigenerated algebras. On the one hand, projections of
semigenerated Carnot algebras by homogeneous ideals are semigener-
ated; indeed, projections of half-spaces are again half-spaces, or possibly
the whole space. On the other hand, we know by [26] that every step-2
Carnot algebra is semigenerated, and therefore every non-semigenerated
Carnot group has a non-trivial semigenerated quotient. Hence, one
may aim to describe the minimal non-semigenerated Carnot algebras,
in the sense that every non-semigenerated Carnot algebra has one such
an algebra as a quotient and that every non-trivial quotient of such an
algebra is semigenerated.

We achieve this objective within step-3 Carnot algebras. Namely,
we construct a family of stratified algebras, called Engel-type algebras,
that play the role of minimal non-semigenerated stratified algebras with
respect to quotient. For each n € N, we define the n — th Engel-type
algebra to be the 2(n + 1)-dimensional Lie algebra (of step 3 and rank
n + 1) with basis {X,Y;, T;, Z}"_, where the only non-trivial bracket
relations are given by

Yo X]=T, and [Y,T]=2, Yie{l,...n}.

Notice that the first Engel-type algebra is the classical 4-dimensional
Engel algebra, that has proven to be non-semigenerated already in [26].
The diagrams of the first two Engel-type algebras are presented below.

T, 15 T
n=1 Z n=2 Z

Considering a suitable coordinate system on each Engel-type algebra,
it is not difficult to see that none of them is semigenerated. They also
have the property that every non-trivial quotient of them has lower
step (we call Lie algebras with this property trimmed). Consequently,
they are not quotients of each others and every non-trivial quotient
of theirs is of step 2, so semigenerated. A more subtle result is that
the Engel-type algebras are the only occurences of trimmed and non-
semigenerated Lie algebras of step 3, which is proven in [C]| by a careful
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induction argument. Combining this result with the (non-trivial) fact
that, at least when the step is 3, every non-semigenerated algebra has
a trimmed, non-semigenerated quotient, we achieve the classification
result for step 3 Carnot algebras. It is possible that this characterization
result holds also for higher nilpotency step. However, the algebraic
properties get much more complicated as the step increases, and we are
not able to go beyond step 3. Nonetheless, our result gives a necessary
condition for arbitrary step: if a Carnot algebra has an Engel-type
algebra as a quotient, then it is not semigenerated.

As a final remark on article [C] we point out that, in every semigen-
erated group, a Rademacher-type theorem holds for intrinsic Lipschitz
functions. Indeed, in [24, Theorem 4.3.5] it was shown for groups of
type (%) that if f: M — L is an intrinsic Lipschitz function and L is
1-dimensional, then f is intrinsically differentiable £"~1.M -a.e, where
L1 M stands for the (n — 1)-dimensional Lebesgue measure on M.
Nevertheless, the argument is valid in every Carnot group where the
C'-rectifiability result for finite-perimeter sets holds. Moreover, in every
semigenerated Carnot group, notions of intrinsic Lipschitz rectifiability
and intrinsic C''-rectifiability coincide (see |24, Proposition 4.4.4]).

4. INFINITE-DIMENSIONAL CARNOT GROUPS

It is natural to ask whether there exists an infinite-dimensional gener-
alization of Carnot groups that could play the role of non-commutative
Banach spaces. In the last article [A] of this thesis, we introduce our no-
tion of infinite-dimensional Carnot groups and prove a differentiability
result for Lipschitz functions defined on such spaces.

In physics and in pure mathematics, Lie groups lie at the foundation
of a great deal of theories, and in many cases these groups are of infinite
dimension. Examples can be found in differential and algebraic geome-
try, knot theory, fluid dynamics, cosmology and quantum mechanics
[35]. A suitable generalization of Carnot groups into infinite dimensions
is currently under investigation, and various approaches to the ques-
tion have appeared in the last years. A notion of Infinite-dimensional
Heisenberg groups based on an abstract Wiener space was introduced
in [22, 10] and Lie groups generalizing those in [44]. Form of infinite-
dimensional sub-Riemannian geometry from control theoretic viewpoint
was suggested in [31]. Recently, in [41, 40|, a Rademacher-type theorem
has been proved when the target is a so called Banach homogeneous
group, which is a Banach space equipped with a suitable non-abelian
group structure.

Our starting point is the metric characterization of Carnot groups
(proven in [36] and briefly discussed in Section 2), according to which
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Carnot groups are the only metric spaces that are locally compact, geo-
desic, isometrically homogeneous, and self-similar. In this characteriza-
tion, the property which associates to some sort of finite-dimensionality
is local compactness. Hence, our goal is to find a concept that is an
immediate non-locally compact generalization of Carnot groups. At
the same time, these groups should be a direct non-abelian generaliza-
tion of Banach spaces. We expect them also to work as an abstract
completion to the class of Carnot groups, similarly as Banach spaces
occur as direct limits of Euclidean spaces. In article [A| the notion of
infinite-dimensional Carnot group is built in an axiomatic way. A main
difficulty arising is that there is not an obvious notion of Lie algebra,
and so almost all of the conventional tools that exist in the classical Lie
group theory are not available in our setting. Consequently, everything
must be defined intrinsically.

4.1. Definition and examples. The underlying structure of our con-
struction is a topological group G equipped with a continuous map
0: R x G — G such that §, = §(),-) is a group automorphisms of G
for all A € R\ {0},

(5)\0(3”:(5)\# VA ueR, (4)

and dy = eq, where e is the identity element of G. The pair (G, ) is
called a scalable group. Scalable subgroups and scalable homomorphisms
in this category are defined in an obvious way. Notice that, due
to property (4), the map 0¢y: (R\ {0},-) = Aut(G), A — 4y, is a
homomorphism, and therefore in a perfect accordance with Carnot
group dilations. Indeed, every Carnot group naturally has a (unique)
structure of a scalable group. Vice versa, we say that a scalable group
(G, 0) has Carnot group structure if there exists a Carnot group that is
isomorphic to (G, 0) as a scalable group.

Scalable groups are, most likely, far too general to be a successful
framework for non-commutative functional analysis. In order to provide
more structure, we introduce the notion of filtrations in scalable groups:
we say that a scalable group G is filtrated by Carnot subgroups if there
exists a sequence (Np,)m, m € N, of scalable subgroups of G such that
each N,, has a Carnot group structure, N,, is a scalable subgroup
of Np,41, and G is the closure of U,,enN,,,. In this case, we say that
the sequence (N,,)., is a filtration by Carnot subgroups of the scalable
group G. We stress that scalable groups admitting filtrations are not
necessarily nilpotent.

The notion of filtration might seem, at the first glance, somewhat arbi-
trary. Nonetheless, we shall argue that it leads to very natural analogues
to both classical Carnot groups and separable Banach spaces. Observe
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that every separable Banach space is filtrated by finite-dimensional
Banach spaces, and that every scalable group admitting a filtration is
separable.

Recall that, in Carnot groups, the horizontal layer can be detected as
the unique subspace of the Lie algebra, in which the intrinsic dilations
act as linear scalings. On the group side, one characterizes the set
exp(V}) as the set of points p, where the maps t € R — 0,(p) are
one-parameter subgroups. Formally this means that, for all £, s € R,
the dilations satisfy d:y5(p) = d:(p)ds(p). Since we are expecting a
correspondence to Carnot groups, we define for a scalable group G its
first layer as

Vi(G) ={p € G :t € R~ 0,(p) is a one-parameter subgroup},

We next examine the correspondence of generating first layer and
existence of a filtration by Carnot subgroups. In the context of scalable
groups, we say that set A generates G if GG is the closure of the group
generated by {d;(a) : a € A, t € R}. It turns out that filtrations and
generating one-parameter subgroups are closely related. Indeed, it is
rather straightforward to show that if G admits a filtration by Carnot
subgroups, then Vi(G) generates G as a scalable group. The opposite
implication is less obvious. However, in [A] it is shown that if G is
nilpotent, V;(G) is separable, and V;(G) generates G as a scalable group,
then GG admits a filtration by Carnot subgroups. This result is based
on the following algebraic characterization of Carnot groups proven in
[A]: if G is a nilpotent scalable group that is generated by finitely many
elements of V1(G), then it has structure of a Carnot group.

The proof of this characterization relies on the work of Siebert
[55], from where it follows that any locally compact topological group
admitting a one-parameter family of dilations is a positively graded
Lie group, where positive grading is an algebraic condition slightly
more general than stratification. In fact, every positively graded Lie
group with a generating layer is a Carnot group. Since we are assuming
a generating property of the first layer Vi(G), to prove the algebraic
characterization result of Carnot groups, one is left to show that any
nilpotent scalable group G generated by finitely many one-parameter
subgroups is locally compact. We now give the key points of the proof
of local compactness.

If G is nilpotent of step s, then there exists an abelian subgroup
G®) of G that is generated by group commutators of length s. The
subgroup G should be seen as an analogue to the last layer of a
Carnot group. One then shows, using the dilations on G, that this
abelian subgroup has structure of a finite-dimensional topological vector
space. Consequently, it is locally compact. The argument is finished
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by induction on step together with the fact that if a topological group
G has a locally compact normal subgroup N such that also G/N is
locally compact, then G is locally compact itself.

After carefully investigating scalable groups and filtrations, let us
add metric to our data. Having the invariant metrics of Carnot groups
in our minds, we define metric scalable group as a triple (G, ¢, d) where
(G, 9) is a scalable group and d is a left-invariant distance on G, which
induces the topology of G and satisfies

d(0:(p),0:(q)) = |t|d(p,q) Vt€ER.

Observe that every Carnot group can be metrized as a metric scalable
group, and that the metric is unique up to bi-Lipschitz equivalence.
Finally, we suggest the following definition.

Definition 4.1. An infinite-dimensional Carnot group is a complete
metric scalable group that admits a filtration by Carnot subgroups.

With this interpretation, separable Banach spaces are the only abelian
infinite-dimensional Carnot groups, and Carnot groups are the only
locally compact infinite-dimensional Carnot groups.

Natural examples of metric scalable groups appear as ¢,-sequences
on classical Carnot groups. For a countable family (G, ", d,)nen of
metric scalable groups and for p € [1,00), we define the set £,((G},),)
as

G((G)n) = {(Tn)nen : Tn € Gy > di(,€,)P < 00}
neN
We equip it with the metric

1/p
d((Tn)ns (Yn)n) = (Z dn(ajn,yn)p)

neN

and define group operation and a scaling 6: R X £,((Gy)n) = €,((Gn)n)
element wise, using the operations on individual scalable groups (G,,, 6").
In [A] it is shown that if (G)nen is a sequence of infinite-dimensional
Carnot groups and p € [1,00), then £,((G,,),) is an infinite-dimensional
Carnot group as well. Using this ¢,-construction, in [A| we provide an
example of an infinite-dimensional Carnot group that is not a Banach
Lie group, and also an infinite-dimensional Carnot group that is not
nilpotent.

As the last observation before discussing a Rademacher’s theorem on
infinite-dimensional Carnot groups, we point out an obstruction to the
analogy with the metric characterization of Carnot groups. Indeed, by
[36], any locally compact, geodesic metric scalable group is a Carnot
group. That is, in the locally compact setting, any metric scalable
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group is a Lie group, and admitting a (scalable) geodesic distance
implies existence of a generating subbundle of the tangent bundle. It
would be natural to expect that also in infinite dimensions, a (scalable)
geodesic distance gives rise to a large family of one-parameter subgroups.
However, we now give an example of a geodesic complete metric scalable
group G for which Vi(G) = {0}. Such an example is missing from the
published paper [A].

Consider the space L'(R) seen as an abelian topological group
equipped with the usual L'-norm || - ||;. In this setting, straight lines
t — tg+ (1 —t)f between two elements f,g € L'(R) are geodesics.
Instead of the usual vector space scalings on L*(R), we shall equip this
group with a dilation map 6: R x L'(R) — L'(R) defined by

(60 f) () ::f(%), YA €eR\ {0}, and & =0. (5)

It is readily checked that (L'(R),4, || - ||) is a geodesic complete metric
scalable group; the facts that J, is an automorphism of the abelian
group L'(R) for every A\ # 0 and property (4) are immediate, and
continuity of ¢ follows from the basic fact that compactly supported,
continuous functions are dense in L*(R). The identity ||0xf]l1 = M| f]]1
is the change of variables formula.

Nevertheless, we claim that V;(L*(R)) = {0}. Indeed, observe that,
for every f € Vi(L'(R)), it holds

Suf(x) = Gof(z) + bof (x) = 2f (g) , forac z€R. (6

Assume then, aiming for contradiction, that there exists some f €
Vi(L'(R)) such that ||f|ly > 0. Let a > 0 be large enough so that
f(_a 0) |f| =t ¢ > 0. Since the first layer of a scalable group is invariant

under dilations, we may set g = d1 f € Vi(L'(R)). Then

x)|dr = 54xdx@ x/2)/2)|dx
el = [ g ® [ o))

(6)
=/ |mwmmzf 81g(2)|de
(—a/2,a/2) (—a/2,a/2)

- [ @l
(—a/2,a/2)

By iterating this argument we see that f has constant positive mass ¢ on
an arbitrarily small interval, which contradicts the fact that f € L'(R).

4.2. Rademacher’s theorem. Hans Rademacher proved in 1919 that
Lipschitz maps between Fuclidean spaces are differentiable almost
everywhere with respect to the Lebesgue measure [50]. This theorem
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has, obviously, far-reaching consequences in Analysis and Geometric
Measure Theory, as well as in Metric Geometry. It has accordingly
been generalized in various ways over the last century, as was done by
Pansu in [46] in the context of Carnot groups.

In [A] a version of Rademacher’s theorem is formulated for functions
defined on infinite-dimensional Carnot groups. Already in the abelian
setting there are two immediate issues that one has to settle when the
ambient space has infinite dimensions. First, in Banach spaces there
are several nonequivalent notions of differential. In a Banach space X,
derivatives of real valued functions are linear maps 7': X — R that
come as limits of the different quotients

1) = gy 20020

t—0

for x,v € X.

The map f is said to be Gateaux differentiable if the map T exists and
is linear. If, in addition, the map T satisfies

f(z+0v) = f(z) + To(v) + o|Jv]]) as [Jo]| = 0,

then it is the Fréchet differential of f. In finite dimensions, these
two notions agree. Presumably the first strong results on Géateaux
differentiability of Lipschitz maps on separable Banach spaces were
proven by Aronszajn [9], whose approach our work closely follows.
Results on Fréchet differentiability have proven much harder, see |38, 49|
and references therein.

Given group translations and dilations, one can define different quo-
tients, and due to existence of topology, limits thereof. Accordingly,
we mimic the idea of Pansu [46] and define our notion of derivative as
follows. Denoting by L, : G — G the left multiplication by an element
g € G, we say that a map f: G — H between two scalable groups G
and H is Gateaux differentiable at a point p € G if, as A — 0, the maps

5y oLilyesoLye,
point wise converge to a continuous homomorphism from G to H.

Another difficulty to overcome is the meaning of “almost everywhere”.
Indeed, it follows from basic measure theory that every translation
invariant, locally finite Borel measure on a separable infinite-dimensional
Banach space is identically zero. Therefore, one has to find a suitable
collection of “exceptional sets” that would play the role of the o-ideal of
Lebesgue-null sets in the Rademacher’s theorem. The objective in [A]
is to follow the idea of [9] and exploit the Haar measures on elements of
the filtration of an infinite-dimensional Carnot group: given a filtration
(Nim)m , m € N, by Carnot subgroups of a scalable group G, we say
that a Borel set Q@ C G is (N,,)m-negligible if €2 is the countable union
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of Borel sets €2, such that
voly,, (N;m N (g2)) =0, VmeN, Vg e G,

where voly,  denotes any Haar measure on N,,. This class of negligible
sets has the natural properties to be hereditary (i.e., if B is negligible
and A C B, then A is negligible), and closed under countable unions.
Moreover, in [A] it is proven that every filtration-negligible subset of
an infinite-dimensional Carnot group has empty interior. The proof
is by contradiction: assume that there exists a (N,,),-negligible set
that contains an open set 2. Then, using the charts on each N,,,
one can construct a product probability measure p with support in
Q. In particular, we have p(2) = 1. However, by Fubini, every
(N )m-negligible set has p-measure zero, leading to a contradiction by
monotonicity of p.

The Rademacher’s theorem presented in [A] states that, for every
Lipschitz function on an infinite-dimensional Carnot group G, there
exists a Borel subset 2 C G that is (IV,,).,-negligible for every filtration
(N )men by Carnot subgroups of G such that the map f is Gateaux
differentiable at every p ¢ Q. After carefully building the setting, the
proof of the theorem follows the one of Aronszajn [9]. Applying the
Pansu-Rademacher theorem on each element of the filtration gives
differentiability of the Lipschitz map up to null sets with respect to
the respective Haar measures. Differentiability on finite-dimensional
subspaces leads to the notion of Gateaux differential, and the non-
differentiability points are by construction contained in a filtration-
negligible set.
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1 Introduction

Rademacher’s theorem states that Lipschitz maps from R” to R are differentiable
almost everywhere. This result has far-reaching consequences in Geometric Measure
Theory and has been generalized in many ways over the past few decades. In the case
of considering domains more general than R”, there have been two distinct branches.
On the one side, extensions of Rademacher’s theorem have been studied in infinite-
dimensional vector spaces, where there does not exist a Lebesgue-like measure. On
the other side, there has been interest in removing the vector-space assumption but
preserving the structure of metric measure space. Extensions to more general target
spaces have also been considered, but is not the focus of this paper.

Our goal is to extend the theorem to domains that are nonabelian and infinite
dimensional. We will concentrate on R-valued functions, although the results will hold
for more general targets like RNP Banach spaces. We now quickly review previous
results, discuss the issues present in both branches, and provide some references.

For the case of Banach space domain X, derivatives of a function f are linear
mappings. However, in infinite-dimensional case there are two ways this may be
interpreted. A function is Géateaux differentiable at xo € X if there exists a linear
function T : X — R satisfying

f(xo + tv) — f(x0)
t

T (v) = lim
t—0
forevery v € X.Instead, a function is Fréchet differentiable at xg if the map 7 satisfies

f(xo+v) = fxo) + T +o(lv]) as [lv]| — 0.

Thus, for Gateaux differentiability, the rate of convergence as ¢t — 0 can depend on v
whereas it only depends on ||v|| for Fréchet differentiability. Fréchet differentiability
clearly implies Gateaux differentiability, but the opposite does not hold in general
in the infinite dimensional setting. In fact, Lipschitz functions f : X — R always
have points of Gateaux differentiability whereas they may lack any point of Fréchet
differentiability [1].

In infinite-dimensional settings, one also needs to find a good notion of “almost
everywhere”. One can reinterpret Rademacher’s theorem as stating that the nondiffer-
entiability points lie in the o -ideal of Lebesgue null sets. Thus, one aims to prove that
the nondifferentiability points of Lipschitz functions lie in some suitable o-ideal N
To guarantee at least one point of differentiability, the o-ideal N should not contain
open sets. Results of this type have been found for both Gateaux differentiability and
Fréchet differentiability, although the Fréchet differentiability results are far harder
and less broad [1,9,10,16].

When considering domains without a linear structure, one typically works in a
metric measure space where “almost everywhere” has natural meaning. But resolving
what a derivative means becomes more involved, and one requires some additional
structure on the domain. For general metric spaces, one needs a collection of Lipschitz
charts —which may not, in general, exist— to differentiate the given function f
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against as it was done by Cheeger in [3]. Other works expanding on this theory of
differentiation include [2,4,5,18]. In the special case of Carnot group domains, there
are in addition group structure as well as a family of scaling automorphism. This
allows us to define a derivative as the limit of rescaled difference ratios converging to
a homomorphism as it was done by Pansu in [15].

This paper seeks to bridge the infinite-dimensional framework with the Carnot
group setting. Specifically, we will define infinite-dimensional variants of Carnot
groups and consider Gateaux differentiability in this context. We will show that if
G is a metric group with a family of dilations (or metric scalable group, as we will
call them) and has a dense collection of finite-dimensional Carnot subgroups, then
there is a nontrivial o-ideal N so that the Gateaux non-differentiability points of any
Lipschitz function f : G — R form an element in \V.

We remark that there have been previous studies of infinite-dimensional variants
of Carnot groups. Notably, in [13], the authors defined so-called Banach homoge-
neous groups and showed that Lipschitz functions from R to these groups are almost
everywhere differentiable in the notion of Pansu. Metric scalable groups include these
groups as special cases, but they also contain other examples.

Our investigations leave open several natural questions. Most notably, one can ask
how small the points of Fréchet nondifferentiability of Lipschitz functions are for
metric scalable groups. Even in Banach space domains, this problem is very hard
and depends on fine geometric properties of the norm, and so we leave this problem
for the future. One can also ask if there are infinite-dimensional variants of Cheeger
differentiability. Here, the question becomes more subtle as the differentiability charts
must take value in an infinite-dimensional Banach space for which there is no canonical
choice. Finally, one would like to know when a metric scalable group is generated by its
finite-dimensional subgroups. Specifically, are there geometric properties (geodicity,
for example) that tell us when this is the case?

We begin by introducing the notion of scalable group that is the underlying structure
of the metric groups with which we will be concerned.

Definition 1.1 (Scalable group) A scalable group is a pair (G, §), where G is a
topological group and §: R x G — G is a continuous map such that §, := §(A, ) €
Aut(G) for all A € R\{0},

8,08, =8y, Vi ueR, (1.2)

and §p = eg, where eg is the identity element of G.

Property (1.2) can be rephrased as follows: for every p € G, the map
8¢y(p): (R\{0},-) — Aut(G) is a homomorphism. Hence it follows that §; is the
identity map of G.

In an obvious way, in the setting of scalable groups, one can consider the notion
of scalable subgroups; a subgroup H of a scalable group (G, §) is called a scalable
subgroup if G if 8, (H) = H for all A € R\{0}. We denote then H < G. In order to
talk about Lipschitz functions, we will endow these groups with metrics that make the
dilation automorphisms §; metric scalings in the following sense.
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Definition 1.3 (Metric scalable group) A metric scalable group is a triple (G, §, d)
where (G, §) is a scalable group and d is an admissible left-invariant distance on G
such that

d(p).d6:(q)) = |tld(p,q), VieR.

By admissible, we mean that the metric induces the given topology.

Every Carnot group naturally has structure of a scalable group, where by Carnot
group G we mean a simply connected Lie group whose Lie algebra Lie(G) is equipped
with a stratification Lie(G) = V| & --- @ Vi. The stratification is unique up to an
isomorphism, see [8], and it defines a family of dilations on G. Indeed, one considers
the Lie group homomorphisms corresponding to the Lie algebra scalings defined by
(X)) = AKX for X € Vi and A € R\{0}. Such a group can be metrized as a metric
scalable group, and the metric is unique up to biLipschitz equivalence. Vice versa, we
say that a scalable group (G, §) has a Carnot group structure if there exists a Carnot
group that is isomorphic to G as a topological group and whose dilations given by the
stratification coincide with §.

Given a group structure with a dilation, we can define derivatives as done by Pansu
[15]. First, for any ¢ € G, let Ly : G — G be the left multiplication operator.
As mentioned before, in the infinite-dimensional case, we need to take care of the
distinction between Gateaux and Fréchet differentiability. Here, we define Gateaux
differentiability.

Definition 1.4 (Gdteaux differentiability) Given two scalable groups G and H, a map
f G — H is Gateaux differentiable atapoint p € G if,as A — 0, the maps f), ; :=

d1o L?(lp) o f o L, o4, pointwise converge to a continuous homomorphism from G

to H. We denote this map by Df), and it is called the Gdteaux differential of f at p.

Notice that if Df), exists, then it is 1-homogeneous in the sense that D f}, (53 (1)) =
8, (Dfp(u)) forallA e Randu € G.

We now introduce a notion requiring that our groups, which are possibly infi-
nite dimensional, are generated by finite-dimensional Carnot subgroups. This will be
needed to show that the o -ideal we define later is not trivial.

Definition 1.5 (Filtration by Carnot subgroups) We say that a scalable group G is
filtrated by Carnot subgroups if there exists a sequence (N, ), en of scalable subgroups
of G such that each N, has a Carnot group structure, N, < Np,+1,and G is the closure
of U en Ny, In this case, we say that the sequence (Ny,)men 18 a filtration by Carnot
subgroups of the scalable group G.

We have now all the necessary data to give the definition of infinite-dimensional
Carnot group.

Definition 1.6 We call a complete metric scalable group that admits a filtration by
Carnot subgroups an infinite-dimensional Carnot group.

Necessarily, a metric scalable group that admits a filtration by Carnot subgroups
is separable. Note that an infinite-dimensional Carnot group G cannot be equal to its
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filtration U,y Ny, unless G = N, for some m € N.Indeed, each N, C G is nowhere
dense and hence the union U,,cN NV, is of first category in G. We define next what it
means for a set to be null (that is, it lies in our o -ideal).

Definition 1.7 (Filtration-negligible) Given a filtration (N, ),en by Carnot subgroups
of a scalable group G, we say that a Borel set 2 € G is (N,,);,-negligible if Q is the
countable union of Borel sets €2, such that

voly, (N N (g2)) =0, Vm € N, Vg € G,

where voly, denotes any Haar measure on N,,.

We can now state the main theorem of this paper, which is the following general-
ization of Aronszajn’s differentiability result [1], and the one of Pansu [15].

Theorem 1.8 Let G be an infinite-dimensional Carnot group. If f: G — R is a
Lipschitz map, then there exists a Borel subset 2 C G that is (Ny)m-negligible for
every filtration (Ny)menN by Carnot subgroups of G and such that for every p ¢ Q
the map f is Gdteaux differentiable at p.

Notice that the above statement is meaningful already within the class of metric
scalable groups. However, be aware that a scalable group may not admit any filtration
(for example, if the group is not separable), in which case the above theorem has no
content, e.g., one can take 2 = G. Nonetheless, there are large classes of scalable
groups that admit filtrations (see Proposition 1.10 below for a general criterion and
Section 5 for more examples). The first thing to clarify is that, as soon as there is one
filtration, the whole scalable group cannot be negligible, as the next proposition states.

Proposition 1.9 If (Ny)men is a filtration by Carnot subgroups of an infinite-
dimensional Carnot group G and Q < G is a Borel (Ny,)-negligible set, then <2
has empty interior.

As mentioned before, this allows us to conclude that, for groups admitting at least
one filtration by Carnot subgroups, every Lipschitz function f : G — R has at least
one point of Gateaux differentiability.

Finally, we would like to have geometric conditions that tell us when our group
admits filtrations by Carnot subgroups. For a scalable group G define its first layer as

Vi(G) :={p € G :t € R §;(p) is a one-parameter subgroup},
where by one-parameter subgroup we mean that for all ¢, s € R,

St+s(p) = 8:(p)ds(p).

Note that if p € V{(G), then §,.(p) € V1(G) for all r € R, since
8t+s ((Sr(p)) = (Str-‘rsr (P) = 8tr (P)5sr(P) = 6t(8r (P))5s (‘Sr (P)),
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We say that a set A C G generates G as a scalable group or simply that A generates
G if G is the closure of the group generated by {§;(a) : a € A, t € R}. Note that
V1(G) is completely analogous to the generating first layer of a finite-dimensional
Carnot group. Moreover, the following proposition holds.

Proposition 1.10 Let G be a scalable group. If G admits a filtration by Carnot sub-
groups then V1(G) generates G as a scalable group. Vice versa, if G is nilpotent,
V1(G) is separable, and Vi(G) generates G as a scalable group, then G admits a
filtration by Carnot subgroups.

