Cardiovascular complications in COVID-19: a systematic review and meta-analysis

Cardiovascular complications in COVID-19: A systematic review and meta-analysis

Setor K. Kunutsor, Jari A. Laukkanen

PII: S0163-4453(20)30345-5
DOI: https://doi.org/10.1016/j.jinf.2020.05.068
Reference: YJINF 4653

To appear in: Journal of Infection

Accepted date: 29 May 2020

Please cite this article as: Setor K. Kunutsor, Jari A. Laukkanen, Cardiovascular complications in COVID-19: A systematic review and meta-analysis, Journal of Infection (2020), doi: https://doi.org/10.1016/j.jinf.2020.05.068

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Letter to the Editor

Cardiovascular complications in COVID-19: A systematic review and meta-analysis

Setor K. Kunutsora,b, Jari A. Laukkanenc,d,e

aNational Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
bMusculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Learning & Research Building (Level 1), Southmead Hospital, Bristol, UK
cInstitute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
dInstitute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
eCentral Finland Health Care District Hospital District, Department of Medicine, Jyväskylä, Finland

Corresponding author. Setor K. Kunutsor, Translational Health Sciences, Bristol Medical School, University of Bristol, Learning & Research Building (Level 1), Southmead Hospital, Bristol, BS10 5NB, UK; Phone: +44-7539589186; Fax: +44-1174147924; Email: skk31@cantab.net
To the Editor

The coronavirus disease 2019 (COVID-19) pandemic poses the most significant modern-day public health challenge since the Spanish flu of 1918, causing substantial morbidity and mortality worldwide. (1) Coronavirus disease 2019 predominantly affects the respiratory system, causing severe pneumonia and respiratory distress syndrome. There is also involvement of multiple organs, and the cardiovascular system has been implicated. In a recent study to investigate characteristics and prognostic factors in 339 elderly patients with COVID-19, Wang and colleagues observed a high proportion of severe and critical cases as well as high fatality rates. (2) The cardiovascular complications recorded were acute cardiac injury (21%), arrhythmia (10.4%) and cardiac insufficiency (17.4%). However, not all cardiovascular manifestations of COVID-19 are clearly defined by published studies and it is also not clear if these conditions are directly caused by COVID-19 or are just unspecific complications. (3) There is a need to understand the interplay between COVID-19 and its cardiovascular manifestations to assist in the optimum management of patients. In this context, we conducted a systematic meta-analysis to attempt to address the following questions: (i) what are the cardiovascular complications associated with COVID-19?; (ii) what is the incidence of these complications?; and (iii) are patients with pre-existing cardiovascular morbidities more susceptible to these cardiovascular complications?

The protocol for this review was registered in the PROSPERO International prospective register of systematic reviews (CRD42020184851). The review was conducted in accordance with PRISMA and MOOSE guidelines (4, 5) (Supplementary Materials 1-2). We searched MEDLINE, Embase, and The Cochrane library from 2019 to 27 May 2020 for published studies reporting on cardiovascular outcomes in patients with COVID-19. Details of the search strategy are reported in Supplementary Material 3. The prevalence of comorbidities (pre-existing hypertension and cardiovascular disease, CVD) and incidence of cardiovascular complications across studies with their 95% confidence intervals (CIs) were pooled using Freeman-Tukey variance stabilising double arcsine transformation and random-effects models. STATA release MP 16 (StataCorp LP, College Station, TX, USA) was used for all statistical analyses.
Seventeen retrospective cohort studies comprising of 5,815 patients with COVID-19 were included (Table 1; Supplementary Materials 4-5). Eleven studies were based in China, four in the USA, one in South Korea and one in the Netherlands. The average age at baseline ranged from 47 to 71 years.

Across 15 studies, the pooled prevalence of pre-existing hypertension (95% CI) in COVID-19 patients was 29.3% (25.5-33.4; I² = 87%; 95% CI 79, 91%; p for heterogeneity<0.01) (Supplementary Material 6). The prevalence (95% CI) of pre-existing CVD across 16 studies was 14.6% (11.0-18.4; I² = 91%; 95% CI 87, 94%; p for heterogeneity<0.01) (Supplementary Material 7).

