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Abstract: An interactive method – INFRINGER – for solving multi-objective optimization

problems is developed in this thesis. The method is able to learn a decision maker’s prefer-

ences using a value function model. The value function is modelled using machine learning

in conjunction with belief-rule based systems. A case study, consisting of a problem in

Finnish forestation, is then conducted where a human decision maker is aided in the deci-

sion making process using the developed method. Based on the results of the case study, the

developed method is assessed in its ability to aid the decision maker to reach a satisfying so-

lution, and its ability to elicit the decision maker’s preferences. Lastly, the method is briefly

compared qualitatively to other similar methods in existing literature, and the viability of the

method as a potential explainable model is briefly discussed.

Keywords: multi-objective optimization, decision making, preference learning, belief-rule

based systems, machine learning, data-based decision support

Suomenkielinen tiivistelmä: Tässä tutkielmassa kehitetään interaktiivinen menetelmä –

nimeltään INFRINGER – monitavoiteoptimoinnin ongelmien ratkaisemisen tueksi. Menetelmä

kykenee oppimaan päätöksentekijän mieltymykset (preferenssit), ja esittää mieltymyksiä

käyttäen arvofunktiota mallinaan. Arvofunktio mallinnetaan käyttäen koneoppia, jossa sovel-

i



letaan todennäköisyyksiä hyödyntäviä sääntöpohjaisia järjestelmiä. Kehitettyä menetelmää

hyödynnetään tapaustutkimuksessa, jossa päätöksentekijää tuetaan Suomen metsätalouteen

liittyvän monitavoitteisen optimointiongelman ratkaisemisessa. Tapaustutkimuksen tulosten

pohjalta kehitetyn menetelmän kykyä tukea päätöksentekijää, ja oppia päätöksentekijän miel-

tymykset, arvioidaan. Lopuksi kehitettyä menetelmää verrataan lyhyesti vastaaviin kirjal-

lisuudessa esiintyviin menetelmiin, ja menetelmän kelpoisuutta selitettävänä koneopin mal-

lina pohditaan.

Avainsanat: monitavoiteoptimointi, päätöksenteko, preferenssin oppiminen, todennäköosyyk-

siin perustuvat sääntöpohjat, koneoppi, datapohjainen päätöksenteon tuki
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1 Introduction

This chapter starts with a discussion of the general motivation behind this thesis in Section

1.1. After which in Section 1.2, a short introduction to machine learning is given. In Section

1.3, a brief overview of existing works discussing methods similar to the novel method de-

veloped in this is given. To conclude this chapter, the central research questions to this thesis

are presented in Section 1.4, followed by the description of the general structure and outline

of this thesis given in Section 1.5.

1.1 Motivation

Real life problems can often be modeled as multi-objective optimization problems with mul-

tiple conflicting criteria. Solutions to such problems are seldom unambiguous and the need

of a decision maker – a real human being with an adequate expertise in a field relevant to the

problem – is needed.1 Very often, if not always, the solutions of interest consist of Pareto

optimal solutions; solutions which are defined as a set where no solution can be chosen over

another solution without making trade-offs in regards to one or more criteria [1]. Out of

the many methods developed to aid a decision maker in finding the most satisfying option

among these Pareto optimal solutions, interactive multi-objective optimization methods are

of particular interest in this thesis. The focus is on interactive methods because these meth-

ods actively involve the decision maker in the solution process, which arguably improves the

chances of the final solution found to match the decision maker’s preferences. Examples of

interactive multi-objective optimization methods can be found in [2, 3, 4, 5].

Evidently the decision maker’s role is of crucial importance. The key ingredient the decision

maker can provide is their preferences. Preference modelling is a research field of its own [6],

which studies how to model preferences, and also the various factors affecting how prefer-

ences are constructed by humans – such as psychological and socioeconomic, but also moral

1In some problems, more than one decision maker are present. However, in this thesis we will not discuss

problems with multiple decision makers and therefore limit the discussion to problems involving only a single

decision maker.

1



and ethical as well. Having some methodology to build a working model of the preferences

of a decision maker would allow the analysis of the process of a decision maker reaching

a satisfying solution – a solution that matches the preferences of the decision maker. This

would allow for a post decision making analysis of the possible factors affecting the decision

maker in making the decisions, and permit for an overall assessment of the quality of the

decision made, as is done in [7], for example.

As multi-objective optimization problems emerge, for example in economical [8], medical

[9], technological [10], and environmental contexts [11], it is of utter importance – in the

author’s opinion – that if the decision maker’s preferences are to be modelled, they should be

modelled using transparent and explainable methodologies. Instead, if oblique methodolo-

gies are used in aiding decision makers, the margin for erroneous behavior could be too large

to guarantee that the decisions made are reflective of the true underlying preferences. Ma-

licious models, possibly stemming from the use of the oblique methodologies, could cause

significant repercussion affecting society on a varying degree.

This thesis is intended to take a step, albeit small, towards the use of explainable machine

learning models to model the preferences of a decision maker. An emphasis is on the use

of such models, because in this thesis the behavior of the developed model is not attempted

to be explained. The explainable nature emerges as a feature of the underlying machine

learning model used in the method developed in this thesis.2

2Recently, the feat discussed in this paragraph was successfully accomplished. In [12], a machine learning

model inherently explainable – an interpretable model – was used in place of a proprietary and oblique model

used for decision support in recidivism predictions. On top of being explainable, the interpretable model

performed just as well as the proprietary model. However, because of its explainable nature the interpretable

model was argued by the author to be objectively better than its proprietary counterpart. The reason for the

presented argument was partly the fact that the explainable nature of the interpretable model allows decision

makers to not just better understand why a certain prediction is given by the model, but to also incorporate

his/her own expertise with the prediction to ultimately produce better decisions.
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1.2 Why machine learning?

Machine learning is at the heart of the method developed in this thesis. However, the focus

of this thesis should not stray away from the main motivation: how to best aid a decision

maker to reach a satisfying solution in a multi-objective optimization problem? Learning the

preferences of the decision maker is but just one approach to answer this problem. To keep

the discussion in this thesis focused on the main motivation, the discussion of the theory of

machine learning is kept to a bare minimum. Therefore, a few central concepts are presented

in this section accompanied with a brief discussion on relevant topics to give the reader the

necessary tools to follow along. For a detailed introduction to machine learning, see [13] for

example.

The goal of machine learning is to enable a computer to perform some task without explicitly

telling the computer how to perform it. Instead, a machine learning model is often used,

which has been trained to perform a specific task. Training in the context of machine learning

can mean many things, but what is generally meant by training, can be understood as varying

a mathematical model’s internal parameters to match a desired behavior. When a model is

trained several times with its behavior closing to what is desired, the model is said to be

learning.

To clear some of the abstractions in the previous paragraph, consider the case of simple linear

regression: fitting of a straight line

y(x) = ax+b, (1.1)

where a,b ∈ R are the slope and y-intercept parameters respectively, and x,y are the inde-

pendent and dependent variables, respectively. In fitting the line (1.1) to an observed set of

presumably linearly correlating data, a simple linear model is trained by finding the adequate

slope and intercept values. This produces a linear function able to reproduce the behavior

seen in the data, and can be used to make estimations in regions where no explicit data has

been observed before. This is evident for example in predicting stock prices. In stock price

prediction, prices are observed at different times, and based on these observations, a linear
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model is constructed. The linear model is then able to predict the stock prices at a future,

unobserved time. The more data is observed, the more accurate the trained model will be.

After fitting the line (1.1) to the observed data, the linear model is considered to be trained.

