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Abstract

Nätkinniemi, Joonas
Optical feedback cooling of a mechanical silicon oscillator with a single
laser
Master’s thesis
Department of Physics, University of Jyväskylä, 2020, 51 pages

Optical feedback cooling was attempted on a split silicon beam photonic
crystal oscillator, which acts as an optical cavity and a micromechanical
resonator. The cooling setup uses a single laser for the dual roles of position
measurement and feedback via amplitude modulation. The theoretical basis
of optomechanical feedback cooling is explored, and expected spectrum
of the feedback experiment is simulated. Feedback experiments were
performed and the resulting spectrums were plotted and analyzed. Because
of mistakes made in the experiment setup, significant unwanted parasitic
feedback effect was encountered during the feedback experiments, which
resulted in no detectable cooling effect. The probable significant causes of
the parasitic feedback were identified and ways to correct them proposed
for possible follow up experiments.
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Tiivistelmä

Nätkinniemi, Joonas
Mekaanisen piivärähtelijän optinen takaisinsyöttöjäähdytys yhdellä laserilla
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2020, 51 sivua

Optisella takaisinsyöttöjäähdytyksellä tarkoitetaan laserjäähdytyksen tyyp-
piä, jossa mekaanisen värähtelijän liike syötetään takaisin moduloimalla
laserin amplitudia siten, että laserin amplitudi, ja täten säteilypaine, on
suurimmillaan silloin kuin värähtelijän nopeus laseria kohti on suurimmil-
laan. Laserin säteilypaine vaimentaa värähtelijän lämpöliikkeestä johtuvaa
värähtelyä, joka tarkoittaa sitä, että värähtelijän lämpötila laskee. Tässä
työssä optista takaisinsyöttöjäähdytystä sovellettiin halkaistun piipalkki
valohilan jäähdyttämiseen. Halkaistu piipalkki toimii optisena kaviteettina,
muodostaen optomekaanisen systeemin. Värähtelijän liikkeen mittaus ja
liikkeen takaisinsyöttö suoritettiin yhtäaikaisesti samalla laserilla. Työssä
myös käydään läpi optomekaniikan ja takaisinsyöttöjäähdytyksen teoriaa,
sekä simuloidaan jäähdytyskokeen odotettu värähtelyspektri.

Jäähdytyskoetta suoritettaessa törmättiin ongelmiin parasiittisen takai-
sinsyötön kanssa. Näiden ongelmien johdosta minkäänlaista jäähtymistä ei
saavutettu. Näistä jäähdytyskokeista mitatut spektrit piirrettiin ja analy-
soitiin. Kohdatut ongelmat parasiittisen takaisinsyötön kanssa johtuivat
mittauksen valmistelussa tehdyistä virheistä. Värähtelijän liikkeen mittaa-
miseksi käytetyn homodyyni-interferometrin referenssi- ja signaalihaarojen
välillä tulee olla tietty vaihe-ero. Tätä vaihe-eroa ei oltu asetettu oikein.
Tämän lisäksi parasiittista takaisinsyöttöä lisäsi se, että laserin amplitudia
moduloitiin jo ennen kuin lasersäde erotettiin homodyyni-interferometrin
kahteen haaraan, sen sijaan että modulointi olisi suoritettu vain signaalihaa-
rassa. Kolmanneksi, laserin aallonpituus säädettiin käsin optisen kaviteetin
resonanssiin, sen sijaan että se olisi lukittu siihen sähköisesti. Tämä ai-
heutti pienen epävireen laserin ja optisen kaviteetin välille. Kunhan nämä
virheet korjataan, pitäisi takaisinsyöttöjäähdytyksen jatkossa onnistua.

Avainsanat: opinnäyte, tiivistelmä
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1 Introduction

Optomechanics is the field of study and application of interaction between
light and mechanical motion. The basis of optomechanics is that light
applies a radiation pressure force to a mechanical system, for example a
suspended mirror, which then changes the motion of the system. The light
reflected back from the system can also be used to gain information about
the mechanical state of the system, such as information about the position
of an oscillator. The action of light on mechanics has many applications,
one of which is laser cooling.
The idea of using a laser to cool down matter was first proposed by

Hänsch and Swallow[1], as well as Wineland and Dehmelt, both in 1975.
Wineland then went on to conduct the first laser cooling experiment in
1978[2]. This first type, and still the most common type, of laser cooling
is now known as Doppler cooling. In doppler cooling, the laser is slightly
red detuned from the atoms electronic absorption wavelength. When the
atom is moving towards the laser, the photon wavelength gets doppler
shifted into the electronic absorption range and the photon is absorbed,
slowing the atoms momentum. The atom then emits a photon in a random
direction as it relaxes back to its electronic ground state. This process has
an overall dampening effect on the atoms movement, thus cooling them
down. Other types of laser cooling entered the picture in the following
decades, such as Sisyphus cooling, resolved- and Raman sideband cooling,
grey molasses, and cavity assisted cooling. These techniques are all related
to doppler cooling, and work mostly for atoms or ions in a vacuum or in a
trap, rather than macroscopic mechanical structures.

Optomechanical cooling first appeared in 1970, when Braginsky et al.[3]
demostrated damping of mechanical motion due to radiation pressure
on a microwave cavity. The first optomechanical experiment to use op-
tical cavities was in 1983, by Dorsel et al.[4]. The first optomechanical
experiment to demonstrate cooling was a 1999 experiment by Cohadon,
Heidmann and Pinard[5], where they used optical feedback to cool a sus-
pended mirror. This type of optomechanical cooling by active feedback,
aka. feedback cooling or "cold damping", was first proposed the year before
by Mancini et al,[6] and has since been used to cool, amongst other things,
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1 Introduction

AFM cantilevers[7], neutral atoms[8], nanoparticles, and various micro-
and nanomechanical oscillators. Ground state cooling by feedback of a
mechanical oscillator was first achieved by Rossi et al.[9] in 2018.

Feedback cooling works by reading the position of the mechanical oscil-
lation, and then using it to create a feedback signal for modulating the
amplitude of the cooling laser, so that the radiation pressure is propor-
tional to the velocity of the oscillation, creating a strong damping force.
The required measurement of the oscillator position is often done using
a separate laser, tuned to different optical cavity mode (and different in
polarization) to avoid interaction with the cooling laser. The effectiveness
of feedback cooling depends, among other things, on the efficiency of the
measurement of the oscillator position, with groundstate cooling requiring
a high efficiency[9]. The measurement efficiency quantifies the amount of
information gained per decoherence caused by the measurement. Since
decoherence leads to heating, this efficiency should be as high as possible
for best cooling performance.
The theoretical basis for feedback control of optical cavities was first

explored by Wiseman and Wilburn in 1993[10]. The theoretical basis for
feedback cooling was further refined, amongst others, in a 1999 paper by
Doherty and Jacobs[11], where they establish a connection with classical
control theory, allowing the theory of classical feedback loops to be applied
to quantum systems. A more recent, comprehensive look on quantum
control theory can be found in, for example, a 2017 paper by Zhang et
al.[12]

