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INTRODUCTION

This dissertation concentrates on two topics. The first one deals with Sobolev home-
omorphisms between the unit ball and domains with exemplary singular boundaries, the
cuspidal domains in Rn, n ≥ 2. The second one is about point-wise inequalities for Sobolev
functions on cuspidal domains and Sobolev extendability for such domains.

1. Classes of domains

In this introduction, Bn := Bn(0, 1) is the unit ball in Rn, and X ⊂ Rn, n ≥ 2, is always
a domain. For every 0 < r < ∞, the r-neighborhood of a domain X is defined by setting

B(X, r)
def
== {y ∈ Rn : d(y,X) < r}

where

d(y,X)
def
== inf

x∈X
d(x, y).

A mapping f : Rn → Rm is said to be Lipschitz continuous, if there exists a constant
C > 1 such that, for all x, y ∈ Rn, we have

|f(x) − f(y)| ≤ C|x− y|.
We say that a bounded domain X ⊂ Rn is a Lipschitz domain if, for each x ∈ ∂X, there
exist r > 0 and a Lipschitz continuous function f : Rn−1 → R such that, upon rotating
and relabeling the coordinate axes if necessary, we have

X ∩Q(x, r) = {y : f(y1, · · · , yn−1) < yn} ∩Q(x, r),

where y = (y1, y2, · · · , yn) ∈ Rn and

Q(x, r)
def
== {y : |yi − xi| < r, i = 1, 2, · · · , n}.

Lipschitz domains share many nice properties. For a rectifiable curve γ ⊂ X, we define
l(γ) to be its length. In [26], Jones defined the so-called (ε, δ)-domains, which form a much
wider class than the class of Lipschitz domains. Fix positive constants ε and δ. We say
that X ⊂ Rn is an (ε, δ)-domain if, for all x, y ∈ X with |x − y| < δ, there is a rectifiable
curve γ ⊂ X joining x to y and satisfying

l(γ) ≤ 1
ε
|x− y|

and

d(z, ∂X) ≥ ε|x−z||y−z|
|x−y| for all z ∈ γ.

A typical example of such a domain which is not a Lipschitz domain is an inward cuspidal
domain in Rn for n ≥ 3.
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6 INTRODUCTION

We are, however, mostly interested in cuspidal domains which are not (ε, δ)-domains and
hence neither Lipschitz domains. Towards a precise definition, we distinguish a horizontal
coordinate axis in Rn. Accordingly, we write

Rn = R× Rn−1 = {(t, x) : t ∈ R and x = (x1, . . . , xn−1) ∈ Rn−1} ,
and introduce the notation

|x|2 def
== x2

1 + x2
2 + · · · + x2

n−1.

We write R̂n := Rn ∪ {∞} for the one-point compactification of Rn. A strictly increasing
function u : [0,∞) onto−→ [0,∞) is said to be a cuspidal function if u ∈ C 1(0,∞) ∩ C [0,∞),
u′ is increasing in (0,∞) and

lim
ρ↘0

u′(ρ) = 0 .

We normalize the function u by requiring u(1) = 1. The model inward cuspidal domain is
defined by

B≺
u,n

def
== Bn(0, 1) \ {(t, x) ∈ R+ × Rn−1 : |x| � u(t) } . (1.1)

The model outward cuspidal domain is defined by

B�
u,n

def
== Bn((2, 0),

√
2) ∪ {(t, x) ∈ (0, 1] × Rn−1 : |x| � u(t) } . (1.2)

For u(t) = tβ, β > 1, we obtain a power-type cusp with vertex at the origin. Note that

Figure 1. Inward and outward cuspidal domains.

the larger the value of β, the sharper the vertex is.
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2. Sobolev homeomorphisms

Recall that, for a domain X ⊂ Rn, the Sobolev space W 1,p(X), 1 � p � ∞, consists of
the functions u ∈ L p(X) whose all first order weak derivatives Dju belong to L p(X). Its
norm is given by

‖u‖W 1,p(X) = ‖u‖L p(X) +
n∑

j=1

‖Dju‖L p(X).

Let X ⊂ Rn and Y ⊂ Rm be domains. A mapping h : X → Y (h = (h1, h2, · · · , hm)) is said
to be in the Sobolev class W 1,p(X,Y), if every component function of h lies in the class
W 1,p(X). Its norm is given by

‖h‖W 1,p(X,Y) =
m∑
i=1

‖hi‖W 1,p(X).

The local classes are defined accordingly. We say that h : X onto−→ Y is a Sobolev home-
omorphism if h maps X homeomorphically onto Y and h ∈ W 1,1

loc (X,Y). The Riemann
Mapping Theorem tells us that every planar simply-connected domain, which is not the
whole plane, is conformally equivalent to the unit disk. However, it is rare in higher dimen-
sional spaces that two topological equivalent domains are conformally equivalent because
of Liouville’s rigidity theorem. Hence, the class of conformal mappings is too restrictive.
The class of quasiconformal mappings is a natural generalization of conformal mappings.
Let f : X onto−→ Y be a Sobolev homeomorphism. Hereafter the symbol |Df(x)| stands for
the operator norm of the differential matrix Df(x) ∈ Rn×n, which is called the deformation
gradient ,and Jf (x) for its determinant.

Definition 2.1. Let 1 ≤ K < ∞. We say that a homeomorphism f : X onto−→ Y ⊂ Rn on a
domain X ⊂ Rn is K-quasiconformal if f ∈ W 1,1

loc (X,Y) and

|Df(x)|n ≤ KJf (x) for almost all x ∈ X.

A fundamental property of quasiconformal mappings is that the inverse of a quasicon-
formal mapping is still quasiconformal. In particular, both the mapping and its inverse
have finite conformal (or n-harmonic) energy between bounded domains, that is, they be-
long to the Sobolev class W 1,n. Hence, the class of mappings of bi-conformal energy is a
generalization of the class of quasiconformal mappings.

Definition 2.2. A homeomorphism h : X onto−→ Y in W 1,n(X,Rn), whose inverse h−1 : Y onto−→
X also belongs to W 1,n(Y,Rn) is called a mapping of bi-conformal energy. If such a home-
omorphism exists, X and Y are said to be bi-conformally equivalent. The corresponding
bi-conformal energy is given by

EX,Y[h]
def
==

∫
X

|Dh(x)|n dx +

∫
Y

|Dh−1(y)|n dy < ∞ . (2.1)

Mappings of bi-conformal energy form the widest class of homeomorphisms for which
one can hope to build a viable extension of Geometric Function Theory with connections
to mathematical models of Nonlinear Elasticity. Such homeomorphisms are exactly the



8 INTRODUCTION

ones with finite conformal energy and integrable inner distortion, as seen in [B, Theorem
1.5]. It is in this way that the studies extend the theory of quasiconformal mappings.

The class of homeomorphisms of finite distortion is another generalization of the class
of quasiconformal mappings.

Definition 2.3. A homeomorphism f ∈ W 1,1
loc (X,Y) is said to have finite distortion if

there is a measurable function K : X → [1,∞) such that

|Df(x)|n � K(x)Jf (x) , for almost every x ∈ X. (2.2)

The smallest function K(x) � 1 for which (2.2) holds is called the distortion of f ,
denoted by Kf = Kf (x).

Definition 2.4. Let f : X → Y be a homeomorphism in the class W 1,1
loc (X,Y). We say that

f has finite inner distortion, if there is a measurable function K : X → [1,∞), such that

|adjDf(x)|n ≤ K(x)Jf (x)

for almost every x ∈ X. Here adjDf(x) denotes the adjugate matrix of Df(x), i.e. the
matrix of the (n− 1) × (n− 1)-subdeterminants of Df(x).

We define the optimal inner distortion function KI by setting

KI(x)
def
==

{ |adjDf(x)|n
Jn−1
f (x)

, for Jf (x) > 0,

1, for Jf (x) = 0,

It is easy to see that a homeomorphism of finite distortion has finite inner distortion. In the
Euclidean plane R2, these two notions coincide. When n ≥ 3, there are homeomorphisms
of finite inner distortion which do not have finite distortion. However, a homeomorphism
h : X onto−→ Y in W 1,n(X,Rn) with integrable inner distortion has finite distortion, [5].

3. Sobolev extension domains

The topic about extending functions has a long history. At least, it goes back to the
fundamental results of Whitney. In [44, 45], he proved that every Cm-continuous function
defined on a closed subset of Rn can be extended to become a Cm-function on Rn. This
extension can be even chosen to be real analytic outside the original closed subset. The
class of Sobolev functions is a natural generalization of smooth functions. Sobolev functions
are neither necessarily smooth nor differentiable. Instead of this, they have representatives
that are absolutely continuous on almost all line segments parallel to the coordinate axes.

Definition 3.1. A domain X ⊂ Rn is said to be a Sobolev (p, q)-extension domain for
1 ≤ q ≤ p ≤ ∞, if, for every function u ∈ W 1,p(X), there exists a function Eu ∈ W 1,q

loc (Rn)
with Eu

∣∣
X
≡ u and ‖Eu‖W 1,q(Rn\X) ≤ C‖u‖W 1,p(X) for a positive constant C independent of

u.

Thanks to results due to Calderón and Stein [41], Koskela [27], Shvartsman [40], Haj�lasz,
Koskela and Tuominen [17], Koskela, Rajala and Zhang [29, 30] and so on, the theory of
Sobolev (p, p)-extension domains is well understood today, for every 1 ≤ p ≤ ∞. Note
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that even in the planar case there are domains which are not (p, p)-extension domains. The
planar unit disk with a removed radial line segment serves as a stardard example of such
a domain. It does not allow for (p, p)-extendability, whenever 1 ≤ p ≤ ∞.

Haj�lasz [16] defined a new class of function spaces on metric measure spaces, the so-called
Haj�lasz-Sobolev spaces M 1,p(X).

Definition 3.2. For u ∈ L 1
loc(X), a non-negative function g is called a p-Haj�lasz gradient

of u, if g ∈ L p(X), 1 ≤ p ≤ ∞ and

|u(x) − u(y)| ≤ |x− y|(g(x) + g(y)), for a.e. x, y ∈ X.

The class of p-Haj�lasz gradients of u is denoted by Dp(u).

Definition 3.3. The Haj�lasz-Sobolev space M 1,p(X), 1 ≤ p ≤ ∞, is defined by setting

M 1,p(X)
def
== {u ∈ L p(X) : Dp(u) 
= ∅} .

The norm is given by

‖u‖M 1,p(X)
def
== ‖u‖L p(X) + inf

g∈Dp(u)
‖g‖L p(X).

In the same paper, Haj�lasz also proved that the Haj�lasz-Sobolev space M 1,p(Rn) co-
incides with the classical Sobolev space W 1,p(Rn), for 1 < p ≤ ∞. In particular, we
always have M 1,p(X) ⊂ W 1,p(X), 1 ≤ p ≤ ∞, and the inclusion is strict for p = 1 for
any domain X, due to a result of Koskela and Saksman [31]. However, due to the equality
M 1,p(Rn) = W 1,p(Rn), 1 < p ≤ ∞, we have M 1,p(X) = W 1,p(X), provided X is a Sobolev
(p, p)-extension domains. This holds especially for (ε, δ)-domains by a result of Jones [26].
However, outward cuspidal domains are not (p, p)-extension domains.

4. Mappings of bi-conformal energy from the unit ball onto cuspidal

domains

There is broad literature dealing with the question as to when a pair of domains X,Y ⊂
Rn are quasiconformally equivalent or even bi-Lipschitz equivalent. Domains X ⊂ Rn

quasiconformally equivalent with the unit ball Bn in Rn are called quasiballs. It is a highly
nontrivial problem to characterize the domains X ⊂ Rn that are quasiballs, when n ≥ 3.
Among geometric obstructions are inward cusps. Outward cuspidal domains, however, are
always quasiballs. These fundamental results are due to Gehring and Väisälä [13].

Theorem 4.1. Let n ≥ 3. For an arbitrary Lipschitz cuspidal function u, there exists a
quasiconformal mapping from the unit ball Bn onto the outward cuspidal domain B�

u.n; but
there is no quasiconformal mapping from the unit ball Bn onto the inward cuspidal domain
B≺
u,n.

In particular, every outward cuspidal domain is bi-conformally equivalent with the unit
ball. In [B], we established the sharp description of inward cuspidal boundary singular-
ities that can be created and flattened by a mapping of bi-conformal energy. This is in
accordance with Hooke’s Law in the theory of Nonlinear Elasticity (NE).
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Theorem 4.2 (B). Let n � 3 and

u(t) =
e

exp
(
1
t

)α for 0 � t � 1 , where α > 0 .

Then the domains B≺
u,n and Bn are bi-conformally equivalent if and only if α < n.

In particular, any power-type cuspidal domain, u(t) = tβ, β > 1, is bi-conformally
equivalent with the unit ball. On the other hand, a homeomorphism h : Bn onto−→ B≺

u,n of
finite bi-conformal energy extends as a homeomorphism up to the closure of Bn, see [B,
Theorem 3.1]. Therefore, by the geometry of the inward cuspidal domain B≺

u,n, both the

boundary homeomorphism h : ∂Bn onto−→ ∂B≺
u,n and its inverse f := h−1 enjoys a log

1
n -type

modulus of continuity estimate, see e.g. [24] and [B]. Such a boundary homeomorphism
with given modulus of continuity estimates does not exist between the (n−1)-dimensional
surface ∂Bn (smooth) and ∂B≺

u,n (non-smooth) if

u(t) = exp−1

(
expα

(
1

t

))
,

when α > n. Note that, this seemingly natural approach does not lead to a sharp result
due to the geometric constrains, see Theorem 4.2. Indeed, if yo ∈ ∂B≺

u,n is the vertex, then

f = h−1 and h cannot obtain the log
1
n -modulus of continuity at yo and at f(yo) respectively,

at the same time. Without any geometric assumption on the domains, this is however
possible, see Theorem 4.6. The nonexistence part of our proof relies on the modulus
of continuity of h : Bn onto−→ B≺

u,n and the Sobolev embedding on spheres for the inverse
mapping. This argument also allows us to substantially relax the regularity assumption of
the inverse deformation.

Actually, Theorem 4.2 is a special case of the following theorem.

Theorem 4.3 (B). Let n � 3 and

u(t) =
e

exp
(
1
t

)α for 0 � t � 1 , where α > 0 .

If α � n then there is no homeomorphism h : B onto−→ B≺
u,n with finite conformal energy

whose inverse h−1 = f belongs to W 1,p(B≺
u,n,R

n), p > n− 1. If α < n, then there exists a

homeomorphism h : B onto−→ B≺
u,n with finite conformal energy such that f is Lipschitz regular.

Symmetry of extremal mappings is a typical speculation in the Calculus of Variations
(CV). Several papers, in the intersection of Nonlinear Elasticity (NE) and Geometric Func-
tion Theory (GFT), are devoted to understand the expected radial symmetry properties.
See [22, 25, 33]. To contribute to such studies in [C], we searched for differences and
similarities between mappings of bi-conformal energy and quasiconformal mappings. We
examined the modulus of continuity of the mappings.

Definition 4.4. [Optimal Modulus of Continuity] Every uniformly continuous function
h : X → Y admits the optimal modulus of continuity at a given point xo ∈ X, given by the
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rule:

ωh(xo; t)
def
== sup{|h(x) − h(xo)| : x ∈ X, |x− xo| ≤ t}. (4.1)

These led us to a new characterization of quasiconformality. Specifically, we observed
that quasiconformal mappings behave locally at every point like radial strechings. If a
quasiconformal mapping h admits ω as its optimal modulus of continuity at the point
xo, then h−1 admits the inverse function ω−1 as its modulus of continuity at the point
yo := h(xo). Second, such a gain/loss rule about moduli of continuity for a homeomorphism
and its inverse is typical for radial stretching/ squeezing. It turned out that the gain/loss
rule gives a new characterization for the class of quasiconformal mappings.

Theorem 4.5 (C). Let h : X onto−→ Y be a homeomorphism between domains X,Y ⊂ Rn and
let f : Y onto−→ X denote its inverse. Then h is quasiconformal if and only if, for every pair
(x◦, y◦) ∈ X × Y, y◦ = h(x◦), the optimal modulus of continuity functions ωh = ωh(x◦; t)
and ωf = ωf (y◦; s) are quasi-inverse to each other; that is, there is a constant K � 1
(independent of (x◦, y◦)) such that

K−1s � (ωh ◦ ωf )(s) � Ks

for all sufficiently small s > 0.

The elastic deformations of bi-conformal energy are very different in this respect. We
proved unexpectedly that such a mapping may have the same optimal modulus of continuity
as its inverse. In line with Hooke’s Law, when trying to restore the original shape of the
body, the modulus of continuity may neither be improved nor become worse.

Theorem 4.6 (A Representative Example). Consider a modulus of continuity function
φ : [0,∞) onto−→ [0,∞) defined by the rule

φ(s) =

⎧⎨⎩
0 if s = 0[

log
(
e
s

)]− 1
n
[

log log
(
ee

s

) ]−1
if 0 < s � 1

s if s � 1

(4.2)

Then there exists a deformation of bi-conformal energy H : Rn onto−→ Rn such that

• H(0) = 0 , H(x) ≡ x , for |x| � 1
• |H(x1) − H(x2) | ≤ C φ(|x1 − x2|) , for all x1, x2 ∈ Rn

Its inverse F
def
== H−1 : Rn onto−→ Rn also admits φ as a modulus of continuity,

• |F (y1) − F (y2) | ≤ C φ(|y1 − y2|) , for all y1, y2 ∈ Rn 1

Furthermore, φ represents the optimal modulus of continuity at the origin for both H and
F ; that is, for every 0 � s < ∞ we have

ωH(0, s) = φ(s) = ωF (0, s) . (4.3)

1 In the above estimates the implied constants depend only on n .
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5. L p
-quasidisks

Quasidisks have been intensively studied for many years because of their exceptional
function-theoretic properties, relationships with Teichmüller theory and Kleinian groups
and interesting applications in complex dynamics, see [10] for an elegant survey. Let us
start with a definition of quasidisks.

Definition 5.1. A domain X ⊂ C is called a quasidisk if it admits a quasiconformal

mapping f : C onto−→ C which takes X onto D . In symbols, we have X
quasi
=== D .

Quasidisks can be very complex. There are quasidisks whose boundaries contain no
segments with finite length. For every t ∈ (1, 2), one can construct a quasidisk whose
boundary has Hausdorff dimension t, see Figure 2. There are many characterizations for
quasidisks, see e.g. [12]. Perhaps the best known geometric characterization for a quasidisk
is the Ahlfors’ condition [2].

Theorem 5.2 (Ahlfors). Let X be a simply-connected Jordan domain in the plane. Then
X is a quasidisk if and only if there is a constant 1 � γ < ∞, such that for each pair of
distinct points a, b ∈ ∂X we have

diam Γ � γ |a− b| (5.1)

where Γ is the component of ∂X \ {a, b} with smallest diameter.

Figure 2. Koch snowflake reveals complexity of a quasidisk.

One should infer from the Ahlfors’ condition (5.1) that:
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Quasidisks do not allow for cusps in the boundary.

This is to say, unfortunately, the point-wise inequality K(z) � K < ∞ in (2.2), precludes
f from smoothing even basic singularities. It is therefore of interest to look for more
general deformations f : C onto−→ C . We shall see, and it will become intuitively clear, that
the act of deviating from conformality should be measured by integral-mean distortions
rather than point-wise distortions. A more general class of mappings, for which one might
hope to build a viable theory, consists of homeomorphisms with locally L p -integrable
distortion, 1 � p < ∞ .

Figure 3. The ratio L/l , which measures the infinitesimal distortion of
the material structure at the point z , is allowed to be arbitrarily large.
Nevertheless, L/l has to be finite almost everywhere.

Definition 5.3. The term mapping of L p -distortion, 1 � p < ∞, refers to a homeomor-
phism f : C → C of finite distortion with Kf ∈ L p

loc (C).

Now, we generalize the notion of quasidisks; simply, replacing the assumption Kf ∈
L ∞(C) by Kf ∈ L p

loc (C) in Definition 5.1.

Definition 5.4. A domain X ⊂ C is called an L p-quasidisk if it admits a homeomorphism
f : C → C of L p -distortion such that f(X) = D .

Clearly, L p-quasidisks are Jordan domains. Surprisingly, the L 1
loc -integrability of the

distortion seems not to cause any geometric constraint on X . We confirmed this observa-
tion for domains with rectifiable boundary.
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Theorem 5.5 (E). All simply-connected Jordan domains with rectifiable boundary are
L 1-quasidisks.

We gave in [E] a full characterization as to when power-type cuspidal domains are L p-
quasidisks.

Theorem 5.6 (E). Let X be either B≺
tβ ,2

or B�
tβ ,2

and 1 < p < ∞. Then X is an L p-

quasidisk if and only if β < p+3
p−1

; equivalently, p < β+3
β−1

.

This is a special case of following theorem.

Theorem 5.7 (E). Let u(t) = tβ, β > 1. Consider power-type inward or outward cuspidal
domains X = B≺

u,2 or B�
u,2 with β > 1 . Given a pair (q, p) of exponents 1 � q � ∞ (for

X ) and 1 < p � ∞ (for the complement of X ), define the so-called critical power of the
cusp by setting

β cr
def
==

⎧⎪⎨⎪⎩
p q+2 p+ q

p q− q
, if 1 < p < ∞ and q < ∞

2
q

+ 1 , if p = ∞ and q < ∞
p+1
p− 1

, if 1 < p < ∞ and q = ∞
(5.2)

Then there exists a Sobolev homeomorphism f : C → C which takes X onto D such that

• Kf ∈ L q(X)

and

• Kf ∈ L p(BR \ X) for every R > 2,

if and only if β < β cr.

The cuspidal domains B�
tβ ,2

and B≺
tβ ,2

satisfy a 1
β

-Ahlfors condition, in the sense that we

simply replace |a − b| in (5.1) by |a − b| 1β . Theorem 5.6 tells us how much distortion for
a homeomorphism f : C → C is needed to flatten (or smoothen) the power-type cusp tβ.
Combining this result to the work of Koskela and Takkinen [32], it turns out that a lot
more distortion is needed to create a cusp than to smooth it back.

6. Sobolev extensions via reflections

In this section, we introduce the results about Sobolev extendability for the outward
and inward power-type cuspidal domains B≺

tβ ,n
and B�

tβ ,n
in Rn. The interesting point of

our work in [F] is that we construct the optimal extension operators via reflections. Recall
the definition of Sobolev extension domains from Section 3.

Among Sobolev extension domains, the most interesting ones are the (p, p)-extension
domains. By results of Calderón and Stein [41], Lipschitz domains are (p, p)-extension
domains, for 1 ≤ p ≤ ∞. In [26], Jones generalized this result to the class of (ε, δ)-domains.

One can easily show that neither the arbitrary n-dimensional outward cuspidal domains
B�

tβ ,n
⊂ Rn nor the two-dimensional inward cuspidal domains B≺

tβ ,2
⊂ R2 are (ε, δ)-domains,

for any ε, δ > 0. The inward cuspidal domains B≺
tβ ,n

⊂ Rn, n ≥ 3, however, are (ε, δ)-

domains, for some ε and δ. The optimal Sobolev extendability results for cuspidal domains
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are known due to the results of Maz’ya and Poborchi, [35, 36, 37, 38]. The results are
rather different between R2 and Rn, n ≥ 3. Let us first give the result in R2.

Theorem 6.1. There is a bounded linear extension operator from W 1,p(B�
tβ ,2

) to W 1,q(R2)

whenever 1+β
2

< p < ∞ and 1 ≤ q < 2p
1+β

. Also there exists a bounded linear extension

operator from W 1,p(B≺
tβ ,2

) to W 1,q(R2), whenever 1 < p < ∞ and 1 ≤ q < (1+β)p
2+(s−1)β

or
p = q = 1.

As we already know, inward cuspidal domains B≺
tβ ,n

⊂ Rn, n ≥ 3, are (ε, δ)-domains, and

hence they are (p, p)-extension domains, 1 ≤ p ≤ ∞. The following theorem gives us the
optimal Sobolev extendability for outward cuspidal domains B�

tβ ,n
⊂ Rn, n ≥ 3.

Theorem 6.2. Let B�
tβ ,n

⊂ Rn(n ≥ 3), be an outward cuspidal domain with the degree

β ∈ (1,∞). Then
(1): There exists a bounded linear extension operator E1 from W 1,p(B�

tβ ,n
) to W 1,q(Rn),

whenever 1+(n−1)β
n

< p < ∞ and 1 ≤ q < np
1+(n−1)β

.

(2): There exists a bounded linear extension operator E2 from W 1,
(n−1)+(n−1)2β

n (B�
tβ ,n

) to

W 1,n−1(Rn).
(3): There exists a bounded linear extension operator E3 from W 1,p(B�

tβ ,n
) to W 1,q(Rn),

whenever 1+(n−1)β
2+(n−2)β

< p < ∞ and 1 ≤ q < (1+(n−1)β)p
1+(n−1)β+(β−1)p

.

All the above extension results are sharp; the interested reader is refered to [37] and
references therein for details. What we are interested in is, whether or not there exists a
bounded linear extension operator induced by a reflection. First, let us give the definition
of a reflection and explain how does a reflection potentially induce an extension operator.

Definition 6.3. Let X ⊂ Rn be a domain. A self homeomorphism R : R̂n → R̂n is said to

be a reflection over ∂X, if R(R̂n \X) = X, R(X) = R̂n \X and R(x) = x for every x ∈ ∂X.

Definition 6.4. Let X ⊂ Rn be a domain with compact boundary. We say that a reflection

R : R̂n → R̂n over ∂X induces a bounded linear extension operator from W 1,p(X) to
W 1,q

loc (Rn), for some 1 � q � p � ∞, if for every function u ∈ W 1,p(X) the function

ER(u)(x)
def
==

⎧⎨⎩ u(R(x)), for x ∈ B(X, 1) \ X,
0, for x ∈ ∂X,
u(x), for x ∈ X,

(6.1)

belongs to W 1,q
loc (B(X, 1)) and

‖ER(u)‖W 1,q(B(X,1)\X) ≤ C‖u‖W 1,p(X).

Here C is a positive constant independent of u.

Recall that B(X, 1) denotes the 1-neighborhood of X. The classical cut-off technique
implies that an extension operator from W 1,p(X) to W 1,q(B(X, 1)) can be upgraded to an
extension operator from W 1,p(X) to W 1,q(Rn).
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In [28], Koskela, Pankka and Zhang proved that, for every planar Jordan (p, p)-extension
domain, 1 < p < ∞, there is a reflection which induces a bounded linear extension operator.

Theorem 6.5. Let X ⊂ R2 be a Jordan (p, p)-extension domain. Then R2 \X is a (p�, p�)-
extension domain with 1

p
+ 1

p�
= 1. Moreover, there is a reflection over ∂X which induces

a bounded linear extension operator from W 1,p(X) to W 1,p(R2) and also a bounded linear
extension operator from W 1,p�(R2 \ X) to W 1,p�(R2).

Actually, for the planar outward cuspidal domains B�
tβ ,2

and inward cuspidal domains

B≺
tβ ,2

, the problem about Sobolev extension via reflection was already studied by Gol’dshtein

and Sitnikov [15], around 30 years ago. Their result shows that the corresponding extension
result in Theorem 6.1 can be achieved by a bounded linear extension operator induced via
a reflection.

Theorem 6.6. [15] Fix β > 1. There is a reflection R : R̂2 → R̂2 over ∂B�
tβ ,2

which induces

a bounded linear extension operator from W 1,p(B�
tβ ,2

) to W 1,q(R2) whenever 1+β
2

< p < ∞
and 1 ≤ q < 2p

1+β
. Moreover, R also induces a bounded linear extension operator from

W 1,p(R2 \ B�
tβ ,2

) to W 1,q(R2) whenever 1 < p < ∞, 1 ≤ q < (1+β)p
2+(β−1)p

or p = q = 1.

Since the domain R2 \ B�
tβ ,2

has the same singularity on the boundary as the inward

cuspidal domain B≺
tβ ,2

, it is easy to see that the Sobolev extendability for R2 \B�
tβ ,2

implies

the same Sobolev extendability for B≺
tβ ,2

.

After understanding the theory in the Euclidean plane R2, the similar question arises
in Rn, n ≥ 3. We obtained in [F] the following result about bounded linear extension
operators induced by reflections on outward cuspidal domains B�

tβ ,n
⊂ Rn.

Theorem 6.7 (F). Let n ≥ 3 and B�
tβ ,n

⊂ Rn be an outward cuspidal domain with the

degree 1 < β < ∞. Then

(1): There exists a reflection R1 : R̂n → R̂n over ∂B�
tβ ,n

which induces a bounded lin-

ear extension operator from W 1,p(B�
tβ ,n

) to W 1,q(Rn), whenever 1+(n−1)β
n

< p < ∞ and

1 � q < np
1+(n−1)β

.

(2): There exists a reflection R2 : R̂n → R̂n over ∂B�
tβ ,n

which induces a bounded lin-

ear extension operator from W 1,p(B�
tβ ,n

) to W 1,q(Rn), whenever 1+(n−1)β
2+(n−2)β

< p < ∞ and

1 � q < (1+(n−1)β)p
1+(n−1)β+(β−1)p

.

Let n ≥ 3. It is easy to check that the complement Rn \ B�
tβ ,n

, is an (ε, δ)-domain, for

some positive ε, δ. Hence, Rn \B�
tβ ,n

is a (p, p)-extension domain, for every 1 ≤ p ≤ ∞, due

to a result of Jones [26]. Our following theorem gives the values of p ∈ [1,∞), for which

the (p, p)-extension of Rn \ B�
tβ ,n

can be achieved via a bounded linear extension operator

induced by a reflection.
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Theorem 6.8 (F). Let n ≥ 3. For every 1 < β < ∞, Rn \ B�
tβ ,n

is a (p, p)-extension

domain, for every 1 ≤ p < ∞. The reflection R1 in Theorem 6.7 induces a bounded linear
extension operator from W 1,p(Rn \B�

tβ ,n
) to W 1,p(Rn), whenever 1 ≤ p ≤ n− 1. Moreover,

for any given n−1 < p < ∞, there does not exist a reflection over ∂B�
tβ ,n

which can induce

a bounded linear extension operator from W 1,p(Rn \ B�
tβ ,n

) to W 1,p(Rn).

What about the case p = ∞? We say that a domain X ⊂ Rn is uniformly locally
quasiconvex if there exist constants C > 0 and R > 0 such that, for all x, y ∈ X with
d(x, y) < R, there is a rectifiable curve γ connecting x and y in X such that the length of
γ is bounded from above by Cd(x, y). Recall that X is an (∞,∞)-extension domain if and
only if it is uniformly locally quasiconvex, see [17]. One can easily check that both B�

tβ ,n

and Rn \ B�
tβ ,n

are uniformly locally quasiconvex, equivalently, they are (∞,∞)-extension

domains. The following theorem is an analog of Theorem 6.8.

Theorem 6.9 (F). Let n ≥ 3. For every 1 < β < ∞, both B�
tβ ,n

and Rn\B�
tβ ,n

are (∞,∞)-

extension domains. The reflection R1 over ∂B�
tβ ,n

in Theorem 6.7 induces a bounded linear

extension operator from W 1,∞(B�
tβ ,n

) to W 1,∞(Rn). On the other hand, there is no reflection

over ∂B�
tβ ,n

which can induce a bounded linear extension operator from W 1,∞(Rn \ B�
tβ ,n

)

to W 1,∞(Rn).

7. The product of Sobolev extension domains

In this section, we introduce our result in [A]. It says that the Sobolev extendability
property is stable under products.

First, let us explain why we got interested in this problem. By [15] the Sobolev extend-
ability for planar outward cuspidal domains B�

tβ ,2
and inward cuspidal domains B≺

tβ ,2
can

be achieved via a bounded linear extension operator induced by reflections, see Theorem
6.6. By making use of this result, we can easily prove that the domain B�

tβ ,2
× I ⊂ R3 has

the same Sobolev extendability as B�
tβ ,2

. Here I = (0, 1) ⊂ R is the unit interval. This

follows as a special case of our next result. The idea of the proof is copied from the proof
of [Theorem 1.1, A]. Hence, we only give a rough proof here.

Theorem 7.1. Let X ⊂ Rn be a bounded simply-connected (p, q)-extension domain, for

1 ≤ q ≤ p < ∞. Assume that there exists a reflection R : R̂n → R̂n over ∂X, such that the
induced extension operator defined in (6.1) is bounded both from W 1,p(X) to W 1,q(Rn) and
from L p(X) to L q(Rn). Then X× I ⊂ Rn+1 is also a (p, q)-extension domain.

Sketch of proof. Let R : R̂n → R̂n be the reflection over ∂X, which induces a bounded
linear extension operator both from W 1,p(X) to W 1,q(Rn) and from L p(X) to L q(Rn).
For every function u ∈ W 1,p(X), we define the extension ER(u) as in (6.1).

We write

Rn+1 def
== R× Rn = {(t, x) : t ∈ R and x = (x1, x2, · · · , xn) ∈ Rn}.
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Let u ∈ C∞(X× I)∩W 1,p(X× I) be arbitrary. By the Fubini theorem, for almost every

t ∈ I
def
== (0, 1),

ut(·) = u(t, ·) ∈ C1(X) ∩ L ∞(X) ∩ W 1,p(X).

For such t ∈ I, ER(ut) ∈ W 1,q(Rn) and ‖ER(ut)‖W 1,q(Rn) ≤ C‖ut‖W 1,p(X) with a positive
constant C independent of t. Then for t ∈ (0, 1), using the extension (6.1), we set

Eu(t, x)
def
== ER(ut)(x). (7.1)

For every i ∈ {1, 2, · · · , n}, define a function by setting

∂

∂xi

Eu(t, x)
def
==

{
∂
∂xi

ER(ut)(x), t ∈ (0, 1) with ut ∈ W 1,p(X),

0, elsewhere.
(7.2)

By some simple computations, ∂
∂xi

Eu is the distributional derivative of Eu with respect to
the xi-coordinate direction with desired norm control.

From the argument above, we already know that the distributional derivatives of Eu exist
with respect to the x-coordinate directions. Now we construct the distributional derivative
of Eu with respect to the t-coordinate direction. By the definition of reflection, for every
x ∈ B(X, 1) \X, there exists x′ ∈ X with R(x′) = x. Then by the definition of Eu in (7.1),
for every t ∈ (0, 1), we have Eu(t, x) = u(t, x′). Since u ∈ C∞(X × I) ∩ W 1,p(X × I) and
∂
∂t
Eu(t, x) = ∂

∂t
u(t, x′) for every t ∈ (0, 1). Hence we define our function ∂

∂t
Eu by setting

∂

∂t
Eu(t, x)

def
==

⎧⎪⎨⎪⎩
∂
∂t
u(t, x′), x ∈ B(X, 1) \ X,

0, x ∈ ∂X,
∂
∂t
u(t, x), x ∈ X.

(7.3)

By some simple computations, ∂
∂t
Eu defined in (7.3) is the distributional derivative of

Eu with respect to the t-coordinate direction. It is also easy to see that

∂

∂t
Eu(t, x) = ER

(
∂

∂t
u

)
(t, x)

almost everywhere. Since the extension operator ER induced by the reflection R is bounded
from L p(X) to L q(Rn), we can obtain the desired norm control. Hence, for every u ∈
C∞(X× I) ∩ W 1,p(X× I), we have

‖Eu‖W 1,q(B(X,1)×I) ≤ C‖u‖X×I

with a positive constant C independent of u. By the density of C∞(X×I)∩W 1,p(X×I), E
can be extended to W 1,p(X× I). Let B ⊂ Rn be a large enough ball with B(X, 1) ⊂ B. By
the classical cut-off technique, there exists a function Ẽu ∈ W 1,q(B×I) with Ẽu

∣∣
B(X,1)×I

≡
u and

‖Ẽu‖W 1,q(B×I) ≤ C‖u‖W 1,p(X×I)

with a constant C independent of u. �
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If one reads the proof above carefully, one can observe that the fact that the extension
operator induced by the reflection is bounded both from W 1,p(X) to W 1,q(Rn) and from
L p(X) to L q(Rn) is the essential point. Regarding the classical Sobolev (p, p)-extension
theory, Haj�lasz, Koskela and Tuominen [17] proved that for 1 ≤ p < ∞, a (p, p)-extension
domain must satisfy an Ahlfors-regularity condition according to which, for every x ∈ X
and 0 < r < diamX, we have

|B(x, r) ∩ X| ≥ C|B(x, r)|.
They also proved the following theorem in [17, 18].

Theorem 7.2. Let 1 < p < ∞. A domain X ⊂ Rn is a Sobolev (p, p)-extension domain if
and only if there exists a bounded linear extension operator from W 1,p(X) to W 1,p(Rn).

By making use of the operator from this theorem and following the main idea of the
proof of Theorem 7.1, we proved the following result in [A].