If the linear model has been previously fitted to a sparse set of data, and then fitted again to

a more dense set of data producing better results, the model is said to be learning. This idea

can be generalized to a plethora of different mathematical models, not just linear regression.

An example of such models are belief-rule based systems [14] discussed in Chapter 3, which

are used in the novel interactive multi-objective optimization method developed this thesis.

Before concluding this short introduction to machine learning, it is worth discussing the

explainability of machine learning models. After fitting the line (1.1), the meaning of the

trainable variables, the slope and the intercept, are known: the greater the slope, the faster

the dependent variable grows as the independent variable is increased.3 The intercept value

is the value of the dependent variable when the dependent variable is zero. This means that

the behavior of linear model in (1.1) can be explained. For example, if the slope is very high,

it is explainable why the dependent variable y increases a lot when the independent variable

x is increased only slightly.

However, more complicated models like deep neural networks [15] have sometimes thou-

sands of trainable variables with a mostly unknown and unexplainable meaning. This kind

of complex models are called black-box models. They are named so because the models

often manifest themselves as black-boxes, which take some input and then map it to some

output. It is not explicitly known how the model maps the input to an output. Black-box

models are often said to be oblique machine learning models in contrast to transparent mod-

els, whose inner workings are understood to a degree which allows for an explanation of how

the model works to be given – either by the model itself or some expert with the adequate

knowledge. Indeed, these transparent models are also called explainable models.

The main motivation of using belief-rule based systems as the machine learning model in the

developed method in this thesis, is the potentially explainable nature of belief-rule based sys-

3Or decreased, if the relationship of the independent variable is inversely proportional to the dependent

variable.
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tems. Recent discussion on the explainable nature of belief-rule based systems can be found

in [16] and [17]. Another approach is to apply a meta-model on top of an oblique model in

an effort to try and produce explanations on the model’s behavior. A recent example of this

methodology is the Local Interpretable Model-Agnostic Explanations (LIME) discussed in

[18]. The advantage of LIME is that it can be used with powerful black-box models, which

have already been trained, to produce explanations on their behavior. That being said, based

on the argument given in a recent article [12], explaining black-box models might not lead

to explanations reflective of the true reasons behind a prediction made by a black-box mod-

els. Instead, interpretable machine learning models, which are inherently also explainable

should be used. In this thesis, interpretable machine learning models will not be discussed

further.

Because of the nature of decision making involving real human beings, available data on the

decision making process if often sparse and powerful models like deep neural networks are

not usable because they require large amounts of data to be trained; deep neural networks

require usually tens, if not hundreds of thousands of samples to be trained. Yet, belief-rule

based systems do not necessarily require large amounts of data. They can work very well

with just hundreds of samples, or even less. Moreover, belief-rule based systems are built on

the basis of principles and rules, which are not necessarily dependant on raw data and can

therefore be also inferred using available qualitative knowledge.

Therefore, machine learning is used in this thesis in an effort to try and learn the preferences

of a decision maker because machine learning allows to build computational models, which

once trained can perform a task without special supervision. In this thesis, belief-rule based

systems are chosen as a machine learning model because they offer a promising potential for

explainability. Explainability is hold in high regard by the author of this thesis because of

the moral implications of using machines to assist real humans in real life decision making

scenarios.
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1.3 Examples of decision maker’s preference learning in existing liter-

ature

Some existing works similar to the novel method developed in this thesis, which model

the preferences of a decision maker utilizing machine learning during an interactive multi-

objective optimization process are discussed in this section. Most of the presented works

involve multi-objective optimization methods, which make use of evolutionary algorithms.

These methods are known as (interactive) evolutionary multi-objective optimization meth-

ods. The works discussed in this section have been chosen because they contain methods

similar to the method developed in this thesis. This custom has led to an over-representation

of methods involving evolutionary multiobjective optimization.

In [19], the brain-computer evolutionary multi-objective optimization (BC-EMO) algorithm

is presented. BC-EMO is claimed to be able to learn an arbitrary value function from pref-

erence information gained interactively from a decision maker. It uses simple pair-wise

comparisons when eliciting preference information from the decision maker, and it uses the

learned value function to guide the search process towards more preferred solutions. BC-

EMO is used to elicit preference information from which new solutions are generated. As its

underlying machine learning model, BC-EMO uses support vector machines.

In [7], the preference learning based evolutionary multi-objective optimization (PLEMOA)

method is proposed. PLEMOA makes use of pair-wise comparisons to gather information to

learn an ideal solution corresponding the preferences of a decision maker. The method aims

to guide the optimization process to produce solutions that are interesting to the decision

maker by generating solutions close to the learned ideal solution. The learned preference

model can also be used to predict the decision maker’s future choices. Maximum likelihood

estimation is used to learn the ideal solution of the decision maker. The performance of

PLEMOA is compared to PL-NSGA2 proposed in [20], which is similar to PLEMOA, but

limits the pair-wise comparisons to be done between solutions on the Pareto optimal solution

set instead of using an intermediate solution to guide the optimization process, like is done

in PLEMOA.

A framework consisting of three different variants of preference enhanced evolutionary
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multi-objective optimizer (NEMO) is presented in [21]. The three variants are NEMO-0,

NEMO-I, and NEMO-II. Common to all variants, ordinal regression is used to infer one or

more additive value functions based on a given ranking of alternatives in a finite set of ob-

jective vectors, for example. The required ranking information is elicited from a decision

maker using pair-wise comparisons. The NEMO variants mutually differ in the kind of value

function used to rank solutions in a population of solutions.

In [22] a multiplicative value function is proposed, which aims to combine the preferences

from multiple decision makers for learning appropriate hyper parameters for a machine

learning model during its production. The proposed value function aims to incorporate the

multiple conflicting inputs from different decision makers. To elicit preferences, pair-wise

comparisons are used. The underlying tool to fine tune the free parameters of the proposed

value function is sequential model-based optimization (SMBO).

The method proposed in [23] is based on radial basis functions and inverse distance weight-

ing for exploring the space of decision variables, where pair-wise comparisons are used to

elicit a decision maker’s preferences. The method is also applied to a multi-objective opti-

mization problem and it makes no assumption of the form of the objective functions. The

method interactively learns a surrogate model to reflect the decision maker’s preferences.

1.4 Research questions

The purpose of this thesis is to explore and answer the following research questions:

1. Can belief-rule based systems be used to learn and model a decision maker’s prefer-

ences for a multi-objective optimization problem?

2. Can the learned model for the preferences predict solutions that are in accordance with

the decision maker’s preferences?

3. Is it possible to combine the ideas explored in questions 1 and 2 into an interactive

multi-objective optimization method to aid a decision maker make decisions in a real-

life decision making problem with multiple conflicting criteria?

4. Is the resulting preference model explainable?
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1.5 Structure of this thesis

In Chapters 2 and 3 a basic introduction to the central concepts in multi-objective optimiza-

tion and to belief-rule based systems is given, respectively. Based on these concepts, Chapter

4 presents the INFRINGER method: a novel interactive method for solving multi-objective

optimization problems, which is able to learn a decision maker’s preferences. A case study

involving a problem in Finnish forestation is then conducted in Chapter 5. The results of

the case study are discussed in Chapter 6, where the viability of the INFRINGER method

for aiding a human decision maker in a decision making process is assessed and the method

is also briefly compared to other similar methods in existing literature in a qualitative fash-

ion. Concluding this thesis, in Chapter 7 the research questions presented in Section 1.4 are

answered and a few potential research topics for future research are suggested.
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2 Multi-objective optimization

In this chapter, a general introduction to the central concepts in multi-objective optimization

is given. An informal introduction is given in Section 2.1 first, followed by a more formal

discussion of the central concepts in multi-objective optimization in Section 2.2. Methods for

solving multi-objective optimization problems are discussed in Section 2.3, and in Section

2.4 it is defined what is meant by a decision maker and how his/her preferences can be

modelled. This chapter is concluded with Section 2.5 where the concept of an interactive

method is defined, and the questions of why interactive methods are important and how they

differ is discussed. For a more detailed discussion on multi-objective optimization, see [1]

and [24].

