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Abstract. This report investigates the stability problem of memristive
systems with a line of equilibria on the example of SBT memristor-based
Wien-bridge circuit. For the considered system, conditions of local and
global partial stability are obtained, and chaotic dynamics is studied.
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1 Introduction

In 1971, Leon Chua suggested the concept of a memristor [1] as an electrical
component that regulates the flow of electrical current in a circuit and remembers
the amount of charge that has previously flowed through it. Nowadays, various
types of memristors are developing for the realization of memory, computations
and many other applications (see e.g. [2–4]).

Consider the dynamical model of SBT memristor-based Wien-bridge cir-
cuit [5]:
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where g(ϕ) = |ϕ|, the parameters C1,2,3, R1,2,3,4,5, A, B are positive, and G is
negative. Using the notation αi = 1

Ci
, (i = 1, 2, 3), β1 = 1
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R3
,

β4 = 1
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we rewrite system (1) as follows:
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(2)
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Equating the right-hand of system (2) to zero we obtain a line of equilibria:

E = {(x, y, z, ϕ)
∣
∣ x = y = z = 0, ϕ ∈ R)}. (3)

2 Local Stability Analysis

Let us analyze the local stability of the equilibrium points on the line of equi-
libria E. Here for simplicity, we approximate continuous function g(ϕ) = |ϕ| by
a smooth function g(ϕ) = ϕ tanh(ρϕ) ≥ 0, where ρ � 1. Since for an arbitrary
equilibrium (0, 0, 0, ϕ0) ∈ E we have

∂f1(x,y,z,ϕ)
∂ϕ

∣
∣
∣
(0,0,0,ϕ0)

= lim
h→0

f1(x,y,z,ϕ+h)|(0,0,0,ϕ0)− f1(x,y,z,ϕ)|(0,0,0,ϕ0)

h =

= lim
h→0

(α1x(g(ϕ+h)−g(ϕ)))|(0,0,0,ϕ0)

h = 0,

the Jacobi matrix at (0, 0, 0, ϕ0) can be expressed as:

J =

⎛

⎜
⎜
⎝

−α1(A + Bg(ϕ0) + G + β4) α1β4 0 0
α2β4 α2(β2β3 − β1 − β4) −α2β2 0

0 α3β2β3 −α3β2 0
1 0 0 0

⎞

⎟
⎟
⎠ . (4)

The characteristic polynomial for the Jacobi matrix J is as follows:

det(λI − J) = λ
(
λ3 + P2λ

2 + P1λ + P0

)
, (5)

where

P2 = α1 (A + Bg(ϕ0) + G + β4) + α2 (β1 − β2 β3 + β4) + α3β2,

P1 = α1α2

(
(A + Bg(ϕ0) + G + β4) (β1 − β2 β3 + β4) − β2

4

)
+

+ α1α3 ((A + Bg(ϕ0) + G + β4) β2) + α2 α3 β2 (β1 + β4) ,

P0 = α1α2α3 β2

(
(A + Bg(ϕ0) + G + β4) (β1 + β4) − β2

4

)
.

(6)
Expression (5) indicates that the characteristic equation of Jacobi matrix

J has a zero eigenvalue with corresponding eigenvector (0, 0, 0, 1)∗, and three
non-zero eigenvalues. Since the central manifold of each equilibrium p ∈ E is
placed on the line of equilibria E, local dynamics of the nonlinear system near p
is described by the local dynamics of linearized system (see, e.g. Shoshitaishvili
reduction principle [6] and related results). Thus, if p has three eigenvalues with
negative real parts, then it is locally stable.

According to the Routh-Hurwitz criterion of stability, all the non-zero eigen-
values of (5) have negative real parts, iff P2 > 0, P0 > 0 and P2P1 − P0 > 0.
Left-hand side of the latter inequality has the form of quadratic equation:

P2 P1 − P0 = Q2 ν2 + Q1 ν + Q0 (7)



Stability and Chaotic Attractors of Memristor-Based Circuit 3

with respect to ν = α1Bg(ϕ0), where

Q2 = α2 (β1 − β2 β3 + β4) + α3β2,

Q1 = Q2
2 + α1

(
2 (A + G + β4) Q2 − α2β

2
4

)
,

Q0 = α1

(
(A + G + β4) Q2 − α2β

2
4

)
((A + G + β4) α1 + Q2)

+ α2α3β2

(
α1β

2
4 + (β1 + β4)Q2

)
.

(8)

The discriminant of (7) has the following form:

D =
(
Q2

2 + α1α2 β2
4

)2 − 4α2 α3 β2 Q2

(
(β1 + β4) Q2 + α1β

4
4

)
. (9)

For stability of all points on the line of equilibria (3), the branches of parabola
Eq. (7) has to be directed upwards, i.e. the inequality Q2 > 0 is needed. Since
ν = α1Bg(ϕ0) ≥ 0 for all ϕ0 ∈ R, to satisfy the inequality P2P1 − P0 > 0 it is
necessary and sufficient to have either no real roots (i.e D < 0), or all negative
roots of the Eq. (7). The latter condition is satisfied, iff D ≥ 0, Q1 > 0, Q0 > 0.
Inequalities P2 > 0, P0 > 0 are satisfied for all ϕ0 ∈ R, iff

(P2 ≥) α1 (A + G + β4) + α2 (β1 − β2 β3 + β4) + α3β2
︸ ︷︷ ︸

=κ1

> 0,

(P0 ≥) α1α2α3 β2

(
(A + G + β4) (β1 + β4) − β2

4

)

︸ ︷︷ ︸
=κ2

> 0.
(10)

Thus, it is possible to formulate the following statement

Lemma 1. If the values of parameters α1,2,3, β1,2,3,4, A, B, G are such that
the conditions κ1 > 0, κ2 > 0, Q2 > 0, and

D ≥ 0, Q1 > 0, Q0 > 0, or D < 0 (11)

hold, then each point at the line of equilibria E is locally Lyapunov stable1.