Theorem 7.3. Let 1 < p ≤ ∞. If X1 ⊂ Rn and X2 ⊂ Rm are (p, p)-extension domains,
then X1 × X2 ⊂ Rn+m is also a (p, p)-extension domain. Conversely, if X1 ⊂ Rn and
X2 ⊂ Rm are domains so that X1 ×X2 ⊂ Rn+m is a (p, p)-extension domain, then both X1

and X2 are necessarily (p, p)-extension domains.

8. M 1,p = W 1,p
on outward cuspidal domains

In this section, we will introduce the results in [D]. In that paper, we showed that
the Haj�lasz-Sobolev spaces coincide with the classical Sobolev spaces on a large class of
domains including all outward cuspidal domains, see Section 1 for definitions.

In [1, 8], Acerbi, Fusco, Bojarski and Haj�lasz proved certain point-wise inequalities for
Sobolev functions. That is

|u(x) − u(y)| ≤ C|x− y| (M[∇u](x) + M[∇u](y)) . (8.1)

Here C is a positive constant independent of x, y and u and M is the usual maximal
operator. Motivated by this, P. Haj�lasz introduced in [16] the function space M 1,p(X).

It is known that M 1,p(X) ⊂ W 1,p(X) and that the inclusion is strict for p = 1 for any
X, see the work of Koskela and Saksman [19]. By inequality (8.1), in Rn, the opposite
inclusion holds for 1 < p ≤ ∞. The opposite inclusion also holds if there is a bounded
extension operator from W 1,p(X) into W 1,p(Rn), for a given 1 < p � ∞. Actually, if there
exists a constant C so that

|B(x, r)| ≤ C|B(x, r) ∩ X| (8.2)

for every x ∈ X and every 0 < r < 1, where | · | refers to n-measure, then the above two
function spaces coincide precisely when such an extension operator exists. For this see [17].
Hence it is easy to exhibit domains X for which M 1,p(X) = W 1,p(X) fails for all p; e.g.
take X to be the unit disk minus the interval [0, 1) on the real line.

In [D], we did not only work on the outward cuspidal domain B�
u defined in (1.1). Let

us consider cuspidal domains of the form

Xψ
def
== {(t, x) ∈ (0, 1) × Rn−1; |x| < ψ(t)} ∪ {(t, x) ∈ [1, 2) × Rn−1; |x| < ψ(1)}, (8.3)
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where ψ : (0, 1] → (0,∞) is a left-continuous increasing function. See Figure 4. It is easy

Figure 4. Outward cuspidal domain Ωψ

to check that Xψ ⊂ Rn is a domain. If limt→0+
ψ(t)
t

= 0, then the measure density condition
(8.2) fails, and hence, by [17], there can not exist any bounded extension operator from
W 1,p(Xψ) to W 1,p(Rn). According to a somewhat surprising result by A. S. Romanov [39],

W 1,p(B�
tβ ,n

) = M 1,p(B�
tβ ,n

) with β > 1 and p > 1+(n−1)β
n

. Once ψ(t) = tβ with β > 1,

one can easily check that B�
tβ ,n

is bi-Lipschitz equivalent to Xψ. As we know, bi-Lipschitz

transformations preserve both Sobolev and Haj�lasz-Sobolev spaces.
Our result from [D] shows that the above restriction on p is superfluous and that u being

of the form u(t) = tβ can be essentially relaxed to being a nondecreasing left-continuous
function.

Theorem 8.1 (D). Let ψ : (0, 1] → (0,∞) be a left-continuous increasing function. Define
the corresponding cuspidal domain Xψ as in (8.3). Then W 1,p(Xψ) = M 1,p(Xψ), for all
1 < p � ∞.
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Product of Extension Domains is still
an Extension Domain

PEKKA KOSKELA & ZHENG ZHU

ABSTRACT. Our main result gives a functional property of the
class of W 1,p-extension domains. Let Ω1 ⊂ R

n and Ω2 ⊂ R
m

both be W 1,p-extension domains for some 1 < p ≤ ∞. We
prove that Ω1 × Ω2 ⊂ R

n+m is also a W 1,p-extension domain.
We also establish the converse statement.

1. INTRODUCTION

Let Ω ⊂ Rn be an open set. For 1 ≤ p ≤ ∞, we let W 1,p(Ω) denote the Sobolev
space consisting of all functions u ∈ Lp(Ω) whose first-order distributional partial
derivatives on Ω belong to Lp(Ω). This space is normed by

‖u‖W 1,p(Ω) :=
∑

0≤|α|≤1

‖Dαu‖Lp(Ω).

We say that u ∈ Lp(Ω) is ACL (absolutely continuous on lines), if u has a repre-
sentative ũ that is absolutely continuous on almost all line segments in Ω, parallel
to the coordinate axes. Then, u ∈ W 1,p(Ω) if and only if u belongs to Lp(Ω)
and has a representative ũ which is ACL and whose (classical) partial derivatives
belong to Lp(Ω) (see, e.g., Theorem A.15 in [11] and Theorem 2.1.4 in [20]).

We say that Ω ⊂ R
n is a W 1,p-extension domain if there exists a constant

C ≥ 1 which only depends on Ω, n,p such that for every u ∈ W 1,p(Ω) there
exists a function Eu ∈ W 1,p(Rn) with Eu|Ω ≡ u and so that

‖Eu‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω).
For example, note that every Lipschitz domain is a W 1,p-extension domain for
all 1 ≤ p ≤ ∞ by the results of Calderón and Stein [17]. It is easy to give
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examples of domains that fail to be extension domains: for example, the slit diskΩ := B2(0,1) \ {(x1,0) : 0 ≤ x1 < 1}. In general, the extension property for a
fixed Ω may depend on the value of p (see [13], [16], and [12]).

In [9], it was shown that any bi-Lipschitz image of a W 1,p-extension domain,
1 < p ≤ ∞, is also a W 1,p-extension domain: if Ω ⊂ R

n is a W 1,p-extension
domain and f : Ω → Ω′ ⊂ Rn is bi-Lipschitz, then Ω′ is also a W 1,p-extension
domain. Our main result gives a second functional property of Sobolev extension
domains.

Theorem 1.1. Let 1 < p ≤ ∞. If Ω1 ⊂ R
n and Ω2 ⊂ R

m are W 1,p-extension
domains, then Ω1 × Ω2 ⊂ R

n+m is also a W 1,p-extension domain. Conversely, ifΩ1 ⊂ R
n and Ω2 ⊂ R

m are domains so that Ω1 ×Ω2 ⊂ R
n+m is a W 1,p-extension

domain, then both Ω1 and Ω2 are necessarily W 1,p-extension domains.
According to Theorem 7 in [9] (see [21] for related results), a domain Ω is a

W 1,∞-extension domain if and only if it is uniformly locally quasiconvex, that is,
there exist positive constants C and R, such that for all x,y ∈ Ω with |x−y| < R,
there exists a curve γx,y ⊂ Ω from x to y with

�(γx,y) ≤ C|x − y|.

Here, �(γx,y) is the length of the curve γx,y . It is easy to check that the product
of uniformly locally quasiconvex domains is still uniformly locally quasiconvex,
and hence we only need to prove the first part of Theorem 1.1 for 1 < p <∞.

Our proof of the first part of Theorem 1.1 is based on the existence of an
explicit extension operator constructed by Shvartsman in [14]. A result from [9]
allows us to employ this operator. This procedure could in principle also be tried
for the case of the higher-order Sobolev spaces Wk,p, k ≥ 2, but one does not
seem to obtain suitable norm estimates. We would like to know whether the first
part of Theorem 1.1 extends to the case of higher-order Sobolev spaces or not; the
second part does extend, as can be seen from our proof below.

2. PRELIMINARIES

2.1. Definitions and preliminary results. Throughout the paper, C, C1,
C2, . . . or γ,γ1, γ2, . . . will be generic positive constants which depend only on
the dimension n, the domain Ω, and indices of the function spaces in question
(p, q, etc.). These constants may change even in a single string of estimates. The
dependence of a constant on certain parameters in expressed, for example, by the
notation γ = γ(n,p). We write A ≈ B if there is a constant C ≥ 1 such that
A/C ≤ B ≤ CA.

It will be convenient for us to measure distance via the uniform norm

‖x‖∞ := max{|xi| : i = 1, . . . , n}, x = (x1, . . . , xn) ∈ R
n.

Thus, every Euclidean cube

Q =Q(x, r) = {y ∈ Rn : ‖y − x‖∞ ≤ r}



Extension Domain Product is still an Extension Domain 139

is a ball in the ‖ · ‖∞-norm.
Definition 2.1. A measurable set A ⊂ R

n is said to be uniformly locally
Ahlfors regular (shortly, regular) if there are constants CA ≥ 1 and δA > 0 such
that, for every cube Q with center in A and with diameter diamQ ≤ δA, we have

|Q| ≤ CA|Q ∩A|.

Given u ∈ Lploc(R
n), 1 < p ≤ ∞, and a cube Q, we set

Λ(u;Q)Lp := |Q|−1/p inf
C∈R

‖u− C‖Lp(Q) = inf
C∈R

(
1
|Q|

∫
Q
|u− C|p dx

)1/p

(see Brudnyi [3] for related definitions). Sometimes (e.g., in [18]), Λ(u;Q)Lp is
also called the local oscillation of u. This quantity is the main object in the theory
of local polynomial approximation which provides a unified framework for the
description of a large family of spaces of smooth functions. We refer the readers
to Brudnyi [1]–[6] for the main ideas and results in local approximation theory.

Given a locally integrable function u on Rn, we define its sharp maximal
function u#

1 by setting

u#
1(x) := sup

r>0
r−1Λ(u;Q(x, r))L1 .

In [8], Calderón proved that, for 1 < p ≤ ∞, a function u is in W 1,p(Rn) if
and only if u and u#

1 are both in Lp(Rn). Moreover, up to constants depending
only on n and p, we have that

‖u‖W 1,p(Rn) ≈ ‖u‖Lp(Rn) + ‖u
#
1‖Lp(Rn).

This characterization produces the following definition. Given 1 < p ≤ ∞, a
function u ∈ L

p
loc(A), and a cube Q whose center is in A, we let Λ(u;Q)Lp(A)

denote the normalized best approximation of f on Q in Lp-norm:

Λ(u;Q)Lp(A) := |Q|−1/p inf
C∈R

‖u− C‖Lp(Q∩A)(2.1)

= inf
C∈R

(
1
|Q|

∫
Q∩A

|u− C|p dx

)1/p
.

By u#
1,A, we denote the sharp maximal function of u on A,

u#
1,A(x) := sup

r>0
r−1Λ(u;Q(x, r))L1(A), x ∈ A.

Notice that u#
1 = u

#
1,Rn .

The following trace theorem by Shvartsman from [14] relates local polynomial
approximation to extendability.
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Theorem 2.2. Let A be a regular subset of Rn. Then, a function u ∈ Lp(A),
1 < p ≤ ∞, can be extended to a function Eu ∈W 1,p(Rn) if and only if

u#
1,A := sup

r>0
r−1Λ(u;Q(·, r ))L1(A) ∈ L

p(A).

In addition,
‖u‖

W 1,p(Rn)
∣∣
A
≈ ‖u‖Lp(A) + ‖u

#
1,A‖Lp(A)

with constants of equivalence depending only on n, p, CA, and δA. Here,

‖u‖W 1,p(Rn)|A := inf
{
‖Eu‖W 1,p(Rn) :

Eu ∈W 1,p(Rn), Eu
∣∣
A ≡ u almost everywhere

}
.

For a set A ⊂ Rn of positive Lebesgue measure, we set

C1,p(A) = {u ∈ Lp(A) : u#
1,A ∈ L

p(A)},

‖u‖C1,p(A) = ‖u‖Lp(A) + ‖u
#
1,A‖Lp(A).

A result due to Hajłasz, Koskela, and Tuominen (Theorem 5 in [9]) that partially
relies on Theorem 2.2 states the following.

Theorem 2.3. LetΩ ⊂ Rn be a domain and fix 1 < p <∞. Then, the following
conditions are equivalent:

(a) For every u ∈ W 1,p(Ω) there exists a function Eu ∈ W 1,p(Rn) such that
Eu|Ω = u almost everywhere.

(b) Ω is regular, C1,p(Ω) = W 1,p(Ω) as sets, and the corresponding norms are
equivalent.

(c) Ω is a W 1,p-extension domain.
In [14], Shvartsman constructed an extension operator for Theorem 2.2 ex-

plicitly as a variant of the Whitney-Jones extension. We describe this procedure
in the next section. In particular, based on Theorem 2.3, for an arbitrary W 1,p-
extension domain Ω with 1 < p < ∞, there is a Whitney-type extension operator
from W 1,p(Ω) to W 1,p(Rn). (For an alternate Whitney-type extension operator,
see [10].)

2.2. Whitney-type extension. Given a constant λ > 0 and Q = Q(x, r),
we let λQ denote the cube Q(x,λr). By Q∗ we denote the cube Q∗ := 9

8Q.
Next, given subsets A,B ⊂ Rn, we set diamA := sup{‖a−a′‖∞ : a, a′ ∈ A}

and
dist(A, B) := inf{‖a− b‖∞ : a ∈ A, b ∈ B}.

Furthermore, we set dist(x,A) := dist({x}, A) for x ∈ R
n. The closure of A

in Rn is denoted Ā, and we denote the boundary of A by ∂A := Ā \ A. The
characteristic function of A is referred to by χA.

The following property is well known (see, e.g., [15]).
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Lemma 2.4. If A is a regular subset of Rn, then |∂A| = 0.
In what follows, we will assume that S is a closed regular subset of Rn. Since

R
n \S is an open set, it admits a Whitney decompositionWS (e.g., see Stein [17]).

Let us recall the main properties of WS .
Theorem 2.5. WS = {Q} is a countable family of closed cubes such that the

following hold:
(i) Rn \ S =

⋃
{Q : Q ∈ WS}.

(ii) For every cube Q ∈ WS ,

diamQ ≤ dist(Q, S) ≤ 4 diamQ.

(iii) No point of Rn \ S is contained in more than N = N(n) distinct cubes from
WS .

The following properties easily follow from (i)–(iii).
Lemma 2.6.
(1) If Q,K ∈WS and Q∗ ∩K∗ ≠∅, then

1
4

diamQ ≤ diamK ≤ 4 diamQ.

(2) For every cube K ∈ WS there are at most N = N(n) cubes from the family
W∗
S := {Q∗ : Q ∈WS} which intersect K∗.

Let ΦS := {ϕQ : Q ∈ WS} be a smooth partition of unity subordinated to the
Whitney decompositionWS (see [17]).

Proposition 2.7. There exists a family ΦS of functions defined on Rn with the
following properties:

(a) 0 ≤ϕQ(x) ≤ 1 for every Q ∈WS .
(b) suppϕQ ⊂ Q∗ (:= 9

8Q), Q ∈WS .
(c)

∑
{ϕQ(x) : Q ∈ WS} = 1 for every x ∈ Rn \ S.

(d) For every multi-index β with |β| = 1, and every cube Q ∈ WS ,

|DβϕQ(x)| ≤ C(diamQ)−1, x ∈ Rn,

where C is a constant depending only on n.
Actually, the family of cubes WS constructed in [17] satisfies the conditions

of Theorem 2.5 and Lemma 2.6 with respect to the Euclidean norm instead of
the uniform one. A simple modification to that construction gives a family of
Whitney cubes which have the analogous properties with respect to our uniform
norm.

Let K = Q(xK, rK) ∈ WS , and let aK ∈ S be a point nearest to xK on S.
Then, by property (ii) of Theorem 2.5,

Q(aK, rK) ⊂ 10K.
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Fix a small 0 < ε ≤ 1 and set Kε := Q(aK, εrK). Let Q = Q(xQ, rQ) be a cube
from WS with diamQ ≤ δS , where δS is as in Definition 2.1 for our regular sets.
Set

AQ := {K = Q(xK, rK) ∈WS : Kε ∩Qε ≠∅, rK ≤ εrQ},

where Qε := Q(aQ, εrQ). We define a “quasi-cube” HQ by setting

HQ := (Qε ∩ S) \
(⋃

{Kε : K ∈AQ}
)
.

If diamQ > δS , we simply set HQ := ∅.
The following result is Theorem 2.4 in [14].
Theorem 2.8. Let S be a closed regular subset of Rn. Then, there is a family of

“quasi-cubes” HΩ = {HQ : Q ∈ WS} as discussed above with the following:

(i) HQ ⊂ (10Q)∩ S whenever Q ∈WS .
(ii) |Q| ≤ γ1|HQ| whenever Q ∈ WS satisfies diamQ ≤ δS .
(iii)

∑
Q∈WS χHQ ≤ γ2.

Here, γ1 and γ2 are positive constants depending only on n and CA.
Next, we present estimates on local polynomial approximations of the exten-

sion Ef , via the corresponding local approximation of a function f defined on a
closed regular subset S ⊂ Rn.

Given a measurable subset A ⊂ Rn and a function u ∈ Lp(A), 1 ≤ p ≤ ∞,
we let Ê1(u;A)Lp denote the local best constant approximation in Lp-norm (see
Brudnyi [3]):

Ê1(u;A)Lp := inf
C∈R

‖u− C‖Lp(A).

Thus, Λ(u;Q)Lp(A) = |Q|−1/pÊ1(u;Q∩A)Lp

(see (2.1)). We note a simple property of Λ(u; ·)Lp(A) as a function of cubes: for
every pair of cubes Q1 ⊂ Q2,

Λ(u;Q1)Lp(A) ≤

(
|Q2|

|Q1|

)1/p Λ(u;Q2)Lp(A).

Let A be a subset of Rn with |A| > 0. We set

(2.2) PA(u) :=
∫
A
u(x)dx =

1
|A|

∫
A
u(x)dx.

Then, from a result of Brudnyi in [5] (see also Proposition 3.4 in [14]), we have
the following estimate.
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Proposition 2.9. Let A be a subset of a cube Q with |A| > 0. Then, the linear
operator PA : L1(A) → R has the property that, for every 1 ≤ p ≤ ∞ and every
u ∈ Lp(A),

‖u− PA(u)‖Lp(A) ≤ CÊ1(u;A)Lp .

Here, C = C(n, |Q|/|A|).
According to Lemma 2.4, the boundary of a regular set is of measure zero, and

so Proposition 2.9 together with Theorem 2.8 immediately implies the following
corollary.

Corollary 2.10. Let S be a closed regular set and let Q ∈ WS be a cube with
diamQ ≤ δS . There is a continuous linear operator PHQ : L1(HQ)→ R such that for
every function u ∈ Lp(S), 1 ≤ p ≤ ∞,

‖u− PHQ(u)‖Lp(HQ) ≤ γÊ1(u;HQ)Lp .

Here, γ = γ(n, k, θS).
We set

PHQu = 0, if diamQ > δS.

Then, the map Q → PHQ(f ) is defined on all of the cubes in the family WS . This
map gives rise to a bounded linear extension operator from Lp(S) to Lp(Rn),
defined by the formula

(2.3) Eu(x) :=

⎧⎪⎨⎪⎩
u(x), x ∈ S,∑
Q∈WS

ϕQ(x)(PHQu)(x), x ∈ Rn \ S.

Given a regular domain Ω ⊂ Rn, Ω̄ is a closed regular set with |Ω̄ \Ω| = 0.
Given a function u ∈ Lp(Ω), the zero extension of u to S := Ω̄ (still denoted
u) belongs to Lp(S), and we define the extension Eu of u to Rn by the formula
(2.3). When u ∈ C1,p(S), Eu here is precisely the Eu from Theorem 2.2. By
combining Theorem 2.2 and Theorem 2.3, we obtain the following result.

Theorem 2.11. LetΩ ⊂ Rn be aW 1,p-extension domain for a fixed 1 < p < ∞.
Then, for every u ∈ W 1,p(Ω) and Eu defined as in (2.3) for the zero extension of u
to the closure of Ω, we have Eu ∈W 1,p(Rn) and

‖Eu‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω),
for a positive constant C independent of u.

3. PROOF OF THEOREM 1.1

The first part of our main theorem (for 1 < p < ∞) will be obtained as a con-
sequence of the following extension result that we believe to be of independent
interest.
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Theorem 3.1. LetΩ1 ⊂ R
n be aW 1,p-extension domain for a given 1 < p < ∞,

and Ω2 ⊂ R
m be a domain. Then, for every function u ∈ W 1,p(Ω1 × Ω2), there

exists a function E1u ∈W 1,p(Rn ×Ω2) such that E1u|Ω1×Ω2 ≡ u and

‖E1u‖W 1,p(Rn×Ω2) ≤ C‖u‖W 1,p(Ω1×Ω2)

with a positive constant C independent of u.

Proof. Theorem 2.3.2 in Ziemer’s book [20] tells us that

C∞(Ω1 ×Ω2)∩W
1,p(Ω1 ×Ω2)

is dense in W 1,p(Ω1 ×Ω2). With a small modification to the proof of this result
it is easy to see that C1(Ω1 × Ω2) ∩ L∞(Ω1 × Ω2) ∩ W 1,p(Ω1 × Ω2) is dense
in W 1,p(Ω1 × Ω2). We shall begin by showing that we can extend functions in
C1(Ω1 ×Ω2)∩ L∞(Ω1 ×Ω2)∩W 1,p(Ω1 ×Ω2).

According to Theorem 2.3, Ω1 is regular. Let

u ∈ C1(Ω1 ×Ω2)∩ L
∞(Ω1 ×Ω2)∩W

1,p(Ω1 ×Ω2).

Then, for y ∈ Ω2, using the extension (2.3), we set

(3.1) E1u(x,y) = Euy(x) :=

⎧⎪⎪⎨⎪⎪⎩
uy(x), x ∈ Ω1,∑
Q∈WΩ1

ϕQ(x)(PHQuy)(x), x ∈ Rn \Ω1.

Here, uy in (3.1) is the zero extension of uy to the closure Ω1. To show that
E1u ∈ W 1,p(Rn ×Ω2), we need to show that E1u ∈ Lp(Rn ×Ω2), and for every
β with |β| = 1, we need to find a function vβ ∈ Lp(Rn×Ω2), such that for every
ψ ∈ C∞0 (R

n ×Ω2) we have∫
Rn×Ω2

E1u(x,y)D
βψ(x,y)dx dy = −

∫
Rn×Ω2

vβ(x,y)ψ(x,y)dx dy.

For the convenience of discussion, we divide the rest of the proof into three
steps.

STEP 1: In this step, we show that E1u ∈ Lp(Rn ×Ω2) and that the Lp-norm of
E1u is controlled by the W 1,p-norm of u.

By Fubini’s theorem, uy ∈ W 1,p(Ω1) for almost every y ∈ Ω2. As Ω1 is a
W 1,p-extension domain, by Theorem 2.11, E1u(x,y) = Euy(x) ∈ W 1,p(Rn)
and

‖Euy‖Lp(Rn) ≤ ‖Euy‖W 1,p(Rn) ≤ C‖uy‖W 1,p(Ω1),

for every y ∈ Ω2 with uy ∈ W 1,p(Ω1). Then, by integrating with respect to
y ∈ Ω2, we obtain the desired result.
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STEP 2: In this step, we show that, for every ψ ∈ C∞c (R
n × Ω2), there exist

functions (∂/∂xi)E1u ∈ Lp(Rn ×Ω2) (for i = 1, . . . , n) such that

∫
Rn×Ω2

∂

∂xi
E1u(x,y)ψ(x,y)dx dy = −

∫
Rn×Ω2

E1u(x,y)
∂

∂xi
ψ(x,y)dx dy.

For simplicity of notation, we assume that i = 1.
Fubini’s theorem tells us that uy ∈W 1,p(Ω1) for almost every y ∈ Ω2. Then,

by Theorem 2.11, (3.1) gives an extension Euy ∈ W 1,p(Rn) for every y ∈ Ω2

with uy ∈W 1,p(Ω1). Then, we set

(3.2)
∂

∂x1
E1u(x,y) :=

⎧⎪⎨⎪⎩
∂

∂x1
Euy(x), if y ∈ Ω2 with uy ∈ W 1,p(Ω1),

0, otherwise.

Since Euy ∈ W 1,p(Rn) for almost every y ∈ Ω2, using Fubini’s theorem, we
obtain ∫

Rn×Ω2

∂

∂x1
E1u(x,y)ψ(x,y)dx dy

=

∫
Ω2

∫
Rn

∂

∂x1
Euy(x)ψ(x,y)dx dy

= −

∫
Ω2

∫
Rn
Euy(x)

∂

∂x1
ψ(x,y)dx dy

= −

∫
Rn×Ω2

E1u(x,y)
∂

∂x1
ψ(x,y)dx dy,

which means that (3.2) gives a first-order distributional derivative of E1u with
respect to x1. Then, using the Fubini theorem twice and the fact that the linear
operator E from W 1,p(Ω1) to W 1,p(Rn) is bounded, we obtain

∫
Rn×Ω2

∣∣∣∣ ∂

∂x1
E1u(x,y)

∣∣∣∣p dx dy

=

∫
Ω2

∫
Rn

∣∣∣∣ ∂

∂x1
Euy(x)

∣∣∣∣p dx dy

≤ C

∫
Ω2

∫
Ω1

(
|uy(x)|

p +

∣∣∣∣ ∂

∂x1
uy(x)

∣∣∣∣p
)
dx dy

≤ C

∫
Ω1×Ω2

(
|u(x,y)|p +

∣∣∣∣ ∂

∂x1
u(x,y)

∣∣∣∣p
)
dx dy.

We have obtained the desired norm estimate.
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STEP 3: In this step, we show that, for every ψ ∈ C∞c (R
n × Ω2), there exist

functions (∂/∂yj)E1u ∈ Lp(Rn ×Ω2) (for j = 1, . . . ,m) such that∫
Rn×Ω2

∂

∂yj
E1u(x,y)ψ(x,y)dx dy = −

∫
Rn×Ω2

E1u(x,y)
∂

∂yj
ψ(x,y)dx dy.

For simplicity of notation, we assume that j = 1.
Consider the projection

Π1 : Ω2 → R
m−1,

defined by setting

Π1(y) = (y2, y3, . . . , ym) =: y̌1 for y = (y1, . . . , ym) ∈ Ω2.

Set Sy̌1
1 := Π−1

1 (y̌1) ⊂ Ω2, the preimage of y̌1 ∈ Π1(Ω2). Then, Sy̌1
1 is the union

of at most countably many pairwise disjoint segments.
Fix x ∈ Rn \Ω1 and y̌1 ∈ Π1(Ω2). To begin, we assume that Sy̌1

1 is a single
segment. Now, for (y1

1 , y̌1), (y
2
1 , y̌1) ∈ S

y̌1
1 , according to (3.1), we have

E1u(x,y
2
1 , y̌1)− E1u(x,y

1
1 , y̌1)(3.3)

=
∑

Q∈WΩ1

ϕQ(x)((PHQu)(x,y
2
1 , y̌1)− (PHQu)(x,y

1
1 , y̌1)).

By the definition (2.2) of PHQu and the facts that u is C1 andHQ×S
y̌1
1 ⊂ Ω1×Ω2,

we have

(PHQu)(x,y
2
1 , y̌1)− (PHQu)(x,y

1
1 , y̌1)(3.4)

=

∫
HQ
(u(w,y2

1 , y̌1)−u(w,y
1
1 , y̌1))dw

=

∫
HQ

(∫ y2
1

y1
1

∂u(w, s, y̌1)

∂y1
ds

)
dw.

By combining (3.3) and (3.4) we obtain

E1u(x,y
1
1 , y̌1)− E1u(x,y

2
1 , y̌1)(3.5)

=
∑

Q∈WΩ1

ϕQ(x)

∫
HQ

∫ y2
1

y1
1

∂u(w, s, y̌1)

∂y1
ds dw.

Since x is contained in the support of only finitely many ϕQ, it follows from the
identity (3.5) that E1u(x, s, y̌1) is absolutely continuous as a function of s on Sy̌1

1 .
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By repeating this for each component of Sy̌1
1 , we conclude that E1u(x, s, y̌1) is

absolutely continuous as a function of s on every component of Sy̌1
1 . Furthermore,

(3.5) and the Lebesgue differentiation theorem yield that

∂E1u(x, s, y̌1)

∂y1
:= lim

s′→s

E1u(x, s′, y̌1)− E1u(x, s, y̌1)

s′ − s
(3.6)

=
∑

Q∈WΩ1

ϕQ(x)

∫
HQ

∂u(w, s, y̌1)

∂y1
dw

= E1
∂u(x, s, y̌1)

∂y1

exists for H 1-almost every s with (s, y̌1) ∈ S
y̌1
1 . Fix ψ ∈ C∞c (R

n × Ω2). Since
E1u(x, s, y̌1) is absolutely continuous as a function of s on each segment of Sy̌1

1 ,
we conclude that∫

S
y̌1
1

E1u(x, s, y̌1)
∂ψ(x, s, y̌1)

∂y1
ds = −

∫
S
y̌1
1

∂E1u(x, s, y̌1)

∂y1
ψ(x, s, y̌1)ds.

To complete the definition of ∂E1u/∂y1, we define ∂E1u/∂y1 = ∂u/∂y1
when (x,y) ∈ Ω1×Ω2, and set ∂E1u/∂y1 = 0 when (x,y) ∈ ∂Ω1 ×Ω2. Let us
show that ∂E1u/∂y1 is a first-order distributional derivative of E1u with respect
to the variable y1. By the Fubini theorem, (3.6) and the fact that |∂Ω1| = 0, we
have ∫

Rn×Ω2

E1u(x,y)
∂ψ(x,y)

∂y1
dx dy

=

∫
Rn

∫
Π1(Ω2)

∫
S
y̌1
1

E1u(x,y)
∂ψ(x,y)

∂y1
dy1 dy̌1 dx

= −

∫
Rn

∫
Π1(Ω2)

∫
S
y̌1
1

∂E1u(x,y)

∂y1
ψ(x,y)dy1 dy̌1 dx

= −

∫
Rn×Ω2

∂E1u(x,y)

∂y1
ψ(x,y)dx dy.

We continue by showing that ∂E1u/∂y1 ∈ Lp(Rn×Ω2) and that its norm is
controlled by the Sobolev norm of u. Since |∂Ω1| = 0, we have

∫
Rn×Ω2

∣∣∣∣∣∂E1u(x,y)

∂y1

∣∣∣∣∣
p

dx dy

=

∫
Ω1×Ω2

∣∣∣∣∣∂u(x,y)∂y1

∣∣∣∣∣
p

dx dy +

∫
(Rn\Ω1)×Ω2

∣∣∣∣∣E1
∂u(x,y)

∂y1

∣∣∣∣∣
p

dx dy.
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As we know, for almost every y ∈ Ω2, (∂u/∂y1)|y ∈ Lp(Ω1). Using the fact
that E : Lp(Ω1)→ Lp(Rn) is a bounded linear operator, we obtain

∫
Rn

∣∣∣∣∣E1
∂u(x,y)

∂y1

∣∣∣∣∣
p

dx ≤ C

∫
Ω1

∣∣∣∣∣∂u(x,y)∂y1

∣∣∣∣∣
p

dx,

for almost every y ∈ Ω2. Then, by integration with respect to y ∈ Ω2 on the two
sides of the inequality above, we obtain the desired inequality

∫
Rn×Ω2

∣∣∣∣∣∂E1u(x,y)

∂y1

∣∣∣∣∣
p

dx dy ≤ C

∫
Ω1×Ω2

∣∣∣∣∣∂u(x,y)∂y1

∣∣∣∣∣
p

dx dy.

In conclusion, we have shown that the linear extension operator E1 is bounded
from C1(Ω1 ×Ω2) ∩ L∞(Ω1 × Ω2) ∩W 1,p(Ω1 ×Ω2) to W 1,p(Rn ×Ω2) for our
fixed 1 < p < ∞. Since then C1(Ω1 × Ω2) ∩ L∞(Ω1 × Ω2) ∩W 1,p(Ω1 ×Ω2) is
dense in W 1,p(Ω1 ×Ω2), E1 extends to a bounded linear extension operator from
W 1,p(Ω1 ×Ω2) to W 1,p(Rn ×Ω2). �

Proof of Theorem 1.1. Regarding the first part of the claim, by Theorem 3.1
we have a bounded extension operator E1 : W 1,p(Ω1×Ω2)→ W 1,p(Rn×Ω2), and
it thus suffices to extend functions in W 1,p(Rn ×Ω2) to W 1,p(Rn ×Rm). Given
u ∈ W 1,p(Rn×Ω2), define û(x,y) = u(y,x). Then, û ∈W 1,p(Ω2×R

n), and
the desired extension is obtained via Theorem 3.1 as Ω2 ⊂ R

m is aW 1,p-extension
domain.

Towards the second part, by symmetry, it suffices to prove that Ω1 ⊂ R
n must

be a W 1,p-extension domain whenever Ω1 ×Ω2 is such a domain.
Suppose first that Ω2 has finite measure. Given u ∈ W 1,p(Ω1), we define

v(x,y) = u(x). Then, v ∈ W 1,p(Ω1 × Ω2). Let Ev ∈ W 1,p(Rn × Rm) be
an extension of v. Then, Ev ∈ W 1,p(Rn × {y}) for almost every y ∈ Ω2.
This follows via the Fubini theorem from the ACL-characterization of functions
in W 1,p, given in our introduction. Since v(x,y) = u(x), we conclude that u
must be the restriction of some function w ∈ W 1,p(Rn). This allows us to infer
from Theorem 2.3 that Ω1 must be a W 1,p-extension domain.

In case Ω2 has infinite measure, we fix a ball B ⊂ Ω2 and pick a smooth
function ψ with compact support so that ψ is identically 1 on B. We still define
v as above and set w = ψv. Then, w ∈ W 1,p(Ω1 ×Ω2), and we may repeat the
above argument as w(x,y) = u(x) for almost every y ∈ B ⊂ Ω2. �
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Abstract
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1 Introduction

There is a broad literature dealing with a question when a pair of domains (X,Y) is
quasiconformally or even bi-Lipschitz equivalent. Gehring and Väisälä [11] raised the
question: Which domains D ⊂ Rn are quasiconformally equivalent with the unit ball
B ⊂ Rn? Such domains D are called quasiballs. The interested reader is referred to the
recent book by Gehring et al. [10]. The Riemann Mapping Theorem gives a complete
answer to this question when n = 2. If D � C is a simply connected domain, then there
exists a conformal mapping h : B onto−→ D. It is, however, a highly nontrivial question
when a domain D ⊂ Rn is a quasiball when n � 3. Among geometric obstructions
are the inward cusps. Indeed, Gehring and Väisälä [11] proved that a ball with inward
cusp is not a quasiball. A ball with outward cusp, however, is always a quasiball.
We denote an n-dimensional unit balls with exemplary boundary singularities of the
form of cusps by Bu where u : [0,∞)

onto−→ [0,∞) is a strictly increasing function and
which characterizes the singularity at the origin, see Fig. 1 and Sect. 1.6 for the precise
definition.

In this article, we describe boundary singularities that can be created by finite n-
harmonic energy and return to the original shape by the inverse deformations whose
n-harmonic energy is finite as well. This is in accordance with the Hooke’s Law, see
Sect. 1.4. We remind the reader that there exists a Lipschitz homeomorphism to both
directions betweenB andBu . However, it is not always possible to have W 1,n-Sobolev
bounds to both directions for a single map. We state this as follows.

Theorem 1.1 Let n � 3 and

u(t) = e

exp
( 1

t

)α for 0 � t � 1 , where α > 0. (1.1)

Then there exists a homeomorphism h : B onto−→ Bu in W 1,n(B,Rn) whose inverse
f = h−1 : Bu

onto−→ B lies in W 1,n(Bu,Rn) if and only if α < n.

Fig. 1 Quasiconformal mapping can flatten the outward cusp but not the inward cusp
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Theorem 1.1 is a special case of our main result (Theorem 1.11). Before formulating
Theorem 1.11 we discuss the studied mapping problem in more details.

We are concerned with orientation-preserving homeomorphisms h : X
onto−→ Y

between bounded domains X,Y ⊂ Rn, n � 2, of Sobolev class W 1,p(X,Y), 1 �
p � ∞.

1.1 Quasiconformal Deformations

Of particular interest are homeomorphisms of finite n-harmonic energy; that is, with
p = n.

EX[h] def==
∫
X

|Dh(x)|n dx < ∞. (1.2)

Hereafter the symbol |Dh(x)| stands for the operator norm of the differential matrix
Dh(x) ∈ Rn×n called the deformation gradient. This integral is invariant under the
conformal change of variables in the reference configuration X (not in the deformed
configuration Y). That is, EX′ [h′] = EX[h], where h′ = h ◦ ϕ for a conformal trans-
formation ϕ : X′ onto−→ X. This motivates us to call EX[h] the conformal energy of h.
Mappings of conformal energy arise naturally in Geometric Function Theory (GFT)
for many reasons [2,11,13,16,26].

