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Abstract
We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with
varying probabilities defined in � ⊂ R

n. The method of the proof is based on a game-
theoretic idea to estimate the value of a related game defined in � × � via couplings.

Keywords Dynamic programming principle · Local Lipschitz estimates · Stochastic
games · Normalized p(x)-Laplacian

1 Introduction

1.1 Motivation and Statement of theMain Result

Tug-of-war games have gained attention after the seminal papers of Peres, Schramm,
Sheffield and Wilson [9, 10]. They showed that these two-player zero-sum games have con-
nections to homogeneous and inhomogeneous normalized PDEs in non-divergence form
via dynamic programming principle (DPP for short). Regularity properties of value func-
tions of tug-of-war games have been studied in [7, 8] by using translation invariance and
good symmetry properties, which are no longer available in the natural generalization to
the case where probabilities depend on the location. In this space-dependent case Luiro and
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Parviainen [6] showed asymptotic local Hölder regularity for value functions by develop-
ing a game-theoretic method in the spirit of couplings. Our aim is to improve this result by
showing an asymptotic Lipschitz estimate.

The object of our study is the value function uε : � → R of the variant of tug-of-war
game that is explained in Section 1.2 below. The function uε satisfies the DPP

uε(x) = 1

2
sup
|ν|=ε

(
α(x)uε(x + ν) + β(x)−

∫
Bν

ε (x)

uε dLn−1

)

+1

2
inf|ν|=ε

(
α(x)uε(x + ν) + β(x)−

∫
Bν

ε (x)

uε dLn−1

)
(1.1)

for x ∈ �, where � ⊂ R
n is a bounded domain, ε > 0, Bν

ε (x) denotes the (n − 1)-
dimensional ball of radius ε > 0 centered at x ∈ R

n and orthogonal to ν �= 0, and Ln−1

stands for the (n − 1)-dimensional Lebesgue measure. The coefficients α : � → (0, 1] and
β : � → [0, 1) are continuous probability functions such that α(x) + β(x) = 1 and

0 < αmin ≤ α(x) ≤ 1

for all x ∈ �.
Next suppose that, in particular, the functions α and β take the form

α(x) = p(x) − 1

n + p(x)
and β(x) = n + 1

n + p(x)
,

where the function p : � → (1, ∞] is continuous and bounded away from 1.
Under these assumptions, Arroyo, Heino and Parviainen [1] showed that for a given

continuous boundary data and a suitable boundary cut-off function, it holds that uε → u

uniformly when ε → 0, where u is the viscosity solution of the normalized p(x)-Laplace
equation −�N

p(x) u(x) = 0. Here

�N
p(x) u(x) : = �u(x) + (p(x) − 2)�N∞ u(x),

where �N∞ stands for the infinity Laplacian defined by

�N∞u : = 〈D2u
Du

|Du| ,
Du

|Du| 〉.
Moreover, by [1, Theorem 4.1], the function uε is asymptotically Hölder continuous.

In this paper we introduce a new game-theoretic strategy to show asymptotic local Lip-
schitz regularity for uε under the assumption that the function p(·) is Hölder continuous.
The main theorem is stated as follows.

Theorem 1.1 Assume that the function α : � → (0, 1] is Hölder continuous with a Hölder
exponent s ∈ (0, 1) and a Hölder constant Cα > 0. Let B2r (x0) ⊂ � for some r > 0. Then,
for a solution uε of Eq. 1.1 it holds

|uε(x) − uε(z)| ≤ C (|x − z| + ε) when x, z ∈ Br(x0),

for some constantC > 0 depending on αmin, Cα , s, n, r and supB2r
|u|, but independent of ε.

Observe that, recalling [1, Theorem 6.2], it turns out that by passing to a subsequence
if necessary, uε converges uniformly to a viscosity solution to −�N

p(x)u(x) = 0, and thus
by Theorem 1.1 it follows that the limit is Lipschitz continuous. However, uniqueness of
viscosity solutions to −�N

p(x)u(x) = 0 is an open question, and therefore the Lipschitz
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continuity of viscosity solutions can not be deduced from this result. In particular, given a
viscosity solution, it is not known whether there exists a sequence of functions satisfying
the DPP (1.1) and converging uniformly to this solution. Regarding the question of the reg-
ularity of the PDE, if p(·) is Lipschitz continuous, the C1,α regularity of viscosity solutions
to −�N

p(x)u(x) = 0 is obtained in [13]. We also refer the reader to [2] for an account of
regularity theory of the normalized p-Laplace type equation.

1.2 Heuristic Idea of the Game and theMethod of the Proof

Although the proofs in this paper are mainly written without the game terminology, the
intuition behind the proofs comes from the stochastic games, and this point of view helps in
understanding the proofs below. The function uε satisfying the DPP (1.1) in � with some
continuous boundary data is the value function of the following game. There are two players,
Player I trying to maximize the payoff and Player II trying to minimize it. First the token is
placed at x0 ∈ �. Both players choose a vector of length ε. Let ν+ be the choice of Player
I and ν− the choice of Player II. Then they flip a fair coin. If Player I wins the toss, with
probability α(x0) the token moves to x0 + ν+, and with probability β(x0), the token moves
somewhere in the (n − 1)-dimensional ball Bν+

ε (x0) according to the uniform probability
density. Similarly, if Player II wins the fair toss, with probability α(x0) the token moves to
x0+ν−, and with probability β(x0) it moves somewhere in Bν−

ε (x0), again according to the
uniform probability density. The game continues until the token hits Rn \� for the first time
at, let us say xτ , and then Player II pays Player I the amount given by the payoff function at
xτ . Intuitively, by summing up the probabilities at x0 we get the DPP (1.1) at the point x0.
For a more detailed presentation of the game and its connection to the DPP (1.1), we refer
to [1].

To explain the starting point of the proof with a simple notation, we consider for a
moment a more simple DPP related to the limit case α(·) ≡ 1 and β(·) ≡ 0,

uε(x) = 1

2
sup
Bε(x)

uε + 1

2
inf

Bε(x)
uε, (1.2)

which was studied in [10], and has a connection to infinity harmonic functions. To start
with, observe that

uε(x) − uε(z) = : G(x, z)

can be written as a solution of a certain natural DPP in R
2n: for all (x, z) ∈ � × � it holds

that

G(x, z) = uε(x) − uε(z) = 1

2

(
sup
Bε(x)

uε + inf
Bε(x)

uε − sup
Bε(z)

uε − inf
Bε(z)

uε

)

= 1

2
sup

Bε(x)×Bε(z)

G + 1

2
inf

Bε(x)×Bε(z)
G . (1.3)

This resembles the original DPP for uε in R
n but is for G in R

2n. In this way the question
about the Lipschitz regularity of uε is converted into a question about the absolute size of a
solution of Eq. 1.3 in � × � ⊂ R

2n.
Next we explain the idea of estimating |G(x, z)| via a stochastic game in R2n. We utilize

the observation that G = 0 in the diagonal set

T : = {(x, z) : x = z}.
The rules of the game are as follows: two game tokens are placed in �. Two players, we
and the opponent, play the game so that at each turn, if the game tokens are at xk and zk
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respectively, they have an equal chance to win the turn. If a player wins the turn, he can
move the game token at xk to any point in Bε(xk) and the game token at zk anywhere in
Bε(zk). The game stops if 1) game tokens have the same position or 2) one of the game
tokens is placed outside �. The pay-off is zero if the game ends due to the first condition
and 2 sup |uε| if the game ends due to the second condition. We try to minimize the pay-
off and the opponent tries to maximize the payoff. In other words, we try to pull the game
tokens to the same position before the opponent succeeds in moving one of the game tokens
outside �.

Heuristically speaking, the expected value of this game should evidently be larger or
equal than |G| since we are using boundary values that are obviously larger than |G| at the
boundary, taking the comparison principle and even existence of the value of this game for
granted at this point.