Beside feedback cooling, there is another common optomechanical cooling
method called sideband cooling. In sideband cooling, the cooling laser
beam is red detuned from the optical cavity resonance, which results in an
overall dampening force on the oscillation. This is closely analogous with
the way doppler cooling works. Sideband cooling acts passively, as opposed
to the active feedback in feedback cooling, and works best in the resolved
sideband regime of optical cavities. Passive cooling by photothermal force
was first demonstrated by Metzer et. al.[13] in 2004, by cooling a microlever
from room temperature down to 18K. Passive cooling based on radiation
pressure induced backaction force, which is what is commonly understood
as sideband cooling, was first demonstrated on a micromechanical oscillator
in 2006 by both Arcizet et al.[14] and Schliesser et al.[15] Sideband cooling
has been used to get mechanical systems to their groundstate, with lowest
phonon occupation of n̄ ≈ 0.2 achieved by Peterson et al.[16] in 2016.
This type of cooling is typically limited by the quantum back-action limit,
where the cooling is limited by the heating caused by the back-action
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of the radiation pressure shot noise[17][18]. There are ways around this
limit while still using a passive sideband cooling method, but by contrast,
feedback cooling is not usually primarily limited by shot noise, being
instead mainly limited by the instability at high feedback gains. The two
methods of optomechanical cooling have been compared in a 2008 paper
by Genes et al.[19], where the advantage of the active feedback cooling
paradigm in the so-called bad-cavity limit is established.
In this work feedback cooling will be used on a split silicon beam,

patterned with a photonic crystal, using a single laser. The split silicon
beam structure, which is the same kind of structure as in the paper by
Leijssen et al.[20], will be used in the future to study the coupling of
donor spin qubits in silicon to the mechanical motion of the beam. For
coherent coupling, the beam should be as cold as possible, which is why
feedback cooling is being investigated. Feedback cooling has been shown
to work well in the bad-cavity limit[19] where our cavity resides, and since
a laser will be used to read the mechanical motion of the beam for the
study of spin qubits, using the same laser to cool down the mechanical
motion seems optimal. The reasoning for using a single laser for both
measuring the mechanical motion and for applying the feedback force,
instead of two seperate lasers as was done by Rossi et al.[9], was because
there was only one suitable laser available at the time. This work will show
that naively applying the feedback in this manner can lead to problems
with parasitic self-feedback due to unwanted interaction of the balanced
homodyne measurement setup with amplitude modulation of the measuring
laser.
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2 Theory

2.1 Harmonic oscillator
Like many physical systems, optomechanical systems can be modelled as
coupled quantum harmonic oscillators, where both the mechanical oscillator
and the cavity optical field are modelled as simple harmonic oscillators,
connected to an outside thermal bath[18]. Quantum harmonic oscillators
have a Hamiltonian of the form

Ĥ = kq̂2

2 + p̂2

2m,

where m is the oscillator’s mass, k is the spring constant and q̂ and p̂ are
the position and momentum operators. The oscillator can also be described
in terms of annihilation and creation operators a and a†, which act on
the oscillator states to either add or remove a quantum (a phonon, or a
photon in case of the optical field), moving the oscillator away or towards
the ground state:

a|n〉 =
√
n|n− 1〉

a†|n〉 =
√
n+ 1|n+ 1〉,

where |n〉 is the n:th eigenstate of the harmonic oscillator[18]. These
operators are also called the ladder operators, because they have the effect
of moving up or down an energy level, adding or removing a quantum of
energy. Phonon/photon number operator n̂|n〉 = n|n〉 can be defined using
the ladder operators as

n̂ ≡ a†a.

According to quantum mechanics, all mechanical systems have some energy
even in ground state, called zero-point energy. Therefore, the oscillator
also has some zero-point momentum pzp, as well as some average zero-point
displacement xzp. These are given by

pzp =
√
h̄mΩ0

2
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2 Theory

and

xzp =
√

h̄

2mΩ0
,

where Ω0 is the resonance frequency of the oscillator[18]. For the sake
of simplicity, all harmonic oscillators (both mechanical and optical) are
assumed to have only one resonance mode here. With the help of the
zero-point quantities, the quantum mechanical position and momentum
operators can be expressed in terms of the creation and annihilation
operators as follows:

q̂ = xzp(a† + a)

and
p̂ = ipzp(a† − a).

We can then express the harmonic oscillator Hamiltonian in terms of
the creation and annihilation operators, getting

Ĥ = h̄Ω0

(
a†a+ 1

2

)
= h̄Ω0

(
n̂+ 1

2

)
.

This form of the Hamiltonian is called the canonical quantum harmonic
oscillator Hamiltonian[18]. In practice, the zero point energy term h̄Ω0

2 is
often left out when it is not important.

It is often useful to define dimensionless position and momentum opera-
tors

Q̂ = 1√
2
q̂

xzp
= 1√

2
(a† + a)

P̂ = 1√
2
p̂

pzp
= i√

2
(a† − a)

where the position and momentum operators q̂ and p̂ have been expressed
using the ladder operators, as well as zero-point displacement and momen-
tum.
Another useful quantity to define is the susceptibility

χ ≡ 1
m(Ω2

0 − Ω2 − iΩγ) ,

where m is the effective mass of the oscillator, Ω is frequency, and γ
is the frequency dependent dissipation[17]. Susceptibility quantifies the
oscillator’s frequency dependent response to outside force, peaking at the
resonance frequency of the oscillator. In other words, in the frequency
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2.2 Mechanical oscillator in thermal bath

domain we have x(Ω) = χF (Ω), where x(Ω) and F (Ω) are the fourier trans-
forms of the oscillator displacement and the displacing force, respectively.
As seen later, optical force from a laser acts to modify the mechanical
oscillators susceptibility, changing its response to thermal forces. Thus
susceptibility is an important concept to understand in feedback cooling.

In quantum optomechanics, it is often useful to transition to a rotating
frame of reference, to simplify some of the calculations. In such a frame,
there are the dimensionless quadrature operators

X̂(t) = 1√
2

(a†eiΩrt + ae−iΩrt)

and
Ŷ (t) = i√

2
(a†eiΩrt − ae−iΩrt),

where Ωr is the rotation frequency of the frame. These operators are
often used for the optical field, where they are called the amplitude and
phase quadratures, respectively. These quadratures are important in
measuring the position of the oscillator, because (in the case of zero
detuning) the mechanical position information gets imprinted on the phase
quadrature of the scattered light[18]. Thus, for the measured signal to be
linearly proportional to the oscillator position, the measurement must be
constructed in such a way that only the phase quadrature of the scattered
optical field is measured.

