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Incentive Mechanism for Edge Computing-based
Blockchain

Zheng Chang, Senior Member, IEEE, Wenlong Guo, Xijuan Guo, Zhenyu Zhou, Senior Member, IEEE, and
Tapani Ristaniemi, Senior Member, IEEE

Abstract—Blockchain has been gradually applied to different
Internet of Things (IoT) platforms. As the efficiency of the
blockchain mainly depends on the network computing capability,
how to make sure the acquisition of the computational resources
and participation of the devices would be the driving force. In
this work, we focus on investigating incentive mechanism for
rational miners to purchase the computational resources. A edge
computing-based blockchain network is considered, where the
edge service provider (ESP) can provide computational resources
for the miners. Accordingly, we formulate a two-stage Stackelberg
game between the miners and ESP. The aim is to investigate
Stackelberg equilibrium of the optimal mining strategy under
the two different mining schemes, in order to find the optimal
incentive for the ESP and miners to choose auto-fit strategies.
Through theoretical analysis and numerical simulations, we
can demonstrate the effectiveness of the proposed scheme on
encouraging devices to participate the blockchain.

Index Terms—Blockchain; hash power; mining; computing;
reporting; reward; Nash equilibrium; optimal incentive.

I. INTRODUCTION

A. Background

The emergence of the Internet of Things (IoT) will be the
driving forces of the development of the future information
and communication technology (ICT) industry, and has the
potential to boost the revolution of the world. Upon the success
of IoT, in the coming decades, smart city, smart healthcare,
smart logistics, smart grid, digital currency, e-government,
intelligent logistics and many others will gradually emerge
into our daily life [1]. However, as a decentralized system
with a large number of devices, enjoying the benefits of IoT
comes with challenges, such as the problems related security,
delay, resources and privacy [2]. The increase in the number
of devices connected to the IoT and the variety of devices
have led to issues such as flexibility, efficiency, availability,
security and scalability. All these problems are mainly caused
by the inherent natures of IoT, which has prompted researchers
to explore novel network architecture and bring the cloud
computing platform into the research of IoT [2].
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However, as the increasing number of devices join the
IoT and the massive data transmission consume too much
frequency bandwidth, the cloud-centric processing operation
requires a large amount of computational and radio resources,
and the long-distance transmission has added a longer delay
[3]. Therefore, due to insufficient network capacity, radio
resources, and data security, it is not always desired to upload
all the data to a remote cloud via core networks. Consequently,
stakeholder and researchers start to investigate a novel prox-
imal paradigm for cloud computing, namely edge (or fog)
computing. It can be seen as a layered service structure that
extends the traditional cloud computing to provide proximal
solutions at network edge for the users. By such, the network
and computational resources can be coordinated and accessed
at the network edge and the related services can be provided
with better experience and quality, which intuitively, are also
able to boost the development of IoT.

Meanwhile, the blockchain has evolved from the origi-
nal digital currency to extensive IoT applications due to
its distributed, tamper-resistant, retrospective and transparent
features [4] [5]. It has a great potential to provide a secure
and efficient decentralized IoT paradigm. A block contains
specific data about cryptographic transactions. In peer-to-
peer (P2P) network, blockchain technology allows to operate
applications in a distributed manner without a trusted third
party as intermediate media [6], which can enable individual
to interact with others in a verifiable way. In general, the
generation of blockchain involves two processes: computing
and reporting/releasing. Computing refers to the process of
solving the Proof of Work (PoW) by computing to obtain a
settlement or an unverified block. Reporting means that when
the nodes successfully solve the PoW problem and then report
the result to blockchain for verification. When the verification
is correct, the nodes in the blockchain will reach consensus
and then obtain rewards. The users/nodes who participant in
computing are also named as miners while the computing for
consensus is called mining. To further realize the blockchain
in the IoT, edge computing can play a significant role [7]. The
miners with insufficient hash power can rent the computational
resources from Edge Service Provider (ESP). As we know, the
computing capability is the key to the security and efficiency
of blockchain, how to incentivize the miners to participate the
blockchain process and obtain the computational resources is
of profound significance. Therefore, in this paper, we aim at
proposing a novel incentive mechanism for a edge computing-
based blockchain, in order to find the optimal purchase and
pricing strategies for the miners and ESP via Stackelberg
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game.
Recently, how to incentivize the miners to establish the