Thus it suffices to estimate the value of this game. For this we need a suitable strategy in
the game. Let us consider the following natural candidate as an example: what happens if
we always simply move, in the case we win the coin toss, the game tokens straight towards
each others. Indeed, if the game tokens are at x and z, our moves are

hx : = −ε
x − z

|x − z| and hz : = ε
x − z

|x − z| .
It turns out that this strategy does not work well enough. The reason is that if the opponent
plays against our moves but with a slight turn, by choosing

ĥx : = εTθ

(
x − z

|x − z|
)

and ĥz : = εTθ

(
− x − z

|x − z|
)

,

where Tθ is a rotation matrix of a very small angle θ (for θ ≈ ε3/4), the distance to the
boundary is expected to decrease much faster than the distance between the game tokens.
Indeed, think of one step of length ε and twist θ . Then in the direction x − z, the oppo-
nent’s expected one step loss is approximately 1

2εθ
2 = 1

2ε
5/2 whereas in the perpendicular

direction his expected gain is εθ = ε7/4, which is much larger for small ε.
To prevent the opponent taking advantage of the slight turn phenomenon, a more promis-

ing idea is to follow a threshold angle strategy: we could set a lower threshold and then
define our strategy according to this threshold. If the step of the opponent almost taking her
to supBε(x)×Bε(z)

G makes an angle greater than the threshold with the direction x − z, then
our strategy could be to pull the tokens straight towards each other. On the other hand, if
the angle is less than the threshold, then we could pull against the step of the opponent. It
turns out to be hard to evaluate the game value directly, but instead, one should try to find
an explicit super-value f of the game, i.e.,

f (x, z) >
1

2
sup

Bε(x)×Bε(z)

f + 1

2
inf

Bε(x)×Bε(z)
f ,

where 2 sup∂� |uε| ≤ f on the boundary of � × �, and |f (x, z)| � |x − z|δ for some
δ > 0. In [6], these ideas combined to a comparison argument guaranteed that the game
value is less than or equal to f inside � × � and yielded an asymptotic Hölder estimate for
the function uε satisfying (1.2).

To obtain an asymptotic Lipschitz estimate, on the other hand, we further need a super-
value with a stronger requirement |f (x, z)| � |x − z| in � × �. This idea is applied for
our proof of Theorem 1.1. The change of the comparison function gives us substantially
less advantage in choosing our strategy compared to the Hölder requirement. Hence, our
threshold angle strategy cannot be fixed but it needs to depend both on the distance of the
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points and the Hölder exponent of the probability function α(·). For details of our strategy,
see Section 3.

Usually when starting from a game in R
n one could derive several different games in

R
2n, and we need to choose the game that is suitable for our purposes. In stochastics or

optimal mass transport language, we choose the couplings of the probability measures on
R

n in such a way that we get a probability measure on R
2n having the original measures as

marginals.
It has turned out that the above approach has connections to the method of couplings

dating back to the 1986 paper of Lindvall and Rogers [5], see also for example [4, 11, 12]
for recent applications to PDEs. In the theory of viscosity solutions, this is related to the
doubling of variables procedure, and in particular Ishii-Lions regularity method introduced
in [3]. A key point in the Ishii-Lions method is to utilize the celebrated theorem of sums at
the maximum point of u(x) − u(z) − f (x, z). Our proof does not rely on the theorem of
sums. In addition, even if as a corollary our result also implies a similar result for the PDE,
our main objective is to prove regularity for stochastic games with nonzero step size. For
example the small turn phenomenon is not present in the PDE setting.

1.3 Outline of the Paper

In Section 2 we fix the notation, introduce our super-value f and state the key Lemma 2.2
for this comparison function. In Section 3 we prove Theorem 1.1 in the case |x − z| >> ε,
and in Section 4 in the case |x − z| � ε. Finally, in Section 5 we consider a less technical
alternative game in order to prove Theorem 1.1 in the restricted case 2 < p(x) ≤ ∞.

2 Preliminaries

2.1 Notation

Given ν �= 0, let

Bν
ε (x) : = Bε(x) ∩ {ν}⊥ = {ξ ∈ R

n : |ξ − x| < ε and 〈ν, ξ − x〉 = 0
}
.

For i = 1, 2, . . . , n, we denote by ei ∈ R
n the column vector containing 1 in the i-th

component and 0 in the rest. For simplicity, we denote

B
e1 : = B

e1
1 (0) = {ξ ∈ R

n : |ξ | < 1 and ξ1 = 0
}
.

Let us denote by O(n) the n-dimensional orthogonal group

O(n) : =
{
P ∈ R

n×n : P�P = PP� = I
}

,

where P� stands for the transpose of P. Given ν ∈ R
n such that |ν| = 1, we denote by

Pν ∈ O(n) an n-dimensional orthogonal matrix sending the vector e1 to ν, that is,

Pνe1 = ν. (2.1)

Note that this is a matrix whose first column vector coincides with ν and it is not unique.
Thus, due to the symmetries of the ball Be1 , we can write

Bν
ε (x) = x + ε PνB

e1 , (2.2)

with no dependence on the particular choice of the matrix Pν as long as Eq. 2.1 holds.
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Remark For the rest of the paper, we fix ε > 0 and denote u : = uε to simplify the notation.

Given a bounded set of real numbers {ai}i∈I , we will use the notation

midrange
i∈I

ai = 1

2
sup
i∈I

ai + 1

2
inf
i∈I

ai

for brevity. For the same reason we introduce the auxiliary function

Aεu(x, ν) : = α(x)u(x + εν) + β(x)−
∫

Bν
ε (x)

u(ξ) dLn−1(ξ), (2.3)

where |ν| = 1. Hence, Eq. 1.1 reads as

u(x) = midrange
|ν|=1

Aεu(x, ν), (2.4)

for all x ∈ �. Fix any orthogonal matrix Pν satisfying (2.1), then, performing the change of
variables ζ = P�

ν ξ in the integral part of Eq. 2.3 and recalling (2.2), we get

Aεu(x, ν) = α(x)u(x + εν) + β(x)−
∫
B
e1

u(x + ε Pνζ ) dLn−1(ζ ). (2.5)

Again, we remark that the choice Pν ∈ O(n) does not play any role in Eq. 2.5. However,
the particular choice of the matrix Pν will become important later for obtaining estimates.

2.2 Comparison Function

For the construction of a suitable comparison function in R
2n, first we define an increasing

function ω : [0, ∞) → [0, ∞) having the desired regularity properties. To be more precise,
let

ω(t) = t − ω0 tγ for 0 ≤ t ≤ ω1 : =
(

1

2γω0

)1/(γ−1)

. (2.6)

For t > ω1, the precise formula is not relevant. Here γ = 1 + s, where 0 < s < 1 is the
Hölder exponent of the function α(·), and

ω0 >
1

2rγ−1
(and thus ω1 < r)

is a constant depending on the function α(·) to be fixed later (see Eqs. 3.4 and 3.18). Note
that, defined in this way, ω is an increasing and strictly concave C2-function in (0, ω1].
Moreover,

ω′(t) ∈
[
1

2
, 1

]
when 0 ≤ t ≤ ω1,

and
ω′′(t) = −γ (γ − 1)ω0 tγ−2 < 0 for 0 < t ≤ ω1. (2.7)

Next, we define the function f1 : R2n → R by

f1(x, z) = Cω(|x − z|) + M |x + z|2 ,

where C > 0 is a constant depending on the function Cα , αmin, s, r and supB2r
|u| that will

be fixed later (see Eqs. 3.3, 3.19, 3.30, 4.1 and 4.5). As we have remarked, the key term in
the comparison function f1 is Cω(|x − z|), while the role of the term M |x + z|2 is just to
guarantee that

|u(x) − u(z)| ≤ f1(x, z) when x, z ∈ B2r \ Br, (2.8)
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for certain M > 0. Indeed, if x, z ∈ B2r \ Br such that |x − z| ≤ r , then

|x + z|2 = 2 |x|2 + 2 |z|2 − |x − z|2 ≥ 3r2.

Therefore, choosing

M = 2

3r2
sup
B2r

|u| , (2.9)

we obtain
|u(x) − u(z)| ≤ 2 sup

B2r

|u| = 3Mr2 ≤ M |x + z|2 ≤ f1(x, z).

On the other hand, if |x − z| > r , since r > ω1, we can extend ω outside [0, ω1] in such
a way that ω is increasing and Cω(r) > 2 sup |u|. Then ω(|x − z|) ≥ ω(r) and Eq. 2.8
follows.