2.1 What is multi-objective optimization?

Consider the following cases:

1. A CEO of a multi-billion corporation has to decide what course to take in terms of

managing her business during the next financial year. She wishes to maximize the

profit of her corporation, and to keep the stake holders happy. She cannot make too

many cuts in the yearly budget without considerate repercussions.

2. A student is at his wit’s end: should he take a quickie loan1 to afford proper food, or

should he swallow his pride and fare with cup noodles for the rest of the month?

3. A recruiter for a local supermarket has a couple of possible candidates available for

an open cashier job position. Who should the recruiter choose? A more experienced

candidate will require a higher pay, but a less experienced, and cheaper to employ,

candidate may not be efficient enough in performing the job.

The CEO, student, and recruiter are all very different people in very different situations, but

what connects them is that they are all trying to make decision based on multiple conflicting

criteria.
1A small loan that is quick and easy to get, but has a very high interest rate.
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In the previously considered cases, the CEO, student, and recruiter are all in the position of

a decision maker: they have to make a decision based on different choices available, each

with its trade-offs. The student, for example, has to decide whether to take a small loan now

to afford proper food, but with interests to be paid in a near future; or not to take a loan

resulting in saved money, but having to cope with miserable food. It can be said that the

student has two criteria, or objectives, he is interested in: Minimizing his financial losses,

and maximizing the quality of food. The student has also realized to his knowledge or not,

that he cannot have gourmet food without paying a high cost, and he cannot pay pennies and

expect a filet mignon. There is a trade-off between food quality and the money in his bank

account; gaining in quality of food will lead to a loss of capital, and trying to save money will

result in deterioration of food quality. The CEO and recruiter are facing similar dilemmas,

but with different criteria and trade-offs.

This kind of decision making based on multiple conflicting criteria is at the heart of multi-

objective optimization. This thesis has a special focus on modelling the decision maker’s

preferences. The preferences guide the decision maker, and understanding these preferences

can help in analyzing why the decision maker has made a particular decision.

2.2 Optimization

2.2.1 Single-objective optimization

Before a multi-objective optimization problem can be formally defined, the general case of

a single-objective optimization problem is presented in this section. The concepts presented

for single-objective optimization can then be generalized to multi-objective optimization.

In a single-objective optimization problem, an objective is usually defined as a scalar valued

function of one or multiple independent variables. Both the function and variables are as-

sumed to be real valued in this chapter, but they could be also very well be integer valued or

be part of discrete sets. However, because the real-valued case can be trivially generalized to

the integer and discrete cases, the discussion here is limited to the real-valued case only.
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Formally, a single objective function can be defined as

f : Rn→ R, (2.1)

where n denotes the number of dimensions in the domain of the objective function f , or in

other words, the number of independent decision variables.

The decision variables for an objective function defined in (2.1) can be defined as a vector,

called a decision variable vector

x = { xi | ∀i ∈ [1,n]} , (2.2)

where xi denotes the value of the ith decision variable. In a single-objective optimization

problem, the variables of an objective function are often subject to constraints defined as

part of the problem. These constraints can be inequality constraints or equality constraints

defined as

g : Rn→ R : g(x)≤ 0, (2.3)

and

h : Rn→ R : h(x) = 0, (2.4)

respectively, and the problem formulation may contain one or more of each of these con-

straints. The constraints in a single-objective optimization problem are used to define a

feasible space for the decision variable vectors x, which is denoted as the feasible set X

of decision variable vectors. Therefore, the feasible decision variable vectors of a single-

objective optimization problem can be defined as

x ∈ X ⊆ Rn. (2.5)
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In the case of X = Rn in (2.5), the underlying optimization problem is said to be uncon-

strained, while in the case of X ⊂ Rn, the problem is said to be constrained.

Based on the concepts defined so far, the full definition of a single-objective optimization

problem can be given as

min
x∈X

f (x), (2.6)

where the objective function f is to be minimized, and the decision variable vector x must be

part of the feasible set X . The choice of whether an objective function should be maximized

or minimized stems from the nature of the objective in the optimization problem: profits

are to be maximized, and losses are to be minimized, for example. If need be, a minimiza-

tion problem can be transformed into a maximization problem by multiplying the objective

function by −1. The minimization problem (2.6) is therefore equivalent to

max
x∈X
− f (x). (2.7)

The solution to a single-objective optimization problem is then defined as some decision

variable vector x∗ ∈ X , which satisfies either (2.6) or (2.7). The objective functions is said to

result in its optimal value when evaluated with x∗ as its argument.

In some cases there might be multiple solutions to a single-objective optimization problem,

for example in the case of minimizing the objective function f (x) = |x2− 1| both solutions

x∗1 = 1 and x∗2 =−1 minimize the function. In this case, the solutions x∗1 and x∗2 are considered

to be equally preferable, meaning there is no clear benefit2 in choosing one solution over the

other.
2If there was a clear benefit in choosing one solution over the other, it should be formulated in either the

objective function of the problem or as a constraint of the problem.
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2.2.2 Multi-objective optimization

In multi-objective optimization the number of objectives to be optimized is greater than one.

These objectives are to be optimized, either minimized or maximized simultaneously. The

objective functions of a multi-objective optimization problem can be either understood as a

vector valued function, or as a set of multiple scalar valued functions. Formally, the objective

function of a multi-objective optimization problem can be defined as

f : Rn→ Rm : f(x) = { fi(x) | i ∈ [1,m]} , (2.8)

where m denotes the number of objectives or the dimension of the objective space in a multi-

objective optimization problem, and fi denotes the individual objective function components

in f, with each fi being a scalar valued function. It is important to note that the decision

variable vector x in (2.8) is the same for all individual objective functions fi. In this thesis,

the objectives of a multi-objective optimization problem is always understood as a set of

multiple scalar valued functions, each defined like (2.1).

The constraints that define a feasible set (2.5) in a multi-objective optimization problem

are defined equivalently to (2.3) and (2.4). In other words, a multi-objective optimization

problem is analogous to a single-objective optimization problem defined in (2.6) and (2.7),

but differs in the number of objectives. Therefore, a multi-objective optimization problem

can be defined as

min
x∈X

f(x) = { fi(x) | i ∈ [1,m]} . (2.9)

It is typical that all the objective function in a multi-objective optimization problem are

defined to be either minimized or maximized. Any single objective function can always be

transformed into its equivalent counterpart, which is evident from (2.6) and (2.7).
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2.2.3 Central concepts in multi-objective optimization

The problem at the core of defining what can be considered to be an optimal solution to

a multi-objective optimization problem defined in (2.9), is that the objective functions are

seldom independent; the objective functions in a multi-objective optimization problem are

usually in conflict.3 This means that when one of the objective functions attains its optimal

value for some optimal solution x∗1 ∈ X , it is very likely that some other objective function

defined in the same problem does not attain its optimal value. Then, choosing a new optimal

solution x∗2 ∈ X might result in some other objective function attaining its optimal value and

for the first objective function to deteriorate in its value.