blockchain receives increasing interests. In [8], the authors
present an action game architecture to study the optimal profits
of ESP and miners based on deep learning. The authors of
[9] design a novel approximation algorithm and sstudy how
the social welfare of blockchain network can be maximized.
In [10], the authors propose genetic algorithm for the profit
optimization of the blockchain. There are also several works
utilizing the game theory on designing the incentive schemes
[11]- [16]. The authors of [11] propose to investigate the
optimal profits of ESPs and miners under different pricing
strategies via game theoretic approaches. The authors of [12]
suggest a two-miner model to find the strategy of hash
power utilization and find the Nash Equilibrium (NE) in the
blockchain. In [13], a game model with incomplete informa-
tion is presented to discuss whether the miner should release
the solution of the puzzle immediately after the successfully
computing. In [14], the authors present a stochastic game with
incomplete information for efficient mining in blockchain. The
authors of [15] also present a game model to investigate the
optimal profit among blockchain providers, network insurers
and miners. The authors of [16] present a cooperative game to
study the dynamic equilibrium problem that when the miners
choose to participate in the mining pool. The authors of
[17] propose an effective algorithm to propose the optimal
offloading solution in edge computing to minimize the service
delay. For the industrial IoT (IIoT) network, the authors of
[18] propose a multi-agent enhancement learning algorithms
to find the optimal offloading strategy to solve the resource
management problem. The authors of [19] present a wireless
blockchain of?oading framework to support edge computing
and the authors of [20] introduce a multi-hop collaborative
distributed computing offloading algorithm to address the
blockchain mining problems in IIoT.

B. Contribution

Motivated by the aforementioned observations, we will
investigate the incentive mechanism for the edge computing-
based blockchain system by utilizing game theory. The game-
theoretic approaches can be categorized into two groups, i.e.
cooperative game and non-cooperative game. Both cooperative
game and non-cooperative game models have been applied.
The cooperative game models are usually used for cluster
formulation, base station or user cooperation scheme, where
the all the entities in the network share the same goal.
While the non-cooperative game has been used for resource
allocation problems, where the user or BS may compete for
the wireless resources. In this paper, the two-stage Stackelberg
game is considered, which is a suitable model for the scenario
where two selfish parties are involved. The ESP in this work
can act as the leader to set the price and the miners are
the followers to purchase the resources. Comparing with the
previous works, the main contribution of this work can be
summarized as follows.
• A three layer edge computing-based blockchain system

is considered. In the proposed system, the miners can

Fig. 1: System Model

purchase computational resources from the ESP. The
considered system can overcome some limitations of the
IoT system, such as wireless sensor network or smart city,
where the sensors with limited computing and storage
capabilities.

• In our considered system, to encourage the nodes to
participate the mining process and the ESP to provide the
computational resources, we aim to explore the relations
and interactions between two parties. The optimal incen-
tive mechanism is presented based on the game theoretic
approach, i.e. Stackelberg game, where ESP is the leader
and miner is the follower.

• Two mining schemes are particularly investigated. The
first one is that after successfully computing, the miner
will report immediately, and the other one is to report
strategically after successfully computing. Then we have
proved the existence and uniqueness of NE, and applied
backward induction to ?nd the global optimal solution.

• The proposed mechanisms can help both parties to
obtain the best benefits and essentially stimulate the
development of blockchain system. Numerical results
demonstrate the effectiveness of the proposed incentive
mechanism.

C. Organization

The reminders of this paper are organized as follows. The
system model is introduced in Sec. II. In Sec. III and Sec.
IV, we present the game formulation and theoretical analysis,
respectively. Sec. V evaluates the performance of the proposed
scheme. Finally, Sec. VI concludes the paper.

II. SYSTEM MODEL

A. System Architecture

In Fig. 1, the system model is presented. The considered
system is divided into three layers: the cloud layer, the edge
layer, and the user layer. In the user layer, the node not only
can be considered as a normal device for data acquisition and
execution, but also can take crucial computing and transmis-
sion operations. These nodes are the potential miners in the
blockchain. In the edge layer, the ESP can provide computing
and caching capacity at the network edge. The miners at the
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user layer can request the computing resources from ESP in
the edge layer and offload the computing tasks to the edge/fog
node. The cloud layer can coordinate the transmission and
computing operations and provide computing resources to the
ESP if needed.