We point out that the nilpotency assumption in the previous proposition cannot be
removed, since there exist scalable groups with generating first layer that do not admit
filtrations (see Proposition 5.11). However, not every metric scalable group having
filtrations is nilpotent, as shown in Proposition 5.10. We will discuss this relation in
more detail in Sect. 2.

Relying on the result of Siebert, it is rather straightforward to show that scal-
able groups having Carnot group structure are exactly those scalable groups that are
locally compact and have generating first layer (see Theorem 2.14 and the proof
of Proposition 2.2). Therefore, keeping Proposition 1.10 in mind, our definition for
infinite-dimensional Carnot groups (Definition 1.6) appears in this sense to be a natural
non-locally compact generalization of Carnot groups.

We begin by proving Proposition 1.10 in Sect. 2. The crucial observation is that
any nilpotent group generated by finitely many elements of V| (G) has structure of a
Carnot group. In Sect. 3 we make a closer study of filtration-negligible sets and prove
Proposition 1.9. Section 4 is devoted to the proof of Theorem 1.8 and finally in Sect. 5
we give examples and introduce a class of metric scalable groups that admit filtrations
by Carnot subgroups.

2 Carnot Groups Generated

The aim of this section is to prove the following proposition, which easily implies
Proposition 1.10.

Proposition 2.1 Let G be a scalable group. The following are equivalent:

(1) G admits a filtration by Carnot subgroups;
(1) there exists a sequence (an), < V1(G) suchthat{a,},cN generates G as a scalable
group and the group generated by {ay, . .., an} is nilpotent for every m € N.

The challenging part is to prove that (ii) implies (i). In the core of the argument
there is the following result, which we state as a proposition.

Proposition 2.2 Let (G, 8) be a scalable group that is generated by xi,...,x, €
Vi(G), with r € N. If G is nilpotent, then it has structure of a Carnot group.

We give now a proof of Proposition 2.1 using Proposition 2.2 and devote the rest
of the section for the proof of Proposition 2.2.
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Proof of Proposition 2.1 Assume first that (N, ), is a filtration by Carnot subgroups of
G and denote by n,, the corresponding Lie algebras. Since the groups (N,,),, are Lie
subgroups of each others, we may define inductively a basis {ey, ..., e;,} for V| (n,,)
as an extension of the basis for Vj(n,_1). By Chow—Rashevskii theorem, the set
{exp(er), ..., exp(e;,)} generates N, as a scalable group, and since U, N, is dense
in G we may take (exp(e,)), as the desired sequence.

Next, let (a,)nen € V1(G) be the sequence given by (ii). This sequence generates
a dense subgroup of G, and choosing N,, to be the scalable group generated by
{ay, ..., ay} gives G afiltration by Carnot groups by Proposition 2.2. O

We begin by fixing the notation in Sect. 2.1. Analogously to Definition 1.1, one
can consider Q-scalable groups for which the dilation automorphism is defined on the
rationals: §: Q x G — G. In Sect. 2.2 we prove that if G is a nilpotent (Q-scalable
group of step s that is generated by finitely many elements, then G**) has structure of
finite-dimensional Q-vector space. Here G is the last element of the lower central
series of the nilpotent group G. Some of the simple commutator identities that we use
are proved in Appendix A.

In Sect. 2.3 we use the result of Sect. 2.2 to show that under the assumption that
G is a nilpotent scalable group generated by finitely many elements, the last layer
G is a real finite-dimensional topological vector space, and in particular it is locally
compact. Consequently, see Theorem 2.11, also G is locally compact. The proof of
Proposition 2.2 is concluded by the result of Siebert (Theorem 2.14), which says that
any connected, locally compact, contractible group is a positively gradable Lie group.
Namely, we find a gradation €, . , V; of the Lie algebra Lie(G) such that V; generates
Lie(G), and hence €p,_ V; is a stratification of G.

2.1 Notation
For a group G and elements g, 1 € G we define the group commutator by
(g, hl:=ghg'h~".

The elements of lower central series are defined by G() = G and G% is the group
generated by [G, G*~1]. We say that G is nilpotent of step s if GG = {e} but
G # {e}. Notice that in this case G* is an abelian subgroup of G. We denote by
Z(G) the center of G.

We follow the terminology of [7] and define recursively commutators of weight k for
k € N in the variables x1, x2, ... as formal bracket expressions. The letters x1, x3 ...
are commutators of length one; inductively, if ¢|, ¢, are commutators of weight k|
and k», then [cq, 2] is a commutator of weight k| + k. We also call the commutator
of the form [x1, [x2, ..., [xk—1, Xk] .. .]] a simple commutator of x1, ..., xi.

During this section, it is useful to keep in mind the following lemma. We remark that
in [7] the definition of commutator is related to our notation by [a, blkn, = [a b7 1.
However, since in the following lemma the generating set can equivalently be taken
symmetric, it applies in our case without modifications.
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Lemma 2.3 (Lemma 3.6(c) in [7]) Let G be a group and M < G a subset of G. If M
generates G as a group, then G is generated by simple commutators of weight > k
in the elements m*', m € M.

We also write down the definition of vector space to ease the discussion later on.

Definition 2.4 Let K be a field. A K-vector space is an abelian group G equipped with
an operation o0 : K x G — G satisfying
@) olg.a(p.g) =0(gp. ),
(i) o(q.8)o(p,g) =0(q + p. g,
(i) o(l,8) =g,
(iv) o(q,8)0(q.h) =0o(q,gh),
forallg, p € Kand g, h € G. We denote the map o (¢, -) by 0.

2.2 (Q-Scalable Groups

In this section, G will always denote a nilpotent Q-scalable group of step s with
dilations §;, generated by x1, ..., x, € Vi(G). We will show that the last element G
of the lower central series admits a structure of finite-dimensional Q-vector space.
Lemma2.5 Letm € Nand y € G® be a simple commutator of k elements of Vi(G)
forsomek € {1,...,s}. Then §,,(y) = hy’"k for some h € G*FD,

Proof The proof is by induction on k. If k = 1, then §,,(y) = y” since t — & (y) is
a one-parameter subgroup. Assume that the claim holds for k — 1 and let y € G®.
Now y = [x, w], where x € V|(G) and w € G%*Disa simple commutator of k — 1
elements of V;(G). Hence

1

S (¥) = [8m (), 8 ()] = [x™, zw™ 1,

where z € G, By Lemma A.1 and Corollary A.3, we get
Sn(y) = Ml 2™, w1 = L™ zlholx, wl™™ = hlx, w]™

where h = h[x™, z]h, € G*D, O

Lemma 2.6 The abelian group G is a Q-vector space with the scalar multiplication
o (Z)::Snjl(z"’"kl). Moreover, if z = [x,w] € G with x € Vi(G) and w €
GUD, then o4(z) = [84(x), wl.

Proof If the step s = 1, the group G) = G and the Q-vector space structure is
given by the dilation automorphisms §: Q x G — G, as the maps ¢t — §,(x;) are
one-parameter subgroups.

For step s > 2, letfirstz € G ) be a simple commutator of s elements of V| (G).
In particular, z = [x, w], where x € V{(G) and w € GY Disa simple commutator
of s — 1 elements of V{(G). Define o: Q x G®) — G for simple commutators by

Uq([xa w]) = [(Sq (x)s w]
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If z is a product of simple commutators z1, ..., Zx € GY, we set

0g(z1 - 2k) = 04(21) -+ - 04 (2k).

By Lemma 2.3, this is enough to define the map o for all z € G,
We show next that

s—1

on(z) =8, " ),

which proves that the map is well defined. Let first z = [x, w], where x € V|(G) and
w € G¥~D is a simple commutator of s — 1 elements of V;(G) and ¢ = o € Qy,
n,m € N. Lemma 2.5 gives us that

am(aq ([x, w])) = [Sm(an/m(x))y Sm(w)] = [x", hwms_l] =[x", ™ ],

where h € G C Z(G). Since [x, w] € Z(G) as well, we get by iterating Corol-
lary A.2 that

s—1

Sm(0g([x, w])) = [x, w]rm' T = gm

If g € Q_, we replace x by x~! in the above calculation as d_4(x) =y (x~ 1) and
use Lemma A.4, which gives

! wl =[x, wl ™,

since now [x 1, [w, x]] = eg.
IfzeG®isa product of simple commutators zy, ..., 2x € G,

Sm(aq (z1+--z1) = (Sm(Gq(Zl)) T am(aq (zk))

s—1 s—1

___nm nm’*
f— Zl .« o Zk

s—1
= (- z)™
— an“]

since z; € Z(G) forall i.

Finally, let z = [x, w] be such that x € V1(G) and w is an arbitrary element of
G©~D . Then, by Lemma 2.3 there exist simple commutators vy, . . ., v; of length s — 1
such that w = vy - - - v;. By Corollary A.2,

og([x, vi---vul) = og([x, vi]- - [x, v]) = og([x, vi]) - - - o ([x, vi])
= [84(x), v1]---[84(x), v] = [84(x), v1 - --v].
It remains to check that the map o: Q x G® — G satisfies the conditions
(1)—(iv) in the Definition 2.4. Condition (iv) is true by construction. The conditions (i)

and (iii) follow from the fact that §: (Q*, -) — Aut(G) is a group homomorphism:
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Syp =84 08, and & =id,
SO

Oq (Gp([x7 wl)) = [5q ° 8p(x)7 w] = [aqp(x)7 w] = qu([x7 w])

and
o1([x, w]) = [61(x), w] = [x, w].

Condition (ii) holds by Corollary A.2 and because ¢t — §;(x) iS a one-parameter
subgroup for all x € V{(G), namely

og+p([x, w]) = [8g+4p(x), w] = [85(x)8p(x), w]
= [34(x), w][dp(x), w] = o4 ([x, who,([x, w]).

Hence the map o defines a Q-vector space structure on G, O

Lemma 2.7 The group G equipped with the Q-vector space structure of Lemma 2.6
is finite dimensional.

Proof The proofisby inductiononthesteps.Ifsteps = 1, G = V| (G) is commutative
and the set {x1, ..., x,} is a basis for V] (G). Suppose that the claim holds for any Q-
scalable group of step s — 1. Let K:=G /G and define

§:Qx K — K, 8,(8G“):=5,(8)G".

This map is well defined since §(G*)) = G. Hence the group K is a Q-scalable
group of step s — 1 and it is generated by {x;G®, ..., x,G®}. Notice that

xGY, yG9lk =[x, y1cGY.

Let6: Q x K — K be the map from Lemma 2.6, which makes K~ a Q-vector
space. By induction hypothesis, there exists abasis {k1, ..., k;} of K¢~V Letw: G —
K be the projection and choose u; € 7 ki) € GYD forall 1 <i < 1. We show
that the set {[x;,u;] : 1 <i <r,1 < j <[} spans G, Since G commutes,
it is enough to show that {[x;, u;]} spans all the elements of the form [x, u], where
x e Vi(G)andu € G6—D,

Fixz = [x,u] € G® suchthatx € V;(G)andu € G(‘V’l).Thereexistql, ...,ql €
Q,q;i = :Ti,-’ such that

- Sn_nl (0 Gy Sn_u] (4, Gyum ™

s=2

s—2
=8 @ ) ™ G

mj
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Hence there exists an element 47 € G € Z(G) such that u = vh. Therefore

[x, u] =[x, vh] =[x, v]

nimy -2

N AL SO e YL

5—2 972
=[x, 8, @™ O] D 8 )™ )

ni 1

s—=2 s
= 8”—111([)(7’"]’”1 my ])8,/,_1]1 ([xm’,u;l m; ])
= 8, (L, ”1]'l‘mi_l) . 5;1,1([16, ul]”/mf_])

= 0g, ([x, u1]) - - - o, ([x, ur1),

where we used Corollaries A.2 and A.3. Since x € V|(G), there exist ¢ € Q and
i €{1,...,r}suchthat x = §,(x;). Thus, by the second part of Lemma 2.6,

[x,u] = qu([(sq(xi)a upl) - ’0q1([8q(xi)a url)
= [Sqlq(xi)a ur]--- [(Sq[q(xi)a up]
= 0giq([xi, url) - - - 0g,q ([xi, ur]).

2.3 Proof of Proposition 2.2

Our first task is to prove that G is locally compact. To show this, we consider the
Q-scalable subgroup G of G that by definition is generated as a group by {5;(x;) :

te Q1 =<i=<rj=Vg Leto: Q x G((Qf) — Gg) be the continuous map from
Lemma 2.7 which makes GQ a k-dimensional Q-vector space for some k € N. We use

the following facts about topological groups to show that G*) is a finite-dimensional
real topological vector space.

Theorem 2.8 (Theorem 1.22 in [17]) A Hausdorff topological vector space is locally
compact if and only if it is finite dimensional.

Lemma 2.9 Every locally compact subgroup of a topological group is closed.

Proof This proof is adapted from a Mathematics Stack Exchange post by Eric Wofsey
[6]. Let H be a topological group and let K be a locally compact subgroup of H. Then
K is also a subgroup of H, and K is dense in K. We claim that every locally compact
dense subset of a Hausdorff space is open. Indeed, let S be a locally compact dense
subset of a Hausdorff space X and take x € S. Let also U be open in S such that
x€eU,U C S,and U is compact. Take then anopenset V C X suchthat VNS = U
Since X is Hausdorff, U is closed in X and therefore V\U is open in X. But

V\U)NS =V NS\U =U\U =9,
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and hence V\ﬁ = () as S is dense in X. We conclude that V C §, which proves the
claim.

Hence, by the previous claim K is open in K. Recall that every open subgroup of
a topological group is closed since the complement K¢ of an open subgroup K is the
union of open sets; K¢ = Uycgex K. Hence K is closed in K and therefore also in
H. O

Lemma2.10 G equals to Gg) and it is a k-dimensional real topological vector
space.

Proof Let {vy, ..., v} be abasis for G(g). We claim that since G(g) C Z(G), we may

assume that each v; is of the form [x;, w;] with x; € Vg and w; € G(g_l). Indeed,

recall that by Lemma 2.3 any element of G(S) is a product of simple commutators of
elements of Vg of weight s, which proves the claim. Let

W={[6, (x1), wi] - - - [84 (xk), wil |1 € R},

which is a group by Corollary A.2 and since ¢ + §;(x;) is a one-parameter subgroup

foreachi € {1, ..., k}. Now G(g) C W by definitionof o and W C G(g) by continuity
of dilations. We define6: R x W — W by

03 ([81 (x1), wil -+ - [84 (k) wi]) = [ary (1), wil -+ - [Sngy (xk), wic].

This map is continuous and it defines an R-vector space structure on W: since &
is a continuous extension of o, it is easy to show that ¢ fulfills the conditions in
Definition 2.4. Hence W is a k-dimensional real topological vector space. Therefore,

by Theorem 2.8 and Lemma 2.9, W is closed and so W = Gg). We conclude the proof

by noting that G = G, and hence G = G_Q(S) = G, where the last equality
follows form the continuity of the group operation. O

The following statement on topological groups will allow us to conclude that G is
locally compact.

Theorem 2.11 ([14] p. 52) If a topological group G has a closed subgroup H such
that H and the coset-space G/ H are locally compact, then G is locally compact.

Lemma 2.12 Let (G, §) be a nilpotent scalable group that is generated by xy, . .., X, €
G as a scalable group over R. Then G is locally compact.

Proof The proof is again by induction on the step s. If s = 1, the group G is a
real topological vector space with basis {xy, ..., x,} and hence locally compact by
Theorem 2.8. Assume that the claim holds for step s — 1 and consider K:=G /G,
which is generated by x;G®, ..., x,G®) with dilations 8, (xG®)):=8,(x)G*). Now
K is indeed an R-scalable topological group, since G*) is a closed normal subgroup
of G by Lemma 2.10. Hence K is locally compact by the induction hypothesis, and by
Theorem 2.8 the group G'*) is locally compact as well. Finally Theorem 2.11 proves
the claim. O
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To prove Proposition 2.2, we use the result of Siebert below.

Definition 2.13 Let G be a topological group. A continuous automorphism ¢ of G is
said to be contractive if lim, . ¢"(x) = eg for all x € G. A group that admits a
contractive continuous automorphism is called contractible.

Theorem 2.14 (Corollary 2.4 in [19]) A topological group G is a positively gradable
Lie group if and only if it is connected, locally compact and contractible. In particular,
if ¢ € Aut(G) is contractive, then the gradation @,_, V; given by ¢ is such that

{X €eLie(G) | (¢ —aid)X =0} C V_jn|q

Proof of Proposition 2.2 We proved in Lemma 2.12 that the group G is locally compact.
It is also connected, since the map y,: [0, 1] — G, y(t) = ;(x) is a continuous
path between eg and x for every x € G. Additionally, the group G is contractible as
the automorphisms &, are contractive for all # € (0, 1); for a fixed ¢ € (0, 1),

lim &/ (x) = lim 8 (x) = 8p(x) = eg

n—0o0 n—o0
for all x € G. Hence by Theorem 2.14 the group G is a Lie group and each §;,
t € (0, 1), defines a positive gradation for Lie(G). We claim that, in order to prove
that G admits a structure of Carnot group, it is enough to find a gradation of Lie(G)
such that V; generates the whole of Lie(G). Indeed, a stratification of a Lie algebra
Lie(G) is equivalent to a positive gradation whose degree-one layer generates Lie(G)

as a Lie algebra.
Let us consider the gradation given by §; /.. By Theorem 2.14,

1
=X € Lie(G) | (dél/e - —id) X = 0} C Vomn/e = V1.
e

Let x € {x1,...,x,}. Since the map ¢t +— §;(x), t € R, is now a one-parameter
subgroup of a Lie group, there exists X € Lie(G) such that

8 (x) = exp(tX)

for all + € R. Additionally, on the one hand, since exp: Lie(G) — G is a global
diffeomorphism,

log(8;(x)) = 1 X.
On the other hand
log(8(x)) = log(3:(exp(X))) = log(exp(dd;(X))) = dd;(X).
Hence

1
ddy/.(X) = EX
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and X € Vi. Therefore log(x;) € Vi for all i € {I,...,r}. Notice that, for any
Y € Lie(G), we have forsome / € Nand i; € {1, ..., r} that

exp(¥Y) = &, (xiy) - - - 8, (xi)) = exp(r1log(x;,)) - - - exp(#y log(x;)).

Hence {log(xy),...,log(x,)} generates Lie(G) as a Lie algebra by the Baker—
Campbell-Hausdorff formula and V| = span(log(xy), ..., log(x;)). Thus the gra-
dation given by 81, is a stratification and G has structure of a Carnot group.

We still need to verify that the one-parameter family (§;);cr of Lie group automor-
phisms are the Carnot group dilations given by the stratification. The Carnot group
dilation of factor ¢ # 0 is by definition the unique map ¢; € Aut(G) such that

dg(X) =t*X forall X € Vj, (2.15)

and d¢g is the zero map. Obviously ddg = 0, so consider the case ¢ # (. Recall that
each Vj is spanned by simple commutators of log(x;), i € {1, ..., r} that span the
first layer. Since dd; is a Lie algebra homomorphism, we get for these elements that

dd; ([log(xiy), - - ., [log(xi,), log(xi)11)
= [d8, (log(x;,)). . . .. [d8; (log(x;,)). A8 (log(x;,))]]
= [tlog(x;). . ... [tlog(xi,). t log(x;))]]
= t*[log(x;y). . ... [log(xi,). log(x;)]].

By linearity of d§; we conclude that the maps d§; satisfy condition (2.15). Hence the
scalable group (G, ) is a Carnot group and the dilations §;, ¢ € R, are the unique
Carnot group dilations given by the stratification. O

It would be interesting to find geometric conditions that allow us to conclude that
V1(G) generates G. Indeed, in the case of simply connected nilpotent Lie groups
admitting dilations, geodicity implies that the first layer generates the entire group
since rectifiable curves can be approximated by horizontal line segments.

3 Negligible Sets of Metric Scalable Groups

In this section (G, d, §) denotes a metric scalable group (according to Definition 1.3).
We begin by giving some auxiliary lemmas and then prove Proposition 1.9, which
states that filtration-negligible sets always have empty interior. After that we introduce
another notion of null-sets following [1] and prove that it agrees with the definition of
filtration-negligible sets. This result is formulated in Theorem 3.6.

3.1 Elementary Properties of Metric Scalable Groups

Lemma 3.1 Foreachv € Vi(G), v # e, themapt > &;(v) is a homothetic embedding
from R to G.
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Proof. Let ¢ = d(0, 61(v)) > 0. We claim that d(6 (v), 8g(v)) = cla — B|. Indeed,
as §;(v) is a one parameter subgroup, we get by left-invariance that

d(84(v),8p(v)) =d(0,8pa(v)) = | —ald(0,v) = c[B — .
m

Lemma3.2 Let K C G be a totally bounded set and € > 0. There exists 6 > 0 so that
d(hk,k) <e, VYhe B(0,68),keK.

Proof As K is totally bounded, there is a finite number of points {y;, ..., y,} € G so
that K C U’}:I B(yj, €/4). Choose § small enough so that for any 2 € B(0, §), we
have max|<j<,d(y;, hy;) < €/4. Now let k € K and y; be so that d(k, y;) < €/4.
Then for any & € B(0, §), we get

d(hk, k) < d(hk, hy;) +d(hyi, yi) +d(yi, k) = 2d(yi, k) +d(hyi, yi) < €,

where we used the left-invariance of the metric. O

Lemma3.3 Let G be a complete metric scalable group. For every i € N, let ; :
R — G be continuous such that ; (0) = eg. Then for every non-empty open set U
containing eg there exists a sequence of positive numbers a1, &2, ... > 0 so that the
map

¢:[]10.ci1 > G

i=1

(1,12, . .) > - (02) P (11)
is well defined and has range in U.

Proof We may assume that U contains the unit ball at eg. Note that for each k €
N, K; = ¢(1‘[§:1[0, a;] x (0,0,...)) is a compact set in G. We can construct «;
recursively. First choose o1 > 0 small enough so that K; C B(eg, 1/2). Now having
chosen «;, we choose «;4+1 > 0 so that

sup sup d(g, Yip1()g) <277,
geK; te[0,041]

This is possible by Lemma 3.2 and the fact that v/; 11 (0) = e is continuous at 0. Then
each sequence defining a ¢ (¢1, 2, . . .) is Cauchy and so the limit exists. The fact that
the image is in U also follows immediately. O

Here, ¥; can be anything, but in the application of Lemma 3.3, we will take each
Y (¢) to be exp(t log(v;)) for some v; € V1(G).
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3.2 Non-negligibility of Open Sets: Proof of Proposition 1.9

Let (Ny;)men be a filtration of G by Carnot groups. Assume for contradiction that an
(Nm)m-negligible set 2 contains an open non-empty set U.

For every m € N, choose {vg, +1,..., Vk,} C Vi(G) sothat {vy, ..., vk, } gener-
ate V,, as abasis. Let {; : R — G be ¥;(¢) := exp(t log(v;)). With the above choice
(Zf U, let (o) and ¢ be as in Lemma 3.3. Notice that the maps qgm: Rkm — N,
Om(t1, 1, .o, t,) = Yk, (t,) - - - Y2 (82) Y1 (#1), are diffeomorphisms.

Let then

¢m :=¢m |1—[{<21 [0,;] .

Let & be the measure on G that is the pushforward via ¢ of the probability measure
on ]_[loi1 [0, «;] that is the product of the rescaled probability Lebesgue measure on
each of the [0, «;].

Since ¢ has image contained in U, u(U) = 1 and hence n(2) = 1. However,
we shall show that u(€2) = 0, which will be our contradiction. Since the set €2 is
(Nm)m-negligible, then Q2 = U, N2, for some €2, such that for each m,

voly, (N N gQm) =0, Vg eG. (3.4)

Itis enough to show that . (£2,,) = 0 for any arbitrary m. For doing so, fixm € Nand let
v1 and vy denote the product probability measures (again with respect to the rescaled
Lebsgue probability measures) on C; = ]_[fil [0, ¢;] and C; = ]—[?ika [0, o1,
respectively. Notice that (¢, )#(v1) is a smooth measure on some open set of N, and
hence it is absolutely continuous with respect to voly,, . In conjunction with (3.4), we
get for any ty € C»,

/CX¢1(Qm)(t1,t2)dv1(t1)=/c X2 (@0, t2) P (t1)) dvi(tr)
1 1

:fc g 0.1, (B1) dV1(01)
1

=v1(¢,, (90, t2) ' Q)
(dm)#(W1) (N N @ (0, t2) ™ Q)
voly, (N, N (0, t2)71Q,,) = 0.

IA

Thus, [L(Qm) = fCZ fcl X¢_](Qm) dUl dl)z =0. |

Remark 3.5 Note that the statement of Proposition 1.9 makes sense for scalable groups
without any metric. Indeed, the notion of filtrations (and thus also negligibility) only
relies on the topology. Thus, it may be possible that the result is true for all scalable
groups although we have not verified this.

In the rest of this section we make a closer study of filtration-negligible sets of
metric scalable groups. Below we define an exceptional class of null sets analogously
to [1] and prove that it is equivalent to our notion of filtration-negligible sets.
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3.3 The Exceptional Class U4

Let G be a scalable group with identity element denoted by eg and let B(G) be the
Borel sets of G. For every a € V1(G), with a # eg set

U(a) :={A e B(G) : Vg € G,|AN (g -Ra)| =0},

where we denote by Ra the image of the curve t € R +— &;a and by | - | the 1-
dimensional Lebesgue measure on the curve. In other words,

[AN(g-Ra)|=|{t e R: gba € A}|.
For every countable set I and {a, },c; C V1(G)\{eg}, define
U{antn) :={A € B(G) : A =U,ec1Ap, Ay € U(ay)} .

Finally, set/ to be the intersection of all ¢/ ({a,, },,) among all dense sequences {a,}, <
Vi(G)\leg}-

Recall a class of sets F is hereditary if A C B and B € F implies that A € F.
The classes U (a), U({a, },), and U are o-additive, hereditary, and do not contain any
open non-empty set (see the theorem below). Moreover, we have the property:

{a,} € {an) = U{a,h) S U{an)).

Theorem 3.6 Let G be a metric scalable group and let {a,,} C V1(G)\{eg} be a dense
sequence such that the group N, generated by {ay, ..., a,,} is nilpotent for allm € N.
Then a set 2 C G is in the class U({ay}) if and only if it is (Ny,)men -negligible.

Note that by Proposition 2.2, each N, in the theorem above is a Carnot group and the
statement makes sense. The proof of the theorem will be a straightforward consequence
of Proposition 3.12. The proof of Proposition 3.12 needs some preparation, and we
postpone it to the end of this section.

Lemma3.7 Let A C G be a bounded Borel set and choose a v € V{(G). Then the
function

fa(x) =1AN (x - Ro)|

is Borel.

Proof Let R > 0 be arbitrary and let A denote the set of all A € B(0, R) that satisfy
the conclusion. We will prove that .4 contains the Borel sets of B(0, R). We first prove
that the open sets in B(0, R) are in A. Indeed, let A be open and ¢ € R. We will show
A = f71((t, 00)) is open.