Note that the concavity of ω turns out to be crucial when estimating the second order
terms in the Taylor’s expansion of f1 in Sections 3.2 and 3.3. Moreover, the importance of
the explicit formula for ω′′ (2.7) and the choice γ = 1 + s is made clear in the estimate
(3.17). To get an idea, recall that the function α(·) is Hölder continuous with exponent s,
that is,

|α(x) − α(z)| ≤ Cα |x − z|s , (2.10)

for every x, y ∈ � and some Cα > 0. The coupling method leads us to estimate terms with
coefficients of the type

|α(x) − α(z)|
|x − z|

together with terms including ω′′(|x − z|).
However, due to the discrete nature of the DPP, functions satisfying (1.1) can present

jumps in the ε-scale. For that reason, in order to control the small scale jumps, we need to
define an annular step function f2 as

f2(x, z) =
{

C2(N−i)ε if (x, z) ∈ Ai,

0 if |x − z| > N
10ε,

(2.11)

where

Ai : =
{
(x, z) ∈ R

2n : i − 1

10
ε < |x − z| ≤ i

10
ε

}
for i = 0, 1, . . . , N .

HereN is a large constant depending onC,ω0,Cα and αmin (but not on ε) and will be chosen
later (see Eqs. 3.9 and 3.29). Note that f2 vanishes when |x − z| > N

10ε and sup f2 = C2Nε

is reached on the set
T : = A0 =

{
(x, z) ∈ R

2n : x = z
}
.

Therefore, our comparison function f : R2n → R is defined as

f (x, z) = f1(x, z) − f2(x, z).

Thus, due to Eq. 2.11, the definition of f2, we will use separate arguments along the proof
of Theorem 1.1, distinguishing between f2 = 0 (Section 3) and f2 �= 0 (Section 4).

2.3 Statement of the Key Lemma for the Comparison Function

Since our comparison function is f = f1 − f2, where the terms in f1 have been chosen
such that Eq. 2.8 holds and sup f2 = C2Nε, then

|u(x) − u(z)| ≤ f (x, z) + C2Nε when x, z ∈ B2r \ Br . (2.12)
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Then, our aim is to show that this inequality also holds in Br for properly chosen constants
C and N , that is,

|u(x) − u(z)| ≤ f (x, z) + C2Nε when x, z ∈ Br . (2.13)

This will guarantee the local Lipschitz estimate of Theorem 1.1. We will argue by
contradiction. If inequality (2.13) does not hold, then we can define a constant

K : = sup
x′,z′∈Br

(u(x′) − u(z′) − f (x′, z′)) > C2Nε. (2.14)

In what follows, we may assume that α(x) ≥ α(z) because the other case follows from
a symmetric argument. In order to obtain a contradiction, as a first step, in Lemma 2.1,
we derive lower and upper estimates for the quantity u(x) − u(z) by using the counter-
assumption and the DPP (2.4). These estimates imply an inequality in terms of f , see the
estimate (2.16) below. After that, in the key Lemma 2.2, we show precisely the opposite
(strict) inequality for f , Eq. 2.20, mainly using the properties of the comparison function
f , getting a contradiction and implying the desired Lipschitz estimate (2.13).

Lemma 2.1 Given a function u satisfying (2.4), suppose that the counter-assumption (2.14)
holds. Then, for any η > 0, there exist x, z ∈ Br such that the comparison function satisfies

u(x) − u(z) − f (x, z) ≥ K − η (2.15)

and
f (x, z) ≤ midrange

|νx |=|νz|=1
F(f, x, z, νx, νz, ε) + 2η, (2.16)

where F is the function defined by
F(x, z, νx, νz) : = F(f, x, z, νx, νz, ε) : = α(z)f (x + ενx, z + ενz)

+β(x)−
∫
B
e1

f (x + ε Pνx ζ, z + ε Pνzζ ) dLn−1(ζ )

+(α(x) − α(z))−
∫
B
e1

f (x + ενx, z + ε Pνzζ ) dLn−1(ζ ),

(2.17)

with Pνx ,Pνz ∈ O(n) satisfying Pνx e1 = νx and Pνze1 = νz.

Proof By the counter-assumption (2.14), given η > 0, we can immediately choose x, z ∈
Br so that Eq. 2.15 holds. To estimate u(x) − u(z) from above, by recalling the DPP (2.4)
we have

2[u(x) − u(z)] =2midrange
|νx |=1

Aεu(x, νx) − 2|νz|=1
Aεu(z, νz)

= sup
νx

Aεu(x, νx) − inf
νz

Aεu(z, νz)

+inf
νx

Aεu(x, νx) − sup
νz

Aεu(z, νz), (2.18)

where all the sup and inf are considered over the unit sphere. Next we look at the difference
between Aεu(x, νx) and Aεu(z, νz). Using the definition (2.5), adding and subtracting the
terms

α(z)u(x + ενx) − β(x)−
∫
B
e1

u(z + ε Pνzζ ) dLn−1(ζ ),

and since β(x) − β(z) = −(α(x) − α(z)), we can write
Aεu(x, νx) − Aεu(z, νz)

= α(z)
[
u(x + ενx) − u(z + ενz)

]
+β(x)−

∫
B
e1

[
u(x + ε Pνx ζ ) − u(z + ε Pνzζ )

]
dLn−1(ζ )

+(α(x) − α(z))−
∫
B
e1

[
u(x + ενx) − u(z + ε Pνzζ )

]
dLn−1(ζ ),
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for any pair of vectors |νx | = |νz| = 1 and orthogonal matrices Pνx and Pνz satisfying
Pνx e1 = νx and Pνze1 = νz. By the definition of K in Eq. 2.14 together with Eq. 2.12, the
inequality

u(x′) − u(z′) ≤ K + f (x′, z′)
holds for every x′, z′ ∈ B2r . Applying this inequality to each of the terms in the equation
above we get

Aεu(x, νx) − Aεu(z, νz) ≤ K + F(x, z, νx, νz), (2.19)

where F is the function defined in Eq. 2.17.
Now, let |̃νx | = |̃νz| = 1 such that⎧⎪⎪⎨

⎪⎪⎩
Aεu(x, ν̃x) ≥ sup

νx

Aεu(x, νx) − η

2
,

Aεu(z, ν̃z) ≤ inf
νz

Aεu(z, νz) + η

2
.

Then, using Eq. 2.19, we get

sup
νx

Aεu(x, νx) − inf
νz

Aεu(z, νz) ≤ Aεu(x, ν̃x) − Aεu(z, ν̃z) + η

≤ K + F(x, z, ν̃x, ν̃z) + η

≤ K + sup
νx ,νz

F (x, z, νx, νz) + η.

On the other hand, let |̂νx | = |̂νz| = 1 such that

F(x, z, ν̂x, ν̂z) ≤ inf
νx ,νz

F (x, z, νx, νz) + η.

Hence,

inf
νx

Aεu(x, νx) − sup
νz

Aεu(z, νz) ≤ Aεu(x, ν̂x) − Aεu(z, ν̂z)

≤ K + F(x, z, ν̂x, ν̂z)

≤ K + inf
νx ,νz

F (x, z, νx, νz) + η.

Then, combining these estimates with Eq. 2.18, we obtain

2[u(x) − u(z)] = sup
νx

Aεu(x, νx) − inf
νz

Aεu(z, νz)

+ inf
νx

Aεu(x, νx) − sup
νz

Aεu(z, νz)

≤ 2K + sup
νx ,νz

F (x, z, νx, νz) + inf
νx ,νz

F (x, z, νx, νz) + 2η.

Dividing by 2 and using the midrange notation we obtain

u(x) − u(z) ≤ K + midrange
|νx |=|νz|=1

F(x, z, νx, νz) + η.

Finally, this together with Eq. 2.15 yields (2.16).

Next we state the key lemma, which together with Lemma 2.1 implies the result.

Lemma 2.2 Let f be the comparison function and let F be the function defined in Eq. 2.17.
For small enough η = η(ε) > 0 and x, z ∈ Br as in Lemma 2.1, it holds that

f (x, z) > midrange
|νx |=|νz|=1

F(f, x, z, νx, νz, ε) + 2η. (2.20)
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The proof of this lemma, which is the core of the present paper, will be presented in
Sections 3 and 4, where a distinction depending on the value of |x − z| is made.

3 Proof of the key Lemma 2.2. Case |x − z| > N
10ε

In this case, f2(x, z) = 0 and

f (x, z) = f1(x, z) = Cω(|x − z|) + M |x + z|2 , (3.1)

where x, z ∈ Br have been fixed in Lemma 2.1 satisfying (2.15) with some fixed η > 0.
Next fix |νx | = |νz| = 1 such that

F(x, z, νx, νz) ≥ sup
|̂νx |=|̂νz|=1

F(x, z, ν̂x, ν̂z) − η.