The main processes considered in the system are described
as follows. First, when a transaction happens, the node/miner
sends the request to the blockchain network. Second, when
the security of transaction could be verified, the blockchain
network begins to execute the transaction. Next, the generation
of block begins, and rational miners participate in the com-
puting of new blocks by using hash power. The miners can
purchase the computational resources from ESP in the edge
layer, the amount of which depends on individual hash power,
the cost and the received reward. The ESP sets the price of the
computational resources. New blocks would reach consensus
after obtaining the proof of work (PoW) and miners can
receive the rewards. Finally, the blockchain network transmits
the data to the user layer or cloud layer for the next actions.

In this work, we consider the miners are rational and then
formulate the game model. However, in practice, the users or
miners in the edge computing system may not be completely
rational and some external environment, such as probability
of successfully awarding, costs, profits, historical experience,
may have significant and unpredictable impact on the choice
of the miners. In addition, in the SR scheme, the miners may
choose to obtain more profits by hiding a chain of blocks, es-
pecially when other miners have less computational capability
that cannot timely release a new block, i.e. "withholding block
attack" could happen. The security and privacy may also be a
problem as the communications between edge computing unit
and miners could be exposed to the eavesdroppers or attackers.

B. System Assumption

We consider a scenario where there is one ESP and N
miners. The set of miners is denoted as N . We consider
the miner is the buyer and the ESP is the seller in the
computing resource market. ESP pursues optimal revenue by
renting computational resource to the miners. Practically, the
ESP owns different edge computing units, and the miners can
offload the computing task or storage requests to the edge
computing unit in proximity via the wireless connection. We
assume that price of computational resource for miner i is qi
and the purchase strategy of miner i is si. The set of price of
computational resource for miners isQ = {q1, q2...qn, ..., qN},
and qi ∈ [qmin, qmax] where qmin and qmax is the minimum
and maximum price, respectively. The set of purchase strat-
egy (purchased amount) is S = {s1, s2..., sn, ..., sN} and
si ∈ [smin, smax] where smin and smax is the minimum
and maximum computational resource purchased by miner i,
respectively. Meanwhile, we assume that all the hash power
used for mining is purchased from the ESP and the hash power
proportion of miner i in the whole blockchain network is αi,
which is

αi =
si∑

j∈N
sj
. (1)

During the computing process, we assume that the proba-
bility that miner i successfully solves the PoW problem is µi.
Considering the miner’s solution to the PoW problem follows
the Poisson distribution with a compliance parameter λ [12],
µi can be expressed as

µi = αie
−λti , (2)

where the computing delay ti is related to the block size πb
of each block b. We can consider it as follows,

ti = ςiπb, (3)

where ςi is a constant parameter for miner i. Taking Bitcoin
as an example, the time for generating new blocks is generally
around 10 minutes, which means λ = 1

600 sec . Similarly, we
assume that the probability that the miner successfully reports
the solutions of the PoW problem from verification is νi. Also
we consider the miner’s solution to the PoW problem follows
the Poisson distribution with a compliance parameter γ, then
we have

νi = αie
−γτi , (4)

where τi is the delay, which is also related to the block size,
and we assume

τi = ξiπb, (5)

where ξi is a constant parameter for miner i. For simplicity,
we assume for each block, the size is equal, which means
πb = π. Meanwhile, the process of verification would consume
less computational resources and shorter processing time than
computing the PoW. For example, we can consider the value
to be γ = 1

60 sec .
When there are new tasks and transactions, they are firstly

being verified. After successful verification, the task will be
published to the blockchain. After that, if it is successfully
solved through general consensus algorithm, a new block will
be generated on a certain chain. We assume that the new
block would be generated at the beginning of the pseudo-
genesis block. For single rational miner i, there are generally
two effective mining schemes. One is that the miner can
obtain the reward from single block generation and the other
one is from a chain of blocks or branched chain. However,
miner i may face the risk that the others can report their
results after computing before him. Thus, there are two mining
and reporting schemes: immediate reporting after successfully
computing (IR) and strategically reporting after successfully
computing (SR). The main difference is that whether a miner
prefer to publish the solution immediately to award from single
block or to publish after generating a chain of blocks.

III. PROBLEM FORMULATION

A. Rewards

In the process of block generation, there are three types of
rewards for the miners: fixed reward, performance reward and
participant reward.
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1) The fixed reward Rf is the constant reward for computing
the newly generated block. For example, for Bitcoin, a
new block would be generated approximately every 10
minutes and the bonus generated by the Bitcoin has been
halved every four years. Therefore, the fixed reward of
blockchain can be regarded as an attenuation function of
which the half-life is T . That is

Rf = Rmax
f

(
1

2

) t
T

, (6)

where Rmax
f is the constant reward from genesis block.