As f4 is nonnegative, we may suppose without loss of generality that + > 0.
Let g € fA_l((t, oo)) and § = fa(g) —t > 0. Let E = {s € R : gé;(v) € A},
which is a bounded set by boundedness of A and Lemma 3.1. For each s € E define
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d(s) = d(gds(v), A°), a positive continuous function on E. We can choose € > 0
small enough so that

E' ={s eR:d(gév)) > €},

satisfies |E'| > fa(g) — %

Note that E’ is totally bounded. By Lemma 3.1, the set {g8s(v) : s € E’} is the
isometric image of the totally bounded set E” and so it also is totally bounded. Thus
by Lemma 3.2, there exists 79 > 0 so that

sup  sup d(hgds(v), gd5(v)) < €.
heB(0,n9) seE’

Since G is topological, there exists some n > 0 small enough so that B(g,n) C
B(0, no)g. This then gives that

sup sup d(hds(v), gés(v)) < €.
heB(g,n) s€E’

This shows that #8;(v) € A when h € B(g,n) ands € E" and so

5
fah) z |E'| > fa(g) — 5> h

which proves B(g, n) C fA_1 ((t, 00)) and so fA_1 ((t, 00)) is open.

We now show that A is a monotone class of sets, which will prove that A contains all
Borelsets. Let { E; } be anincreasing sequencein Aand E = | J; E;. Then EN(x-Rv) =
U; (EiN(x-Rv)), which is also an increasing family and so by monotone convergence
theorem we get

fex) = lim fg; (x).

Thus, fE, the increasing pointwise limit of f;, mustbe Borel andso E € A. Similarly,
let {E;} be adecreasing sequencein.Aandlet E = (), E;. Then EN(x-Rv) = [);(E;N
(x - Rv)), which is another decreasing sequence. As E| is bounded, f£, (x) < oo and
so by dominated convergence theorem we conclude fg(x) = lim; o fE; (x). Thus,
E € A, which proves the monotonicity property of A. O

Lemma3.8 Let A C G be any Borel set and v € V1(G). Then the set
{geA:|AN(g-Rv)| >0}

is Borel.

Proof Let A, = AN B(0, n). By monotone convergence theorem, the set in question

is equal to 2 o{g € Ay 1 [Ax N (g-Rv)| > 0} = UsZo(f; ' (0, 00)) N A,), which,
by the previous lemma, is a countable union of Borel sets. O
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3.4 Null Decomposition

Let G be a Carnot group with dim V; = n and suppose G is homeomorphic to R™.
We let X1, ..., X, be the vector fields in R that are given by left translation of a
basis in V.

Lemma 3.9 Let M be an analytic manifold in R™ of dimension less than m. Then for
volys-almost every p € M, there exists an open neighborhood U € M of p and an
indexi € {1, ...,n} for which X;(q) ¢ T;M forany q € U.

Proof Let k = dimM < m. Foreachi € {l,...,n},let A; = {p e M : X;(p) €
T, M}, which are closed subsets of M. We claim that A = ("); A; has measure zero.

Suppose not. Let f : U — V be the inverse of an analytic chart map where U C R*
and V C M. We pushforward the basis vector fields of R* via f to get vector fields
Y1, ..., Y} that form a basis of TV. As f is analytic, these are analytic vector fields.

Note that A; NV are precisely the points of V for which X; (p) is in the span of the
Y;(p)’s. This is the same as the being in the zero set of the function g; (p) = |X;(p) —
Py (py,..vi(p) Xi (P) |2 where P is the orthogonal projection map onto the span of the
Y;(p)’s. Note that each g; is an analytic function as projection is a combination of
matrix multiplication and inverses. Thus, A is the zero set of the product function g =
g1 - 8k, also an analytic function. Finally, we consider the function go f : U — R,
another analytic function. If A has positive measure, then £~ (A) has positive measure
and so g o f is identically zero [11]. This means A N U = U. By definition of the
A;’s, this means U is an integral manifold. We now derive a contradiction.

This means that 77U contains the vector fields {X;|y}. If vector fields X, Y are
tangent to U, then sois [ X, Y]. As {X;} are tangent to U and generate all of R” under
Lie brackets, this means that 7, U = R forall x € U. However, this is a contradiction
asdimU =k < m.

We have established that A€ is a full measure open set. Let p € A“. Then p € A
for some i. As A{ is open, there then exists an open neighborhood p € U C AY. This
neighborhood satisfies the conclusion of the lemma with X;. O

Given a Borel set A C R andi € {1, ..., n} we define
A ={peA:|AN(p-RX;)| > 0}.

By p - RX;, we mean the 1-dimensional R-flow of the vector field X; that passes
through p € R™. Note that this is an analytic submanifold.

Given a word w written in the alphabet {1, ..., n}, we define A,, = (A,y); where
w = w'i and Ay = A. Note that A, € A,,. Let w denote the word 123 - - - n, the
concatenation of all the letters. Define the word w* to be the k-fold concatenation of
w (so wk is kn letters long).

Lemma3.10 If A C R™ is a measure zero set, then Aym = (.

Proof Suppose otherwise. There then exists a point p € Aym = (Ayy), and so

|[Aw O (p - RXp)| > 0.
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We let H; denote the analytic manifold p - RX,,, which has dimension 1. As A,y C
Aym—1, |Aym— N Hy| > 0.

Now suppose we have a k-dimensional analytic manifold Hy that intersects A, m—«
in a positive measure set (based on the surface area of Hy). Thus, we can find a density
point of A m—x N Hy satisfying the previous lemma, i.e., there exists a density point
p of A m-« N Hy, an open neighborhood U C Hj of p, and anindex i € {1, ..., n}
sothat X; ¢ T, Hy forallg € U.

Since Awm—k - (Awnl—k—l)l...(j+1), by definition of the set (Awnz—k—l)l...(j+1), for
any g € Aym—k N Hy,

[(A ym—rk-1)1... N (g - RX;)| > 0.
Since (A, m-k-1)1...;.  Am—k-1, we getforall ¢ € A, m—x N Hy that
A m—k-1 N (q - RX;)| > [(Aym—k-1)1..i N (g - RX;)| > 0.

Let Hyyq = quu(q -RX;). As X;(q) ¢ T,U, we conclude that Hy4 is a k + 1-
dimensional analytic manifold and | Hi41 N A ym—k-1| > 0.

We repeat until we obtain an m-dimensional analytic manifold for which |H,,, N
Ag| = |Hy, N Al > 0. But since H,, has the same dimension as R™, it follows that
|A| > 0, contradicting our assumption. O

Proposition 3.11 Let A C R™ be a Borel set of zero measure. Then there exists a
decomposition A = C1 U --- U C, into Borel sets

m—1

Ci= U(Awkl---(i—l)\Awkl---i)
k=0

so that for eachi € {1, ..., n},
ICiN(x-RX;))| =0, VxeR"

Proof Let By ={p € Ay : |AyN (p-RX)| = 0}. Then A = B; U A| where A| and
B are both Borel by Lemma 3.8, and so

|[BiN(p-RX1)| =0, Vp e R™.
By induction, we obtain a Borel decomposition
A=B1UBi2UBi3U---UBymty.uey U Ayn = B1U---UBym-1y..(n_1)-
Note that for every By;,
|Byi N(p-RX;))| =0, Vp e R™.

We take C; = Ukm:_()l B, k1...; to finish the proof of the proposition. m

1
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Proposition 3.12 Let H be a subgroup of G with a Carnot structure generated by
a,...,ar € Vi(G) and A C G be Borel. Then voly(H NgA) =0 forall g € G if
andonly if A e U{ay, ..., ar}).

Proof Thebackwards direction is clear by Fubini. We will prove the forwards direction.
Let H be homeomorphic to R™. We will reuse the notation of the previous section
where for each Borel set £ C G and word w, we define E,; = {g € Ey : |[Ey N (g -
Ra;)| > 0}. Lemma 3.8 yields that these are Borel sets whenever E is. By construction,
Eyi € U(ai).

We claim that A = C; U - - - U Cy where C; = U];;g) (Ait.i—1n\Ayii..;), from
which the proposition easily follows. To prove the claim, we observe that for any
g € A, we have by assumption that voly (H Ng7'A) = 0. Asey € HN g 'A, by
Proposition 3.11, there exists some i so that

k—1
€H € U <(H Ng " A) it —n)\(H ﬂg_lA)w,«l._.l)

j=0

k—1

—1 1
S (g Apiti-1)\8 ijl...,-).
Jj=0
This means that g € C;. O

4 Differentiability of Lipschitz Maps

We prove now our main result, Theorem 1.8. Notice thatif f: G — H is a Lipschitz
map between metric scalable groups for which Df, exists for some g € G, then it is
Lipschitz as a function from G to H, with the same Lipschitz constant as f.

Lemma4.1 Let f : G — R be Lipschitz and (Ny)men be a filtration of G by Carnot
subgroups. Then there exists an (Ny,),-negligible set Q C G so that if p ¢ Q2 then
for every N, the limit lim; __, ¢ fp,k (u) exists for allu € N, and the resulting map on
N, is a homomorphism.

Proof Fix N, and let A denote the set of points p € G for which the limit
limy 0 fp, 2 (u) does not exist or the limit map is not a homomorphism. We will
show voly, (§A N Ny,) = 0 for all g. This will prove the lemma.

Fixag e Gandlet p € gAN Ny, If Fg(u) := f(g_lu) as a map defined on N,
then gp € Ny, is a nondifferentiability point of F. However, by Pansu’s theorem [15],
F is differentiable almost everywhere with respect to the Haar measure on N,,. Thus,
voly, (§A N Ny,) = 0, which proves the lemma. O

With the previous lemma we get our differentiability result.

Proof of Theorem 1.8 As the theorem is vacuous if G does not admit a filtration by
Carnot subgroups, we may assume that there is a filtration (N,,),,. By the previous
lemma, Df, exists and is a homomorphism when restricted to any N,, for g outside
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of an (N,,;)-negligible set. Take such a g. We first claim that Df, exists on all of G.
Indeed, this follows from the fact that the maps

u = n(f(gd1n(w) — f(8)

are uniformly Lipschitz and converge, by assumption, on the dense subset | J,, Ny,.
As Df, is ahomomorphism when restricted to every N,,, an easy density argument
yields that Df, is also a homomorphism. This proves the theorem. O

5 Examples

In this final section we show that our derivative existence result does not generalize
to general metric scalable groups and provide a constructive way to define infinite-
dimensional Carnot groups. We start by constructing a metric scalable group G that
does not admit filtrations by Carnot groups. We also construct a Lipschitz function
f : G — R? that is nowhere differentiable. We then introduce L”-sums of metric
spaces when the indexing set is an abstract measure space. After that we restrict
the discussion to £,-sequences of topological groups equipped with left-invariant
metrics, and prove that this object is a topological group whenever p € [1, co) (see
Proposition 5.3). Finally, we prove that an £,-sum of Carnot groups is an infinite-
dimensional Carnot group for every p € [1, 00) and give some detailed examples.

5.1 A Nowhere Differentiable Function on a Metric Scalable Group

An example of metric scalable groups not admitting filtrations by Carnot subgroups is
the group (R, +) endowed with the metric d¥ (x, y) = |x — y|¥ and scaling 6, (x) =

A7 x where y = %. One can also construct a Lipschitz function f : G — R? that

is not differentiable anywhere. Indeed, let K C R? be the Koch snowflake built from
an equilateral triangle of sidelength 1. We can first define a map g from ([0, 1], d¥) to
one side of the Koch snowflake so that, for each k € {0, 1, 2, 3}, gl0,17 is equivalent
t0 38[k/4,(k+1)/4] up to postcomposition with an affine isometry.

We now prove nowhere differentiability of g. Recall that the derivative of g at xg
is the pointwise limit of

1/ _
h(y) = gxo+r/7y) — g(xo) 5.1)

r

as r — 0. If g were differentiable, then 4, must converge to a homomorphism R —
R2.

For every n > 0, there exists some k € {0, ...,47" — 1} such that xg resides in
[k47", (k + 1)47"]. Then hz-n|[x—47xy.k+1—47x,] 1S €quivalent to g up to postcompo-
sition by an affine isometry as 3" g|(x4—n_(k+1y4—n] is from self-similarity. Note that the
length 1 interval [k —4"xo, k+ 1 —4"xp] liesin [—1, 1]. As g is not affine, we then get
that &, cannot converge to a homomorphism and so g is not differentiable anywhere.
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To extend g to a nowhere differentiable function f on all of G, one can simply
“wrap” g periodically around K so that f|[, n+1] = fl[n+3,n44] foralln € N.

5.2 LP-and {,-Sums

Let Q2 = (€2, i) be ameasure space, e.g., the natural numbers N with the counting mea-
sure. Fix p € [1, 00). For each w € 2 fix a pointed metric space X, = (X, dy, *w)-
We first define the collection M (L2, (X)) of measurable sequences as the set of those
sequences (xy)peq With x,, € X, such that the function w € Q2 — d(x,, *,) € Ris
measurable. Then we define

LP(Xp)w) = {(Xw)w € M(Q, (Xu)w) : /dw(xw, *0)Pdp(w) < oo} .

and further L” ((Xy)e):=L?P /N with
N:={{(xp)w € M(Q, (Xw)o) : /dw(xw» *w)pd/fb(a)) =0}.

We write LP(2; X) for LP ((Xy)e) if X, = X forall w € Q.
The distance function on L? ((X)e) between (Xy)weq, Vo)weg € L (Xy)w) 1S

1/p
d((xp)we, Yo)wen) = </ dey (X, )’w)pdﬂ(a))) .

Proposition 5.2 The set LP((Xy)w) is naturally a pointed metric space, which is
geodesic if all X, are geodesic.

Proof The fact that d is a metric for L?((X,),) follows from the usual proof of
Minkowski inequality for the norm || (xy)weq |l p:=d((xp)we2, *o)wen)-

Let us then show that L” ((X,),) is geodesic if X, is geodesic for each w € Q. Let
*w)wr Ow)o € LP((Xyp)w). Now for all w € 2 there exists a curve y,,: [0, 1] - X,
taking x,, to y,, such thatd (x,,, y,) = L(¥,). We may assume that y,, are parametrized
by constant speed.

Lety:[0,1] = L?((Xy)w), ¥ () = (Yu(t))w- The curve y is well defined, since
forall ¢t € [0, 1],

d(y(t), (Xw)w)’ = /d()/w(f),xw)pdu(w) < /d(yw,xw)pdll«(w)
=d((Yo)w- (xa))w)p

and so

d(y (), *w)w) <dy (), (Xw)w) +d(X0)w, *o)w)
< d(Vo)w> *w)o) +2d((X0)w, o)ow) < 00.
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Letthen0 =1y < t; < ... < t, = 1 be apartition of [0, 1]. Since y,, are geodesics
with constant speed,

d(Yoti-1), Yo(t:)) = (ti — ti—1)d (Xw, Yo)

forallw € Qandi € {1, ..., n}. Therefore

n

n 1/p
Y Ay @), ym) =)y (/ d (o (ti1), Vw(ti))”du(w))
i=1

i=1

n 1/p
= Z </(ti —ti—1)Pd(xe, yw)pdﬂ(a))>
i=1

= Z(l‘,‘ —ti—1)d((xp)w, ()’a))w)
i=1

=d((*w)w: Vw)w)-

Hence

L(y) = i%f Z d(y(ti-1), y (1) | = d((Xw)w; Yo)o)s
teP

where the infimum is taken over all partitions P of [0, 1]. The proof is complete. O

Notice that if each X, admits a group structure we may define a group operation
for LP((Xy)w) element wise. We focus now on £ ,-sums of groups. For a countable
family {G },en of groups we define £,((G,),) by

£p((Gp)n)i= {(xn)neN $xn € Gy, Y d(xy, en)P <00,
neN

X)n - Odni=XnYn)n-

We write £,(G) for £,((Gp),) if G, = G foralln € N.

Proposition 5.3 Let (G )nen be a sequence of topological groups metrized by left-
invariant metrics and let p € [1, 00). Then £,((Gy)neN) is a topological group.
Proof We first show that the right translations are continuous. Fix (b,), €
£y ((Gp)nen), that is, b, € G, and Z,fo:l |b,|P < o0, where |b,| := d(b,, e) and d
is the distance on G,. Let (a,, j), be a sequence in £, ((G,)neN) converging to some
(an),. Fix some € > 0. We take N large enough so that Z:OZNH |b,|P < €. Then,
being N fixed and being the right translations Rj,, ..., Rp, continuous, we take J
large enough so that forall j > J andalln=1,..., N

d((an,j)na (an)n) < e, (5.4)
d(Rp, (an.j), Rp,(an))’ < €/N. (5.5)
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Notice that consequently

o0

o
> d(an jbu anby)? < Y (d(@n,jbu, an ) + d(@n,j, an) + d(an, anby))”
n=N+1 n=N+1

o0
= > (bl +d(@n ;. an) + |ba))”

n=N+1
[0,
< 22d((@n s @) +2770 S b
n=N+1
S 2[) . 36’

where we used the trick

Y a+b)? < 27 max{a, b}’ <27 (Za” n be’) .

Then for all j > J,

o
d(Rb,), @n. > Riby), (@n)n) =Y d(@n, jbu, anby)?

n=1

N
= (Z d(Ry, @y }), R, (an))”>

n=1

00
+ Z d(an,jbn, anbn)p
n=N+1
< Ne¢/N+2P.3¢ =(1+3-2P)e.

Therefore, the multiplication in £,((G,)neN) is continuous since, if (a, j)n —
(an)n and (b, j)n — (by)n, as j — oo, then using left invariance we have

d((an,j)n(bn,j)ru (an)n(bn)n)
= d((an,j)n (bn,j)n: (an,j)n (bu)n) + d((an,j)n bu)ns (@n)n(bp)n)
=< d((bn,j)n’ (bn)n) + d(R(b,,),, (an,j)n» R(hn),, (an)n) — 0.

We then show that the inversion is also continuous. Let (a,, ;) — (an)n. Take N

large so that ZZO:NH |a,|P < €. Since the inversions in G1, . .., Gy are continuous,
there exists J such that forall j > Jandalln =1,..., N,
d((an,j)n’ (an)n) < €, (5.6)
-1 -1
d(an’j,an Y < ¢€/N. (5.7
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Then for all j > J,

N 00
d((@, n. (ay ) =Y di@, b a, VP + Y danjay s e)
n=1 n=N+1

o0
Ne/N+ Y (d(anjay" . an ;) +d(an ;. an) +d(ay. e))"

=
n=N+1
o0
< €+ 27d((an n» (@) + 2771 " al”
n=N+1
< (1+3-2P)e.

Remark 5.8 In a similar manner as for Proposition 5.3, one can also show that

0 (Goneri={ (5a)n € L((Galuer) : lim_ d(xn ec,) =0
is a topological group.

5.3 Examples of Metric Scalable Groups

Using the previous subsection, we can build examples of metric scalable groups start-
ing with arbitrary sequences of Carnot groups equipped with homogeneous distances.

Proposition 5.9 Let (G,)neN be a sequence of metric scalable groups and let p €
[1, 00). Then £ ,((Gp)neN) is ametric scalable group. Moreover, if each G, is complete
and admits a filtration by Carnot subgroups, then £ ,((Gp)neN) is complete and admits
a filtration by Carnot subgroups.

Proof We define the scalingmap §: R x £,((G,)n) — £,((G,),) element wise using
the scalings of each scalable group G,. By the previous proposition, £,((G,),) is a
topological group. Hence it remains to see that § satisfies the conditions of a scalable
group as in Definition 1.1 and that the metric is homogeneous with respect to §,
which is straightforward to check. The proof for the fact that £, ((G,),en) is complete
assuming that each G, is complete, is analogous to the proof of completeness of the
classical £, spaces. Assume then that (N}, ), is a filtration by Carnot subgroups for
each G,,. Then letting

Ny =NLx N2 s x N x fe)l
for each m € N defines a filtration by Carnot subgroups for £,((G,)xen). Indeed,

each N, is isomorphic to a finite product of Carnot groups, and the union U,, Ny, is
dense in £, ((Gn)nen) as the set of finite sequences is dense in £, ((G,)nen). O
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Proposition 5.9 gives us a simple way to construct many different noncommuta-
tive and infinite-dimensional metric scalable groups that admit filtrations by Carnot
subgroups. Indeed, we may consider examples where each G, is a Carnot group, like
G, = H' or G, = H", where H" is the n-th Heisenberg group equipped with a
homogeneous distance. We stress that the last result does not require any bound on
the nilpotency step of (G,,),en, in case they are Carnot groups. In fact, an interesting
example is when G, is the free Carnot group of step n and rank 2, which we denote
by [F» ,,. We state this example as a result.

Proposition 5.10 Even though £2((F2 ,)n) is not nilpotent, it is a metric scalable
group that is complete and admits a filtration by Carnot groups. Moreover, the subset
Vi(€2((F2,)n)) generates £2((F2 ,)n) and is separable.

Proof The space €2((IF2,),) is a metric scalable group by Proposition 5.9 and the
filtration is simply given by

Nm :FZ,I X oo X]Fz,m.

The first layer Vi (€2((F2,,),)) is given by £2((V1(F2,,)),) as we defined the dila-
tion map on £2((F2,),) component wise. Indeed, a sequence (x,), € €2((F2.,)x)
is a one-parameter subgroup if and only if each x, € [F;, is a one-parameter
subgroup. The fact that V;(€2((F2,,),)) generates follows from Proposition 1.10.
Moreover, V1 (€2((F2.,),)) = £2((V1(IF2,,))n) is separable since now each Vi (IF2 ;) is
separable. O

The property of having a filtration by Carnot subgroups is not, however, stable
under taking subgroups, as shown by the following example in £2((IF2 ,),). It also
proves that the assumption of nilpotency cannot be removed in Proposition 1.10.

Proposition 5.11 There exists a scalable subgroup of £2((F2.,,),) that is generated by
its first layer but which does not admit a filtration by Carnot subgroups.

Proof Denote for every n € N by X}”) , X;") the two generators of [ ,. Let

x = (%X i"))n and y = (%Xg’))n and consider the (non-nilpotent) scalable group
H generated by x and y. Now both x, y € V1(H) but H does not admit a filtration by
Carnot groups. Indeed, any scalable group having Carnot group structure is generated
by its first layer, but the only nilpotent subgroups of H generated by one-parameter
subgroups are one-dimensional. O

If H' is the first Heisenberg group, then by Proposition 5.9, for all p € [1, co), the
space £, (H') is a metric scalable group admitting filtration by Carnot subgroups. The
space £, (H') has the extra property of being a Banach Lie group. Indeed, it can be
modelled on £>(R?) + £ (R), following [13]. However, we shall show that there are
metric scalable groups, e.g. £1 (H!), admitting filtrations by Carnot groups that are not
Banach manifolds. Hence the notion of metric scalable group strictly extends the one
of Banach homogeneous group as defined in [13] and studied later in [12].

Proposition 5.12 The topological group £1(H") is not a Banach Lie group.
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Proof Suppose by contradiction that £1 (H') is a Banach Lie group and let Z be the
center of H. One sees that

Z = {(exp(; Z;)); : oj € R},

where Z; is the center of the ith Heisenberg Lie algebra. As Z is a closed subgroup of
a Banach Lie group, Z is a Banach Lie group as well. However, recall that the center
of the Heisenberg group is isometric to (R, /dg) and therefore

6(2) = {(ameN Y Vil < oo} = l1p(R).

Hence also €12 (R) has a structure of a Banach Lie group and its Lie algebra is a Banach
space. Since £1,2(R) is a vector space, the exponential map exp: Lie({;,2(R)) —
£1,2(R) is a linear isomorphism. But this is a contradiction as £1,2(R) is not even
locally convex (to be proven) and so not a normed space.

That £; > (R) is not locally convex follows simply from the fact that the convex hull
of any ball is unbounded. Indeed, consider any ball around the origin

BO,r) = {(al,az,...) : Z,/|a,, < r}.

Then x, = (r/2n,r/2n,...,r/2n,0,...) is in the convex hull of B(0, r) (where the
first n coordinates are nonzero), but

d(x,.0) = ronr
A= 5 TV 2

diverges as n — oo. O

Appendix A: Some Useful Commutator Identities
LemmaA.1 Let G be a group and x, vy, z € G. Then

[xy,zl=Ix, [y, z]lly, zllx, z] and [z,xyl=Iz, x]lz, yllly, z], x]=hlz, x][z, y],

where h is a product of commutators of x, vy, z of weight > 3.
Proof For the first equation,

1 1, .—1

[y, z1[x, 2] = [y, zlxzx 127 = [y, 20, xleyzy Lz tax =27t = ([, 2], x][xy, z].

Since [a, b] = [b, a]™",
[xy, z] = [x, [y, zllly, z]lx, z].
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Using this and the identity [a, b] = [b, al™ !,

[z, xy] = [z, x][z, yIlly, z]. x].

The last equation follows by reordering the terms, which produces some higher order
commutators into /. O

CorollaryA.2 If [y, z] € Z(G), then

[xy,z] =[x, zlly, z] and [z,xy] =z, x][z, y].
Corollary A3 Letn,m € N. Then
[x", y™1 = hlx, y]"",

where h is a product of commutators of x and y of weight > 3.

Proof The proof is by iterating Lemma A.l for nm times and reordering the terms,
which produces some additional higher order commutators into 4. O

LemmaA.4 Let G be a group, x,y € G. Then

ol oyl = Dy, x e, y17h
Proof The statement follows from

1

[x_l, [y, x]] = x_lyxy_ x_]x[y, x]_1 = [x_l, yllx, y].
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A RECTIFTABILITY RESULT FOR FINITE-PERIMETER SETS IN
CARNOT GROUPS

SEBASTIANO DON, ENRICO LE DONNE, TERHI MOISALA, AND DAVIDE VITTONE

ABSTRACT. In the setting of Carnot groups, we are concerned with the rectifiabil-
ity problem for subsets that have finite sub-Riemannian perimeter. We introduce
a new notion of rectifiability that is, possibly, weaker than the one introduced by
Franchi, Serapioni, and Serra Cassano. Namely, we consider subsets I" that, sim-
ilarly to intrinsic Lipschitz graphs, have a cone property: there exists an open
dilation-invariant subset C' whose translations by elements in I" don’t intersect T'.
However, a priori the cone C' may not have any horizontal directions in its interior.
In every Carnot group, we prove that the reduced boundary of every finite-perimeter
subset can be covered by countably many subsets that have such a cone property.
The cones are related to the semigroups generated by the horizontal half-spaces
determined by the normal directions. We further study the case when one can
find horizontal directions in the interior of the cones, in which case we infer that
finite-perimeter subsets are countably rectifiable with respect to intrinsic Lipschitz
graphs. A sufficient condition for this to hold is the existence of a horizontal one-
parameter subgroup that is not an abnormal curve. As an application, we verify
that this property holds in every filiform group, of either first or second kind.

1. INTRODUCTION

The celebrated rectifiability theorem by De Giorgi, see [DG54, DG55], states that
the reduced boundary of a set of finite perimeter in the Euclidean space R is C-
rectifiable, i.e., it can be covered, up to a negligible set with respect to the Hausdorff
measure J#"~1, by a countable union of C'! hypersurfaces. The proof of this theorem
relies on the fact that the blow-up of a set of finite perimeter at a point of its reduced
boundary is a set with constant normal, and each constant-normal set in R™ is a
half-space. The importance of having sufficiently regular sets of finite perimeter is

2010 Mathematics Subject Classification. 53C17, 22E25, 49Q15, 28A75.

Key words and phrases. Sets of finite perimeter, Carnot groups, rectifiability, filiform groups,
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2 SEBASTIANO DON, ENRICO LE DONNE, TERHI MOISALA, AND DAVIDE VITTONE

evident on many classical key problems in Geometric Measure Theory and underlines
the relevance of the notion of rectifiability in this context. A wide impact can be, for
example, detected in developing a sufficiently rich theory for functions of bounded
variation; see e.g. the monographs [Fed69, GMS98, AFP00, Magl2, EG15].