2.2 Mechanical oscillator in thermal bath
A harmonic oscillator connected to a thermal bath has a Hamiltonian of
the form

Ĥ = Ĥ0 + V̂ = h̄Ω0a
†a+ Ĥbath + V̂ ,

where V̂ = q̂F̂ is a forcing term, describing the force F̂ that the oscillator
experiences due to coupling with the bath, and Ĥ0 = h̄Ω0a

†a + Ĥbath is
the bare system Hamiltonian, neglecting zero point energy[18]. Hbath is
the Hamiltonian of the thermal bath, the form of which is not important
in this case. This system of the oscillator and bath evolves in time, with
the forcing causing upwards transitions in the oscillator energy levels.
The transition probability is

Pn→n+1 =
x2
zp(n+ 1)
h̄2 tSFF (−Ω0),
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2 Theory

where t is time and SFF is the power spectral density of the forcing term
force F̂ [18]. Power spectral density of a quantum operator O in frequency
space is given by

SOO(Ω) =
∞∫
−∞

dτ eiΩτ
〈
Ô†(t+ τ)Ô(t)

〉
t=0

=
∞∫
−∞

dΩ′
〈
Ô†(−Ω)Ô(Ω′)

〉
.

Unlike its classical counterpart, the quantum power spectral density is not
symmetrical, ie. SOO(Ω) 6= SOO(−Ω). Many properties of optomechanical
systems depend instead on the symmetrised power spectral density

S̄OO(Ω0) ≡ SOO(Ω0) + SOO(−Ω0)
2 .

Power spectral density can be used to define the dissipation rate

γ =
x2
zp

h̄2 (SFF (Ω0)− SFF (−Ω0))

of an oscillator coupled to a thermal bath. The symmetrised power spectral
density can be alternatively expressed using this dissipation rate as

S̄FF (Ω0) = mγh̄Ω0(2n̄+ 1).

This expression is called the quantum fluctuation-dissipation theorem[18].
The spectrum of an oscillator driven only by thermal forces should look
something like figure 2.1.

For an oscillator in thermal equilibrium, the power spectral density can
be used to define temperature

T = h̄Ω0

kB

[
ln
(
SFF (Ω0)
SFF (−Ω0)

)]−1

and mean phonon occupancy

n̄ = SFF (−Ω0)
SFF (Ω0)− SFF (−Ω0) ,

where SFF is the power spectral density of a force exerted on the oscillator
due to coupling with an external bath. This result relies on the so-
called sideband asymmetry. Often in optomechanics experiments, however,
because the oscillator is being heated or cooled by a laser, it is not in
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2.2 Mechanical oscillator in thermal bath

Figure 2.1: Simulated thermal spectrum of a mechanical oscillator with
resonance frequency of 8.5MHz and mechanical damping rate of
200Hz. The mechanical resonator is driven purely by stochastic
thermal forces, here simulated at a temperature of 295K.
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2 Theory

a thermal equilibrium. In such cases a frequency dependent effective
temperature

Teff (Ω) = h̄Ω
kB

[
ln
(
SFF (Ω)
SFF (−Ω)

)]−1

can be defined[18].
The above equations for temperature rely on the sideband asymmetry of

the thermal forcing force F̂ . However, the actual forcing force is rarely the
thing that is measured. It is far more common to measure the oscillator
position (using homodyne detection for example), and the equations for
temperature and mean phonon occupancy can be derived similarly in terms
of the oscillator position power spectral density sideband asymmetry:

T = h̄Ω0

kB

[
ln
(
SQQ(Ω0)
SQQ(−Ω0)

)]−1

n̄ =
(
SQQ(Ω0)
SQQ(−Ω0) − 1

)−1

.

These equations allow us, at least in theory, to calculate the temperature
of a mechanical oscillator from its measured spectrum, giving us a way to
measure the performance of our cooling system.
Using sideband asymmetry to measure temperature and phonon occu-

pancy requires that the positive and negative components of the power
spectral density are seperately measurable, which is not always the case.
Relevant to this work, one such case is homodyne measurement of optical
field phase, after its interaction with an oscillator[18]. In this case, the
mean phonon occupancy (and from that the temperature) can be gleaned
from the integral of the symmetrised power spectral density instead[18]:

1
π

∞∫
0

dΩ S̄QQ(Ω) = n̄+ 1
2 .

For a system of a harmonic oscillator, coupled to a bath consisting of an
ensemble of independent oscillators, a quantum Langevin equation

m¨̂q +m

t∫
−∞

dt′ γ(t− t′) ˙̂q(t′) + ∂V̂ (q̂)
∂q̂

= F̂ (t)

can be defined, where F̂ (t) =
∑
j

kj q̂
h
j (t) is a stochastic force with zero

expectation value, rising from interactions with the bath oscillators j.
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2.3 Cavity optomechanics

Assuming linear damping of the form γ(t) = γδ(t) is called the first
Markov approximation, and results in a Markov Langevin equation of the
form

m¨̂q +mγ ˙̂q + ∂V̂ (q̂)
∂q̂

= F̂ (t).

This approximation is not strictly accurate for quantum systems, but is
close enough to not matter in practice[18]. While in this work we only
work with oscillator position q̂, the Markov Langevin equation can also be
generalised for any observable O, becoming

˙̂O = 1
ih̄

[
Ô, Ĥsys

]
+ i
√

2γ
[
Ô, Q̂

]
P̂in(t) + 1

2iQ

{[
Ô, Q̂

]
,

˙̂
Q(t)

}
+
,

where Ĥsys = p̂2

2m + V̂ (q̂), Q = Ω0/γ is the quality factor of the oscillator,
P̂in ≡ xzpF̂ (t)

h̄
√
γ

is the dimensionless input momentum fluctuation operator,
and Q̂ is the dimensionless position operator defined earlier[18]. Here the
notation {Â, B̂}+ = ÂB̂ + B̂Â denotes the anticommutator.

2.3 Cavity optomechanics
A Fabry-Pérot cavity with length L that has a one of the mirrors connected
to a mechanical oscillator has optical modes with wavelength

λj = 2(L− q)
j

,

where q is the mechanical displacement of the connected oscillator, and j
is the mode number[18]. The corresponding mode frequencies of the cavity
are given by

Ωc,j(q) = 2πc
λj

= πcj

L− q
,

where c is the speed of light. The shift of this frequency per displacement
is the definition of optomechanical coupling strength

G ≡ δΩc,j(q)
δq

= Ωc

L
,

where Ωc is the cavity frequency at zero displacement. A related important
quantity is the vacuum optomechanical coupling rate

g0 ≡ Gxzp,
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2 Theory

which quantifies the rate of frequency shift caused by displacement, in
steps of zero-point motion. In other words, for every xzp of displacement,
the optical resonance frequency shifts by g0. Another related quantity is
the field-enhanced, or linearised, optomechanical coupling rate

g = g0
√
n̄cav,

where n̄cav is the average photon number in the cavity[17].
The Hamiltonian of a typical optomechanical system (such as the one

described above) is given by

Ĥ = ĤM + ĤL = p̂2

2m + mΩ2
m

2 q̂2 + h̄Ωc(q̂)a†a,

where a and a† are now annihilation and creation operators for the optical
field, and Ωm is the mechanical resonance frequency. This Hamiltonian
can be expanded into

Ĥ = h̄Ωca
†a+ h̄Ωmb

†b+ h̄g0a
†a(b† + b),

where b and b† are the annihilation and creation operators for the me-
chanical oscillator[18]. Usually in cavity optomechanics, the optical cavity
resonance frequency Ωc is much larger than the other frequencies in the
system, which means it is convenient to move to a frame of reference
rotating at the laser frequency ΩL, removing fast oscillations of the optical
field. The resulting Hamiltonian in the rotating frame is given by

Ĥ = h̄∆a†a+ h̄Ωmb
†b+ h̄g0a

†a(b† + b),

where ∆ ≡ Ωc − ΩL is the detuning between the optical cavity and the
laser frequency[18].