Definition 1.2 A Sobolev homeomorphism h : X onto−→ Y , that is, of class W 1,1
loc (X,Y) ,

is said to be quasiconformal if there exists a constant 1 � K < ∞ so that for almost
every x ∈ X it holds:

|Dh(x)|n � K Jh(x) , where Jh(x) = det Dh(x).

Every quasiconformal map h : X onto−→ Y has finite conformal energy provided
|Y| < ∞. Indeed,

EX[h] =
∫
X

|Dh(x)|n dx � K
∫
X

Jh(x)dx = K |Y|. (1.3)

1.2 Mappings of Bi-conformal Energy

The remarkable feature of a quasiconformal mapping is that its inverse f
def== h−1 :

Y
onto−→ X is also quasiconformal. In particular, both h and f have finite conformal

energy. Their sum

EXY[h] def==
∫
X

|Dh(x)|n dx +
∫
Y

|D f (y)|n dy
def== EYX[ f ] (1.4)

will be called bi-conformal energy of h .
This leads us to a viable extension of GFT with connections to mathematical models

of Nonlinear Elasticity (NE) [1,4,6,22].
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Definition 1.3 A homeomorphism h : X onto−→ Y in W 1,n(X,Rn), whose inverse f =
h−1 : Y onto−→ X also belongs to W 1,n(Y,Rn) is called a mapping of bi-conformal
energy.

It is equivalent to saying that the inner distortion function of h is integrable over
X and the inner distortion function of f is integrable over Y . For a precise statement
(Theorem 1.5) we need some definitions.

1.3 Inner Distortion

Consider a Sobolev mapping h ∈ W 1,1
loc (X,Rn) and its co-differential D�h(x) ∈

Rn×n - the matrix determined by Cramer’s rule D�h ◦ Dh = Jh(x) I.

Definition 1.4 The inner distortion of h is the smallest measurable function KI (x) =
KI (x, h) ∈ [1,∞] such that

|D�h(x)|n � KI (x)Jh(x)n−1 for almost every x ∈ X. (1.5)

The question of finite inner distortion merely asks for the co-differential D�h(x) =
0 at the points where the Jacobian Jh(x) = 0. However, for n � 3, the differential
Dh(x) need not vanish if D�h(x) = 0.

A formal algebraic computation reveals that the pullback of the n-form KI (x, h) dx ∈
∧nX via the inverse mapping f : Y onto−→ X equals |D f (y)|n dy ∈ ∧nY.

This observation is the key to the fundamental equality between the L 1 -norm of
KI (x, h) and conformal energy of the inverse map f , which is usually derived under
various regularity assumptions [3,7,12,14,24]. We shall state in the following form:

Theorem 1.5 Let h : X → Y be an orientation-preserving homeomorphism in the
Sobolev space W 1,n(X,Rn), n � 2. Then the inner distortion of h is integrable if
and only if the inverse mapping f = h−1 : Y → X has finite conformal energy.
Furthermore, we have ∫

Y

|D f (y)|n dy =
∫
X

KI (x, h) dx . (1.6)

Theorem 1.5 is known among the experts in the field and follows combining a few
results in the literature. We will provide a proof for the convenience of the reader in the
appendix. The interested reader is referred to [20] for planar mappings with integrable
distortion (Stoilow factorization). The following corollary is immediate.

Corollary 1.6 A homeomorphism h : X onto−→ Y of class W 1,n(X,Rn) is quasiconformal
if and only if with KI (·, h) ∈ L ∞(X).

1.4 Hooke’s Law for Materials of Conformal Stored-Energy

In a different direction, the principle of hyper-elasticity is to minimize the given stored-
energy functional subject to deformations h : X onto−→ Y of domains made of elastic
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materials, see [1,4,6,22]. Here we take on stage the materials of conformal stored-
energy. This means that the bodies can endure only deformations h : X onto−→ Y whose
gradient Dh is integrable with power n (the dimension of the deformed body). A
deformation of infinite n-harmonic energy would break the internal structure of the
material causing permanent damage. There are examples galore in which one can
return the deformed body to its original shape by a deformation of finite conformal

energy, but not necessarily via the inverse mapping f
def== h−1 : Y onto−→ X . The inverse

map need not even belong to W 1,n(Y,Rn) . On the other hand the essence of Hooke’s
Law is reversibility. Accordingly, we wish that both h and f = h−1 have finite
conformal energy. We call this model n -harmonic hyper-elasticity. It is from this
point of view that we arrive at the following n -dimensional variant of the conformal
Riemann mapping problem.

1.5 Mapping Problems

Let X,Y ⊂ Rn be bounded domains of the same topological type. For each of the
three problems below find conditions on the pair (X,Y) to ensure that:

(P1) There exists a bi-Lipschitz deformation h : X onto−→ Y.
(P2) There exists a quasiconformal deformation h : X onto−→ Y .
(P3) There exists deformation h : X onto−→ Y of bi-conformal energy.

The implications (P1) 	⇒ (P2) 	⇒ (P3) are straightforward.

1.6 Ball with Inward Cusp

We shall distinguish a horizontal coordinate axis in Rn ,

Rn = R × Rn−1 = {(t, x) : t ∈ R and x = (x1, . . . , xn−1) ∈ Rn−1}

and introduce the notation

ρ = |x | def==
√

x2
1 + x2

2 + · · · + x2
n−1.

Consider a strictly increasing function u : [0,∞)
onto−→ [0,∞) of class C 1(0,∞) ∩

C [0,∞). We assume that u′ is increasing in (0,∞) and

lim
ρ↘0

u′(ρ) = 0.

To every such function there corresponds an (n −1)-dimensional surface of revolution
Su ∈ R+ × Rn−1

Su
def== {(t, x) ∈ R+ × Rn−1 : |x | = u(t)}, where R+ = [0,∞).
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Fig. 2 Inward and outward cusp in a ball

We shall refer to Su as a model cusp at the origin. Let us emphasize that the case
lim supρ↘0 u′(ρ) > 0 is excluded from this definition. We may (and do) rescale u
so that u(1) = 1. The model inward cuspy ball is defined by

Bu
def== B \ {(t, x) ∈ R+ × Rn−1 : |x | � u(t) } ,

see Fig. 1.

1.7 Bi-Lipschitz Deformations

There is no bi-Lipschitz transformation of a cuspy ball (inward or outward as in
Fig. 2) onto a ball without cusp. We say that a cusp cannot be flatten via bi-Lipschitz
deformation.

However, there always exists a Lipschitz homeomorphism of a cuspy ball onto a
round ball and there is a Lipschitz homeomorphism of the round ball onto the cuspy
ball, but these two deformations cannot be inverse to each other. The same pertains
to a degenerate cusp defined by u ≡ 0 , as in Fig. 3. In this degenerate case, if
there would exist a bi-Lipschitz mapping h : B

onto−→ B \ I , it would extend as a
homeomorphism of ∂B onto ∂(B \ I) , n � 3, see [18] for more details. It is clear
that the conflicting topology of the boundaries is an obstruction to the existence of
a bi-Lipschitz deformation. This fact is also valid for deformations of bi-conformal
energy, but it requires additional arguments.

1.8 Inward Slit in a Ball (the case u ≡ 0)

We will discuss the degenerate cups separately (u ≡ 0). Let us take a look at the pair
(B,B \ I) of a unit ball and the ball with a slit along the line segment

I def== {(t, x) ∈ R × Rn−1 : 0 � t < 1 and |x | = 0},
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Fig. 3 Two domains which are not of the same bi-conformal energy type

see Fig. 3.
We have already mentioned that there exists a Lipschitz homeomorphism h : B onto−→

B \ I ; in particular, h ∈ W 1,n(B,B \ I) . The question arises whether there exists a
homeomorphism h : B onto−→ B\ I of finite conformal energy whose inverse f = h−1 :
B \ I onto−→ B also has finite conformal energy. Theorem 1.1 answer to this question is
in the negative.

Theorem 1.7 In dimension n � 3 the domains B and B \ I are not of the same
bi-conformal energy type; that is, there is no homeomorphism h : B onto−→ B \ I of finite
bi-conformal energy.

On one hand we have:

Example 1.8 There is a homeomorphism f : B \ I onto−→ B of finite conformal energy
such that h = f −1 ∈ W 1, p(B,Rn) for all exponents p < n.

On the other hand, Theorem 1.7 is a special case of the following.

Theorem 1.9 For p > n − 1 � 2 there is no homeomorphism h : B onto−→ B \ I of finite
conformal energy with inverse h−1 = f ∈ W 1,p(B \ I,Rn).

The lower bound for the Sobolev exponent in this theorem is essentially sharp.
More precisely, we have

Theorem 1.10 For every p < n − 1 there is a homeomorphism h : B onto−→ B \ I of
finite conformal energy with inverse f = h−1 ∈ W 1,p(B \ I,Rn).

The borderline case p = n − 1 remains open.

1.9 Main Result

Our central question is when the unit ball and the ball with a model inward cusp Su

are of the same bi-conformal energy type. Let h : B
onto−→ Bu be a deformation of

bi-conformal energy. To predict what cusps Su can be created, i.e., to predict that u
is given by (1.1) it is natural to combine the estimates of the modulus of continuity
of h near 0 with those for the inverse deformation f = h−1 : B \ I onto−→ B . From
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this point of view, deformations of bi-conformal energy are very different from qua-
siconformal mappings. The latter behave singular-like radial stretchings/squeezing; a
poor modulus of continuity is always balanced by a better modulus of continuity of
its inverse. Surprisingly, a deformation of bi-conformal energy and its inverse may
exhibit the same optimal modulus of continuity [19], locally at a given point. Recall
that a homeomorphism h : X onto−→ Y in W 1,n(X,Rn) satisfies the following estimate
of the modulus of continuity:

|h(x1) − h(x2)|n � Cn

(∫
2B

|Dh|n
)

log−1
(

e + diam B
|x1 − x2|

)
, (1.7)

where x1, x2 ∈ B def== B(x◦, R) ⊂ B(x◦, 2R)
def== 2B � X.

Applying the estimates in (1.7) would give us a nonexistence of a deformation of
bi-conformal energy from B onto Bu with u(t) = exp−1(expα(1/t)), where α > n
(applied to both h and f on the boundaries, see Theorem 3.1). This seemingly natural
approach does not lead to a sharp result. Creating and flatting cusp singularities through
mappings of bi-conformal energy is in a whole different scale, as stated in (1.1). Even
more, Theorem 1.1 is a corollary of the following result.

Theorem 1.11 (Main Theorem) Let n � 3 and

u(t) = e

exp
( 1

t

)α for 0 � t � 1 , where α > 0.

For α � n there is no homeomorphism h : B onto−→ Bu with finite conformal energy
whose inverse h−1 = f ∈ W 1,p(Bu,Rn), p > n − 1. If α < n, then there exists a
homeomorphism h : B onto−→ Bu with finite conformal energy such that f is Lipschitz.

2 Prerequisites

Our notation is fairly standard. Throughout the paper B denotes the unit ball in Rn . We
write C, C1, C2, ... as generic positive constants. These constants may change even in
a single string of estimates. The dependence of constant on a parameter p is expressed
by the notation C = C(p) = C p if needed.

We will appeal to the Sobolev embedding on spheres, see [13, Lemma 2.19].

Lemma 2.1 Let h : B → Rn be a continuous mapping in the Sobolev class
W 1,p(B,Rn), for some p > n − 1. Then for almost every 0 < t < 1 and every
x, y ∈ ∂B(0, t) = St , we have

|h(x) − h(y)| � C t1− n−1
p

(∫
St

|Dh(x)|p dx

) 1
p

.

Here the constant C depends only on n and p.
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It is relatively easy to conclude from this estimate that a W 1,p-homeomorphism
when p > n −1 is differentiable almost everywhere. It also follows that a homeomor-
phism h : X onto−→ Y in the Sobolev class W 1,n(X,Rn) satisfies Lusin’s condition (N ).
This simply means, by definition, that |h(E)| = 0 whenever |E | = 0.

Lemma 2.2 Let X,Y be domains in Rn and h : X onto−→ Y be a homeomorphism in the
Sobolev class W 1,n(X,Y). Then h is differentiable almost everywhere and satisfies
Lusin’s condition (N ).

Due to Lusin’s condition (N ) we have the following version of change of variables
formula, see, e.g., [16, Theorem 6.3.2] or [13, Corollary A.36].

Lemma 2.3 Let h : X onto−→ Y be a homeomorphism in the Sobolev class W 1,n(X,Rn).
If η is a nonnegative Borel measurable function on Rn and A is a Borel measurable
set in X, then we have∫

A
η(h(x))|Jh(x)| dx =

∫
h(A)

η(y) dy. (2.1)

Next, we recall a well-known fact that a function in the Sobolev class W 1,p(X,R),
X ⊂ Rn , has a representative which is locally Hölder continuous with exponent
1 − p/n, provided p > n. More precisely, we have the following oscillation lemma.

Lemma 2.4 Let u ∈ W 1,p(X,R) where X ⊂ Rn and p > n. Then

|u(x) − u(y)| � C r1− n
p

(∫
Br

|∇u|p
) 1

p

for every x, y ∈ Br = B(z, r) ⊂ X.

We will employ a higher dimension version of the classical Jordan curve theorem
due to Brouwer [5], see also [25, Theorem 6.35].

Lemma 2.5 (Jordan–Brouwer separation theorem) A topological (n − 1)-sphere S
disconnects Rn into a bounded component S◦ and an unbounded component S∞.
Their common boundary is S◦ ∩ S∞ = S .

A homeomorphism h : B onto−→ Bu of finite conformal energy extends as a continuous
map h : B onto−→ Bu . This follows from the following result, see [17, Theorem 1.3].

Lemma 2.6 Let X and Y be bounded domains of finite connectivity. Suppose ∂X is
locally quasiconformally flat and ∂Y is a neighborhood retract. Then every home-
omorphism h : X onto−→ Y in the class h ∈ W 1,n(X,Y) extends to a continuous map
h : X onto−→ Y.

The assumed boundary regularities are defined as follows.

Definition 2.7 The boundary ∂Y is a neighborhood retract, if there is a neighborhood
U ⊂ Rn of ∂Y and a continuous map χ : U → ∂Y which is an identity on ∂Y.
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Definition 2.8 The boundary ∂X is said to be locally quasiconformally flat if every
point in ∂X has a neighborhood U ⊂ Rn and a homeomorphism g : U ∩ X

onto−→
B ∩ (Rn−1 × R+) which is quasiconformal on U ∩ X; see [27].

Recall that R+ = [0,∞). It is also known that a mapping of bi-conformal energy
between domains with locally quasiconformally flat boundaries has a homeomorphic
extension up to the boundary, see [17, Corollary 1.1]. Note that ∂Bu is not locally
quasiconformally flat and this result does not apply in our case.

Nevertheless, Lemma 2.6 tells us that h extends as a continuous mapping h : B →
Bu . Since h(B) is a compact subset of Bu , it follows that h takes B onto Bu . Second, it
is a topological fact that such a continuous extension is a monotone mapping h : B onto−→
Bu :

Proposition 2.9 [8] Suppose that there is a continuous extension G : B onto−→ B of a
homeomorphism g : B onto−→ B. Then G : ∂B

onto−→ ∂B is monotone.

By the definition, monotonicity, the concept of Morrey [23], simply means that for a
continuous h : X → Y the preimage h−1(y◦) of a point y◦ ∈ Y is a connected set in
X. It is worth noting that the converse statement of Proposition 2.9 is also valid when
n = 2, 3. Such an elegant characterization of monotone mappings of a 2-sphere onto
itself was obtained by Floyd and Fort [9].

In the next lemmas we will analyze the boundary behavior of continuous extension
of homeomorphism h : B onto−→ Bu with finite conformal energy which we will still
denote by h : B onto−→ Bu . The following claim follows from Lemma 2.6 and Proposi-
tion 2.9.

Lemma 2.10 Suppose a homeomorphism h : B onto−→ Bu lies in the Sobolev class
W 1,n(B,Rn). Then for every x ∈ ∂Bu the preimage h−1(x) is a nonempty continuum
in ∂B.

Simplifying writing we set o′ def== (1, 0, ..., 0) ∈ ∂B and o
def== (0, 0, ..., 0) ∈ ∂Bu .

Without loss of generality, we may and will assume that h(o′) = o. For every 0 < t <

1, we define

St
def== {x ∈ Bu : |x | = t} and Ct

def== {x ∈ ∂Bu : |x | = t} ,

see Fig. 4. Note that here |·| stands for the standard Euclidean norm in Rn .

Furthermore, let S′
t

def== h−1(St ) and C ′
t

def== S′
t ∩ ∂B. Since h : S′

t
onto−→ St and S′

t is
compact, the extension of h is also surjective and we have h : S′

t
onto−→ St . We state this

fact as a lemma.

Lemma 2.11 Suppose a homeomorphism h : B onto−→ Bu lies in the Sobolev class
W 1,n(B,Rn). Then we have h(C ′

t ) = Ct .

The next lemma shows that the Sobolev embedding on spheres, Lemma 2.1, also
holds on St . In particular, we will need its variant on Ct , see Fig. 4.
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Fig. 4 St and Ct

Lemma 2.12 Suppose that a homeomorphism h : B onto−→ Bu has finite conformal
energy. If the inverse mapping f = h−1 : Bu → B belongs to the Sobolev class
W 1,p(Bu,Rn) for some p > n − 1, then for almost every 0 < t < 1 and every
x ′

t , y′
t ∈ C ′

t we have

|x ′
t − y′

t | � C |xt − yt |1− n−1
p

(∫
St

|D f |pdx

) 1
p

. (2.2)

Here xt = h(x ′
t ) and yt = h(y′

t ) and C is a positive constant independent of t , xt and
yt .

Proof Let x ′
t , y′

t ∈ C ′
t . By Lemma 2.11 there are two sequences {x ′

t,i }∞i=1 and {y′
t,i }∞i=1

in S′
t such that

lim
i→∞ x ′

t,i = x ′
t , lim

i→∞ y′
t,i = y′

t

and

lim
i→∞ xt,i = xt ∈ Ct , lim

i→∞ yt,i = yt ∈ Ct .

Here,

xt,i = h(x ′
t,i ), yt,i = h(y′

t,i ), xt = h(x ′
t ) and yt = h(y′

t ).

By the classical Sobolev embedding on sphere, Lemma 2.1, we have

|x ′
t,i − y′

t,i | � C |xt,i − yt,i |1− n−1
p

(∫
St

|D f |pdx

) 1
p

.

Passing to the limit, we obtain

|x ′
t − y′

t | � C |xt − yt |1− n−1
p

(∫
St

|D f |pdx

) 1
p

.
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If f ∈ W 1,p(Bu,Rn), p > n − 1, then there is a decreasing sequence {ti }∞i=1 with
0 < t1 < 1, which converges to 0, and satisfies (2.2) and ��

∫
Sti

|D f |p dx <
1

ti
.

Indeed, if not, then by Fubini’s theorem for some T ∈ (0, 1) we have

∫
Bu

|D f (x)|p dx �
∫ T

0

∫
St

|D f (x)|p dxdt �
∫ T

0

1

t
dt = ∞.

Without loss of generality, we may also assume that diam C ′
ti is decreasing with respect

to ti and diam C ′
t1 < 1

4 .

According to Lemmas 2.11 and 2.12 we have that h : C ′
t

onto−→ Ct is a homeomor-
phism. Now, Jordan–Brouwer Separation Theorem, Lemma 2.5, yields the following
result.

Lemma 2.13 Suppose that a homeomorphism h : B onto−→ Bu has finite conformal
energy and the inverse mapping f = h−1 : Bu → B belongs to the Sobolev class
W 1,p(Bu,Rn) for some p > n − 1. Then ∂B \ C ′

t consists of two disjoint connected
open sets whose common boundary is C ′

t .

The boundary mapping h : ∂B
onto−→ ∂Bu is monotone. We can say more about the

preimage of the singular point o.

Lemma 2.14 Suppose that a homeomorphism h : B onto−→ Bu has finite conformal
energy and the inverse mapping f = h−1 : Bu → B belongs to the Sobolev class
W 1,p(Bu,Rn) for some p > n − 1. Then we have h−1(o) = o′.

Proof According to Lemma 2.13, ∂B\C ′
t consists of two disjoint connected open sets

in ∂B whose common boundary is C ′
t . We denote the one with smaller diameter by

Ut . Now, for 0 < t < τ < t1, we have Ut ⊂ Uτ and we denote U◦
def== limt→0 Ut .

Combining this with continuity of h : B onto−→ Bu , we obtain

h(U◦) = lim
t→0

h(Ut ). (2.3)

By Lemma 2.11 h(C ′
t ) = Ct . Since further C ′

t ⊂ Ut and limt→0 Ct = o we have
o ∈ h(U◦) ⊂ h(Ut ) for every 0 < t < t1. By Lemma 2.10 h−1(o) is connected. Thus
we obtain that h−1(o) ⊂ Ut for every 0 < t < t1. By Lemma 2.12, diam C ′

t will
converge to 0 as t goes to 0. Therefore, also the diameter of Ut approaches 0. Hence
h−1(o) = o′. ��

Our last lemma in this section gives a precise modulus of continuity estimate for a
homeomorphism h : B onto−→ Bu with finite conformal energy. Recall that such a home-
omorphism has a continuous extension up to the boundary. Furthermore, the boundary
mapping h : ∂B

onto−→ ∂Bu is monotone in the sense of Morrey, see Lemma 2.10.
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Monotone mappings enjoy a property which is commonly known in literature also
as monotonicity. This notion goes back to H. Lebesgue [21] in 1907. To avoid confu-
sion, in the following definition we use the term monotone in the sense of Lebesgue.

Definition 2.15 Let X be an open subset of Rn . A continuous mapping h : X → Rn

is monotone in the sense of Lebesgue if for every compact set K ⊂ X we have

diam h(K ) = diam h(∂K ). (2.4)

Note that for real-valued functions (2.4) can be stated as

min
K

h = min
∂K

h � max
∂K

h = max
K

h.

Remark 2.16 A folding map is a characteristic example of continuous nonmonotone
mapping which is monotone in the sense of Lebesgue.

Lemma 2.17 Let h : B → Bu be a homeomorphism with finite conformal energy.
If h(o′) = o, then there exists an increasing function ε : [0, 1) → [0,∞) with
lim

t→0+ ε(t) = 0 such that for x ′ ∈ B with 0 < |x ′ − o′| < 1 we have

|h(x ′) − h(o′)| � ε(|x ′ − o′|)
log

1
n

(
1

|x ′−o′|
) . (2.5)

Proof Set

St
def== ∂B(o′, t) ∩ B,

and

osc(h,St )
def== max

x ′
t ,y

′
t ∈St

|h(x ′
t ) − h(y′

t )|.

Since h : B onto−→ Bu is continuous and belongs to the Sobolev class W 1,n(B,Rn),
applying a slightly modified version of the Sobolev embedding on sphere, Lemma 2.1
for almost every 0 < t < 1 we have

(osc(h,St ))
n � Ct

∫
St

|Dh(x)|n dx . (2.6)

Here C is a positive constant, independent of t . Fix x ′ ∈ B such that τ
def== |x ′−o′| < 1.

We write

B(o′, t)
def== B ∩ B(o′, t) for 0 < t < 1.
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Choose t ∈ [τ,√τ ]. Then

osc(h,B(o′, τ )) � osc(h,B(o′, t)) � osc(h, ∂B(o′, t)) ,

where the latter inequality follows from the fact that h is monotone in the sense of
Lebesgue. Since St = ∂B(o′, t) ∩ B and h is monotone in the sense of Lebesgue, we
have

osc(h, ∂B(o′, t)) = osc(h,St ).

Combining this with (2.6) for almost every t ∈ [τ,√τ ] we have

(
osc(h,B(o′, τ )

)n

t
= C

∫
St

|Dh(x)|n dx .

Integrating this from τ to
√

τ with respect to the variable t , the claimed inequality (2.5)
follows with

ε(τ ) = C ·
(∫

B(o′,√τ)

|Dh(x)|ndx

) 1
n

, τ = |x ′ − o′|. (2.7)

��

3 Homeomorphic Boundary Extension

Lemma 2.6 shows that a homeomorphism h : B onto−→ Bu of finite conformal energy can
be extended as a continuous mapping fromB ontoBu . In this section we will prove that
a homeomorphism h : B onto−→ Bu of bi-conformal energy extends as a homeomorphism
up to the boundary.

Theorem 3.1 Let h : B onto−→ Bu be a homeomorphism of finite bi-conformal energy.
Then h admits a homeomorphic extension to the boundary, again denoted by h : B onto−→
Bu.

The existence of such an extension is known [17, Corollary 1.1] if the reference and
deformed configurations have locally quasiconformally flat boundaries, see Defini-
tion 2.8. Obviously, ∂Bu is not locally quasiconformally flat.

Proof of Theorem 3.1 By Lemma 2.6 a homeomorphism h : B → Bu with finite con-
formal energy extends as a continuous mapping h : B → Bu . Since h(B) is a compact
subset of Bu , it follows that h : B onto−→ Bu . Furthermore, by Lemma 2.10 the boundary
map h : ∂B

onto−→ ∂Bu is monotone.
Now, we need to show that the boundary mapping is injective. We again use the

notation o = (0, 0, ..., 0) and o′ = (1, 0, ..., 0) and assume, without loss of generality,
that h(o′) = o. First, h−1(o) = o′ by Lemma 2.14. Second let y ∈ ∂Bu \{o}. Choosing
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0 < ry < |y−o|, thenB(y, ry)∩Bu is locally quasiconformally flat. By Lemma 2.6, the

homeomorphism f : B(y, ry) ∩ Bu
onto−→ f (B(y, ry) ∩ Bu) has a continuous extension

f : B(y, ry) ∩ Bu
onto−→ f (B(y, ry) ∩ Bu). The extension of f is still an inverse of h

in the quasiconformally flat part of the boundary; that is, h−1(y) = f (y) is a single
point. Now we know that h : B onto−→ Bu is a continuous bijection, and therefore it is a
homeomorphism. ��

4 Construction of Example 1.8

Here we show that there exists a homeomorphism from B \ I onto B with finite
conformal energy, actually Lipschitz continuous, whose inverse lies in W 1,p(B,Rn)

for every p < n. To simplify our construction, we may and do replace B by a bi-
Lipschitz equivalent domain; namely,

Y = {(s, y) ∈ R × Rn−1 : |y| < 1 and − 1 < s < |y|}.

As for the reference configuration we replace B \ I by a cylinder C = (−1, 1)×Bn−1

with the line segment I removed from it. Consider the Lipschitz homeomorphism
h : C \ I onto−→ Y defined by the rule

h(t, x) =
{

(t |x |, x) for t > 0,

(t, x) for t < 0.
(4.1)

Its inverse mapping f : Y onto−→ C \ I takes the form

f (s, y) =
{(

s
|y| , y

)
for s � 0,

(s, y) for s < 0.
(4.2)

It is easy to see that

|D f (s, y)| � Cn

|y| .

Therefore,

∫
Y

|D f |p < ∞ for every 1 � p < n

as desired.
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5 Proof of Theorem 1.9

5.1 The Nonexistence Part of Theorem 1.9

First, we will prove the nonexistence part of Theorem 1.9.

Theorem 5.1 If p > n − 1, then there is no homeomorphism h : B onto−→ B \ I with
h ∈ W 1,n(B,B \ I) whose inverse f = h−1 ∈ W 1,p(B \ I,B).

Proof Suppose to the contrary that there is a homeomorphism h : B onto−→ B \ I in the
Sobolev class W 1,n(B,B \ I) such that f ∈ W 1,p(B \ I,B). Since ∂(B \ I) is a
neighborhood retract, Lemma 2.6 tells us that the homeomorphism h : B onto−→ B \ I
extends as a continuous mapping h : B onto−→ B. We denote

St = ∂ Bt \ {xt } , where xt
def== (t, 0, . . . , 0) 0 < t < s < 1.

Here Bt = B(0, t). Fubini’s theorem implies that for almost every t ∈ (0, 1), f
∣∣
St

∈
W 1,p(St ,R

n). Since p > n − 1 and n � 3, the possible singularity of f at xt

is removable. For such t , applying Lemma 2.4, f
∣∣
St

extends as a homeomorphism

f : St
onto−→ f (St ). Write x ′

t = f (xt ) ∈ ∂B. Now, Jordan–Brouwer Separation Theorem
(Lemma 2.5) tells us thatRn \ f (St ) consists of two disjoint connected open sets whose
common boundary is f (St ). Let us denote the bounded one by Ut . Note that Ut ⊂ B

and Ut ∩ ∂B = {x ′
t }. Since for almost every t < s ∈ (0, 1) we have Bt \ I ⊂ Bs \ I

then Ut = h−1(Bt \ I) ⊂ h−1(Bs \ I) = Us .
Now comes an elementary topological fact: given two domains U ⊂ V ⊂ B such

that U ∩ ∂B = {xν} and V ∩ ∂B = {xμ}, then xν = xμ (Fig. 5).
Now, we have x ′

s = x ′
t . This, however, is impossible since h(x ′

s) = (s, 0, . . . , 0)

and h(x ′
t ) = (t, 0, . . . , 0).

��

5.2 The Existence Part of Theorem 1.9

Here we verify the existence part of Theorem 1.9. Namely,

Theorem 5.2 There exists a Lipschitz homeomorphism h : B → B \ I whose inverse
f ∈ W 1,p(B \ I,B) for every 1 � p < n − 1.

Proof We shall view Rn as

Rn = R × Rn−1 = {(t, x) : t ∈ R , x ∈ Rn−1}.

To simplify our construction, we may and do replace B by a bi-Lipschitz equivalent
domain; namely X = X− ∪ X+, where

X− = {(t, x) : − 1 < t < 0 and |x | < 1}
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Fig. 5 The domains X and Y

and

X+ = {(t, x) : 0 � t < 1 and
t

2
< |x | < 1}.

As for the reference configuration we consider Y = Y+ ∪ Y− where Y− is the
open unit cylinder

Y− = {(s, y) : − 1 < s < 0 and |y| < 1}

and

Y+ = {(s, y) : 0 � s < 1 and 0 < |y| < 1}.

We define a Lipschitz map h : X onto−→ Y by the rule

h(t, x) =
{

(t, x) in X−,(
t,
[

2|x |
2−t − t

2−t

]
x
|x |

)
in X+.

Then the inverse map f = h−1 : Y onto−→ X takes the form

f (s, y) =
{

(s, y) in Y−,(
s,
[ 2−s

2 |y| + s
2

] y
|y|

)
in Y+

.

It is the identity map on Y− while on Y+ we write it as

f (s, y) =
(

s,
2 − s

2
y

)
+

(
0,

sy

2|y|
)

,

where the first term is C ∞-smooth. It is now easy to verify the estimate

|D f (s, y)| � C ·
(

1 + s

|y|
)

,
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where |s| < 1 and y ∈ Rn−1, 0 < |y| < 1. Hence∫
Y+

|D f |p < ∞ for every 1 � p < n − 1

as desired. ��

6 Proof of Theorem 1.11

6.1 The Nonexistence Part of Theorem 1.11

Here we give a proof of the nonexistence part of Theorem 1.11. We recall the statement
for the convenience of the reader.

Theorem 6.1 Let α � n and p > n − 1 be fixed and u(t) = e

exp
(

1
t

)α . Then there

does not exist a homeomorphism h : B → Bu with h ∈ W 1,n(B,Bu) and h−1 ∈
W 1,p(Bu,B).

Proof Fix α � n and p > n − 1. Suppose to the contrary that there exists a
homeomorphism h : B onto−→ Bu with finite conformal energy such that its inverse f
is in W 1,p(Bu,Rn). According to Lemma 2.6, h extends as a continuous mapping
h : B onto−→ Bu . Furthermore, by Lemma 2.10 the boundary mapping h : ∂B

onto−→ ∂Bu is
monotone.

We follow the notation introduced in Sect. 2 and set o = (0, 0, . . . , 0) and o′ =
(1, 0, . . . , 0). We may and do assume that h(o′) = o. Moreover, for every 0 < t < 1,

St = {x ∈ Bu : |x | = t} and Ct = {x ∈ ∂Bu : |x | = t}

and

S′
t = h−1(St ) and C ′

t = S′
t ∩ ∂B.

Lemma 2.13 tells us that C ′
t divides ∂B into two disjoint components. We denote the

component which contains o′ by U ′
t . Accordingly, we also have

∂U ′
t = C ′

t . (6.1)

Since ∫
Bu

|D f (x)|pdx < ∞,

there exists a decreasing sequence {ti }, which converges to 0 and satisfies∫
Sti

|D f (x)|pdx <
1

ti
. (6.2)
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Indeed, by Fubini’s theorem we have

∫ 1

0

∫
St

|D f (x)|p dx < ∞.

Hence,

lim inf
t→0

t
∫

St

|D f (x)|p = 0.

Now, by Lemma 2.11, we have h(C ′
t ) = Ct . Combining this with Lemma 2.12 we

obtain

diam C ′
ti � C · (2 u(ti )

)1− n−1
p

(∫
Sti

|D f (x)|pdx

) 1
p

� C · (u(ti )
)1− n−1

p

(
1

ti

) 1
p

. (6.3)

Here u(t) = e

exp
(

1
t

)α . Especially, this shows that diam (C ′
ti ) → 0 as i → ∞ and,

therefore, U ′
ti lies on the half sphere ∂B+. We now appeal to the geometric fact if

x, a ∈ U ′
ti , then |x − a| � diam ∂U ′

ti . Now, for large enough i , by (6.1) we fix
x ′

ti ∈ C ′
ti and then

|x ′
ti − o′| � diam C ′

ti . (6.4)

According to Lemma 2.17 and (6.4) we obtain

ti � |h(x ′
ti ) − o| � ε(ti ) log− 1

n
1

|x ′
ti − o′| � ε(ti ) log− 1

n
1

diam C ′
ti

, (6.5)

where ε(t) is a positive function defined in (2.7) which converges to 0 as t goes to 0.
The estimates (6.3) and (6.5) imply

C · u(ti ) �

⎛
⎜⎝ t

1
p

i

exp
(

ε(ti )
ti

)n

⎞
⎟⎠

p
p+1−n

. (6.6)

Since α � n we have exp(1/tn) � exp(1/tα) for 0 < t � 1 and therefore

C · e

exp
(
t−n

) �

⎛
⎜⎝ t

1
p

i

exp
(

ε(ti )
ti

)n

⎞
⎟⎠

p
p+1−n

.
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This means that there are constants C1, C2 > 0 satisfying

ε(ti ) � C1 · tn
i log

(
C2 tβi exp(t−n

i )
)

, β = 1

p − n + 1
.

Letting i → ∞, the right-hand side converses to C1 and ε(ti ) → 0. This contradiction
completes the proof.

��

6.2 The Existence Part of Theorem 1.11

Theorem 6.2 Let u(t) = e
exp(1/t)α for some 0 < α < n. Then there exists a homeo-

morphism h : B → Bu with finite conformal energy whose inverse f = h−1 : Bu → B

is Lipschitz regular.

Proof Fix 0 < α < n and the corresponding cusp domain Bu with u(t) = e
exp(t−1)

α .

As in the proof of Theorem 5.2 we write

Rn = R × Rn−1 = {(t, x) : t ∈ R , x ∈ Rn−1}

and replace B by a bi-Lipschitz equivalent domain, X = X− ∪ X+, where

X− = {(t, x) : − 1 < t � 0 and |x | < 1}

and

X+ = {(t, x) : 0 < t < 1 and t < |x | < 1}.

We replace the cusp domain Bu by the following bi-Lipschitz equivalent domain
Y = Y− ∪ Y+, where

Y− = {(s, y) : − 1 < s � 0 and |y| < 1}

and

Y+ = {(s, y) : 0 < s < 1 and u(s) < |y| < 1}.

We define h : X onto−→ Y by

h(t, x) =
{

(t, x) in X−,(
u−1(|x |)

|x | t, x
)

in X+.
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Note that the inverse function u−1(η) = log− 1
α

(
e
η

)
. Then the inverse mapping f =

h−1 : Y onto−→ X takes the form

f (s, y) =
{

(s, y) in Y−,( |y|
u−1(|y|) s, y

)
in Y+.

Now, f is a Lipschitz regular mapping. Furthermore, we have

|Dh(t, x)| � C

|x | log
1
α

(
e

|x |
) .

Therefore,

∫
X

|Dh|n < ∞

as claimed. ��
Acknowledgements We thank the referee for the valuable comments which were a great help in improving
the manuscript.

7 Appendix: Proof of Theorem 1.5

Proof First, we assume that K I (·, h) ∈ L 1(X). Then, Theorem 9.1 in [3] states that a
homeomorphism h ∈ W 1,n(X,Rn) satisfies the claimed identity (1.6) if h has a finite
(outer) distortion; that is, there is a function 1 � KO (x) < ∞ such that

|Dh(x)|n � KO (x) Jh(x) for almost every x ∈ X. (7.1)

The proof, however, only uses a consequence of (7.1) the finite inner inequality (1.5)
which is stated in [3, (9.10)].