Then, for any pair of vectors |̃νx | = |̃νz| = 1, it holds

2 midrange
|̂νx |=|̂νz|=1

F(x, z, ν̂x, ν̂z) ≤ F(x, z, νx, νz) + F(x, z, ν̃x, ν̃z) + η.

Thus, Lemma 2.2 will follow if we can find appropriate vectors |̃νx | = |̃νz| = 1 such that

F(x, z, νx, νz) + F(x, z, ν̃x, ν̃z) − 2f (x, z) < −5η. (3.2)

This we will show by using Taylor’s expansion.
But before this, since the explicit formula for ω given in Eq. 2.6 only holds in the range

[0, ω1], first we need to choose large enough C ensuring that |x − z| ≤ ω1. From Eq. 2.15
we have, in particular, that u(x) − u(z) − f (x, z) > 0 and, in consequence,

2 sup
Br

|u| ≥ u(x) − u(z) > f (x, z) ≥ Cω(|x − z|).

Since 1 < γ < 2, we have

ω(ω1) =
(
1 − 1

2γ

)(
1

2γω0

)1/(γ−1)

> 2

(
1

16ω0

)1/(γ−1)

.

Hence, for all
C > (16ω0)

1/(γ−1) sup
Br

|u| , (3.3)

we observe that
Cω(ω1) > 2 sup

Br

|u| > Cω(|x − z|).
Then ω(|x − z|) ≤ ω(ω1) and |x − z| ≤ ω1 follows from the monotonicity of ω whenever
(3.3) holds. In addition, by imposing

ω0 ≥ 1

2
(and thus ω1 ≤ 1), (3.4)

we also ensure that |x − z| ≤ 1.

3.1 Taylor’s Expansion for F and Game Intuition

First, we need to compute the second order Taylor’s expansion of f (x+hx, z+hz), where hx

and hz denote column vectors in Rn. For that purpose, we start by introducing the following
notation, that will be useful in what follows: for fixed x �= z in Br , let

v : = x − z

|x − z| ,
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and denote by V the vector space V = span {v}. Given h ∈ R
n, we denote by hV the

projection of h on the space V and by hV ⊥ the modulus of the projection on the (n −
1)-dimensional space of vectors orthogonal to v. That is,

hV : = 〈v, h〉,
h2V : = 〈v, h〉2 = Tr {v ⊗ v · h ⊗ h} ,

h2
V ⊥ := |h|2 − h2V = Tr {(I − v ⊗ v) · h ⊗ h} .

(3.5)

Lemma 3.1 Let f be the comparison function (3.1). Then the second order Taylor’s
expansion of f is

f (x + hx, z + hz) − f (x, z)

≤ C ω′(|x − z|)(hx − hz)V + 2M〈x + z, hx + hz〉
+C

2
ω′′(|x − z|)(hx − hz)

2
V + C

2

ω′(|x − z|)
|x − z| (hx − hz)

2
V ⊥

+(4M + 1) |x − z|γ−2 ε2, (3.6)

for every |hx | , |hz| ≤ ε.

Proof We need to compute each term in the second order Taylor’s expansion

f (x + hx, z + hz) − f (x, z)

= 〈Df (x, z),

[
hx

hz

]
〉 + 1

2
〈D2f (x, z)

[
hx

hz

]
,

[
hx

hz

]
〉 + Ex,z(hx, hz). (3.7)

For that reason, we will make use of the formulas for the gradient and the Hessian

Dx |x − z| = x − z

|x − z| and Dxx |x − z| = 1

|x − z|
(
I − x − z

|x − z| ⊗ x − z

|x − z|
)

,

for x �= z. Then, since v = x − z

|x − z| and differentiating (3.1) we get

Dxf (x, z) = C ω′(|x − z|)v + 2M(x + z),

Dzf (x, z) = −C ω′(|x − z|)v + 2M(x + z),

Dxxf (x, z) = Dzzf (x, z) = L + 2MI and
Dxzf (x, z) = −L + 2MI,

where

L = C ω′′(|x − z|)v ⊗ v + C
ω′(|x − z|)

|x − z| (I − v ⊗ v).

Thus we obtain

Df (x, z) = C ω′(|x − z|)
[

v
−v

]
+ 2M

[
x + z

x + z

]
and

D2f (x, z) =
[

L −L
−L L

]
+ 2M

[
I I
I I

]
.

Plugging these into the terms in Eq. 3.7 yields

〈Df (x, z),

[
hx

hz

]
〉 = C ω′(|x − z|)〈v, hx − hz〉 + 2M〈x + z, hx + hz〉



Á. Arroyo et al.

and
1

2
〈D2f (x, z)

[
hx

hz

]
,

[
hx

hz

]
〉 = 1

2
Tr

{
D2f (x, z)

[
hx

hz

]
⊗
[

hx

hz

]}

= 1

2
Tr

{[
L −L

−L L

] [
hx ⊗ hx hx ⊗ hz

hz ⊗ hx hz ⊗ hz

]}

+M Tr

{[
I I
I I

] [
hx ⊗ hx hx ⊗ hz

hz ⊗ hx hz ⊗ hz

]}

= 1

2
Tr {L · (hx − hz) ⊗ (hx − hz)}

+M Tr {(hx + hz) ⊗ (hx + hz)}
= C

2
ω′′(|x − z|)Tr {v ⊗ v · (hx − hz) ⊗ (hx − hz)}

+C

2

ω′(|x − z|)
|x − z| Tr {(I − v ⊗ v) · (hx − hz) ⊗ (hx − hz)}

+M |hx + hz|2 ,

and replacing in the second order Taylor’s expansion (3.7), we obtain

f (x + hx, z + hz) − f (x, z)

= C ω′(|x − z|)〈v, hx − hz〉 + 2M〈x + z, hx + hz〉
+C

2
ω′′(|x − z|)Tr {v ⊗ v · (hx − hz) ⊗ (hx − hz)}

+C

2

ω′(|x − z|)
|x − z| Tr {(I − v ⊗ v) · (hx − hz) ⊗ (hx − hz)}

+M |hx + hz|2 + Ex,z(hx, hz). (3.8)

Moreover, since |x − z| ≤ ω1, by the explicit form of the function ω, Eq. 2.6,

ω′′′(t) = −γ (γ − 1)(γ − 2)ω0t
γ−3,

for every |hx | , |hz| ≤ ε, by Taylor’s theorem, it holds

Ex,z(hx, hz) ≤ γ (γ − 1)(2 − γ )Cω0

∣∣∣∣
[

hx

hz

]∣∣∣∣
3

(|x − z| − 2ε)γ−3,

whenever |x − z| > 2ε. Since 1 < γ < 2, using the hypothesis |x − z| > N
10ε and choosing

large enough natural number N ≥ 40 depending on C and ω0,

N > 211/2 · 10 Cω0, (3.9)

we can estimate

Ex,z(hx, hz) ≤ 2Cω0(2ε
2)3/2

( |x − z|
2

)γ−3

< 211/2Cω0
ε

|x − z| |x − z|γ−2 ε2

<
211/2 · 10 Cω0

N
|x − z|γ−2 ε2

≤ |x − z|γ−2 ε2.

On the other hand, since |x − z| ≤ 1 and γ − 2 < 0, we have

M |hx + hz|2 ≤ 4Mε2 ≤ 4M |x − z|γ−2 ε2,
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and then the last two terms in Eq. 3.8 are bounded by

(4M + 1) |x − z|γ−2 ε2.

Finally, recalling the notation introduced in Eq. 3.5, we obtain (3.6).

Now, we utilize expansion (3.6) for obtaining an estimate for the function F defined in
Eq. 2.17.

