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Deep learning approach for prediction of impact peak appearance
at ground reaction force signal of running activity

Anastasiia Girkaa , Juha-Pekka Kulmalab and Sami €Ayr€am€oa

aFaculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland; bMotion Analysis Laboratory, Children’s Hospital,
University of Helsinki and Helsinki University Hospital, Helsinki, Finland

ABSTRACT
Protruding impact peak is one of the features of vertical ground reaction force (GRF) that is
related to injury risk while running. The present research is dedicated to predicting GRF impact
peak appearance by setting a binary classification problem. Kinematic data, namely a number of
raw signals in the sagittal plane, collected by the Vicon motion capture system (Oxford Metrics
Group, UK) were employed as predictors. Therefore, the input data for the predictive model are
presented as a multi-channel time series. Deep learning techniques, namely five convolutional
neural network (CNN) models were applied to the binary classification analysis, based on a
Multi-Layer Perceptron (MLP) classifier, support vector machine (SVM), logistic regression, k-near-
est neighbors (kNN), and random forest algorithms. SVM, logistic regression, and random forest
classifiers demonstrated performances that do not statistically significantly differ. The best classi-
fication accuracy achieved is 81.09% ± 2.58%. Due to good performance of the models, this
study serves as groundwork for further application of deep learning approaches to predicting
kinetic information based on this kind of input data.
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1. Introduction

Every second runner suffers from injuries on a yearly
basis (Van Mechelen 1992; Taunton et al. 2002;
Ristolainen et al. 2009). Since recreational running
has obvious health benefits, it is important to avoid
negative effects, such as injuries. The risk of injuries
can be assessed by running gait analysis. Nowadays
that implies 3D motion analysis along with utilization
of force platforms including analysis of ground reac-
tion force (GRF) signal over time, among other meas-
ured signals. GRF provides crucial information on a
lower limb’s loading. In particular, a protruding
impact peak (Figure 1) is one of the features of verti-
cal GRF that is indirectly related to injury risk while
running. Protruding impact peak is often related to
heel striking, which gained a lot of interest in
research on running-related sport injuries (Kulmala
et al. 2013; Knorz et al. 2017).

The motivation for this research is that GRF is
measured by force platforms, which makes conduct-
ing GRF measurements inconvenient. Firstly, the
force platforms are relatively expensive. Usually, there

are a limited number of them; thus, it is possible to
collect data only for a limited number of running
cycles (strides). Secondly, experiments with force plat-
forms require a solid platform, where force platforms
can be mounted into the floor. In other words, it
requires a restricted laboratory environment com-
pared to measurements with only a motion capture
system that can be conducted without binding to any
specific place. Thus, it would be much easier to
organize and cheaper to collect the signals with only
a motion capture system while a subject is running
on a treadmill and predict kinetic variables of interest
by a machine-learning model. Also, a cheaper motion
capture system with lower sampling frequency could
be utilized in that case. Although integrated treadmills
with force plates enable collecting a large number of
strides, they are also expensive and limited to a
laboratory environment. In the real world environ-
ment, determination of vertical GRF without direct
measurement can be done via video or other motion
capture techniques. Therefore, by predicting GRF
from raw kinematics signals, we exclude force plat-
forms from the measurements and make having GRF
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data possible whenever kinematics signals from a
motion capture system are available.

The objective of this study was to predict an
appearance of an impact peak on a vertical GRF sig-
nal using raw kinematics time series, since impact
peak is considered a key biomechanical feature related
to the risk of injury while running (van der Worp
et al., 2016; Davis et al., 2016).

The novelty of this research consists of employing
raw time series signals alternatively to hand-crafted
features and thus applying a deep learning approach
to predicting GRF information for running
gait analysis.

This paper is organized as follows: Section 2 is
devoted to related research and state of the art;
Section 3 discusses data collection and preprocessing;
Section 4 describes methods and includes a descrip-
tion of five deep learning models (i.e., five convolu-
tional neural networks (CNNs) with identical
convolutional parts, but different classifier parts: one
with fully-connected layers as a classier or MLP, in
other words, then with SVM, logistic regression,
kNN, and random forest as classifiers); Section 5
describes results; Section 6 provides the conclusion
and future work suggestions.

2. Related research

Among related studies there are several dedicated to a
prediction of GRF using kinematic data and perform-
ing inverse dynamics-based simulations, for example,
Fluit et al. (2014). Some of the research assumes uti-
lizing additional devices, as in Jung et al. (2016).
Their estimation of the vertical GRF from body kine-
matics was based on utilizing an array of purposely
developed smart force elements. Their approach was

tested with four gait speeds from 1m/s (slow walking)
up to 3m/s (slow running). The model has a limita-
tion: there is a deviation of up to 10% of predicted
vertical GRF when increasing the speed from walking
to running. Other research applied an artificial neural
network (ANN) in addition to inverse dynamics-
based simulation and developed a hybrid method. For
example, in Oh et al. (2013), application of an ANN
was limited to a prediction of GRF for a double sup-
port phase of the gait cycle. However, none of the
research mentioned considered a running case.