In a multi-objective optimization problem, a solution is not unambiguous, but rather ambigu-

ous, and the concept of a single solution being optimal does not make sense. Therefore, the

concept of a Pareto optimal solution is defined next to address this issue.

The image of the feasible set is defined as

Z = f(X), (2.10)

with each of its members being defined as an objective vector z = f(x), x ∈ X .

Consider a minimization problem with m objective functions, and a feasible decision variable

vector x∈X with the image z= { zi | i ∈ [1,m]} ∈ Z. Stating that the decision variable vector

x is a Pareto optimal solution, is equivalent to the following statement:

x is a Pareto optimal solution

iff zi ≤ z̃ j ∀ i, j ∈ [1,m] and zi < z̃ j ∃ i, j ∈ [1,m];

for all z̃ = f(x̃) =
{

z̃ j | j ∈ [1,m]
}
,

where x̃ ∈ X \x.

(2.11)

In other words, (2.11) implies that no other objective vector z̃ may exist in Z, which has
3If the objective functions are not in conflict, then they can be optimized independently, and the optimal

solution is optimal in regard to every objective function.
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strictly better objective function values for all objectives if x is a Pareto optimal solution.

Therefore, z̃ must be worse at least in one objective function value compared to z. The

condition for Pareto optimality in (2.11) can be extended to a maximization problem by

simply negating zi and z̃ j in the statement.

The concept of a Pareto optimal solution can be also extended to the concept of a Pareto

optimal solution set. The Pareto optimal solution set consists of all solutions x ∈ X , which

satisfy condition (2.11). In this thesis the image of the Pareto optimal solution set is simply

referred to as the Pareto optimal set. It follows that the Pareto optimal set ZPareto is a proper

subset of the image of the feasible region: ZPareto ⊆ Z. The member of the Pareto optimal set

z ∈ ZPareto are referred to as Pareto optimal objective vectors.

It is also useful to define the concept of dominance. An objective vector z1 is said to dominate

another objective vector z2, both being part of some subset of Z, if the solution z1 is strictly

better in at least one objective value and better or equal in the other values. This is similar to

condition (2.11) if in the condition z is replaced by z1 and z̃ by z2. If an objective vector is not

dominated by any other objective vector in the same subset of Z, then that objective vector

is said to be non-dominated in that subset. It follows from the definition given for Pareto

optimality in (2.11) that the Pareto optimal set ZPareto is a set of mutually non-dominated

objective vectors – meaning that none of the objective vectors is being dominated by some

other objective vector in the same set.

Two other useful central concepts exist in multi-objective optimization. Namely, the ideal

point and the nadir point. The ideal point z∗ is defined as the objective vector for repre-

senting the lower bounds of a Pareto optimal set. The components of the ideal point can be

calculated by optimizing each of the objectives in a multi-objective optimization problem

independently. The nadir point znad is defined as the upper bounds of the Pareto optimal set.

Calculating the nadir point is much more difficult than calculating the ideal point, because

it depends on the Pareto optimal set and in the general case the full extent of the set is not

known. A technique for calculating the ideal point and a representation of the nadir point is

discussed later in Section 2.3.4.

It is also beneficial to note that z∗ /∈ Z, and znad ∈maybe Z; the ideal point is not the image of
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Figure 1: The central concepts of multi-objective optimization conceptualized graphically

for a problem with two objectives. The image of the feasible set Z (filled area), the Pareto

optimal set ZPareto (the thick line segment), the ideal point z∗, and the nadir point znad are

pictured.

a feasible solution4, and the nadir point may or may not be the image of a feasible solution.

The feasibility of the nadir point depends on the properties of Z, such as its concavity and

connectedness.

The central concepts presented in this section have been conceptualized visually in Figure

1 for a multi-objective optimization problem with two objective functions to be minimized.

It is evident from Figure 1 how the feasibility of the nadir point depends on Z and not just

ZPareto; the feasible set can be trivially transformed to not include the nadir point without

affecting the visualized Pareto optimal set.

4If it was, the multi-objective problem would have an unambiguous optimal solution.
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2.3 Solving multi-objective optimization problems

Multi-objective optimization problems are not straightforward to solve, because the solution

is ambiguous. Without any kind of preference information, it is impossible in a Pareto op-

timal set to say that one solution is better than the other. The number of possible Pareto

optimal solutions can also be very large, even uncountable, which poses its own challenges:

how many Pareto optimal solutions should be calculated? Should the calculated representa-

tion of the Pareto optimal set be evenly distributed? Is some region of the Pareto optimal set

more preferable than the others? This section presents methods for solving multi-objective

optimization problems by means of scalarization. A brief overview of other existing methods

is also given at the end of this section.

2.3.1 A word on solving single-objective optimization problems

A common way of solving multi-objective optimization problems consists of solving single-

objective optimization problems representing the original multi-objective optimization prob-

lem, combined with preference information given by a decision maker. Therefore, this sub-

section starts with a brief discussion on how to solve single-objective optimization problems.

The concept of a decision maker and preference is discussed in Section 2.4.

To solve a single-objective optimization problem, it is necessary to find a solution x ∈ X that

optimizes either (2.6) or (2.7). Various methods exist in literature to solve for x. Two gen-

erally accepted and known methods for solving single-objective optimization problems are

the simplex method and Newton’s method. The simplex method transforms a linear single-

objective optimization problem into a system of linear equations, which can then be solved

using matrix operations. On the other hand, Newton’s method does not require the objective

function to be linear and it uses the derivatives of the objective function to iteratively im-

prove the solution of the problem. However, Newton’s method requires a good initial guess

of the solution to the single-objective optimization problem to work well, which also means

it is a local method – it will find the optimal solution close to the initial guess, which means

the found solution is not necessarily a global solution. The simplex method does not require

an initial guess and is able to find the global optimum. Moreover, the time complexity of
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the simplex method is generally greater when compared to Newton’s method, assuming that

Newton’s method converges fast enough to a local solution. The simplex method and New-

ton’s method are both – and accompanied by many more similar methods – presented in [25,

Chapter 9 and 10].

However, two methods important in this thesis for solving single-objective optimization

problems are needed in particular: sequential least squares programming (SLSQP) [26,

Chapter 10] and Coin-or branch and cut (CBC) [27]. SLSQP is able to solve non-linear

constrained single-objective optimization problems, but requires a good initial guess of the

solution to perform well which makes it a local method akin to Newton’s method. SLSQP

also requires the objective function and the constraint functions to be differentiable. When

training a belief rule-based system discussed in Section 3.6, a non-linear constrained single-

objective optimization problem emerges which can be solved for example utilizing SLSQP.

CBC is suitable for solving mixed integer problems: problems were the decision variable

vectors and objective vectors have a mix of real and integer valued elements. Therefore,

CBC is suitable for solving the formulated problem for computing the representation of the

Pareto optimal set in the Finnish forestation problem discussed in the case study in Chapter 5.

This subsection will not delve further into the details of each method. For the rest of this

section, it is assumed that a method for solving constrained non-linear single-objective opti-

mization problems exists.

2.3.2 Scalarization

The vector valued objective function present in the definition of multi-objective optimization

problems (2.9), can be transformed into a scalar valued function using a scalarizing function

transformation:

f : Rn→ Rm scalarization−−−−−−−→ f̃ : Rn→ R. (2.12)

The resulting single-objective optimization problem, when a scalarizing function transfor-

mation (2.12) is used on the objective function of a multi-objective optimization problem,
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can then be solved using the methods discussed in Section 2.3.1. However, for the solution

to be Pareto optimal the scalarization used in (2.12) must be congruent to certain conditions,

which are defined for example in [24, Chapter 3]. For the rest of this thesis, it is assumed that

the function used for scalarization guarantees the solution to the resulting scalarized function

to be Pareto optimal.