Lemma 3.2 Let x, z as at the beginning of this section and |νx | = |νz| = 1. Then, there is
a pair of matrices Pνx and Pνz such that Pνx e1 = νx , Pνze1 = νz and the function F defined
in Eq. 2.17 satisfies

F(x, z, νx, νz) − f (x, z)

≤ C ω′(|x − z|) [α(z)(νx − νz)V + (α(x) − α(z))(νx)V
]

ε

+2M〈x + z, α(z)(νx + νz) + (α(x) − α(z))νx〉 ε

+C

2
ω′′(|x − z|) α(z)(νx − νz)

2
V ε2

+C

2

ω′(|x − z|)
|x − z|

{
α(z)(νx − νz)

2
V ⊥ + β(x) |νx + νz|2

+(α(x) − α(z))
[
1 + (νx)

2
V ⊥
] }

ε2

+(4M + 1) |x − z|γ−2 ε2. (3.10)

Proof First, replacing hx = ε νx and hz = ε νz in Eq. 3.6, we get the following for the
α(z)-term in Eq. 2.17,

f (x + ενx, z + ενz) − f (x, z)

≤ C ω′(|x − z|)(νx − νz)V ε + 2M〈x + z, νx + νz〉 ε

+C

2
ω′′(|x − z|)(νx − νz)

2
V ε2 + C

2

ω′(|x − z|)
|x − z| (νx − νz)

2
V ⊥ ε2

+(4M + 1) |x − z|γ−2 ε2. (3.11)

Similarly, for the β(x)-term,

f (x + ε Pνx ζ, z + ε Pνzζ ) − f (x, z)

≤ C ω′(|x − z|) (Pνx ζ − Pνzζ )V ε + 2M〈x + z,Pνx ζ + Pνzζ 〉 ε

+C

2
ω′′(|x − z|)(Pνx ζ − Pνzζ )2V ε2 + C

2

ω′(|x − z|)
|x − z| (Pνx ζ − Pνzζ )2

V ⊥ ε2

+(4M + 1) |x − z|γ−2 ε2.

Integrating with respect to the (n− 1)-dimensional Lebesgue measure on Be1 the first order
terms vanish, while for the second order terms, we use the concavity of ω to estimate ω′′ ≤
0. Moreover, since we can choose Pνx and Pνz satisfying∣∣Pνx ζ − Pνzζ

∣∣ ≤ |νx + νz|
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for every ζ ∈ B
e1 (see Appendix Lemma A.1), we get

−
∫
B
e1

f (x + ε Pνx ζ, z + ε Pνzζ ) dLn−1(ζ ) − f (x, z)

≤ C

2

ω′(|x − z|)
|x − z| |νx + νz|2 ε2 + (4M + 1) |x − z|γ−2 ε2. (3.12)

Finally, for the last term in Eq. 2.17,

f (x + ε νx, z + ε Pνzζ ) − f (x, z)

≤ C ω′(|x − z|) (νx − Pνzζ )V ε + 2M〈x + z, νx + Pνzζ 〉 ε

+C

2
ω′′(|x − z|)(νx − Pνzζ )2V ε2 + C

2

ω′(|x − z|)
|x − z| (νx − Pνzζ )2

V ⊥ ε2

+(4M + 1) |x − z|γ−2 ε2.

Due to symmetry, the first order terms containing ζ cancel out after integration over Be1 ,
while for the second order terms, we use the rough estimate ω′′ ≤ 0. For the remaining
term, we develop (νx − Pνzζ )2

V ⊥ using notation (3.5),

(νx − Pνzζ )2
V ⊥ = ∣∣νx − Pνzζ

∣∣2 − (νx − Pνzζ )2V

= |νx |2 − (νx)
2
V + ∣∣Pνzζ

∣∣2 − (Pνzζ )2V − 2
[〈νx,Pνzζ 〉 − (νx)V (Pνzζ )V

]
= (νx)

2
V ⊥ + (Pνzζ )2

V ⊥ − 2〈νx − (νx)V v,Pνzζ 〉.
Note that, again by symmetry, the last term vanishes after integration and, since (Pνzζ )2

V ⊥ ≤
1 for any |ζ | ≤ 1, we get

−
∫
B
e1

(νx − Pνzζ )2
V ⊥ dLn−1(ζ ) ≤ (νx)

2
V ⊥ + 1.

Therefore,

−
∫
B
e1

f (x + ε νx, z + ε Pνzζ )dLn−1(ζ ) − f (x, z)

≤ C ω′(|x − z|)(νx)V ε + 2M〈x + z, νx〉 ε + C

2

ω′(|x − z|)
|x − z|

[
1 + (νx)

2
V ⊥
]

ε2

+(4M + 1) |x − z|γ−2 ε2. (3.13)

Then, replacing each of the terms (3.11), (3.12) and (3.13) in the formula for F (2.17),
we get (3.10) and finish the proof.

Now we are in position to explain the game intuition behind our argument of the proof
of Lemma 2.2. Recall that the crucial point in proving the key Lemma 2.2 is that, given
the choices νx, νz of our opponent, we need to find appropriate vectors |̃νx | = |̃νz| = 1
so that Eq. 3.2 holds. Before moving on to details, we will give intuition for our strategy.
We mentioned already in Section 1.2 that the strategy of always pulling the points directly
closer to each other does not provide the desired result in general. Hence, our response will
depend on the opponents choice. If the opponent chooses to pull the points almost as far
from each other that is possible, our response is to pull directly to the opposite direction by
choosing ν̃x = −νx and ν̃z = −νz. Otherwise, we just pull the points directly towards each
other by choosing ν̃x = −v and ν̃z = v, where v = x−z

|x−z| . The way of making the distinction
is to consider the projection (νx − νz)V and fix the threshold � = �(x, z). As we will see
in Eq. 3.17, the particularities of our comparison function f1 make it necessary to require
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the function α(·) to be Hölder continuous (with a Hölder exponent s > 0) and to choose the
threshold depending both on the distance of the points as well as the Hölder exponent of α,
�(x, z) = |x − z|s ∈ (0, 1].

Now we continue with the proof of the key Lemma 2.2.

3.2 Case 1. (νx − νz )2V ≥ 4 − �.

This is the case where the opponent plays pulling the points almost in the opposite direction.
In this case, as a response to the choices of our opponent, we select ν̃x = −νx and ν̃z = −νz.
Replacing these in the right hand side of Eq. 3.2 and recalling the expansion (3.10), it turns
out that the first order terms cancel out and we get

F(x, z, νx, νz) + F(x, z,−νx, −νz) − 2f (x, z)

≤ C ω′′(|x − z|) α(z)(νx − νz)
2
V ε2

+C
ω′(|x − z|)

|x − z|
{
α(z)(νx − νz)

2
V ⊥ + β(x) |νx + νz|2

+(α(x) − α(z))
[
1 + (νx)

2
V ⊥
] }

ε2

+2(4M + 1) |x − z|γ−2 ε2.

Recalling the properties of the function ω, 1
2 ≤ ω′ ≤ 1 and ω′′ ≤ 0, we obtain

F(x, z, νx, νz) + F(x, z,−νx, −νz) − 2f (x, z)

≤ 3αmin C ω′′(|x − z|) ε2

+C
1

|x − z|
{
α(z)(νx − νz)

2
V ⊥ + β(x) |νx + νz|2

+(α(x) − α(z))
[
1 + (νx)

2
V ⊥
] }

ε2

+2(4M + 1) |x − z|γ−2 ε2, (3.14)

where the inequality (νx − νz)
2
V ≥ 4 − � ≥ 3 has been used together with α(z) ≥ αmin.

Thus, we need to obtain estimates for (νx − νz)
2
V ⊥ , |νx + νz|2 and (νx)

2
V ⊥ . The first one

follows directly from the hypothesis and Pythagorean theorem,

(νx − νz)
2
V ⊥ = |νx − νz|2 − (νx − νz)

2
V ≤ 4 − (νx − νz)

2
V ≤ �,

while for the second one we recall the parallelogram law,

|νx + νz|2 = 4 − |νx − νz|2 ≤ 4 − (νx − νz)
2
V ≤ �.

On the other hand,
(νx)

2
V ≥ (1 − √

4 − �)2,

and since
√
4 − � =

√(
2 − �

4

)2
− �2

16
≤ 2 − �

4
, (3.15)

then

(1 − √
4 − �)2 = 5 − � − 2

√
4 − � ≥ 1 − �

2
.

Consequently, we obtain the following estimate for (νx)
2
V ⊥ :

(νx)
2
V ⊥ = |νx |2 − (νx)

2
V = 1 − (νx)

2
V ≤ �

2
.
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Thus, recalling that β(x) = 1 − α(x) and α(x) ≥ α(z),

α(z)(νx − νz)
2
V ⊥ + β(x) |νx + νz|2 + (α(x) − α(z))

[
1 + (νx)

2
V ⊥
]

≤ (α(z) + β(x))� + (α(x) − α(z))

(
1 + �

2

)

= � + (α(x) − α(z))

(
1 − �

2

)
≤ � + α(x) − α(z).

