High-Statistics Sub-Barrier Coulomb Excitation of 106,108,110Sn

¹Department of Physics, Lund University, S-22100 Lund, Sweden
²CERN, CH-1211 Geneva 23, Switzerland
³Department of Physics, University of York, York YO10 5DD, United Kingdom
⁴INFN Laboratori Nazionali di Legnaro, Viale dell’Università, I-35020 Legnaro, Italy
⁵Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
⁶Schuster Laboratory, University of Manchester, Manchester M13 9PL, United Kingdom
⁷Physik Department, Technische Universität München, D-85749 Garching, Germany
⁸Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
⁹Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
¹⁰Centre de Sciences Nucléaires et de Sciences de la Matière, 91400 Orsay, France
¹¹Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
¹²Heavy Ion Laboratory, University of Warsaw, PL-02-093 Warsaw, Poland
¹³Department of Physics, University of Oslo, N-0316 Oslo, Norway
¹⁴Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
¹⁵Istituto Nazionale di Fisica Nucleare, Sezione di Milano, I-20133 Milano, Italy
¹⁶School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom
¹⁷Faculty of Physics, Sofia University, 1164 Sofia, Bulgaria
¹⁸GS1 Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
¹⁹Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium

E-mail: joochun.park@nuclear.lu.se

(Received July 17, 2019)

A Coulomb excitation campaign on 106,108,110Sn at 4.4-4.5 MeV/u was launched at the HIE-ISOLDE facility at CERN. Larger excitation cross sections and γ-ray statistics were achieved compared to previous experiments at ~2.8 MeV/u. More precise B(E2; 0⁺ → 2⁺) values, lifetimes of states via the Doppler shift attenuation method, and new B(E2; 0⁺ → 2⁺), B(E2; 2⁺ → 4⁺) and Q(2⁺) values from the new Miniball data will be obtained and applied to test modern nuclear structure theories.

KEYWORDS: shell model, nuclear collectivity, Coulomb excitation

1. Introduction

In nuclear structure, the doubly magic nucleus 100Sn is a key test case of the robustness of the traditional shells far away from stability. The single-particle description of 100Sn and nuclei with
similar N and Z may be weakened by collective behavior, driven by proton-neutron interactions and exhibited through core excitations and nuclear deformation. Many experiments to determine nuclear collectivity in even-mass Sn isotopes through measurements of reduced electromagnetic transition probabilities, $B(E2)$, have been performed [1–6]. In order to achieve a higher experimental precision on the $B(E2)$ values to better evaluate different modern theories addressing this phenomenon, as discussed in Ref. [7] for instance, a series of safe Coulomb excitation (CE) experiments was carried out in a new campaign at CERN-ISOLDE.

2. Experiment method

Three unstable Sn isotopes 106,108,110Sn were produced in separate experiments, where a 1.4-GeV proton beam from the CERN PS Booster induced spallation reactions on a lanthanum carbide target. Sn isotopes were selectively ionized with the Resonance Ionization Laser Ion Source (RILIS), and were post-accelerated at the HIE-ISOLDE [8] facility to 4.4-4.5 MeV/u before impinging on a 206Pb target with a thickness of \sim4 mg/cm2. At these beam energies, contributions to the excitation cross section from nuclear reactions which are subject to large systematic uncertainties, are eliminated.

The γ rays emitted from the excited states of Sn isotopes were detected with Miniball [9], an array of segmented high-purity germanium detectors. Doppler correction of γ rays emitted in flight from beam nuclei was performed by measuring the particles’ scattering angles with a CD-shaped double-sided silicon strip detector that is segmented in sectors and rings. Forward scattering angles of nuclei in the range of 20°–60° in the lab frame were covered by the CD detector, as shown in Fig. 1.

![Energy distribution in the CD detector as a function of the lab scattering angle θ, for a beam nucleus 110Sn and the knocked-out target nucleus 206Pb. Top right, bottom left and bottom right: Doppler-corrected γ-ray energy spectra for the $0_1^+ \rightarrow 2_1^+$ excitations of 110Sn, 108Sn and 106Sn, respectively. The $\gamma\gamma$ coincidence projection spectra, gated on the $2_1^+ \rightarrow 0_1^+$ transitions, are shown in the insets. In all three Sn isotopes, the $4_1^+ \rightarrow 2_1^+$ γ rays were observed for the first time in Coulomb excitation. Approximately 50% of the γ-ray data is shown for 110Sn, where the rest is pending a refined data sorting.](image-url)
Fig. 2. Left: comparison of experimental (blue) and simulation (red) forward-emitted γ-ray energy spectra from the \(^{110}\)Sn beam, where the target nucleus \(^{208}\)Pb was detected in the same quadrant of the CD detector as Miniball. This spectrum was well reproduced in the simulation when assuming a 0.75-ps lifetime of the \(2^+_1\) state. Right: the same spectra, but with a simulated lifetime of 1.25 ps.

3. Preliminary results and outlook

By using a higher-Z target with higher beam energies, the CE cross sections were significantly enhanced compared to past CE experiments at REX-ISOLDE involving the same tin isotopes on a \(^{58}\)Ni target [10, 11]. The γ-ray spectra from this experimental campaign at HIE-ISOLDE are shown in Fig. 1, along with a CD detector energy matrix for beam/target particle identification and Doppler correction. The gain in statistics is expected to improve the precision on \(B(E2; 0^+_1 \rightarrow 2^+_1)\) values significantly. Furthermore, the CE to the \(4^+_1\) states in all three Sn isotopes was observed for the first time based on γγ coincidence projection spectra. This enables an opportunity to determine \(B(E2; 2^+_1 \rightarrow 4^+_1)\) for the first time in \(^{106,108,110}\)Sn. Evidence of γ rays from non-yrast states was also found, so that additional \(B(E2; 0^+_1 \rightarrow 2^+_x)\) values may be extracted from the data.

In addition, a lifetime estimate of the \(2^+_1\) state in \(^{110}\)Sn was performed via the Doppler shift attenuation method (DSAM). Using Geant4, the experimental setup, reaction kinematics and γ-ray emission/detection were simulated. By varying the hypothetical lifetime of the \(2^+_1\) state in \(^{110}\)Sn, simulated γ-ray spectra from both the partially and fully stopped nuclei were then compared with the experimental spectrum. As shown in Fig. 2, a good agreement was found for \(\tau = 0.75\) ps. Efforts to determine the final lifetime and proper uncertainties will be taken. Lifetime measurements of other CE γ rays will be attempted using the same DSAM, and compared to the values reported in Ref. [12].

By combining the CE results with previous experiments using the \(^{58}\)Ni target, \(Q(2^+_1)\) will be investigated for \(^{108,110}\)Sn and plotted against their \(B(E2)\) values for comparisons with shell model theories. Further analysis of the data and simulations are underway.

References