Second, we assume that h ∈ W 1,n(X,Rn) and f = h−1 ∈ W 1,n(Y,Rn). Then

KI (x, h) = |D f
(
h(x)

)|n Jh(x) a.e. x ∈ X. (7.2)

Indeed, by Lemma 2.2 both h and f are differentiable almost everywhere. Now, the
identity ( f ◦ h)(x) = x , after differentiation, implies that

D f (h(x))Dh(x) = I a.e. in X. (7.3)

Since both h and f satisfy Lusin’s condition (N ); that is, preserve sets of zero measure,
see Lemma 2.2. This shows that Jh(x) > 0 and J f (y) > 0 almost everywhere again
we used the fact that h satisfies Lusin’s condition (N ). Now, the formula (7.2) is a direct
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consequence of the definition of the inner distortion, Cramer’s rule Dh(x)D�h(x) =
Jh(x)I and (7.3). Indeed,

KI (x, h) = |D�h(x)|n
|Jh(x)|n−1 = |(Dh(x))−1|n Jh(x) = |D f

(
h(x)

)|n Jh(x).

Now the change of variables formula (2.1) gives∫
X

KI (x, h) dx =
∫
Y

|D f (y)|n dy.

��
Proof of Corollary 1.6 By [16, §6.4] for every x ∈ X with Jh(x) > 0, we have

K
1

n−1
I (x, h) � KO (x, h) � K n−1

I
(x, h) . (7.4)

Here KO (x, h) stands for the smallest function satisfying (7.1). Now, Corollary 1.6
follows immediately from (7.4). ��
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Abstract

The concept of hyperelastic deformations of bi-conformal energy is developed
as an extension of quasiconformality. These deformations are homeomorphisms
h : X onto−→ Y between domains X,Y ⊂ Rn of the Sobolev class W 1,n

loc (X,Y)

whose inverse f
def== h−1 : Y onto−→ X also belongs to W 1,n

loc (Y,X) . Thus the paper
opens new topics in Geometric Function Theory (GFT) with connections to mathe-
matical models of Nonlinear Elasticity (NE). In seeking differences and similarities
with quasiconformal mappings we examine closely the modulus of continuity of
deformations of bi-conformal energy. This leads us to a new characterization of qua-
siconformality. Specifically, it is observed that quasiconformal mappings behave
locally at every point like radial stretchings; if a quasiconformal map h admits a
function φ as its optimal modulus of continuity at a point x◦ , then f = h−1 admits
the inverse function ψ = φ−1 as its modulus of continuity at y◦ = h(x◦) . That
is to say, a poor (possibly harmful) continuity of h at a given point x◦ is always
compensated by a better continuity of f at y◦ , and vice versa. Such a gain/loss
property, seemingly overlooked by many authors, is actually characteristic of qua-
siconformal mappings. It turns out that the elastic deformations of bi-conformal
energy are very different in this respect. Unexpectedly, such a map may have the
same optimal modulus of continuity as its inverse deformation. In line with Hooke’s
Law, when trying to restore the original shape of the body (by the inverse transfor-
mation), the modulus of continuity may neither be improved nor become worse.
However, examples to confirm this phenomenon are far from being obvious; in-
deed, elaborate computations are on the way. We eventually hope that our examples
will gain an interest in the materials science, particularly in mathematical models
of hyperelasticity.
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1. Introduction

We study Sobolev homeomorphisms h : X onto−→ Y between domains X,Y ⊂
Rn , together with their inverse mappings denoted by f

def== h−1 : Y onto−→ X . We
impose two standing conditions on these mappings:

• The conformal energy of h (stored in X) is finite; that is,

EX[h] def==
∫
X

|Dh(x)|n dx < ∞; (1.1)

• The conformal energy of f (stored in Y) is also finite;

EY[ f ] def==
∫
Y

|D f (y)|n dy < ∞. (1.2)

Hereafter, |A| stands for the Hilbert-Schmidt norm of a linear map A, defined by
the rule |A|2 = Tr (At A). It should be noted that the above energy integrals are
invariant under conformal change of variables in their domains of definition (X
and Y , respectively). This motivates us to call such homeomorphisms

Deformations of Bi-conformal Energy

Clearly, such deformations include quasiconformal mappings. A Sobolev homeo-
morphisms h : X onto−→ Y is said to be a quasiconformal mapping if there exists a
constant K such that

|Dh(x)|n � KJ (x, h) , J (x, h) = det Dh(x) . (1.3)

The conformal energy integral (1.1), an n-dimensional alternative to the classi-
cal Dirichlet integral, has drawn the attention of researchers in the multidimen-
sional GFT [7,19,20,27,46,47,51]. In Geometric Analysis, the Sobolev space
W 1,n(X,Rn) plays a special role for several reasons. First, this space is on the
edge of the continuity properties of Sobolev’s mappings. Second, just the fact that
h is a homeomorphism allows us to establish uniform bounds of its modulus of con-
tinuity. Precisely, given a compact subset X � X , there exists a constant C(X,X)

so that for all distinct points x1, x2 ∈ X , we have

| h(x1) − h(x2) | � C(X,X) n
√

EX[h]
log

1
n

(
1 + diam X

|x1−x2|
) . (1.4)

For a historical account and more details concerning this estimate we refer the
reader to Section 7.4, Section 7.5 and Corollary 7.5.1 in the monograph [27].

For the same reasons, to every compact Y � Y there corresponds a constant
C(Y,Y) such that, for all distinct points y1, y2 ∈ Y , we have

| f (y1) − f (y2) | � C(Y,Y) n
√

EY[ f ]
log

1
n

(
1 + diam Y

|y1−y2|
) . (1.5)
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In other words, h and f admit the same function ω = ω(t) ≈ log− 1
n (1 + 1/t)

as a modulus of continuity. Shortly, h and f are ω-continuous. There is still a
slight improvement to these estimates; namely,

lim|x1−x2|→0
| h(x1) − h(x2) | log

1
n

(
1 + diam X

|x1 − x2|
)

= 0. (1.6)

The question whether the modulus of continuity ω = ω(t) ≈ log− 1
n (1 + 1/t) is

the best and universal for all bi-conformal energy mappings remains unclear. We
shall not enter this issue here. The optimal modulus of continuity of h : X onto−→ Y at
a given point x◦ ∈ X is defined by

ωh(x◦; t)
def== max|x−x◦|=t

|h(x) − h(x◦)| for 0 � t < dist(x◦, ∂X) . (1.7)

Nevertheless, it is easy to see, via examples of radial stretchings, that in the class
of functions that are powers of logarithms the exponent α = 1

n is sharp; meaning
that for α > 1

n it is not generally true that1

| h(x1) − h(x2) | � log−α

(
1 + diam X

|x1 − x2|
)

. (1.8)

To this end, we take a quick look at the radial homeomorphism h : Bn onto−→ Bn of
the unit ball Bn ⊂ Rn onto itself,

h(x) = x

|x | (1 − log |x |) 1
n
[

log(e − log |x |) ]β , where β >
1

n
. (1.9)

It is often seen that the inverse map f
def== h−1 : Y → X admits better modulus

of continuity than h , or vice versa. Just for h defined in (1.9), its inverse is even
C ∞ -smooth. Such a gain/loss rule about the moduli of continuity for a map and its
inverse is typical of the radial stretching/squeezing. It turns out that the gain/loss
rule gives a new characterization for a widely studied class of quasiconformal
mappings.

Theorem 1.1. Let h : X onto−→ Y be a homeomorphism between domains X,Y ⊂ Rn

and let f : Y onto−→ X denote its inverse. Then h is quasiconformal if and only if
for every pair (x◦, y◦) ∈ X × Y, y◦ = h(x◦), the optimal modulus of continuity
functions ωh = ωh(x◦; t) and ω f = ω f (y◦; s) are quasi-inverse to each other;
that is, there is a constant K � 1 (independent of (x◦, y◦)) such that

K−1s � (ωh ◦ ω f )(s) � Ks

1 Hereafter the notation A � B stands for the inequality A � c B in which c > 0 , called
implied or hidden constant, plays no role. The implied constant may vary from line to line
and is easily identified from the context, or explicitely specified if necessary.
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for sufficiently small s > 0; see Section 3 for fuller discussion. It should be noted
that for a radial stretching/squeezing homeomorphism h(x) = H(|x |) x

|x | , H(0) =
0, we always have

(ωh ◦ ω f )(s) ≡ s.

Thus it amounts to saying that

Quasiconformal mappings are characterized by being comparatively radial
strectching/squeezing at every point.

At the first glance, the gain/loss rule seems to generalize to deformations of
bi-conformal energy. Here we refute this view, by constructing examples in which
both h and f admit the same modulus of continuity. These examples work well
regardless of whether or not the modulus of continuity (given upfront) is close to the

borderline case ω = ω(t) ≈ log− 1
n (1 + 1/t) . Without additional preliminaries,

we now can illustrate this instance with a representative case of Theorem 14.1.

Theorem 1.2. (A Representative Example). Consider a modulus of continuity func-
tion φ : [0,∞)

onto−→ [0,∞) defined by the rule

φ(s) =

⎧⎪⎨
⎪⎩

0 if s = 0[
log

( e
s

)]− 1
n
[

log log
(

ee

s

) ]−1
if 0 < s � 1

s if s � 1

. (1.10)

Then there exists a deformation of bi-conformal energy H : Rn onto−→ Rn such that

• H(0) = 0 , H(x) ≡ x , for |x | � 1
• | H(x1) − H(x2) | � φ(|x1 − x2|) , for all x1, x2 ∈ Rn .

Its inverse F
def== H−1 : Rn onto−→ Rn also admits φ as a modulus of continuity,

• | F(y1) − F(y2) | � φ(|y1 − y2|), for all y1, y2 ∈ Rn .2

Furthermore, φ represents the optimal modulus of continuity at the origin for both
H and F ; that is, for every 0 � s < ∞ we have

ωH (0, s) = φ(s) = ωF (0, s) . (1.11)

Remark 1.3. More specifically, letting ψ : [0,∞)
onto−→ [0,∞) denote the inverse

of φ , the maxima in (1.11) are attained on the vertical axes, where we have

H(0, ..., 0, xn) =
{

(0, ..., 0, φ(xn) ) if xn � 0
(0, ..., 0, ψ(xn) ) if xn � 0

(1.12)

F(0, ..., 0, yn) =
{

(0, ..., 0, ψ(yn) ) if yn � 0
(0, ..., 0, φ(yn) ) if yn � 0

(1.13)

It is worth noting here that in our representative examples the inverse function
ψ : [0,∞)

onto−→ [0,∞) will be even C∞ -smooth near 0 .

2 In the above estimates the implied constants depend only on n .
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There are many more reasons for studying deformations of bi-conformal en-

ergy. First, a homeomorphism h : X → Y in W 1,n(X,Y) whose inverse f
def==

h−1 : Y → X also lies in W 1,n(Y,X) include ones with integrable inner distor-
tion, see (1.15). From this point of view our study not only expands the theory
of quasiconformal mappings but also mappings of finite distortion. The latter can
be traced back to the early paper by Goldstein and Vodop’yanov [17] (1976) who
established continuity of such mappings. However, a systematic study of mappings
of finite distortion has begun in 1993 with planar mappings of integrable distortion
[34] (Stoilow factorization), see also the monographs [3,20,27]. The optimal mod-
ulus of continuity for mappings of finite distortion and their inverse deformations
have been studied in numerous publications [9,11,21,22,24,38,44,45]. In all of
these results, except in [44], the sharp modulus of continuity is obtained among the
class of radially symmetric mapping.

In a different direction, the essence of elasticity is reversibility. All materials
have limits of the admissible distortions. Exceeding such a limit one breaks the
internal structure of the material (permanent damage). Here we take on stage the
materials of bi-conformal stored-energy

EXY[h, f ] def== EX[h] + EY[ f ] =
∫
X

|Dh(x)|ndx +
∫
Y

|D f (y)|ndy. (1.14)

The bi-conformal energy reduces to an integral functional defined solely over the
domain X by the rule

EXY[h, f ] = EX[h] def==
∫
X

{ ∣∣ Dh(x)
∣∣n +

∣∣ D�h(x)
∣∣n

[ Jh(x) ]n−1

}
dx, (1.15)

where the ratio term represents the inner distortion of h . Here D�h denotes the
cofactor matrix of Dh. For more details we refer the reader to [4]. Examples abound
in which one can return the deformed body to its original shape with conformal
energy, but not necessarily via the inverse mapping f = h−1 : Y onto−→ X , be-
cause f need not even belong to W 1,n(Y,Rn) . This typically occurs when the
boundary of the deformed configuration (like a ball with a straight line slit cut)
differs topologically from the boundary of the reference configuration (like a ball
without a cut) [29–31]. We believe that the geometric/topological obstructions for
reversibility of elastic deformations might be of interest in mathematical models of
nonlinear elasticity (NE) [1,5,10,41]. In our setting, by virtue of the Hooke’s Law,
it is naturally to study deformations of bi-conformal energy. One of the important
problems in nonlinear elasticity is whether or not a radially symmetric solution
of a rotationally invariant minimization problem is indeed the absolute minimizer.
In the case of bi-conformal energy this is proven to be the case in low dimension
models (n = 2, 3) [32]. The radial symmetric solutions, however, may fail to be
absolute minimizers if n � 4 [32]. Several more papers, in the intersection of
NE and GFT, are devoted to understand the expected radial symmetric properties
[2,6,12,18,23,25,26,28,33,35,36,39,42,43,48–50].
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2. Quick Review of the Modulus of Continuity

Let us recall the concept of modulus of continuity, also known as modulus of
oscillation; the concept introduced by H. Lebesgue [40] in 1909.
We are dealing with continuous mappings h : X → Y between subsets X ⊂ X
and Y ⊂ Y of normed spaces (X , | · |) and (Y , || · || ) .

A modulus of continuity is any continuous function ω : [0,∞) → [0,∞) that
is strictly increasing and ω(0) = 0 .

Definition 2.1. A continuous mapping h : X → Y is said to admit ω as its (local)
modulus of continuity at the point x◦ ∈ X if

|| h(x) − h(x◦) || � ω(|x − x◦|) , for all x ∈ X. (2.1)

Here the implied constant may depend on x◦ , but not on x . In short, h is ω -
continuous at the point x◦ . If this inequality holds for all x, x◦ ∈ X with an
implied constant independent of x and x◦ then h is said to admit ω as its (global)
modulus of continuity in X .

Definition 2.2. (Optimal Modulus of Continuity). Every uniformly continuous func-
tion h : X → Y admits the optimal modulus of continuity at a given point x◦ ∈ X ,
given by the rule

ωh (x◦; t)
def== sup{ || h(x) − h(x◦) || : x ∈ X , |x − x◦| � t}. (2.2)

No implied constant is involved in this definition. Similarly, the function

�h (t)
def== sup{ || h(x) − h(x◦) || : x, x◦ ∈ X , |x − x◦| � t} (2.3)

is referred to as (globally) optimal modulus of continuity of h in X .

Definition 2.3. (Bi-modulus of Continuity). The term bi-modulus of continuity of
a homeomorphism h : X onto−→ Y refers to a pair (φ,ψ) of continuously increasing
functions φ : [0,∞)

onto−→ [0,∞) and ψ : [0,∞)
onto−→ [0,∞) in which φ is

a modulus of continuity of h and ψ is a modulus of continuity of the inverse

map f
def== h−1 : Y onto−→ X . Such a pair is said to be the optimal bi-modulus of

continuity at the point (x◦, y◦) ∈ X × Y , y◦ = h(x◦) , if φ(t) = ωh (x◦; t) and
ψ(s) = ω f (y◦; s).

3. Quasiconformal Mappings

Let us take a quick look at the radial stretching/squeezing homeomorphism
h : Rn onto−→ Rn defined by

h(x) = H(|x |) x

|x | , for x ∈ Rn, (3.1)
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where the function H : [0,∞)
onto−→ [0,∞) (interpreted as radial stress function)

is continuous and strictly increasing. Its inverse f
def== h−1 : Rn onto−→ Rn becomes

a squeezing/stretching homeomorphism of the form

f (y) = F(|y|) y

|y| , for y ∈ Rn, (3.2)

where F : [0,∞)
onto−→ [0,∞) stands for the inverse function of H . These two

radial stress functions are exactly the optimal moduli of continuity at 0 ∈ Rn of
h and f , respectively. By the definition,

ωh(t)
def== ωh(0, t) = max|x |=t

|h(x)| = H(t)

ω f (s)
def== ω f (0, s) = max|y|=s

| f (y)| = F(s) .

Therefore

ω f (ωh(t)) ≡ t for all t � 0 , and ωh(ω f (s)) ≡ s for all s � 0. (3.3)

The above identities admit of a simple interpretation:

The better is the optimal modulus of continuity of h , the worse is
the optimal modulus of continuity of its inverse map f, and vice versa.

Look at the power type stretching h(x) = |x |N x
|x | and f (y) = |y| 1

N
y

|y| .
To an extent, this interpretation pertains to all quasiconformal homeomorphisms.
There are three main equivalent definitions for quasiconformal mappings: met-
ric, geometric, and analytic. The analytic definition (1.3) was first considered by
Lavrentiev in connection with elliptic systems of partial differential equations. The
geometric definition states that a homeomorphism h : X onto−→ Y is a quasiconformal
if there is a constant K � 1 such that

K −1 mod
(

f (�)
)
� mod(�) � K mod

(
f (�)

)
for every curve family � inX. The conformal modulus mod(�) of family � of curves
in Rn is the infimum of the numbers

∫
Rn (ρ(x))n dx over all nonnegative Borel

functions ρ : Rn → [0,∞] such that
∫
γ

ρ ds � 1 for every γ ∈ �. The geometric
definition quickly yields many strong properties of quasiconformal mappings; for
example, the inverse of a quasiconformal mapping is automatically quasiconformal,
which is not at all obvious from the analytic definition. Here we, however, will
relay on the metric definition, which says that “infinitesimal balls are transformed
to infinitesimal ellipsoids of bounded eccentricity”. The interested reader is referred
to [3, Chapter 3.] to find more about the foundations of quasicoformal mappings.

Definition 3.1. [Metric Definition] Let X and Y be domains in Rn , n � 2 , and
h : X onto−→ Y a homeomorphism. For every point x◦ ∈ X we define.

Hh(x◦, r)
def== max|x−x◦|=r |h(x) − h(x◦)|

min|x−x◦|=r |h(x) − h(x◦)| (3.4)
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whenever 0 < r < dist(x◦, ∂X) . Also define

1 � Hh(x◦)
def== lim sup

r→0
Hh(x◦, r) � ∞ (3.5)

and call it the linear dilatation of h at x◦ . If, furthermore,

Kh
def== sup

x◦∈X
Hh(x◦) < ∞, (3.6)

then we call Kh the maximal linear dilatation of h in X and h a quasiconformal
mapping. Finally, h is K -quasiconformal, 1 � K < ∞ if

ess-sup
x◦∈X

Hh(x◦) � K . (3.7)

It should be noted that the inverse map f
def== h−1 : Y

onto−→ X is also K -
quasiconformal.

Next, we invoke the optimal modulus of continuity at a point x◦ ∈ X :
ωh(t)

def== ωh(x◦; t) = max|x−x◦|=t
|h(x) − h(x◦)| , for 0 � t < t◦

def== dist(x◦; ∂X).

This defines a continuous strictly increasing function ωh : [0, t◦) onto−→ [0, s◦) ,

where s◦
def== dist(y◦; ∂Y). Similar definitions apply to the inverse map f : Y onto−→

X which is also K -quasiconformal. Its optimal modulus of continuity at the image
point y◦ = h(x◦) is given by

ω f (s)
def== ω f (y◦; s) = max|y−y◦|=s

| f (y) − f (y◦)| , for 0 � s < s◦ .

Therefore, both compositions ω f (ωh(t)) and ωh(ω f (s)) are well defined for
0 � t < t◦ and 0 � s < s◦ , respectively. Unlike the radial stretchings, the
function ω f (s) is generally not the inverse of ωh(t) , but very close to it. Namely,
the optimal modulus of continuity of h and that of f are quasi-inverse to each
other. Let us make this statement more precise by the following theorem:

Theorem 3.2. (Local quasi-inversion). Let a map h : X
onto−→ Y be K -quasi

conformal and f : Y onto−→ X denote its inverse. Then there is a constant K =
K (n, K ) � 1 such that for every point x◦ ∈ X and its image y◦ = h(x◦) ∈ Y it
holds that

K −1s � ωh(ω f (s)) � K s and K −1t � ω f (ωh(t)) � K t (3.8)

whenever 0 � t � t (x◦) and 0 � s � s(y◦) . Here the upper bounds positive
numbers t (x◦) and s(y◦), depend only on dist(x◦; ∂X) and dist(y◦; ∂Y) , respec-
tively.

Before proceeding to the proof, we recall a very useful Extension Theorem by F.
W. Gehring [14], see also the book by J. Väisälä [52] (Theorem 41.6). This theorem
allows us to reduce a local quasiconformal problem to an analogous problem for
mappings defined in the entire space Rn .
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Lemma 3.3. (F. W. Gehring). Every quasiconformal map h : B(x◦, 2r)
into−→ Rn

defined in a ball B(x◦, 2r) ⊂ Rn admits a quasiconformal mapping h′ : Rn onto−→
Rn which equals h on B(x◦, r) . The dilatation of h′ depends only that of h and
the dimension n .

Accordingly, we may (and do) assume that X = Y = Rn . This will give us a
more precise information about the constant K = K (n, K ) .

Theorem 3.4. (Global quasi-inversion). Let a map h : Rn onto−→ Rn be K -quasi-
conformal and f : Rn onto−→ Rn denote its inverse. Then there is a constant K =
K (n, K ) � 1 such that for every point x◦ ∈ Rn and its image y◦ = h(x◦) it
holds that

K −1s � ωh(ω f (s)) � K s and K −1t � ω f (ωh(t)) � K t (3.9)

for all s � 0 and t � 0 .

Rather than using the original definition we will appeal to Gehring’s character-
ization of quasiconformal mappings, see Inequality (3.3) in [16] and some related
articles [13,15,37,51–53]. The interested reader is referred to a book by P. Caraman
[8] on various definitions and extensive early literature on the subject.

Proposition 3.5. (Three points condition). To every λ � 1 there corresponds a
constant 1 � Kλ = Kλ(n, K ) such that whenever three distinct points x◦ , x1 , x2
∈ Rn satisfy the ratio condition

|x1 − x◦|
|x2 − x◦| � λ, (3.10)

the image points under h : Rn onto−→ Rn satisfy analogous condition

|h(x1) − h(x◦)|
|h(x2) − h(x◦)| � Kλ = Kλ(n, K ). (3.11)

In particular, we have

Proposition 3.6. Let h : Rn onto−→ Rn be K -quasiconformal. Then for every point
x◦ ∈ X and 0 < r < ∞ we have

Hh(x◦, r)
def== max|x−x◦|=r |h(x) − h(x◦)|

min|x−x◦|=r |h(x) − h(x◦)| � K = K1(n, K ). (3.12)

Proof of Theorem 3.4. It is clearly sufficient to make the computation when x◦ = 0
and y◦ = 0 . In this case the condition (3.12) takes the form

1

K
|h(x2)| � |h(x1)| � K |h(x2)| , whenever |x1| = |x2| �= 0. (3.13)

By the definition of the optimal modulus of continuity at the origin, we have

• ωh(ω f (s)) = |h(x)| for some x ∈ Rn with |x | = ω f (s);
• ω f (s) = | f (y)| for some y ∈ Rn with |y| = s ;
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• Therefore, ωh(ω f (s)) = |h(x)| , for some |x | = | f (y)|.
Now, the right hand side of inequality at (3.13) gives the desired upper bound
ωh(ω f (s)) = |h(x)| � K |h( f (y))| = K |y| = K s , whereas the left hand
side gives the lower bound ωh(ω f (s)) = |h(x)| � K −1 |h( f (y))| = K −1 |y| =
K −1 s . The analogous bounds for ω f (ωh(t)) at (3.8) follow by interchanging
the roles of h and f ; as they are both K -quasiconformal. This completes the
proof of Theorem 3.4. ��

The converse statement to Theorem 3.2 is

Theorem 3.7. Consider a homeomorphism h : X
onto−→ Y , its inverse mapping

f : Y
onto−→ X , and their optimal moduli of continuity at a point x◦ ∈ X and

y◦ = h(x◦) , respectively:

ωh(t)
def== max|x−x◦|=t

|h(x) − h(x◦)| and ω f (s)
def== max|y−y◦|=s

| f (y) − f (y◦)|,

for 0 � t < dist(x◦, ∂X) and 0 � s < dist(y◦, ∂Y). Assume the following one-
sided quasi-inverse condition at every point x◦ ∈ X , with a constant K � 1 :

ωh(ω f (r)) � K r for all sufficiently small r > 0 (depending on x◦). (3.14)

Then h is K -quasiconformal.

Here is a simple geometric proof.

Proof. We shall actually show that Condition (3.14) at the given point x◦ ∈ X

implies that

Hh(x◦, t) = max|x−x◦|=t |h(x) − h(x◦)|
min|x−x◦|=t |h(x) − h(x◦)| � K (3.15)

for t > 0 sufficiently small. In particular, for every x◦ ∈ X it holds that

lim sup
t→0

Hh(x◦, t) � K , as required. (3.16)

A sufficient upper bound of t at (3.15) depends on dist(x◦, ∂X) , but we shall not
enter into this issue. It simplifies the writing, and causes no loss of generality, to
assume that x◦ = y◦ = 0 . Thus we are reduced to showing that

max|x |=t
|h(x)| � K min|x |=t

|h(x)|, for all sufficiently small t > 0. (3.17)

To this end, consider the ball B(x◦, t) ⊂ X centered at x◦ = 0 and with small
radius t > 0 . Its image under h , denoted by � = h(B(x◦, t)) ⊂ Y , contains the
origin y◦ = 0 . Let r > 0 denote the largest radius of a ball, denoted by Br ⊂ � ,
centered at y◦ = 0 . Thus

min|x |=t
|h(x)| = r.
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Fig. 1. The ratio R
r � K

Similarly, denote by R the smallest radius of a ball BR ⊃ � centered at y◦ = 0 ,
see Fig. 1. Thus

R = max|x |=t
|h(x)| def== ωh(t).

Now the inverse map f : Y onto−→ X takes � onto B(x◦, t) . In particular, it
takes the common point of ∂Br and ∂� into a point of ∂B(x◦, t) . This means
that

t = max|y|=r
| f (y)| def== ω f (r).

The proof is completed by invoking the quasi-inverse condition at (3.14),

R = ωh(t) = ωh(ω f (r)) � K r.

��

3.1. Doubling Property

It is worth discussing another special property of quasiconformal mappings in
relation to their bi-modulus of continuity. To simplify matters we confine ourselves
to quasiconformal mappings defined on the entire space, h : Rn onto−→ Rn and its
inverse f : Rn onto−→ Rn . It turns out that at every point x◦ ∈ Rn the optimal

modulus of continuity φ(t)
def== ωh(x◦; t) , as well as its inverse function φ−1 :

[0,∞)
onto−→ [0,∞) have a doubling property. Observe that φ−1 is not exactly the

optimal modulus of continuity of the inverse map f = h−1 , the latter is only quasi-
inverse to φ−1 . It should be emphasized at this point that doubling property of the
modulus of continuity is rather rare, see our representative examples in Section 6.

Proposition 3.8. Consider all K -quasiconformal mappings h : Rn onto−→ Rn . To
every λ � 1 there corresponds a constant Kλ (actually the one specified in
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(3.11) ), and there is a constant Cλ = Cλ(n, K ) (independent of h ) such that at
every point x◦ ∈ Rn we have

ωh(x◦; λ t) � Kλ ωh(x◦; t) (3.18)

and
ω−1

h (x◦; λ s) � Cλ ω−1
h (x◦; s) (3.19)

for all 0 � t < ∞ and 0 � s < ∞ .

Proof. We may again assume that x◦ = 0 and h(x◦) = 0 . This simplifies the

notation ωh(x◦; t)
def== ωh(t) . The proof of the first inequality is immediate from

the three points ratio condition in Proposition 3.5 , which gives us exactly the
constant Kλ from this condition. Indeed, we have that

• ωh(λ t) = |h(x1)| , for some x1 ∈ Rn with |x1| = λ t;
• ωh(t) = |h(x2)| , for some x2 ∈ Rn with |x2| = t;
• Hence, |x1||x2| � λ;
• Consequently |h(x1)||h(x2)| � Kλ , which is the desired estimate.

��
Clearly, for every y◦ ∈ Rn , we also have

ω f (y◦; λ s) � Kλ ω f (y◦; s) for all 0 � s < ∞ , (3.20)

simply by interchanging the roles of h and f .
We precede the proof of the doubling condition for ω−1

h , with a quick lemma.

3.2. A Quick Lemma on Doubling Condition

Consider an arbitrary continuously increasing function φ : [0,∞)
onto−→ [0,∞)

(in our application, φ(t) = ωh(t) ). It is commonly said that φ satisfies doubling
condition if there is a constant Cφ � 1 such that φ(2t) � Cφ φ(t) for all t � 0 .
However, it is convenient to work with so-called generalized doubling condition,
which reads as

φ(λ t) � Cφ(λ) φ(t), for all t � 0, (3.21)

where the λ - constant Cφ(λ) � 1 is obtained by iterating the inequality φ(2 t) �
Cφ φ(t) .
Associated with φ is its quasi-inverse function. This term pertains to any continuous
and strictly increasing function ψ : [0,∞)

onto−→ [0,∞) such that

m t � ψ(φ(t)) � Mt, for all t � 0, (3.22)

where 0 < m � 1 � M < ∞ are constants. In general, ψ does not satisfy
doubling condition, but its inverse ψ−1 : [0,∞)

onto−→ [0,∞) does.
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Lemma 3.9. To every factor λ � 1 there corresponds a generalized doubling
constant for ψ−1 . For all t � 0 we have that

ψ−1(λ t) � Cψ−1(λ) ψ−1(t). Explicitly Cψ−1(λ)
def== Cφ (Mλ/m) . (3.23)

Proof. Choose and fix λ � 1 . Inequality (3.22) is equivalent to

ψ−1(m t) � φ(t) � ψ−1(Mt) , for all t � 0. (3.24)

Upon substitution t � λt
m in the left hand side, we obtain

ψ−1(λ t) � φ

(
λ t

m

)
= φ

(
Mλ

m
· t

M

)
� Cφ

(
Mλ

m

)
· φ

(
t

M

)
.

The proof of the lemma is completed by invoking the right hand side of inequality
(3.24) which, upon substitution t � t

M , gives us the desired estimate φ( t
M ) �

ψ−1(t) . ��
We summarize this section with the following theorem, which is an expanded

version of Theorem 1.1:

Theorem 3.10. Let h : Rn onto−→ Rn be a K -quasiconformal mapping and f :
Rn onto−→ Rn its inverse. Choose and fix an arbitrary point x◦ ∈ Rn an its image
point y◦ = h(x◦) . Denote by φ(t) = ωh(x◦; t) the optimal modulus of continuity
of h at x◦ and by ψ(s) = ω f (y◦; s) the optimal modulus of continuity of f at
y◦ . Then the following statements hold true:

(Q1) The functions φ and ψ are quasi-inverse to each other. Precisely, there is a
constant K = K (n, K ) such that

K −1 t � ψ(φ(t)) � K t and K −1 s � φ(ψ(s)) � K s (3.25)

for all t, s ∈ [0,∞) .
(Q2) Both φ and ψ satisfy the general doubling condition; that is, for every

λ � 1 there is a constant Kλ such that

φ(λ t) � Kλ φ(t) and ψ(λ s) � Kλ ψ(s) (3.26)

for all t, s ∈ [0,∞) .
(Q3) As a consequence of Conditions (Q1) and (Q2) , the inverse functions ψ−1

and φ−1 also satisfy a general doubling conditions; namely,

φ−1(λ s) � Cλ φ−1(s) and ψ−1(λ t) � Cλ ψ−1(s) (3.27)

for all t, s ∈ [0,∞) , where the constant Cλ = Kλ(λ K 2) .

Let us now proceed to more general mappings of bi-conformal energy.
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4. A Handy Metric in Rn � Rn−1 × RRn � Rn−1 × RRn � Rn−1 × R

It will be convenient to consider the space Rn as Cartesian product Rn−1 ×R ,
with the purpose of using cylindrical coordinates. Accordingly,

Rn = Rn−1 × R = {
X = (x, t); x = (x1, ..., xn−1) ∈ Rn−1 and t ∈ R

}
.

Hereafter, we change the notation of the variables; the lowercase letter x des-
ignates a point (x1, ...xn−1) ∈ Rn−1 while the uppercase letter X = (x, t)
is reserved for points in Rn . The Euclidean norm of x ∈ Rn−1 is denoted by

|x | def==
√

x2
1 + · · · + x2

n−1 . The space Rn−1 × R is furnished with the norm

|| X || def== |x | + |t | , for X = (x, t) = (x1, ..., xn−1, t) ∈ Rn−1 × R.

In this metric the closed unit ball in Rn−1 ×R becomes the Euclidean double cone

C = {(x, t) ∈ Rn ; |x | + |t | � 1 } = C+ ∪ C− ,

where we split C into the upper and lower cones:

C+ = {(x, t); |x | + t � 1 , t � 0 } , C− = {(x, t); |x | − t � 1 , t � 0 }

5. The Idea of the Construction of H : C onto−→ CH : C onto−→ CH : C onto−→ C

Our construction of a bi-conformal energy map H : C onto−→ C , whose optimal
modulus of continuity at the origin coincides with that of the inverse map, will be
carried out in two steps. First we construct a homeomorphism H : C+ onto−→ C+
of finite conformal-energy which equals the identity on ∂ C+ . Its inverse map

F
def== H−1 : C+ onto−→ C+ will also have finite conformal-energy. The substance

of the matter is that their optimal moduli of continuity ( ωH and ωF , respectively)
are inverse to each other; thus generally not equal. In fact ωH will be stronger that
ωF . In the second step we adopt the modulus of continuity of F : C+ onto−→ C+
to an extension of H to C−, simply by reflecting F twice about Rn−1 . Let the
reflection r : Rn onto−→ Rn be defined by r(x, t) = (x,−t) . This gives rise to a map
r ◦ F ◦ r : C− onto−→ C−, which we glue to H : C+ onto−→ C+ along the common base
∂C+ ∩ ∂C− ⊂ Rn−1 . Precisely, the desired homeomorphism H : C onto−→ C , still
denoted by H , will be defined by the rule

H
def==

{
H : C+ onto−→ C+
r ◦ F ◦ r : C− onto−→ C−

. (5.1)

Its inverse, also denoted by F : C onto−→ C , is defined analogously by interchang-
ing the roles of F and H :

F
def==

{
F : C+ onto−→ C+
r ◦ H ◦ r : C− onto−→ C−

. (5.2)
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Fig. 2. A mapping H : C onto−−→ C and its inverse F : C onto−−→ C , will have the same optimal
modulus of continuity at the center of C

As a result, the optimal modulus of continuity of H will be attained in the upper
cone C+ , whereas the optimal modulus of continuity of F will be attained in the
lower cone C− . Clearly, they are the same for the double cone C = C+ ∪ C−, and
this is the essence of our construction.

The explicit formula for H can easily be stated, see Definition 7.1 in Section 7.

Since H : C onto−→ C and its inverse F
def== H−1 : C onto−→ C are both equal to the

identity on ∂C we can extend them to Rn as the identity outside C . Whenever it
is convenient, we shall speak of H : Rn onto−→ Rn and its inverse F : Rn onto−→ Rn

as homeomorphisms of the entire space Rn onto itself (Fig. 2).

6. Preconditions on the Modulus of Continuity and the Representative
Examples

Let us introduce a fairly general class of moduli of continuity to be considered.
These classes are intended to unify the proofs. It will also give us an aesthetic
appearance of the inequalities. On that account, our moduli of continuity, will be
made of functions φ : [0, 1] onto−→ [0, 1] in C [0, 1] ∩ C 1(0, 1] such that

(C1) φ(0) = 0 , φ(1) = 1 ( can be extended by φ(s) = s for s � 1 );
(C2)

φ′(s) � φ(s)

s
� M[φ′(s)]2 , for some constant 1 � M < ∞; (6.1)

(C3) Finite Energy Condition :

E[φ] def==
∫ 1

0
|φ(s)|n ds

s
< ∞. (6.2)

As a consequence of Conditions (C1) and (C2) we have

•
λ(s)

def== φ(s)

s
� φ′(s) � 1

M
for all 0 < s � 1. (6.3)

In the forthcoming representative examples (except for φ(s) ≡ s) we have
even stronger property; namely, lims→0 φ′(s) = ∞.
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• The function λ(s) is non-increasing. This follows from

λ′(s) = φ′(s)
s

− φ(s)

s2 � 0. (6.4)

• Thus, in fact,

λ(s) = φ(s)

s
� φ(1)

1
= 1 , for all 0 < s � 1. (6.5)

6.1. Representative Examples

(E0) For 0 < ε � 1 , we set

φ0(s) = s ε. In the borderline case, φ(s) = s.