2) The performance reward Rp is related to the volume of
transactions contained within the generated block, e.g.,
the size of each block. We have following definition:

Rp = rπ, (7)

where r is a evaluation factor and π is the size of block.
3) The participant reward Rε, i depends on the degree of

participation in the computing process while the new
block is generated, i.e.

Rε,i = εαi, (8)

where ε is a evaluation factor.

B. Stackelberg Game

In this paper, we investigate the profits for miners and ESP
by introducing a two-stage Stackelberg game. We define the
ESP as the "leader" and the miner as the "follower" in the game
model. In the first stage, the ESP sets the price based on the
services provided to the miners and in the second stage, miners
determine the demand for computational resources based on
the price set in the first stage, the cost and rewards. The
formulated game is divided into two stages, and the utility
functions of ESP and miners in each stage can be described
in the following.

1) In the first stage, the ESP will have the pricing strategy
Q = {q1, q2...} and the utility/profit function is:

UESP (S,Q) =
N∑
i

si (qi − c), (9)

where c is the cost of providing resources of the ESP
which is related to power consumption and hardware loss,
etc.

2) In the second stage, the purchase strategy of miner i is
si and the utility/profit function of i is:

Ui(S,Q) = µiνiα
2
i (Rf +Rp) +Rε,i − qisi − ci, (10)

where ci is the cost of miner i.
Accordingly, at each stage, the problem can be formulated n
in the following.

1) In the first stage, the game of the ESP aims at addressing
problem (P1).

P1 : max
Q

Ui(S,Q),

s.t. qi ∈ [qmin, qmax] .

2) In the second stage, to maximize the profit of the miners,
the optimization problem at miner i is formulated as

P2 : max
S

Ui(S,Q),

s.t. si ∈ [smin, smax] .

C. Stackelberg Equilibrium

Based on our presented Stackelberg game model, we can
bring the definition of the Stackelberg equilibrium (SE) as
follows.

Definition 1. Let Q∗ be a solution for P1 and S∗ denotes a
solution for P2, Then, the point (S∗,Q∗) is a Stackelberg
equilibrium for the game if for any (S,Q) the following
conditions are fulfilled:

UESP (S∗,Q∗) ≥ UESP (S,Q) ,

Ui (S∗,Q∗) ≥ Ui (S,Q) .

We can see that from the definition, a two-stage iterative
algorithm is required to reach a SE. In the first stage, the ESP
sets a price of the resources. Then, the miners can compete
in a noncooperative fashion in the second stage. After the NE
is reached, the ESP will reset the price based on the purchase
strategies of the miners. This two-stage update will iterate
until the conditions in Definition III-C are satisfied. In this
paper, we will apply the backward induction to find the SE
of the formulated game. Backward induction is to solve the
equilibrium of the dynamic game from the last stage of the
dynamic game, which can simplify the multi-stage dynamic
game into several single stage sub-games [21]. The backward
induction is essentially the reverse derivation from the latter
stage to the forward stage in the two-stage game. Through the
analysis of sub-game of each stage, the local optimal strategy
can be reached and the global optimal solution of the whole
game is derived.

IV. INCENTIVE MECHANISM FOR MINING

A. IR Scheme

1) Game of Miners in IR: At first, we study the existence of
NE and then to provide the uniqueness. In the IR scheme, we
assume the miners can successfully announce the solution after
computing, which means νi = 1. To simplify the calculation,
in the follow, we use uesp = UESP (S,Q), and ui = Ui(S,Q),
and we assume

Rc = Rf +Rp. (11)

First, we will provide the proof of existence for NE under
the considered game model. After some calculations, we can
see that ui is strictly convex with respect to si. Accordingly,
we can arrive the following lemmas and theorems.

Lemma 1. The strategy set A of this game is a non-empty
convex and compact set, and the utility function is a continuous
function.