Over hospital stays ranging from 2 to 28 days, the pooled incidence was 17.6% (14.2-21.2; I² = 32%; 95% CI 0, 76%; p for heterogeneity=0.20) for heart failure (HF) (n=4 studies); 16.3% (11.8-21.3; I² = 87%; 95% CI 79, 92%; p for heterogeneity<0.01) for myocardial injury (n=11 studies); 9.3% (5.1-14.6; I² = 78%; 95% CI 52, 90%; p for heterogeneity<0.01) for cardiac arrhythmia (n=6 studies); 6.2% (1.8-12.3) for acute coronary syndrome (ACS) (n=2 studies); 5.7% (2.7-9.6) for cardiac arrest (n=2 studies); and 5.6% (3.4-8.3) for disseminated intravascular dissemination (DIC) (n=2 studies) (Figure 1A). Subgroup analyses suggested that the incidence of myocardial injury was higher in older age groups and groups with a higher prevalence of pre-existing hypertension; however, the incidence of myocardial injury was similar in groups with high or low prevalence of pre-existing CVD (Figure 1B). Over hospital stays ranging from 2 to 28 days following admission, mortality rate ranged from 0.7% to 52.4%, with a pooled rate of 15.3% (10.7-20.5).

The current data based on up-to-date evidence suggests that the most common cardiovascular complications of COVID-19 are HF, myocardial injury and cardiac arrhythmias. Though the mechanisms for cardiovascular complications are still yet to be elucidated, the following multiple pathways have been proposed: (i) direct cardiotoxicity; (ii) systemic inflammation; (iii) myocardial demand-supply mismatch; (iv) plaque rupture and coronary thrombosis; (v) adverse effects of therapies during hospitalization; (vi) sepsis leading to DIC; (vii) increased systemic thrombogenesis; and (viii) electrolyte imbalances.(6, 7) Myocardial injury is reported to mainly result from direct viral involvement of cardiomyocytes and the effects of systemic inflammation.(6) Though venous
thromboembolism incidence was based on a single report, patients with COVID-19 are at increased risk of hypercoagulable states due to prolonged immobilisation, systemic inflammation and risk for DIC.(7)

In addition to pre-existing comorbidities including CVD being associated with worse outcomes in patients with COVID-19,(8, 9) cardiovascular complications such as myocardial injury have also been shown to be associated with increased risk of severe COVID-19 and fatal outcomes.(10) Myocardial injury is commonly defined as substantial elevation of high-sensitivity cardiac troponin levels and it has been reported that elevated troponin levels are associated with greater risk of severe disease and mortality. (10) Monitoring of markers of cardiac damage such as troponin, N-terminal pro B-type natriuretic peptide and creatine kinase during hospitalisation for COVID-19 could help in the identification of patients with possible cardiac manifestations, to enable early and more aggressive intervention.

The inherent limitations included the low sample sizes and methodological design of some of the studies, which was expected given the urgency to report and gain a better understanding of COVID-19; limited number of studies available, hence some of the findings were based on single reports; assays for cardiac injury and their time of assessment during hospitalisation may vary between studies, hence estimates may be biased; and the possibility of patient overlap given that the majority of studies were conducted from China and reports of duplicate publication of study participants in articles.(9)

Aggregate analysis of the literature suggests that the most frequent cardiovascular complications among patients hospitalised with COVID-19 are HF, myocardial injury, cardiac arrhythmias and ACS. Early identification and monitoring of cardiac complications could help in the prediction of more favourable outcomes. The causes of these cardiovascular manifestations warrant further investigation as more data becomes available.
Conflict of interest

None.

Acknowledgements

SKK acknowledges support from the NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health and Social Care. These sources had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.
References

Figure legends

Fig. 1 (A) Incidence of cardiovascular complications in COVID-19 patients; (B) Incidence of cardiovascular complications in COVID-19 patients, by clinically relevant characteristics

CI, confidence interval (bars); CVD, cardiovascular disease; DIC, disseminated intravascular coagulation; PE, pulmonary embolism; VTE, venous thromboembolism; *, p-value for meta-regression
Table 1. Characteristics of included studies