Then, replacing this estimate in Eq. 3.14, we get

F(x, z, νx, νz) + F(x, z,−νx,−νz) − 2f (x, z)

≤
{
C

[
3αmin ω′′(|x − z|) + �

|x − z| + α(x) − α(z)

|x − z|
]

+ 2(4M + 1) |x − z|γ−2
}

ε2.

(3.16)

Then, by inserting (2.7) with γ = 1 + s, using the precise choice of the threshold � =
|x − z|s and the Hölder estimate (2.10) for the function α(·), we obtain

3αmin ω′′(|x − z|) + �

|x − z| + α(x) − α(z)

|x − z|
≤ (−3αmins(1 + s)ω0 + 1 + Cα) |x − z|s−1 . (3.17)

Then, fixing

ω0 ≥ Cα + 2

3αmins(1 + s)
, (3.18)

and replacing these in Eq. 3.16 we get

F(x, z, νx, νz) + F(x, z, −νx,−νz) − 2f (x, z) ≤ {2(4M + 1) − C} |x − z|s−1 ε2.

Choosing large enough

C > 2(4M + 1), (3.19)

where M is the constant fixed in Eq. 2.9, the negativeness of the previous expression is
ensured and Eq. 3.2 is proven.

3.3 Case 2. (νx − νz )2V ≤ 4 − �.

In that case, by Eq. 3.15,

(νx − νz)V ≤ 2 − �

4
. (3.20)

As we noted before, this corresponds to the case where the opponent is not playing near
optimality. Then, as a response to her choices, we choose ν̃x = −v and ν̃z = v. Then,
replacing in Eq. 3.10 and estimating the ω′′-term directly by zero,

F(x, z,−v, v) − f (x, z) ≤ C ω′(|x − z|) [−2α(z) − (α(x) − α(z))] ε

+2M〈x + z, −(α(x) − α(z))v〉 ε

+C

2

ω′(|x − z|)
|x − z| (α(x) − α(z)) ε2

+(4M + 1) |x − z|γ−2 ε2.
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Using this and Eqs. 3.10 in Eq. 3.2, together with the rough estimate ω′′ ≤ 0, we have

F(x, z, νx, νz) + F(x, z, ν̃x, ν̃z) − 2f (x, z)

≤ C ω′(|x − z|) {α(z)
[
(νx − νz)V − 2

]+ (α(x) − α(z)) [(νx)V − 1]
}

ε

+2M〈x + z, α(z)(νx + νz) + (α(x) − α(z))(νx − v)〉 ε

+C

2

ω′(|x − z|)
|x − z|

{
α(z)(νx − νz)

2
V ⊥ + β(x) |νx + νz|2

+(α(x) − α(z))
[
2 + (νx)

2
V ⊥
] }

ε2

+2(4M + 1) |x − z|γ−2 ε2.

Now, recalling that (νx)
2
V ⊥ ≤ 1, (νx)V ≤ 1, |x − z| > N

10ε and rearranging terms,

F(x, z, νx, νz)+F(x, z, ν̃x, ν̃z) − 2f (x, z)

≤ 2M〈x + z, α(z)(νx + νz) + (α(x) − α(z))(νx − v)〉 ε

+C ω′(|x − z|)
{
α(z)

[
(νx − νz)V − 2

]
+ 5

N

[
α(z)(νx − νz)

2
V ⊥ + β(x) |νx + νz|2

+3(α(x) − α(z))
]}

ε

+20

N
(4M + 1) |x − z|γ−1 ε. (3.21)

Let us estimate the first term in Eq. 3.21. We have

2M〈x + z, α(z)(νx + νz) + (α(x) − α(z))(νx − v)〉 ε ≤ 4M |x + z| ε.

Now we focus on the quantity |x + z|. Since x and z are points in Br satisfying (2.15), then

0 < u(x) − u(z) − f (x, z)

= u(x) − u(z) − Cω(|x − z|) − M |x + z|2
≤ u(x) − u(z) − M |x + z|2 ,

where we have taken into account the explicit form of the function f in this section, Eq. 3.1
and the fact that ω is a positive function. We can rearrange terms and take the square root to
get

|x + z| <
1√
M

[u(x) − u(z)]1/2 . (3.22)

At this point, we recall a previous local regularity result from [1] stating that a function
u = uε satisfying (1.1) is asymptotically Hö6lder continuous for some exponent δ ∈ (0, 1),
that is,

|u(x) − u(z)| ≤ Cu

( |x − z|δ + εδ
)
,

for some constant Cu > 0 depending on αmin, αmax, n, r , supB2r
u and δ. In particular, using

the inequality

a + b < a

(
1 + b

2a

)2
(a, b > 0),

we obtain

|u(x) − u(z)| < Cu |x − z|δ
[
1 + 1

2

(
ε

|x − z|
)δ
]2

.
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Now, replacing in Eq. 3.22,

|x + z| <

√
Cu

M
|x − z|δ/2

[
1 + 1

2

(
ε

|x − z|
)δ
]

<

√
Cu

M
|x − z|δ/2

[
1 + 1

2

(
10

N

)δ
]

<
3

2

√
Cu

M
|x − z|δ/2 ,

where in the second inequality we have recalled that |x − z| > N
10ε and the last inequality

follows by choosing large enough N ∈ N (N ≥ 10). Thus, the first term in Eq. 3.21 is
bounded by

4M |x + z| ε ≤ 6
√

MCu |x − z|δ/2 ε.

Then, replacing this and the Hö6lder regularity estimate for α in Eq. 3.21 we get

F(x, z, νx, νz)+F(x, z, ν̃x, ν̃z) − 2f (x, z)

≤ 6
√

MCu |x − z|δ/2 ε + 20

N
(4M + 1) |x − z|γ−1 ε

+C ω′(|x − z|)
{
α(z)

[
(νx − νz)V − 2

]
+ 5

N

[
α(z)(νx − νz)

2
V ⊥ + β(x) |νx + νz|2

+3Cα |x − z|s
]}

ε. (3.23)

Thus, we need to estimate the terms in braces of the above inequality. One special case
happens when (νx −νz)

2
V ⊥ ≤ �. Then, the rest of the terms can be easily estimated by using

the hypothesis (3.20) and the desired result follows. However, we don’t have any control on

the size of this term and, for that reason, we need to define a new variable ϑ ∈
[
1, 4

�

]
as

follows:

ϑ : = ϑ(x, z) =

⎧⎪⎨
⎪⎩

1

�
(νx − νz)

2
V ⊥ if (νx − νz)

2
V ⊥ > �,

1 otherwise.

(3.24)

When ϑ > 1, we have

(νx − νz)V ≤ √
4 − ϑ� ≤ 2 − ϑ�

4
.

Note that, by Eq. 3.20, this inequality also holds when ϑ = 1. Thus,

2 − (νx − νz)V ≥ ϑ�

4
. (3.25)

Therefore, by Eqs. 3.24 and 3.25,

(νx − νz)
2
V ⊥ ≤ ϑ� ≤ 4

[
2 − (νx − νz)V

]
. (3.26)



Lipschitz regularity for stochastic games

For the second term in brackets, using the parallelogram law we get

|νx + νz|2 = 4 − |νx − νz|2
≤ 4 − (νx − νz)

2
V= [2 + (νx − νz)V
] [
2 − (νx − νz)V

]
< 4

[
2 − (νx − νz)V

]
,

(3.27)

and, since � = |x − z|s and ϑ ≥ 1,

3Cα |x − z|s ≤ 3Cαϑ� ≤ 4 · 3Cα

[
2 − (νx − νz)V

]
. (3.28)

Then, combining (3.26), (3.27) and (3.28), and since α(x) ≥ α(z),

α(z)(νx − νz)
2
V ⊥ + β(x) |νx + νz|2 + 3Cα |x − z|s ≤ 4(3Cα + 1)

[
2 − (νx − νz)V

]
.

Therefore, replacing in Eq. 3.23,

F(x, z, νx, νz) + F(x, z, ν̃x, ν̃z) − 2f (x, z)

≤ 6
√

MCu |x − z|δ/2 ε + 20

N
(4M + 1) |x − z|γ−1 ε

+C ω′(|x − z|) [2 − (νx − νz)V
] {−α(z) + 20

N
(3Cα + 1)

}
ε.