(E1) For 1
n < α � 1 , we set

φ1(s) = log−α
(e

s

)
=

(
1 + a1 log

1

s

)−α

.

(E2) For 1
n < α � 1 , we set

φ2(s) =
(

1 + a1 log
1

s

)− 1
n (

1 + a2 log log
e

s

)−α

.

(E3) For 1
n < α � 1 , we set

φ3(s) =
(

1 + a1 log
1

s

)− 1
n (

1 + a2 log log
e

s

)− 1
n
(

1 + a3 log log log
ee

s

)−α

.

Continuing in this fashion, we define a sequence of functions φk , k = 0, 1, 2, ...

in which the last product-term in the round parantheses involves k -times iterated
logarithm and (k − 1) -times iterated power of e . All the above functions can be
extended by setting φk(s) ≡ s, for s � 1 .

Remark 6.1. The coefficients ak in the above formulas are adjusted to ensure the
inequality φ′(s) � φ(s)

s , which is required by Condition (C2) . This works well

with ak
def== (1 − 1

n )k−1 . Indeed, the reader may wish to verify that the expression
sφ′

k (s)
φk (s)

is increasing, thus assumes its maximum value at s = 1 . It is then readily

seen that its maximum value is not exceeding 1
n (a1 + a2 + ... + ak−2) + α ak =

1 − (
1 − α

) (
1 − 1

n

)k−1 � 1 .
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Fig. 3. Diagonals of rectangles built on the curve t = φ(s) . The map F is linear on each
such diagonal, as well as on their rotations

7. The Definition of H : C+ onto−→ C+H : C+ onto−→ C+H : C+ onto−→ C+

First we set H on the vertical axis of the upper cone by the rule:

H(0, t) = (0, φ(t)) .

Here and below (0, t)
def== (0, ..., 0 , t) ∈ Rn−1 ×R. We wish H to be the identity

map on the base of the cone, which consists of points (x, 0) ∈ Rn−1 × R with
|x | � 1 . The idea is to connect (x, 0) with the point (0, |x | ) by a straight line
segment and map it linearly onto the straightline segment with endpoints at (x, 0)

and (0, φ(|x |) ) . Explicitly, are have

Definition 7.1. The map H : C+ onto−→ C+ ⊂ Rn−1 × R is given by the formula

H(x, t)
def== (x, t λ(t + |x |) ) , for 0 � t � 1 and |x | + t � 1, (7.1)

where we recall that λ(s)
def== φ(s)

s for 0 < s � 1.

Indeed, for α, β � 0 with α + β = 1 , we have H
[
α (x, 0) + β (0, |x |) ] =

α (x, 0) + β (0, φ(|x |) , which means that H is a linear transformation between
the above-mentioned segments. A formula for the inverse map F : C+ onto−→ C+ is
not that explicit (Fig. 3).

8. The Jacobian Matrix of HHH and Its Inverse

A straightforward computation of the Jacobian matrix of H , at the point X
def==

(x, t) = (x1, ..., xn−1, t) ∈ Rn−1 × R shows that

DH(x, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 1 0

D1 D2 D3 . . . Dn−1 D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8.1)
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where Di = [
t λ′(t +|x |) ] xi|x | and D = λ(t +|x |) + t λ′(t +|x |) is the Jacobian

determinant, later also denoted by JH (X). Then the inverse matrix (DH)−1 takes
the form

(DH)−1 = 1

D

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D 0 0 . . . 0 0

0 D 0 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . D 0

−D1 −D2 −D3 . . . −Dn−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.2)

The square of the Hilbert Schmidt norm of a matrix is the sum of squares of its
entries. Accordingly,

|DH |2 = n − 1 + [
t λ′(t + |x |) ]2 + [

λ(t + |x |) + t λ′(t + |x |) ]2 (8.3)

and

| (DH)−1|2 = 1[
λ(t + |x |) + t λ′(t + |x |) ]2

+
[

t λ′(t + |x |) ]2[
λ(t + |x |) + t λ′(t + |x |) ]2 + n − 1. (8.4)

9. The Jacobian Determinant D = JH (X)D = JH (X)D = JH (X)

We have the following bounds of the Jacobian determinant, including a uniform
lower bound for all X = (x, t) ∈ C+ :

λ( || X || ) � JH (X) � φ′( || X || ) � 1

M
(9.1)

Proof. Using the notation || X || = s = t + |x | � 1 , we write

D = d

dt

(
t λ(t + |x |)

)
= d

dt

(
t

φ(t + |x |)
t + |x |

)

= φ(s)

s
+ t

(
φ′(s)

s
− φ(s)

s2

)
= φ(s)

s

(
1 − t

s

)
+ t

φ′(s)
s

. (9.2)

Now, since φ′(s) � φ(s)
s = λ(s) , it follows that D � λ(s) . On the other hand

φ′(s) � 1
M and φ(s)

s � 1 � 1
M , whence D � 1

M . ��
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10. Conformal-energy of H : C+ onto−→ C+H : C+ onto−→ C+H : C+ onto−→ C+

In the forthcoming computation the “implied constants” depend only on the
dimension n � 2 .

Lemma 10.1. We have

∫
C+

|DH(x, t)|n dx dt � E[φ]. (10.1)

Proof. Formula (8.3) yields the inequality

∫
C+

|DH(x, t)|n dx dt � 1 +
∫

t+|x |�1
| λ(t + |x |) |n dx dt

+
∫

t+|x |�1
tn| λ′(t + |x |) |n dx dt. (10.2)

Obviously, for the constant term we have 1 � E[φ] . For the first integral in the
right hand side we make the substitution t = s − |x | and use Fubini’s formula to
obtain

∫
t+|x |

|λ(t + |x |) |n dx dt =
∫

|x |�s�1
| λ(s) |n dx ds

=
∫ 1

0
|λ(s)|n

(∫
|x |�s

dx

)
ds = ωn−2

n − 1

∫ 1

0
sn−1|λ(s)|nds

= ωn−2

n − 1

∫ 1

0
|φ(s)|n ds

s
� E[φ].

For the second integral in (10.2), we make the same substitution t = s − |x | and
proceed as follows:

∫
t+|x |�1

tn| λ′(t + |x |) |n dx dt =
∫

|x |�s�1
(s − |x |)n | λ′(s) |n dx ds

=
∫ 1

0
|λ′(s)|n

(∫
|x |�s

(s − |x |)n dx

)
ds

= cn

∫ 1

0
s2n−1|λ′(s)|nds �

∫ 1

0
|φ(s)|n ds

s
= E[φ].

Here, we used the inequality |λ′(s) | = φ(s)
s 2 − φ′(s)

s � φ(s)
s 2 .

The proof is complete. ��
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11. Conformal-energy of the Inverse Map

This brings us back to the seminal work [4] on extremal mappings of finite
distortion. Going into this in detail would take us too far afield, so we confine
ourselves to a simplified variant.

Consider a homeomorphism H : X
onto−→ Y between bounded domains of

Sobolev class W 1,n
loc (X,Y) and assume (just to make it easier) that the Jacobian

JH
def== det [DH] is positive almost everywhere, as in (9.1).

Definition 11.1. The differential expression

KH (X)
def== ∣∣ [DH(X)]−1

∣∣n JH (X) =
∣∣ D�H(X)

∣∣n
[ JH (X) ]n−1 (11.1)

is called the inner distortion function of H . Here the symbol D�H stands for the
cofactor matrix of DH , defined by Cramer’s rule.

The following identity was first observed with a complete proof of it in [4] (see
Theorem 9.1 therein):

Proposition 11.2. Under the assumptions above, if KH ∈ L 1(X) then the inverse
map F : Y onto−→ X belongs to W 1,n(Y,X) and

∫
Y

∣∣ DF(Y )
∣∣n dY =

∫
X

KH (X) dX. (11.2)

In our case, since H is locally Lipschitz on C+ , the derivation of this identity
is straightforward. Simply, the differential matrix DF(Y ) at the point Y = H(X)

equals [DH(X)]−1 . We may change variables Y = H(X) in the energy integral
for F , to obtain

∫
C+

∣∣ DF(Y )
∣∣n dY =

∫
C+

∣∣ [DH(X)]−1
∣∣n JH (X) dX

def==
∫
C+

KH (X) dX.

Now, by (8.1) and (8.2), we have a point wise inequality JH (X)
∣∣ [DH(X)]−1∣∣ � √

n − 1
∣∣ DH(X)

∣∣ , which yields

KH � (n − 1)
n
2 | DH |n

(JH )2n−1 � (n − 1)
n
2 M2n−1| DH |n ∈ L 1(C+), (11.3)

because JH (X) � 1
M , by (9.1).



Bi-conformal Energy and Quasiconformality 1729

12. Modulus of Continuity of H : C+ onto−→ C+H : C+ onto−→ C+H : C+ onto−→ C+

We start with the straightforward estimates of the modulus of continuity at
(0, 0) ∈ Rn−1 × R . In consequence of λ( || X || ) � 1 , we have

|| X || = |x | + t � |x | + t λ(t + |x |) � |x | λ( || X || ) + t λ( || X || ) = φ( || X || ).
Here the middle term |x | + tλ(t + |x |) = || H(X) || . Therefore,

|| X || � || H(X) || � φ( || X || ) . (12.1)

Corollary 12.1. The function φ is the optimal modulus of continuity of the map
H : C+ onto−→ C+ at (0, 0) ∈ Rn−1 × R+ ; that is,

sup
|| X || =s

|| H(X) || = φ(s) , whenever X ∈ C+ and 0 � s � 1 . (12.2)

Indeed, the supremum is attained at the point X = (0, s) on the vertical axis
of the cone C+ , because H(0, s) = (0, φ(s) ) .

Remark 12.2. It is perhaps worth remarking in advance that both inequalities at
(12.1) remain valid in terms of the Euclidean norm of Rn as well, where |X | =
|(x, t)| = √|x |2 + t2 � || X || . To this end, since λ is decreasing to its minimum
value λ(1) = 1 , for X ∈ C+ we can write

|X |2 � |x |2 + t2λ2( || X || ) = |H(X)|2 � |x |2λ2(|X |) + t2λ2(|X |) = φ2(|X |).
Let us record this fact as

|X | � |H(X)| � φ(|X |) . (12.3)

For the inverse map F = F(Y ) , these inequalities take the form

ψ(|Y |) � |F(Y )| � |Y | � φ(|Y |) for all Y ∈ C+ because s � φ(s), (12.4)

where ψ : [0, 1] onto−→ [0, 1] denotes the inverse function of φ . This, however, does
not necessarily imply that F is Lipschitz continuous, as shown by our representative
examples.

We shall now prove that H admits φ as global modulus of continuity; that is,
everywhere in C+ . Precisely, we have

Proposition 12.3. For X = (x, t) ∈ C+ and X ′ = (x ′, t ′) ∈ C+ it holds that

|| H(X) − H(X ′) || � 4 φ( || X − X ′ || ) . (12.5)

Thus, according to (2.3),

�H (t) � 4φ(t) .
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Proof. Recall that || X || def== |x | + |t | and H(x, t)
def== ( x, tλ( || X || ) ) . Thus

|| H(X) − H(X ′) || � |x − x ′| + |tλ( || X || ) − t ′λ( || X ′ || ) | . (12.6)

The first term is easily estimated as |x − x ′| � φ(|x − x ′|) � φ( || X − X ′ || ) ,
because s � φ(s) and φ is increasing in s ∈ [0, 1] . The second term needs more
work. First observe that for 0 < A � B � 1 it holds that

0 < λ(A) − λ(B) � A−1φ(B − A). (12.7)

Indeed,

λ(A) − λ(B) = n
φ(A) − φ(B)

A
+ B − A

A
λ(B)

� B − A

A
λ(B − A) = A−1φ(B − A).

In the above formula, the first term is negative because φ is increasing. In
the second term we have used the inequality λ(B) � λ(B − A) , because λ is
nonincreasing.
In Inequality (12.5) we may (and do) assume that || X ′ || � || X || , for otherwise we
can interchange X with X ′ . This yields 1

2 || X − X ′ || � || X || and, consequently,
λ( || X || ) � λ( 1

2 || X − X ′ || ) = φ( 1
2 || X − X ′ || )/ 1

2 || X − X ′ || � 2 φ( || X −
X ′ || )/ || X − X ′ || . Having this and (12.7) to hand, we conclude with the desired
estimate:

| tλ( || X || ) − t ′λ( || X ′ || ) | � | t − t ′| λ( || X || ) + t ′ | λ( || X || ) − λ( || X ′ || ) |
� 2 | t − t ′|

|| X − X ′ || φ( || X − X ′ || )

+ t ′

|| X ′ || φ( || X || − || X ′ || )
� 2 φ( || X − X ′ || ) + φ( || X − X ′ || )
= 3 φ( || X − X ′ || ).

��

13. Modulus of Continuity of F : C+ onto−→ C+F : C+ onto−→ C+F : C+ onto−→ C+

All representative functions φ = φk , k = 0, 1, . . . that are listed in (E0) . . . (Ek) . . .

are concave ( φ′′
k � 0 ) near the origin, but not necessarily in the entire inter-

val [0, 1] . Actually, upon minor modifications away from the origin all the above
functions can be made concave in the entire interval [0, 1] , but their aesthetic ap-
pearance will be lost. Thus, rather than modifying those examples, in the first step
we restrict our attention to a neighborhood of the origin. Outside such a neighbor-
hood the mapping F : C+ onto−→ C+ is Lipschitz continuous. This will take care of
the global estimate.
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The additional condition imposed on φ reads as follows:

(C4) There is an interval (0, r ] ⊂ (0, 1] in which φ is C2 -smooth and concave;
that is,

φ′′(s) � 0 , for 0 < s � r. (13.1)

We shall now prove that F admits φ as global modulus of continuity in C+ .

Proposition 13.1. For arbitrary two points Y = (y, τ ) ∈ C+ and Y ′ = (y′, τ ′) ∈
C+ it holds that

|| F(Y ) − F(Y ′) || � φ( || Y − Y ′ || ). (13.2)

The implied constant depends on the conditions imposed through (C1) − (C4).

Proof. A seemingly routine proof below, actually took an effort to accomplish all
details. Let us begin with the definition of the map H : C+ onto−→ C+ and some new
related notation. For X = (x, t) ∈ C+ ⊂ Rn−1 × R , we recall that

|| X || = |x | + t and H(X) = (
x, t λ(t + |x |)) def== (

y, τ
) = Y ∈ Rn−1 × R.

For the inverse map F = H−1 we write

|| Y || = |y| + τ and F(Y ) = (
y, T

) ∈ C+ ⊂ Rn−1 × R,

where the vertical coordinate T = T (τ, |y|) is determined uniquely from the
equation

T λ(T + |y|) = τ. (13.3)

In much the same way as in (9.2) we find that the function T � T λ(T + |y|) is
strictly increasing. We actually have

d T λ(T + |y|)
dT

= λ(T + |y|) + T λ′(T + |y|) � 1

M
.

Even more can be said about the above expression. Indeed, denoting by s
def==

T + |y| � 1 , we have the identity

λ(s) + T λ′(s) = φ(s)

s
+ T ·

(
φ′(s)

s
− φ(s)

s2

)

=
(

1 − T

s

)
φ(s)

s
+ T

s
· φ′(s),

which, in view of Condition (C2) at (6.1), also yields a useful upper bound:

φ(s)

s
� λ(s) + T λ′(s) � φ′(s) � 1

M
(13.4)

The latter follows from the Condition (C2) at (6.1) as well.
Now, implicit differentiation in (13.3) with respect to τ -variable gives

0 � ∂T (τ, |y|)
∂τ

= 1

λ(T + |y|) + T λ′(T + |y|) � M. (13.5)
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On the other hand, differentiation with respect to the |y| -variable gives

0 � ∂T (τ, |y|)
∂ |y| = − T λ′(T + |y|)

λ(T + |y|) + T λ′(T + |y|) = −T λ′(s)
λ(s) + T λ′(s)

. (13.6)

It should be noted that λ′(s) � 0 whenever s
def== T + |y| � 1 . Precisely,

0 � −λ′(s) = − φ′(s)
s

+ φ(s)

s2 � φ(s)

s2 . (13.7)

From this and the lower bound in (13.4) we infer that

0 � ∂T (τ, |y|)
∂ |y| � T φ(s)

s2φ′(s)
� φ(s)

s φ′(s)
� Mφ′(s) = Mφ′(T + |y|),

the latter being guaranteed by the right hand side of inequality (6.1).
It is at this point that we are going to use the additional assumption that φ is

concave near the origin; namely, φ′ is non-increasing in (0, r ] ⊂ (0, 1] . Examine

an arbitrary point Y = (y, τ ) ∈ C+ of lengths || Y || def== τ + |y| � r
M to show

that T + |y| � r . Recall that T is determined by the equation T λ(T + |y|) = τ .
Thus, we have T

M � φ′(T + |y|) T � φ(T +|y|)
T +|y| T = τ , by Condition (6.1).

Hence T + |y| � Mτ + |y| � M(τ + |y|) � r . Since s = T + |y| � |y| and
φ′ is non-increasing in (0, r ] , we infer that

0 � ∂T (τ, |y|)
∂ |y| � Mφ′(|y|) , whenever τ + |y| def== || Y || � r

M
. (13.8)

We are now ready to formulate an estimate of the modulus of continuity of F
within the neighborhood of the origin that is determined by || Y || � r

M .

Proposition 13.2. Let Y = (y, τ ) ∈ Rn−1 ×R and Y ′ = (y′, τ ′) ∈ Rn−1 ×R be
points in C+ such that || Y || � r

M and || Y ′ || � r
M . Then

|| F(Y ) − F(Y ′) || � 3Mφ( || Y − Y ′ || ). (13.9)

Proof. With the notation for F(Y ) = (y , T (τ, |y|)) and F(Y ′) = (y′ , T (τ ′, |y′|))
we begin with the computation

|| F(Y ) − F(Y ′) || = |y − y′| + | T (τ, |y|) − T (τ ′, |y′|) |
� |y − y′| + | T (τ, |y|) − T (τ, |y′|) | + | T (τ, |y′|) − T (τ ′, |y′|) |
� (in view of (13.5))

� |y − y′| + | T (τ, |y|) − T (τ, |y′|) | + M |τ − τ ′|
� | T (τ, |y|) − T (τ, |y′|) | + M || Y − Y ′ ||
� | T (τ, |y|) − T (τ, |y′|) | + M φ( || Y − Y ′ || ).

The latter is obtained by the inequality s � φ(s) , see (6.5). It remains to establish
the following estimates, say when 0 < |y′| � |y| � r :

| T (τ, |y|) − T (τ, |y′|) | � 2Mφ(|y − y′|) � 2M φ( || Y − Y ′ || ). (13.10)
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To that end, we begin with the following expression:

T (τ, |y|) − T (τ, |y′|) =
∫ 1

0

d

dγ

[
T (τ, |γ y + (1 − γ )y′|)

]
dγ

=
∫ 1

0
Tξ (τ, |γ y + (1 − γ )y′|)

〈
γ y + (1 − γ )y′

|γ y + (1 − γ )y′|
∣∣∣ y − y′

〉
dγ,

where Tξ (τ, ξ)
def== ∂T (τ,ξ)

∂ ξ
. In view of (13.8) , we obtain

| T (τ, |y|) − T (τ, |y′|) | � M |y − y′|
∫ 1

0
φ′(|γ y + (1 − γ )y′|) dγ. (13.11)

It is important to notice that |γ y + (1 − γ )y′| � r , which enables us to invoke
Condition (C4) at (13.1); that is, φ′ is non-increasing in the interval (0, r ] . The
following interesting lemma comes into play:

Lemma 13.3. Let � : (0, r ] → (0,∞) be continuous non-increasing and inte-
grable: ∫ r

0
�(s) ds < ∞.

Then for every vectors a, b in a normed space (N ; |. |) , such that 0 < |a| � r
and 0 < |b| � r , it holds that

∫ 1

0
�(|γ a + (1 − γ ) b |) dγ � 1

|a| + |b|

(∫ |a|

0
�(s) ds +

∫ |b|

0
�(s) ds

)
.

(13.12)
Equality occurs if a is a negative multiple of b .

Proof. Since φ is non-increasing, by triangle inequality it follows that∫ 1

0
�(|γ a + (1 − γ ) b |) dγ �

∫ 1

0
�

(∣∣ (1 − γ ) |b| − γ |a| ∣∣) dγ

=
∫ |b|

|a|+|b |

0
�
(
(1 − γ ) |b| − γ |a| ) dγ +

∫ 1

|b|
|a|+|b |

�
(
γ |a| − (1 − γ ) |b| ) dγ.

In the first integral we make a substitution s = (1 − γ ) |b| − γ |a| , which places
s in the interval (0, |b| ) and |ds| = (|a| + |b|) dλ . This gives us the second
integral-term of the right hand side of (13.12), and similarly for the first integral-
term. ��

Since φ′ is non-increasing in the interval (0, r ] (by inequality (13.1) at Condi-
tion (C4) ), we may apply Estimate (13.12) to � = φ′ . Now, returning to (13.11),
the inequality (13.10) is readily inferred as follows:
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Fig. 4. Bi-conformal energy mapping H and its inverse F exhibit the same optimal modulus
of continuity at the origin of the double cone C

| T (τ, |y|) − T (τ, |y′|) | � M |y − y′| φ(|y|) + φ(|y′|)
|y| + |y′|

= M φ(|y − y′|) |y − y′|
φ(|y − y′|)

φ(|y|) + φ(|y′|)
|y| + |y′|

� M φ(|y − y′|) |y| + |y′|
φ(|y| + |y′|)

φ(|y|) + φ(|y′|)
|y| + |y′| � 2 M φ(|y − y′|) ,

because s
φ(s) = 1

λ(s) is non-decreasing (see (6.4)) and φ(s) is increasing. The
proof of Proposition 13.2 is complete. ��

Finally, the global estimate (13.2) in Proposition 13.1 follows from Proposi-
tion 13.2, whenever || Y || � r

M and || Y ′ || � r
M , whereas its extension to all

points Y and Y ′ is fairly straightforward by invoking Lipschitz continuity of F
away from the origin (Fig. 4). ��

14. Conclusion

Choose an arbitrary modulus of continuity function φ : [0,∞)
onto−→ [0,∞)

that satisfies conditions (C1) (C2) (C3) and (C4) . Then consider a bi-conformal
energy map H : C+ onto−→ C+ defined in (7.1) together with its inverse map F :
C+ onto−→ C+ . Extend H and F to the double cone C = C+ ∪ C− by the reflection
rule at (5.1). Afterwards, extend H and F to the entire space Rn by setting
H = Id : Rn \ C onto−→ Rn \ C and F = Id : Rn \ C onto−→ Rn \ C . Then we obtain

Theorem 14.1. For every modulus of continuity function φ : [0,∞)
onto−→ [0,∞)

satisfying conditions (C1) (C2) (C3) and (C4) , there exists a homeomorphism
H : Rn onto−→ Rn of Sobolev class W 1,n

loc (Rn , Rn) , whose inverse F = H−1 :
Rn onto−→ Rn also lies in the Sobolev space W 1,n

loc (Rn,Rn). Moreover,

• H(0) = 0 , H(X) ≡ X , for || X || � 1 and for X = (x1, ..., xn−1, 0);
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• H : Rn onto−→ Rn admits φ as its global modulus of continuity; that is,

|| H(X1) − H(X2) || � φ( || X1 − X2 || ) , for all X1, X2 ∈ Rn ; (14.1)

• The inverse map F : Rn onto−→ Rn satisfies the same condition

|| F(Y1) − F(Y2) || � φ( || Y1 − Y2 || ) , for all Y1, Y2 ∈ Rn ; (14.2)

• H and F share the same optimal moduli of continuity at the origin; namely,

ωH (0, r) = max|| X || =r
|H(X)| = φ(r) = max|| Y || =r

|F(Y )| = ωF (0, r) (14.3)

for all 0 � r < ∞.
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POINTWISE INEQUALITIES FOR SOBOLEV FUNCTIONS ON OUTWARD

CUSPIDAL DOMAINS

SYLVESTER ERIKSSON-BIQUE, PEKKA KOSKELA, JAN MALÝ AND ZHENG ZHU

Abstract. We show that the first order Sobolev spaces W 1,p(Ωψ), 1 < p ≤ ∞, on cuspidal sym-
metric domains Ωψ can be characterized via pointwise inequalities. In particular, they coincide
with the Haj�lasz-Sobolev spaces M1,p(Ωψ).

1. Introduction

Optimal definitions for Sobolev spaces are crucial in analysis. It was a remarkable discovery
of Haj�lasz [4] that distributionally defined Sobolev functions can be characterized using pointwise
estimates in the context of Sobolev extension domains. This, in part, has played a crucial role in
defining Sobolev spaces for general metric measure spaces. Here, we show that for certain cuspidal
domains the pointwise characterization holds without any additional assumptions. These domains
do not admit extensions for Sobolev functions. Given a domain Ω ⊂ Rn, we denote by W 1,p(Ω),
1 ≤ p ≤ ∞, the usual first order Sobolev space consisting of all functions u ∈ Lp(Ω) whose first
order distributional partial derivatives also belong to Lp(Ω). If Ω = Rn, then any Sobolev function
u satisfies the pointwise inequality

(1.1) |u(x)− u(y)| ≤ C|x− y| (M [|∇u|](x) +M [|∇u|](y))
at Lebesgue points of u, where M [|∇u|] is the Hardy-Littlewood maximal function of |∇u|, see
[1, 2, 4, 8]. Motivated by this, P. Haj�lasz introduced in [4] the space M1,p(Ω) consisting of all those
u ∈ Lp(Ω) for which there exists a set E ⊂ Ω of n-measure zero and a function 0 ≤ g ∈ Lp(Ω) so
that

(1.2) |u(x)− u(y)| ≤ |x− y| (g(x) + g(y))

whenever x, y ∈ Ω \ E.
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One has M1,p(Rn) = W 1,p(Rn) as sets for 1 < p ≤ ∞, and the norms are comparable once
M1,p(Rn) is equipped with the natural norm. Also, for 1 ≤ p ≤ ∞, one always has M1,p(Ω) ⊂
W 1,p(Ω) and the inclusion is strict for p = 1 for any domain Ω, see [7].

A natural question to ask is:

For which domains Ω ⊂ Rn do we have M1,p(Ω) = W 1,p(Ω)?

Indeed, these two spaces coincide if there is a bounded extension operator from W 1,p(Ω) into
W 1,p(Rn), for a given 1 < p ≤ ∞. When p = ∞ and Ω is bounded, this is the case if Ω is
quasiconvex and actually the equality is equivalent to quasiconvexity under these assumptions.
This follows from [5, Theorem 7]. Moreover, for 1 < p < ∞, under the assumption that

(1.3) |B(x, r)| ≤ C|B(x, r) ∩ Ω|
for every x ∈ Ω and every 0 < r < 1, where | · | refers to n-measure, M1,p(Ω) = W 1,p(Ω) implies
the existence of such an extension operator. Indeed, in this case the spaces coincide precisely when
such an extension operator exists. For this see [5]. Using this fact, it is easy to exhibit domains Ω
for which M1,p(Ω) = W 1,p(Ω) fails for all p; e.g. take Ω ⊂ R2 to be the unit disk minus the interval
[0, 1) on the real axis.

In this paper, we consider this question for cuspidal domains of the form

(1.4) Ωψ :=
{
(t, x) ∈ (0, 1)× Rn−1; |x| < ψ(t)

} ∪ {(t, x) ∈ [1, 2)× Rn−1; |x| < ψ(1)},
where ψ : (0, 1] → (0,∞) is a left continuous increasing function. (Left continuity is required just
to get Ωψ open. The term “increasing” is used in the non-strict sense.) The seemingly strange
cylindrical annexes are included only to exclude other singularities than the cuspidal one. It is
crucial to note that these domains will not, except for limited special cases, be Sobolev extension
domains, and thus the methods from [5] do not apply.

It is easy to check that Ωψ ⊂ Rn is a domain. If limt→0
ψ(t)
t = 0, then the measure density

condition (1.3) fails, and hence, by [5], there can not exist any bounded extension operator from
W 1,p(Ωψ) to W 1,p(Rn). However, according to a somewhat surprising result by A.S. Romanov [9],
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one still has W 1,p(Ωψ) = M1,p(Ωψ) if ψ(t) = ts with s > 1 and p > 1+(n−1)s
n . Actually, Romanov

proved this statement for a domain which is bi-Lipschitz equivalent to Ωψ when ψ(t) = ts, but
bi-Lipschitz transforms preserve both Sobolev and Haj�lasz-Sobolev spaces.

We show that the above restriction on p is superfluous and that ψ being of the form ψ(t) = ts

can be relaxed to being any left continuous increasing function.

Theorem 1.5. Let ψ : (0, 1] → (0,∞) be a left continuous increasing function. Define the cor-
responding cuspidal domain Ωψ as in (1.4). Then W 1,p(Ωψ) = M1,p(Ωψ) for all 1 < p ≤ ∞ with
equivalence of norms.

As a consequence of the bi-Lipschitz invariance stated above, the conclusion M1,p(Ω) = W 1,p(Ω)
then holds for all bi-Lipschitz images of Ωψ. Thus, our result covers the result obtained by Romanov.

2. Definitions and Preliminaries

In what follows, Ω ⊂ Rn is always a domain. We write

Rn = R× Rn−1 := {z := (t, x) ∈ R× Rn−1} .
Throughout the paper, we consider a left continuous increasing function ψ : (0, 1] → (0,∞), extend
the definition of ψ to the interval (0, 2) by setting

ψ(t) = ψ(1), for every t ∈ (1, 2)

and write
Ωψ = {(t, x) ∈ (0, 2)× Rn−1; |x| < ψ(t)} .

Typically, c or C will be constants that depend on various parameters and may differ even on
the same line of inequalities. The Euclidean distance between points x, y in the Euclidean space Rn

is denoted by |x− y|. The open m-dimensional ball of radius r centered at the point x is denoted
by Bm(x, r).

The space of locally integrable functions is denoted by L1
loc(Ω). For every measurable set Q ⊂ Rn

with 0 < |Q| < ∞, and every non-negative measurable or integrable function f on Q we define the
integral average of f over Q by ∫

Q
f(w) dw :=

1

|Q|
∫
Q
f(w) dw .

Let us give the definitions of Sobolev space W 1,p(Ω) and Haj�lasz-Sobolev space M1,p(Ω).

Definition 2.1. We define the first order Sobolev space W 1,p(Ω), 1 ≤ p ≤ ∞, as the set

{u ∈ Lp(Ω);∇u ∈ Lp(Ω;Rn) } .

Here ∇u =
(

∂u
∂x1

, . . . , ∂u
∂xn

)
is the weak (or distributional) gradient of a locally integrable function

u.

We equip W 1,p(Ω) with the non-homogeneous norm:

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖|∇u|‖Lp(Ω)

for 1 ≤ p < ∞, and
‖u‖W 1,∞(Ω) = ‖u(z)‖L∞(Ω) + ‖|∇u(z)|‖L∞(Ω) .,
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where ‖f‖Lp(Ω) denotes the usual Lp-norm for p ∈ [1,∞].
For u ∈ Lp(Ω), we denote by Dp(u) the class of functions 0 ≤ g ∈ Lp(Ω) for which there exists

E ⊂ Ω with |E| = 0, so that

|u(z1)− u(z2)| ≤ |z1 − z2| (g(z1) + g(z2)) , for z1, z2 ∈ Ω \ E .

Definition 2.2. We define the Haj�lasz-Sobolev space M1,p(Ω), 1 ≤ p ≤ ∞, as the set

{u ∈ Lp(Ω),Dp(u) 
= ∅} .

We equip M1,p(Ω) with the non-homogeneous norm:

‖u‖M1,p(Ω) = ‖u‖Lp(Ω) + inf
g∈Dp(u)

‖g‖Lp(Ω) .

for 1 ≤ p < ∞, and

‖u‖M1,∞(Ω) = ‖u(z)‖L∞(Ω) + inf
g∈Dp(u)

‖g(z)‖L∞(Ω) .

3. Maximal functions

We will define two maximal functions. The first, M τ [f ], will vary only the first component t,
and the second Mχ[f ] will vary the x-component. For every x ∈ Bn−1(0, ψ(1)) set

Sx := {t ∈ R; (t, x) ∈ Ωψ}.
Let f : Ωψ → R be measurable and let (t, x) ∈ Ωψ. We define the one-dimensional maximal function
in the direction of the first variable by setting

(3.1) M τ [f ](t, x) := sup
[a,b]�t

∫
[a,b]∩Sx

|f(s, x)| ds .

The supremum is taken over all intervals [a, b] containing t.
On the other hand, the second maximal function will be defined for functions f : (0, 2)×Rn−1 →

R. For every point (t, x) ∈ (0, 2)×Rn−1, we define the (n−1)-dimensional maximal function Mχ[f ]
by setting

(3.2) Mχ[f ](t, x) := sup
Bn−1(x′,r)�x

∫
Bn−1(x′,r)

|f(t, y)| dy ,

where we take the supremum over the (n−1)-dimensional balls for which x ∈ Bn−1(x′, r). The next
lemmas tell us that both M τ and Mχ enjoy the usual Lp-boundedness property.

Lemma 3.3. Let 1 < p < ∞. Then for every f ∈ Lp(Ωψ), M
τ [f ] is measurable and we have

(3.4)

∫
Ωψ

|M τ [f ](z)|p dz ≤ C

∫
Ωψ

|f(z)|p dz ,

where the constant C is independent of f .
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Proof. Since the maximal function comes out the same if we consider only segments with rational
endpoints, it preserves measurability. Fubini’s theorem implies that f(·, x) ∈ Lp(Sx) for almost ev-
ery x ∈ Bn−1(0, ψ(1)). By the Lp-boundedness of the classical Hardy-Littlewood maximal function
on the interval Sx, for such x we have

(3.5)

∫
Sx

|M τ [f ](t, x)|p dt ≤ C

∫
Sx

|f(t, x)|p dt,

where the constant C is independent of f and x. By combining the inequality (3.5) and Fubini’s
theorem together, we obtain∫

Ωψ

|M τ [f ](t, x)|p dx dt =

∫
Bn−1(0,ψ(1))

∫
Sx

|M τ [f ](t, x)|p dt dx

≤ C

∫
Bn−1(0,ψ(1))

∫
Sx

|f(t, x)|p dt dx

= C

∫
Ωψ

|f(t, x)|p dx dt .

�

Lemma 3.6. Let 1 < p < ∞. Then for every f ∈ Lp((0, 2)× Rn−1), Mχ[f ] is measurable and we
have

(3.7)

∫
(0,2)×Rn−1

|Mχ[f ](z)|p dz ≤ C

∫
(0,2)×Rn−1

|f(z)|p dz ,

where the constant C is independent of f .

Proof. Again, the maximal function preserves measurability, as it comes out the same if we consider
only balls with rational centers and radii (a point is rational if all its coordinates are rational). By
Fubini’s theorem, f(t, ·) ∈ Lp(Rn−1) for almost every t ∈ (0, 2). By the Lp-boundedness of the
Hardy-Littlewood maximal operator we have∫

Rn−1

|Mχ[f ](t, x)|p dx ≤ C

∫
Rn−1

|f(t, x)|p dx ,

where the positive constant C is independent of f and t. Then Fubini’s theorem gives∫
(0,2)×Rn−1

|Mχ[f ](z)|p dz =

∫ 2

0

∫
Rn−1

|Mχ[f ](t, x)|p dx dt

≤ C

∫ 2

0

∫
Rn−1

|f(t, x)|p dx dt

≤ C

∫
(0,2)×Rn−1

|f(z)|p dz .

�
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4. Proof of the Main theorem

Let us begin by sketching a simple proof for Theorem 1.5 in the Euclidean plane R2, for 1 < p <
∞. In this case the maximal function Mχ[f ], with respect to x-coordinate, can be replaced by

(4.1) M̃χ[f ](t, x) := sup
[z,w]�x

∫
{y∈[z,w];(t,y)∈Ωψ}

|f(t, y)| dy ,

for every (t, x) ∈ Ωψ. As in Lemma 3.3 we obtain

(4.2)

∫
Ωψ

|M̃χ[f ](z)|p dz ≤ C

∫
Ωψ

|f(z)|p dz .

By [4], there is a bounded inclusion ι : M1,p(Ωψ) ↪→ W 1,p(Ωψ). To show that ι is an isomorphism, it
suffices to show that its inverse ι−1 is both densely defined and bounded on W 1,p(Ωψ). Let C

1(Ωψ)
be the set of continuously differentiable functions. Since C1(Ωψ)∩W 1,p(Ωψ) is dense in W 1,p(Ωψ),
it suffices to show that C1(Ωψ) ∩W 1,p(Ωψ) ⊂ M1,p(Ωψ) and that for each u ∈ C1(Ωψ) ∩W 1,p(Ωψ)
we have ||u||M1,p(Ωψ) � ||u||W 1,p(Ωψ).