As an example of scalarization, the weighting method can be used to transform a multi-

objective optimization problem (2.9) into the single-objective optimization problem

min
x∈X

m

∑
i=1

wi fi(x) , where
m

∑
i=1

wi = 1 and wi ≥ 0, i ∈ [1,m]. (2.13)

In problem (2.13), wi is the weight associated to the ith objective function. It is proven in [1,

Chapter 3.1], that the the solution to (2.13) is Pareto optimal if the weights wi are all positive

and the solution found is unique.

The weighting method is able to produce different Pareto optimal solutions using a different

choice of weights. However, there are limitations to the extent of its ability to produce Pareto

optimal solutions. If the underlying Pareto optimal set is non-convex, the weighting method

is not able to find all the Pareto optimal solutions [1, Chapter 3.1]. Therefore, the main

merit of the weighting method is in its simplicity. An overview of other existing scalarizing

functions can be found in [1] and [28], for example.

2.3.3 Achievement scalarizing functions

Achievement scalarizing functions are a particular set of functions to scalarize multi-objective

optimization problems. An achievement scalarizing function is defined as

sz̄ : Rm→ R : sz̄(z) = sz̄(f(x)), (2.14)

where z̄ ∈Rm is a vector in the objective space called a reference point, and f is the objective

function of a multi-objective optimization problem (2.9). Using an achievement scalarizing
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function, an achievement problem

min
z∈Z

sz̄(z) (2.15)

can be formulated. It is proven in [1, Chapter 3.5], that when (2.14) is increasing and the

solution to the achievement problem is unique, then the solution is also Pareto optimal. For

solving (2.15), it is required to find an objective vector z which minimizes it. Methods

discussed in Section 2.3 are suitable for solving achievement problems as well.

In the case study discussed in Chapter 5, a representation of the Pareto optimal set is com-

puted using an achievement scalarizing function – the guess function – originally used in the

GUESS method [29]

sz̄(z) = max
i∈[1,m]

[
zi− znad

i

znad
i − z̄i

]
, (2.16)

where zi, znad
i , and z̄i, are the components of the objective vector z, nadir point znad, and

reference point z̄, respectively. Intuitively, the guess function, when minimized, results in a

Pareto optimal vector z, which has components zi that have the minimized maximum devi-

ation compared to the components of the nadir point. The vector z found resides on a line

segment connecting the reference point and the nadir point. This is a very straightforward

way of calculating a Pareto optimal solution, with minimal assumptions made. Only the

nadir point of the original multi-objective optimization problem is required and the refer-

ence point chosen must be smaller5 in every component compared to the nadir point. In [1,

Chapter 5.7], it is shown that any Pareto optimal solution can be found utilizing (2.16). That

is to say, the function (2.16) does not suffer from the same limitations as the weighting

method (2.13) mentioned in Section 2.3.2 regarding the convexity of the Pareto optimal set.

The function in (2.16) can be used to generate a representation of a Pareto optimal set for

a multi-objective optimization problem by generating a set of reference points and solv-

ing the resulting achievement scalarizing problem (2.15) for each generated point. This

method of solving for a representation of the Pareto optimal set is somewhat similar to the
5Or bigger, if maximization is desired in the underlying multi-objective optimization problem.

20



normal-boundary intersection method [30], where a set of reference points is also generated.

However, normal-boundary intersection might produce non-Pareto optimal solutions.

One more advantage achievement scalarizing functions have, is that an augmentation term

can be used in the achievement scalarizing function formulation to guarantee Pareto optimal-

ity. An augmentation term could be for example the complement of the euclidean distance

of the objective vector z in (2.16) to the problems ideal point weighted by some scalar ρ

between 0 and 1; e.g. −ρ ∑
m
i=1 |z∗i − zi| where z∗i are the components of the problem’s ideal

point. Examples of other available achievement scalarization functions, and their compar-

isons, can be found in [31].

2.3.4 Calculating the ideal and nadir points: the payoff table method

Computing the ideal point is simple: each objective function in a multi-objective optimiza-

tion problem is optimized independently of the other objective functions. To illustrate this

idea, consider the following example: suppose the ideal point is to be calculated for a multi-

objective optimization problem defined in (2.9) with three objective (m = 3). Optimizing the

first objective function f1 will result in a value z∗1 which will be the first component of the

ideal point z∗. Similarly, z∗2 and z∗3 can be calculated by independently optimizing f2 and

f3, respectively, and consequently leading to a complete formulation of the ideal point. The

given example can be trivially generalized to any multi-objective optimization problem with

an arbitrary number of objective functions.

Again, consider the example discussed in the previous paragraph with three objectives. Let

xi be the optimal solution when fi is optimized independently and let z j
i = f j(xi). In other

words, z j
i is the value of the jth objective function evaluated with the optimal solution found

for the ith objective function f1 when it is optimized independently. If the values z j
i are

arranged in a matrix with i being the row index and j the being column index, the result will
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be


z1

1 z2
1 z3

1

z1
2 z2

2 z3
2

z1
3 z2

3 z3
3

 (2.17)

which is known as a payoff table. It is important to notice that the diagonal of (2.17) is

equivalent to the ideal point, that is z∗ =
{

z1
1,z

2
2,z

3
3
}

. Now, taking the worst objective value

from each of the columns in (2.17) will give an approximation of the nadir point znadir. This

way of calculating the nadir point is known at the payoff table method.

As said, acquiring a representation of the nadir point using a payoff table does not necessarily

result in a nadir point with components reflective of the true nadir point of the problem. The

components may be too low, or too high, and using a nadir point produced by the payoff table

method may result in inaccurate limits of the Pareto optimal set. In general, the true nadir

point is hard to calculate for a multi-objective optimization problem. This is why methods

which approximate the nadir points are used instead, and the payoff table method’s simplicity

makes it an attractive option. Moreover, in the case study discussed in Chapter 5 the accurate

limits of the attainable objective vector values are not of critical importance, and therefore

the payoff table method is a suitable way for calculating the estimate of the nadir point in the

case study.

An alternative way, which is arguably a better but slower way for computing an estimate of

the nadir point compared to the payoff table method can be found in [32], where a method

based on evolutionary algorithms is presented. Similarly in [33] a method based on a mix of

evolutionary algorithms and local search methods is discussed.

2.4 The decision maker and preference

So far, only the optimization aspect of multi-objective optimization has been discussed. This

section presents the concept of a decision maker, what is meant by their preferences, and

how the preferences of a decision maker can be modelled. These concepts are in a central

role in multi-objective optimization.
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2.4.1 The decision maker

In the context of multi-objective optimization, the decision maker is usually a human, who

is an expert in the field related to a problem being solved. The decision maker can be a

single human, or a group of humans. When a group of decision makers is in question, the

decision making process is known as group decision making. The decision maker can also

be artificial, for example an expert system or an artificial intelligence. However in this thesis,

only the case of a single human decision maker is considered.

The role of the decision maker is that of providing preference information, which is not

considered in the general formulation of multi-objective optimization problems (2.9). Pref-

erence information can be given by the decision maker in different forms and at different

times, when solving a multi-objective optimization problem.

Preferences may consist of weights given individually for objectives, for example. The

weights given can be used for instance in (2.13) to solve a multi-objective optimization prob-

lem. Another form of preference information is aspiration levels, which are acceptable or

desired values given by the decision maker for each objective function. The aspiration levels

can be used to form a reference point: a vector consisting of desired values for each objective

function according to the preferences of the decision maker. This kind of a reference point

can be used in achievement scalarizing functions like (2.16), for example.