Coherent optical driving via a laser is common practice in optomechanics.
This coherent driving force introduces an extra term into the Hamiltonian

Ĥ = h̄∆a†a+ h̄Ωmb
†b+ h̄g0a

†a(b† + b) + h̄ε(a† + a),

where ε is the drive strength. This optical driving introduces a steady-
state displacement in both the position of the mechanical oscillator and
the amplitude of the cavity field away from zero. It is then practical to
displace the Hamiltonian by shifting the frame of reference such, that the
displacements in the steady-state are zero. Thus displaced Hamiltonian
has the form

Ĥ = h̄(∆− 2g2
0α

2

Ωm

)a†a+ h̄Ωmb
†b+ h̄g0[α(a† + a) + a†a](b† + b),
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2.3 Cavity optomechanics

where α = − ε
∆+2〈b〉g0

is the displacement of the cavity field amplitude
in the steady state[18]. This Hamiltonian can be linearised by dropping
the term a†a in the square brackets, on the grounds of it being negligible
compared to the other terms because 〈a〉 = 0 in the displaced frame[18]. In
this linearised picture, the definition of optical detuning in usually changed
to include the modification induced by the displacement, such that

∆→ ∆ + 2g2
0α

2

Ωm

.

Applying these changes to the Hamiltonian, it becomes

Ĥ = h̄∆a†a+ h̄Ωmb
†b+ h̄g(a† + a)(b† + b)

= h̄∆
2
(
X̂2 + Ŷ 2

)
+ h̄Ωm

2
(
Q̂2 + P̂ 2

)
+ 2h̄gX̂Q̂,

where we have replaced g0α with g, because |α|2 = n̄cav. This Hamilto-
nian is the linearized cavity optomechanical Hamiltonian[18]. For most
optomechanical systems, this linearised picture is accurate enough, but for
some systems, such as this one[20], this approximation breaks down, and
non-linear effects become significant.
For optomechanical systems, the optical and mechanical decoherence

rates, κdecoh = κ and Γdecoh = Γ(2n̄+ 1) are important parameters. These
decoherence rates quantify the rate at which the optical and mechanical
degrees of freedom decohere due to interaction with the environment. Due
to the high frequency of optical systems resulting in low thermal occupancy
(n̄ ≈ kBT

h̄Ω ), the optical decoherence rate is roughly equal to the optical
dissipation rate κ. The mechanical decoherence rate is, in addition to the
mechanical dissipation rate Γ, also affected by the mean phonon occupancy
n̄[18].
When the location of a quantum mechanical object is observed, there

is always certain amount of momentum uncertainty that is introduced to
the system, as per the Heisenberg uncertainty principle. This increase
in momentum uncertainty is called quantum back-action. This back-
action is an important concept in optomechanics, due to its effects on the
temperature of the resonator, and thus on the mean phonon occupancy
n̄[18].

Important metric for quantifying optomechanical systems, optomechani-
cal cooperativity

C ≡ 4g2

κΓ
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2 Theory

measures the optomechanical coupling strength against the optical and
mechanical dissipation rates. There is also the effective optomechanical
cooperativity

Ceff ≡
C

(1− 2iω/κ)2 ,

which, among other things, gives the optomechanical coupling strength
necessary for the quantum mechanical back-action of the optical beam to
heat the mechanical oscillator by one phonon[18].

Depending on the various optomechanical parameters introduced above,
optomechanical systems can be divided into several regimes of interest.
There is for example the strong-coupling regime of g > κ,Γ, where the
optical mode driven by laser and the mechanical oscillation mode hybridize,
and the harder to achieve single-photon strong-coupling regime g0 > κ,Γ.
Lots of interesting phenomena are expected to happen in the single-photon
strong-coupling regime[17], such as visible nonlinear quantum effects[17].
With increasing g0/κ, before the single-photon strong-coupling regime,
there is the regime of g0

√
2n̄th ≥ κ, where this experiment operates. This

regime is characterised by thermal motion inducing frequency fluctuations
larger than optical linewidth[20], and exhibits nonlinear behaviour in all
phenomena, relevantly including oscillator displacement measurements.
For cooling, the relevant regimes are the sideband-resolved regime of

κ� Ωm, where sideband cooling is most effective, and the so-called bad-
cavity limit of κ � Ωm, where feedback cooling is effective[19]. This
experiment operates in the bad-cavity limit. A "bad cavity" means that
sideband cooling to the groundstate is not possible[19], but also makes
continuous measurement of the oscillator position practical, since the
delay between light entering and exiting the cavity (ie. the inverse of
optical decay rate κ) is so low compared to the oscillation period[11]. This
continuos measurement is a requirement for the real-time feedback needed
for optomechanical feedback cooling to be effective.

2.4 Homodyne interferometry
The physics of beam-splitters are central for understanding interferometry.
For a beam splitter like in figure 2.2, the quantum mechanical treatment
gives as outputs

â2 = râ1 + t′â0, â3 = tâ1 + r′â0,
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2.4 Homodyne interferometry

Figure 2.2: Quantum mechanical beam-splitter

where â0 and â1 are the annihilation operators of the two input ports, â2
and â3 are the annihilation operators for the beamsplitter output ports,
and t, t′, r and r′ are the complex transmittances and reflectances of the
beam splitter. The operators for the input and output fields must satisfy
the following commutation relations[21]:[

âi, â
†
j

]
= δij, [âi, âj] = 0 =

[
â†i , â

†
j

]
(i, j = 1, 2, 3).

These relations hold as long as

|r′| = |r|, |t| = |t′|, |r2|+ |t|2 = 1, r∗t′ + r′t∗ = 0, r∗t+ r′t′∗ = 0

are true. This set of equations is known as the reciprocity relations. In
the case of a 50/50 beam-splitter, this results in outputs

â2 = 1√
2

(â0 + iâ1), â3 = 1√
2

(iâ0 + â1). (2.1)

Notice the phase shift of i = eiπ/2 for the reflected waves. Also notice that
both of the input ports must be taken into account, even if one of them
consists only of the vacuum field.
If we take a coherent light wave with complex amplitude α, split it in

a 50/50 beam-splitter into two arms of differing length (thus introducing
a phase difference of θ), and recombine it again in a second 50/50 beam-
splitter, then the outputs states of the second beam-splitter are given
by ∣∣∣∣∣i(eiθ + 1)α√

2

〉 ∣∣∣∣∣(eiθ − 1)α√
2

〉
.
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2 Theory

If we then subtract the intensities of these two beams from each other, like
in a balanced homodyne interferometer, we get[21] a final signal of

〈Ô〉 = |α|2 cos θ.