Fix u ∈ C1(Ωψ) ∩W 1,p(Ωψ). Let z1 := (t1, x1), z2 := (t2, x2) ∈ Ωψ be arbitrary. Without loss of
generality, we assume 0 < t1 ≤ t2 < 2. From the definition of Ωψ, the point z′ := (t2, x1) is also in
Ωψ. Using the triangle inequality, we have

(4.3) |u(z1)− u(z2)| ≤ |u(z1)− u(z′)|+ |u(z′)− u(z2)| .
Since u ∈ C1(Ωψ) ∩W 1,p(Ωψ), the fundamental theorem of calculus implies

(4.4) |u(z1)− u(z′)| ≤
∫ t2

t1

|∇u(s, x1)|ds ≤ |z1 − z2|M τ [|∇u|](z1)

and

(4.5) |u(z′)− u(z2)| ≤
∫ x2

x1

|∇u(t2, y)|dy ≤ |z1 − z2|M̃χ[|∇u|](z2) .

Combining inequalities (4.3), (4.4) and (4.5) together, we have

|u(z1)− u(z2)| ≤ |z1 − z2|
(
M τ [|∇u|](z1) + M̃χ[|∇u|](z2)

)
≤ |z1 − z2|(g(z1) + g(z2)) ,

where

g(z) := M τ [|∇u|](z) + M̃χ[|∇u|](z) .
By inequalities (3.4) and (4.2), we have∫

Ωψ

|g(z)|pdz ≤ C

∫
Ωψ

|∇u(z)|p dz

which immediately gives that g ∈ Dp(u), and ‖u‖M1,p(Ωψ) ≤ C‖u‖W 1,p(Ωψ).
In higher dimensions, we have to work harder. Let us fix some notation.
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Let η : Rn−1 → R be a smooth cut-off function such that η = 1 on Bn−1(0, 1) and η = 0 on the
complement of Bn−1(0, 2). Consider the standard extension operator ER : W 1,p(Bn−1(0, R)) →
W 1,p(Rn−1) given by

ERu(x) =

⎧⎪⎨⎪⎩
u(x), |x| < R,

0, |x| = R,

u
(
R2

|x|2 x
)
η
(
x
R

)
, |x| > R.

Then

(4.6) ‖∇ERu‖Lp(Rn−1) ≤ C‖∇u‖Lp(Bn−1(0,R))

with C independent of u and R.
Let u ∈ W 1,p(Ωψ) be arbitrary, 1 < p < ∞. Extend the function u to (0, 2)× Rn−1 by setting

(4.7) ũ(t, ·) = Eψ(t)(u(t, ·)), t ∈ (0, 2).

Denoting the gradient with respect to the x-variable by ∇χ, from (1.1) we immediately obtain

(4.8) |ũ(z1)− ũ(z2)| ≤ C|z1 − z2|(Mχ[|∇χũ|](z1) +Mχ[|∇χũ|](z2))
for a.e. t ∈ (0, 2) and a.e. z1, z2 ∈ {t}×Rn−1. It is easily seen, when u ∈ C1(Ωψ), that the function
ũ and ∇χũ are measurable on (0, 2) × Rn−1. In fact, it could be shown that both of these would
be measurable even if u were just in W 1,p(Ωψ).

Next, we prove the main estimate.

Lemma 4.9. Let z1 = (t1, x1), z2 := (t2, x2) ∈ Ωψ be two points with t1 < t2. Suppose that
u ∈ W 1,p(Ωψ) ∩ C1(Ωψ) and that ũ is its extension given by (4.7). Then we have

|u(z1)− u(z2)| ≤ C|z1 − z2|
(
M τ [|∇u|](z1) + M τ [Mχ[|∇χũ|]](z1) +

M τ [|∇u|](z2) + M τ [Mχ[|∇χũ|]](z2)
)
.(4.10)

Proof. Similarly to the two-dimensional argument, we will compare the change in the function via
additional values ũ(s, xi) for some s ∈ (0, 2). Without knowing exactly which s yields an optimal
estimate, we will instead average over a range of possible s with the hope that, on average, the
differences are better controlled. Indeed, let

T2 = min
{
2, t2 +

t2 − t1
2

}
,

T1 = T2 − t2 − t1
2

.

Notice that t2 ∈ [T1, T2] and [T1, T2] × {x1, x2} ⊂ Ωψ. When we average over different possible
s ∈ [T1, T2] and use the triangle inequality we obtain that

|u(z2)− u(z1)| ≤
∣∣∣∣ 1

T2 − T1

∫ T2

T1

|u(t2, x2)− u(s, x2)| ds
∣∣∣∣︸ ︷︷ ︸

I

+

∣∣∣∣ 1

T2 − T1

∫ T2

T1

|u(s, x2)− u(s, x1)| ds
∣∣∣∣︸ ︷︷ ︸

II

+

∣∣∣∣ 1

T2 − T1

∫ T2

T1

|u(s, x1)− u(t1, x1)| ds
∣∣∣∣︸ ︷︷ ︸

III

.(4.11)
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First, we estimate the terms I and III. Let i ∈ {1, 2}. If ti < s, by the fundamental theorem of
calculus we have

(4.12) |u(ti, xi)− u(s, xi)| ≤
∫ s

ti

|∇u(r, xi)| dr ≤ |ti − s|M τ [|∇u|](zi) ≤ 3(T2 − T1)M
τ [|∇u|](zi).

Similarly, (4.12) holds also if ti ≥ s. Integrating with respect to s we obtain

(4.13) I ≤ 3(T2 − T1)M
τ [|∇u|](z2) ≤ 2|z2 − z1|M τ [|∇u|](z2).

and

(4.14) III ≤ 3(T2 − T1)M
τ [|∇u|](z1) ≤ 2|z2 − z1|M τ [|∇u|](z1)

Next, we apply (4.8) to the second term:

II ≤ C|x1 − x2|
T2 − T1

∫ T2

T1

(Mχ[|∇χũ|](s, x1) +Mχ[|∇χũ|](s, x2)) ds

≤ C|x1 − x2|
(

1

T2 − t1

∫ T2

t1

(Mχ[|∇χũ|](s, x1) ds+ 1

T2 − T1

∫ T2

T1

(Mχ[|∇χũ|](s, x2) ds
)

≤ C|z1 − z2|
(
M τ [Mχ[|∇χũ|]](z1) +M τ [Mχ[|∇χũ|]](z2)

)
.(4.15)

Finally, by combining inequalities (4.13), (4.14), (4.15) and (4.11), we obtain the desired inequal-
ity (4.10). �

Recall that a domain Ω is quasiconvex if there exists a C ≥ 1 such that, for every pair of points
x, y ∈ Ω, there is a rectifiable curve γ ⊂ Ω joining x to y so that len(γ) ≤ C|x− y|.
Proof of Theorem 1.5. Because Ωψ is quasiconvex for every ψ, the case of p = ∞ is a consequence
of [5, Theorem 7]. Thus, fix 1 < p < ∞. By [4], we know that there is a bounded inclusion
ι : M1,p(Ωψ) ↪→ W 1,p(Ωψ). To show that ι is an isomorphism it suffices to show that the dense
subspace C1(Ωψ)∩W 1,p(Ωψ) of W

1,p(Ωψ) is contained in M1,p(Ωψ), and that the restricted inverse
ι−1|C1(Ωψ)∩W 1,p(Ωψ) is defined and bounded.

Let u ∈ C1(Ωψ) ∩W 1,p(Ωψ) be arbitrary, and define ũ as in (4.7). Set

(4.16) ĝ(z) = M τ [|∇u|](z) +Mχ[|∇χũ|](z) +M τ [Mχ[|∇χũ|]](z) .
By (4.8) and Lemma 4.9, for every z1, z2 ∈ Ωψ, we get the estimate

|u(z1)− u(z2)| ≤ C|z1 − z2|(ĝ(z1) + ĝ(z2)) .

Hence (1.2) holds for g := Cĝ for a suitable constant C > 1. The triangle inequality gives∫
Ωψ

|g(z)|p dz ≤ C

(∫
Ωψ

M τ [|∇u|](z)p dz +
∫
Ωψ

Mχ[|∇χũ|](z)p dz +
∫
Ωψ

M τ [Mχ[|∇χũ|]](z)p dz
)

.

Lemmata 3.3 and 3.6 and (4.6) lead to the estimates∫
Ωψ

|M τ [|∇u|](z)|p dz ≤ C

∫
Ωψ

|∇u(z)|p dz
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and∫
Ωψ

|M τ [Mχ[|∇χũ|]](z)|p dz ≤ C

∫
Ωψ

Mχ[|∇χũ|](z)p dz ≤ C

∫
(0,2)×Rn−1

|∇χũ(z)|p dz

≤ C

∫ 2

0

∫
Rn−1

|∇χũ(t, x)|p dx dt ≤ C

∫ 2

0

∫
B(0,ψ(t))

|∇χu(t, x)|p dx dt

≤ C

∫
Ωψ

|∇u(z)|p dz ,

which imply that g ∈ Dp(u) and that ‖u‖M1,p(Ωψ) ≤ C‖u‖W 1,p(Ωψ). That is, ι−1|C1(Ωψ)∩W 1,p(Ωψ) is
both well-defined and bounded. �
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SINGULARITIES IN L p-QUASIDISKS

TADEUSZ IWANIEC, JANI ONNINEN, AND ZHENG ZHU

Abstract. We study planar domains with exemplary boundary
singularities of the form of cusps. A natural question is how much
elastic energy is needed to flatten these cusps; that is, to remove
singularities. We give, in a connection of quasidisks, a sharp inte-
grability condition for the distortion function to answer this ques-
tion.

1. Introduction and Overview

The subject matter emerge most clearly when the setting is more gen-
eral than we actually present it here. Thus we suggest, as a possibility,
to consider two planar sets X,Y ⊂ C of the same global topological
configuration, meaning that there is a sense preserving homeomorphism
f : C onto−→ C which takes X onto Y . Clearly f : C \X onto−→ C \Y . We
choose two examples; one from naturally occurring Geometric Function
Theory (GFT) and the other from mathematical models of Nonlin-
ear Elasticity (NE). The first one deals with quasiconformal mappings
f : C onto−→ C and the associated concept of a quasidisk, whereas the un-
explored perspectives come from NE. From these perspectives we look
at the ambient space C as made of a material whose elastic properties
are characterized by a stored energy function E : C×C×R2×2 → R ,
and f : C onto−→ C as a deformation of finite energy,

(1.1) E[f ]
def
==

∫
C
E(z, f,Df)dz < ∞ .

Hereafter the differential matrix Df(z) ∈ R2×2 is referred to as de-
formation gradient. A Sobolev homeomorphism f : C onto−→ C of finite
energy is understood as a hyper-elastic deformation of C . Our concept
of finite energy, suited to the purpose of the present paper, is clearly
inspired by mappings of finite distortion [3, 10, 12], including quasi-
conformal mappings. Therefore, omitting necessary details, the stored

2010 Mathematics Subject Classification. Primary 30C60; Secondary 30C62.
Key words and phrases. Cusp, mappings of integrable distortion, quasiconfor-

mal, quasidisc.
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2 T. IWANIEC, J. ONNINEN, AND Z. ZHU

energy function will take the form E(z, f,Df) = E(z, |Df |2/detDf) .
We adopt interpretations from NE where a great part of our paper is
highly motivated. Let us take a quick look at such mappings.

1.1. Mappings of finite distortion. Throughout this paper the do-
main of definition of such mappings consists of sense preserving home-
omorphisms f : C onto−→ C of Sobolev class W 1,1

loc (C,C) .

Definition 1.1. A homeomorphism f ∈ W 1,1
loc (C,C) is said to have

finite distortion if there is a measurable function K : C → [1,∞) such
that

(1.2) |Df(z)|2 � K(z)Jf (z) , for almost every z ∈ C.

Hereafter |Df(z)| stands for the operator norm of the differential
matrix Df(z) ∈ R2×2 , and Jf (z) for its determinant. The smallest
function K(x) � 1 for which (1.2) holds is called the distortion of f ,
denoted by Kf = Kf (x). In terms of d’Alembert complex derivatives,
we have |Df(z)| = |fz| + |fz̄| and Jf (z) = |fz|2 − |fz̄|2 . Thus f can
be viewed as a very weak solution to the Beltrami equation:

(1.3)
∂f

∂z̄
= μ(z)

∂f

∂z
, where |μ(z)| =

Kf (z) − 1

Kf (z) + 1
< 1

Figure 1. The ratio L/l , which measures the infinites-
imal distortion of the material structure at the point z ,
is allowed to be arbitrarily large. Nevertheless, L/l has
to be finite almost everywhere.

The distortion inequality (1.2) asks that Df(z) = 0 ∈ R2×2 at the
points where the Jacobian Jf (z) = detDf(z) vanishes.
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Definition 1.2. A homeomorphism f : C onto−→ C of Sobolev class
W 1,1

loc (C,C) is said to be quasiconformal if Kf ∈ L ∞(C) . It is K -
quasiconformal (1 � K < ∞) if 1 � Kf (z) � K everywhere.

1.2. Quasi-equivalence. It should be pointed out that the inverse
map f−1 : C onto−→ C is also K -quasiconformal and a composition f ◦g
of K1 and K2 -quasiconformal mappings is K1 ·K2 -quasiconformal.
These special features of quasiconformal mappings furnish an equiva-
lence relation between subsets of C that is reflexive, symmetric and
transitive.

Definition 1.3. We say that X ⊂ C is quasi-equivalent to Y ⊂ C ,

and write X
quasi
=== Y , if Y = f(X) for some quasiconformal mapping

f : C onto−→ C .

1.3. Quasidisks. One exclusive class of quasi-equivalent subsets is
represented by the open unit disk D ⊂ C . Thus we introduce the
following:

Definition 1.4. A domain X ⊂ C is called quasidisk if it admits a
quasiconformal mapping f : C onto−→ C which takes X onto D . In

symbols, we have X
quasi
=== D .

Quasidisks have been studied intensively for many years because of
their exceptional functional theoretical properties, relationships with
Teichmüller theory and Kleinian groups and interesting applications in
complex dynamics, see [6] for an elegant survey. Perhaps the best know
geometric characterization for a quasidisk is the Ahlfors’ condition [1].

Theorem 1.5 (Ahlfors). Let X be a (simply connected) Jordan domain
in the plane. Then X is a quasidisk if and only if there is a constant
1 � γ < ∞, such that for each pair of distinct points a, b ∈ ∂X we
have

(1.4) diam Γ � γ |a− b|
where Γ is the component of ∂X \ {a, b} with smallest diameter.
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Figure 2. Koch snowflake reveals complexity of a quasidisk.

One should infer from the Ahlfors’ condition (1.4) that:

Quasidisks do not allow for cusps in the boundary.

That is to say, unfortunately, the point-wise inequality Kf (z) � K <
∞ precludes f from smoothing even basic singularities. It is therefore
of interest to look for more general deformations f : C onto−→ C . We shall
see, and it will become intuitively clear, that the act of deviating from
conformality should be measured by integral-mean distortions rather
than point-wise distortions. More general class of mappings, for which
one might hope to build a viable theory, consists of homeomorphisms
with locally L p -integrable distortion, 1 � p < ∞ .

Definition 1.6. The term mapping of L p -distortion, 1 � p < ∞,
refers to a homeomorphism f : C → C of class W 1,1

loc (C,C) with Kf ∈
L p

loc (C).

Now, we generalize the notion of quasidisks; simply, replacing the
assumption Kf ∈ L ∞(C) by Kf ∈ L p

loc (C) .

Definition 1.7. A domain X ⊂ C is called an L p-quasidisk if it
admits a homeomorphism f : C → C of L p -distortion such that
f(X) = D .

Clearly, L p-quasidisks are Jordan domains. Surprisingly, the L 1
loc -

integrability of the distortion seems not to cause any geometric con-
straint on X . We confirm this observation for domains with rectifiable
boundary.
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Theorem 1.8. Simply-connected Jordan domains with rectifiable bound-
ary are L 1-quasidisks.

Nevertheless, the L p-quasidisks with p > 1 can be characterized by
model singularities at their boundaries. The most specific singularities,
which fail to satisfy the Ahlfors’ condition (1.4), are cusps. Let us con-
sider the power-type inward and outward cusp domains, see Figure 3.
For β > 1 we consider a disk with inward cusp defined by

D≺
β = B(1−β, rβ)\{z = x+ iy ∈ C : x � 0, |y| � xβ} , rβ =

»
β2 + 1 .

Whereas a disk with outer cusp will be defined by

D�
β = {z = x + iy ∈ C : 0 < x < 1, |y| < xβ} ∪ B(1 + β, rβ) .

Here, rβ =
√
β2 + 1.

Figure 3. The inner and outer power cusps in the disks
D≺

β and D�
β , with β = 4

3
.

Note, all of these domains fail to satisfy the Alhfors’ condition (1.4).
However, replacing |a− b| in (1.4) by |a− b|α we obtain:

Definition 1.9. A Jordan domain X ⊂ C is α-Ahlfors regular, with
α ∈ (0, 1] , if there is a constant 1 � γ < ∞ such that for each pair
of distinct points a, b ∈ ∂X we have

(1.5) diam Γ � γ |a− b|α

where Γ is the component of ∂X \ {a, b} with smallest diameter.

Theorem 1.10. Let X be either D≺
β or D�

β and 1 < p < ∞. Then X

is a L p-quasidisk if and only if β < p+3
p−1

; equivalently, p < β+3
β−1

.
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This simply means that X is 1
β

-Ahlfors regular. Theorem 1.10 tells

us how much the distortion of a homeomorphism f : C → C is needed
to flatten (or smoothen) the power type cusp tβ. It turns out that a
lot more distortion is needed to create a cusp than to smooth it back.
Indeed, in a series of papers [14, 15, 16], Koskela and Takkinen raised
such an inverse question. For which cusps does there exist a homeo-
morphism h : C → C of finite distortion 1 � Kh < ∞ which takes D
onto D≺

β ? A necessary condition turns out to be that eKh 
∈ L p
loc (C)

with p > 2
β−1

. However, if p < 2
β−1

there is such a homeomorphism.

Especially, each power-type cusp domain can be obtained as the image
of open disk by a homeomorphism h : C → C with Kh ∈ L p

loc (C) for all
p < ∞. Combining this with Theorem 1.10 boils down to the following
postulate:

Creating singularities takes almost no efforts (just allow for a little
distortion) while tidying them up is a whole new story.

1.4. The energy for L p -distortion. We need to pullback to C the
Euclidean area element dσ(ξ) of S2 ⊂ R3 by stereographic projection
Π : S◦ onto−→ C , where

S◦ def
== { ξ = (w, t) : w ∈ C , −1 � t < 1 , |w|2 + t2 = 1 } ⊂ C×R ∼= R3 .

The image point z = Πξ is defined by the rule Π(w, t) = w
1−t

. For the

inverse projection Π−1 : C onto−→ S◦ we have:

ξ = Π−1z = (w, t) , where w =
2 z

1 + |z|2 and t =
|z|2 − 1

|z|2 + 1
.

Denote by dz = dx dy the area element in C , z = x + iy . The
general formula of integration by change of variables reads as follows:

dσ(ξ) =
4dz

(|z|2 + 1)2
, hence

∫
C

4G(z)dz

(|z|2 + 1)2
=
∫
S◦
G(Πξ) dσ(ξ)

Now, one might consider mappings of L p -distortion which have finite
L p -energy:

(1.6) E[f ]
def
== 4

∫
C

[Kf (z)]p dz

(|z|2 + 1)2
=
∫
S◦

[KF(ξ)]p dσ(ξ) < ∞,

where KF : S◦ → [1,∞) stands for the distortion function of the
mapping F = f ◦ Π : S◦ onto−→ C . For the energy formula (1.6), we
invoke the equality KF(ξ) = Kf (Πξ) which is due to the fact that
Π is conformal. This formula makes it clear that K -quasiconformal
mappings f : C onto−→ C have finite L p -energy and E[f ] � 4πKp .

In the spirit of extremal quasiconformal mappings in Teichmüller
spaces, one might be interested in studying homeomorphisms f : C onto−→
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C of smallest L p -energy, subject to the condition f(X) = Y . Here
the given pair X,Y of subsets in C is assumed to admit at least
one such homeomorphism of finite energy. To look at a more specific
situation, take for X an L p -quasidisk from Theorem 1.10, and the
unit disk D for Y . What is then the energy-minimal map f : C onto−→
C ? Polyconvexity of the integrand will certainly help us find what
conditions are needed for the existence of energy-minimal mappings.
We shall not enter these topics here, but refer to [2, 13, 19] for related
results.

1.5. The main result. Since a simply connected Jordan domain is
conformally equivalent with the unit disk, it is natural to consider
special L p-quasidisks; namely, the domains X which can be mapped
onto an open disk under a homeomorphism f : C → C with p-integrable
distortion and to be quasiconformal when restricted to X .

The answer to this question can be inferred from our main result
which also generalizes Theorem 1.10.

Theorem 1.11 (Main Theorem). Consider power-type inward cusp
domains X = D≺

β with β > 1 . Given a pair (q, p) of exponents 1 �
q � ∞ (for X ) and 1 < p � ∞ (for the complement of X ), define
the so-called critical power of inward cusps

(1.7) β cr
def
==

⎧⎪⎪⎨⎪⎪⎩
p q+2 p+ q

p q− q
, if 1 < p < ∞ and q < ∞

2
q

+ 1 , if p = ∞ and q < ∞
p+1
p− 1

, if 1 < p < ∞ and q = ∞
Then there exists a Sobolev homeomorphism f : C → C which takes X
onto D such that

• Kf ∈ L q(X)

and

• Kf ∈ L p(BR \ X) for every R > 2,

if and only if β < β cr.

Here and what follows BR = {z ∈ C : |z| < R} for R > 0. Applying
the standard inversion of unit disk, Theorem 1.11 extends to the power-
type outer cusp domains as well. In this case the roles of p and q
are interchanged. The reader interested in learning more about the
conformal case f : D≺

β
onto−→ D is refer to [22].

Our proof of Theorem 1.11 is self-contained. The “only if” part of
Theorem 1.11 relies on a regularity estimate of a reflection in ∂D≺

β .
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Figure 4. An L q,p -quasidisk

Such a reflection is defined and examined in the boundary of an arbi-
trary L p-quasidisk. In this connection we recall a classical result of
Kühnau [18] which tells us that a Jordan domain is a qusidisk if and
only if it admits a qusiconformal reflection in its boundary. Before go-
ing into details about the boundary reflection proceeders (Section 3)
we need some preliminaries.

2. Preliminaries

First we recall a well-known theorem of Gehring and Lehto [9] which
asserts that a planar open mapping with finite partial derivatives at
almost every point is differentiable at almost every point. For homeo-
morphisms the result was earlier established by Menchoff [20].

Lemma 2.1. Suppose that f : C → C is a homeomorphism in the class
W 1,1

loc (C,C). Then f is differentiable almost everywhere.

It is easy to see, at least formally, applying a change of variables
that the integral of distortion function equals the Dirichlet integral
of inverse mapping. This observation is the key to the fundamental
identity which we state next, see [10, 11, 21].

Lemma 2.2. Suppose that a homeomorphism f : C onto−→ C of Sobolev
class W 1,1

loc (C,C). Then f is a mapping of L 1 -distortion if and only

if the inverse h
def
== f−1 ∈ W 1,2

loc (C,C). Furthermore, then for every
bounded domain U ⊂ C we have∫

f(U)
|Dh(y)|2 dy =

∫
U
Kf (x) dx

and Jf (x) > 0 a.e.
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At least formally the identity (h ◦ f)(x) = x, after differentiation,
implies that Dh(f(x))Df(x) = I. The validity of such identity under
minimal regularity assumptions on the mappings is the essence of the
following lemma, see [10, Lemma A.29].

Lemma 2.3. Let f : X → Y be a homeomorphism which is differen-
tiable at x ∈ X with Jf (x) > 0. Let h : Y → X be the inverse of f .
Then h is differentiable at f(x) and Dh(f(x)) = (Df(x))−1.

Next we state a crucial version of the area formula for us.

Lemma 2.4. Let X,Y ⊂ C be domains and g : X onto−→ Y a homeomor-
phism. Suppose that V ⊂ X be a measurable set and g is differentiable
at every point of V. If η is a nonnegative Borel measurable function,
then

(2.1)
∫
V
η(g(x))|Jg(x)| dx �

∫
g(V)

η(y) dy .

This follows from [5, Theorem 3.1.8] together with the area formula
for Lipschitz mappings.

The circle is uniquely characterized by the property that among all
closed Jordan curves of given length L, the circle of circumference L
encloses maximum area. This property is expressed in the well-known
isoperimetric inequality.

Lemma 2.5. Suppose U is a bounded Jordan domain with rectifiable
boundary ∂U. Then

(2.2) |U| � 1

4π
[�(∂U)]2

where |U| is the area of U and �(∂U) is the length of ∂U.

3. Reflection

We denote the one point compactification of the complex plane by“C def
== C ∪ {∞}.

Definition 3.1. A domain Ω ⊂ “C admits a reflection in its boundary
∂Ω if there exists a homeomorphism g of “C such that

• g(Ω) = “C \ Ω, and
• g(z) = z for z ∈ ∂Ω.

A domain Ω ⊂ “C is a Jordan domain if and only if it admits a
reflection in its boundary, see [7]. In this section we raise a question
what else can we say about the reflection if the domain is an L p-
quasidisk. A classical result of Kühnau [18] tells us that Ω ⊂ “C is
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a qusidisk if and only if it admits a qusiconformal reflection in ∂Ω.
Let X ⊂ C be an L p-quasidisk. Then there exists a homeomorphism
f : C onto−→ C such that f(X) = D. We extend f by setting f(∞) = ∞
and still denote the extended mapping by f . This way we obtain a
homeomorphism f : “C onto−→ “C. We also denote its inverse by h : “C onto−→ “C.

The circle inversion map Ψ: “C onto−→ “C,

Ψ(z)
def
==

⎧⎨⎩
z

|z|2 if z 
= 0

∞ if z = 0

is anticonformal, which means that at every point it preserves angles
and reverses orientation. The circle inversion defines a reflection in ∂X
by the rule

(3.1) g : “C onto−→ “C g(x)
def
== h ◦ Ψ ◦ f(x) .

Theorem 3.2. Let X be an L p-quasidisk and g the reflection in ∂X
given by (3.1). Then for a bounded domain U ⊂ C such that h(0) 
∈ U
we have g ∈ W 1,1(U,C) and

(3.2)
∫
U

|Dg(x)|p
|Jg(x)| p−1

2

dx �
Ç∫

g(U)
Kp

f (x) dx

å 1
2 ·
Å∫

U
Kp

f (x) dx
ã 1

2

.

Proof. Let U be a bounded domain in C such that h(0) 
∈ U. For x ∈ U
we denote

f̃(x)
def
== Ψ ◦ f(x) and h̃(y)

def
== (f̃)−1(y) .

We write

V
def
== {x ∈ U : f is differentiable at x and Jf (x) > 0} .

Then by Lemma 2.1 and Lemma 2.2 we obtain |V| = |U|.
Fix x ∈ V. Then f̃ is differentiable at x. Furthermore, h is differ-

entiable at f(x), see Lemma 2.3. Therefore, for x ∈ V the chain rule
gives

(3.3) |Dg(x)| � |Dh(f̃(x))| |Df̃(x)| and Jg(x) = Jh(f̃(x))Jf̃ (x) .
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Hence, applying Hölder’s inequality we have∫
U

|Dg(x)|p
|Jg(x)| p−1

2

dx =
∫
V

|Dg(x)|p
|Jg(x)| p−1

2

dx

�
∫
V

|Dh(f̃(x))|p
|Jh(f̃(x))| p−1

2

|Df̃(x)|p
|Jf̃ (x)| p−1

2

dx

�
(∫

V

|Dh(f̃(x))|2p
|Jh(f̃(x))|p−1

|Jf̃ (x)| dx
) 1

2

·
(∫

V

|Df̃(x)|2p
|Jf̃ (x)|p dx

) 1
2

.

(3.4)

According to Lemma 2.4 we obtain

(3.5)
∫
V

|Dh(f̃(x))|2p
|Jh(f̃(x))|p−1

|Jf̃ (x)|dx �
∫
f̃(V)

|Dh(y)|2p
[Jh(y)]p−1

dy .

Applying Lemma 2.4 again this time for h, we have∫
f̃(V)

|Dh(y)|2p
[Jh(y)]p

Jh(y) dy �
∫
g(V)

[Dh
Ä
f(x)

ä
]2p[Jf (x)]p dx .

This together with Lemma 2.3 gives∫
f̃(V)

|Dh(y)|2p
[Jh(y)]p

Jh(y) dy �
∫
g(V)

î
(Df(x))−1

ó2p
[Jf (x)]p dx .

The familiar Cramer’s rule implies

(3.6)
∫
g(V)

î
(Df(x))−1

ó2p
[Jf (x)]p dx =

∫
g(V)

|Df(x)|2p
[Jf (x)]p

.

Combining the estimate (3.5) with (3.6) we have

(3.7)
∫
V

|Dh(f̃(x))|2p
|Jh(f̃(x))|p−1

|Jf̃ (x)|dx �
∫
g(U)

Kp
f (x) dx .

Estimating the second term on the right hand side of (3.4) we simply
note that |DΨ(z)|2 = J(z,Ψ) for z ∈ C \ {0} and so

(3.8)
∫
V

|Df̃(x)|2p
|Jf̃ (x)|p dx =

∫
V
Kp

f (x) dx �
∫
U
Kp

f (x) dx .

The claim follows from (3.4), (3.7) and (3.8). �
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4. Proof of Theorem 1.8

The proof is based on a Sobolev variant of the Jordan-Schönflies
theorem.

Lemma 4.1. Let X and Y be bounded simply connected Jordan do-
mains, ∂Y being rectifiable. A boundary homeomorphism φ : ∂X onto−→
∂Y satisfying

(4.1)
∫
∂Y

∫
∂Y

∣∣∣log |φ−1(ξ) − φ−1(η)|
∣∣∣ |dξ||dη| < ∞

admits a homeomorphic extension h : C → C of Sobolev class W 1,2
loc (C,C).

This result is from [17, Theorem 1.6]. Note that if one asks the ex-
istence of homeomorphic extension h : X onto−→ Y (on one side of ∂X)
in the Sobolev class W 1,2(X,C). First, applying the Riemann Map-
ping Theorem we may assume that X = D. Second, a necessary con-
dition is that the mapping φ is the Sobolev trace of some (possibly
non-homeomorphic) mapping in W 1,2(X,C). The class of boundary
functions which admit a harmonic extension with finite Dirichlet en-
ergy was characterized by Douglas [4]. The Douglas condition for a
function φ : ∂D onto−→ ∂Y reads as

(4.2)
∫
∂D

∫
∂D

∣∣∣∣∣φ(ξ) − φ(η)

ξ − η

∣∣∣∣∣
2

|dξ||dη| < ∞.

In [2] it was shown that for C 1-smooth Y the Douglas condition (4.2)
can be equivalently given in terms of the inverse mapping φ−1 : ∂Y onto−→
∂D by (4.1). Beyond the C 1-smooth domains, if Y is a Lipschitz reg-
ular, then a boundary homeomorphism φ : ∂D onto−→ ∂Y admits a home-
omorphic extension h : D onto−→ Y in W 1,2(D,C) if and only if φ satisfies
the Douglas condition. There is, however, an inner chordarc domain
Y and a homeomorphism φ : ∂D onto−→ ∂Y satisfying the Douglas condi-
tion which does not admit a homeomorphic extension h : D onto−→ Y with
finite Dirichlet energy. Recall that Y is an inner chordarc domain if
there exists a homeomorphism Υ: Y onto−→ D which is C 1-diffeomorphic
in Y with bounded gradient matrices DΥ and (DΥ)−1. These and more
about Sobolev homeomorphic extension results we refer to [17].

Proof of Theorem 1.8. Let X ⊂ C be a simply connected Jordan do-
main, ∂X being rectifiable. According to Lemma 2.2, X is an L 1-
quasidisk if and only if there exists a homeomorphism h : C onto−→ C in
W 1,2

loc (C,C) such that h(D) = X. Therefore, by Lemma 4.1 it suffices to
construct a boundary homeomorphism φ : ∂D onto−→ ∂X which satisfies∫

∂X

∫
∂X

∣∣∣log |φ−1(ξ) − φ−1(η)|
∣∣∣ |dξ||dη| < ∞ .
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Let ξ, η ∈ ∂X be arbitrary. We denote by γξη the subcurve of ∂X,
connecting ξ and η. The curve γξη is parametrized counterclockwise.
Setting zξ = 1. For arbitrary z ∈ ∂D let z̃ξz ⊂ ∂D be the circular arc
starting from zξ ending at z. The arc is parametrized counterclockwise.
For η ∈ ∂X, there exists a unique zη ∈ ∂D with

�(γξη)

�(∂X)
=

�(z̄ξzη)

�(∂D)
.

Now, we define the boundary homeomorphism φ : ∂D → ∂X by setting
φ(zη) = η.

First, we observe that |φ′(z)| = �(∂X)
�(∂D)

for every z ∈ ∂D. Furthermore

since the length of the shorter circular arc between two points in ∂D is
comparable to their Euclidean distance the change of variables formula
gives∫
∂X
|log|φ−1(ξ)− φ−1(η)|| |dη| � C

∫
∂D
|log|φ−1(ξ)− φ−1(η)|| |dφ−1(η)|

� C
∫ 2π

0
|log t| dt < ∞.

�

5. Proof of Theorem 1.11

Before jumping into the proof we fix a few notation and prove two
auxiliary results. Fix a power-type inward cusp domain D≺

β . For 0 <
t < 1 we write

It
def
== {t+ iy ∈ C : 0 � |y| < tβ}

and
Ut

def
== {x+ iy ∈ C : 0 < x < t and 0 � |y| < xβ}.



14 T. IWANIEC, J. ONNINEN, AND Z. ZHU

The area of Ut is given by

|Ut| =
∫ t

0

∫ sβ

−sβ
1 dy ds =

2tβ+1

β + 1
.

Suppose the cusp domain D≺
β is an L s-quasidisk for 1 � s < ∞.

Note that according to Theorem 1.8 the domain D≺
β is always an

L 1-quasidisk for every β. Therefore, there exists a homeomorphism
f : C onto−→ C of L 1-distortion such that f(D≺

β ) = D. We denote the in-

verse of f by h : C onto−→ C. After first extending the homeomorphisms f
and h by f(∞) = ∞ = h(∞) we define a homeomorphism g : “C onto−→ “C
by the formula (3.1). The mapping g gives a reflection in the boundary
of D≺

β ; that is,

• g(D≺
β ) = “C \ D≺

β ,

• g(“C \ D≺
β ) = D≺

β and
• g(x) = x for x ∈ ∂D≺

β .

Lemma 5.1. Let εn = 2−n for n ∈ N. Then there exists a subsequence
{εnk

} of {εn} such that for every k ∈ N we have either

• |g(Uεnk
)| � ε2nk

or

• |g(Uεnk
)| � 5|g(Uεnk+1)| and |g(Uεnk

)| > ε2nk
.

Proof. Assume to the contrary that the claim is not true, then there
exists no ∈ N such that for every i � no, we have |g(Uεi)| > ε2i and
|g(Uεi)| > 5|g(Uεi+1

)|. Hence we have

|g(Uεno
)| > 5|g(Uεno+1)| > ... > 5n|g(Uεn0+n)| > ....

which implies that for every n ∈ N, we have

(5.1) |g(Uεno
)| >

Ç
5

4

ån

4−no .

Letting n → ∞ the term on the right hand side of (5.1) converges to
∞ which contradicts with |g(Uεno

)| < |D≺
β | < ∞. �

The key observation to show that D≺
β , β > 1, is not an L s-quasidisk

for sufficiently large s > 1 is to compare the length of curves g(It) and
It.

Lemma 5.2. Suppose that D≺
β is an L s-quasidisk for 1 < s < ∞.

Then for almost every 0 < t < 1 we have

(5.2) �(g(It)) �
(∫

It

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 1
s
Ç∫

It

|Jg(x)| 12 dx

å s−1
s

.
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Proof. The second estimate in (5.2) follows immediately from Hölder’s
inequality

�(g(It)) �
∫
It

|Dg(x)| dx �
∫
It

|Dg(x)|
|Jg(x)| s−1

2s

· |Jg(x)| s−1
2s dx

�
(∫

It

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 1
s
Ç∫

It

|Jg(x)| 12dx
å s−1

s

.

�

Now, we are ready to prove our main result Theorem 1.11.