In another study, a two-mass model was developed
in order to analyze running at different speeds (Clark
et al. 2017). However, approach presented has a limi-
tation, since it employs contact time value, which
must be estimated based on motion capture data or
video data unless it is measured with force platforms.
In this case, contact time estimation is the main
source of error in the model, as it is, for example, in
the research on active peak force prediction (Niemel€a
et al. 2017).

A neural network approach to this problem is still
novel and also promising. There are a number of
studies that made a significant contribution to the
deep learning approach for biomedical time series. In
one of those studies a novel deep learning framework
was developed for classification of multivariate time
series heart rate data (Zheng et al. 2016). Also, such
studies as Bashivan et al. (2015) are dedicated to an
application of recurrent CNN on electroencephalo-
gram data or deep CNN application on multi-channel
time series data for human activity recognition (Yang
et al. 2015).

One study details example of walking gait pattern
classification based on twenty handcrafted features
extracted from three components of GRF (Andrade

Figure 1. Vertical component of a GRF signal. Ordinate corresponds to newtons normalized by weight of the runner. The active
peak corresponds to the value of 250%, where 100% means the body weight of the runner. Abscissa corresponds to frames in a
way that there is one data point per frame, 300 frames per second. On the left plot GRF peak without protruding impact peak is
presented. On the right plot is GRF peak with protruding impact peak.
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et al. 2015); another includes an example of utilizing
of motion analysis data to characterize the differences
between osteoarthritic and normal knee function data
(Jones et al. 2008). Both used GRF-related data as an
input. Another example of the neural network
approach is extracting walking gait parameters with a
deep CNN (Hannink et al. 2017). Still, none of the
above-mentioned studies considered running.

There are not many running-related studies. One
of them is a recent paper (Niemel€a et al. 2017) related
to the problem of the present study that includes pre-
diction of the maximum value of GRF (active peak
force) with MLP for running based on kinematic

data; however, hand-crafted features (not raw signals)
were employed, which is a time-consuming approach
that does not utilize all the data. Nevertheless, this
study reveals the possibility of using a machine-learn-
ing approach to analyze kinematic data in order to
predict vertical GRF in running activity. One study
(Johnson et al. 2018) with the same motivation as the
present study also utilizes raw marker trajectories
from a motion capture system beside the subject’s
mass, sex, and height (but different from the present
study: six markers from both feet, pelvis back center
point between LPSI and RPSI, and vertebra promi-
nens; cf. Section 3). Nevertheless, Johnson et al. have

Figure 2. Anthropometric data of the subjects. In the first row: bodyweight (kg), height (cm); in the second row: average leg
length (cm), body mass index (kg/m2). The values on each plot are sorted from the smallest to the greatest independently from
the other plots after the calculation of body mass index.
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predicted three components of GRF and moments,
based on the sidestep movement, not running. In the
recent paper Johnson et al. reported on prediction of
GRF and moments for the sidestep movement with
pre-trained CNN models (Johnson et al. 2019).

3. Data collection and preprocessing

The kinematic data in three dimensions were
recorded by the Vicon motion capture system (Vicon
T40, Vicon, Oxford, UK), which includes eight infra-
red cameras with a sampling frequency of 300Hz.
GRF data were recorded by five force platforms
(AMTI BP6001200, AMTI, Watertown, USA) syn-
chronously with the kinematic data at a sampling fre-
quency of 1500Hz.

Vicon Nexus (v. 1.7.1) software was used to collect
kinematic and GRF data in the C3D file format. The
standard Vicon plug-in gait lower body model1 was

applied. Healthy subjects (n¼ 135) including both
elite and recreational runners participated in the
measurements. Gender information was not tracked
in this research, because the goal was not to develop
gender-specific models. Subjects were running at self-
selected speeds (average speed: 3.71 ± 0.77m/s). Each
subject made from 1 to 24 trials; therefore, the col-
lected data set contains 1196 trials altogether.

Anthropometric data collected from the subjects
are presented in Figure 2. The average body weight
was 71.6 ± 11.4 kg, the average height was
174.8 ± 9.0 cm, the average leg length was
91.8 ± 5.4 cm. The average length of the two legs was
taken, because some of the subjects had a difference
between left and right leg lengths. From those data,
body mass index (BMI) was calculated by dividing
body weight in kilograms by height squared in
meters. The average BMI was 23.3 ± 2.3 kg/m2.