When preferences are given by a decision maker before a multi-objective optimization prob-

lem is solved, preferences are said to be given a priori. If preferences are given after an

approximation of the Pareto optimal set has been computed, preferences are said to be given

a posteriori. Preferences can also be given interactively, which means they are given dur-

ing the process of solving a multi-objective optimization problem; the preferences are often

used to guide the optimization process itself. Different methods for solving multi-objective

optimization problems are usually classified using these three terms: a priori methods, a pos-

teriori methods, and interactive methods [1]. Interactive methods will be discussed further

in Section 2.5.

In this thesis, two assumptions are made regarding the decision maker. The first assumption

is that a decision maker will always prefer a non-dominated objective vector to a dominated
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one. Based on this assumption, it can be stated that a decision maker will be always in-

terested only in solutions present in the Pareto optimal set of a problem, when the set or a

representation of the set is available.

The second assumption is that if the decision maker prefers the objective vector z1 to the

objective vector z2 and the objective vector z2 to z3, then it must be that he/she also prefers

z1 to z3. More formally, this second assumption can be expressed as

z1 � z2∧ z2 � z3⇒ z1 � z3, (2.18)

where the notation "�" indicates that the element on its left is preferred or equal in terms of

preference, when compared to the element on its right. A strict preference would be indicated

by "�" in a similar fashion.

A decision maker who abides to the two assumptions made, is considered to be a rational

decision maker in this thesis. Henceforth, all decision makers discussed will be assumed to

be rational decision makers.

2.4.2 Modelling preferences: the value function model

One way to model the preferences of a decision maker, is to assume a value function of the

form

U : Rm→ R : U(z) (2.19)

to exist. The function (2.19) is used to give a value reflecting the decision maker’s prefer-

ences for objective vectors z. If for two objective vectors z1 and z2,U(z1) >U(z2), then z1

is preferred to z2 according to the decision maker’s preferences. The objective vectors in an

objective vector set can be at least partially ranked according to the preferences of a decision

maker using a value function.

Because of the assumption stating the decision maker being rational, the value function can

be assumed to be monotonic. In other words, by setting all the objective values to some

constant and decreasing only one of the objective values, the output of the value function
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should be monotonically increasing. This idea can be expressed as the conditional statement

m∨
i=1

zi ≤ z′i⇒U(z)≥U(z′) ∀ z,z′ ∈ Z. (2.20)

While in (2.20) the objective vectors are limited to the vectors present in the image of the

feasible set Z, it is important to note that the condition is valid for any real-valued vectors in

any m-dimensional space.

Obtaining the value function in (2.19) for a decision maker is not simple. It is unrealistic for a

decision maker to be able to directly tell what the value function reflecting his/her preferences

is. Therefore, the value function is usually inferred in some way using auxiliary indicators

of the decision maker’s preferences, such as is done in pair-wise comparisons where the

decision maker is asked which one of two objective vectors presented he/she prefers.

For example in [21], a value function is inferred from simple pair-wise comparisons of two

objective vectors, which are presented to the decision maker at regular intervals. The deci-

sion maker is asked which objective vector they prefer or if the vectors are equally preferred.

Based on the information gained from these pair-wise comparisons, a value function is in-

ferred.

If a value function is inferred, it can be optimized and the resulting optimum will result in the

best solution according to the decision maker’s preferences. The value function can also be

used to drastically decrease the computational complexity of large multi-objective optimiza-

tion problems by transforming the problem into a single-objective optimization problem. In

some cases, a partially inferred value function can be used to produce new non-dominated

solutions, which were not present in a previously computed representation of a Pareto opti-

mal set to guide the optimization process toward solutions of greater interest.

2.5 Interactive methods

As was discussed in Section 2.4.1, one category of methods for solving multi-objective op-

timization problems is interactive methods. Real-life optimization problems can often be
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computationally very expensive with many decision variables and objective vectors. A com-

puted representation of the Pareto optimal set might be exceptionally large, even uncount-

able, and the decision maker’s familiarity with the available Pareto optimal solutions may be

very limited. This means that the relevant subset of the Pareto optimal solution set, which

contains the most interesting objective vectors for the decision maker can be assumed to be

unknown before any preference information is gained.

Therefore, a priori and a posteriori methods can be very taxing – either for the decision maker

or computationally. Interactive methods aim to tackle these issues by incorporating the de-

cision maker’s preferences in the optimization process itself. For example, the preference

information can be used to reduce the search space for feasible Pareto optimal solutions. In-

teractive methods also allow the decision maker to learn more about the underlying problem

by providing the decision maker with intermediate solutions and additional information, like

upper and lower bounds of the available feasible solutions.

A recent review on existing interactive multi-objective optimization methods can be found

in [34]. In what follows, two interactive methods for solving multi-objective optimization

problems are presented and briefly discussed. The methods have been chosen to conceptu-

alize the idea of how much interactive methods can differ from each other in how they elicit

the preferences of a decision maker and in their approach to find the best solution.

In the E-NAUTILUS [35] method, the optimization process starts by showing the decision

maker the nadir and ideal points of the multi-objective optimization problem being solved.

The decision maker is then shown a few objective vectors, which are all strictly better than

the nadir point and mutually non-dominated. Each shown objective vector is also associated

with limits of the best reachable Pareto optimal solution from that point. The decision maker

then chooses one of the intermediate vectors to be his/her most preferred and that objective

vector is then used again to generate a new set of intermediate objective vectors, which are all

strictly better than the previously chosen vector and mutually non-dominated. The decision

maker is then asked once again to choose his/her most preferred objective vector from the

intermediate vectors. This iteration process is continued until a vector in the Pareto optimal

set is reached. The central idea of E-NAUTILUS is to start from the worst possible objective

vector and gradually improve upon it. The decision maker is therefore never asked to make
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trade-offs. Instead he/she can always improve upon the previously chosen objective vector.

The authors of the E-NAUTILUS method argue that this kind of process is able to reduce the

anchoring effect6 in a decision maker in a decision making process.

The idea behind the Synchronous NIMBUS7 [3] method is to show the decision maker a

Pareto optimal objective vector and to ask the him/her for preference information related to

the individual objective function values present in the vector. The decision maker is asked

whether he/she would like an objective function’s value to be improved from the shown

value, improved from the shown value until some aspiration level is reached, accepted at

their current level, allowed to be impaired until some bound is reached, or allowed to change

freely. New Pareto optimal objective vectors are computed using the provided preference

information in different types of achievement scalarizing functions. The decision maker can

then choose his/her most preferred objective vector from the new computed vectors, or to

save part of the computed objective vectors to an archive to be viewed later. The decision

maker can also choose to see intermediate objective vectors between two computed vectors

if they so wish. The process can be continued using the new objective vector selected by the

decision maker and asking the decision maker for preference information on the new vector.

This iteration process is continued until the decision maker is satisfied with a found objec-

tive vector. The central benefit of Synchronous NIMBUS is that it uses different kinds of

scalarizing functions, which all produce different Pareto optimal objective vectors using the

same preference information. Bias introduced by choosing just a single scalarizing function

is therefore reduced.