In order to derive the final signal in of a balanced homodyne detector, with
the signal branch aS and local oscillator branch aLO, we can use equation
(2.1) and get

â+ = 1√
2

(âs + iâLO), â− = 1√
2

(iâs + âLO)

for the final beamsplitter output ports. Since a balanced homodyne detector
works by substracting the signal of one port from the other, we then have
the final homodyne signal strength as

H = â†+â+ − â†−â− = i(â†sâLO − â
†
LOâs). (2.2)

To relate the signal branch annihilation operator âs back to the mechanical
movement of the cavity, we need to look at the input-output relations for
the optical cavity. The output from the cavity (âs) relates to the field in
the cavity by

âs =
√
κoutâ, (2.3)

where â is the intracavity field annihilation operator and κout is the cavity
output dissipation rate. The intracavity field is given by

â =
√
κinâin

−i∆c + κ
2
,

where âin is the cavity input field annihilation operator, cavity detuning
∆c = ∆ +Gx, ∆ being the laser detuning from the cavity resonance and
x being the mechanical displacement. The local oscillator arm gets a
phase difference θ to the signal arm due to different path lengths, so we
replace âLO with |αLO|eiθ, where we have now moved from the annihilator
operator depiction to complex amplitudes α. If we now input the above
into equation (2.3), and that equation into equation (2.2), replacing âin
with |αin| we get

H = |αLO|
4√κinκout

κ

|αin|
1 + (2∆c

κ
)2

(
cos θ + 2∆c

κ
sin θ

)
. (2.4)

Since (∆c

κ
)2 << 1, assuming small Gx and large κ (as is usually the case

in the bad cavity limit), we can see that with zero detuning ∆, so that
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2.5 Feedback cooling

∆c = Gx, the homodyne signal depends on the mechanical displacement
x linearly when θ = π/2, corresponding with measurement of the phase
quadrature Ŷ (t). Conversely, the signal does not depend on x at all when
θ = 0, corresponding to the measurement of the amplitude quadrature X̂(t).
In addition, the signal also depends linearly on both the local oscillator field
amplitude |αLO| = 〈âLO〉 and the cavity input field strength |αin| = 〈âin〉.
We can also see that nonzero laser detuning can add considerable error to
the position measurement.
The power spectral density of the detected homodyne photocurrent

î is equal to the symmetrized power spectral density of the measured
quadrature, i.e.

Shomo
î̂i

(Ω) = S̄Xθ
det
Xθ
det

(Ω).

When the phase quadrature Ŷ = X̂
π/2
det is measured, this detected power

spectral density also relates to the power spectral density of the mechanical
oscillator position by

Shomo
î̂i

(Ω) = 1
2 + 4ηΓ|Ceff |S̄QQ(Ω),

where η is the detection efficiency, accounting for light lost to various scat-
tering and absorption processes, and overall inefficiency of the detection[18].

2.5 Feedback cooling
Constant measurement of the oscillator position can be used to construct
a feedback loop to cool the oscillator. The position data is first filtered
to the frequency of a single mechanical oscillation mode, and then used
to modulate the amplitude of a laser, such that the peak amplitude
corresponds to peak velocity of the oscillation in the direction of the
incoming laser beam. In other words, the amplitude of the laser is then
proportional to the velocity of the oscillation. This causes a friction force,
thus damping the oscillation[9]. Since the velocity of the oscillation is
offset by π/2 in phase from its position (i.e. the velocity is the greatest
when the displacement is zero), the phase of the feedback signal should
be set to −π/2 relative to the measured oscillator displacement, while
also accounting for the delay in the feedback loop. This type of feedback
cooling is sometimes also called "cold damping"[17].
The oscillator position is measured using homodyne detection. As ex-

plained in the previous section, homodyne detection measures an arbitrary
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2 Theory

Figure 2.3: Diagram of the feedback setup, according to classical control
theory.

quadrature X̂θ
det of the detected optical field by interfering it with a bright

local oscillator field of the same frequency. The measured quadrature in
a homodyne setup depends on the phase difference of the local oscillator
branch and the signal branch. The phase difference, in turn, depends on
the relative path lengths of the two branches. To measure the correct
quadrature, which in this case is the phase quadrature Ŷ (t) of the optical
field, the path length of the local oscillator arm must be adjusted, using
for example a piezo mounted mirror. Since large amplitude fluctuations in
the incoming light have an effect on the measurement outcome, as seen
from equation (2.4), stabilizing the laser output power is a good idea.

From classical control theory, we can construct a diagram of the balanced
homodyne measurement setup as in figure 2.3. From the diagram we get
equations for detected oscillator position y = x+ ximp, the feedback force
Ffb = hfby and the actual oscillator position x = χm(Ftot + Ffb). The
position imprecision ximp arises from optical shot noise. In the ideal case
of zero detuning of the laser, this imprecision is uncorrelated with the
backaction force[9]. In absence of feedback, the only forces acting on the
oscillator are the stochastic thermal force Fth, and the quantum back-
action force Fba, which is caused by the coupling of the oscillator to the
measurement laser.

From this group of equations, we can solve for the oscillator position x,
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2.6 Signal processing

and find

x = χm(Ω)
1− χm(Ω)hfb(Ω)(Ftot + hfb(Ω)ximp) = χeff (Ω)(Ftot + hfb(Ω)ximp),

where we have defined the effective susceptibility

χeff (Ω) = χm(Ω)
1− χm(Ω)hfb(Ω) ,

where hfb(Ω) is the transfer function of the feedback controller and χm(Ω)
is the mechanical susceptibility of the oscillator[9].
By rearranging the effective susceptibility equation to the form

χeff (Ω) = 1
1

χm(Ω) − hfb(Ω) = 1
m (Ω2

m − Ω2 − iΓmΩ)− hfb(Ω) ,

we can now see that the real part of the transfer function hfb(Ω) has the
effect of modifying the mechanical resonance frequency Ωm, while the
imaginary part of the transfer function modifies the mechanical damping
rate Γm.

2.6 Signal processing
Bandpass filter is an electronic filter that lets only signals in a given
frequency range through it, attenuating all other signals. Bandpass filters
have a center frequency Ωc, and a bandwidth Γ, which specifies the range
of frequencies that pass the filter around the center frequency. In an
analog circuit, a simple bandpass filter can be, for example, an RLC-circuit.
However, analog filters have many drawbacks, making them impractical
for some applications, such as a tendency for their charasteristics to drift
with time and temperature.