For data analysis eight skin markers were selected
empirically in order to reduce the number of inputs
for the ANN. The skin markers were located on (R/L
means right and left side) (Figure 3):

� pelvis front side – (R/L)ASI;
� pelvis back side – (R/L)PSI;
� heels – (R/L)HEE;
� ankles – (R/L)ANK;
� toes – (R/L)TOE.

In addition, virtual joint center markers calculated
from the skin markers and anthropometric measures
were employed:

� hip joint – (R/L)FEP;
� knee joint – (R/L)FEO;
� ankle joint – (R/L)TIO.

Only one dimension was taken into account to
reduce the number of inputs for the ANN – namely
vertical axis, since we are interested in vertical GRF
in this research.

The labeling of data was performed by seeking the
impact peak on the GRF time series with the deriva-
tive. A Python function for signal processing, namely
SciPy.signal.argrelextrema, was employed for it. A
local maximum was accepted as an impact peak when
it was higher than 90% of global maximum (active
peak) and was not located too far away from the
active peak (>50 data points) or too close to it (<10
data points). Time series were chopped on strides tak-
ing into account center of mass (COM); therefore the
stride in this research is defined as a phase between

Figure 3. Location of the markers employed (according to
standard Vicon plug-in gait lower body model1). RPSI, LPSI,
RHEE, and RHEE markers’ location is on the back side of the
body, thus they are marked with gray color. Credit
(Taylor 2012).

4 A. GIRKA ET AL.



the two maximum points of the COM position, where
the COM time series were obtained as an average of
the time series recorded from pelvis markers (RASI,
LASI, RPSI and LPSI). Thereafter, the data set at our
disposal consisted of 4098 samples (strides). However,
there were only 967 samples without the impact peak.
It was decided to take only a part of samples with the
impact peak. Consequently, every third sample ran-
domly selected among the samples with the impact
peak was included into the input data set, since other-
wise the data were imbalanced. Hence, the data set
used for ANN model creation consisted of 2026 sam-
ples: 967 without the impact peak and 1059 with it.

Also, preprocessing of the data included zero pad-
ding in a time scale and z-score normalization of sig-
nal amplitude. Zero-padding was required by the
procedure of the convolutional layers (Hannink et al.
2017). It was performed in such a way that zero val-
ues were added on both sides of the time series sam-
ple. Strides have different durations from trial to trial.
After zero-padding all the samples had an equal num-
ber of data points, specifically 289, because of added
zero values. The relative duration of the contact phase
was left unchanged.

4. Methods

All five models developed are based on a CNN,
because the objective is to employ raw kinematics
time series and CNN is a technique for cases when
the temporal or spatial structure of the data is mean-
ingful. The models were developed with Python 2.7
and Keras library (v2.1.2) for deep learning with
Tensorflow framework (v1.41) as a backend. The
architecture of the convolutional layers includes three
similar convolutional layers, each followed by a simi-
lar spatial pooling layer (Figure 4). Parameters of the
convolutional layers were as follows: number of filters
¼ 64; kernel size ¼ 3; kernel stride length ¼ 1; activa-
tion function¼ReLU; kernel initializer¼ zeros. The
spatial pooling layers were represented by the max
pooling layer with the following parameters: pool size
¼ 3; pool stride length ¼ 1.

All five models have identical convolutional parts,
but the difference between the models is in the classi-
fier part: five different classifiers were employed. In
Table 1 a list of classifiers can be found along with
parameters that were employed for the training. The
parameters for the classifiers were defined with a grid

Table 1. A list of classifiers employed and their training parameters (default if not mentioned).
Classifier Imported class Parameters

kNN sklearn.neighbors.KNeighborsClassifier Number of neighbors ¼ 7; weight function¼ distance; algorithm used to
compute the nearest neighbors¼ auto.

MLP sklearn.neural_network.MLPClassifier 3 layers � 16 units; activation function¼ ReLU; optimizer¼ RMSProp; 25
epochs of training; loss function¼ binary cross entropy.

SVM sklearn.svm.SVC Linear kernel; C ¼ 85 000.
Logistic regression sklearn.linear_model.LogisticRegression C ¼ 135 000; solver¼ newton-cg; multi_class¼ ovr; tolerance for stopping

criteria ¼ 0.0001.
Random forest sklearn.ensemble.RandomForestClassifier Number of trees in the forest ¼ 15; the function to measure the quality of a

split (criterion) ¼ entropy; the number of features to consider when looking
for the best split ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

number of features
p

:

Figure 4. A scheme of a convolutional part of the neural network models.
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search (sklearn.model_selection.GridSearchCV(cv ¼
5)). All the classifiers were imported from Scikit-learn
library (v0.19.0) (Pedregosa et al. 2011). The CNN
part is connected with a classifier in such a way that
a model is created right after the convolutional part –
let us call it an intermediate model – and output is
obtained from the intermediate model. This inter-
mediate output is employed as an input for
a classifier.