3 Global Stability Analysis

In order to study the global stability of the line (3) let us consider the following
Lyapunov function:

V = 1
2

(
x2

α1
+ y2

α2
+ z2

α3

)
, (12)

which has the following derivative along the solutions of system (2):

V̇ = −(β4+A+Bg(ϕ)+G)x2+2β4xy−(β1−β2β3+β4)y2+(β2(β3−1))yz−β2z
2

= −γ1

(
x − β4y

γ1

)2

− γ2

(
y − 1

2
β2(β3−1)z

γ2

)2

− γ3z
2, (13)

1 For any ε > 0 there exists δ > 0, such that, if |u(0) − ueq| < δ, then |u(t) − ueq| < ε
is valid for all t > 0. Recall that local asymptotic stability of ueq means that ueq is
locally Lyapunov stable and also there exists δ > 0, such that if |u(0) − ueq| < δ,
then limt→∞ |u(t)−ueq| = 0. Thus, due to the noise, the state of the physical model
could drift along the line of equilibria.

timur
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where

γ1 = β4 +A+Bg(ϕ)+G, γ2 = β1 −β2β3 +β4

(
1− β4

γ1

)
, γ3 = β2

(
1− β2(β3−1)2

4γ2

)
.

(14)
Since B > 0, we have

γ1 ≥ β4 + A + G
︸ ︷︷ ︸

=μ1

, γ2 ≥ β1 − β2β3 + β4

(
1 − β4

μ1

)

︸ ︷︷ ︸
=μ2

, γ3 ≥ β2

(
1 − β2(β3−1)2

4μ2

)

︸ ︷︷ ︸
=μ3

.

(15)

Thus, it is possible to formulate the following statement

Lemma 2. If the values of parameters α1,2,3, β1,2,3,4, A, B, G are such that the
conditions μ1 > 0, μ2 > 0, μ3 > 0 hold, then the line of equilibria E is partially
globally stable, i.e. for any ellipsoidal cylinder ε = V (x, y, z) defined by (12) with
a sufficiently small radius ε and for any trajectory from outside it there exists
a moment of time T after which the trajectory enters the cylinder and remain
there (see, e.g. [7]).

4 Chaotic Attractors

For parameters α1 = 108, α2 = α3 = 5 · 107, β1 = β2 = 4 · 10−5, β3 = 2.5,
β4 = 2.22 · 10−5, A = 0.0676, B = 0.3682, G = −0.0677 chaotic attractors [5]
can be found in system (2) (see Fig. 1). These attractors are self-excited ones
with respect to some unstable points on the line of equilibria E according to
the definition from [8–13]. However since there is a continuum of unstable equi-
libria on E, the unstable manifold of which may from attractors, the revealing
of all co-existing attractors is a challenging task, and, thus, attractors is such
systems sometimes are also called “hidden”. For their search one can use, e.g.,
various evolutionary algorithms [14,15]. The search of all co-existing attrac-
tors and determination of their mutual disposition in dynamical systems can be
regarded as a generalization [16] of the second part of Hilbert’s 16th problem on
the number and mutual disposition of limit cycles in two-dimensional polynomial
systems. Remark, that since there is an unbounded line of equilibria E in system
(1), one has to consider cylindrical absorbing sets and unbounded attractors.

One can see that the region of parameters given by the conditions of Lemma1
does not coincide with the region of parameters corresponding to the conditions
of Lemma 2. When all equilibria are locally stable, the following cases are of
interest:

(a) system (1) can be partially globally stable when all trajectories tend to the
line of equilibria E;

(b) system (1) may have hidden attractors with respect to E;
(c) system (1) can be dichotomic (some trajectories can tend to infinity in the

(x, y, z) subspace).
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xy

E

8 7 −5

u0 =
(10−2, 0, 0, 0)

xy

E

u0 =
(10−2, 0, 0, 5 · 10−4)

xy

u0 =
(10−2, 0, 0, −5 · 10−4)

Fig. 1. Self-excited chaotic attractors (blue) in system (2) for parameters α1 = 108,
α2 = α3 = 5 · 107, β1 = β2 = 4 · 10−5, β3 = 2.5, β4 = 2.22 · 10−5, A = 0.0676,
B = 0.3682, G = −0.0677, which are visualized by trajectories with initial data in
vicinity of the line of equilibria E (stable equilibria are green, unstable – red).

When some of the equilibria on E are unstable, the following cases are of interest:

(a) system (1) can be gradient-like (i.e. when all trajectories except unstable
equilibria tend to the stable equilibria on E);

(b) system (1) can be partially dissipative (all trajectories do not leave an
absorbing cylinder; in this case system (1) can have self-excited attractors);

(c) system (1) can be dichotomic.

5 Conclusion

In this report we discussed some basic ideas of the stability theory for memristive
systems with a line of equilibria. For the SBT memristor-based Wien-bridge
chaotic circuit the conditions of local and global partial stability are obtained.
Using [17,18], various other memristive circuits can be studied similarly. More
detailed studies and results will be included in the forthcoming survey “Theory
of stability for memristive systems with a line of equilibria” [19].
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