5.1. The nonexistence part. Recall that critical power of inward
cusps βcr is given by the formula (1.7). Here we prove that if β � βcr,
then there is no homeomorphism f : C → C of finite distortion with
f(D≺

β ) = D and Kf ∈ L p(BR \ D≺
β ) ∩ L q(D≺

β ) for every R > 2. For
that suppose that there exists such a homeomorphism. Write

s
def
== min{p, q} > 1 .

We will split our argument into two parts. According to Lemma 5.1
(we denote J = {nk ∈ N : k ∈ N}) there exists a set J ⊂ N and a
decreasing sequence εj such that εj → 0 as j → ∞ and for every j ∈ J
we have either

(i) |g(Uεj)| � ε2j or

(ii) |g(Uεj)| � 5|g(Uεj+1
)|, |g(Uεj)| > ε2j and εj = 2εj+1.

We simplify the notation a little bit and write Uj = Uεj . In both cases
we will integrate the inequality (5.2) with respect to the variable t and
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then bound the right hand side by the following basic estimate.(∫
Uj

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 2
s
Ç∫

Uj

|Jg(x)| 12 dx

å 2(s−1)
s

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1(εj) |Uj|

p−1
p · |g(Uj)|

q−1
q when q , p < ∞

C2(εj) |Uj| · |g(Uj)|
q−1
q when p = ∞

C3(εj) |Uj|
p−1
p · |g(Uj)| when q = ∞ .

(5.3)

Here the functions C1(εj), C2(εj) and C3(εj) converge to 0 as j → ∞.

Proof of (5.3). Since f is a mapping of L s-distortion and h(0) =
f−1(0) 
∈ Uj applying Theorem 3.2 we have

(5.4)
∫
Uj

|Dg(x)|s
|Jg(x)| s−1

2

dx �
Ç∫

g(Uj)
Ks

f (x) dx

å 1
2 ·
Ç∫

Uj

Ks
f (x) dx

å 1
2

.

Especially, Theorem 3.2 tells us that g ∈ W 1,1
loc (C,C). Therefore,

Lemma 2.1 and Lemma 2.4 give

(5.5)
∫
Uj

|Jg(x)| dx � |g(Uj)| .

This together with Hölder’s inequality implies

(5.6)
∫
Uj

|Jg(x)| 12 dx � |Uj| 12 |g(Uj)| 12 .

Combining (5.4) and (5.6) we conclude that

(∫
Uj

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 2
s
Ç∫

Uj

|Jg(x)| 12 dx

å 2(s−1)
s

�
Ç∫

g(Uj)
Ks

f (x) dx ·
∫
Uj

Ks
f (x) dx

å 1
s

(|Uj| · |g(Uj)|)
s−1
s .

(5.7)

Recall that 1 < s = min{p, q} < ∞. Now the claimed inequality (5.3)
follows from the estimate (5.7) after applying Hölder’s inequality with

C1(εj)
def
== ||Kf ||L p(Uj)||Kf ||L q(g(Uj))

C2(εj)
def
== ||Kf ||L ∞(Uj)||Kf ||L q(g(Uj))

C3(εj)
def
== ||Kf ||L p(Uj)||Kf ||L ∞(g(Uj)) .

(5.8)

�
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5.1.1. Case (i). Recall that in this case we assume that |g(Uj)| � ε2j .
The homeomorphism f is a mapping of L s-distortion, Lemma 5.2 im-
plies that for almost every 0 < t < 1 we have

(5.9) �(g(It)) �
(∫

It

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 1
s
Ç∫

It

|Jg(x)| 12 dx

å s−1
s

.

Since the curve g(It) connects the points (t, tβ) and (t,−tβ) staying in
D≺

β , the length of g(It) is at least 2t. Therefore,

(5.10) 2t �
(∫

It

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 1
s
Ç∫

It

|Jg(x)| 12 dx

å s−1
s

.

Integrating this estimate from 0 to εj with respect to the variable t and
applying Hölder’s inequality we obtain

(5.11) ε2j �
(∫

Uj

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 1
s
Ç∫

Uj

|Jg(x)| 12 dx

å s−1
s

.

After squaring this and applying the basic estimate (5.3) we conclude
that

ε4j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1(εj) |Uj|

p−1
p · |g(Uj)|

q−1
q when q , p < ∞

C2(εj) |Uj| · |g(Uj)|
q−1
q when p = ∞

C3(εj) |Uj|
p−1
p · |g(Uj)| when q = ∞ .

Now, since |Uj| =
2εβ+1

j

β+1
� εβ+1

j and |g(Uj)| � ε2j we have

1 �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C1(εj) ε

(β−βcr)(pq−q)
pq

j when q , p < ∞
C2(εj) ε

β−βcr
j when p = ∞

C3(εj) ε
(β−βcr)(p−1)

p

j when q = ∞ .

Note that C1(εj), C2(εj) and C3(εj) converge to 0 as j → ∞. Therefore,
β < βcr, this finishes the proof of Theorem 1.11 in Case (i).

5.1.2. Case (ii). As in the previous case applying Lemma 5.2 for almost
every 0 < t < 1 we have

(5.12) �(g(It)) �
(∫

It

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 1
s
Ç∫

It

|Jg(x)| 12 dx

å s−1
s

.

Now, we first note that 2 �(g(It)) � �
Ä
∂g(Ut)

ä
and then apply the

isoperimetric inequality, Lemma 2.5 we get

(5.13) |g(Ut)| 12 �
(∫

It

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 1
s
Ç∫

It

|Jg(x)| 12 dx

å s−1
s

.
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Integrating from εj+1 to εj with respect to t we obtain

(εj − εj+1)|g(Uj+1)| 12 �
(∫

Uj

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 1
s
Ç∫

Uj

|Jg(x)| 12 dx

å s−1
s

.

Since by the assumptions of Case (ii), |g(Uj)| � 5|g(Uj+1)| and εj =
2εj+1 we have

εj|g(Uj)| 12 � 10

(∫
Uj

|Dg(x)|s
|Jg(x)| s−1

2

dx

) 1
s
Ç∫

Uj

|Jg(x)| 12 dx

å s−1
s

.

Combining this with (5.3) we obtain

ε2j |g(Uj)| � 100 ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1(εj) |Uj|

p−1
p · |g(Uj)|

q−1
q when q , p < ∞

C2(εj) |Uj| · |g(Uj)|
q−1
q when p = ∞

C3(εj) |Uj|
p−1
p · |g(Uj)| when q = ∞ .

Therefore,

ε2j � 100 ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1(εj) |Uj|

p−1
p · |g(Uj)|−

1
q when q , p < ∞

C2(εj) |Uj| · |g(Uj)|−
1
q when p = ∞

C3(εj) |Uj|
p−1
p when q = ∞ .

This time |Uj| =
2εβ+1

j

β+1
� εβ+1

j and |g(Uj)| > ε2j . Therefore,

1 � 100 ·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C1(εj) ε

(β−βcr)(pq−q)
pq

j when q , p < ∞
C2(εj) ε

β−βcr
j when p = ∞

C3(εj) ε
(β−βcr)(p−1)

p

j when q = ∞ .

Therefore β < βcr. This finishes the proof of nonexistence part of
Therorem 1.11.

5.2. The existence part. In this section, we construct a homeomor-
phism of finite distortion f : C → C with f(D≺

β ) = D and Kf ∈
L p(BR \ D≺

β ) ∩ L q(D≺
β ) for every R > 2, whenever 1 � β < βcr.

Simplifying the construction we will replace the unit disk D by D≺
1 .

This causes no loss of generality because D≺
1 is Lipschitz regular. In-

deed, for every Lipschitz domain Ω there exists a global bi-Lipschitz
change of variables Φ: C → C for which Φ(Ω) is the unit disk. There-
fore, the domains D≺

1 and D are bi-Lipschitz equivalent. Especially,
D≺

1 is a quasidisk. Hence we may also assume the strict inequality
1 < β < βcr in the construction.
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In addition to these we will construct a self-homeomorphism of the
unit disk onto itself which coincide with identity on the boundary.
Note that this causes no loss of generality since 1 ± i ∈ D≺

β and there-
fore extending the constructed homeomorphism as the identity map
to the complement of unit disk. In summary, it suffices to construct
a homeomorphism f : D onto−→ D, f(z) = z on ∂D, f(D≺

β ) = D≺
1 and

Kf ∈ L p(D \ D≺
β ) ∩ L q(D≺

β ). We will use the polar coordinates

(r, θ) and write f : D → D in the form f(r, θ) = (r̃(r), θ̃(θ, r)). Here
r̃ : [0, 1] onto−→ [0, 1] is a strictly increasing function defined by

(5.14) r̃(r)
def
==

⎧⎨⎩
e

exp(( 1
r )

γβ)
when q < ∞

r when q = ∞ .

The value γβ is chosen so that

(5.15)

⎧⎨⎩max
{
β(p−1)−(p+1)

p
, 0

}
< γβ < 2

q
when p < ∞

γβ = β − 1 when p = ∞ .

For every 0 < r < 1 we choose ar, br ∈ S(0, r)∩∂D≺
β such that Im ar > 0

and Im br < 0. Here and what follows we write S(0, r) = ∂D(0, r). Re-

spectively, we choose ãr̃(r), b̃r̃(r) ∈ S(0, r̃(r))∩∂D≺
1 such that Im ãr̃(r) > 0

and Im b̃r̃(r) < 0. We define the argument function θ̃(r, θ) so that it
satisfies the following three properties

(1) f(ar) = ãr̃(r) and f(br) = b̃r̃(r).
(2) f maps the circular arc S(0, r)∩D≺

β onto the circular arc S(0, r̃(r))∩
D≺

1 linearly as a function of θ.

(3) f maps the circular arc S(0, r)∩ ÄD \ D≺
β

ä
onto the circular arc

S(0, r̃(r)) ∩ ÄD \ D≺
1

ä
linearly as a function of θ.

We have

D∩D≺
β =

¶
(r, θ) ∈ C : 0 < r < 1 and arctan tβ−1 < θ < 2π − arctan tβ−1

©
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and

D \D≺
β =

¶
(r, θ) ∈ C : 0 < r < 1 and − arctan tβ−1 < θ < arctan tβ−1

©
.

Here t > 0 and solves the equation t2 + t2β = r2. We also have

D ∩ D≺
1 =

®
(r̃, θ̃) ∈ C : 0 < r̃ < 1 and

π

4
< θ̃ <

7π

4

´
and

D \ D≺
1 =

ß
(r̃, θ̃) ∈ C : 0 < r̃ < 1 and

−π

4
< θ̃ <

π

4

™
.

Using the polar coordinates we have

θ̃(θ, r) =

⎧⎨⎩
3πθ

4(π−arctan tβ−1)
+
(
π
4
− 3π arctan tβ−1

4(π−arctan tβ−1)

)
when (r, θ) ∈ D≺

β

πθ
4 arctan tβ−1 when (r, θ) ∈ D \ D≺

β .

For (r, θ) ∈ D, the differential matrix of f reads as

Df(r, θ) =

(
∂
∂r
r̃(r) 0

r̃(r) ∂
∂r
θ̃(r, θ) r̃(r)

r
∂
∂θ
θ̃(r, θ)

)
.

Computing the derivative of radial part r̃(r) we have

(5.16)
∂

∂r
r̃(r) =

⎧⎨⎩γβ
Ä
1
r

äγβ+1
r̃(r) when q < ∞

1 when q = ∞ .

5.2.1. Proof of Kf ∈ L q(D≺
β ). For (r, θ) ∈ D≺

β , we have

r̃(r) ∂
∂r
θ̃(r, θ) = r̃(r) ∂

∂r

ï
3πθ

4(π−arctan tβ−1)
+
Å
π − 3π2

4(π−arctan tβ−1)

ãò
and

r̃(r)
r

∂
∂θ
θ̃(r, θ) = r̃(r)

r
3π

4(π−arctan tβ−1)
.

Since t > 0 solves the equation t2 + t2β = r2, for 0 < r < 1, we have
∂t
∂r

≈ 1 and 0 < arctan tβ−1 < π
4
. Here and what follows the notation

A ≈ B is a shorter form of two inequalities A � cB and B � cA for
some positive constant c. Therefore, there exists a constant C > 1
independent of r and θ, such that

|r̃(r)
∂

∂r
θ̃(r, θ)| � C ·

⎧⎨⎩
Ä
1
r

äγβ+1
r̃(r) when q < ∞

1 when q = ∞ .

and

r̃(r)

r

∂

∂θ
θ̃(r, θ) ≈

⎧⎨⎩
r̃(r)
r

when q < ∞
1 when q = ∞ .
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Now, we have

Kf (r, θ) � C ·
⎧⎨⎩r−γβ when q < ∞

1 when q = ∞ .

for some constant C > 0.
Since γβ is chosen so that 0 < γβ < 2

q
for q < ∞, we have Kf ∈

L q(D≺
β ). Also if q = ∞, then the distortion function Kf ∈ L ∞(D≺

β ),
as claimed.

5.2.2. Proof of Kf ∈ L p(D \ D≺
β ). For (r, θ) ∈ D \ D≺

β , we have

r̃(r) ∂
∂r
θ̃(r, θ) = r̃(r) ∂

∂r

Ä
πθ

4 arctan tβ−1

ä
and

r̃(r)
r

∂
∂θ
θ̃(r, θ) = r̃(r)

r
π

4 arctan tβ−1 .

Recall that since t > 0 solves the equation t2 + t2β = r2, for 0 < r < 1,
we have ∂t

∂r
≈ 1. In this case, − arctan tβ−1 < θ < arctan tβ−1, therefore

there exists a constant C > 0 such that

|r̃(r) ∂
∂r
θ̃(r, θ)| � C

Ä
1
r

äγβ+1
r̃(r).

Since

lim
t→0+

arctan tβ−1

tβ−1 = 1 and t < r < 2t,

we have
π

4 arctan tβ−1
r̃(r)
r

≈ r̃(r)
rβ

.

Therefore,

Kf (r, θ) � C

r|β−γβ−1| when (r, θ) ∈ D \ D≺
β

For p = ∞, since γβ = β − 1, we have Kf ∈ L ∞(D \D≺
β ). For p < ∞,

β is chosen so that 1 < β < βcr. When q < ∞, γβ is chosen so that

max

®
β(p− 1) − (p + 1)

p
, 0

´
< γβ <

2

q
,

and when q = ∞, γβ is set to be 0. Since |γβ + 1 − β| < 2
p

we have∫
D\D≺

β

Kp
f (x) dx �

∫ 2π

0

∫ 1

0

1

rp|β−γβ−1|−1
dr dθ < ∞.
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Sobolev extensions via reflections

Pekka Koskela and Zheng Zhu ∗

Abstract

We show that the extension results by Maz’ya and Poborchi for polynomial
cusps can be realized via composition operators generated by reflections. We
also study the case of the complementary domains.

1 Introduction

A domain Ω ⊂ Rn is called a (p, q)-extension domain, 1 ≤ q ≤ p ≤ ∞, if every
u ∈ W 1,p(Ω) has an extension Eu ∈ W 1,q

loc (Rn) with ||Eu||W 1,q(Rn\Ω) ≤ C||u||W 1,p(Ω).
A Lipschitz domain Ω is a (p, p)-extension domain for all 1 ≤ p ≤ ∞ by results due
to Calderón and Stein [30]. Jones generalized this result to a much larger class of
domains, so-called (ε, δ)-domains, but general domains are not necessarily extension
domains for any p, q. For example, in [23, 24, 25], Maz’ya and Poborchi investigated
in detail a typical case where the above extension property fails: the case of a domain
with an outward peak, also see [22, 28] for related results. Once a polynomial degree
of the peak was fixed, they found the optimal p, q for the (p, q)-extendability.

The idea of using reflections to construct extension operators is implicit in the
results for Lipschitz domains. Gol’dshtein, Latfullin and Vodop’yanov initiated the
systematic use of reflections for constructing extension operators in the Euclidean
plane R2 in [7, 10]. In [8], Gol’dshtein and Sitnikov showed that the Sobolev ex-
tendability for planar outward and inward cuspidal domains of polynomial order
can be achieved by a bounded linear extension operator induced by reflections.
Very recently, Koskela, Pankka and Zhang [21] proved that for every planar Jordan
(p, p)-extension domain with 1 < p < ∞, there exists a reflection over the boundary
∂Ω which induces a bounded linear extension operator from W 1,p(Ω) to W 1,p(R2).

In this paper, we study the Sobolev extension via reflections on outward cuspidal
domains in the Euclidean space Rn with n ≥ 3. From now on, we alway assume
n ≥ 3.

∗The research of both authors has been supported by the Academy of Finland Grant number
323960. Zheng Zhu was also support by the CSC grant CSC201506020103 from China.
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2 P. Koskela and Z. Zhu

We distinguish a horizontal coordinate axis in Rn,

Rn = R× Rn−1 = {z := (t, x) : t ∈ R and x = (x1, · · · , xn−1) ∈ Rn−1}.

Let us consider the model case of Ωs, the outward cuspidal domain with the degree
1 < s < ∞, defined by setting

(1.1) Ωs :=
{

(t, x) ∈ R× Rn−1 = Rn : 0 < t ≤ 1, |x| < ts
} ∪B((2, 0),

√
2).

See Figure 1. For the case of this model domain, the results due to Maz’ya and
Poborchi state that there exists a bounded linear extension operator E1 from W 1,p(Ωs)

to W 1,q(Rn), whenever 1+(n−1)s
n

< p < ∞ and 1 ≤ q < np
1+(n−1)s

, and there exists

another bounded linear extension operator E2 from W 1,p(Ωs) to W 1,q(Rn), whenever
1+(n−1)s
2+(n−2)s

< p < ∞ and 1 ≤ q < p+(n−1)sp
1+(n−1)s+(s−1)p

. For p = 1+(n−1)s
n

, one has

np

1 + (n− 1)s
=

p + (n− 1)sp

1 + (n− 1)s + (s− 1)p
= n− 1.

Hence both E1 and E2 extend functions in W 1,
1+(n−1)s

n (Ωs) to W 1,q(Rn), whenever
1 ≤ q < n − 1. However, surprisingly, Maz’ya and Poborchi also constructed a

bounded linear extension operator E3 from W 1,
(n−1)+(n−1)2s

n (Ωs) to W 1,n−1(Rn). All
these results are sharp, see [22] and references therein. For a detailed exposition of
these results, see [22]. Interestingly, the given extension operators for the domain
Ωs above are linear and the formulas defining the operators do not depend on p once
s and the range of p are fixed. Our main result explains this phenomenon.

Theorem 1.1. Let Ωs ⊂ Rn be an outward cuspidal domain with the degree s > 1.
Then
(1) : There exists a reflection R1 : R̂n → R̂n over ∂Ωs which induces a bounded

linear extension operator from W 1,p(Ωs) to W 1,q(Rn), whenever 1+(n−1)s
n

< p < ∞
and 1 ≤ q < np

1+(n−1)s
.

(2) : There exists another reflection R2 : R̂n → R̂n over ∂Ωs which induces a bounded

linear extension operator from W 1,p(Ωs) to W 1,q(Rn), whenever 1+(n−1)s
2+(n−2)s

< p < ∞
and 1 ≤ q < (1+(n−1)s)p

1+(n−1)s+(s−1)p
.

Theorem 1.1 implies that both reflections R1 and R2 induce a bounded linear

extension operator from W 1,
(n−1)+(n−1)2s

n (Ωs) to W 1,q(Rn), whenever 1 ≤ q < n − 1.
We would like to know if there exists a further reflection R3 which induces a bounded

linear extension operator from W 1,
(n−1)+(n−1)2s

n (Ωs) to W 1,n−1(Rn).

In general, we say that a reflection R : R̂n → R̂n over ∂Ω, for a bounded domain
Ω (whose boundary has volume zero) induces a bounded linear extension operator



3

from W 1,p(Ω) to W 1,q(Rn) if there is an open set U containing ∂Ω so that, for every
u ∈ W 1,p(Ω), the function v defined by setting v = u on Ω ∩ U and v = u ◦ R on
U \ Ω has a representative that belongs to W 1,q(U) with

(1.2) ‖v‖W 1,q(U) ≤ C‖u‖W 1,p(U∩Ω),

for some positive constant C independent of u. Similarly, we say that the reflection
R induces a bounded linear extension operator from W 1,p(Rn \ Ω) to W 1,q(Rn), if
for every u ∈ W 1,p(Rn \ Ω) the function ṽ defined by setting ṽ = u on U \ Ω and
ṽ = u ◦ R on U ∩ Ω has a representative that belongs to W 1,q(U) with

(1.3) ‖ṽ‖W 1,q(U) ≤ C‖u‖W 1,p(U\Ω).

Here the introduction of the open set U is a convenient way to overcome the non-
essential difficulty that functions in W 1,p(G) do not necessarily belong to W 1,q(G)
when 1 ≤ q < p < ∞ and G has infinite volume. It follows from the assumption (1.2)
(or (1.3)) via the use of a suitable cut-off function that Ω (or Rn \Ω, respectively) is
a (p, q)−extension domain with a bounded linear extension operator. For this, see
Section 2.

The crucial point behind Theorem 1.1 is that we obtain Sobolev estimates on
u ◦ R in terms of the data on u. There is a rather long history of such results, for
example see [9, 11, 15, 31] and references therein. In the setting of our problem, the
most relevant reference is the paper [31] by Ukhlov. What we find surprising in our
situation is that a single R1 induces the best bounded linear extension operator for

all values (n−1)+(n−1)2s
n

< p < ∞ and another single R2 induces the best bounded

linear extension operator for all values 1+(n−1)s
2+(n−2)s

< p < (n−1)+(n−1)2s
n

, but neither R1

nor R2 can induce a best linear extension operator for p = (n−1)+(n−1)2s
n

. In the case
of compositions from W 1,p to W 1,p, the relevant estimate is

(1.4) |DR(z)|p ≤ C|JR(z)|
almost everywhere, which for p = n is the pointwise condition of quasiconformality.
Mappings satisfying (1.4) with p 
= n apparently appeared for the first time in the
works of Gehring [6] and of Maz’ya [26], independently. With some work one can
show that (1.4) implies the corresponding inequality with p replaced by q when
either q > p > n or 1 ≤ q < p < n, but not in other cases. On the other hand, for
n − 1 < p < ∞, a result in [8] shows that (1.4) together with W 1,p-regularity of R
implies the dual estimate

(1.5) |DR−1(z)| p
p+1−n ≤ C ′|JR−1(z)|.

This kind of duality actually also holds for compositions from W 1,p to W 1,q with
q < p, see [31]. Also see [16, 31, 34] for general results on the regularity of R−1.
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Figure 1: Ωs

From the argument above, one could also expect that the reflections R1 and R2

induce a bounded linear extension operator from W 1,p(Rn \ Ωs) to W 1,q(Rn), for
some 1 ≤ q ≤ p < ∞. As one can easily check, for every 1 < s < ∞, Rn \ Ωs is
a so-called (ε, δ)-domain and hence a (p, p)-extension domain for every 1 ≤ p < ∞
due to Jones [19]. Our next theorem relates this to our reflections.

Theorem 1.2. For every 1 < s < ∞, Rn \ Ωs is a (p, p)-extension domain, for
every 1 ≤ p < ∞. The reflection R1 over ∂Ωs in Theorem 1.1 induces a bounded
linear extension operator from W 1,p(Rn \Ωs) to W 1,p(Rn), whenever 1 ≤ p ≤ n− 1.
Moreover, for each n − 1 < p < ∞, no reflection over ∂Ωs can induce a bounded
linear extension operator from W 1,p(Rn \ Ωs) to W 1,p(Rn).

What then about the case p = ∞? We say that a domain Ω ⊂ Rn is uniformly
locally quasiconvex if there exist constants C > 0 and R > 0 such that for every pair
of points x, y ∈ Ω with d(x, y) < R, there is a rectifiable curve γ connecting x and
y in Ω such that the length of γ is bounded from above by Cd(x, y). If the above
holds without the distance restriction, Ω is said to be quasiconvex. Recall that Ω is
an (∞,∞)-extension domain if and only if it is uniformly locally quasiconvex, see
[12] by Haj�lasz, Koskela and Tuominen. One can easily check that both Ωs and
Rn \ Ωs are uniformly locally quasiconvex, equivalently, they are (∞,∞)-extension
domains. We close this introduction with the following analog of Theorem 1.2.

Theorem 1.3. Given 1 < s < ∞, both Ωs and Rn \ Ωs are (∞,∞)-extension
domains. The reflection R1 over ∂Ωs in Theorem 1.1 induces a bounded linear
extension operator from W 1,∞(Ωs) to W 1,∞(Rn). On the other hand, no reflection
over ∂Ωs can induce a bounded linear extension operator from W 1,∞(Rn \ Ωs) to
W 1,∞(Rn).
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2 Preliminaries

In this paper, R̂n := Rn ∪ {∞} is the one-point compactification of Rn. Next,
z = (t, x) ∈ R×Rn−1 = Rn means a point in the n-dimensional Euclidean space Rn.
We write C = C(a1, a2, ..., an) to indicate a constant C that depends only on the
parameters a1, a2, ..., an; the notation A � B means there exists a finite constant c
with A ≤ cB , and A ∼c B means 1

c
A ≤ B ≤ cA for a constant c > 1. Typically

c, C, ... will be constants that depend on various parameters and may differ even on
the same line of inequalities. The Euclidean distance between given points z1, z2 in
Euclidean space Rn is denoted by d(z1, z2) or |z1 − z2|. Then the distance between
two sets A,B ⊂ Rn is denoted by

d(A,B) := inf{d(z1, z2) : z1 ∈ A, z2 ∈ B}.
The open ball of radius r centered at the point z is denoted by B(z, r). In what fol-
lows, Ω ⊂ Rn is always a domain, and ∂Ω is the boundary of Ω. The r-neighborhood
of Ω is

B(Ω, r) := {z ∈ Rn : d(z,Ω) < r}.
Given a Lebesgue measurable set A ⊂ Rn, |A| refers to the n-dimensional Lebesgue
measure. The interior of a set A ⊂ Rn is denoted by Å. For a locally integrable
function u and a measurable set A ⊂ Rn with 0 < |A| < ∞, we define the integral
average of u over A by setting

–

∫
A

u(z)dz :=
1

|A|
∫
A

u(z)dz.

The Sobolev space W 1,p(Ω) for p ∈ [1,∞] is the collection of all functions u ∈
Lp(Ω) whose norm

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖|Du|‖Lp(Ω)

is finite. Here Du = (g1, g2, ..., gn) is the distributional gradient of u, where gi is
the weak partial derivative of u with respect to xi. A mapping f = (f1, f2, · · · , fm) :
Ω → Ω′ is said to be in the class W 1,p(Ω,Ω′), if every component fi is in the Sobolev
space W 1,p(Ω).

The outward cuspidal domain Ωs has a boundary singularity but it is still rather
nice. For example, both the outward cuspidal domain Ωs and its complement Rn\Ωs

satisfy the segment condition.

Definition 2.1. We say that a domain Ω ⊂ Rn satisfies the segment condition if
every x ∈ ∂Ω has a neighborhood Ux and a nonzero vector yx such that if z ∈ Ω∩Ux,
then z + tyx ∈ Ω for 0 < t < 1.

For a domain satisfying the segment condition, we have the following lemma. See
[1, Theorem 3.22].
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Lemma 2.1. If the domain Ω ⊂ Rn satisfies the segment condition, then the set of
restrictions to Ω of functions in C∞

o (Rn) is dense in W 1,p(Ω) for 1 ≤ p < ∞. In
short, C∞

o (Rn) ∩W 1,p(Ω) is dense in W 1,p(Ω) for 1 ≤ p < ∞.

Let us give the definition of Sobolev extension domains.

Definition 2.2. Let 1 ≤ q ≤ p ≤ ∞. We say that a domain Ω ⊂ Rn is a (p, q)-
extension domain, if for every u ∈ W 1,p(Ω), there exists a function Eu ∈ W 1,q

loc (Rn)
with Eu

∣∣
Ω
≡ u and

‖Eu‖W 1,q(Rn\Ω) ≤ C‖u‖W 1,p(Ω)

with a constant C independent of u.

Lipschitz domains are typical examples of Sobolev extension domains. By the re-
sults due to Calderón and Stein [30], Lipschitz domains are (p, p)-extension domains
for 1 ≤ p ≤ ∞. For the definition of Lipschitz domains, please see [4, Definition
4.4]. As a generalization of the extension result for Lipschitz domains, Jones [19]
proved that (ε, δ)-domains are also (p, p)-extension domains.

Definition 2.3. We say Ω ⊂ Rn is an (ε, δ)-domain for some positive constant
0 < ε < 1 and δ > 0 if whenever z1, z2 ∈ Ω with |z1 − z2| < δ, there is a rectifiable
arc γ ⊂ Ω joining x to y and satisfying

l(γ) ≤ 1

ε
|z1 − z2|

and

d(z,Ωc) ≥ ε|z1 − z||z2 − z|
|z1 − z2| for all z onγ.

Definition 2.4. Let Ω ⊂ Rn be a domain. A self-homeomorphism R : R̂n → R̂n is
called a reflection over ∂Ω, if R(R̂n \Ω) = Ω, R(Ω) = R̂n \Ω and for every z ∈ ∂Ω,
R(z) = z.

The following technical lemma justifies our terminology.

Proposition 2.1. Let Ω ⊂ Rn be a bounded domain with |∂Ω| = 0 and R :

R̂n → R̂n be a reflection over ∂Ω. If R induces a bounded linear extension operator
from W 1,p(Ω) to W 1,q(Rn) in the sense of (1.2) (from W 1,p(Rn \ Ω) to W 1,q(Rn),
respectively) for 1 ≤ q ≤ p < ∞, then Ω (Rn \ Ω, respectively) is a (p, q)-extension
domain with a linear extension operator.

Proof. We only consider the case of Ω, since the case of Rn \ Ω is analogous. Let
U ⊂ Rn be the corresponding open set which contains ∂Ω. For a given function
u ∈ W 1,p(Ω), we define a function ER(u) by setting

(2.1) ER(u)(z) :=

⎧⎨⎩u(R(z)), for z ∈ U \ Ω,
0, for z ∈ ∂Ω,
u(z), for z ∈ Ω.
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Then ER(u) has a representative that belongs to W 1,q(U) with

‖ER(u)‖W 1,q(U) ≤ C‖u‖W 1,p(Ω).

Let ψ : Rn → R be a Lipschitz function such that ψ
∣∣
Ω

≡ 1, ψ
∣∣
Rn\U ≡ 0 and

0 ≤ ψ(z) ≤ 1 for every z ∈ Rn. For every function u ∈ W 1,p(Ω), we define a
function on Rn by setting

(2.2) ẼR(u) := ψ · ER(u).

Since ψ is Lipschitz with 0 ≤ ψ ≤ 1, ẼR(u) has a representative that belongs to
W 1,p(Rn). Now∫

Rn

|ẼR(u)(z)|qdz≤
∫
Ω

|u(z)|qdz +

∫
U

|ER(u)(z)|qdz

≤
(∫

Ω

|u(z)|pdz +

∫
Ω

|Du(z)|pdz
) q

p

,

and ∫
Rn

|DẼR(u)|qdz≤C

∫
U

|ER(u)Dψ|qdz + C

∫
U

|ψ∇ER(u)|qdz

+C

∫
Ω

|Du|qdz

≤C

(∫
Ω

|u|pdz +

∫
Ω

|∇u|pdz
) q

p

.

By combining these two inequalities, we obtain that ẼR(u) ∈ W 1,q(Rn) with ẼR(u)
∣∣
Ω
≡

u and
‖ẼR(u)‖W 1,q(Rn) ≤ C‖u‖W 1,p(Ω).

Hence, we defined a bounded linear extension operator from W 1,p(Ω) to W 1,q(Rn)
in (2.2).

By Proposition 2.1, in order to prove that a reflection R over ∂Ωs can induce a
bounded linear extension operator from W 1,p(Ω) to W 1,q(Rn) for some 1 ≤ q ≤ p ≤
∞, it suffices to prove that for every u ∈ W 1,p(Ω), the function ER(u) defined in
(2.1) satisfies the inequality

‖ER(u)‖W 1,q(U) ≤ C‖u‖W 1,p(Ω)

with a constant C independent of u.
Let f : Ω → Ω′ be a homeomorphism. If for every z ∈ U there is an open set

containing z and a constant C > 1 such that for every x, y ∈ U , we have

1

C
|x− y| ≤ |f(x) − f(y)| ≤ C|x− y|,
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we call it a locally bi-Lipschitz homeomorphism.
By combining results in [31, 32, 33, 35], we obtain following two lemmas.

Lemma 2.2. Suppose that f : Ω → Ω′ is a homeomorphism in the class W 1,1
loc (Ω,Ω′).

Fix 1 ≤ p < ∞. Then the following assertions are equivalent:
(1) : for every locally Lipschitz function u, the inequality∫

Ω

|D(u ◦ f)(z)|pdz ≤ C

∫
Ω′
|Du(z)|pdz

holds for a positive constant C independent of u;
(2) : the inequality

|Df(z)|p ≤ C(p)|Jf (z)|
holds almost everywhere in Ω.

Lemma 2.3. Let 1 ≤ q < p < ∞. Suppose that f : Ω → Ω′ is a homeomorphism in
the class W 1,1

loc (Ω,Ω′). Then the following assertions are equivalent:
(1) : for every locally Lipschitz function u, the inequality(∫

Ω

|Du ◦ f(z)|qdz
) 1

q

≤ C

(∫
Ω′
|Du(z)|pdz

) 1
p

holds for a positive constant C independent of u;
(2) : ∫

Ω

|Df(z)| pq
p−q

|Jf (z)| q
p−q

dz < ∞.

The following lemma is a special case of [34, Theorem 3].

Lemma 2.4. Let Ω,Ω′ ⊂ Rn be domains, and let f : Ω → Ω′ be a homeomorphism
in the class W 1,p

loc (Ω,Ω′) for a fixed n− 1 < p < ∞. If

(2.3) |Df(z)|p ≤ C(p)|Jf (z)|
holds for almost every z ∈ Ω, then the inverse homeomorphism f−1 : Ω′ → Ω belongs

to the class W
1, p

p+1−n

loc (Ω′,Ω) with

(2.4) |Df−1(z)| p
p+1−n ≤ C(p)|Jf−1(z)|

for almost every z ∈ Ω′.

3 Main Results

In this section, we show that the Sobolev extension results for outward cuspidal
domain Ωs ⊂ Rn from [23, 24, 25] can be achieved by bounded linear extension

operators induced by reflections, except possibly for the case from W 1,
1+(n−1)s

n (Ωs)
to W 1,n−1(Rn). Let us begin by introducing two reflections.
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3.1 Reflection R1 over ∂Ωs

In order to introduce the reflection R1 : R̂n → R̂n over ∂Ωs, we define a domain
Δ ⊂ Rn by setting

(3.1) Δ :=

{
(t, x) ∈ R× Rn−1;

−1

2
< t <

1

2
, |x| < 1

2

}
∪ Ωs.

See Figure 2. To begin, we divide Δ \ Ωs into three parts A,B,C by setting

A :=
{

(t, x) ∈ R× Rn−1; −1
2

< t ≤ 0, |x| ≤ |t|},

B :=
{

(t, x) ∈ R× Rn−1; −1
2

< t < 1
2
, |t| ≤ |x| < 1

2

}
and

C :=
{

(t, x) ∈ R× Rn−1; 0 ≤ t < 1
2
, ts ≤ |x| ≤ t

}
.

Figure 2: The domain Δ

We define a subdomain Ωs
1 ⊂ Ωs by setting

(3.2) Ωs
1 :=

{
(t, x) ∈ Ωs; 0 < t <

1

2
, |x| < ts

}
.
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We will construct a reflection R1 which maps Δ \ Ωs onto Ωs
1. We define R1 on

Δ \ Ωs by setting

(3.3) R1(t, x) :=

⎧⎪⎨⎪⎩
(−t, 1

6
|t|s−1x

)
, if (t, x) ∈ A,(|x|, t

6
|x|s−2x + 1

3
|x|s−1x

)
, if (t, x) ∈ B,(

t, ts−1

2(ts−1−1)
x +

(
ts − t2s−1

2(ts−1−1)

)
x
|x|

)
, if (t, x) ∈ C.

We extend R1 to ∂Ωs as the identity. Since both ∂Δ and ∂(Ωs \Ωs
1) are bi-Lipschitz

equivalent to the unit sphere, it is easy to check that we can construct a reflection
R1 : R̂n → R̂n over ∂Ωs such that R1 is defined as above on Δ \ Ωs, and R1 is
bi-Lipschitz on B(Ωs, 1) \ Δ.

For (t, x) ∈ Å, the resulting differential matrix of R1 is

DR1(t, x) =

⎛⎜⎜⎜⎜⎜⎝
−1 0 0 · · · 0

1−s
6
|t|s−2x1

1
6
|t|s−1 0 · · · 0

1−s
6
|t|s−2x2 0 1

6
|t|s−1 · · · 0

...
...