In the more general context of metric measure spaces, the regularity of finite-
perimeter sets and the structure of some suitable notions of their boundaries has
been object of several studies in the last decades. We refer to this task as the rectifi-
ability problem.

In the current paper, we study the rectifiability problem in the setting of Carnot
groups. A Carnot group G of step s € N is a connected and simply connected Lie
group whose Lie algebra g is stratified into s layers, i.e., it is linearly decomposed as
g=01® - Dgs with

01,0) = gisr fori=1,...,s—1, g, #{0} and [g1,0] = {0}.

We refer the reader to [FS82, LD17] for an introduction to Carnot groups. Canon-
ically, every Carnot group has a one-parameter family of dilations that we denote
by {&; : t > 0}. We further fix a homogeneous distance d on G, which is unique
up to biLipschitz equivalence. In this setting the notions of perimeter and constant-
normal set can be naturally defined (see Definitions 2.1 and 2.3). The original result
of De Giorgi has been generalized by Franchi, Serapioni and Serra Cassano first in
Heisenberg groups [FSSCO1] and then in all step-2 Carnot groups [FSSCO03]. The
same result holds in the so-called type x Carnot groups, which are Carnot groups
satisfying a suitable algebraic condition, see [Marl4]|, which generalizes the step-2
condition but may hold in arbitrary step. We also mention the recent [?], where the
authors provide a class of Carnot groups that generalizes the type x class for which
De Giorgi’s rectifiability result holds. These are the only classes of Carnot groups in
which the rectifiability problem has been solved in a satisfactory way, so far.

In general, only few partial results are known. In arbitrary groups, the first del-
icate issue concerns the blow-up analysis of the reduced boundary of a set of finite
perimeter. By [FSSCO01| every tangent set at a point of the reduced boundary is a set
with constant horizontal normal, but this is not enough to prove that the tangent is a
half-space, in general. Indeed, in the Engel group (the simplest Carnot group of step
3) there are examples of sets with constant horizontal normal that are not half-spaces;
see [FSSCO03, Example 3.2]. However, in the paper [AKLDO09], the authors prove that,
among all the possible blow-ups of a set of constant horizontal normal in a Carnot
group, there is always a half-space.

Another issue is to understand what is the correct notion of rectifiable set in Carnot
groups. Namely, at the moment it is not known which kind of rectifiability property
one should expect for finite-perimeter sets in these spaces. It is well-known that in the
Euclidean setting, three equivalent notions of codimension-1 rectifiability are avail-
able: the countable covering family can be composed by C! hypersurfaces, Lipschitz



A RECTIFIABILITY RESULT FOR FINITE-PERIMETER SETS IN CARNOT GROUPS 3

images of sets in R®™! or Lipschitz codimension-1 graphs; see e.g. [Mat75, Mat95]
for an account of rectifiability theory in the Euclidean spaces. Actually, a very nat-
ural notion of rectifiability, via Lipschitz images of open subsets of Euclidean spaces,
was given in the setting of metric spaces already by Federer in [Fed69| (and later by
Ambrosio and Kirchheim in [AK00a]). Unfortunately, this notion does not fit in the
geometric structure of a Carnot group since, according to this definition, already the
Heisenberg group is purely unrectifiable (see [AK00D]).

Nonetheless, a definition of rectifiability using a suitable notion of Lipschitz graphs
or C! hypersurfaces can still be fruitful in the setting of Carnot groups. For this
purpose, Franchi Serapioni and Serra Cassano introduced the notions of intrinsic
Lipschitz graphs (see Definition 1.1) and of intrinsic C! hypersurfaces. We know that
the notion of rectifiability with respect to intrinsic C* hypersurfaces implies the one
with intrinsic Lipschitz graphs; see e.g. [Vit12, Theorem 3.2]. This stronger notion
of rectifiability was used in [FSSCO01, FSSCO03, Mar14]. More precisely, the authors
proved that the reduced boundary of a set of finite perimeter in a type * group G can
be covered, up to a set of % -measure zero, by a countable union of intrinsic C*
hypersurfaces, where @ is the Hausdorff dimension of G.

It is not known whether the possibly weaker notion of rectifiability, obtained by
replacing the intrinsic C' hypersurfaces by intrinsic Lipschitz graphs, leads to an
equivalent definition. In fact, the validity of an intrinsic Rademacher-type theorem
is still an unsolved problem. One of the aim of this paper is to discuss another
form of rectifiability that may be a priori even weaker than the intrinsic Lipschitz
rectifiability.

The notion of intrinsic Lipschitz graph appeared in different equivalent forms in

[FSSC06, FSSC11, FS16] and we briefly recall it here (see also Section 5 for a more
complete discussion) in a way that is suitable for our purposes.

Definition 1.1. Let G be a Carnot group and let W, L C G be homogeneous subgroups
of G such that G =W-L and WNL = {0}. We say that ¥ C G is an (entire) intrinsic
Lipschitz graph if there exists § > 0 such that

(i) for every p € X one has
(1.1) sap- | BBd©,0) =

LeL\{0}

(ii) mw(Z) = W.

The set J e, B(¢, 5d(0,£)) is a homogeneous cone around L of aperture given by
parameter 3, while my is the canonical projection associated with the decomposition
G = W - L. The cones introduced above are not the ones that are often used in the
literature of Carnot groups, but they produce the same notion of intrinsic Lipschitz
graph (see e.g. [DMV19, Remark A.2])
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One of the goals of the current paper is to analyze the geometry of sets that possess
a “cone-behavior” that resembles property (1.1) in the following weaker sense.

Definition 1.2. A non-empty set C' C G is said to be a cone if
0,C' =C, foranyr > 0.

Definition 1.3. Let G be a Carnot group. We say that a set I' C G satisfies an
(outer) cone property if there exists a cone C' C G such that

'npC =10, foreverypel.

A dilation-invariant set with nonempty interior, which turns out to be related with
sets of locally finite perimeter, is the following semigroup. This notion has been
introduced in [BLD13, BLD19] in the study of constant-normal sets in Carnot groups.
(We point out that in [BLD19| the authors are mainly interested in an inner cone
property of sets as opposed to the outer cone property.)

Definition 1.4. Let G be a Carnot group. For any v € g; \ {0}, the semigroup of
horizontal normal v is defined by

S, = S(exp(v*" +Rv)),

where for any A C G, the set S(A) == [J;—, A" is the semigroup generated by A. Here
v+ denotes the orthogonal space to v within g; with respect to some scalar product
that we fixed on g;.

Semigroups with horizontal normal are cones and, by a standard argument of Geo-
metric Control Theory (see [AS13]), they have non-empty interior. It can be also
proved (see Proposition 3.1) that any semigroup of horizontal direction v has v as
constant horizontal normal. We first point out that semigroups of horizontal normal
v are minimal in the following sense: S, is contained in every set with v as constant
horizontal normal and for which the identity element 0 of G has positive density, see
[BLD19, Corollary 2.31 or Theorem 2.37| . This property, together with the dilation-
invariance of such semigroups, allows us to perform a fruitful blow-up procedure and
get our main result; see Theorem 4.6.

Theorem 1.5. Let G be a Carnot group and let E C G be a set of locally finite
perimeter. Then there exists a family {C), : h € N} of open cones in G and a family
{T', : h € N} of subsets of G such that each T'), satisfies the Cy-cone property (as in
Definition 1.3) and
FE =],
heN
where FE denotes the reduced boundary of E.

Notice that the previous result is obtained without requiring any assumption on
the Carnot group G. The first natural question one may ask is when a set satisfying
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a cone property is also an intrinsic Lipschitz graph. We can point out a sufficient
condition. Indeed, since each Cj, in the theorem above comes as a small shrinking
of some semigroup S, it is enough that S, is such that there exists X € g; \ {0}
with exp(X) € int(S,) (see Remark 5.1 for more details). In Section 5 we find
some conditions on the group G that are sufficient to conclude that the reduced
boundary of every set of finite perimeter in G is intrinsically Lipschitz rectifiable
(see Definition 5.2). In particular, we notice that, whenever the group possesses a
non-abnormal horizontal direction (see Definition 5.9), then each set I';, appearing in
Theorem 1.5 can be chosen to be an intrinsic Lipschitz graph (see Proposition 5.3
and Corollary 5.7). The notions of normal and abnormal curve naturally appeared in
Geometric Control Theory (see [Mon02]), and in the study of regularity of geodesics
in sub-Riemannian manifolds (see [Vit14]). In the paper [LDMO*16]|, it is proved
that the one-parameter subgroup generated by X € g; is non-abnormal if and only if

(1.2) span{ad’ (g,) : k=0,...,s — 1} =g,

where the adjoint of X is defined by ad%(Y) := Y and ad% (V) = ad% *([X,Y]), for
every k > 1 and every Y € g. This gives us a purely algebraic sufficient condition on
the group G for the intrinsic Lipschitz rectifiability of reduced boundaries of sets of
finite perimeter.

Theorem 1.6. Let G be a Carnot group and assume there ezxists X € g1 such that
(1.2) holds. Then, the reduced boundary of every set of finite perimeter in G is in-
trinsically Lipschitz rectifiable. In particular, this result can be applied to all filiform
Carnot groups.

For the second part of Theorem 1.6 see Section 6. Among filiform groups, we can
find the Engel group, which is the simplest Carnot group of step 3. We also point out
that possessing a non-abnormal horizontal direction is stable under direct products
and quotients. More precisely, if G; and Gy are two Carnot groups that possess a
non-abnormal horizontal direction, and N is a normal subgroup of G;, then both
G; X Gy and G /N possess a non-abnormal horizontal direction (see Propositions 5.13
and 5.14).

On the negative side, we point out that for example in the free group Fy 3 of rank
2 and step 3, also known as Cartan group, all horizontal directions are abnormal and
exp(f1) Nint(S,) =0, for every v € f; \ {0},
where f; denotes the horizontal layer of the Lie algebra of Fy 3 (see [BLD19)).

As an example of application, we remark that in [DV19], to study some properties
of functions of bounded variation, the authors consider sub-Riemannian structures in
which sets of finite perimeter have reduced boundary that is intrinsically Lipschitz
rectifiable.

The outline of the paper is the following. Section 2 is devoted to the basic notions
and facts related to Carnot groups. Section 3 is devoted to studying properties of
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closed semigroups of horizontal direction that will be crucial for the main theorem.
Section 4 contains the proof of Theorem 1.5. Section 5 contains the definitions of in-
trinsic Lipschitz graphs, intrinsic Lipschitz rectifiability and the proof of Theorem 1.6
together with applications to some classes of Carnot groups. In Section 6 we intro-
duce filiform groups and determine their abnormal lines and their graded Lie algebra
automorphisms.

Acknowledgements. The authors warmly thank C. Bellettini, S. Rigot and the
anonymous referee for precious comments and suggestions.

2. PRELIMINARIES

For an introduction to Carnot groups we refer the reader to [FS82, LD17], while for
a theory of sets of finite perimeter in Carnot groups, we refer to [AKLD09]. In what
follows, let G be a Carnot group of dimension n, let g = g1 ® - - - @ g, be its stratified
Lie algebra and denote by m = dimg; the rank of G. We fix a scalar product (-,-)
on the horizontal layer g; of g and a left-invariant Haar measure p on G. We endow
G with the usual Carnot-Carathéodory metric d and we denote by B, the metric ball
of radius r at the identity element of G.

It is well-known that there exists a family {6, € G® : » > 0} such that § = 0
and, for any r > 0, §, is a graded diagonalizable automorphism of G satisfying the
following properties. For any r,s > 0, §,s = 6, o 5 and, for every z,y € G and r > 0

d(57(1)7 o, (y)) = T‘d(l', y)

Definition 2.1. Let 2 be an open set in G. We say that a measurable set £ C G
has locally finite perimeter in €, if, for every Y € g, there exists a Radon measure,
denoted by Y1g, on Q such that

/ Yodu= —/ ©d(Y1g), for every open set A € Q and every o € C1(A).
ANE A

We say that E has finite perimeter in Q if F has locally finite perimeter in {2 and, for
every basis (X7,...,X,,) of g1, the total variation |D1g|(2) of the measure D1g =
(X11g, ..., Xmlg) is finite.

Definition 2.2. Let E C G be a set with locally finite perimeter in G. We define the
reduced boundary FE of E to be the set of points p € G such that [D1g|(B(p,r)) > 0
for all » > 0 and there exists

DLBE)
I DL B P

with |vg(p)| = 1.

We denote by S(G) the unit sphere of G and by S(g;) the unit sphere in g;.
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Definition 2.3. Let E C G be a set of locally finite perimeter in G and let v € S(g,).
We say that E has v as constant horizontal normal if v1p > 0 in the sense of
distributions and, for every X € v+ :={Y € g;: (v,Y) = 0}, one has X1y = 0.

3. CONES IN CARNOT GROUPS

In this section, we show that semigroups of horizontal normal v represent the “mini-
mal” sets having v as constant horizontal normal (see Proposition 3.1 and Lemma 3.5).
Moreover, by Lemma 3.2, they are attainable sets of halfspaces in g;. By a standard
argument of Geometric Control Theory (see e.g. [AS13, Theorem 8.1]), this implies
that every S, has non-empty interior.

An important result of this section is Proposition 3.7, which proves that the semi-
groups S, are continuous with respect to the horizontal direction v. This fact, resumed
in Remark 3.8, will be used in the proof of Theorem 4.5.

The following proposition has been proven in [BLD19, Proposition 2.29]. We, how-
ever, write its short proof for the sake of completeness.

Proposition 3.1. Let G be a Carnot group, let v € S(g1) and let S, be the semigroup
with normal v. Then S, has v as constant horizontal normal.

Proof. By definition, 1g,.expsx) < lg, for all s > 0 and X € {v} Uvt. Let ¢ €
C(G; [0, +00[) and denote by ®x(p, s) = pexp(sX) the flow of X at time s starting
from point p € G. Then

1
/ 1s, Xpdu = / L, - lim ~ (o(®x (-, 5) — 9) d
G G

s—=0 S

1
—lim 2 < / Ls, expex) 0 i — / lsysodlt> <0
s—0 8§ G G

—/1SVXsoduzo.
G

Hence (X 1g,,-) is a positive linear functional and by Riesz’s Theorem X 1g, is a Radon
measure. Moreover, since for each X € vt also —X € vt, we get that X1g, = 0 for
all X € v*. Consequently, S, has v as constant horizontal normal. O

and therefore

Lemma 3.2. Let G be a Carnot group, T > 0, and let v : [0,T] — G be a horizontal
curve such that v(0) = 0. If (¥(t),v) > 0 for almost every t, then v(T) € S,,.
Proof. Fix T > 0, define X; = v and let X», ..., X,, be such that (X1, Xs,..., X,,) is

an orthonormal basis for g;. We fix T > 0. We can assume without loss of generality
that 4 € L*°([0,T); g1). Let wy,...,u, € L*(]0,T]) be such that

() = > u()Xi(v(1)),

i=1
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for #1-almost every t € [0,T]. Then, by assumption, we know that u,(t) > 0 for

L1-almost every t € [0,T]. Consider piecewise constant sequences (u),..., (u") in
L>([0,T]), with h € N, such that
ul' — in L'([0,T]), as h — oo,

for any i = 1,...,m and such that u/(t) > 0 for #'-almost every t € [0,7] . We
can also assume that sup,ey >orey |[ul]|oe < M, for some M > 0. According to to the
definition of S, and since ul are piecewise constant, the curves defined by

() = STl (HX(h () for Lac. te [0,T],
7"(0) =0,

are such that v"(¢) € S, for any ¢ € [0, T]. Since d(v"(t),0) < Mt for every t € [0,T],
there exists a compact set K C G for which

U "0, 7)) u~([0,T)) € K.

heN
We prove that

lim d(y"(T),(T)) = 0.
—00

It is not restrictive to work in coordinates and compute, for every ¢ € [0, T7,

V' (t) = ()] = /0Z(U?(T)Xi(vh(T))—W(T)Xi(v(T))) dr

< [ Sl 6 ) - Xt dr

t m
+ [ S [ur) = w1 ()
i=1
Notice that, by the choice of u!, the term

on(®) = [ Sl (r) = )] 162 ()

is infinitesimal as h — oo, and that, by the smoothness of Xi,..., X, and letting
C = sup Lip(X;)(K)
i=1,....m

i=1,...,

and recalling the definition of M, we have

t
HA(® =2 (0] < an®) + O [ () = (0]
0
for all ¢ € [0,T]. We are then in a position to apply Gronwall Lemma to get
Y(T) = A(T)| < an(T)eMT,
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and letting h — oo and by the arbitrariness of T', we conclude the proof. O

Before proving Lemma 3.5, we make the following remark.

Remark 3.3. Let G be a Carnot group and let d; and dg be the left- and right-
invariant Carnot-Carathéodory distances on G built with respect to the same scalar
product on g;. Then the inversion is an isometry between (G,d;) and (G,dg). In
particular, for every p € G we have that dp,(0,p) = dp(p~%,0) = dr(p,0) = dg(0,p).

Given p € G and a measurable set F' C G, we define the lower and upper densities
0.(p, F) and 6*(p, F') of F at p letting

(F'0 B(p,r))

FNB
0.(p, F) = lim inf 0" (p, F) = lim sup " 0 B@:1)
r—

w(B(p,7)) r0 p(B(p,7))
The measure theoretic boundary O*F of F is defined by
IF ={peCG:0.p, F)>0and0(p, F) < 1}.
The Lebesgue representative F of F is defined by
(3.1) F:={peG:0.(p,F)=1}.

Notice that, by the Lebesgue’s theorem, we know that F=F up to a set of p-measure
Zero.
The following proposition is proved in [BLD19, Proposition 3.6]

Proposition 3.4. Let FF C G be a set with v as constant horizontal normal. Then
FF =0F = 9°F.
Lemma 3.5 below will be used in the proof of Lemma 4.2.

Lemma 3.5. Let G be a Carnot group, let F' C G be a set with v as constant horizontal
normal and assume that 6*(0, F) > 0. Then 1g, < 1p p-almost everywhere.

Proof. Recall first that every left-invariant Haar measure of a Carnot group is right-
invariant, being Carnot groups nilpotent and therefore unimodular.
Since F has v as constant horizontal normal, by [BLD13, Lemma 3.1] we have that,

1p, <1p forevery p€S,, p-almost everywhere.

If BE(p,r) and BE(p,r) denote, respectively, the metric balls built with respect to
the left-invariant and right-invariant metrics, then for all p € S,

u(F 0 BR0, 7)) "% (F 0 BR(0, 7)) = u(F - pn BR(p, 1))

< u(FnB(p,r)).
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Since 6*(0, F') > 0, we deduce that for all p € S,

. p(F N B(p,r))
3.2 0% (p) == limsup ————— 2~
o HP) = P LB

On the other hand, by Lebesgue Theorem we have that 6%(p) € {0, 1} for pu-almost
every p € G. By (3.2) we then get that u-almost every p € S, is a Lebesgue point for
F| hence for almost every p € S, one also has p € F, as required. O

> 0.

In the following lemma, we denote by R*O(n) the set of n X n matrices A that can
be written as
A= )AB,
for some A € R\ {0} and some B € O(n).

Lemma 3.6. Let n € N. Then the following facts hold.

(i) Let H be a subgroup of GL(n). Then for every p € R™ and every open neigh-
borhood U of p, there exists a neighborhood M C H of the identity matriz such

that
() w

teM
is a neighborhood of p.
(i) For every p € R™\ {0} and every open neighborhood M C R*O(n) of the
identity matriz, the set Mp is an open neighborhood of p.

Proof. (i) Consider r, R € (0,+00) and p € R™ such that B(p,2r) C U and B(p,r) C
B(0, R). We consider in H the distance coming from the usual operator norm. We
define M = B(Id,r/R)™' C H. Then, take any ¢ € M, so that |[(~! —Id| < r/R.
Then we have that for all z € B(0, R)

167 (@) — 2| < ¢ = 1d|| |z] < %R —r

Consequently, by triangle inequality if x € B(p,r), and so also € B(0, R), we have
that
(07N (x) —p| < |07 () — | + |z —p| < 2n

Therefore, we showed that £=1(B(p,r)) C B(p,2r) C U, that is, B(p,r) C (U for
every ¢ € M. Hence, we infer that B(p,r) C (,cp (U

(1) Consider the scaled orthogonal transformations R*O(n) acting continuously and
transitively on R"\ {0}. Fix p € R"\ {0} and let us denote by (R*O(n)), the stabilizer
subgroup of p. By [Hel01, Theorem 3.2], the mapping

¥: R*O(n)/(R"O(n)), — R"\ {0}
[€] —L(p)

is a well-defined homeomorphism. Hence, since the projection 7: R*O(n) — R*O(n)/(R*O(n))

is open, the map ¢ — {(p) obtained as 1) o 7 is open. O

p
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Proposition 3.7. Let G be a Carnot group. Then, for every v € S(g1), there exists
an open neighborhood U of v in S(g1) such that

(5.

pel

has non-empty interior. Moreover, if v € S(g1) and X € g are such that exp(X) €
int(S,), then one can choose U in such a way that X € int((,c;r Syu)-

Proof. Denote by F the free Carnot group of both the same rank and step of G
(for a definition of free Lie algebra, see e.g. [VSCC92, p. 45] or [Var84, p. 174]).
Then, the canonical projection 7: F — G induces a surjective isometry between
the horizontal layers of the Lie algebras m,: fi — gi'. Define 7 € f; such that
(V) = v, and consider a non-empty open set W C S5, which exists by [BLD19,
Proposition 2.26]. The canonical action of RO(m) on f; can be extended linearly to
a map in Aut(f), since in free groups all non-horizontal left-invariant vector fields
can be written in a (essentially) unique way as commutators of horizontal ones. We
denote by H < Aut(f) this group of automorphisms of § induced by the action of
RO(m) on f;. Since automorphisms of f are linear bijections, we may interpret H as
a subgroup of GL(n), where n is the topological dimension of f.

Considering the corresponding Lie group automorphisms, with abuse of notation,
we then identify the actions RO(m) x f; — f; and RO(m) x F — F. Notice that
these actions are continuous and open. By (i) of Lemma 3.6 there exists an open
neighborhood M of the identity in H such that

(W
teM

has non-empty interior. Moreover, since H restricted to f; is isomorphic to R*O(m),
by (ii) of Lemma 3.6 the set M7 is an open neighborhood of 7 in f;. Set now
U =7, (MV). Since 7, is open, U is open and for every u € U we can find mg € M
such that p = m.(mov). By properties of orthogonal matrices, notice that we also
have m,((mov)*) = pt. Since 7 is open as well, the inclusions

(3:3) T (int ﬂ EW) C 7 (meW) C 7 (moSy) = m(mo(S(exp(T* + RTD))))

teM
= 7S (exp((mop)* + RTmev)) = S(exp(u’ + R p)) = S,
conclude the first part of the proof.

Assume now that exp(X) € int(S,). Then, choosing X € f; and an open set
W C S such that m,(X) = X and exp(X) € W, one can repeat the argument of the

4t is understood that the metric on g1(F) is the pull-back metric of the metric on g;(G)
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previous part of the proof with the additional condition that, by (i) of Lemma 3.6,

exp(X) € int <m EW) .

LeM

The proof is again finished by (3.3). O

For any subset A C S(G), we define
(3.4) C(A) ={6.(a) :a € A, r >0}
Notice that C(A) is a cone.

Remark 3.8. As an immediate consequence of Proposition 3.7, we notice that there
exist N € N and a finite family of triples (U;, Q;, K;), such that

(1) (U;)X, is an open covering of S(g,);
(2) for every i =1,..., N, Q; is a nonempty open subset of S(G) such that

() € () S
vel;
(3) for every i = 1,..., N, K; C Q; is a compact set with nonempty interior in

S(G).

Moreover, if for every v € S(g1), there exists X € g; such that exp(X) € int(S,),
then each compact set K; can be chosen in such a way that there exists X; € g; with
exp(X;) € int(C(K)).

4. PROOF OF THEOREM 1.5

In this section we show that, in Carnot groups, the reduced boundary of sets of
locally finite perimeter can be decomposed into countably many pieces satisfying a
cone property. This is precisely stated in Theorem 4.6, whose proof and statement
complete and combine the previous Lemmata 4.2, 4.3, and 4.5.

Remark 4.1. If a subset I' of a Carnot group satisfies the C-cone property, for some
cone C, then I' also satisfies the C'~!-cone property. Indeed, assume by contradiction
that there exist p € I’ and ¢ € I'NpC~t. Since ¢ € pC~!, then p € qC. But I satisfies
a C-cone property and, since ¢ € I' we have ' ¢C' = (). This is in contradiction with
pel'ngC.

Lemma 4.2. Let G be a Carnot group. If E C G is a set of locally finite perimeter in
G and € > 0, then, for every p € FE, there exists 1, > 0 such that for any r € (0,7,)
we have
w(Br N Sy Np G\ E)) < er?
and
w(B.-NS

1
vE(p)

Np'E) < er?.
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Proof. Fix p € FE and notice that E admits a tangent at p that has, by the same
argument of [FSSC03, Theorem 3.1], vx(p) as constant horizontal normal. This means
that, for any sequence r;, — 0, we can find a set F' with constant horizontal normal
vp = vg(p) and a subsequence ry,, such that

15 ,go1p) — 1 in LL,(G),  ask — +o0.
"hy

It is not restrictive to assume that F' = F, where F'is as in (3.1). By Proposition 3.4,
since 0 € FF then 0 € 9*F and by Lemma 3.5, one has

. 1 X
16r_1(p71E>mSVE(P) - 1S”E(P) n LlOC(G)’ as k — +00.
P

Consequently, we have
157-—1(P_1E)QSVE(;;) — 15VE(p) in LIIOC(G), asr — 0.

This completes the proof of the first statement. The proof of the second inequality
follows from the first one by replacing F with G\ E and recalling that S_, = S;1. O

Regarding next lemma, recall the notation C(§2) introduced in (3.4).

Lemma 4.3. Let G be a Carnot group, let K C Q C S(G) be such that K is compact
and ) is open. Then

n(C(Q),C(K)) = inf {M(C(Q) NB,NEC(Q) ' NEBy) €€ K} > 0.
Proof. Since K is a compact set, there exists § € (0,1) such that
0<d<d(K,G\C(Q).
Hence for any ¢ € K one has £Bs; C C(2) N By. Therefore
w(C(Q) N By NEC(N) ™ NEBy) > p(C(Q) N By NEC(Q) 1 N EBs)
= u(EC(Q) I NEBy)
— u(C(Q) N By),
which is a positive lower bound independent of £ € K. a
By combining Remark 3.8 and Lemmata 4.2 and 4.3 we get the following corollary.

Corollary 4.4. Let G be a Carnot group, let (U;, Qy, K;)Y., be as in Remark 5.8, and
let E C G be a set of locally finite perimeter. Then, for every p € FE, there exists
rp > 0 such that, if ve(p) € U; and r € (0,71,), then

(4.1) u(Byr N CiNp™ (6\ B)) < 41
and

4.2 By, NC ' Np'E) < 1)@
(4.2) o T Np 37

where C; = C(Q;) and n; = n(C;, O(K;)) = inf{u(C; N B NEC;T ' NEBy) : € € K}
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Lemma 4.5. Let G be a Carnot group and let E be a set of locally finite perimeter in
G. Consider a family (U;, i, K;)N, as in Remark 3.8 and, for every p € FE, define
rp > 0 as in Corollary 4.4. Then, the sets

(4.3) Fio:={p € FE : vu(p) € Ui,r, > 1},
defined fori € {1,...,N} and £ € N, satisfy
(4.4) FoNpByNpC(K;)) =0  VpeFy,.