In contrast, digital filters are more complex, but can be implemented in
silicon using, for example, a programmable logic device, such as an FPGA
(Field Programmable Gate Array)[22]. They can also be made very high
order, and are programmable, which makes them easy to change on the
fly. A drawback of the digital filter is, however, the introduction of some
latency, as a result of the necessary analog-to-digital and digital-to-analog
conversions.
An FPGA is a type of programmable logic circuit. The advantages

of programmable logic circuits from a user standpoint, compared to the
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2 Theory

Figure 2.4: Red Pitaya FPGA-board with its inputs and outputs. The
board is connected to a computer via the Ethernet port. Picture
taken from the official Red Pitaya documentation[23].

more common application specific integrated circuits (ASIC), is the ability
to implement various custom specialized hardware into the silicon, using
a hardware programming language such as VHDL or Verilog, based on
the requirements of the specific task at hand. The same FPGA can
then be reused later for a different task by simply reprogramming it.
The disadvantages are usually a higher price for the same performance
(compared to a comparable ASIC), and lower maximum general compute
performance.

The Red Pitaya (aka. STEMlab) is an FPGA board that integrates two
analog inputs and outputs[23], as can be seen in figure 2.4. The analog
outputs have a maximum voltage range of ±1V, which somewhat limits
the amplitude of our feedback signal. The Red Pitaya board comes with a
Xilinx Zynq 7010 FPGA, and with an SD-card that contains a chip design
with some signal processing modules implemented, such as arbitrary signal
generator, oscilloscope, PID modules, and three iq modules, implemented
in Verilog HDL (Hardware Description Language). These iq modules can
relevantly also be used as digital bandpass filters (up to 4th order) with
adjustable gain and phase. Red Pitaya also integrates Python as a scripting
language.

We use the pyrpl software package[24] to interface with the Red Pitaya.
The pyrpl package has its own precompiled FPGA bitfile, which it uses to
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2.6 Signal processing

implement the hardware for its various modules on the FPGA of the Red
Pitaya. In principle, this hardware design can be customized by editing
and compiling the Verilog source code into a new bitfile, but in this work
the precompiled bitfile is used as-is.
In this work we use a fourth order band-pass filter, implemeted using

the Red Pitaya iq module with pyrpl, with a transfer function of the form

hfb(Ω) = gfbe
iΩτ−iφ

[
ΓfbΩ

Ω2
fb − Ω2 − iΓfbΩ

]2

, (2.5)

where gfb is the total controller gain from all sources, including the ad-
justable electronic gain from Red Pitaya, as well various transduction
factors. τ is the total controller loop delay, φ is the electronically set phase
for the Red Pitaya’s Lorentzian filter, Γfb is the filter bandwidth and Ωfb

is the filter center frequency. Looking closer at the equation, it consists of
the gain constant gfb, the phase factor eiΩτ−iφ, which takes into account
the loop delay time τ , consisting of electronic delay, as well as the delay
caused by the finite speed of light of the laser beam’s propagation through
the homodyne setup, as well as the adjustable phase φ. The term inside
the square brackets is the actual form of the bandpass filter, as built into
the Red Pitaya iq module, itself a combination of a basic highpass and
a lowpass filter. A basic bandpass filter is a second order filter, and by
adding two of them in a series (hence the rise to the second power), you
get a fourth order filter. The ”order” of a filter refers to the highest power
of the Ω term in its transfer function.

The Red Pitaya is here only used to create the feedback signal, but it can
potentially be used for other relevant tasks, such as using the PID modules
for creating a feedback loop locking the laser wavelength to the optical
cavity resonance, or using the internal spectrum analyzer to monitor the
signal[24].
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3 Experiments and simulations

3.1 Measurement setup
The measurement setup consists of the Toptica CTL variable wavelength
laser with wavelength range of 1460-1570nm, the sample in a cryostat, the
Electro Optic Modulator (EOM), beamsplitters, mirrors, and photode-
tectors. These elements are arranged into the two arms of the balanced
homodyne interferometer as in figure 3.1. The EOM is connected to the
laser source by optical fiber, and after the EOM, the laser propagates in
free space through the rest of the homodyne interferometer. The piezo
mirror in the local oscillator arm is set to sweep, as in [20], and not fixed
to the correct position for measurement of the phase quadrature like it
should be for feedback, by mistake. The optical intensity in the signal
arm is reduced by the use of a filter, before reaching the sample. As was
discussed in the theory section, the homodyne signal of equation (2.4) is
proportional to the oscillator displacement as long as the local oscillator
path length is set correctly, so that the correct cavity output quadrature
is measured.

After measurement, the measured photocurrent data is sent to a spectrum
analyzer and to the Red Pitaya. The Red Pitaya, in combination with
the pyrpl software package[24], is used to create the feedback signal by
applying a fourth order bandpass filter with adjustable phase and gain to
the input photocurrent data (see equation (2.5)), the output of which is
sent to the EOM. The EOM modulates the laser amplitude in proportion
to its control voltage, and since the control voltage here is filtered to
be proportional to the oscillator velocity, so is the laser amplitude. The
separate spectrum analyzer is used to record the photodiode output data
in frequency domain, which is then plotted with python.
The feedback measurements are taken by first manually adjusting the

laser wavelength to the cavity resonance and setting the bandpass filter
center frequency Ωfb in equation (2.5) equal to Ωm of the mechanical mode
that we are cooling, and then using a python script to adjust the phase of
the feedback in steps from −π to π, while measuring the spectrum at each
step. The intention is to empirically find the controller phase where the
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3 Experiments and simulations

Figure 3.1: The basic measurement setup layout. Notice especially the
EOM before the beamsplitter that splits into the LO- and
signal arm.

Cryostat

Sample

EOM

PBS

Tunable narrow-
band laser

QWP Balanced 
detector

Piezo 
mirror

Red Pitaya
bandpass-
filter

30



3.2 Power stabilization

Figure 3.2: Simulation of the expected effect of the feedback on the spec-
trum. Notice the change in the damping of the oscillation. The
simulation here is only for a single mechanical mode, and does
not reflect the reality of the two mechanical modes we see in
practice.

feedback is −π/2 behind the mechanical oscillation (see chapter 2.4), and
a suitably high gain where the cooling effect is noticable in the measured
spectrum. The data is plotted as a spectrograph for different controller
gains, with frequency on the x-axis and controller phase on the y-axis. The
measured feedback spectrum should look something like figure 3.2 as a
function of controller phase for an effective gain, where the mechanical
oscillation gets dampened with some phase and amplified with another.

3.2 Power stabilization
The laser power of the Toptica CTL laser has a tendency to wander when
the laser is used in scan mode. To counteract this, we used the power
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3 Experiments and simulations

stabilization function provided by the Toptica DLC Pro laser controller. A
70/30 beam splitter was used to fork the laser to an external photodiode,
which was used to read the laser power for the feedback loop. The power
reading from the external photodiode was calibrated to roughly match the
internal power reading of the CTL laser head in steady state.
Toptica DLC Pro provides the possibility of using the CTL internal

photodiode power reading for the power stabilization feedback, which is
useful for accounting for the internal losses and power changes due to
changing laser wavelength, but does not account for losses in the outgoing
fiber. Adding the EOM after the laser significantly increased the losses
in the fiber, due to incompatible fiber connection types (angle polished
connection of the laser vs straight fiber connection of the EOM). This made
the power of the beam exiting the fiber after the EOM rather unstable,
and made power stabilization via external photodiode rather appealing.
The external photodiode was a Thorlabs S122C standard photodiode,

connected to a Thorlabs PM100D power meter. The power meter reading
was fed via the 0-2V analog output to the "Fine-1" analog input of the DLC
Pro controller, and used to feed its internal PID controller controlling the
power stabilization. Since the output voltage of the power meter changes
depending on the selected measurement range, it is important to keep the
same range throughout. Changing the range requires recalibrating the
power stabilization system.