Choosing N ∈ N such that

N > 40
3Cα + 1

αmin
, (3.29)

and since α(z) ≥ αmin, we get

−α(z) + 20

N
(3Cα + 1) ≤ −αmin

2
< 0.

Finally, recalling (3.20), ω′ ≥ 1
2 , � = |x − z|s and s = γ − 1 = δ/2, we obtain

F(x, z, νx, νz) + F(x, z, ν̃x, ν̃z) − 2f (x, z)

≤
[
6
√

MCu + αmin

2
·
(
4M + 1

3Cα + 1
− C

8

)]
|x − z|s ε.

Choosing large enough

C > 8

(
4M + 1

3Cα + 1
+ 12

αmin

√
MCu

)
(3.30)

depending on M , Cα , αmin and Cu, we ensure that Eq. 3.2 holds.

4 Proof of Lemma 2.2. Case |x − z| ≤ N
10ε

In the previous section, we proved Lemma 2.2 in the case |x − z| > N
10ε. The other case

|x − z| ≤ N
10ε is similar to [1]. In Section 2.2 we briefly commented that in this case we

need an annular step function f2 � ε. Recalling (3.6) and for large enough

C > 8Mr + 1, (4.1)
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we obtain the following rough estimate for f1,

f1(x + hx, z + hz) − f1(x, z)

≤ C ω′(|x − z|)(hx − hz)V + 2M〈x + z, hx + hz〉 + |x − z|γ−1 ε

≤ (2C + 4M |x + z| + 1)ε
< 3Cε.

(4.2)

Replacing f = f1 − f2 in Eq. 2.17, we decompose F = G1 − G2, where

Gi(x, z, νx, νz) : = F(fi, x, z, νx, νz, ε) = α(z)fi(x + ενx, z + ενz)

+β(x)−
∫
B
e1

fi(x + ε Pνx ζ, z + ε Pνzζ ) dLn−1(ζ )

+(α(x) − α(z))−
∫
B
e1

fi(x + ενx, z + ε Pνzζ ) dLn−1(ζ ),

for i = 1, 2. Then, by Eq. 4.2, we can estimate

sup
νx ,νz

G1(x, z, νx, νz) ≤ f1(x, z) + 3Cε. (4.3)

Together with f2 ≥ 0, these estimates yield

sup
νx ,νz

F (x, z, νx, νz) ≤ f1(x, z) + 3Cε. (4.4)

Recalling the definition of the step annular function (2.11), fix i ∈ {0, 1, 2, . . . , N} such
that (x, z) ∈ Ai and choose |̃νx | = |̃νz| = 1 such that (x + ε̃νx, z + ε̃νz) ∈ Ai−1. Then for
C > 1 large enough such that

αminC
2 − 2 > 7C, (4.5)

we can estimate

sup
νx ,νz

G2(x, z, νx, νz) ≥ G2(x, z, ν̃x, ν̃z)

≥ α(z)f2(x + ε̃νx, z + ε̃νz)

≥ αminf2(x + ε̃νx, z + ε̃νz)

= αminC
2(N−i+1)ε

= αminC
2C2(N−i)ε − 2C2(N−i)ε + 2f2(x, z)

= αmin

(
C2 − 2

αmin

)
C2(N−i)ε + 2f2(x, z)

> 7Cε + 2f2(x, z),

where we use f2 ≥ 0 in the second inequality and αmin > 0 in the last inequality. Therefore,
by f = f1 − f2 and Eq. 4.3 it holds

inf
νx ,νz

F (x, z, νx, νz) ≤ sup
νx ,νz

G1(x, z, νx, νz) − sup
νx ,νz

G2(x, z, νx, νz)

≤ f1(x, z) − 2f2(x, z) − 4Cε.

Combining this inequality with Eq. 4.4, we get

sup
νx ,νz

F (x, z, νx, νz) + inf
νx ,νz

F (x, z, νx, νz) < 2f (x, z) − Cε.

Letting large enough C, we get (3.2), and this proves Lemma 2.2 in the case |x − z| ≤ N
10ε.
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5 An Alternative Formulation in the Case 2 < p(x) < ∞
As we noted at the beginning of this work, the authors in [1] showed that the solutions uε

of the DPP (1.1) converge uniformly as ε → 0 to a viscosity solution of the normalized
p(x)-Laplace equation

�N
p(x) u(x) = �u(x) + (p(x) − 2)�N∞ u(x) = 0,

provided that p : � → (1, ∞] is a continuous function. In this section we consider a
different DPP whose solutions are asymptotically related in the same way to the normalized
p(x)-Laplace equation when p(x) > 2 for all x ∈ �. Given � ⊂ R

n a bounded domain
and small enough ε > 0, let u = uε : � → R be a function satisfying the DPP

u(x) = α(x)

{
1

2
sup
Bε(x)

u + 1

2
inf

Bε(x)
u

}
+ β(x)−

∫
Bε(x)

u (5.1)

for x ∈ �, where α : � → (0, 1] and β : � → [0, 1) are continuous probability functions
depending on p and defined as follows:

α(x) : = p(x) − 2

n + p(x)
and β(x) : = n + 2

n + p(x)
.

As it happens with (1.1), the DPP (5.1) is related to a slightly different tug-of-war game,
compared to the DPP (1.1). Indeed, the main difference between this game and the previous
one is that, in this case, the random noise can displace the token to any point in the n-
dimensional ball Bε(x), instead of moving it to a random point in the orthogonal (n −
1)-dimensional ballBν

ε (x), where ν is the direction chosen by the winner of the toss. That is,
the possible random displacement of the token in a single step is not affected by the choices
of the players. For more details, see [8] where this game is described for fixed α and β.

In a previous result (see [6, Section 5]), it was shown that, for given bounded domain
� ⊂ R

n and B2r (x0) ⊂ �, a solution u = uε of Eq. 5.1 satisfies

|u(x) − u(z)| ≤ Cu

(|x − z|δ + εδ
)

where x, z ∈ Br(x0), (5.2)

for some exponent δ ∈ (0, 1).
As in the case studied in previous sections, provided that the function p is Hölder

continuous, that is,
|p(x) − p(z)| ≤ Cp |x − z|s ,

for every x, y ∈ � and some Cp > 0 and s ∈ (0, 1), the asymptotic estimate (5.2) can be
shown with δ = 1.

Theorem 5.1 Let � ⊂ R
n be a bounded domain and B2r (x0) ⊂ � for some r > 0. Then,

for a solution u = uε of Eq. 5.1 it holds

|u(x) − u(z)| ≤ C (|x − z| + ε) when x, z ∈ Br(x0),

for some constant C > 0 depending on pmin, Cp , n, r and supB2r
u.

We show that the asymptotic regularity result for solutions u of Eq. 5.1 stated in the
previous theorem can be directly derived from the arguments in Sections 3 and 4. Let us
rewrite (5.1) using the midrange notation introduced at the beginning of this article. Since
the β(x)-term of the DPP does not depend on any parameter, Eq. 5.1 can be written as

u(x) = midrange
h∈B

Aεu(x, h),
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where B = B1(0) stands for the unitary ball centered at the origin and

Aεu(x, h) = α(x)u(x + εh) + β(x)−
∫
B

u(x + ε ζ ) dζ,

which is a similar version of Eqs. 2.4 and 2.5, respectively. Thus, given x, z ∈ Br and
hx, hz ∈ B and assuming without any loss of generality that α(x) ≥ α(z), we analogously
get

Aεu(x, hx) − Aεu(z, hz) = α(z)
[
u(x + εhx) − u(z + εhz)

]
+β(x)−

∫
B

[u(x + ε ζ ) − u(z + ε ζ )] dζ

+(α(x) − α(z))−
∫
B

[u(x + εhx) − u(z + ε ζ )] dζ .