Proof. There are N pricing strategies of ESP in the first
stage, and the domain is (0, qmax)

N×1 among them, where
qmax is the maximum price and × is Cartesian product. In
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the second stage, there are N purchase strategies of miners,
and the domain is (0, smax)

l×1, where smax is the maximum.
Then the domain of all elements of this Stackelberg game
is AN×N . As there is least one strategy, the solution set is
a non-empty set. In addition, as we have proved, the utility
function is a strictly convex function. We can also see the sets
are convex sets. Therefore, both of the strategy sets are non-
empty convex sets. In addition, the domain of the set has its
upper bound, which means it is a compact set. Therefore, it
can be proved that the set of strategy is non-empty convex and
compact. Moreover, we can easily observe that the function is
continuous.

Lemma 2. The considered game is finite, i.e. the number of
miners and ESP is denumerable, and the strategy set is limited.

Proof. Due to the limited rewards in the generation of new
block, there would be a finite number of game participants:
ESP and miners. Although the demand sets of miners S =
{s1, s2...} and the strategy set of ESP Q = {q1, q2...} may
have infinite number of elements,as we have shown in the
proof of Lemma 1, both of them are bounded closed sets.

Theorem 1. If the complete information static game is finite,
i.e. the number of miners and ESP is denumerable, and the
pure strategy involved is limited, then there must be at least
one NE (S∗,Q∗), where the profits of ESP and miners can
reach optimum.

Proof. Similar proof can be found in [23] (see "Existence of
Equilibrium Points"). Due to limitation of the space, we omit
here.

We have shown the existence of the NE and next we can
derive the uniqueness of the NE.

Theorem 2. The defined utility functions have the fixed points.

Proof. From Lemma 1, the strategy set A of this game is a
non-empty convex and compact set, and the utility functions
are continuous. Therefore, the defined utility functions must
have the fixed points [22]. Due to the limitation of the
space, detailed proof can be found in [22]( "2.3 Fixed Point
Problems" about the application of Fixed Point theorems), so
we omit here.

Theorem 3. The NE that obtains the optimal profits for miners
and ESP must be the fixed point of the utility function [25].

Proof. Similar proof can be found in [24] (See in "2.3 Fixed
Point Problems" about the application of Fixed Point theo-
rems and the expression of Nash’s earlier studies by using
"Brouwer’s theorem" to prove NE in [?]), due to limitation of
the space, we omit here.

Next, we demonstrate the uniqueness of NE upon the
method of Standard function [25]. First, we present the defi-
nition of Standard function.

Definition 2. A general function f (x) can be seen as a
Standard function when it satisfy the conditions as follows:
• Positivity

∀x ∈ X, f (x) > 0. (12)

• Monotonicity

∀x1, x2 ∈ X, x1 ≤ x2, f (x1) ≤ f (x2) . (13)

• Scalability

∀ρ > 1, x ∈ X, f (ρx) ≤ ρ.f (x) . (14)

Accordingly, in the following, we will prove that the strat-
egy function is a Standard function. As we have shown in
Theorem 2 and Theorem 3, there are at least one NE and it
is the fixed point. Then we have

(s∗) = (f (s∗1) , f (s∗2) ...f (s∗N )) . (15)

For miner i, f (si) is the purchase strategy. Then we set
∂ui
∂si

= 0 and obtain

∑
j∈N

sj =

√√√√ (µRc + ε) ·
∑
j 6=i

sj

q
. (16)

As we know
si =

∑
j∈N

sj −
∑
i6=j

sj , (17)

and we can substitute (16) into (17) and get

s∗i = f (si) =

√√√√ (µiRc + ε) ·
∑
i6=j

sj

qi
−
∑
i6=j

sj . (18)

Then we can arrive the following lemma and theorem.

Lemma 3. The strategy function of miner i is Standard
function.

Proof. We will prove the lemma according to the definition
of Standard Function. As si is the purchase strategy of miner
i and we have given the expression of f(si) in (18), so we
can obtain that:

∀si ∈ S, f (si) > 0. (19)

Next, we assume that s1, s2 (s1 ∈ S, s2 ∈ S) and s1 < s2,
and after substituting it into (18), we can obtain that:

f (s1)− f (s2) = −

√∑
j 6=1

sj −
√∑
j 6=2

sj

√ (µiRc + ε)

q

−

√∑
j 6=1

sj −
√∑
j 6=2

sj

∑
j 6=2

sj +
∑
j 6=1

sj

 .

(20)
As s1 < s2, we can see

√∑
j 6=1

sj −
√∑
j 6=2

sj > 0, which

means f (s1)− f (s2) ≤ 0. Considering ∀ρ > 1, we have

ρf (si)− f (ρsi) = (ρ−√ρ)

√√√√ (µiRc + ε) ·
∑
i6=j

sj

qi
> 0.