6A type of cognitive bias where the decision maker is affected by some initial piece of information, affecting

subsequent decisions.
7Synchronous NIMBUS is available to be used directly in a web browser at https://wwwnimbus.it.

jyu.fi/
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3 Belief rule-based systems

This chapter begins with a less formal introduction to traditional rules and rule sets given

in Section 3.1. Following it, a detailed discussion on belief rule-based systems is given in

Sections 3.2, 3.3, and 3.4. In Section 3.5, it is shown how a belief rule-based system can be

built, and in Section 3.6 it is shown how the system can be adaptively trained. This chapter

will conclude with Section 3.7, where a numerical example is given, and with Section 3.8,

where a few existing practical applications applying belief-rule based systems in real-world

problems are discussed. The formal presentation of belief-rule based systems given in this

chapter is based on the RIMER methodology [14].

In an attempt to not inflate the amount of different symbols used and introduced in this

thesis, symbols already presented in the previous chapter, Chapter 2, will be reintroduced

in this chapter defined to convey a completely different meaning compared to what was

discussed in the context of multi-objective optimization. This choice has also been made to

keep the used symbols similar to the symbols presented in the original literature, on which

the content of this chapter is partially based on. The reader is therefore advised to keep this

detail in mind.

3.1 Rules and rule sets

Rules are a natural way of conveying information on how an agent or system should work

according to its surrounding environment. Information from the surrounding environment is

gathered via observations of attributes. A rule can be as simple as an if... then... statement;

such a rule could be for example:

Rule 1: “If it rains outside, bring an umbrella.“.

A rule consists of three elements: the precedent, the condition, and the consequent. Take

Rule 1 as an example. In Rule 1, the precedent should answer the question implied by the

condition "If it rains". Therefore, the precedent is tied to the observation of rain outside,

and the precedent should answer the question "Does it rain outside?". This will result in an
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observation producing an observed attribute, which will have the value true if it rains, or

false if it does not rain. The consequent "Bring an umbrella." should follow the condition

only when the answer implied by the precedent is true. When all the necessary observations

have been made to produce all the needed attributes to answer the question implied by the

precedent, and it has been established whether the consequent should follow the precedent,

the rule is said to be resolved.

Still considering Rule 1, suppose there was an agent named Bob who is contemplating

whether he should bring an umbrella outside or not. Bob needs to look outside and see

if it rains or not; he needs to make an observation of his surroundings and gather information

on relevant attributes. Using the observed attribute with the precedent and the condition, the

rule can be resolved: if Bob observes rain, the attribute value tied to the condition will be

true, and the rule resolves to the consequent: "Bring an umbrella.".

However, Rule 1 does not state anything regarding the case when it does not rain outside.

One could argue that the rule implicitly suggests not to bring an umbrella in the absence of

rain, but it is not an explicit consequent of the rule in the case of no rain. To cover the case

of no rain, an additional rule should be stated:

Rule 2: “If it does not rain outside, do not bring an umbrella.“.

In turn, Rule 2 does not state anything regarding the case when it does rain outside. For Bob

to have a coherent set of actions to take, whether to bring an umbrella outside or not, Rules

1 and 2 should be combined into a single rule set:

Rule set 1:

“If it rains outside, bring an umbrella.“

“If it does not rain outside, do not bring an umbrella.“

Rule set 1 is now a complete rule set; a definite consequent follows all possible precedents,

namely "It rains outside." and "It does not rain outside.". If there was a third rule with the

precedent: "It might be raining outside", rule set 1 would be incomplete and is said to contain

a degree of ignorance: it does not state what to do in the case when the observation of rain is

indefinite.
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That being said, in real-life observations are seldom definitive. Covering all possible cases

of different observations made by Bob for Rule set 1 in real-life would mean an addition of

an indefinite number of rules. In practice, trying to cover all cases is an exercise in futility in

real-life situations.

Could the conditions of rules in a rule set have a degree of truthiness1 associated to them,

instead of being simply true of false? Could such a rule set cover a continuous range of

observations and outcomes? Is it possible to infer an appropriate consequent from such a

rule set, and how to interpret the outcome? This is where belief rule-based systems come

into play.

3.2 Belief rules

In a belief rule R, the precedent is defined as a set of finite arrays of referential values. Taking

Rule 1, and adding to the conditional the clause "...and the ground looks wet.", results in:

Rule 3: “If it rains outside and the ground looks wet, bring an umbrella.“.

The condition in Rule 3 now implies two distinct questions: "Does it rain outside?" and

"Does the ground look wet?". Both questions can have an answer of true or false. To

formulate a consequent capable to answer both questions, the consequent is defined as a

set of arrays A, also called the packet precedent. The set A consists of arrays of finite values

Ai, representing the possible attribute values that can result from an observation tied to each

precedent. In case of Rule 3, and representing false by 0, and true by 1, the set A is defined

as

A = {A1,A2 }= {{0,1} ,{0,1}} , (3.1)

where A1 consists of all the possible values of the attribute resulting from the observation

"Does it rain outside?", and A2 consists similarly of the possible values for the attribute

resulting from the observation "Does the ground look wet?".

1A degree indicating how true something is.
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The arrays in (3.1) are said to contain the referential values for each of the attributes relevant

to the rule. If the attribute resulting from the observation "Does it rain outside?" is labelled as

x1, and the attribute resulting from the observation "Does the ground look wet?" is labelled

as x2, then the attributes x1 and x2 can take values only present in the arrays A1 and A2

respectively, that is x1 ∈ A1 and x2 ∈ A2.

Following the RIMER approach [14] to define a belief rule, let A consist of T arrays of finite

values Ai, where the index i refers to the ith element in the set A. Let each array Ai then

consist of n = |Ai| values, each value assumed to be real valued. Then, Ai,n will refer to the

nth value in the ith array Ai in A. The packet precedent can then be defined as

A =
{

Ai =
{

Ai, j | j ∈ [1, |Ai|]
}
| i ∈ [1,T ]

}
, with i,n,T ∈ N. (3.2)

Similarly, an array of finite values denoted by D is defined, and it contains the referential

values for the consequent in a belief rule. The array D consists of all the possible values the

consequent can take. In Rule 3, the consequent can be either false or true. Using the same

representation for true and false, like mentioned before, the possible values for the conse-

quent will be {0,1}. Generally, in a belief rule the consequent with N possible referential

values is defined as

D = {Di | i ∈ [1,N]} , where i,N ∈ N. (3.3)

where Di refers to the ith component of D.

The input to a belief rule is also defined as an array. Looking back at Rule 3, and the attribute

values labelled as x1 and x2, the input to Rule 3 is the vector X = { x1,x2 }. The input can be

generalized as

X = { xi | i ∈ [1,T ]} , where i ∈ N, (3.4)

where xi refers to the ith element in X . Attributes xi in (3.4) can take on values equal to the

values defined in the finite arrays Ai present in the packet precedent A in (3.2).
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The condition of a belief rule can be defined as a logical relationship F between the input X

and the packet precedent A as

F : x1 is A∗1 ∧ x2 is A∗2 ∧·· ·∧ xT is A∗T , (3.5)

where A∗i ∈ Ai represents the referential value taken by the attribute xi in the belief rule. The

logical relation ‘and’: ∧, present in (3.5), could be replaced by some other logical relation,

but in this thesis the RIMER approach is followed, which uses the ∧ relation.

Assuming multiple belief rules to exists, and labeling the rules as Rk, with Rk referring to the

kth rule, the consequent D of each belief rule is associated with an array of real valued belief

degrees βi,k, where the indices i,k refer to the ith belief degree in rule k. The belief degrees

are used to associate a degree of truthiness to each element in the consequent D. That is,

βi,k is used to associate a degree of truthiness to the ith element in D to be the consequent of

the kth rule. Additionally, θk is defined as a real valued scalar, a weight for the kth rule, and

δi,k is defined to be an array of real values representing the attribute weights for each of the

attributes to the input of rule k, with the index i representing the ith attribute’s weight in δi,k.