Proof. Denote for shortness C; = C(K;). Suppose by contradiction that there exist
x € Fijyandy € FyyNzB,NxC; with y # x. Let n; be as in Corollary 4.4 and define

r=d(z,y) and [ :=xC;NyC;* NxBy NyBy,.
By construction, we have that
r=d(z,y) < § <min{ry,ry}
and using the facts that I C 2C; N2 By, and I C yC; ' NyBsy,, by applying (4.1) and
(4.2) we have
p(I\ E) < p(zC;NaBy N (G\ E)) < %p€
and
u(INE) < u(yC;t NyBy NE) < L€,
This contradicts the fact that by Lemma 4.3, we have u(I) > nr9. O

Theorem 4.6. Let G be a Carnot group and let E C G be a set of locally finite
perimeter in G. Then there exist a countable family {C), : h € N} of open cones in
G and a countable family {T'), : h € N} of subsets of G such that each Ty, satisfies the
Cy,-cone property and

FE=JTw

heN

Proof. Tt is enough to show that, for any i,¢ € N, the set F;, defined in (4.3) can
be covered by a countable union of sets satisfying a cone property. This is simply
done by covering F; ¢ by a countable family of balls {B(p;, 1/¢) : p; € F;¢,j € N} and
decomposing Fi ¢ = ;en(Fie N B(pj, 1/1)). We now set

(4.5) Y, = F,NB(p;, 1/{)

Then by (4.4), we have that, for every i,j € N, the set Ff,[ has the C(int(k;))-
cone property, where K; are the compact subsets of the sphere introduced in Remark
3.8. Up to relabeling the family {I';, : i = 1,..., N,{,j € N} and renaming C; =
C(int(K;)), we have then a countable family {C}, : h € N} of open cones and a
countable family {T', : h € N} of sets such that each I'), satisfies the Cj,-cone property
and FE = J,enTne O
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Remark 4.7. Notice that the family of cones {C}, : h € N} appearing in Theorem
4.6 is indeed finite. This comes from the construction C; = C(int(K;)), and the fact
that, by Remark 3.8, the family {K; :¢=1,..., N} is finite.

5. INTRINSIC LIPSCHITZ GRAPHS

In this section we follow [FSSCO6] to recall the notion of intrinsic Lipschitz graph in
Carnot groups. The construction of an intrinsic Lipschitz graph requires the space to
have a decomposition into complementary subgroups (see Definition 1.1). As observed
in Remark 5.1 below, in certain cases Theorem 4.6 can be strengthened to deduce that
the reduced boundary of sets of finite perimeter is intrinsically Lipschitz-rectifiable,
i.e., it can be covered by a countable union of intrinsic Lipschitz graphs.

Since we only deal with the notion of codimension-one rectifiable sets, Definition 1.1
will be used only in case dim L = 1. In this situation, according to [Vit12, Proposition
3.4] (see also [FS16]), one can see that, up to a modification of the parameter 5 > 0,
sets 3 satisfying point (i) of Definition 1.1 can be extended to sets ¥ C S that satisfy
(ii).

Remark 5.1. Assume I' C G is a set with the C-cone property such that C is
open and there exists X € g; \ {0} with the property that exp(X) € C. Then T
is an intrinsic Lipschitz graph. Indeed, according to Definition 1.1, we may choose
L= {exp(tX):t € R} and W := exp(X1 D go®---Dg,). Recall that, by Remark 4.1,
the set I satisfies also C~!-cone property. Since both C and C~! are open, there exists
¢ > 0 such that B(exp(X),e) C C and B(exp(—X),e) € C~!. By scaling we may
assume that || X|| = 1, and so with the choice S = ¢ condition (1.1) is satisfied.

In particular, Lemma 4.5 shows that, if for some ¢ = 1,..., N, the set K; defined
in Remark 3.8 is such that int(/;) Nexp(g1) # 0, then, for every j,¢ € N, the set T,
defined in (4.5) is an intrinsic Lipschitz graph.

Definition 5.2. Let G be a Carnot group of homogeneous dimension @} and let
E C G. We say that E is intrinsically Lipschitz rectifiable if there exists a countable
family {X;, : h € N} of intrinsic Lipschitz graphs such that

A (E\ U 2h> =0.

heN

An immediate consequence of Remark 5.1 and Theorem 4.6 is given by Corollary 5.3
below.

Corollary 5.3. Let G be a Carnot group and assume that for all v € S(gy) there
exists X € S(g1) such that exp(X) € int(S,). Then the reduced boundary of every set
of locally finite perimeter in G is intrinsically Lipschitz rectifiable.
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To describe some conditions on the group that guarantee the validity of the as-
sumptions of Corollary 5.3, we introduce the definition of end-point map.

Definition 5.4. Let G be a Carnot group. The end-point map End: L*([0,1];¢1) —
G is defined by letting
Bnd(h) = 7(1),

where 7 : [0,1] — G is the horizontal curve that is the unique solution of

Y(t) = h(t)
~(0) = 0.

With abuse of notation we also write End(y) meaning End(h) for the defining control
h.

In what follows, we say that a map F: M — N between topological spaces M
and N is locally open at p € M if, for every neighborhood U of p, the set F(U) is a
neighborhood of F(p). If G is a Carnot group and X € g is a horizontal direction,
we also say that the end-point map End: L>°([0,1]; g1) — G is locally open at X, if
it is locally open at h(t) = X.

Before proving Lemma 5.6, we point out some topological properties of the semigroups

Sy.
Lemma 5.5. Let G be a Carnot group and let v € gy \ {0}. Then int(S,) = int(S,).

Proof. Since int(S,) has the (inner) int(S,)-cone property, then by [BLD19, Lemma
2.36] the set int(S,) is regularly open, i.e., we have that

(5.1) int(S,) = int(int(S,)).

On the other hand, by [AS13, Theorem 8.1], we also have that

(52) 5, = mi(5,).

The result follows combining (5.1) and (5.2). O

Lemma 5.6. Let G be a Carnot group, let X € g1 \ {0} and assume that the end-
point map End: L>([0,1];91) — G is locally open at X. Then, for every v € S(g;)
satisfying (v, X) > 0, we have exp(X) € int(S,).

Proof. Let ¢ := (v, X) > 0 and
B(X) ={v e L*([0,1];81) : | X — v|leo < €}

Since End is open at X, by Lemma 5.5 it suffices to show that End(B.(X)) C S,. On
the other hand, by Lemma 3.2, if v € L*([0, 1]; g1) satisfies (v(t),v) > 0 for almost
every t € [0,1], then End(v) € S,. The proof is then achieved by noticing that, for
every v € B.(X), we have

((t),v) = (1, X) = W, X —o(t)) Z e = [V[[[ X = v] >0
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for almost every ¢ € [0, 1]. O

Corollary 5.7. Let G be a Carnot group and assume there exists a basis {X; : i =
1,...,m} of g1 such that the end-point map End: L*>([0,1];91) — G is locally open
at X;, for everyi=1,...,m. Then the reduced boundary of every set of locally finite
perimeter in G is intrinsically Lipschitz rectifiable.

Proof. 1t is enough to combine Corollary 5.3, Lemma 5.6 and the following fact. If
X € gy and exp(X) € int(S,), then exp(—X) € int(S_,). O

Remark 5.8. Every Carnot group possessing a spanning set of pliable or strongly
pliable vectors in the sense of [JS17] and [SS18]|, respectively, has the property that
the reduced boundary of any set of locally finite perimeter is intrinsically Lipschitz
rectifiable.

We next give a sufficient condition that has an equivalent algebraic formulation, and
that can be more easily verified. This will be used to deduce that, for example,
Corollary 5.7 applies to filiform groups (see Section 6).

Definition 5.9. Let G be a Carnot group and let v : [0,1] — G be a horizontal
curve. We say that v is non-abnormal if dEnd(y) has full rank. We also say that a
horizontal direction X € g; \ {0} is non-abnormal, if ¢ — exp(¢X) is non-abnormal.

As pointed out in [ABB19] and in [Mon02|, the fact that a curve is abnormal
does not depend on its parametrization and one can develop a theory considering
the end-point map defined on any LP space, 1 < p < oo. Moreover, the Volterra
expansion (see e.g. [ABB19, Formula (6.9)]), allows to compute the differential of the
End-point map with respect to any variation in LP. In particular, if the differential
of End: L*([0,T];R™) — G has fulltank at X € g;, then also the differential of
End: L*°([0,T];R™) — G has full rank at X. This observation allows us to consider
the formula for the differential of the end-point map in L? developed by [LDMO*16].

Proposition 5.10. Let G be a Carnot group and let X € g1 \ {0}. Then the curve
t — exp(tX) is non-abnormal if and only if

(5.3) span{ad% (g,) : k=0,...,s — 1} = g.
Proof. Denote by (¢) :== exp(¢tX). It is enough to notice that, by [LDMO™*16, Propo-
sition 2.3]

Im(dEnd(y)) = dR,qyspan{Ad, g : t € (0,1)} = dR,yspan{adig, : k € N}. O

Remark 5.11. Condition (5.3) is clearly open in X. In particular, if G contains a
non-abnormal curve, then there exists an open set U C S(g;) such that U = —U and
t — exp(tX’) is non-abnormal for all X’ € U.
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Corollary 5.12. Let G be a Carnot group and assume there exists a non-abnormal
X € g1\ {0}. Then the reduced boundary of any set of locally finite perimeter in G is
intrinsically Lipschitz rectifiable.

Proof. Since ~(t) = exp(tX) is non-abnormal, then dEnd(~y) has full rank and, in par-
ticular, End is locally open at X. The proof then follows by combining Corollary 5.7
and Remark 5.11. g

Proposition 5.13. Let G; and Gy be two Carnot groups possessing mon-zero non-
abnormal horizontal directions. Then the Carnot group G x Gy possesses a non-zero
non-abnormal horizontal direction.

Proof. Denote by g(G;) the Lie algebra of G; and by g1(G;) the related horizontal
layer, for i = 1,2. Recall that the Lie bracket of the product algebra g(G;) x g(Gs) is
defined by

[(Ylv YZ)v (Zlv Z2)} = ([Ylv Zl]v [Yév ZZ])v
for every Y1, Z1 € g(G1) and every Ys, Zy € g(Gz). Then, by induction on k, one can
check that

adfy, y,)(Z1, Za) = (ady, (1), ady, (Z2)),

for every k € N, every Y1, Z; € g(G;) and every Y3, Z, € g(Gy).

Let X7 € g1(G1) and X5 € g1(G2) be non-zero non-abnormal directions for G; and
Gy, respectively. Then (X, X5) is non-abnormal for G; X Gs. To prove this it is
enough to notice that for any k& € N one has

adfy, x,)(81(G1) x g1(Gy)) = ady, (g1(G1)) x ad’, (g1(G)) O

Proposition 5.14. Let G be a Carnot group possessing a non-zero non-abnormal
horizontal direction and assume that N < G is a normal subgroup of G. Then, the
Carnot group G/N possesses a non-zero non-abnormal horizontal direction.

Proof. Let X € g1 \ {0} be a non-abnormal direction for G. Then, if 7 : G — G/N
is the canonical projection, the push-forward vector 7,X is non-abnormal for G/N.
This is true by the fact that

7g = span{m.adig, : k € N} = span{adi*xﬂ'*gl :k e N},

and by noticing that m.g1 = g1(G/N). If m.X # 0, the proof is concluded. If
m.X =0, then 0 € g;1(G/N) is non-abnormal and, since non-abnormality is an open
and dilation-invariant condition, all the elements in g;(G/N) are non-abnormal. [
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6. FILIFORM GROUPS

In this section we briefly introduce filiform groups and study their abnormal horizontal
lines and automorphisms. As a corollary, we obtain that, in all filiform groups,
the reduced boundary of any set of locally finite perimeter is intrinsically Lipschitz
rectifiable.

Definition 6.1. We say that a Carnot group G is a filiform group of step s if the
stratification g = g, @ - - - @ g, of its Lie algebra satisfies dimg; = 2 and dimg; = 1,
for every i =2,...,s.

Definition 6.2. Let G be a filiform group of step s. If its Lie algebra g has a basis
{Xo,..., X} with the only nonzero bracket relations

(1) [Xo, Xi] = Xiqq1 fori=1,...,s— 1, then G is said to be of the first kind.
(11) [X07Xz] = Xi+1 fori = 1, ey s—2 and [Xiva—i] = (*1)ZXS fori= 17 cee,S— 1,
then G is said to be of the second kind.

In what follows, any basis of the Lie algebra { X, ..., X} satisfying relations (i) or
(i) will be called filiform basis. The classification of filiform groups below follows
from [Ver70, Proposition 5].

Proposition 6.3 (Vergne). Let G be a filiform group of step s. If s = 2n+ 1 for
n > 2, then G is either of the first kind or of the second kind. Otherwise G is of the
first kind.

We point out that our choice of basis for the filiform groups of the second kind differs

from the one of Vergne. Indeed, in [Ver70| the author considers a basis {Yp, ..., Ys}
for which [Yy, Y;] = Yiy1 and [V}, Y, ;] = (—1)%Y; for i = 1,...,s — 1. One sees that
the basis of Vergne has an extra nonzero bracket [Yp,Y;_1] = Y, and the basis in

Definition 6.2 (ii) is obtained by choosing Xo =Yy +Y; and YV; = X; fori =1,...,s.
In addition to having fewer nontrivial bracket relations, our choice of basis has the
benefit that it is adapted to the abnormal lines, as we will see next.

Proposition 6.4. Let G be a filiform group of step at least 3 and let {Xy,..., X}
be a filiform basis for g. Then the line t — exp(tXy) is abnormal. If G is of the
first kind, then this is the only abnormal horizontal line of G. Otherwise there exists
exactly one other abnormal horizontal line, namely t — exp(tXy).

Proof. We begin by proving the following claim: if G is a filiform group of step s > 3
and X € g;, then the line ¢ — exp(tX) is abnormal if and only if [X, X;] = 0 for
some ¢ =2,...,s — 1. Assume first that [X, X;] = 0 for some i = 2,...,s — 1. Then,
since g; is one-dimensional, [X, g;] = 0 and in particular

gis1 Nspan{adly (@) : k= 0,...,s — 1} = adi(g1) = [X, adiy (g1)] = 0.
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Hence, by Proposition 5.10, the line ¢ — exp(tX) is abnormal. To prove the other
implication, suppose that, for each ¢ = 2,...,s — 1, one has [X, X;] # 0. Since
the first layer g; does not contain elements of the center, we also find Y; € g; for
which [X,Y)] # 0. Observe now that, since g; = span([.X, X;_;]), one has g; =
span(ad’ ' (V1)) for all i = 2, ..., s. By Proposition 5.10, the claim is proved.

As a consequence of the claim, since any filiform basis satisfies [ X7, X5] = 0, the line
t — exp(tX;) is abnormal. If G is of the second kind, then the relation [Xq, Xs_1] =0
shows that the line ¢ — exp(tXy) is abnormal as well. We now show that, if G is of the
first kind, the line ¢ — exp(tX;) is the only abnormal horizontal line of G. Indeed,
for every a € R, the element X = X, + aX; € g; satisfies [X, X;] = X;11 for all
i=1,...,s—1. By the previous observations, the line ¢ — exp(¢X) is non-abnormal.

We are left to prove that a filiform group cannot possess more than two abnormal
horizontal lines. This fact would imply that ¢ — exp(tXy) and t — exp(tX;) are
the only horizontal abnormal lines of the filiform groups of the second kind. First,
notice that a line ¢t — exp(¢X) is abnormal if and only if X € Uf;; ker ¢;, where
¢i: g1 — gir1 is defined by ¢;(X) = [X, X;]. According to Proposition 6.3, the algebra
g/9s is filiform of step s — 1 and therefore is of the first kind. By the previous part
of this proof, the set Uf;; ker ¢; C g/gs is one-dimensional. Since ¢,_; is surjective,
also dim ker ¢,_; = 1 and we conclude that Uf;; ker ¢; cannot contain more than two
linearly independent lines. (|

Corollary 6.5. Every filiform group has a horizontal non-abnormal line. In partic-
ular, Corollary 5.12 applies to all filiform groups.

Remark 6.6. Applying [LDMO™16, Proposition 2.21], one can check that in filiform
groups of the first kind the only horizontal injective abnormal curve from the origin
is, up to reparametrization, the line ¢t — exp(tX;). On the other hand, in filiform
groups of the second kind there are also horizontal abnormal curves that are not lines.
For example, the curve defined by

exp(tX1) for t € [0, 1],
exp(Xy)exp((t — 1)Xo) fort € 1,2]

is abnormal.

For the sake of completeness, we end by describing the graded Lie algebra auto-
morphisms (i.e., the stratification preserving Lie automorphisms) of filiform Lie al-
gebras. By the following two propositions, we observe that any linear bijection on
the horizontal layer that fixes the abnormal lines extends uniquely to a Lie algebra
automorphism.

Proposition 6.7. Let g be a filiform Lie algebra of the first kind of step at least 3
equipped with a filiform basis {Xo, ..., Xs}. The linear transformation on g, that in



A RECTIFIABILITY RESULT FOR FINITE-PERIMETER SETS IN CARNOT GROUPS 21
basis {Xo, X1} is given by the matriz

(€9

induces a (graded) Lie algebra automorphism for every a,b € R\ {0} and ¢ € R.
Moreover, every graded Lie algebra automorphism of g is of this form.

Proof. Notice that the only horizontal vectors that commute with g, are those parallel
to X;. Therefore, any ¢ € Aut(g) maps ¢(X;) = bX; with b € R\{0}. Then mapping
P(Xo) = aXo+cX; defines a Lie algebra automorphism for any choice of a, b € R\ {0}

and ¢ € R by ¢(X;) = adf;}%xo)(w(Xl)) = a'bX;. O

Proposition 6.8. Let g be a filiform Lie algebra of the second kind with a filiform
basis {Xo, ..., Xs}. The linear transformation on gy that in basis {Xo, X1} is given

by the matriz
a 0
0 b

induces a (graded) Lie algebra automorphism for every a,b € R\{0}. Moreover, every
graded Lie algebra automorphism of g is of this form.

Proof. Similarly to the filiform groups of the first kind, here X is the unique direction
commuting with g, and hence the line bX;, b € R, must be fixed by every 1) € Aut(g).
Since in addition a graded Lie algebra automorphism maps abnormal horizontal lines
into abnormal horizontal lines, necessarily ¥(Xy) = aXj for some a € R\{0} according
to Proposition 6.4. Let us verify that the linear map defined by ¥(X,) = aX, and
¥(X1) = bX; on g; induces a Lie algebra automorphism for all a,b € R\ {0} by
explicitly calculating the bracket relations. Indeed, the extension

D(Xs) = Y(ad) Xy) = ady 5 (X)) = a'0X; Vi=1,...,s 1,
P(X,) = P(=[X1, Xoa]) = —[(X1), (Xe1)] = 207X,

satisfies

W(X0), (X)) = [0 10X a7 X)) = @ 2R (1) X, = (X0, X)) Yi=2,.. s

and all the other brackets are zero, as required. O

Remark 6.9. To the best of our knowledge, in the literature (see e.g. [Ver70, page
93] or [Pan89, page 49]) there is no clear motivation why the two types of filiform
groups are not isomorphic; let us provide some evidence here. First of all, one can
check that, in dimension 4, there is only one filiform group, known as the Engel group.
Starting from dimension 6, we provided two ways to distinguish the two classes. A
first reason is that the spaces of graded automorphisms are different: in filiform
groups of the first kind this class is 3 dimensional, while for the second kind this class
is 2 dimensional. A second reason, which has a control-theoretic flavor, is that the
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two classes have different number of abnormal one-parameter subgroups: in filiform
groups of the first kind there is only one, while for the second kind there are two.
Recall that the stratification of a stratifiable group is unique up to isomorphisms, see
[LD17, Proposition 2.17|. Hence, since we showed that the two classes are different
as stratified groups, they are different as Lie groups.

Remark 6.10. We stress that the type x condition, see [Marl4], and the non-
abnormality condition introduced in Corollary 5.12 are independent. Indeed, all
step-2 Carnot groups are of type %, but not all step-2 Carnot groups have horizontal
non-abnormal lines. Consider for example the free Carnot group Fso of step 2 and
rank 3. One can easily check that, in this case, all horizontal lines are abnormal.
On the other hand, as shown in Proposition 6.4, all filiform groups have nontrivial
horizontal non-abnormal lines but already the Engel group E does not satisfy the type
* condition.

Remark 6.11. We stress that no filiform group is Pansu-rigid, as instead stated in
[Pan89, page 49]. Indeed, in both types of filiform groups, there are more graded
automorphisms than just the homotheties, in which case we would have said, by
definition, that the Carnot group is Pansu-rigid, see [LDOWI14]. It is however true
that, in filiform groups of the second kind, the only graded automorphisms that are
unipotent are the dilations.

REFERENCES

[ABB19] Andrei Agrachev, Davide Barilari, and Ugo Boscain. A comprehensive introduction to
sub-Riemannian geometry, 2019.

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and
free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press,
Oxford University Press, New York, 2000.

[AK00a) Luigi Ambrosio and Bernd Kirchheim. Currents in metric spaces. Acta Math., 185(1):1-
80, 2000.

[AKO0O0D] Luigi Ambrosio and Bernd Kirchheim. Rectifiable sets in metric and Banach spaces.
Math. Ann., 318(3):527-555, 2000.

[AKLDO09] Luigi Ambrosio, Bruce Kleiner, and Enrico Le Donne. Rectifiability of sets of fi-
nite perimeter in Carnot groups: existence of a tangent hyperplane. J. Geom. Anal.,
19(3):509-540, 2009.

|AS13] Andrei A Agrachev and Yuri Sachkov. Control theory from the geometric viewpoint,
volume 87. Springer Science & Business Media, 2013.

[BLD13] Costante Bellettini and Enrico Le Donne. Regularity of sets with constant horizontal
normal in the Engel group. Comm. Anal. Geom., 21(3):469-507, 2013.

[BLD19] Constante Bellettini and Enrico Le Donne. Sets with constant normal in Carnot groups:
properties and examples. ArXiv e-prints, 2019.

[DG54] Ennio De Giorgi. Su una teoria generale della misura (r —1)-dimensionale in uno spazio
ad r dimensioni. Ann. Mat. Pura Appl. (4), 36:191-213, 1954.

[DG55] Ennio De Giorgi. Nuovi teoremi relativi alle misure (r — 1)-dimensionali in uno spazio

ad r dimensioni. Ricerche Mat., 4:95-113, 1955.



A RECTIFIABILITY RESULT FOR FINITE-PERIMETER SETS IN CARNOT GROUPS 23

[DMV19| Sebastiano Don, Annalisa Massaccesi, and Davide Vittone. Rank-one theorem and
subgraphs of BV functions in Carnot groups. J. Funct. Anal., 276(3):687-715, 2019.

[DV19] Sebastiano Don and Davide Vittone. Fine properties of functions with bounded varia-
tion in Carnot-Carathéodory spaces. J. Math. Anal. Appl., 479(1):482-530, 2019.

[EG15] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of
functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL, revised edition,
2015.

[Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wis-
senschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.

[FS82] Gerald B. Folland and Elias M. Stein. Hardy spaces on homogeneous groups, volume 28.
Princeton University Press, 1982.

|[FS16] Bruno Franchi and Raul Paolo Serapioni. Intrinsic Lipschitz graphs within Carnot

groups. J. Geom. Anal., 26(3):1946-1994, 2016.

[FSSCo1] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. Rectifiability and perime-
ter in the Heisenberg group. Math. Ann., 321(3):479-531, 2001.

[FSSCO03]  Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. On the structure of finite
perimeter sets in step 2 Carnot groups. The Journal of Geometric Analysis, 13(3):421—
466, 2003.

[FSSC06]  Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. Intrinsic Lipschitz graphs
in Heisenberg groups. J. Nonlinear Convex Anal., 7(3):423-441, 2006.

[FSSC11] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. Differentiability of in-
trinsic Lipschitz functions within Heisenberg groups. J. Geom. Anal., 21(4):1044-1084,
2011.

[GMS98] Mariano Giaquinta, Giuseppe Modica, and Jiif Souéek. Cartesian currents in the cal-
culus of variations. I, volume 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Re-
lated Areas. 3rd Series. A Series of Modern Surveys in Mathematics/. Springer-Verlag,
Berlin, 1998. Cartesian currents.

[HelO1] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34
of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
2001. Corrected reprint of the 1978 original.

[JS17| Nicolas Juillet and Mario Sigalotti. Pliability, or the Whitney extension theorem for
curves in Carnot groups. Anal. PDE, 10(7):1637-1661, 2017.
[LD17] Enrico Le Donne. A primer on Carnot groups: homogenous groups, Carnot-

Carathéodory spaces, and regularity of their isometries. Anal. Geom. Metr. Spaces,
5:116-137, 2017.

[LDMO*16] Enrico Le Donne, Richard Montgomery, Alessandro Ottazzi, Pierre Pansu, and Davide
Vittone. Sard property for the endpoint map on some Carnot groups. Ann. Inst. H.
Poincaré Anal. Non Linéaire, 33(6):1639-1666, 2016.

[LDOW14| Enrico Le Donne, Alessandro Ottazzi, and Ben Warhurst. Ultrarigid tangents of sub-
Riemannian nilpotent groups. Ann. Inst. Fourier (Grenoble), 64(6):2265-2282, 2014.

[Mag12] Francesco Maggi. Sets of finite perimeter and geometric variational problems, volume
135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2012. An introduction to geometric measure theory.

[Mar14] Marco Marchi. Regularity of sets with constant intrinsic normal in a class of Carnot
groups. Ann. Inst. Fourier (Grenoble), 64(2):429-455, 2014.
[Mat75] Pertti Mattila. Hausdorff m regular and rectifiable sets in n-space. Trans. Amer. Math.

Soc., 205:263-274, 1975.



24 SEBASTIANO DON, ENRICO LE DONNE, TERHI MOISALA, AND DAVIDE VITTONE

[Mat95] Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
1995. Fractals and rectifiability.

[Mon02] Richard Montgomery. A tour of subriemannian geometries, their geodesics and appli-
cations, volume 91 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI, 2002.

[Pan89] Pierre Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces
symétriques de rang un. Ann. of Math. (2), 129(1):1-60, 1989.
[SS18] Ludovic Sacchelli and Mario Sigalotti. On the Whitney extension property for continu-

ously differentiable horizontal curves in sub-Riemannian manifolds. Calc. Var. Partial
Differential Equations, 57(2):Art. 59, 34, 2018.

[Var84| Veeravalli S. Varadarajan. Lie groups, Lie algebras, and their representations, volume
102 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1984. Reprint of
the 1974 edition.

[Ver70] Michele Vergne. Cohomologie des algébres de Lie nilpotentes. Application a I’étude de
la variété des algeébres de Lie nilpotentes. Bull. Soc. Math. France, 98:81-116, 1970.

[Vit12] Davide Vittone. Lipschitz surfaces, perimeter and trace theorems for BV functions in
Carnot-Carathéodory spaces. Ann. Sc. Norm. Super. Pisa CI. Sci. (5), 11(4):939-998,
2012.