...
. . . 0

1−s
6
|t|s−2xn−1 0 · · · 0 1

6
|t|s−1

⎞⎟⎟⎟⎟⎟⎠ .(3.4)

Hence, for every (t, x) ∈ Å, we have

(3.5) |DR1(t, x)| � 1 and |JR1(t, x)| ∼c |t|(n−1)(s−1).

For (t, x) ∈ B̊, the resulting differential matrix R1 is

DR1(t, x) =

⎛⎜⎜⎜⎜⎜⎝
0 x1

|x|
x2

|x| · · · xn−1

|x|
x1

6
|x|s−2 A1

1(t, x) A1
2(t, x) · · · A1

n−1(t, x)
x2

6
|x|s−2 A2

1(t, x) A2
2(t, x) · · · A2

n−1(t, x)
...

...
... · · · ...

xn−1

6
|x|s−2 An−1

1 (t, x) An−1
2 (t, x) · · · An−1

n−1(t, x)

⎞⎟⎟⎟⎟⎟⎠ ,(3.6)

where, for every i, j ∈ {1, 2, · · · , n− 1}, we set

Ai
j(t, x) :=

{(
t
6
|x|s−2 + 1

3
|x|s−1

)
+
(

t
6
(s− 2)

x2
i

|x|4−s + s−1
3

x2
i

|x|3−s

)
, if i = j,

t
6
(s− 2)

xixj

|x|4−s + s−1
3

xixj

|x|3−s , if i 
= j.

Since |t| ≤ |x| < 1
2
, a simple computation gives

(3.7) |DR1(t, x)| � 1 and |JR1(t, x)| ∼c

n−1∑
k=1

x2
k

6
|x|s−3

∏
i 
=k

Ai
1 ∼c |x|(n−1)(s−1).
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For (t, x) ∈ C̊, the resulting differential matrix of R1 is

DR1(t, x) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0

A1
t (t, x) A1

1(t, x) A1
2(t, x) · · · A1

n−1(t, x)
A2

t (t, x) A2
1(t, x) A2

2(t, x) · · · A2
n−1(t, x)

...
...

... · · · ...
An−1

t (t, x) An−1
1 (t, x) An−1

2 (t, x) · · · An−1
n−1(t, x)

⎞⎟⎟⎟⎟⎟⎠ ,(3.8)

where, for every i, j ∈ {1, 2, · · · , n− 1}, we have

Ai
j(t, x) :=

⎧⎨⎩
ts−1

2(ts−1−1)
+
(
ts − t2s−1

2(ts−1−1)

)(
1
|x| −

x2
i

|x|3
)
, if i = j,(

t2s−1

2(ts−1−1)
− ts
)

xixj

|x|3 , if i 
= j.

and

Ai
t(t, x) := xi

(
(s− 1)ts−2

2(ts−1 − 1)
− (s− 1)t2s−3

2(ts−1 − 1)2

)
+
xi

|x|
(
sts−1 − (2s− 1)t2s−2

2(ts−1 − 1)
+

(s− 1)t3s−3

2(ts−1 − 1)2

)
.

Since ts < |x| < t, a simple computation gives

(3.9) |DR1(t, x)| � 1 and |JR1(t, x)| ∼c t
(n−1)(s−1).

Finally, since R1 is bi-Lipschitz on B(Ωs, 1) \ Δ, there exists a positive constant
C > 1 such that for almost every (t, x) ∈ B(Ωs, 1) \ Δ, we have

1

C
≤ |DR1(t, x)| ≤ C and

1

C
≤ |JR1(t, x)| ≤ C.

It is easy to see that the restriction of R1 to B(Ωs, 1) \ (Ωs ∪ {0}) is locally
bi-Lipschitz.

3.2 Reflection R2 over ∂Ωs

In order to introduce the reflection R2 : R̂n → R̂n over ∂Ωs, we define a domain
Δ′ ⊂ Rn by setting

(3.10) Δ′ :=

{
(t, x) ∈ R× Rn−1 = Rn :

−1

2
< t <

1

2
, |x| <

(
1

2

)s}
∪ Ωs.

See Figure 3. We divide Δ′ \ Ωs into two parts D,E by setting
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Figure 3: The domain Δ′

D :=

{
(t, x) ∈ R× Rn−1 = Rn :

−1

2
< t ≤ 0, |x| ≤ |t|s

}
,

and

E :=

{
(t, x) ∈ R× Rn−1 = Rn :

−1

2
< t <

1

2
, |t|s < |x| <

(
1

2

)s}
.

We will construct a reflection R2 over ∂Ωs which maps Δ′ \ Ωs onto Ωs
1. We define

the reflection R2 on Δ′ \ Ωs by setting

(3.11) R2(t, x) :=

⎧⎨⎩
(−t, 1

2
x
)
, if (t, x) ∈ D,(

|x| 1s , t
4

x

|x| 1s
+ 3

4
x

)
, if (t, x) ∈ E.

We extend R2 on ∂Ωs as the identity. Since both ∂Δ′ and ∂(Ωs\Ωs
1) are bi-Lipschitz

equivalent to the unit sphere, we can construct a reflection R2 which is defined on
Δ′ \ Ωs as in (3.11) and is bi-Lipschitz on B(Ωs, 1) \ Δ′.

For z = (t, x) ∈ D̊, the resulting differential matrix of R2 is

DR2(t, x) =

⎛⎜⎜⎜⎜⎜⎝
−1 0 0 · · · 0
0 1

2
0 · · · 0

0 0 1
2

· · · 0
...

...
...

. . .
...

0 0 0 · · · 1
2

⎞⎟⎟⎟⎟⎟⎠ .(3.12)
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Hence,

(3.13) |DR2|(t, x) = 1 and |JR2(t, x)| =
1

2n−1
.

For z = (t, x) ∈ E̊, the resulting matrix of R2 is

DR2(t, x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 x1

s|x|2− 1
s

x2

s|x|2− 1
s

· · · xn−1

s|x|2− 1
s

x1

4|x| 1s
A1

1(t, x) A1
2(t, x) · · · A1

n−1(t, x)
x2

4|x| 1s
A2

1(t, x) A2
2(t, x) · · · A2

n−1(t, x)

...
...

... · · · ...
xn−1

4|x| 1s
An−1

1 (t, x) An−1
2 (t, x) · · · An−1

n−1(t, x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,(3.14)

where, for every i, j ∈ {1, 2, · · · , n− 1}, we have

(3.15) Ai
j(t, x) :=

⎧⎪⎨⎪⎩
t
4

(
1

|x| 1s
− x2

i

s|x|2+1
s

)
+ 3

4
, if i = j,

−txixj

4s|x|2+1
s
, if i 
= j.

After a simple computation, for every (t, x) ∈ E̊ we have

(3.16) |DR2(t, x)| � 1

|x| s−1
s

and |JR2(t, x)| ∼c

n−1∑
k=1

x2
k

4s|x|2
∏
i 
=k

Ai
i =∼c 1.

Finally, since R2 is bi-Lipschitz on B(Ωs, 1) \Δ′, there exists a positive constant
C > 1 such that for almost every (t, x) ∈ B(Ωs, 1) \ Δ′, we have

(3.17)
1

C
≤ |DR2(t, x)| ≤ C and

1

C
≤ |JR2(t, x)| ≤ C.

It is easy to see that the restriction of R2 to B(Ωs, 1) \ (Ωs ∪ {0}) is locally bi-
Lipschitz.

3.3 Proof of Theorem 1.1

We prove Theorem 1.1 in two parts, considering the two reflections separately.

Theorem 3.1. Let Ωs ⊂ Rn be an outward cuspidal domain with the degree s > 1.
Then the reflection R1 : R̂n → R̂n over ∂Ωs induces a bounded linear extension
operator from W 1,p(Ωs) to W 1,q(Rn), whenever 1+(n−1)s

n
< p < ∞ and 1 ≤ q <

np
1+(n−1)s

.
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Proof. Since Ωs satisfies the segment condition, by Lemma 2.1, C∞
o (Rn)∩W 1,p(Ωs)

is dense in W 1,p(Ωs). Let u ∈ C∞
o (Rn)∩W 1,p(Ωs) be arbitrary. We define a function

ER1(u) as in (2.1) and another function w by setting

(3.18) w(z) :=

{
u ◦ R1(z), if z ∈ B(Ωs, 1) \ Ωs,
u(z), if z ∈ Ωs.

Since u ∈ C∞
o (Rn)∩W 1,p(Ωs) and R1 is locally Lipschitz on B(Ωs, 1)\(Ωs∪{0}), the

function w is locally Lipchitz on B(Ωs, 1) \ {0}. We claim that w ∈ W 1,q(B(Ωs, 1))
with

‖w‖W 1,q(B(Ωs,1)) ≤ C‖u‖W 1,p(Ωs)

for a constant C > 1 independent of u. These claims follow if we prove the above
norm estimate with B(Ωs, 1) replaced by B(Ωs, 1) \ {0}. Next, since w is locally
Lipschitz and |∂Ωs| = 0, it suffices to estimate the norm over the union of Ωs and
B(Ωs, 1) \Ωs. Since w = u ∈ W 1,p(Ωs) on Ωs, our domain Ωs has finite measure and
q < p, we are reduced to estimating the norm over the second set in question. On
this set, w = u ◦R1 almost everywhere and hence it suffices to prove the inequality

(3.19)

(∫
B(Ωs,1)\Ωs

|u ◦ R1(z)|qdz
) 1

q

≤ C

(∫
Ωs

|u(z)|pdz
) 1

p

and the inequality

(3.20)

(∫
B(Ωs,1)\Ωs

|D(u ◦ R1)(z)|qdz
) 1

q

≤ C

(∫
Ωs

|Du(z)|pdz
) 1

p

.

It is easy to see that

B(Ωs, 1) \ Ωs = (B(Ωs, 1) \ Δ) ∪ (Δ \ Ωs)

and Δ \ Ωs = A ∪B ∪ C. Since

|∂Δ| = |∂A| = |∂B| = |∂C| = 0,

we have ∫
B(Ωs,1)\Ωs

|u ◦ R1(z)|qdz =

∫
B(Ωs,1)\Δ

|u ◦ R1(z)|qdz(3.21)

+

(∫
Å

+

∫
B̊

+

∫
C̊

)
|u ◦ R1(z)|qdz.

Since R1 is bi-Lipschitz on B(Ωs, 1) \Δ and |Ωs| < ∞, by the Hölder inequality, we
have

(3.22)

∫
B(Ωs,1)\Δ

|u ◦ R1(z)|qdz ≤ C

(∫
Ωs

|u(z)|pdz
) q

p

.
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By the Hölder inequality and a change of variable, we have

∫
Å

|u ◦ R1(z)|qdz≤
(∫

Å

|u ◦ R1(z)|p|JR1(z)|dz
) 1

p

·
⎛⎝∫

Å

1

|J
q

p−q

R1
(z)|

dz

⎞⎠
p−q
p

≤
(∫

Ωs

|u(z)|pdz
) q

p

·
⎛⎝∫

Å

1

|J
q

p−q

R1
(z)|

dz

⎞⎠
p−q
p

.(3.23)

By (3.5), we have∫
Å

1

|JR1(z)| q
p−q

dz ≤ C

∫ 1
2

0

t(n−1)− (n−1)(s−1)q
p−q dt < ∞,

whenever 1+(n−1)s
n

< p < ∞ and 1 ≤ q < np
1+(n−1)s

. Hence, we have

(3.24)

∫
Å

|u ◦ R1(z)|qdz ≤ C

(∫
Ωs

|u(z)|pdz
) q

p

.

Next, via (3.7) and (3.9), we obtain the estimates∫
B̊

1

|JR1(z)| q
p−q

dz ≤ C

∫ 1
2

0

|x|(n−1)− (n−1)(s−1)q
p−q d|x| < ∞

and ∫
C̊

1

|JR1(z)| q
p−q

dz ≤ C

∫ 1
2

0

x
(n−1)− (n−1)(s−1)q

p−q

1 dx1 < ∞,

whenever 1+(n−1)s
n

< p < ∞ and 1 ≤ q < np
1+(n−1)s

. By repeating the argument

leading to (3.24), we obtain the following desired analogs of (3.24):

(3.25)

∫
B̊

|u ◦ R1(z)|qdz ≤ C

(∫
Ωs

|u(z)|pdz
) q

p

and

(3.26)

∫
C̊

|u ◦ R1(z)|qdz ≤ C

(∫
Ωs

|u(z)|pdz
) q

p

,

whenever 1+(n−1)s
n

< p < ∞ and 1 ≤ q < np
1+(n−1)s

. Hence, (3.19) follows.

To prove inequality (3.20), by Lemma 2.2, it suffices to show that∫
B(Ωs,1)\Ωs

|DR1(z)| pq
p−q

|JR1(z)| q
p−q

dz < ∞.
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Clearly∫
B(Ωs,1)\Ωs

|DR1(z)| pq
p−q

|JR1(z)| q
p−q

dz =

∫
B(Ωs,1)\Δ

|DR1(z)| pq
p−q

|JR1(z)| q
p−q

dz +

∫
Δ\Ωs

|DR1(z)| pq
p−q

|JR1(z)| q
p−q

dz.

First, by inequality (3.17), we have∫
B(Ωs,1)\Δ

|DR1(z)| pq
p−q

|JR1(z)| q
p−q

dz < ∞.

Since Δ \ Ωs = A ∪B ∪ C and |∂A| = |∂B| = |∂C| = 0, we have∫
Δ\Ωs

|DR1(z)| pq
p−q

|JR1(z)| q
p−q

dz =

(∫
Å

+

∫
B̊

+

∫
C̊

) |DR1(z)| pq
p−q

|JR1(z)| q
p−q

dz.

By (3.5), (3.7) and (3.9), we obtain∫
Å

|DR1(z)| pq
p−q

|JR1(z)| q
p−q

dz ≤ C

∫ 1
2

0

t(n−1)− (n−1)(s−1)q
p−q dt < ∞,

∫
B̊

|DR1(z)| pq
p−q

|JR1(z)| q
p−q

dz ≤ C

∫ 1
2

0

|x|(n−1)− (n−1)(s−1)q
p−q d|x| < ∞,

and ∫
C̊

|DR1(z)| pq
p−q

|JR1(z)| q
p−q

dx ≤ C

∫ 1
2

0

x
(n−1)− (n−1)(s−1)q

p−q

1 dx1 < ∞,

whenever 1+(n−1)s
n

< p < ∞ and 1 ≤ q < np
1+(n−1)s

. In conclusion, we have proved

that w ∈ W 1,q(B(Ωs, 1)) with the bound

‖w‖W 1,q(B(Ωs,1)) ≤ C‖u‖W 1,p(Ωs)

whenever 1+(n−1)s
n

< p < ∞ and 1 ≤ q < np
1+(n−1)s

. Since ER1(u) = w almost

everywhere, the above also holds with w replaced by ER1(u).
For an arbitrary u ∈ W 1,p(Ωs), by the density of C∞

o (Rn)∩W 1,p(Ωs), we can find
a sequence of functions {ui}∞i=1 ⊂ C∞

o (Rn) ∩ W 1,p(Ωs) and a subset N ⊂ Ωs with
|N | = 0 such that

(3.27) lim
i→∞

‖ui − u‖W 1,p(Ωs) = 0,

and for every z ∈ Ωs \N ,

(3.28) lim
i→∞

|ui(z) − u(z)| = 0.
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By the argument above, for every ui ∈ C∞
o (Rn) ∩ W 1,p(Ωs), we have ER1(ui) ∈

W 1,q(B(Ωs, 1)) and

(3.29) ‖ER1(ui)‖W 1,q(B(Ωs,1)) ≤ C‖ui‖W 1,p(Ωs)

with a constant C independent of ui. Since R1 is locally bi-Lipschitz on B(Ωs, 1)\Ωs,
we have R1(N) ⊂ B(Ωs, 1) \ Ωs with |R1(N)| = 0. By the definition of ER1(ui)
in (2.1), the sequence {ER1(ui)}∞i=1 has a limit at every point z ∈ B(Ωs, 1) \ (N ∪
R1(N)). Define

(3.30) v(z) :=

{
limi→∞ ER1(ui)(z) if z ∈ B(Ωs, 1) \ (N ∪R1(N)),
0, if z ∈ N ∪R1(N).

Since {ui}∞i=1 is a Cauchy sequence in W 1,p(Ωs), the inequalities (3.27) and (3.29)
yields that {ER1(ui)}∞i=1 is also a Cauchy sequence in W 1,q(B(Ωs, 1)). Hence v ∈
W 1,q(B(Ωs, 1)) with

‖v‖W 1,q(B(Ωs,1)) ≤ C‖u‖W 1,p(Ωs).

By definition, we conclude that ER1(u)(z) = v(z) for every z ∈ B(Ωs, 1) \ (N ∪
R1(N)). Since |N ∪R1(N)| = 0, we have ER1(u) ∈ W 1,q(B(Ωs, 1)) with

‖ER1(u)‖W 1,q(B(Ωs,1)) = ‖v‖W 1,q(B(Ωs,1)) ≤ C‖u‖W 1,p(Ωs).

Theorem 3.2. Let Ωs ⊂ Rn be an outward cuspidal domain with the degree s > 1.
Then the reflection R2 : R̂n → R̂n over ∂Ωs induces a bounded linear extension
operator from W 1,p(Ωs) to W 1,q(Rn), whenever 1+(n−1)s

2+(n−2)s
< p < ∞ and 1 ≤ q <

(1+(n−1)s)p
1+(n−1)s+(s−1)p

.

Proof. Let u ∈ C∞
o (Rn) ∩W 1,p(Ωs) be arbitrary. We define a function ER2(u) as in

(2.1) and another function w by setting

(3.31) w(z) :=

{
u ◦ R2(z), if z ∈ B(Ωs, 1) \ Ωs,
u(z), if z ∈ Ωs.

We claim that w ∈ W 1,q(B(Ωs, 1)) with

‖w‖W 1,q(B(Ωs,1)) ≤ C‖u‖W 1,p(Ωs)

for a constant C > 1 independent of u. As in the proof of Theorem 3.1, it suffices to
estimate the norm over the union of Ωs and B(Ωs, 1) \Ωs and we are again reduced
to estimating the norm over the second set in question. On this set, w = u ◦ R2

almost everywhere and hence it suffices to prove the inequality

(3.32)

(∫
B(Ωs,1)\Ωs

|u ◦ R2(z)|qdz
) 1

q

≤ C

(∫
Ωs

|u(z)|pdz
) 1

p
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and the inequality

(3.33)

(∫
B(Ωs,1)\Ωs

|D(u ◦ R2)(z)|qdz
) 1

q

≤ C

(∫
Ωs

|Du(z)|pdz
) 1

p

.

Now

B(Ωs, 1) \ Ωs = (B(Ωs, 1) \ Δ′) ∪ (Δ′ \ Ωs)

and Δ′ \ Ωs = D ∪ E. Since

|∂Δ′| = |∂D| = |∂E| = 0,

we have ∫
B(Ωs,1)\Ωs

|u ◦ R2(z)|qdz =

∫
B(Ωs,1)\Δ′

|u ◦ R2(z)|qdz(3.34)

+

(∫
D̊

+

∫
E̊

)
|u ◦ R2(z)|qdz.

Since R2 is bi-Lipschitz on B(Ωs, 1) \ Δ′ and |Ωs| < ∞, by the Hölder inequality,
we have

(3.35)

∫
B(Ωs,1)\Δ′

|u ◦ R2(z)|qdz ≤ C

(∫
Ωs

|u(z)|pdz
) q

p

.

Since |JR2(t, x)| ∼ 1 on E̊ ∪ D̊, by (3.13) and (3.16), we conclude by computing as
in (3.23) that ∫

E̊∪D̊
|u ◦ R2(z)|qdz ≤ C

(∫
Ωs

|u(z)|pdz
) q

p

,(3.36)

whenever 1+(n−1)s
2+(n−2)s

< p < ∞ and 1 ≤ q < (1+(n−1)s)p
1+(n−1)s+(s−1)p

. By combining inequalities

(3.34)-(3.36), we obtain inequality (3.32).
To prove inequality (3.33), by Lemma 2.2, it suffices to show that∫

B(Ωs,1)\Ωs

|DR2(z)| pq
p−q

|JR2(z)| q
p−q

dz < ∞.

Trivially,∫
B(Ωs,1)\Ωs

|DR2(z)| pq
p−q

|JR2(z)| q
p−q

dz =

∫
B(Ωs,1)\Δ′

|DR2(z)| pq
p−q

|JR2(z)| q
p−q

dz +

∫
Δ′\Ωs

|DR2(z)| pq
p−q

|JR2(z)| q
p−q

dz.
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Since R2 is bi-Lipschitz on B(Ωs, 1) \ Δ′, we have∫
B(Ωs,1)\Δ′

|DR2(z)| pq
p−q

|JR2(z)| q
p−q

dz < ∞.

Since Δ′ \ Ωs = D ∪ E, |∂D| = |∂E| = 0, inequalities (3.13), (3.16) give∫
Δ′\Ωs

|DR2(z)| pq
p−q

|JR2(z)| q
p−q

dz≤
∫
D̊

|DR2(z)| pq
p−q

|JR2(z)| q
p−q

dz +

∫
E̊

|DR2(z)| pq
p−q

|JR2(z)| q
p−q

dz(3.37)

≤C

∫ 1
2

0

∫ ( 1
2)

s

ts
|x|(n−2)− (s−1)pq

s(p−q) d|x|dt + C

≤C

∫ 1
2

0

t(n−1)s− (s−1)pq
p−q dt + C < ∞,

whenever 1+(n−1)s
2+(n−2)s

< p < ∞ and 1 ≤ q < (1+(n−1)s)p
1+(n−1)s+(s−1)p

. In conclusion, we have

proved that w ∈ W 1,q(B(Ωs, 1)) with the bound

‖w‖W 1,q(B(Ωs,1)) ≤ C‖u‖W 1,p(Ωs)

whenever 1+(n−1)s
2+(n−2)s

< p < ∞ and 1 ≤ q < (1+(n−1)s)p
1+(n−1)s+(s−1)p

. Since ER2(u) = w

almost everywhere, the above also holds with w replaced by ER2(u). Hence, we may
complete the proof by following the argument of the proof of Theorem 3.1.

3.4 Proof of Theorem 1.2

We begin with a useful observation.

Lemma 3.1. Let 1 < s < ∞ and 1 < p < ∞. If there is a reflection R : R̂n → R̂n

over ∂Ωs which induces a bounded linear extension operator from W 1,p(Rn \ Ωs) to
W 1,p(Rn), then R ∈ W 1,p

loc (G ∩ Ωs,Rn) and

|DR(z)|p ≤ C|JR(z)|
for almost every z ∈ G ∩ Ωs, where G is a bounded open set containing ∂Ωs.

Proof. Let R : R̂n → R̂n be a reflection over ∂Ωs which induces a bounded linear
extension operator from W 1,p(Rn \ Ωs) to W 1,p(Rn). Then there exists a bounded
open set U containing ∂Ωs so that the function

(3.38) ER(u)(z) :=

⎧⎨⎩
u ◦ R(z), for z ∈ U ∩ Ωs,
0, for z ∈ ∂Ωs,
u(z), for z ∈ U \ Ωs



20 P. Koskela and Z. Zhu

belongs to W 1,p(U) and satisfies

‖ER(u)‖W 1,p(U) ≤ C‖u‖W 1,p(U\Ωs)

for a positive constant C independent of u. It follows that R ∈ W 1,p
loc (U∩Ωs,Rn). We

employ an idea from [18] and pick a Lipschitz domain G so that Ωs ⊂ G and ∂G ⊂ U .
Since G is Lipschitz and contains the closure of Ωs, the geometry of Ωs easily yields
that G\Ωs is an (ε, δ)-domain for some positive ε, δ. Since u−uG\Ωs ∈ W 1,p(G\Ωs)

and (ε, δ)-domains are (p, p)-extension domains, we find a function v ∈ W 1,p(Rn\Ωs)
such that v = u− uG\Ωs on G \ Ωs and

(3.39) ‖v‖W 1,p(Rn\Ωs) ≤ C‖u− uG\Ωs‖W 1,p(G\Ωs).

Next, since G \ Ωs is a bounded (ε, δ)-domain, we have

(3.40)

∫
G\Ωs

|u(z) − uG\Ωs |pdz ≤ C

∫
G\Ωs

|Du(z)|pdz,

see [3, 29]. By our assumption, (3.39) and (3.40), we have

‖v ◦ R‖W 1,p(G∩Ωs) ≤‖v ◦ R‖W 1,p(U∩Ωs)

≤C‖u− uG\Ωs‖W 1,p(G\Ωs) ≤ C‖Du‖Lp(G\Ωs).

It is easy to check that v ◦ R = ER(v) on G ∩ Ωs and that Du = Dv almost
everywhere on G \ Ωs. Hence, we have∫

G∩Ωs

|DER(v)(z)|pdz ≤ C

∫
G\Ωs

|Du(z)|pdz.

Since u ∈ W 1,p(Ωs) is arbitrary, Lemma 2.2 gives the asserted inequality.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix 1 < s < ∞. It is easy to check that Rn \ Ωs is an
(ε, δ)-domain, for some positive constants ε and δ. Hence, by [19], Rn \ Ωs is a
(p, p)-extension domain, for every p ∈ [1,∞).

We begin by showing that the reflection R1 induces a bounded linear extension
operator from W 1,p(Rn \ Ωs) to W 1,p(Rn), whenever 1 ≤ p ≤ n − 1. Define the
domain Δ as in (3.1) and the domain Ωs

1 as in (3.2). By (3.3), the formula of the
reflection R1 on Ωs

1 is

(3.41) R1(t, x) =

⎧⎪⎪⎨⎪⎪⎩
(−t, 6x

ts−1

)
, if 0 ≤ |x| < 1

6
ts,(

12|x|
ts−1 − 3t, t x

|x|

)
, if 1

6
ts ≤ |x| < 1

3
ts,(

t, 3(t
s−t)
2ts

x +
(
3t
2
− ts

2

)
x
|x|

)
, if 1

3
ts ≤ |x| < ts.
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For every (t, x) ∈ Ωs
1 with 0 < |x| < 1

6
ts, the resulting differential matrix of R1 is

DR1(t, x) =

⎛⎜⎜⎜⎜⎜⎝
−1 0 0 · · · 0

(1 − s)6x1

ts
6

ts−1 0 · · · 0
(1 − s)6x2

ts
0 6

ts−1 · · · 0
...

...
...

. . .
...

(1 − s)6xn−1

ts
0 0 · · · 6

ts−1

⎞⎟⎟⎟⎟⎟⎠ .

After a simple computation, for every (t, x) ∈ Ωs
1 with 0 < |x| < 1

6
ts, we have

(3.42) |DR1(t, x)| =
6

ts−1
and |JR1(t, x)| =

(
6

ts−1

)n−1

.

For every (t, x) ∈ Ωs
1 with 1

6
ts < |x| < 1

3
ts, the resulting differential matrix is

DR1(t, x) =

⎛⎜⎜⎜⎜⎜⎜⎝

12(1−s)|x|
ts

− 3 12x1

|x|ts−1
12x2

|x|ts−1 · · · 12xn−1

|x|ts−1

x1

|x| A1
1(t, x) A1

2(t, x) · · · A1
n−1(t, x)

x2

|x| A2
1(t, x) A2

2(t, x) · · · A2
n−1(t, x)

...
...

...
. . .

...
xn−1

|x| An−1
1 (t, x) An−1

2 (t, x) · · · An−1
n−1(t, x)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where, for every i, j ∈ {1, 2, · · · , n− 1}, we have

Ai
j(t, x) :=

{
t
|x| −

tx2
i

|x|3 , if i = j,
−txixj

|x|3 , if i 
= j.

After a simple computation, for every (t, x) ∈ Ωs
1 with 1

6
ts < |x| < 1

3
ts, we have

(3.43) |DR1(t, x)| ≤ C

ts−1
and |JR1(t, x)| ∼c

(
1

ts−1

)n−1

.

For every (t, x) ∈ Ωs
1 with 1

3
ts < |x| < ts, the resulting differential matrix is

DR1(t, x) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0

A1
t (t, x) A1

1(t, x) A1
2(t, x) · · · A1

n−1(t, x)
A2

t (t, x) A2
1(t, x) A2

2(t, x) · · · A2
n−1(t, x)

...
...

...
. . .

...
An−1

t (t, x) An−1
1 (t, x) An−1

2 (t, x) · · · An−1
n−1(t, x)

⎞⎟⎟⎟⎟⎟⎠ ,

where, for every i, j ∈ {1, 2, · · · , n− 1}, we have

Ai
j(t, x) :=

{(
3
2
− 3

2ts−1

)
+
(
3t
2
− ts

2

) (
1
|x| −

x2
i

|x|3
)
, if i = j,

− (3t
2
− ts

2

) xixj

|x|3 , if i 
= j.
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and

Ai
t(t, x) := (s− 1)

3xi

2ts
+

(
3

2
− s

2
ts−1

)
xi

|x| .

After a simple computation, for every (t, x) ∈ Ωs
1 with 1

3
ts < |x| < ts, we have

(3.44) |DR1(t, x)| ≤ C

ts−1
and |JR1(t, x)| ∼c

(
1

ts−1

)n−1

.

By combining (3.42), (3.43) and (3.44), we conclude that

(3.45) |DR1(z)|p ≤ C|JR1(z)|
for almost every z ∈ Δ∩Ωs. By the same inequalities, since R1 is locally bi-Lipschitz
on B(Ωs, 1) \ Δ, for every u ∈ C∞

o (Rn) ∩W 1,p(Rn \ Ωs), we have∫
R1(B(Ωs,1)\Ωs)

|u ◦ R1(z)|pdz≤C

∫
R1(B(Ωs,1)\Ωs)

|u ◦ R1(z)|p|JR1(z)|dz(3.46)

≤
∫
B(Ωs,1)\Ωs

|u(z)|pdz.

Moreover, by Lemma 2.2 and (3.45), we have

(3.47)

∫
B(Ωs,1)\Ωs

|D(u ◦ R1)(z)|pdz ≤
∫
Rn\Ωs

|Du(z)|pdz.

Since Rn\Ωs satisfies the segment condition, (3.46) and (3.47) allow us to repeat the
argument in the proof of Theorem 3.1 so as to conclude that R1 induces a bounded
linear extension operator from W 1,p(Rn \Ωs) to W 1,p(Rn), whenever 1 ≤ p ≤ n− 1.

Next, we show that there is no reflection over ∂Ωs which can induce a bounded
linear extension operator from W 1,p(Rn \ Ωs) to W 1,p(Rn), for any n− 1 < p < ∞.

Let n − 1 < p < ∞ be fixed. Suppose that there exists a reflection R : R̂n → R̂n

over ∂Ωs, which induces a bounded linear extension operator from W 1,p(Rn \Ωs) to
W 1,p(Rn). By Lemma 3.1, there exists an open set G which contains ∂Ωs such that
for almost every z ∈ G ∩ Ωs, we have

|DR(z|p ≤ C|JR(z)|.
Then, by Lemma 2.4, for almost every (t, x) ∈ R (G ∩ Ωs), we have

(3.48) |DR(z)| p
p+1−n ≤ C|JR(z)|.

Let u ∈ C∞
o (Rn) ∩ W 1,p(Ωs) be arbitrary. By definition, ER(u) is bounded and

continuous on G. Pick a Lipschitz domain G̃ so that Ωs ⊂ G and ∂G̃ ⊂ G. By
Lemma 2.2, we have

(3.49) ‖DER(u)‖
L

p
p+1−n ( ˜G)

≤ C‖Du‖
L

p
p+1−n (Ωs)

.
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We conclude that ER(u) ∈ W 1, p
p+1−n (G̃). Since G̃ is a Lipschitz domain, [18, Lemma

4.1] implies

(3.50)

∫
˜G

|ER(u)(z) − uΩs | p
p+1−ndz ≤ C(G̃,Ωs)

∫
˜G

|DER(u)(z)| p
p+1−ndz.

Hence, we have

(3.51) ‖ER(u)‖
L

p
p+1−n ( ˜G)

≤ C
(
‖DER(u)‖

L
p

p+1−n ( ˜G)
+ ‖u‖

L
p

p+1−n (Ωs)

)
.

By combining inequalities (3.49) and (3.51), we obtain

(3.52) ‖ER(u)‖
W

1,
p

p+1−n ( ˜G)
≤ ‖u‖

W
1,

p
p+1−n (Ωs)

.

Since C∞
o (Rn) ∩ W 1, p

p+1−n (Ωs) is dense in W 1, p
p+1−n (Ωs), for every function u ∈

W 1, p
p+1−n (Ωs), there exists a sequence of functions ui ∈ C∞

o (Rn)∩W 1, p
p+1−n (Ωs) such

that

(3.53) lim
i→∞

‖ui − u‖
W

1,
p

p+1−n (Ωs)
= 0,

and for almost every z ∈ Ωs,

lim
i→∞

|ui(z) − u(z)| = 0.

By (3.49) and (3.53), {ER(ui)}∞i=1 is a Cauchy sequence in W 1, p
p+1−n (G̃). By the

completeness of W 1, p
p+1−n (G̃), there exits a function ω ∈ W 1, p

p+1−n (G̃) with

lim
i→∞

‖w − ER(ui)‖
W

1,
p

p+1−n ( ˜G)
= 0

and ω(z) = u(z) for almost every z ∈ Ωs. We define ER(u)(z) := ω(z) on G̃. By
(3.49) and (3.53) again, we have

‖ER(u)‖
W

1,
p

p+1−n ( ˜G)
≤ C‖u‖

W
1,

p
p+1−n (Ωs)

.

Hence, Ωs is a Sobolev
(

p
p+1−n

, p
p+1−n

)
-extension domain. This contradicts the clas-

sical result that Ωs is not a (q, q)-extension domain, for any 1 ≤ q < ∞, see [22] and
references therein.

3.5 Proof of Theorem 1.3

Proof of Theorem 1.3. Fix 1 < s < ∞. It is easy to see both Ωs and Rn \ Ωs are
uniformly locally quasiconvex. By [12], they are (∞,∞)-extension domains.
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To begin, we show that the reflection R1 induces a bounded linear extension
operator from W 1,∞(Ωs) to W 1,∞(Rn). Since Ωs is uniformly quasiconvex, every
function in W 1,∞(Ωs) has a Lipschitz representative. Without loss of generality, we
assume every function in W 1,∞(Ωs) is Lipschitz. Let u ∈ W 1,∞(Ωs) be arbitrary.
Define the extension ER1(u) on B(Ωs, 1) as in (2.1). Since u ∈ W 1,∞(Ωs) is Lipschitz
and R1 is locally Lipschitz on B(Ωs, 1)\(Ωs∪{0}), we have ER1(u) ∈ W 1,1

loc (B(Ωs, 1)\
Ωs). By (3.5), (3.7), (3.9) and the fact that R1 is bi-Lipschitz on B(Ωs, 1) \ Δ, for
almost every z ∈ B(Ωs, 1) \ Ωs, we have

|DER1(u)(z)| ≤ C|Du(R1(z))|.

This implies that

‖ER1(u)‖W 1,∞(B(Ωs,1)) ≤ C‖u‖W 1,∞(Ωs)

as desired.
Next, we show that there does not exist a reflection over ∂Ωs which can induce

a bounded linear extension operator from W 1,∞(Rn \ Ωs) to W 1,∞(Rn). Define a
function u ∈ W 1,∞(Rn \ Ωs) by setting

(3.54) u(t, x) =

⎧⎨⎩
1, if (t, x) ∈ Rn \ Ωs and t ≥ 1,
t, if (t, x) ∈ Rn \ Ωs and 0 < t < 1,
0, if (t, x) ∈ Rn \ Ωs and t ≤ 0.

For every t ∈ (0, 1) fixed, we define a 2-dimensional disk Dt ⊂ Ωs by setting

Dt := {(t, x) ∈ Rn; |x| < ts}

and define

St := {(t, x) ∈ Rn; |x| = 2ts}.

Suppose to the contrary that there exists a reflection R : R̂n → R̂n over ∂Ωs which
induces a bounded linear extension operator from W 1,∞(Rn \ Ωs) to W 1,∞(Rn).
Define the function ER(u) on B(Ωs, 1) as in (2.1). By the geometry of Ωs and
the fact that R is continuous and R(z) = z whenever z ∈ ∂Ωs, there exists a
small enough to ∈ (0, 1) such that for every t ∈ (0, to), there exists (t, xt) ∈ Dt

with ER(u)((t, xt)) = 0 and there exists (t, x′
t) ∈ St with ER(u)((t, x′

t)) = t and
d((t, xt), (t, x

′
t)) ≤ 2ts. Hence for every 0 < t < to, we have

|ER(u)((t, xt)) − ER(u)((t, x′
t))| ≥ t ≥ Cd

1
1+s ((t, xt), (t, x

′
t)).

This contradicts the assumption that ER(u) ∈ W 1,∞(B(Ωs, 1)) : since B(Ωs, 1) is
uniformly locally quasiconvex, a function in W 1,∞(B(Ωs, 1)) must have a Lipschitz
representative.
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