3.3 Feedback via laser amplitude modulation
The feedback setup is shown in fig3.3, and consists of the balanced homo-
dyne detector (Thorlabs PDB465C), Red Pitaya (aka. STEMlab) FPGA
board that is used to generate the feedback signal, and an electro-optic
modulator (EOM) that is used to modulate the amplitude of the laser
based on the feedback signal. A significant problem with this setup is that
the periodic amplitude modulation shows as a strong signal on the detector.
This means that using a naive feedback scheme of merely feeding back the
bandpass filtered signal means the feedback signal will be added on top
of the actual signal, leading to the feedback force growing without bound
until it saturates the Red Pitayas output, as can be seen in figure 3.4. The
same effect happens even when the bandpass filter is placed outside of
the mechanical modes, as can be seen in figure 3.5. If the gain is small
enough where this does not noticably happen, then nothing happens, and
no measurable cooling is happening.
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3.3 Feedback via laser amplitude modulation

Figure 3.3: Diagram of the feedback setup. The unwanted parasitic feed-
back z is added to to the oscillator position and its measurement
imprecision to form the measured position signal y.

This unwanted positive feedback loop is modeled by adding another
feedback path straight from the controller output to its input, going through
some process a that has its own gain (including transduction factors) ga
and adds some delay τa:

a = gae
iΩτa .

The unwanted feedback has the effect of modifying the effective suscep-
tibility, which will interfere with the feedback. Comparing the effective
susceptibilities in the ideal case of no unwanted feedback, i.e effective
feedback in fig 3.6, and with the unwanted feedback in fig 3.7, we can see
the effect.
Without the parasitic feedback, the detected oscillator position y =

x+ximp is a sum of the actual position x and some measurement imprecision
ximp. Adding the self-feedback, we get an additional term for the detected
oscillator position from the direct effect of the amplitude modulation, so
that detected "oscillator position" is now

y = x+ ximp + z,

where z = ahfby is the effect of the amplitude modulation on the detector.
Of course now y no longer really corresponds to the oscillator position in
any real way, which is the source for all the trouble here. Plugging in z to
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3 Experiments and simulations

Figure 3.4: Practical effect of unwanted feedback on the homodyne de-
tection. Here we can see the phase response for the parasitic
feedback, as well as severe artifacting, resulting mainly from the
saturation of the Red Pitaya controller output. The electronic
gain on the Red Pitaya is 1.4, while the filter bandwidth is
77kHz
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3.3 Feedback via laser amplitude modulation

Figure 3.5: Practical effect of unwanted feedback on the homodyne detec-
tion. Here we can see the same artifacting and phase response,
even when the filter is not on the mechanical mode. The elec-
tronic gain on the Red Pitaya is 1.5, while the filter bandwidth
is 77kHz
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3 Experiments and simulations

Figure 3.6: Simulated effective susceptibility vs. mechanical susceptibility
without feedback. In the absence of the unwanted parasitic
feedback, we can see the wanted effect of the feedback on the
effective susceptibility when the feedback phase is exactly −π/2
behind the mechanical phase, with a simulated total gain of
7 ∗ 1012kg ∗ Hz2.
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3.3 Feedback via laser amplitude modulation

Figure 3.7: Simulated effective susceptibility with various values for para-
sitic feedback gain ga. We can see that the self feedback nullifies
the wanted feedback effect, effectively returning the effective
susceptibility to the unmodified mechanical susceptibility.
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the previous equation and solving for y, we get

y = x+ ximp
1− ahfb

.

From our block diagram 2.3 we find the expression for the feedback
force Ffb = hfby = hfb(x+ ximp + z). We can see from the diagram that
z = aFfb, and solving for Ffb we get

Ffb = hfb(x+ ximp)
1− hfba

.

Now we can find the expression for the actual mechanical position x:

x = χm(Ftot + Ffb) = χm

(
Ftot + hfb(x+ ximp)

1− hfba

)
.

Again, solving for x, we get

x = χm

1− χmhfb
1−hfba

(
Ftot + hfbximp

1− hfba

)
.

From this we can see that for significant parasitic feedback, i.e. a large
a, the oscillator real position approaches that of the no feedback case.
Plugging this result back into the result for y, we finally get

y = χm
1− ahfb − χmhfb

(
Ftot + hfbximp

1− ahfb

)
+ ximp

1− ahfb
.

The addition of the parasitic self-feedback changes the effective suscepti-
bility to

χeff (Ω) = χm(Ω)
1− χm(Ω)hfb(Ω)

1−hfba

.

With large a value, this converges onto just the plain mechanical suscepti-
bility χm, while with a values approaching zero it converges to the effective
susceptibility in absence of parasitic feedback, as expected.

Feedback cooling requires constant measurement of the phase quadrature.
The measured quadrature is determined by the constant phase difference
between the signal arm and the local oscillator arm of the homodyne
measurement setup, which relates to the light path length difference be-
tween the arms. This path length is controlled by piezoelectric mirror, the
position of which must be adjusted so that only the wanted quadrature
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3.3 Feedback via laser amplitude modulation

is measured. While doing the measurements, we failed to take this step
due to our insufficient understanding of the underlying theory at the time.
Instead, the piezo was set to sweep as in [20], in order to better find the
optical resonance frequency for the cavity. This mistake further complicates
the picture.

An attempt was made to get around this parasitic feedback problem by
using a very narrow filter (a few hundred Hz bandwidth) in such a way, that
only a portion of the signal line width gets captured by it. The idea was
to then use the Red Pitaya iq modules to shift this narrow feedback signal
by a small amount in frequency, such that the resulting feedback signal is
outside of the bandpass, but still inside the mechanical linewidth. However,
this approach did not get desired results, as the limited bandwidth meant
very weak to nonexistent cooling performance. Furthermore, while the
incoming and outgoing signals might have been separated in frequency
by more than the bandpass bandwidth, because the bandpass filter is not
a perfect square filter, there is still some room for parasitic feedback to
happen with high gains.
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4 Results and conclusions

Controller phase space was scanned through with various electronic gains
and filter bandwidths. Any electronic gain on the Red Pitaya equal or larger
than one resulted in self-feedback and saturation of the Red Pitaya output
on some part of the controller phase space. The larger the bandwidth of
the filter, the stronger the artifacting resulting from the parasitic feedback.
Larger controller gains also resulted in larger portion of the phase space
being affected, as can be seen in figure 4.1.