<table>
<thead>
<tr>
<th>Author, year of publication</th>
<th>Source of data</th>
<th>Country</th>
<th>Dates of data collection</th>
<th>Mean/median age (years)</th>
<th>Male %</th>
<th>Hospitalisation (days)</th>
<th>No. of patients</th>
<th>CVD complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guo, 2020</td>
<td>Seventh Hospital of Wuhan City</td>
<td>China</td>
<td>Jan - Feb 2020</td>
<td>58.5</td>
<td>48.7</td>
<td>16.3</td>
<td>187</td>
<td>Myocardial injury; ventilicular arrhythmia</td>
</tr>
<tr>
<td>Wang, 2020</td>
<td>Zhongnan Hospital of Wuhan University</td>
<td>China</td>
<td>Jan, 2020</td>
<td>56.0</td>
<td>54.3</td>
<td>7.0</td>
<td>138</td>
<td>Myocardial injury; cardiac arrhythmia</td>
</tr>
<tr>
<td>Huang, 2020</td>
<td>Jin Yintan Hospital, Wuhan</td>
<td>China</td>
<td>Dec - Jan 2020</td>
<td>62.0</td>
<td>62.0</td>
<td>11.0</td>
<td>191</td>
<td>Myocardial injury; HF</td>
</tr>
<tr>
<td>Zhou, 2020</td>
<td>Renmin Hospital & Wuhan Pulmonary Hospital</td>
<td>China</td>
<td>Dec - Jan 2020</td>
<td>62.0</td>
<td>62.0</td>
<td>13.0</td>
<td>274</td>
<td>Myocardial injury; HF; DIC</td>
</tr>
<tr>
<td>Shi, 2020</td>
<td>Renmin Hospital of Wuhan University</td>
<td>China</td>
<td>Jan - Feb 2020</td>
<td>64.0</td>
<td>49.3</td>
<td>NR</td>
<td>416</td>
<td>Myocardial injury</td>
</tr>
<tr>
<td>Arentz, 2020</td>
<td>Evergreen Hospital in Kirkland, Washington</td>
<td>USA</td>
<td>Feb - March 2020</td>
<td>70.0</td>
<td>52.0</td>
<td>5.2</td>
<td>21</td>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td>Chen, 2020</td>
<td>Tongji Hospital in Wuhan</td>
<td>China</td>
<td>Jan - Feb 2020</td>
<td>62.0</td>
<td>62.0</td>
<td>13.0</td>
<td>274</td>
<td>Myocardial injury; HF; DIC</td>
</tr>
<tr>
<td>Du, 2020</td>
<td>Haman Hospital and Wuhan Union Hospital</td>
<td>China</td>
<td>Jan - Feb 2020</td>
<td>65.8</td>
<td>72.9</td>
<td>10.1</td>
<td>85</td>
<td>Cardiac arrest; ACS; arrhythmia; DIC</td>
</tr>
<tr>
<td>Wang, 2020b</td>
<td>Renmin Hospital of Wuhan University</td>
<td>China</td>
<td>Jan - Feb 2020</td>
<td>71.0</td>
<td>49.0</td>
<td>28.0</td>
<td>339</td>
<td>Myocardial injury, arrhythmia</td>
</tr>
<tr>
<td>Cao, 2020</td>
<td>Zengjun Hospital of Wuhan University</td>
<td>China</td>
<td>Jan - Feb 2020</td>
<td>54.0</td>
<td>52.0</td>
<td>11.0</td>
<td>102</td>
<td>Myocardial injury; arrhythmia; cardiac arrest</td>
</tr>
<tr>
<td>Klok, 2020</td>
<td>Dutch University Hospitals</td>
<td>Netherlands</td>
<td>Mar - April 2020</td>
<td>64.0</td>
<td>76.0</td>
<td>7.0</td>
<td>184</td>
<td>PE; VTE; stroke</td>
</tr>
<tr>
<td>Aggarwal, 2020</td>
<td>UnityPoint Clinic</td>
<td>USA</td>
<td>Mar - April 2020</td>
<td>67.0</td>
<td>75.0</td>
<td>2.0</td>
<td>16</td>
<td>ACS; cardiac arrhythmia; HF</td>
</tr>
<tr>
<td>Wang, 2020c</td>
<td>Zengjun Hospital of Wuhan University and Xiashu People’s Hospital</td>
<td>China</td>
<td>Up to Feb, 2020</td>
<td>51.0</td>
<td>53.3</td>
<td>11.0</td>
<td>107</td>
<td>Myocardial injury</td>
</tr>
<tr>
<td>Hong, 2020</td>
<td>Yeungnam University Medical Center</td>
<td>South Korea</td>
<td>Up to March, 2020</td>
<td>55.4</td>
<td>38.8</td>
<td>7.7</td>
<td>98</td>
<td>Myocardial injury</td>
</tr>
<tr>
<td>Wan, 2020</td>
<td>Northeast Chongqing</td>
<td>China</td>
<td>Jan – Feb 2020</td>
<td>47.0</td>
<td>53.3</td>
<td>5.0</td>
<td>135</td>
<td>Myocardial injury</td>
</tr>
<tr>
<td>Price-Haywood, 2020</td>
<td>Ochsner Health in Louisiana</td>
<td>Asia</td>
<td>March - April, 2020</td>
<td>55.5</td>
<td>45.7</td>
<td>7.0</td>
<td>1300</td>
<td>Cardiomyopathy/HF</td>
</tr>
<tr>
<td>Price-Haywood, 2020</td>
<td>Ochsner Health in Louisiana</td>
<td>Asia</td>
<td>March - April, 2020</td>
<td>53.6</td>
<td>37.7</td>
<td>6.0</td>
<td>2451</td>
<td>Cardiomyopathy/HF</td>
</tr>
</tbody>
</table>

ACS, acute coronary syndrome; DIC, disseminated intravascular coagulation; HF, heart failure; NOS, Newcastle Ottawa Scale; NR, not reported; PE, pulmonary embolism; VTE, venous thromboembolism