Proceeding by contradiction in the same way as in Section 2 (see Lemma 2.1), we will end
up defining a function F as follows,

F(x, z, hx, hz) : = F(f, x, z, hx, hz, ε) : = α(z)f (x + εhx, z + εhz)

+β(x)−
∫
B

f (x + ε ζ, z + ε ζ ) dζ

+(α(x) − α(z))−
∫
B

f (x + εhx, z + ε ζ ) dζ, (5.3)

for hx, hz ∈ B, and we show the following expansion for F :

Lemma 5.2 Let hx, hz ∈ B. Then, for |x − z| >> ε, the function F defined in Eq. 5.3
satisfies

F(x, z, hx, hz) − f (x, z)

≤ C ω′(|x − z|) [α(z)(hx − hz)V + (α(x) − α(z))(hx)V
]

ε

+2M〈x + z, α(z)(hx + hz) + (α(x) − α(z))hx〉 ε

+C

2
ω′′(|x − z|) α(z)(hx − hz)

2
V ε2

+C

2

ω′(|x − z|)
|x − z|

{
α(z)(hx − hz)

2
V ⊥ + (α(x) − α(z))

[
1 + (hx)

2
V ⊥
] }

ε2

+(4M + 1) |x − z|γ−2 ε2. (5.4)

Proof The α(z)-term in Eq. 5.3 follows directly from Eq. 3.6,

f (x + εhx, z + εhz) − f (x, z)

≤ C ω′(|x − z|)(hx − hz)V ε + 2M〈x + z, hx + hz〉 ε

+C

2
ω′′(|x − z|)(hx − hz)

2
V ε2 + C

2

ω′(|x − z|)
|x − z| (hx − hz)

2
V ⊥ ε2

+(4M + 1) |x − z|γ−2 ε2. (5.5)

For the β(x)-term,

f (x + ε ζ, z + ε ζ ) − f (x, z) ≤ 4M〈x + z, ζ 〉 ε + (4M + 1) |x − z|γ−2 ε2.

Integrating over B the first order term vanishes, then,

−
∫
B

f (x + ε ζ, z + ε ζ ) dζ − f (x, z) ≤ (4M + 1) |x − z|γ−2 ε2. (5.6)
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Finally, for the last term in Eq. 5.3,

f (x + εhx, z + ε ζ ) − f (x, z)

≤ C ω′(|x − z|) (hx − ζ )V ε + 2M〈x + z, hx + ζ 〉 ε

+C

2
ω′′(|x − z|)(hx − ζ )2V ε2 + C

2

ω′(|x − z|)
|x − z| (hx − ζ )2

V ⊥ ε2

+(4M + 1) |x − z|γ−2 ε2.

Due to symmetry, the first order terms containing ζ cancel out after integration overB, while
for the second order terms, we use the rough estimate ω′′ ≤ 0. For the remaining term, we
develop (hx − ζ )2

V ⊥ using notation (3.5),

(hx − ζ )2
V ⊥ = |hx − ζ |2 − (hx − ζ )2V

= |hx |2 − (hx)
2
V + |ζ |2 − ζ 2

V − 2 [〈hx, ζ 〉 − (hx)V ζV ]
= (hx)

2
V ⊥ + ζ 2

V ⊥ − 2〈hx − (hx)V v, ζ 〉.
Note that, again by symmetry, the last term vanishes after integration and, since ζ 2

V ⊥ ≤ 1
for any |ζ | ≤ 1, we get

−
∫
B

(hx − ζ )2
V ⊥ dζ ≤ (hx)

2
V ⊥ + 1.

Therefore,

−
∫
B

f (x + ε hx, z + ε ζ )dLn−1(ζ ) − f (x, z)

≤ C ω′(|x − z|)(hx)V ε + 2M〈x + z, hx〉 ε + C

2

ω′(|x − z|)
|x − z|

[
1 + (hx)

2
V ⊥
]

ε2

+(4M + 1) |x − z|γ−2 ε2. (5.7)

Then, replacing (5.5), (5.6) and (5.7) in Eq. 5.3 we get (5.4).

Note that Lemma 5.2 is the analogous version of Lemma 3.2 in the case 1 < p(x) ≤ ∞.
Then, the next step is to show the key Lemma 2.2 for the function F defined in Eq. 5.3. In
fact, since β(x) |hx + hz|2 ≥ 0, the expansion for F , Eq. 5.4, is smaller than

F(x, z, hx, hz) − f (x, z) ≤ C ω′(|x − z|) [α(z)(hx − hz)V + (α(x) − α(z))(hx)V
]

ε

+2M〈x + z, α(z)(hx + hz) + (α(x) − α(z))hx〉 ε

+C

2
ω′′(|x − z|) α(z)(hx − hz)

2
V ε2

+C

2

ω′(|x − z|)
|x − z|

{
α(z)(hx − hz)

2
V ⊥ + β(x) |hx + hz|2

+(α(x) − α(z))
[
1 + (hx)

2
V ⊥
] }

ε2

+(4M + 1) |x − z|γ−2 ε2,

which contains exactly the same terms as in Eq. 3.10, its analogous in Section 3. Thus,
proceeding exactly as in Section 3, we prove the key lemma in the case |x − z| > N

10ε.
Finally, repeating the same argument from Section 4, we show the key lemma in the case
|x − z| ≤ N

10ε, and thus we conclude the proof of Theorem 5.1.
Observe that the above proof can be modified to have stability when p(x) is close to 2.

To this end we should use a mirror point coupling for the noise term, as it is done in [6] in
the case of the Hölder regularity. However, for consistency with the previous sections, we
have made this expository choice here.
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Appendix A: Orthogonal Transformations

Lemma A.1 Let |νx | = |νz| = 1. There exist Pνx ,Pνz ∈ O(n) such that Pνx e1 = νx ,
Pνze1 = νz and ∣∣Pνx ζ − Pνzζ

∣∣ ≤ |νx + νz|
for every ζ ∈ B

e1 .

Proof In order to show this result, we construct explicit orthogonal matrices satisfying the
required conditions. For each fixed |νx | = |νz| = 1, we choose Pνx and Pνz in O(n) as
follows. First, we denote by {νx}⊥, {νz}⊥ and {νx, νz}⊥ the vector spaces

{νx}⊥ := {ξ ∈ R
n : 〈νx, ξ〉 = 0} ,

{νz}⊥ : = {ξ ∈ R
n : 〈νz, ξ 〉 = 0} ,

{νx, νz}⊥ := {νx}⊥ ∩ {νz}⊥ .

Then dim {νx}⊥ = dim {νz}⊥ = n − 1. If νx = ±νz, then {νx}⊥ = {νz}⊥, otherwise
dim {νx, νz}⊥ = n − 2. In both cases, we can find a (n − 2)-dimensional vector space
contained in {νx, νz}⊥. Then, let {r3, r4, . . . , rn} be a collection of n − 2 unitary column
vectors in R

n that form an orthonormal basis for such subspace. Let R ∈ R
n×(n−2) be the

matrix containing all the elements of the basis as column vectors, i.e.,

R : = [ r3 r4 · · · rn ] .

Note that, therefore, the vector space

{R}⊥ :=
{
ξ ∈ R

n : R�ξ = 0
}

defines a (2-dimensional) plane containing the unitary vectors νx and νz. In addition, for
νx ∈ {R}⊥, there exist a unique unitary vector �x ∈ {R}⊥ ∩ {νx}⊥ such that

Pνx = [ νx �x R
] ∈ O(n) and detPνx = 1.

Analogously, let �z ∈ {R}⊥ ∩ {νz}⊥ the unique unitary vector such that

Pνz = [ νz �z R
] ∈ O(n) and detPνz = −1.

Then,
Pνx − Pνz = [ νx − νz �x − �z 0

]
,

and, for any ζ ∈ B
e1 , ζ1 = 0 and∣∣Pνx ζ − Pνzζ

∣∣ = |ζ2(�x − �z)| ≤ |�x − �z| .
Finally, we show that, for this particular choice of the vectors �x and �z, it holds

|�x − �z| = |νx + νz| .

http://creativecommons.org/licenses/by/4.0/
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By the properties of the n-dimensional orthogonal group, the matrix P�
νx
Pνz is also in

O(n) with determinant det(P�
νx
Pνz ) = −1, and it takes the form

P�
νx
Pνz =

[
Q 0
0 In−2

]
,

where

Q =
[ 〈νx, νz〉 〈νx, �z〉

〈�x, νz〉 〈�x, �z〉
]

∈ O(2)

has determinant detQ = −1, that is, Q is a reflection matrix in R
2 and, thus, there exists

σ ∈ [0, 2π) such that

Q =
[
sin σ cos σ

cos σ − sin σ

]
.

Then, in particular, 〈�x, �z〉 = −〈νx, νz〉 and
|�x − �z|2 = 2 − 2〈�x, �z〉 = 2 + 2〈νx, νz〉 = |νx + νz|2 .
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