[Vit14] Davide Vittone. The regularity problem for sub-Riemannian geodesics. In Geometric
measure theory and real analysis, volume 17 of CRM Series, pages 193-226. Ed. Norm.,
Pisa, 2014.

[VSCC92]  Nicholas Th. Varopoulos, Laurent Saloff-Coste, and Thierry Coulhon. Analysis and
geometry on groups, volume 100 of Cambridge Tracts in Mathematics. Cambridge Uni-
versity Press, Cambridge, 1992.

SEBASTIANO DON: DEPARTMENT OF MATHEMATICS AND STATISTICS, P.O. Box 35 (MaAD),
FI-40014, UNIVERSITY OF JYVASKYLA, FINLAND.

Email address: sedon@jyu.fi

ENRICO LE DONNE: DIPARTIMENTO DI MATEMATICA, UNIVERSITA DI P1sA, LARGO B. PoON-
TECORVO 5, 56127 PISA, ITALY, &, DEPARTMENT OF MATHEMATICS AND STATISTICS, P.O. Box
35 (MaD), FI-40014, UNIVERSITY OF JYVASKYLA, FINLAND.

Email address: enrico.ledonne@unipi.it

TERHI MOISALA: DEPARTMENT OF MATHEMATICS AND STATISTICS, P.O. Box 35 (MaD),
FI-40014, UNIVERSITY OF JYVASKYLA, FINLAND.

Email address: tekamois@jyu.fi

DAVIDE VITTONE: DIPARTIMENTO DI MATEMATICA TULLIO LEVI-CIVITA, UNIVERSITA DI
PaDpovA, VIA TRIESTE 63, ITALY.

Email address: vittone@math.unipd.it



IC]

Semigenerated Carnot algebras and applications to
sub-Riemannian perimeter

E. Le Donne and T. Moisala

Preprint



1.
2.
2.1.
3.
3.1.
4.

SEMIGENERATED CARNOT ALGEBRAS AND
APPLICATIONS TO SUB-RIEMANNIAN PERIMETER

ENRICO LE DONNE AND TERHI MOISALA

ABSTRACT. This paper contributes to the study of sets of finite intrinsic perimeter
in Carnot groups. Our intent is to characterize in which groups the only sets with
constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic:
such a phenomenon happens if and only if the semigroup generated by each horizontal
half-space is a vertical half-space. We call semigenerated those Carnot groups with
this property. For Carnot groups of nilpotency step 3 we provide a complete
characterization of semigeneration in terms of whether such groups do not have any
Engel-type quotients. Engel-type groups, which are introduced here, are the minimal
(in terms of quotients) counterexamples. In addition, we give some sufficient criteria
for semigeneration of Carnot groups of arbitrary step. For doing this, we define
a new class of Carnot groups, which we call type (¢) and which generalizes the
previous notion of type (x) defined by M. Marchi. As an application, we get that in
type (O) groups and in step 3 groups that do not have any Engel-type algebra as a
quotient, one achieves a strong rectifiability result for sets of finite perimeter in the
sense of Franchi, Serapioni, and Serra-Cassano.

CONTENTS

Introduction
Preliminaries
Lemmata in arbitrary algebras
Sufficient criteria for semigeneratedness
Carnot groups of type ()
Some results and examples in low-step algebras

Date: June 24, 2020.

2010 Mathematics Subject Classification.
22E15.

)
14
14
18

22E15, 53C17, 22A15, 22E25, 28A75, 49Q15, 22A15,

Key words and phrases. Carnot algebra, horizontal half-space, semigroup generated, Lie wedge,

constant intrinsic normal, finite sub-Riemannian perimeter, Engel-type algebras, tipe diamond,
trimmed algebra.

E.L.D. was partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRie-

1

mannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group
Theory’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘ Geometry of
Metric Groups’).



2 ENRICO LE DONNE AND TERHI MOISALA

5. Engel-type algebras 22
5.1. Definition and properties 22
5.2. Proof of Theorem 1.2 31
References 33

1. INTRODUCTION

Carnot groups, which are by definition simply connected Lie groups with stratified
Lie algebras, raised attention because of their natural occurrences in Geometric
Measure Theory and Metric Geometry. In particular, subsets of Carnot groups whose
intrinsic normal is constantly equal to a left-invariant vector field appear both in
the development of a theory a la De Giorgi for sets of locally finite perimeter in
sub-Riemannian spaces [FSS01, FSS03, AGM15] and in the obstruction results for
bi-Lipschitz embeddings into L' of non-abelian nilpotent groups |[CK10]. The work
[FSS03] by Franchi, Serapioni and Serra-Cassano provides complete understanding of
sets with constant intrinsic normal in the case of Carnot groups with nilpotency step
2 by proving that they are half-spaces when read in exponential coordinates. However,
in higher step the study appears to be much more challenging due to the more complex
underlying algebraic structure, and only in the case of type (%) groups and of filiform
groups we have a satisfactory understanding of sets with constant intrinsic normal,
see [Marl14, BL13].

In a recent paper [BL19|, C. Bellettini and the first-named author of this article
related the property of having constant intrinsic normal to the containment of dis-
tinguished constant-normal sets, which are semigroups generated by the horizontal
half-space defined by the normal, as we shall explain soon. We shall use the following
terminology: a horizontal half-space of a stratified algebra g with horizontal layer V}
is the closure of either of the two parts into which a hyperplane divides V;. A wertical
half-space is defined as the direct sum of a horizontal half-space and the derived
subalgebra [g,g]. By [BL19, Corollary 2.31], in exponential coordinates a Carnot
group has the property that all its constant-normal sets are equivalent to vertical
half-spaces if and only if the closure of the semigroup generated by each horizontal
half-space is a vertical half-space. In Carnot groups with this property, one has the
intrinsic C'-rectifiability result for finite-perimeter sets & la De Giorgi. In arbitrary
groups, the study of semigroups can still give some weaker rectifiability results, see

[DLMV19).

In this paper, we continue the study of such semigroups from an algebraic viewpoint.
In particular, we get to a complete characterization of those step-3 Carnot groups
for which all constant-normal sets are vertical half-spaces. In addition, for Carnot
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groups of arbitrary nilpotency step, we give some sufficient criteria which generalize
the previous work by M. Marchi [Mar14].

Definition 1.1. Given a Carnot group G with exponential map exp : g — G, we
say that a set W C g is semigenerating if the closure of the semigroup generated by
exp(W) in G contains the commutator subgroup [G,G]. We say also that the Lie
algebra g is semigenerated if every horizontal half-space W in g is semigenerating.

We shall use the term Carnot algebra to denote the (stratified) Lie algebra of a
Carnot group, which is completely determined by the Lie group, see [LD17]. By the
work [FSS03] of Franchi, Serapioni and Serra-Cassano, we know that step-2 Carnot
algebras are semigenerated. Their work has been then extended by Marchi to a class
of Carnot algebras, called of type (x), which includes examples of arbitrarily large
nilpotency step. However, the basic example given by the Engel Lie algebra is not
semigenerated, see [FSS03, BL13|, and also Proposition 5.13. From this example,
it is easy to generate more examples of non-semigenerated algebras, because of the
observation that each quotient of a semigenerated Lie algebra is semigenerated, see
Proposition 2.29. Thus, for example we have that no stratified Lie algebra of rank
2 and step > 3 is semigenerated because each of them has the Engel Lie algebra as
quotient as pointed out in Remark 2.30.

Here, we mostly focus on step-3 Lie algebras, in which we discover a class of Lie
algebras that are not semigenerated. Since they are a generalization of the Engel Lie
algebra we call them Engel-type algebras. Our main result is that these algebras are
the only obstruction to semigeneration.

Theorem 1.2. Let g be a stratified Lie algebra of step at most 3. Then g is not
semigenerated if and only if it has one of the Engel-type algebras (as in Definition 1.3)
as a quotient.

Definition 1.3. For each n € N, we call n-th Engel-type algebra the 2(n + 1)-
dimensional Lie algebra (of step 3 and rank n + 1) with basis {X,Y;, T;, Z}, , where
the only non-trivial bracket relations are given by [Y;, X] = T; and [Y;, T3] = Z for all
ie{l,...,n}.

It is a challenge to understand how one can express in pure combinatorial terms the
property of not having any Engel-type algebra as quotient. However, we have examples
of step-3 Lie algebras that are not of type (x) but have no Engel-type quotients. Hence,
our result is a strict generalization of [Marl4]. It is possible that Theorem 1.2 holds
also in case the nilpotency step is arbitrary; we have no counterexample. However,
the situation in step greater than 3 is more technical. For this reason, we are only
able to give a sufficient condition to ensure semigeneration in arbitrary step. Such
criterion is not necessary (see Example 4.7); however, as for the type (x) condition, it
is computable in terms of brackets of some particular basis.
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In the next result, we assume the existence of a basis with specific properties. We
could restate the condition in other forms (see Lemma 3.1), which alas are just as
technical.

Definition 1.4. Let g be a stratified Lie algebra. If, for each subalgebra § of g for
which h NV} has codimension 1 in Vj, there exists a basis {X1,..., X,,} of V} such
that

ady, X; €bh and adzd;;,(lxj(X,;) €b, forall 2,7 =1,...,m and k > 2,

then we say that g is of type (O).

Theorem 1.5. Every stratified Lie algebra that is of type (O) (as in Definition 1.4)
15 semigenerated.

To put the results in perspective, we remind the reader that by [FSS03], we know
that if a Carnot group has the property that every set with constant intrinsic normal
is a vertical half-space, then every set of locally finite sub-Riemannian perimeter have
a strong rectifiability property. Since semigroups generated by horizontal half-spaces
are minimal constant-normal sets with respect to set inclusion according to [BL19],
we obtain the following corollary.

Corollary 1.6. If the Lie algebra of a Carnot group is semigenerated (e.qg., if it is of
type (O), see Theorem 1.5, or has step 8 and does not have any Engel-type algebra as
a quotient, see Theorem 1.2), then the reduced boundary of every set of locally finite
perimeter in G is intrinsically C-rectifiable.

The structure of the article is the following. In Section 2 we discuss some preliminar-
ies. In addition to the notions of semigenerated and trimmed algebras, we introduce a
useful set called the edge of a semigroup. In Section 3 we analyze Lie algebras of type
(¢) and prove Theorem 1.5, see Corollary 3.12. Section 4 is devoted to both a list of
examples and of results valid for Carnot algebras of step at most 4. In Section 5 we
study the Engel-type algebras. We show that they are the only non-semigenerated
Carnot algebras with step 3 that are minimal with respect to quotient in a sense that
will be made precise with a notion that we call trimmed (see Definition 3.4). We end
with the proof of Theorem 1.2.

2. PRELIMINARIES

We start with a small list of notations. Then, in Definition 2.4, we define the edge
¢ and the wedge 1, of a semigroup s. The notion of edge will be in the core of the
discussion, since understanding if a horizontal half-space is semigenerating reduces to
calculating the edge of its generated semigroup. We provide several preliminary results
regarding the size of such edges. In particular, we consider Lemma 2.13 extremely
useful and we shall exploit it repeatedly. In Proposition 2.31 we provide equivalent
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conditions for the definition of trimmed algebra, a notion that is fundamental in our
arguments in Section 5.

In this paper, the Lie algebra g will always be stratified with layers V; = Vi(g). We
denote by Z(g) the center of a Lie algebra g. Given an ideal i of g we denote by
7w =m : g — g/i the quotient map, and we shall interchangeably use the equivalent
notations A/i = A +1 = m(A), for subsets A of g. We denote for a subset A of g by
J4(A) the ideal generated by A within g, by Lie(A) the Lie algebra generated by A,
and by CI(A) or A the closure of A in g.

We say that W is a horizontal half-space of g if there exists a non-zero element A in
the dual of V; such that

(2.1) W =X"([0,+0)) C V;.

If W is a horizontal half-space defined by A € (V)" as in (2.1), then we define its
(horizontal) boundary as

W = A" ({0}).

Notice that W is a closed subset of V; and 0W is its boundary within V4, which in
our case will always contain 0 € g. Observe that 0W is a hyperplane in V;.

Given a subset W of g, which we shall usually assume to be a horizontal half-space,
the semigroup Sy, generated by exp(W) is described as

oo

(2.2) Sw = J(exp(W))¥,

k=1
where
(exp(W))k = {Hi-":1 exp(w;) | wy, ..., w; € W}

Be aware that, even when W is closed (within V7), the set Sy may not be closed
within exp(g).

A vector space b of a stratified Lie algebra g is said to be homogeneous if there
exist subspaces h; of V;(g) such that h = b, @ ... ® h;. Equivalently, we have that
b is homogeneous if and only if §\h = § for all A > 0, where J, is the Lie algebra
automorphism such that d,(v) = Av for v € V;(g). We shall frequently use the fact
that the center of a stratified Lie algebra is homogeneous:

(2.3) Z(g)= (Vi@ NZ(@)®...® (Vila) N Z(g)) .

2.1. Lemmata in arbitrary algebras. In this subsection, let g be a Lie algebra of
a simply connected Lie group G. We assume that g is stratified with nilpotency step
equal to s. Since G is consequently nilpotent and simply connected, the exponential
map exp : g — G is a bijection. We then have a correspondence between subsets
5 C g and subsets S = exp(s) C G.
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Definition 2.4. We associate with every subset s C g the following two sets

(2.5) w,={Xe€g: R X Cs}.

(2.6) ¢s =10, N (—1w,) = g N1 _,.

The set w; is known as the tangent wedge of s and ¢, as the edge of the wedge o,
see [HN93, Page 2 and page 19]. For typographical reasons, we sometimes write e(s)
instead of ¢;. An equivalent definition for e, is

(2.7) es={X€g: RX Cs}.

Regarding the next result, we claim very little originality. The arguments are mostly
taken from [HN93] and [BL19]. Also, the notions of cone and convexity that we shall
use are the usual ones with respect to the vector-space structure of the Lie algebra.

Lemma 2.8. Let G be a Lie group whose exponential map exp : g — G is injective.
Let s C g be such that exp(s) is a semigroup. Then the sets s and vos, defined in (2.7)
and (2.5), respectively, satisfy the following properties:

(1) v, is the largest cone in s;
(2) ¢, is the largest subalgebra of g contained in s;
(3) for each X € 5N (—s), we have that s, w,, and e are invariant under e*dx

i.e.,
(2.9) eddxg =g, for all X such that + X € s,
(2.10) X, = ro,, for all X such that + X € s,
(2.11) X, = ¢, for all X such that £ X € s;

(4) if exp(s) is closed, then wy is closed and convez.

Proof. Point (1) is immediate from the definition. Regarding (2), to see that e, is a Lie
algebra, let h be the Lie algebra generated by e;. Let S be the semigroup generated by
exp(es). Since e, Lie generates b, then by [AS13, Theorem 8.1] the set S has nonempty
interior in exp(h). Since ¢, is symmetric, then S is closed under inversion, hence a
group. Being a group with nonempty interior, S is an open subgroup of exp(h). Since
S is an open subgroup of the connected group exp(h), then exp(h) equals S, which is a
subset of exp(s). Therefore, b is a subset of s, being exp injective. Since in addition
is symmetric, we infer that b C e,, which tells us that e, is a subalgebra of g contained
in s. It is the largest since, if a Lie algebra § is contained in s, then from Rh = h we
deduce that b C e,.
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To prove (2.9), take X such that £X € s, so that for all Y € s we have
eXp(eadXY) exp(Adexp(x) Y)
= exp((cexp(X))*Y)
= CCXP(X)(eXp(Y))
= exp(X)exp(Y)exp(—X) € S,
where we have used that ad is the differential of Ad, that Ad, is the differential of
Cy, that exp intertwines this differential with C, and, finally, that S is a semigroup.

Hence, we have proved that ¢*3xs = s. Consequently, since the map ¢¥ is linear, it
sends half-lines to half-lines and lines to lines. Thus, we have (2.10) and (2.11).

We now prove (4). If exp(s) is closed, then also s is closed since exp is continuous
and injective. Then the closure of w; is a cone in 5. By maximality of w,, we deduce
that to, is closed. Since to, is a cone, to check that to, is convex it is enough to show
that X +Y € s for all X, Y € w,. Indeed, noticing that also R X,R;Y C 1w, this
would imply that R, (X +Y) Csand so X +Y € to,. To prove that X +Y € s for
every X,Y € tog, recall the formula, which holds in all Lie groups,

(2.12) exp(X +Y) = nhj& (exp (£X) exp (£Y))

n

Set S = exp(s). Since RyX,R.Y C s, then exp(£X),exp(2Y) € S, for all n € N.
Consequently, since S is a semigroup, we have (exp(%X ) exp(%Y))n € S. Being S
closed by assumption, we get from (2.12) that exp(X +Y) € S. Since exp is injective,

we infer that X +Y € s. So the convexity of 1w, is proved. O

We prove next a useful lemma, which states that if R, X C s, RY C s, and
Rad} X C s then also R[X,Y] C 5. Recall the notions of ¢, and 1o, defined in (2.7)
and (2.5).

Lemma 2.13. Let g be a stratified Lie algebra. Let s C g be a subset exp(s) is a
closed semigroup. If X € v, and Y € ¢, are such that ad? X € ¢, then [X,Y] € ¢,.

Proof. One the one hand, since e, is a Lie algebra by Lemma 2.8.(2) we have ady X € e,
for all k > 2. On the other hand, from (2.10) we have that e*¥ X € tv,, for all t € R.
Hence, since to, is convex by Lemma 2.8.(4), for all ¢ € R we have

A tk
X 1Y, X] = e x =3 il adf (X) € t,.

k>2

Hence ﬁ(X +t[Y, X]) € wy, for all t € R. Therefore, taking ¢ to £oo and using that

1, is closed and convex by Lemma 2.8.(4), we get [V, X] € ¢s. O

In the rest of the paper, we focus on semigroups generated by horizontal half-spaces
in stratified Lie algebras. For every horizontal half-space W, see (2.1), in a stratified
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Lie algebra g, we denote by Sy the semigroup generated by exp(W) in exp(g), see
(2.2), and by sy C g the set such that exp(sy) = Sw, i.e.,

If 5 := sy, we stress the following two immediate facts:

(2.15) for every X € Vi, either X € w, or — X € to,;

(2.16) OW = e, N Vi

The semigeneration condition stated in the introduction can equivalently be defined
as follows: A set W in g is semigenerating if

(2.17) (9, 9] € Cl(sw),

and we say that g is semigenerated if every horizontal half-space W in g is semigener-
ating. Observe that, by (2.7) a set W C g is semigenerating if and only if [g, g] C e,
for s = Cl(sy). We will exploit this fact several times.

Remark 2.18. For a horizontal half-space W C g and for s equal to sy or Cl(syy), we
have that e, is a homogeneous subalgebra of g contained in s. Indeed, in Lemma 2.8.(2)
we already proved everything except the homogeneity. In such a case, for all A > 0 we
have that §,W = W and, hence, §ys = 5. Thus we infer that §,RX C s if and only if
RX C s. Therefore ¢, is homogeneous.

Lemma 2.19. Let g be a stratified Lie algebra and W C g a horizontal half-space.
Then the set s = Cl(sy ) has the following two properties:

(2.20) X, Y € Vi with ad} Y = ad} X = 0 implies [X,Y] € eg;
(2.21) VanZ(g) C e

Proof. Regarding (2.20), we have, up to changing signs, that X,Y € W. Moreover,
since W is a codimension 1 subspace of V}, we have that, up to possibly swapping
X with Y, there exists some a € R for which Z :=Y — aX € 0W. Thus, we have
Z € OW C e, and X € W C w,. Moreover, by the assumptions on X and Y, we have
that
adz X =Y —aX,[Y,X]]=ad} X +aadi Y =0 € e,

By Lemma 2.13, we obtain ¢; > [X, Z] = [X,Y].

Regarding (2.21), we choose {Xj,..., X} to be a basis of V} such that X; €
W Cw, and X, ..., X,, € OW C¢,. Take Z € Vo, N Z(g) and express it, for some
a;, bi]‘ S R, as

(2.22) Z =Y alXy, X))+ > by[Xi, X)) = [V, X)) + Y,

i>2 i,j>2
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where

Y = Z (IiXi and Y/ = Z bij [Xu X]]

i>2 1,5>2

Since ¢, is a Lie algebra by Lemma 2.8.2, we have that the elements Y, Y, Y, f/} belong
to ;. Since Z € Z(g), we get also

0=[V.Z] = add X, + ¥, Y],

which implies that adf, X, € ¢,. Since X7 € tog, Y € ¢, and ad% X1 € ¢; Lemma 2.13
tells us that [Y, X;] € ¢;. Going back to (2.22), we finally infer that Z € e,, again
because ¢, is a Lie algebra by Lemma 2.8.2. a

For the next lemma, recall that 7 : g — g/i is the quotient map modulo an ideal i.
We also recall the basic fact that in the Lie algebra g of a simply connected nilpotent
Lie group G, a subset i C g is an ideal if and only if N = exp(i) is a normal Lie
subgroup of G; in this case, the quotient g/i is canonically isomorphic to the Lie
algebra of G/N and we have the following commutative diagram:

g ——— gfi

expl lexp

G ™ G/N.

Moreover, if g is stratified, then g/i canonically admits a stratification if and only if i
is homogeneous.

We stress that we have the following fact for each subset W C g of a Lie algebra g:
(2.23) mi(sw) = S (W)

Indeed, setting N := exp(i) and denoting by S(A) the semigroup generated by A, we
need to show that my (S(exp(W))) = S(mn exp(W)). In fact, on the one hand, since the
homomorphic image of a semigroup is a semigroup, we have that my(S(exp(W))) is a
semigroup containing 7y (exp(W)), so S(my exp(W)) C wn(S(exp(IV))). On the other
hand, the set mn(S(exp(W))) = S(exp(W))N is contained in the semigroup generated
by exp(W)N = mn(exp(WW)), i.e., we have my(S(exp(W))) C S(mn exp(W)).

Lemma 2.24. Leti be a homogeneous ideal of a stratified Lie algebra g and let W C g.
(i) If W is semigenerating, then m(W) is semigenerating.
(i) If i C Cl(sw) and m(W) is semigenerating, then W is semigenerating.
Proof. Assume first that 1 is semigenerating. Then from (2.23) we obtain that (W)
is semigenerating by the following calculation:

m(0). m(@)] = ml(g.a) © m(Clsw)) € Cllm(sw)) 2 Cllsnar).
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Suppose then that m; (1) is semigenerating and that i C Cl(sy/). Then we also have
the containment N = exp(i) C Cl(Sw ). Since Cl(Sy) is a semigroup, we have
(2.25) Cl(Sw) - N = Cl(Sw).

Therefore from (2.23) we get

(2.26) Sy = explsmary) = exp(m(sw)) = mx(exp(sw)) = mx(Sw).

Taking the closure and the preimage under 7y, from the fact that 7 is an open map
(and hence 75! and Cl commute) and from (2.25), we get that

(2.26

(2.27) 75 CU(Sp ) “2Y 73 Cllmy (Sw)) = Cl(Sw - N) = CU(Sw) - N %2 Ci(sy).
Consequently, taking the logarithm,

(2.28) 77 C (8, a1y) = log(mn CL(Sm ) 27 log CL(Sw) = Cl(syy).
Hence, since m(W) is semigenerating, we infer
. TS _ (2.28)
lo.0] C lo.0] +i=m"[g/i,0/i] € 7 'Cllsrw)) =" Cllsw),
proving that W is semigenerating. O

We keep reminding that a quotient algebra g/i of a Carnot algebra g is Carnot if
and only if the ideal i is homogeneous. In such a case, we say that g/i is a Carnot
quotient of g.

Proposition 2.29. Carnot quotients and products of semigenerated algebras are
semigenerated.

Proof. Consider a quotient algebra g/i of a semigenerated Carnot algebra g by a
homogeneous ideal i. Then, by Lemma 2.24.i, the Carnot algebra g/i is semigenerated,
since every horizontal half-space in g/i is of the form (W) for some horizontal
half-space W C g.

Regarding products, let g be a Carnot algebra that is the direct product g = g1 X go
of two of its Carnot subalgebras. Assume that g; and g, are semigenerated. Let
W C g be a horizontal half-space. Then for each i = 1,2 we have that the set
W; == W N Vi(g;) is a horizontal half-space in Vi(g;), or possibly the whole of V;(g;).
Since each g; is semigenerated, [g;, g;] C 5w, and hence [g;, g:] C e(5w;) as e(s5w;,) is
the largest subalgebra of 5y, by Lemma 2.8.2. Consequently,

[91,01] U [g2, 2] € e(8w:) U e(Sw,) < e(5w).
As e(5y) is a vector space, we have that also

9, 8] = [91, 91] X [92, 92] = span{[g1, g1] U [g2, g2} < 5w

Hence we infer that W is semigenerating. 0
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Remark 2.30. As a direct consequence of Proposition 2.29, one observes that if a
Carnot algebra has a non-semigenerated Carnot quotient, then the algebra cannot be
semigenerated. In particular, we point out that every rank-2 Carnot algebra of step
at least 3 is not semigenerated, since it has the Engel algebra as a quotient. Indeed,
for every such algebra g, we have that g/g¥ with g =V, @ --- @V, is a rank-2 Lie
algebra of step exactly 3, i.e., either the Engel algebra or the free Lie algebra of rank
2 and step 3. Since the Engel algebra is a quotient of the free Lie algebra, the claim
follows. Regarding the fact that the Engel algebra is not semigenerated, we refer to
Section 5.1 and specifically to Proposition 5.13.

In the next proposition we verify that three conditions for a stratified Lie algebra
are equivalent. In the rest of the paper, we shall call trimmed every such Lie algebra.

Proposition 2.31 (Equivalent conditions for the definition of trimmed algebra). For
a stratified Lie algebra g the following are equivalent:

(a) every proper quotient of g has lower step;
(b) Vi Ci for every nontrivial ideal i of g, where s is the step of g;
(c) dim Z(g) = 1.

Proof. The fact that (a) and (b) are equivalent comes from the correspondence between
ideals and kernels of homomorphisms. If every ideal contains the last layer, then any
quotient has lower step. Vice versa, if there exists an ideal that does not contain the
last layer, then the quotient modulo that ideal has still step s.

To see that (b) implies (c¢), suppose by contradiction that dim Z(g) > 1. We consider
the two cases: dim V, > 1 or dim V, = 1. In the first case, we get a contradiction since
every one-dimensional subspace i of V; is a nontrivial ideal of g for which V; C i is
not true. In the case dim V; = 1, recalling that Z(g) is graded by (2.3), we get that
Z(g)N (Vi@ --- @ V,_1) is a nontrivial ideal of g for which V; C i is not true. These
contradictions prove that (b) implies (c).

To see that (c) implies (b), let i C g be a nontrivial ideal. Since g is nilpotent, we
have' that i N Z(g) # {0}. Since dim Z(g) = 1, we have Z(g) C i. Finally, since
Vs C Z(g) Ci we get the claim. a

Definition 2.32. If g is a stratified Lie algebra that satisfies the equivalent conditions
of Proposition 2.31, then we say that g is trimmed.

We expect that every non-semigenerated algebra has a trimmed non-semigenerated
quotient. However, we only prove the following weaker statement, which will suffice in
the step-3 case.

Proposition 2.33. Let g be a stratified Lie algebra. If g is not semigenerated, then
there exists a quotient algebra § of g that is not semigenerated such that Z(g)NV;(g) =
{0} for j=1,2, and dim Z(g) N V;(g) <1 for all j=3,...,s.