Fitting all the spectrums from the phase scan results (phase scans such
as those in figure 4.1) into lorentzian functions, in order to get the fitting
parameters of center frequency, area under the curve, and width at half-
maximum (gamma), did not reveal any cooling effect, or much else of
interest either. Cooling experiments were done in both 5K and 295K, and
for two different samples. Plotting the fit parameters of gamma (width at
half-maximum), center frequency and area, no meaningful trends can be
found (see figure 4.2). The cooling effect, if it were there, would be visible
in the flattening of the lorentzian fit of the measured mechanical spectrum
at a certain controller phase (corresponding to the feedback phase being
π/2 behind the mechanical phase), visible as an increase in the gamma fit
parameter. There was no visible cooling even from room temperature, as
can be seen in figure 4.3. The feedback experiments were done with various
filter bandwidths. The effect of the bandwidth was that large bandwidths
tended to amplify the instability and artifacting. There was some visible
aliasing in the experiments with visible self-feedback, with artifacts exactly
filter bandwidth apart from the filter center frequency. The fit results of
the no-feedback case as a function of laser wavelength can be seen in figure
4.4. Here we can clearly see the phenomenon of optical spring effect, where
driving the optical cavity out of resonance results in the shifting of the
resonance frequency. The gamma, that is the mechanical dampening rate
Γm can be seen from figure 4.4 to be roughly 3.5± 1kHz.
In an attempt to get around the self-feedback problem, shifting the

feedback away from the bandpass filter range was tried (see figure 4.5).
The idea was to have a narrow filter, capturing only part of the mechanical
oscillation linewidth, and then shift the feedback signal to the other side
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4 Results and conclusions

Figure 4.1: Practical effect of unwanted feedback on the homodyne detec-
tion. Here we can see the increasing parasitic feedback effect
and artifacting with increasing controller gain. The filter band-
width here is 77kHz. These measurements were performed in
temperature of 5K, and all on the same occasion with the same
sample.
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Figure 4.2: The measured spectrum while scanning through the controller
phase, and the fitting parameters of lorentzian fits plotted
against controller phase in degrees. Here the filter bandwidth
is 7000Hz, and the electronic gain is 4. No meaningful trends
can be found here, nor in any of the other fitted data from
the feedback experiments. Due to strong artifacting interfering
with the fitting, only the relatively ”dark” part of the phase
space data is fitted. The measurement was performed in 5K
temperature.
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Figure 4.3: The measured spectrum while scanning through the controller
phase, and the fitting parameters of lorentzian fits plotted
against controller phase in degrees. Here the filter bandwidth
is 1215Hz, and the electronic gain is 4. This experiment was
done in room temperature (295K).
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Figure 4.4: The spectrum scanning through the measuring laser wave-
lengths, and fitting parameters of lorentzian fits to the spec-
trum as a function of wavelength, in the case of no feedback.
See the clear shift in cavity resonance frequency as a function
of detuning, a.k.a. optical spring effect.
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Figure 4.5: Feedback experiment with shifted feedback. Here the gain was
4, filter bandwidth was 303Hz and the feedback was shifted by
300Hz. No effect from the feedback can be seen here, parasitic
or otherwise. The feedback shifting experiments were done on
a different sample, hence the different peaks compared to figure
4.2.

of the mechanical peak, away from the filter band. This way, the signal
generated by the feedback would not get past the filter, thus eliminating
the parasitic feedback. However, this approach was not effective, due to
a few problems. Firstly, the center of the mechanical linewidth was not
precisely measured, and thus the placement of the narrow bandpass filter
was not optimal. Secondly, the narrowness of the filter meant that not
all of the available information about the oscillator position was captured,
thus reducing theoretical cooling performance. Thirdly, the bandpass filter
implementation is not a perfect square filter, thus if the feedback signal
was not shifted very far from the bandpass range, some of the feedback
signal would still be picked up by the filter, although heavily attenuated,
thus still causing some small amount of parasitic feedback. This approach
was not analyzed theoretically.

Achieving feedback cooling while using the same laser for both measure-
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ment and feedback should be possible if the EOM is moved to the signal
branch, as this has been done in [25]. One simple way to get around the
self-feedback problem is to use two lasers with orthogonal polarizations:
one to continuosly measure the oscillator position and the other for the
feedback loop (see [9]). Another way is to use an Acousto-Optic modulator
(AOM) instead of an EOM, by splitting the beam and modulating only
the other fork, while also shifting the frequency of the modulated beam[5].
The effect of the incorrect piezo settings was not analyzed here, and it

is in principle possible that the parasitic feedback would not be strong
enough to be a problem with correct piezo position. In the future, it
might be worthwhile to first only correct the piezo position, and see if
the parasitic feedback still behaves in the same way. Once the parasitic
feedback problem has been mitigated in some way, the cooling performance
should be primarily limited by the measurement efficiency.

In this work, the laser wavelength was set to cavity resonance manually,
and not locked via feedback loop, as is usually done. This introduces
another possible source of error, due to the nonzero detuning of the laser
(see equation (2.4)). This souce of error was likely small compared to all
the other problems with the experiment, but it should be eliminated in the
future by properly locking the laser to the cavity resonance. This can be
done, for example, with the Red Pitaya and the pyrpl lockbox module[24].

4.1 Summary and outlook
Feedback cooling of the split silicon beam photonic crystal structure was
tried, but failed to produce measurable cooling because of several errors
made during the setup of the experiments. Perhaps the largest of the
errors was setting the piezo to sweep, instead of locking onto the correct
homodyne phase to measure the phase-quadrature of the light scattered
from the cavity (see equation (2.4)). Another error was positioning of
the EOM before the split into the signal and local oscillator arms of the
homodyne interferometer, leading to strong parasitic self-feedback (see
figures 4.2 and 4.3) of the laser amplitude modulation. This parasitic
feedback effect was analyzed by the use of control theory, but due to other
compunding issues, such as the aforementioned incorrect piezo sweep, as
well as the limited output of the Red Pitaya causing saturation effects
with high self-feedback, no definite conclusions could be drawn from the
analysis. Another compounding issue was that the laser was tuned to the
cavity resonance manually, leading to some amount of detuning.
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Looking forward, it seems likely that the issues encountered in this work
with unwanted parasitic feedback can be overcome relatively easily, simply
by correcting the errors meantioned previously. A very similar experiment
has been done recently by Guo et al[25], where they managed to perform
feedback cooling using only one laser for both measurement and feedback,
the same way we tried to accomplish here. Since they did not report
running into any trouble with self-feedback in this paper, it seems likely
that the troubles we encountered were caused by the our mistakes, rather
than any kind of fundamental limitation. The structure itself should be
suitable for feedback cooling, being a ”bad cavity”. Once the problems with
the experiment are corrected, the main factor limiting cooling performance
will probably be the relatively large cavity losses inherent in our oscillator
structure, leading to poor measurement efficiency η. The parameters of
our oscillator likely preclude ground state cooling, but that was never
our goal to begin with. Even though cooling was not achieved in this
experiment, we learned a lot about the practicalities of feedback cooling,
and are optimistic about future experiments using the same basic setup.
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