(21)

Then, all the conditions of Standard function have been
satisfied.
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Theorem 4. If the strategy function of miner i is Standard
function, and there must only one NE in the space of strategy
set [25].

We have proved the existence and uniqueness of NE of the
second stage of the game. The existence and uniqueness of NE
of the first stage can also be provided using similar approach.
Then we can obtain the optimal strategy of miners by apply-
ing Karush-Kuhn-Tucker (KKT) conditions and Lagrangian
method in the following steps.

From (16), we can obtain that:

qi
(µiRc + ε)

=

∑
i6=j

sj( ∑
j∈N

sj

)2 , (22)

which equals to:

∑
j∈N

(
qi

µiRc + ε

)
= (N − 1)

∑
j∈N

sj( ∑
j∈N

sj

)2 . (23)

After some calculations, we have∑
j∈N

sj =
N − 1∑

j∈N

qi
µiRc+ε

. (24)

Then we substitute (16) into (24), and obtain√√√√ (µiRc + ε)
∑
i6=j

sj

qi
=

N − 1∑
j∈N

qi
µiRc+ε

. (25)

Correspondingly, we can obtain the optimal strategy as fol-
lows,

si
∗ =

N − 1∑
j∈N

qi
µRc+ε

−

 N − 1∑
j∈N

qi
µRc+ε


2

· qi
µRc + ε

. (26)

2) Game of ESP in IR: In the first stage, the pricing strategy
of ESP depends on the service demand si. When we get the
NE of the second stage, then we can try to find the best
pricing strategy for ESP to obtain the optimal profits. After
substituting (26) into (9), one can arrive

uesp = (qi − c1)

(N − 1)
∑
j∈N

(
e−λtiRc + ε

)
qi

− (qi − c1)

(N − 1)
2

( ∑
j∈N

(
e−λtiRc + ε

))2

qi (e−λtiRc + ε)
.

(27)

Then, with some calculations, we can see that the uesp is
also a convex function with respect to the qi. Accordingly,
there must be a Q∗ which enables ESP to obtain the optimal
profits. The proof of existence and uniqueness are similar
to the ones in the second stage. With the optimal purchase
strategy s∗i of miner i, we will obtain the optimal pricing
strategy q∗i . In other words, under the combination of the

strategy (S∗,Q∗), both the miners and the ESP can achieve
the optimal profit, which is essentially the SE of the game. We
could then apply the KKT conditions and Lagrangian method
to solve the P1 to find the optimal q∗i .

In the IR scheme, the existence and uniqueness of NE
of each stage of the formulated game model can be proved
according to the presented theorems. The backward induction
method is used to solve the SE of the two-stage Stackelberg
game to obtain the global optimal solution. First, the optimal
purchase strategy of the miners in the second stage is solved.
Then we can obtain the pricing strategy of the ESP in the first
stage.

B. SR Scheme

When miners decide to participate in mining, some of the
miners may choose to temporarily hide their solutions of
complex transactions due to the their stronger hash power.
We assume rational miners who are with stronger hash power,
i.e, a certain level of hash power, would tend to utilize the SR
mining scheme instead of IR to get a better reward. However,
the miner who would like to choose SR will suffer a higher
risk as the other miners may report their solutions before it.
In this work, we do not consider the situation of "orphan"-like
to avoid the folk game with different branches [26]. That is,
although the miner i can obtain a better reward when choosing
SR, it will suffer more risk to generate a chain of abandoned
blocks.

Similar to the solution of the IR, we advocate the backward
induction and first study the second stage.

1) Game of Miners in SR: After successfully mining block
m, miner i who select the SR has the utility function that:

Ui,m
SR(S,Q) = µiνimR1+εαi−qisi−ci+

m−1∑
n=0

uSRi,n . (28)

In the following, we also assume uSRi,m = USRi,m(S,Q). First,
we take the first order and second order derivatives of (28)
with respect to si, and we can obtain

∂ui,m
SR

∂si
= 2e−λti−γτimR1αi

∑
s6=j

sj( ∑
j∈N

sj

)2 +ε

∑
j 6=i

sj( ∑
j∈N

sj

)2−qi,

(29)
∂2ui,m

SR

∂si2
= 2e−λti−γτimR1

(
∂αi
∂si

)2

+
(
2e−λti−γτimR1α+ ε

) ∂2αi
∂s2i

(30)