Looking at the sequence adg(i) one finds a non trivial subset of i that commutes with g.
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Proof. Let W C g be a non-semigenerating horizontal half-space. Replacing g with
some quotient of it, we may suppose that for every proper homogeneous ideal i of g the
half-space W/i is semigenerating in g/i. Indeed, if there exists a homogeneous ideal i of
g such that g/i is not semigenerated, we replace g with g/i. We repeat this procedure
until every homogeneous ideal i of g has the property that g/i is semigenerated. This
will happen, eventually, since every step-2 Carnot algebra is semigenerated.

We shall then show that g has the required properties. First, we check that Z(g)NV;
is trivial. Indeed, if this space is nontrivial, then, for some n > 1,

9= (g/(Z(g)NV1)) x (Z(g) N V1) = (g/(Z2(g) N V1)) x R™

Since the product of two semigenerated Lie algebras is semigenerated (see Proposi-
tion 2.29), we get a contradiction.

To prove that Z(g) NV; is trivial, recall that Z(g) NV C ¢(Cl(sw)) by (2.21). Then,
denoting by 7 the projection 7: g — g/(Z(g) N V2), by Lemma 2.24.ii we have that
w(W) is not semigenerating. Since we assumed that W/i is semigenerating for every
proper ideal of g, we deduce that Z(g) N Vz = {0}.

Fix any j > 3. Assume by contradiction that dim Z(g) N V; > 1 and let V be a
2-dimensional subspace of Z(g) N'V;. Let us also fix a scalar product on g and set
5 := Cl(sy) N V. Observe that, as V is central, each line Rv € V is an ideal of g.
Therefore, being W + Rv semigenerating in g/Rv, we have for all u,v € V that, if
m: g — g/Ru stands for the projection,

wtRu C V C [g,8] € 7 ([8/Ro, 8/Ru]) € 7 (Cllsn)) = CUr " (saw))) 2 Cl(sy+Ro),

where we again used that 7~' and the closure commute. Hence, denoting by By, (u +
Rv) the 1/n-neighborhood of the line u + Rv within g, we obtain

(2.34) for every n € N there exists s,, € Bi/,(u + Rv) Nsy.

We claim that
(2.35) sNSYV)N H # () for every closed half-space H C V,

where §'(V) stands for the unit circle of V' with respect the restricted norm on V.
Indeed, denote by OH the boundary of H, which is a line in V, and let v be the inner
unit normal of H. Consider the sequence (s,,), given by (2.34) for the line 2v+0H C H.
Then, for every n € N, there exists h,, € 2v+ 0H such that ||s, — h,|| < 1/n. Observe
that, since ||v|| = 1 and 9H is orthogonal to v, we have ||h,|| > 1 for all n € N.
Moreover, since V is spanned by homogeneous elements of the same degree, each
path {dr(h,) | A € [0,1]} is a straight line segment between 0 and h,, contained in
H. Hence there exists A, € (0,1) such that 6y, (h,) € SY(V) N H. Since 4y, is a
contraction, from ||s, — h,|| < 1/n we deduce that dist(dy, (s,),S*(V)NH) < 1/n
for each n. Being S'(V) N H compact and sy invariant under dilations, we find
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a converging subsequence of (dy,(s,)), C sy with the limit in S'(V) N H. Hence
§NSY V)N H # 0, proving the claim (2.35).

Notice that since the subalgebra V' is abelian, the set § is a semigroup. Since, in
addition, V' is spanned by elements of the same degree of homogeneity and & is dilation
invariant, we have that § is a Euclidean convex cone. Namely, denoting by « the
degree of homogeneity of V, we find for every pj,ps € § that, in coordinates, the

straight segment connecting them is in §, since
p1+t(pa —p1) =p1+6psm(pe —p1) €8, Vte[0,1].

We therefore deduce that either § is contained in some closed half-space H C V' or
5 = V. In the latter case V is an ideal of g such that V' C Cl(s), which implies by
Lemma 2.24.ii that W/V is not semigenerating, contradicting our assumptions.

We may then assume that there exists some closed half-space H C V such that
5 C H. Let v denote one of the two intersection points of OH and S*(V). We
are going to argue that v € 5. Consider a sequence (H,), of closed half-spaces in
V for which N, (H, N H) = Ryv. By (2.35) we find a sequence (s,), € §NS*(V)
such that each s, € H,. But since § C H, we have that s, € H N H, for every
n. Hence s, — v and v € 5. With a similar argument also —v € § and therefore
{0r(v) | A € R} = Ru C 5. Now Ru is again an ideal of g contained in Cl(s), leading
to a contradiction by Lemma 2.24.ii and the fact that W/Rwv is semigenerating. [

The following lemma is an algebraic observation. It will be essential in our proof of
Theorem 3.9, which is a refinement of Theorem 1.5.

Lemma 2.36. Let g be a stratified Lie algebra, let W C g be a horizontal half-space,
and let b be a subalgebra of g containing OW . Then, the following conditions are
equivalent.

(1) There exists X € Vi \ OW such that adyY € b for allY € OW and k > 1;
(2) [g.9] b

Proof. The fact that (2) implies (1) is trivial, since if [g, g] C b, then any choice of basis
will satisfy the requirements. For the opposite direction, without loss of generality we
may assume that g is a free nilpotent Lie algebra. Indeed, if f is the free Lie algebra
of the same rank and step as g, then there exists an ideal i C [f,f] of f such that
g = f/i. Namely, there is a surjective Carnot morphism 7: f — g. Assume that the
lemma is shown for § and that g satisfies (1) for a horizontal half-space W € Vi(g) and
X € Vi(g) \ OW. Since 7 is injective on V;(f), then 7=(T¥) is a horizontal half-space
of f for which 771(X) € Vi(f) \ (=~ *(W)), and

adf iy (V) en Hadk V) S '(h), VE>1,Y €dW.

Since m7(h) = b +1i is a subalgebra of f, by the lemma we have [f,f] C 7—(h) and so
l9.9] = =([1.7]) < b
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Let then g be a free nilpotent Lie algebra of step s. We shall consider a basis for
g that is constructed by a well-known algorithm due to M. Hall [Hal50]. Below we
say that a vector Z has degree k if Z € Vj. Let {Y3,...,Y.,} be a basis for W and
X € V1 \ OW, whence {X,Y1,...,Y,,} is a basis for ;. To construct the Hall basis,
first fix an ordering for {X,Y1,...,V,,} sothat Y > X forall Y € {X,V3,..., Y.}
Suppose then that we have defined Hall basis elements of degree 1,...,k — 1 with
an ordering satisfying Y < Z if degY < deg Z. Then by Hall’s construction [Y, Z]
is a basis element of degree k if and only if Y and Z are elements of the Hall basis
satisfying

i)Y < Z;
(i) degY +deg Z = k;
(iii) it Z =[U,V], then Y > U.

Assuming that ad%Y; € b for all basis elements Y; of W and k € N, we shall show,
by induction on m, that Vo & --- @ V,,, C b, for m > 2. Clearly, we have that V5, C b.
Assume then that Vo @ --- @ V,_1 C b and take an element Y = [Y, Z] of the Hall
basis of degree k. Recall that by (i) we have Y < Z. If 2 < degY,deg Z < k — 2, then
Y € b by the induction hypothesis. Assume instead that degyY =1 and deg Z = k — 1.
Thus either Y = X or Y € OW by construction of the basis. If Y € W, we have
again that Y e bh since Z € Vi1 C b by the induction hypothesis.

Finally, suppose that ¥ = [X, Z]. Since degZ > 1, there exist some U,V with
degrees less than k& — 1 such that Z = [U, V]. By (iii) then X > U. Since the ordering
for the basis is chosen such that X is the minimal element, this implies that U = X
and Y = [X,[X,V]]. Similarly, since V is a degree k — 2 element of the Hall basis,
by (iii) we have again that V = [X V] for some V. Repeatlng this argument gives us
finally that Y = adk 1Y for some Y; € OW. Hence Y € b, by assumption. We have
shown that [g,g] = VQ @--- @V, C b and the proof is complete. O

3. SUFFICIENT CRITERIA FOR SEMIGENERATION

In Definition ?? we introduce Carnot groups of type (), which are a generalization
of Carnot groups of type (x). After that we present a proof for Theorem 1.5, which
is formulated as a corollary of Theorem 3.9 (see Corollary 3.12). We conclude the
section with Lemma 3.13, which is useful in the construction of examples in Section 4.

3.1. Carnot groups of type (0).

Lemma 3.1 (Equivalent conditions for the definition of type (0)). For each subalgebra
b of a stratified Lie algebra g for which h NV} has codimension one in Vi, the following
are equivalent:
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(a) there exists a basis {X1,..., X} of Vi such that
(3.2) adi(i X;ebh and adZd’;(,xj(Xi) € b,

foralli,j=1,...,m and k > 2;
(b) there exists a basis {Y1,...,Ym_1} of 6NV} and X € V1 \ b such that

(3.3) ady} Y; € b, adf,iXEh and adzd;%yi(X)eh,
foralli=1,....m—1and k > 2.

Proof. To show that (b) implies (a), assume that there exists a basis {Y1,..., Y1}
of h NV and X € Vi \ b satisfying (3.3). Then we shall check that the basis
{X,Y1,...,Y,,_1} satisfies conditions (3.2). Indeed, from (3.3) the only relations there
are left to check are

2
ad? .+
adly Y

for all 4,5 € {1,...,m — 1} and k > 2. The first one follows from the fact that
Y;,Y; € b and that b is a subalgebra. The second relation follows similarly, since
Y; € b and also ady, X = ady *(ad}, X) € b.

For the direction (a) implies (b), let {Xi,...,X,,} be a basis of V; for which
(3.2) holds. Observe that X; € Vi \ b for some | € {1,...,m} since h N V] is
(m — 1)-dimensional. Assume, by possibly changing indexing, that [ = m. Since
now Vi = RX,, @ (h N V1), then for each i € {1,...,m — 1} there exist a; € R and
Y; € hN'V; such that

(Y;) e and adidé PRORSY)

Xl' = aiXm —+ Y;
Therefore, for each 7 € {1,...,m — 1} we have
Yi=Xi —aiXon

and, consequently, {Y7,...,Y,,_1} is a basis of hNV;. We claim that this basis together
with X,,, € V4 \ b satisfies condition (3.3). Indeed, for all £ > 2 we have that
ady Vi =adi ! ([Xn, Vi]) = ad ([ X, Xi — ;X)) = adk X, € b,

m

which proves that adg(m Y; € h and adid;;( v,(Xim) € b foralli=1,...,m. Further-
more,

ad}, X = [Xi — X, [X; — aiXn, Xpn]] = adX, Xon +a; adk, X; € b

for every i = 1,...,m, verifying the last missing condition of (3.3). g

Next definition is a restating of Definition 1.4.

Definition 3.4 (Diamond type). Let g be a stratified Lie algebra. If each subalgebra
h of g for which h N V] has codimension 1 in V] satisfies the equivalent conditions of
Lemma 3.1, then we say that g is of type (O).
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Remark 3.5. Every type () algebra, as introduced by Marchi, is of type (¢). Indeed,
we recall that a stratified Lie algebra is of type (x) according to [Mar14] if there exists
a basis {X7,...,X,,} of V} such that
(3.6) adk, X; =0 Vi,j=1,...,m.
Therefore, every such an algebra trivially satisfies (3.2) for every subalgebra b of g.
Remark 3.7. If g is of type (¢) and admits subalgebra b of step < 2 such that hN'V;
has codimension 1 in Vi, then g is of type (x). Indeed, by (3.2) there exists a basis
{X1,..., X} of Vi such that

ady, X; € hnV; = {0},

forallz,j=1,...,m.

Despite its simplicity, the following remark will prove useful when finding out if a
given Lie algebra is of type (*).

Remark 3.8. A Lie algebra g is of type () if and only if there exists a basis
{X1,..., X} of Vi such that

adk, (Vi) =0 Vi=1,....,m.

Indeed, this follows from the fact that the map Y + ad3 Y is linear for every X € g.

Next we prove a result that is finer than Theorem 1.5. The latter is then obtained
in Corollary 3.12 as an immediate consequence of Theorem 3.9.

Theorem 3.9. Let g be a stratified Lie algebra. A horizontal half-space W C g is
semigenerating if and only if there exists a basis {X1,...,Xn} of Vi such that, for
5 = Cl(sw),

(3.10) adk, Xj € ¢, and adid;;,(l x,(Xi) € e,
foralli,j=1,...,m and k > 2.

Proof. It W is semigenerating, then [g, g] C ¢; and hence (3.10) is satisfied by any
basis. Vice versa, we assume a basis satisfying (3.10) exists and plan to show that W
is semigenerating.

We start by noticing that e(s) = b, as defined in (2.6), is a Lie algebra (see
Lemma 2.8.2) for which h NV} = OW has codimension 1 in V; and which satisfies
conditions (3.2). Then, by Lemma 3.1, there exists a basis {Y,...Y,,_1} for esN'V}
and X € V] \ ¢, that satisfy equations (3.3). We claim that, to prove that W is
semigenerating, it suffices to show that

(3.11) adbYice, Vi=1,...,m—1and k> 1.
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Indeed, this is a consequence of Lemma 2.36: being ady linear, conditions (3.11)
would imply that adl)"( Y € e(s) for every Y € 0W. Then, by Lemma 2.36 we have
[9,9] C e C 5, which would prove that W is semigenerating.

To show (3.11), we treat first the case k = 1. Recall that, up to changing sign we
have that X € w,. Since by (3.3) we have ad?,i X ee,foralli=1,...,m—1, then by
Lemma 2.13 we have that [X,Y;] € ¢; for alli =1,...,m — 1. Since also [¥;,Y]] € ¢,
forall 7,7 =1,...,m — 1 due to the fact that ¢, is a Lie algebra, we deduce that

‘/2 :Span{[X7§/i]7D/i>}/j] ‘ Za.j = 17'--7m_ 1} c Cs.

The case k > 2 is proven by induction. The first step ad Y; € ¢, is given by (3.3).
Let us then assume that adl)“( Y, € ¢, for some k > 2. Since also adfL Ak v, (X) € ¢ by
(3.3), then by Lemma 2.13 again we obtain

(X, ady Vi) = adi™ Y € e,
which we needed to show. O

Corollary 3.12 (Theorem 1.5). Every Carnot algebra of type (O) is semigenerated.

Proof. Let g be of type (O) and consider a horizontal half-space W in g. Denoting
5 := Cl(sy), from Lemma 2.8 we have that e, is a subalgebra of g for which e;,NV; = OW
has codimension 1 in Vi(g). Being g of type (0) we apply (3.2) with h = ¢; to have
that there exists a basis {X,...,X,,} of Vi(g) satisfying

adk, X; € ¢, and adzd;%vxj (X;) € e,

foralli,7=1,...,m and k > 2. Hence W is semigenerating by Theorem 3.9. Since
W was arbitrary, we conclude that g is semigenerated. O

The following lemma gives a method to construct examples of algebras of type ()
by taking suitable quotients of product Lie algebras. In Example 4.6, we shall use
Lemma 3.13 to give an example of a Lie algebra of type ({) that is not of type (x).

Lemma 3.13. Let n € N and let g; be a stratified Lie algebra for each l € {1,...,n}.
Let g =[]}, a1 with projections m: g — g, and fix a basis {X1, ..., X,lnl} for each g;.
If i is a homogeneous ideal of g such that

(3.14) adi(f X em() and adid;;l Xt (XH e m(i),
foralli,je{l,...,my}, k>2andl € {1,...,n}, then g/i is of type (O).

Proof. Let h be a subalgebra of g/i for which h N V;(g/i) has codimension 1 in V;(g/i)

and, denoting by 7 the projection w: g — g/i, let b be a subalgebra of g for which

7(h) = h. Notice first that the set {m(X1),...,7(X}, )}, spans Vi(g/i). Taking (3.2)
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into account, since [X}, X]’“] = 0 whenever [ # k, to prove semigeneration of g/i it is
enough to check that

(3. 15)

ad} ) m(Xj) = w(ad%; Xj) € b and adidi(Xh <X§_)7T(Xf) = W(adid;;! X]l_(Xf)) €,
foralli,je{l,...,m}, k>2and l € {1,...,n}.

To do this, let (-, -) be a scalar product on Vi (g) that makes the basis {X{, ..., X} }r,

orthonormal. Let v € Vi(g) \ {0} be a vector that is orthogonal to h N Vi (g ), ie., let
v e bt NVi(g). Write v as

V—En:ZaXl a €R.

=1 =1
Without loss of generality, assume that al = 1. Then, for every | = 2,...,n and
i=1,...,m; we have that
V=X - dx] €5,
as now (Y}, v) = 0. Since X{ commutes with every g; for which [ € {2,...,n}, we

immediately deduce that

b O Lie({Y{,.... Y} }y) N [g.g) = Lie({X!, ..., X! }y) N (g g = [ Jlor oil-
=2

This proves (3.15) for all 4,5 € {1,...,my}, k > 2 and [ € {2,...,n}. It is then left
to show that each term in (3.14) with [ = 1 is projected to h. Let Z be such a term.
By (3.14), we have Z € m(i). Since i is homogeneous and Z € [g1, g1], there exists
some Z € [[I,la1, /] such that Z + Z € i. But since [,[g1, 1] C b, we have that
Z € b +i and therefore 7(Z) € b. O

4. SOME RESULTS AND EXAMPLES IN LOW-STEP ALGEBRAS

In the following section we collect some lemmata that are valid in Carnot algebras of
step at most 4 and which will be used later in Section 5. However, these lemmata can
also be useful when proving semigeneration of specific examples in low step. In the
end of this section we provide two examples in step 3 that show that, on the one hand,
algebras of type (¢) form a strictly larger class than algebras of type (x) and, on the
other hand, that yet being of type (¢) is not a necessary condition for semigeneration.

The following result gives, for step < 4, equivalent conditions for being a semigener-
ating horizontal half-space.

Lemma 4.1. Let g be a stratified Lie algebra of step at most 4. For each horizontal
half-space W in g, writing s = Cl(sw ), the following are equivalent:

(i) Va C e,

(ii) ad} X € ¢, for every X € w,NVy and Y € e, NVi;
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(iii) ad} X € e, for every X, Y € Vi ;
(iv) Vs C es;
(v) W is semigenerating.

Proof. Implications (v) = (iv) = (iii) = (ii) are immediate. Regarding (ii)
= (i), recall that V5 is spanned by elements of the form [Y,Y”] and [Y, X], where
Y, Y €e,NV; and X € w,NV;. Since, by Lemma 2.8.2, ¢, is a Lie algebra, each term
[Y,Y’] € e; and, by Lemma 2.13, the terms [X, Y] belong to e;.

Let us finally prove (i) == (v). We claim that it is enough to show that
ad'}( Y € ¢, forevery X € V1, Y € ¢; and k = 1,2,3. Indeed, then by Lemma 2.36
we have [g,g] C e(s) C 5 and W is semigenerating. Now adyY = [X,Y] € ¢,
by (i). Then, as X € V; C w, U (—w,) and ad[QX,Y]X € Vs = {0} C e(s), by
Lemma 2.13 we have [[X,Y],X] = —ad% Y € ¢, Similarly, adzdg(YX = 0 and

therefore [ad% Y, X] = ad% Y € ¢;. So (v) follows. O

Remark 4.2. Let us observe what happens to condition (3.10) in low step. Given
k > 2, the vector ad:d,)c(y(X) is in Viry3. Hence, if g is of step s, it is enough to
require the conditions (3.2) or (3.3) for all k¥ < (s — 3)/2. In particular, if s <6, then
a horizontal half-space W of g is semigenerated if there exists a basis {Xy,..., X,,}
of V] such that
ad%, X; € Lie(0W)

for all 4,7 = 1,...,m. Here, we denote by Lie(0W) the Lie subalgebra of g generated
by the subset OW.

Similarly to Lemma 2.13, the following lemma gives (in step at most 4) a method
to deduce new directions that are contained in the edge of a semigroup generated by
a horizontal half-space. Lemma 4.3 below will be used in Example 4.7 and again in
the proof of Proposition 5.17.

Lemma 4.3. Let g be a stratified Lie algebra of step at most 4 and let W be a
horizontal half-space in g. Let s .= Cl(sw). If Z € VoNes, then T4(Z) C es.

Proof. Observe that V; = RX @ 0W for some X € W C to,. The ideal i :=J,(Z) is
graded and, recalling that Z € V5, we have that its layers are

Vi) ={0}, V() =RZ V(i) = span{[X, 2], (O, Z]}.

Vi(i) = span{[X, [X, Z]}, [X, [OW, Z]}, [0W, [X, Z], [OW, [0, Z]]}.
We plan to show that J;(Z) C e;, where we recall that e is a Lie algebra by Lemma 2.8.
On the one hand, by assumption, we have that Z € ¢;, so from OW C e, we get
that [0W, Z] € ¢;. On the other hand, with the aim of applying Lemma 2.13, we
observe that, since Z € V5, we have adQZ X € V5 = {0} € ¢, and hence we also have
[X, Z] € e,. Hence V3(i) C e,.
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We also check that V(i) C e,. Since ¢, is closed under bracket, we immediately have
that [OW, [X, Z]], [OW, [0W, Z] C ¢,. Regarding [X, [X, Z]], [ X, [OW, Z]], we repeat the
previous part of the argument of this proof with Z’ € {[X, Z]} U [0W, Z]. Indeed, we
have that ad%, X = 0 and Z’ € ¢,. Hence, by Lemma 2.13 we also have [X, Z] € ¢,. [

Next we prove that having a sufficiently large semigenerated subalgebra implies
semigeneration. We shall exploit this fact later in the proof of Proposition 5.17.

Lemma 4.4. Let g be a stratified Lie algebra of step at most 4. If g has a semigenerated
proper subalgebra by such that V3(g) C b, then g is semigenerated.

Proof. Let W be a horizontal half-space and let us show that it is semigenerating. Set
H =Vi(h). If H C OW, then

Vi(g) € b C Lie(0W) C e(sw).

Consequently, by Lemma 4.1 we deduce that W is semigenerating. We then assume
that # ¢ 9W. Observe that W := H N'W is a horizontal half-space in H. Hence,

since by assumption b is semigenerated, W is semigenerating within §. In particular,

denoting by é% the closure of the (log of the) semigroup generated by W within b,

we have that V3(h) C 5%7. Since bh is assumed to contain the third layer of g, we get
the inclusions

Va(g) C Va(h) C 5% C 5w,

where the last containment is a consequence of the inclusions h C g and W C W. Since
V3(g) is a vector subspace of g, then by definition of e¢(sy) we have V3(g) C e(sw).
Hence W is semigenerating again by Lemma 4.1. d

We remark that, actually, the above Lemma 4.4 has the following analogue in
algebras of arbitrary step: if h is a semigenerated subalgebra of g and there exists
a basis {X1,..., X} of Vi(g) such that the Diamond-terms (3.2) are in b, then g
is semigenerated. The proof is the same, but in the final step one needs to use
Theorem 3.9 instead of Lemma 4.1.

Corollary 4.5 (of Proposition 2.33). Let g be a stratified Lie algebra of step 3. If g
is not semigenerated, then there exists a quotient algebra of g that is trimmed and not
semigenerated.

Proof. By Proposition 2.33, there exists a quotient algebra g of g for which Z(g) N
Vi(§) = Z(g) N Va(g) = {0} and dim(Z(g) N V3(g)) < 1. Since the center of a
stratified Lie algebra is non-trivial and homogeneous (see (2.3)), we deduce that
dim Z(g) = dim Z(g) N V3(g) = 1, proving that g is trimmed. O
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In the rest of this section we provide some examples. We first show a 7-dimensional
Lie algebra of step 3 that is of type (0) but that is not of type (x), see Example 4.6.
Then we provide a 6-dimensional Lie algebra that is semigenerated but not of type
(0), see Example 4.7.

Example 4.6. Let by, hy be two copies of the four-dimensional Engel algebra Ent
and consider their product Lie algebra bh; x hs. Denoting by Z; and Z5 the generators
of V3(bhy) and V3(hs), respectively, and identifying bh; and by with the respective
subalgebras of h; X ha, we have that V3(hy x hs) = span{Z;, Zo}. Then R(Z; — Z) is
an ideal of h; x hy and the quotient algebra

0= (b1 x b2)/R(Z1 — Zs)

is a 7-dimensional (trimmed) stratified Lie algebra of step 3 (which in the Gong’s
classification [Gon98, p. 57] is denoted by (137A)). We claim that g is of type (O) but
it is not of type (%). Indeed, the fact that g is of type (O) follows immediately from
Lemma 3.13 with i = R(Z; — Z,), as now m;(i) = Va(h;) for both I =1 and [ = 2.

We argue next that g is not of type (x). Let {Xi,..., X7} be a basis of g for
which {Xj,..., X4} is a basis of V;(g) and the only nonzero brackets are [X;, X3] =
)(57 [X37X4] = X6 and [Xh [XI,XQ]] = [Xg,[X37X4]] = )(77 as presented in the
diagram below. Then for a vector ¥V = Z?Zl a; X; € V1 we have, for instance, that

ad%/(Xg) = (],?X7.
In particular, if Y is such that ad}. (V) = 0, then a; = 0. Consequently, the set of

vectors Y € Vj satisfying ad} (V) = 0 is contained in a 3-dimensional subspace of
Vi(g). We conclude by Remark 3.8 that g is not of type (x).

X1 X2 Xd X4
X5 X6
X7

Example 4.7. Let g be the 6-dimensional step-3 Lie algebra (Ngo6 in [Gon98, p.
33]), where the only non-trivial brackets are given by

(X1, Xo] = Xy, [X1, X3] = X5, [ X1, Xy] = [X;5, X5] = X

The Lie brackets can be described by the following diagram:
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X Xy X3
X, X

Xe

This Carnot algebra g is semigenerated but it is not of type (¢). Indeed, to prove
that it is semigenerated, let W C g be a horizontal half-space and let us show that
V3 = RXg C ¢, where s := Cl(sy). This would show that W is semigenerating by
Lemma 4.1.

Suppose first that X; ¢ OW. The rank of g is 3, so 9W has dimension 2. Then
there exist some a,b € R such that Y3 := X, — aX; and Y3 := X35 — bX; form a basis
for OW. Since OW C ¢, and ¢, is a Lie algebra by Lemma 2.8, we obtain

[}/2’}/%] = [X2 — aXl,Xg — le] = bX4 — CLX5 € ¢;.

Ifa#0orb#0, we get

Vs C 3([Y2,Y3]) Coes,
where the last inclusion comes from Lemma 4.3. If instead a = b = 0, then X, = Y5 € ¢,.
Since adg(2 X; = 0, by Lemma 2.13 we get that [X;, Xa] = X4 € ¢,. Again, since
V3 C J(X4), by Lemma 4.3 we get that V3 C e.

The cases Xy ¢ OW and X3 ¢ OW are easier: if Xy ¢ OW we find, like above, some
a,b € R such that OW = span{X; — aXs, X3 — 0X5}. It then suffices to notice that
Xp € Lie(X; — aXs, X3 — bX5) C ¢, for all choices of a,b € R. Similarly, the case
X3 ¢ OW follows from the fact that Xg € Lie(X; — aX3, Xo — bX3) for all a,b € R.
We conclude that g is semigenerated.

Finally, to justify that g is not of type (0), observe that the span of Xy and X3 is
an abelian stratified subalgebra of g. If g were type of (¢), then by Remark 3.7 it
would be of type (x). However, similarly to Example 4.6, we have for an arbitrary
element Y = a1 X7 + a2 X + a3 X3 € V] that

ad (X,) = a?Xs.