In order to assess the generalization ability of the
models, the performance metrics for the classification
task were estimated by ten-fold cross-validation so
that the test fold was not present in the training
phase. Performances of the classifiers were compared
using an ANOVA test with a post-hoc Bonferroni
test. The normality was tested preliminarily with the
Shapiro–Wilk test. A performance of the classifiers
was measured in terms of accuracy, precision, sensi-
tivity, specificity, and F-measure (Hossin and
Sulaiman 2015).

5. Results and discussion

The classifiers listed in Table 2 are ordered according
to their performance, from the worst to the best. The
worst performance was demonstrated by the kNN
algorithm, the second worst was MLP, then SVM,
logistic regression, and random forest had demon-
strated similar performance.

The performed tests revealed that there is no statis-
tically significant difference for any metric between
three classifiers: SVM, logistic regression, and random
forest (Table 2). Besides, the MLP classifier’s perform-
ance has no statistically significant difference from
the group of three classifiers mentioned above for
most metrics, excepting precision and specificity
(Table 2).

Thereafter, according to the present results with
the present configuration of the neural network
(Figure 4 and Table 1) and with this kind of kine-
matic time series as inputs (Section 3), the accuracy
of the binary classification can gain 81.09% ± 2.58%
as the random forest classifier demonstrated.
However, the kNN classifier fits the problem worse
than the other tested classifiers. The performance
achieved is good enough, taking into account that on
the one hand, an impact peak appearance is not
always clear even for an expert, and on the other
hand, the method of impact peak detection employed
was not honed to perfection. The approach presented
could be, perhaps, improved by the furtherTa
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improvement of the convolutional part and/or by a
different selection of predictors.

The gait speed represented in the data is mostly
higher than Jung et al. (2016) had in their research. The
majority of the gait speed values are between 2 and
5m/s in the current study. In Figure 5 the distribution
of the gait speeds is represented (plot A) along with the
error rates (plot B), which were calculated as the sum
of false positive and false negative predictions divided
by the total amount of the predictions. The predictions
were obtained using the random forest model. This
shows that the method developed is applicable to dif-
ferent running speeds. Significant differences were not
observed between the four groups of error rate values.

6. Conclusion and future work

In the present research, the prediction analysis of
GRF impact peak appearance was accomplished with
CNN (Figure 4) and five different classifiers (Table
1). The models were validated with the ten-fold cross
validation technique. The performance was estimated
on a testing data set that was not presented to a
model during the training phase. The highest
achieved accuracy and F-measure metrics are 81.09%
± 2.58% and 82.07% ± 2.31% correspondingly (Table
2) with the random forest classifier, which is a prom-
ising result, but there is still room for improvement.
Having a bigger data set may help to train models
better. Also, a more systematic approach to the selec-
tion of the predictors could yield model inputs with
greater predictive power.

The present research has successfully served as an
initial testing of applicability of a deep learning
approach for this kind of data, namely raw kinematic
signals for running. It forms the basis for future
research on predicting other features of vertical GRF,
and the GRF signal itself, subsequently. Future devel-
opment may include predictive models for other kin-
etic features such as joint forces and moments.
Further development may also enable vertical GRF
predictions via wearable inertial sensors, which in
turn, would make an impact load analysis during run-
ning even more convenient.

This will lead to a new approach for risk assess-
ment of injuries while running based on predictive
analysis and will make the arrangement of measure-
ments less complicated and cheaper due to force plat-
forms exclusion from it. Since running gait analysis
belongs to biomedical tasks, the research may have a
variety of applications: sports, health care, and
rehabilitation, to name a few.

Note
1 Vicon documentation. Lower body modeling with
Plug-in Gait. https://docs.vicon.com/display/Nexus25/
Lower+body+modeling+with+Plug-in+Gait Date
accessed: February 11, 2018.

Disclosure statement

No potential conflict of interest was reported by
the authors.

Figure 5. A bar plot A represents mean number of samples over the cross-validated test folds against speed ranges. A plot B rep-
resents mean error rate values over the cross-validated test folds for each range of speed. Error rate was calculated as a sum of
false positive and false negative predictions divided by the total amount of the predictions. The random forest model was
employed to obtain predictions.
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