We assume a content-specified function, and can arrive

∂2ui,m
SR

∂si2
< 2e−λti−γτimR1

(
∂αi
∂si

)2

+ 2e−λti−γτimR1
∂2αi
∂s2i

< 2e−λti−γτimR1

((
∂αi
∂si

)2

+ 2
∂2αi
∂s2i

)
= ω

(31)
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which equals to

ω = 2e−λti−γτimR1




∑
j 6=i

sj( ∑
j∈N

sj

)2


2

− 4

∑
j 6=i

sj( ∑
j∈N

sj

)3



= 2e−λti−γτimR1

∑
j 6=i

sj

(∑
j 6=i

sj − 4
∑
j∈N

sj

)
( ∑
j∈N

sj

)4 < 0.

(32)

Then, we can conclude that ∂2u2

∂si2
< 0, which means the

utility function is convex. When we set ∂u2

∂si
= 0 and obtain

that:

2e−λti−γτimR1αi

∑
j 6=i

sj( ∑
j∈N

sj

)2 +ε

∑
j 6=i

sj( ∑
j∈N

sj

)2−qi = 0. (33)

By substituting (17) into (33), we can obtain

2e−λti−γτimR1s
2
i +

(
ε

(∑
j∈N

sj

)
− 2e−λti−γτimR1

)
si

−

(
ε

(∑
j∈N

sj

)2

− q

(∑
j∈N

sj

)3)
= 0.

(34)

Then we assume a content-specified function l (s), set the
equation θ =

∑
j∈N

sj , and we can obtain that
∑
j 6=i

sj = θ − si,

and

l (si) = 2mR1e
−λti−γτis2i +

(
εθ − 2mR1e

−λti−γτiθ
)
si

−
(
εθ2 − qθ3

)
.

(35)

When we set the equation l (si) = 0, and we can see that
the discriminant is

∆ =
(
εθ − 2mR1e

−λti−γτiθ
)2

+ 8mR1e
−λti−γτi

(
εθ2 − qθ3

)
> θ

(
4mR1e

−λti−γτi
(
mR1e

−λti−γτi + ε− 2qθ
))
.

(36)

Meanwhile, under the condition of the axis of symmetry
si = εti−2mR1e

−λti−γτi t
−4mR1e−λti−γτi

> 0, that is the axis of symmetry
is the right of the origin. According to Vieta Theorem, it can
be known that the relation between the two roots is s1i s

2
i =

εt2−qt3
2mR1e−λti−γτi

< 0, then we can see that equation l (si) = 0

has only one positive root. Also, we assume s2i > s1i when
the domain of strategy is si ∈ [smin, smax], there must be only
one root

s2i =
−φi +

√
φ2i + 8mR1e−λti−γτi (εt2 − qt3)

4mR1e−λti−γτi
> 0, (37)

which makes condition
∂uSRi,m
∂si

= 0 satisfied, and φi =(
εti −mR1e

−λti−γτiti
)
. Therefore, the optimal purchase

strategy for the miner who chooses the SR can be found in
(38).

Under the condition (1), we can conclude that

α∗i ≥
2qis

∗
i

mR1e−λti−γτi + ε
. (39)

Then miner i can obtain optimal profit uSRi,m:

uSRi,m = e−λti−γτiα∗2i mR1 +εα∗i −qis∗i −c+
m−1∑
n=0

uSRi,n . (40)

Then, we take the first order and second order derivatives
of (40) with respect to αi,

∂uSRi,m
∂αi

= 2e−λti−γτimR1αi + ε > 0, (41)

and
∂2uSRi
∂α2

i

= 2e−λti−γτimR1 > 0. (42)

Thus, it can be seen that for the miner who chooses the
strategy to report the solution strategically, the higher the
proportion of computational resource leads to a higher reward.

2) Game of ESP in SR: In the first stage, we can substitute
the optimal strategy (38) into ESP’s utility function (9), we
can obtain (43). Then, we take the first order and second order
derivatives of (43) with respect to qi, then we would conclude
that the utility function uesp of the ESP is strictly convex.
Therefore, according to the previous analysis, there is a NE
of the game. According to (40), we can obtain the optimal
mining strategy S∗ for miner i and we could obtain the optimal
pricing strategy Q∗ for ESP by applying the KKT condition.
The method of backward induction is used to seek the SE to
maximize the profit of participants of the overall game.