Hence vectors Y € V; for which ad} (V}) = 0 must satisfy a; = 0, which proves the
non-existence of type (x)-basis by Remark 3.8.

5. ENGEL-TYPE ALGEBRAS

In the rest of the paper we concentrate on a family of Carnot algebras that we call of
Engel type. These algebras can be constructed through an iterative process from the
classical 4-dimensional Engel algebra. Similarly to the Engel algebra, every Engel-type
algebra is trimmed and non-semigenerated, as we shall show in Propositions 5.11



SEMIGENERATED LIE ALGEBRAS 23

and 5.13. A more subtle result is that, at least in step 3, the Engel-type algebras are
the only Carnot algebras with these properties. For this last part, see Proposition 5.17.
The proof of Theorem 1.2 will then be straightforward.

5.1. Definition and properties.

Definition 5.1 (Engel-type algebra En™). For each n € N, we denote by En" and call
it the n-th Engel-type algebra the 2(n + 1)-dimensional Lie algebra (of step 3 and rank
n + 1) with basis {X,Y;, T}, Z}7,, where the only non-trivial brackets are given by

(5.2) i, X] =T, and [V, T]=2 Vie{l,... n}

The first two Engel-type algebras are the following. The first is En!, and it is
commonly known as Engel algebra, see [BL13|, and we represent it by the diagram
below.

Y; X

N

T

Z

The second Engel-type algebra En? is the six-dimensional algebra N 314 in [Gon98, p.
135] and its diagram is presented below.

Yi X Y,
Ty T,

Z

Each Engel-type algebra is a Lie algebra (see the simple verification in Remark 5.3)
and admits a step-3 stratification:

Vi(EN) = span{X, ;... Y},
Vo(En™) = span{Ti,...,T,},
V3(En™) = span{Z}.

We shall also give another equivalent definition for En™ in Proposition 5.9. We first
list some properties of such Lie algebras.
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Remark 5.3. Each Engel-type algebra given by the brackets (5.2) is indeed a Lie
algebra. Namely, let us verify that the Jacobi identity is satisfied. Since the basis has
a natural stratification, it is enough to check the identity for triples in the set

{X,Y,.... Y, }.
Hence, we just consider the case X,Y;, Y, or V;,Y},Y;. In the first case, we have

(X 1Y Y3l [ [, XO) - Y5, (X i) = 0+ Y5, 75, ]+ [, =0

In the second case, we have
Y3, [Y5, Vil + [Y5, [Ve, Yil] + [V, [Y3, V)] =0+ 0+ 0 = 0.

Lemma 5.4 (Properties of Engel-type algebras). The n-th Engel-type algebra En"
with a basis satisfying (5.2) has the following properties.

(i) If n > 2, then span{Yi,...,Y,} is the unique abelian n-dimensional subspace of
Vi(En");
(ii) the line RX is the unique horizontal line satisfying [RX, Vo] = {0};
(1) for every nonzeroY € span{Yy,...,Y,}, we have

ady (V1) = RZ.

Proof. (i) Obviously, the space span(Yy,...,Y;) is an abelian n-space. Vice versa,
let H be an n-dimensional subspace of V1(En™) such that H # span(Yy,...,Y,).
Then there exists v € H of the form

n
y::X—s—Zan;, with a; € R for 1 =1,...,n,
i=1

and a nonzero Y € H Nspan(Yy,...,Y,). Writing Y = 31" | ;Y] for some b; € R,
we obtain

YV,v] =Y bTi #0,

proving that H is nonabelian.
(ii) Let now

n
u:zaX—}—Za,;Y}, a,a; ERVi=1,...,n,

=1
where ay, # 0 for some k € {1,...,n}. Then

[l/, Tk} = (lkZ 7é 0,
which shows that [v, V5] # 0 if v ¢ RX.
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(iii) Let again Y ="  b;Y; for some real numbers b; not all identically zero. Since

ad}(RX) =R ad} X =R 0}Z =RZ
i=1

and also V3(En™) = RZ, we get
RZ = ad2(RX) C ad2(V;) C RZ. O

We provide next the automorphism group of the Engel-type algebras, which will be
used later in the proof of Lemma 5.7 where we characterize all stratified subalgebras
of the Engel-type algebras. For the automorphism group of the Engel algebra, we
refer to [BL13, Lemma 2.3].

Lemma 5.5. Consider the basis {X,Y1,...,Y,} of Vi(En"), n > 2, defined in (5.2).
Fiz a scalar product (-,-) on Vi(EN"™) that makes {Y1,...,Y,} orthonormal. Then
every linear transformation on Vi(EN™) that in the basis {X,Y1,...,Y,} is given by
the block matrix
a 0
<O bA) , a,beR\{0} and Ae€O(n),

induces a Lie algebra automorphism of EN"™. Moreover, every automorphism of En™ is
induced by such a transformation on Vi (En™).

Proof. By Lemma 5.4.(1) and (ii), every ® € Aut(En") must fix the subspaces
span{Yy,...,Y,} and RX. Moreover, notice that any linear map ® on V;(En") fixing
these subspaces satisfies, for some a # 0, the two equalities:
DY), (X)) = [B(¥), aX] = 3 a(®(¥), V)T and
k=1

(V). Ti] = [D_(®(Y), Yo) Ve, Ti] = (B(Y7), Vi) Z.
=1
Therefore, using again that {Y;}; are orthonormal, we deduce that
(5.6)  [®(Y;),[D(Y), ®(X)]) = D a(®(Y;), Vi) (@(Y0), Yi) Z = a(@(Y), ®(Y;)) Z.
k=1

Recall that the basis vectors of En" satisfy [Y;, [Y;, X]] = ¢;;Z. Therefore, the map @
induces a Lie algebra automorphism of En™ if and only if there exists some b # 0 such
that

[@(Y)), [®(Y;), (X)) =bd;;Z, Vi,je{l,...,n}
According to (5.6), this is equivalent to saying that the map @ is, up to scaling, an
orthogonal transformation on span{Ys,...,Y,} . O
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For a good understanding of the rest of this section, we stress that we say that a
subalgebra of a stratified Lie algebra is stratified if it is homogeneous and stratified
with respect to the induced grading.

Lemma 5.7. Let 1 < k < n. IfY is a stratified rank-k subalgebra of the n-th
1

Engel-type algebra EN™, then either by is abelian or it is isomorphic to En*~L,
Proof. If n = 1, the claim is trivially true. Assume then that n > 2 and let
{X,Y1,...,Y,} be a basis of Vi(En") as in (5.2). We start by proving the case
k = n. Assume first that b is the subalgebra generated by {X + aY¥,,,Y1,..., Y1}
for some a € R. Observe that then b is isomorphic to EN"~! for every value of a € R
since, for each i = 1,...,n — 1, we have that

i, X +aY,]=[V,X] =T, and [X +aY,,T}]=[X,T)] =0.

Recall that, by Lemma 5.4.i, the subspace span{Y;,...,Y,} is the unique abelian
stratified subalgebra of En". Since every n-dimensional subspace of V;(En™) which
is not equal to span{Yy,...,Y,} can be realized from some subspace span{X +
aY,,Y1,...,Y,_1}, a € R, by a rotation of Vi(En") around the X-axis, we infer
by Lemma 5.5 that any subalgebra generated by such subspace is isomorphic to En"~'.

Regarding the case k < n, fix a non-abelian stratified rank-k subalgebra b, of En™.
Then we find a filtration by, C b1 C --- C b, C EN™ of non-abelian stratified rank-
subalgebras b;, I = k+ 1,...,n. The claim follows now by the first part of this
proof. a

There are plenty of Lie algebras of arbitrarily large step whose first three layers
coincide with the first Engel-type algebra, for example, the filiform algebras. The
same phenomenon does not happen for the other Engel-type algebras. Since we need
this latter fact in the proof of Proposition 5.9, we clarify such a phenomenon in the
next remark.

Remark 5.8. For each n > 2, the Lie algebra En™ cannot be ‘prolonged’ in the
following sense: if g is a stratified Lie algebra for which g/g® is isomorphic to En"
for some n > 2, where 9(4) =V,®-- -V, then g = En".

Proof. Let {X,Y;},, {T;}, and {Z} be bases of Vi(g), Va(g) and V3(g), respectively,
satisfying the bracket relations (5.2) modulo g*). Observe that, being g stratified, the
subspace Vj is spanned by elements of the form [v, Z], where v € {X,Y;}" ;. We need
to show that V; = {0}. Indeed, by the Jacobi identity, we have

[X7 Z] = [Xa [Yw [Y;aXm = _[Y;'a HY;>X]7XH - [[Y;aX]a [Xv Y;H =0,
where we deduced that [V, [[V;, X], X]] = 0, since [X, V5] = {0} by Lemma 5.4.ii.
Moreover, for every j = 1,...,n and i # j (which exists since n > 2) one has
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where we used that [Y}, [Y;, X]] = [V}, T;] = 0 and that [V}, Y] = 0. This proves that
V, = {0}, in which case also g = {0} and hence g = g/g = En". O

The Engel-type algebras have the following equivalent definition using induction.

Proposition 5.9 (A characterization of Engel-type algebras). Let g be a stratified Lie
algebra of rank n+ 1 > 4. Then g is isomorphic to En™ if and only if g has a unique
abelian stratified subalgebra of rank n and every other stratified subalgebra of rank n is
isomorphic to EN"". Moreover, this characterization holds for rank n+ 1 =3 if in
addition dim Vs(g) = 1.

Proof. One direction is proven in Lemmata 5.4.i and 5.7. Regarding the other direction,
let g be a rank n + 1 stratified Lie algebra, with n 4+ 1 > 3, which has a unique abelian
stratified subalgebra hy of rank n and every other rank-n stratified subalgebra is
isomorphic to En"!.
Our first aim is to show that the condition dim V3(g) = 1 always holds as long as
n+ 1> 4. We start by claiming the following property:
(5.10)
If n+1 >4 and [ C Vi(g) is an (n—1)-dimensional abelian subspace of Vi(g), then [ C .

Indeed, let v € Vi(g) \ [. On the one hand, if [@® Rv is an abelian subalgebra of g, then
[® Ry = ho by uniqueness of hy and so [ C hy. On the other hand, if [® Ry generates a
nonabelian subalgebra, then [@ Ry is isomorphic to V;(En""'), where n — 1 > 2. Since
ho N (I @ Rv) is an abelian (n — 1)-dimensional subspace of Vi(En" '), we deduce that
ho N (I® Rr) = [ by uniqueness of (n — 1)-dimensional abelian subspaces of V;(En"™ 1)
because n — 1 > 2 (see Lemma 5.4.i). Then again [ C by and (5.10) is proven.

Recall that
V:”)(g) = Span{[Xla [X27X3H | XZ S ‘/17 1= 17273}

as g is stratified. We are going to show that vectors [X1, [Xs, X;5]] and [)?1, [)?2, )?3]]
are linearly dependent, for every choice of vectors X;, X; € Vi, i = 1,2,3. So let
X;,X; € Vi for i = 1,2,3 be such that [X;, [X2, Xs]] and [X;, [X,, X5]] are nonzero
and let h; O {X1, Xo, X3} and by D {)~(17)~(27)~(3} be rank-n subalgebras of g. Since
b, and ho have nonzero third layers, they are isomorphic to~En":1. We may assume
that Vi(h1) # Vi(ha), since otherwise [X7, [Xo, X3]] and [X7, [X2, X3]] are linearly
dependent. Hence, being it the intersection of two different hyperplanes, the space
Vi(h1) N Vi(h2) is a codimension 2 subspace of Vi(g), i.e., it has dimension n — 1.

To prove that dim V3(g) = 1, we have to show that V3(h;) = V3(h2), for all such b
and by as above. The proof for the latter fact is divided into two cases depending
on whether Vi (h;) N Vi(bs) is closed under brackets (or equivalently, it is an abelian
subalgebra) or not. Assume first that V3 (b;)NV;(h2) forms an abelian subalgebra. Then
by claim (5.10) we have that Vi(h1) N Vi(h2) C bho. Let us fix a basis {Z1,..., Z,-1}
for Vi(h1) NVi(bho) and let also Z,, € ho and X € Vi(g) be such that {Z1,...,Z,, X}
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is a basis of Vi(g). Fix next Y; € Vi(h;) \ (Vi(h1) NVi(h2)) for i = 1,2 and write it in
terms of this basis as

Yi=aX+ Y biZ
j=1

for some aj, b; € R. Notice that, since ; is not abelian, we have a; # 0. Since now
{Yi, Z1,..., Z,_1} is a basis of Vi(h;) for i = 1,2 and since ho = span{Zy,..., Z,} is
abelian, we obtain

Vs(h1) = adz, (Vi(h1)) = adZ, (RY1) = adZ, (RX) = ady, (RY:) = ady, (Vi(h2)) = Vs(h2),

where the first and the last equality follow from Lemma 5.4 (iii). Since the third layers

of by and by are one dimensional, we deduce that [X;, [X, X3]] and [X, [ X, Xs]] are
linearly dependent.

Assume instead that V3(h1) N Vi(h2) is not a subalgebra. Then, by Lemma 5.7, the
Lie algebra generated by V;(h1) N Vi(hy) is isomorphic to En™ 2. In particular, it has
step 3. Exploiting again the fact dim V3(h;) = dim V3(h2) = 1, we get that

Va(h1) = Vs(Lie(Vi(h1) N Vi(b2))) = Va(ba).

Therefore [X1, [X,, X3]] and [X;, [Xa, X3]] are linearly dependent as in the previous
case. This concludes the proof for the fact that dim V3(g) = 1 when n+ 1 > 4. Hence,
in what follows we may assume that V5(g) is one dimensional, and that n+ 1 > 3.

In the rest of this proof we are going to construct a basis of g that satisfies the
defining commutator relations (5.2) of the Engel-type algebra En™. Let h = En"*
be some nonabelian rank-n subalgebra of g and let {X,Y;, T3, Z}'~! be a basis of
b satisfying relations (5.2). We aim to find a vector Y,, € Vi which together with
T, = [Y,, X] completes {X,Y;,T;, Z}?= to the defining basis of En". Since En"
cannot be prolonged (see Remark 5.8), this is enough to prove that g is isomorphic to
En". Notice that ho N = span{Yi,..., Y, 1} since span{Yy,...,Y,_1} is the unique
abelian subspace of Vi(h) by Lemma 5.4 (i). Moreover, V3(g) = RZ as V3(g) is one
dimensional. Fix next Yn € ho \ b and write

n—1
Yn =a (Yn + ZGWY;) € hO?

i=1
where a,a; € R, i =1,...,n — 1, are values to be determined later. Now whenever

a # 0 we have that span{Yi,...,Y,} = h¢ is abelian and {Yi,...,Y,, X} is a basis of
Vi(g). To conclude the proof of the proposition, we claim that it suffices to show that

(i) there exist a; € R, i =1,...,n — 1, such that [V,,,T;] =0foralli=1,...,n—1;

(ii) there exists a € R such that [Yy,, [Y,, X]] = Z;

(iii) with the above choices of a;, a € R, the vector T), := [Y;,, X] is linearly independent
of T17 s 71—‘71,7}
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Indeed, we stress again that, by Remark 5.8, the Lie algebra En™ cannot be prolonged
and hence we indeed have that the set {X,Y;, T;, Z}7]' is a basis of a step-3 Lie
algebra isomorphic to En™.

To show (i), observe that for every i =1,...,n — 1,
Yo, T = a([Ya, T)) + a; 2).

Since V3(g) is one dimensional, the two vectors [Y;, 7}] and Z are linearly dependent.
Hence for every i = 1,...,n —1 there exists a; € R such that [Y},, T;] = 0, which proves

(i).
Regarding (i), let then b’ := Lie(Y,...,Y,, X) = En""'. Since span{Ys,...,Y,} is
again the unique abelian (n — 1)-dimensional subspace of V;(h'), it holds
[Ym [Yna RX” = [Yn7 [Kn ‘/l(h/)]]

As [Yo, [Ya, Vi(H)]] # 0 by Lemma 5.4 (iii) and since V3(g) = RZ, we may choose
a € R such that

Yo, [Ya, X]] = Z.
Thus (ii) is proven.

Regarding (iii), it is enough to notice that from (i) we have

n—1 n—1
Yo, Y T =Y bilYa, T =0,
i=1 i=1

for every choice of b; € R, i = 1,...,n — 1, whereas from (ii) we have
(Y, Tn] = [Ya, [Ya, X]] # 0.
This finishes the proof of (iii) and of the proposition. O

Next we show that each Lie algebra En™ is trimmed and that a horizontal half-space
W is, for n > 2, not semigenerating if and only if W is the abelian codimension 1
subspace of V;. Recall our definition of trimmed algebra from Proposition 2.31.

Proposition 5.11. Every Engel-type algebra is trimmed.

Proof. Let n € N and let En™ be the Engel-type algebra with the defining basis (5.2).
We shall use the third definition of trimmed Lie algebra in Proposition 2.31. Recall,
see (2.3), that in every step-s stratified Lie algebra g, we have that the center Z(g)
is graded and V; C Z(g). Hence, noticing that dim V3 = 1, it suffices to show that
Z(En")NV; = Z(En") NV, = {0}. By Lemma 5.4.ii, we have [Y, V4] # 0 for every
Y € V1 \ RX. Since X is not in the center either, this proves that Z(En") NV} = {0}.
To show that Z(En"™) NVa = {0}, let T € V4 be nonzero and write

T::ZaiTi, a; € RVi=1,...,n.

i=1
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Then a; # 0 for some ¢ = 1,...,n and hence
Vi, T) = a;,Z #0. 0

Remark 5.12. A horizontal half-space W C En" for n > 2 is semigenerating whenever
OW # span{Yy,...,Y,}.

Proof. By Lemma 5.7, we have that Lie(9W) is isomorphic to En"~!. In particular,
V3(Lie(OW)) # {0}. Since V3(Lie(0W)) C V3(En™) and V3(En") has dimension one,
we deduce that V3(En™) C Lie(OW) C e(sy ). The proof is finished by Lemma 4.1. [

Proposition 5.13. None of the En" is semigenerated. Indeed, using the defining basis
(5.2), every (of the two) horizontal half-space W such that OW = span{Y1,...,Y,} is
not semigenerating.

Proof. Let n > 1 and let us consider the following explicit representation of the basis
elements as vectors in R2(*+D:
Y, =05
n 2

Ly
X =0p41 + Z TiOnt14i + 532(%1)%

i=1
T, = Opy14i + Iz‘az(n+l)§
Z = 82(n+1)7

where i = 1,...,n. It is readily checked that these vector fields satisfy the commutator
relations given in Definition 5.1. We consider the set

C = {z e R¥"D . To(nt1) > 0}
We shall show that, for W := R, X @ span{Yy,...,Y,}, the set C' contains C1(Sy)
but exp(V3) is not contained in C.
Regarding Cl1(Sy) C C, we claim that it is enough to show that
(5.14) pexp(RLY)CC, VpeC, VY eW

Indeed, assume that (5.14) holds. Since C'is closed, it suffices to prove that Sy C C.
As 0 € C, then by (5.14) we have that exp(Y) € C for all Y € W. Then, again by
(5.14), for every finite collection Y7, ..., Y, € W it holds

exp(Yy) - --exp(Yy) € C.

Therefore, we conclude by (2.2) that

oo

U(exp(w))* € ¢,

k=1

S 22)

which we needed to show.
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To prove claim (5.14), we use the fact that the curve ¢ — pexp(tY’) is the flow line
of the vector field Y starting from p. Write Y = aX + >"1 | b;Y; with a > 0 and
b; € R. The ODE given by this vector field is

D:(pexp(tX)) = aXpexp(ex) + Y bi(Yi)pexp)-
i=1
In particular, from the above expression of the vector fields in coordinates, we have
that the 2(n + 1)-th component of pexp(tX) satisfies

(5.15) O (pesp(tX)) iy = 3 w,

i=1
which is non-negative. Notice that if p € C, then at time ¢ = 0 the 2(n + 1)-
th component is non-negative, i.e., (pexp(tX))Q(nH) = pams1) = 0. Therefore,
pexp(tX) € C for all t € Ry by (5.15), and so claim (5.14) is proven.

To see that exp(V3) is not contained in C', we observe that V3 = RZ and Z = Oa(n+1)-
We get the conclusion since C' is not 9a(p41)-invariant. O

For the time being, we do not know if the intrinsic C'-rectifiability result for
finite-perimeter sets according to [FSS03] holds in non-semigenerated Carnot groups.
However, in [DLMV19, Corollary 5.12], a priori weaker intrinsic Lipschitz rectifiability
of finite-perimeter sets was shown in every Carnot group that admits a non-abnormal
horizontal line. As a final remark before proceeding to the proof of Theorem 1.2, we
shall characterize non-abnormal horizontal lines of the n-th Engel-type algebras for
n > 2. The case n = 1 is treated in [DLMV19, Section 6]. As a consequence, we
have that the reduced boundary of a finite-perimeter set in any Engel-type algebra is
intrinsically Lipschitz rectifiable.

Remark 5.16. Let n > 2 and consider En" with the basis {X,Y1,...,Y,} satisfying
(5.2). Then, for v € Vi \ {0}, the line ¢ +— exp(tr) is abnormal if and only if
v € span{Yy,..., Y, } URX.

Proof. By [DLMV19, Proposition 5.10] and the fact that En" is stratified, for a given
v € Vi \ {0}, the curve ¢ — exp(tv) is non-abnormal if and only if

(i) ad, (Vi) =V, and (i) ad’(V})=Vi.

We prove first that, for every v € span{Yi,...,Y,} URX, the line ¢t — exp(tv) is
abnormal. Indeed, if v € RX, then [v, V3] = {0} by Lemma 5.4.ii. So ad?(V;) C
[v, V3] = {0} and condition (ii) is not satisfied. Let then v € span{Yy,...,Y,} and
consider the linear map ad,: V; — V,. Notice that span{Yy,...,Y,} C Ker(ad,),
since span{Yi,...,Y,} is abelian by Lemma 5.4.i. Therefore, ad, (V1) is 1-dimensional,
which violates condition (i) as now dim V5 > 1.
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Assume then v ¢ span{Y),...,Y,} URX and let us show that the line ¢ — exp(tv)
is non-abnormal by proving that v satisfies conditions (i) and (ii). Now v can be
written as

v=aX + iaiYi,
i=1

where a,a; € R are such that a # 0 and a; # 0 for some j =1,...,n. Then
[v,span{Yi,...,Y,}] = span{[, Y]] : i=1,...,n}

span{[aX,Y;] : i=1,...,n}

=span{T; : i=1,...,n}

= V5.

Consequently, condition (i) is satisfied. To prove that also (ii) holds, let j € {1,...,n}
be such that a; # 0 and notice that [v, RY;] = RT};. Then
ad}(RY)) = [aX + ) aY;,RT}] = [;Y},RT}) =RZ = Vs,
=1

O

5.2. Proof of Theorem 1.2. We conclude with the following characterization of
trimmed non-semigenerated Carnot algebras in step 3. As a corollary, we shall obtain
Theorem 1.2.

Proposition 5.17. Let g be a stratified Lie algebra of step 3. If g is trimmed and not
semigenerated, then it is isomorphic to some En™.

Proof. We start by proving the following fact.

If g is a trimmed Lie algebra of step 3 and rank n + 1 with a non-semigenerating
half-space W C V;, then

(5.18) OW is abelian;
and
(5.19) for n + 1 > 3 every rank-n Carnot subalgebra b with V;(b) # OW,

is trimmed and not semigenerated.

Regarding the proof of (5.18), suppose by contradiction that there exist Y;,Y; € OW
such that [Y7,Ys] # 0. Set s := Cl(sy). As OW C ¢;, we have by Lemma 2.8.2 that
[Y1,Y2] C e Then on the one hand, by Lemma 4.3 we have Jy([Y7,Y3]) C e,. On
the other hand, since g is trimmed, we have that V3 C J,([Y7, Y3]), as the latter is a
nontrivial ideal. Hence, we infer that V3 C ¢,. Consequently, according to Lemma 4.1
we get a contradiction, since W was assumed not to be semigenerating. Thus (5.18)
is proved.
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Regarding the proof of (5.19), we show first that

(5.20) Z(h) N Vi(h) = {0},

(5.21) Z(h) NVa(h) = {0}

Before proving (5.20), setting H = V4(h), we claim that

(5.22) if X € H\OW and Y € OW N H satisty [X,Y] =0, then Y =0.

Indeed, since we have the decomposition V;(g) = 0W @ RX and 0W is abelian by
(5.18), we get that Y commutes with Vi(g). Since Vi(g) generates g, we get that
Y € Z(g) N Vi(g), but the latter is trivial since g is trimmed. Hence, we get (5.22).

Regarding the proof of (5.20), we assume, aiming for contradiction, that there exists
a nonzero element in Z(h) N Vi(h) = Z(h) N H. We have two possibilities: either the
element is of the form X € H \ OW or it is of the form Y € 9W N H. In the first
case, since W N H is not trivial being the intersection of two hyperplanes, we can
find a nonzero Y in it contradicting (5.22). In the second case, since H \ OW is not
empty being the two sets different hyperplanes, we can find X in it contradicting
(5.22). Together these two cases prove (5.20).

Regarding (5.21), assume the contrary and let Z € Z(h)NVa(h) be nonzero. Applying
(2.21) for b gives Z € ¢(Cl(swnp)), where the latter is a subset of ¢;. Similarly to the
proof of (5.18), then by the fact that g is trimmed and by Lemma 4.3 we have

Vs C jg(Z) C e,
Since W is not semigenerating. by Lemma 4.1 we get a contradiction. So (5.21) is
proved.
Properties (5.20) and (5.21), together with the fact that Z(h) is a non-trivial
homogeneous subspace of §, imply that

{0} # Z(h) C Vs(h) € Vs(g).

Since V3(g) has dimension 1 as g is trimmed, we get that Z(h) has dimension 1, i.e.,
we obtained that b is a trimmed step-3 Lie algebra.

The fact that b is not semigenerated follows then from Lemma 4.4: since dim V3(g) =
1 and V3(h) # {0}, then V3(h) = V3(g). Thus (5.19) is proved.

We complete the proof by an induction argument. The initial step is given for rank
n + 1 = 2 by the classical Engel algebra En', since every trimmed Carnot algebra of
rank 2 and step 3 is isomorphic to En' (see Remark 2.30). Let then n + 1 > 3 and
suppose, by induction assumption, that every trimmed step-3 non-semigenerated Lie
algebra of rank n is isomorphic to EN"™!. Let g be a trimmed step-3 non-semigenerated
Lie algebra of rank n+ 1. By (5.18) and (5.19), the Lie algebra g has a unique abelian
stratified subalgebra of rank n and, by induction assumption, every other rank-n
stratified subalgebra is isomorphic to En"~'. As dim V3(g) = 1 since g is trimmed, we
conclude that g is isomorphic to En™ by Proposition 5.9. O
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Proof of Theorem 1.2. To prove the easy direction of Theorem 1.2, we recall that
every Engel-type algebra is not semigenerated, see Proposition 5.13. Hence, if a
Carnot algebra g has an Engel-type algebra as a quotient, then g is not semigenerated,
see Proposition 2.29. Regarding the other implication of Theorem 1.2, let g be a
step-3 Carnot algebra that is not semigenerated. By Proposition 2.33, there exists a
quotient algebra of g that is trimmed and not semigenerated. Notice that, being not
semigenerated, still such a quotient has step 3. Proposition 5.17 makes us conclude
that such a quotient is isomorphic to some Engel-type algebra. O
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