Therefore, we can see that for both IR and SR schemes,
Stackelberg equilibria exist. That is, there are strategies
(S∗,Q∗) enabling the miner and ESP to obtain the optimal
profits for both mining schemes.

V. PERFORMANCE EVALUATION

To simplify the evaluation, we assume the miner has no
hash power which means that all the hash power should be
purchased from the ESP. Some key simulation parameters are
from [9] [10].

Fig. 2 presents the relations between the computing capa-
bility αi and the profit of the miner. It can be found that, for
the IR scheme, as we consider the probability of successful
reporting is 1, it has a better performance than the SR scheme.
It is mainly due to the fact that in the SR scheme, the miner has
to buy more resources due to the competition, which induce
higher cost. In addition, we can see that when α is small, the
benefit is basically negative. That is mainly because when α
is small, the obtained reward is smaller than the cost. It can
also be found that the profit increases as the size of block gets
bigger.
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s∗i =
−
(
εt−mR1e

−λti−γτit
)

+

√
(εt−mR1e−λti−γτit)

2
+ 8mR1e−λti−γτi (εt2 − qt3)

4mR1e−λti−γτi
. (38)

uesp = (qi − c)

(
2e−λti−γτimR1 − ε

( ∑
j∈N

sj

))
+

√√√√(ε( ∑
j∈N

sj

)
− 2e−λti−γτimR1

)2

+ 8e−λti−γτimR1

(
ε

( ∑
j∈N

sj

)2

− q

( ∑
j∈N

sj

)3)
4e−λti−γτimR1

(43)

Fig. 2: Computing capability vs. profits

Fig. 3: Size of the transaction block vs. the profits

In Fig. 3, we plot the impact of the size of the transaction
in each block on the profit of the miners. In this figure, the
performance of IR scheme is presented. As we can see, as
the size of the block increases, the profits first become larger,
then decrease after reaching the maximum value. When the
size of block increases, the time and complexity of computing
PoW are incremental. Therefore, after reaching the maximum,
the cost dominates the performance of profit no matter what
kind of computing capability is considered. Moreover, when
computing capability increases, the performance get better.

Fig. 4 shows the the size of the transaction in each block

Fig. 4: Size of the transaction block vs. the probability of
rewarding

on the probability of successful reporting/rewarding. In this
figure, the performance of both IR and SR schemes are
illustrated. Generally, the IR scheme has a better performance
than the SR scheme. As the size of the block increases, the
probability of successful reporting/rewarding decreases. This
is mainly due to the fact that complexity of computing is
incremental. More hash power is used for computing purpose
and increasing the computing capability can help to get a
better performance. In addition, if more transactions or users
are considered, the proposed scheme is able to allocate more
resources to the users with demand in order to obtain the
optimal utility.

Fig. 5 illustrates the relationship between the computing
capability ai and the profits of the miner under different
forms of reward composition. In this figure, the larger the
coefficient e is, the greater the proportional rewards will be.
Firstly, when the performance reward coefficient is increased,
the increase of miners’ reward can be observed under the
condition of the same participation reward (i.e., Rε,i ) and
computing capability. We can also observe that the profits of
the miners increase significantly with the increase of the coef-
ficient e while the performance reward evaluation factor r and
the computing capability ai remain constant. When different
reward coef?cients are selected, the rewards available to the
miners increase with the increase of computing capability. This
is mainly due to the participation reward is directly determined
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Fig. 5: Computing capability vs. profits

by the proportion of the computing capability contributed
when solving the PoW puzzle.

VI. CONCLUSION

In this paper, we have investigated the incentive mechanism
under edge computing-enabled blockchain. To encourage the
participation of blockchain and find the optimal profits for
miners and ESP, we have formulated a two-stage Stackelberg
game model to maximize the profits under the two mining
schemes. Firstly, we have provided proof of the existence
and uniqueness of Nash equilibrium of each stage. Then, the
optimal solutions are presented and backward induction is in-
troduced to find the Stackelberg equilibria. Through theoretical
analysis and simulation, we have proved the effectiveness of
the proposed inventive mechanism. In the future, we will focus
on in-depth study of the incentive mechanism. In particular,
we would like to focus on the case where multiple ESPs co-
exit in the system. Then, we turn to investigate the cooperation
and competition of multiple ESPs when providing resources
to the miners/nodes, by utilizing game-theoretic approaches.
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