Using Ak to denote a subset of A, and Tk as the number of finite vectors in Ak, a kth belief

rule is then defined as

IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ . . . ∧ xTk is Ak
Tk
,

Rk : THEN
{(

Di,βi,k
)
| i ∈ [1,N]

}
,

with an associated rule weight θk,

and attribute weights
{

δi,k | i ∈ [1,Tk]
}
,

(3.6)

with the following property for the belief degrees

N

∑
i=1

βi,k ≤ 1. (3.7)

In (3.6), it is understood that the rule Rk has its own packet precedent Ak ⊂ A, with Tk

referential value vectors defined. The rule weight θk represents how important the rule Rk
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is compared to other rules. The attribute weights δi,k represent how important attributes

are compared to each other in the rule Rk. The rule weights and attribute weights will be

discussed later.

The output of a belief rule is a belief distribution. The equality of the property (3.7) is valid

when the output of a rule can be fully expressed using the consequent’s referential values Di.

Otherwise, a degree of ignorance – meaning that the output of a belief rule cannot be fully

specified using the consequent D – is present in the output of the rule.

By constructing multiple rules like defined in (3.6), a belief rule base consisting of L belief

rules, can be established and is represented as

R = 〈X ,A,D,F〉 . (3.8)

Inference can then be performed on the belief rule base R for a specific input vector X . How

to construct an input vector based on an observation, and how inference can be performed

on a belief rule set, will be discussed in the following sections.

3.3 Input transformation

Looking back at the example in Section 3.1, Bob may not be sure if it rains outside: Bob

might believe that it is raining outside with a 90% probability. If the available attributes for

the input were false and true, Bob’s observation cannot be fully expressed by these values.

Like discussed previously, it would be futile to redefine Rule set 1 to cover all possible cases

– which would be analogous to expanding each vector in the packet precedent of a belief

rule set to include all possible values for the observed attributes. This is why a mechanism

for mapping observed attributes to available referential values for said attributes is defined.

Because observations may not always result in attributes that can be specified using the

referential values for the precedents defined in the packet precedent (3.2), some mechanism

must be defined to map observed attributes to the available referential values. An observation

H is a vector consisting of elements hi, where the observed attribute hi is associated to the
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ith input attribute to a belief rule, xi. Formally

H = {hi | i ∈ [1,T ]} . (3.9)

For a single observed attribute hi and the precedent referential values Ai associated to the ith

input attribute to a belief rule, the observed attribute is transformed into a belief distribution

consisting of the elements αi,n. Each αi,n conveys a degree of truthiness that the observed

attribute hi maps to the referential value Ai,n in the packet precedent A. The belief distribution

for the ith observed attribute is defined as

si = { (Ai,n,αi,n) | n ∈ [1, |Ai|]} , (3.10)

The belief degrees αi,n present in (3.10) associated to an observed attribute value hi can be

calculated as follows [36]:

αi,n =

{
min

(
max

(
Ai, j+1−hi

Ai, j+1−Ai, j
,0
)
, max

(
hi−Ai, j−1

Ai, j−Ai, j−1
,0
))
| j ∈ [1, |Ai|]

}
, (3.11)

where Ai,0 = Ai,T and Ai,|Ai| = Ai,1. The belief degrees calculated using (3.11) have the

property

|Ai|

∑
j=1

αi, j ≤ 1. (3.12)

The equality in property (3.12) is valid when an observed attribute hi can be fully expressed

by the values defined in the precedent referential values Ai. If the equality in (3.12) is not

valid, a degree of ignorance is present; the attribute hi cannot be fully specified using the

referential values in Ai.

For multiple inputs, the belief distribution in (3.10) can be generalized to a set of belief
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distributions

S′ = {{ (Ai,n,αi,n) | n ∈ [1, |Ai|]} | i ∈ [1,T ]} . (3.13)

3.4 Inference mechanism

So far, the concept of a belief rule, and how to transform an observed attribute into an input

attribute to a belief rule, has been defined in Sections 3.2 and 3.3. To really make use of a

belief rule base, an inference mechanism is needed.

For a belief rule base consisting of L rules, the rule weights θk, the belief degrees βi,k, and

the attribute weights δi,k, are assumed to be known.2 An activation weight wk, for the kth

rule can then be calculated as follows [36]:

wk =
θk ∏

Tk
i=1

(
αk

i,n

)δ̄i,k

∑
L
l=1

[
θl ∏

Tl
i=1

(
α l

i,n

)δ̄i,l
] , (3.14)

where

δ̄i,k =
δi,k

maxi∈Tk

(
δi,k
) . (3.15)

In (3.14) the term αk
i,n indicates how the ith attribute in an input to the kth rule in a belief rule

base matches the precedent value Ak
i,n defined in the rule. The product in the nominator of

(3.14) is an aggregation of the belief degrees defined in (3.13) for each attribute xi present in

the input of the rule. Since the logical relation of the precedents in a belief rule is assumed

to be the ‘and‘ connective, ∧, the belief degrees are combined using a product. In other

words, a belief rule k is active, meaning it has a non-zero activation weight, only when all

of the attributes in the input to the rule can be associated to the precedent referential values

2For example, if the rule base is used to model the functioning of some system in a specific domain, a

corresponding domain expert can give estimates for the attribute weights.
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Ak
1,A

k
2, . . . ,A

k
Tk

in the condition of the rule. Otherwise, the rule activation weight wk will be

zero, and the rule is not active for the given input.

Moreover, the importance of each attribute in the kth belief rule is indicated by the attribute

weights δi,k, which are normalized to δ̄i,k according to (3.15). Thus, in the kth rule an attribute

with a normalized attribute weight of 1 is deemed the most important affecting the activation

weight in (3.14) substantially, while an attribute with an attribute weight of 0 has no impact

on the activation weight. This is a direct consequent of the nature of the exponential function

present in the multiplicands in (3.14).

Lastly, the rule weights θk are used to represent the relative importance of each rule in a

belief rule set, meaning that the rules with the highest rule weights are the most important

ones and the rules with the lowest weights the least important. In this thesis, rule weights are

defined to be positive and normalized such that they sum to unity:

L

∑
k=1

θk = 1. (3.16)

After calculating the rule weights, inference can be finally conducted on the rule base. The

mechanism to conduct the inference used in this thesis is based on the RIMER methodology

presented in [14]. RIMER itself is based on Dempster-Shafer theory, fuzzy set theory, and

decision theory, each discussed in [36]. This thesis will not dive further into the details of

the inference mechanism and will simply present relevant results.

To aggregate the outputs of the different belief rules in a rule base, a combined belief degree

βn is calculated to produce a final belief distribution

S = { (Dn,βn) | n ∈ [1,N]} (3.17)

on the referential values D, representing the output of a belief rule-base. A real value can be

then associated to each consequent referential value in D – that is, for each Di, i ∈ [1,N] –
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using a utility function defined as

u : Di→ R. (3.18)

The utility function (3.18) is specific to the domain of application the belief rule base is

associated to and it is reflective of how relevant each of the components Di are to the problem

at hand.

After the utility function u is defined, a numerical output y associated to the belief distribution

(3.17) can be defined to be

y =
N

∑
n=1

u(Dn)βn. (3.19)

According to [36], and assuming that the rules in a rule base are independent of each other,

the combined belief degrees for each consequent referential value can be calculated as fol-

lows:

βn =
∏

L
k=1(wkβn,k +1−wk ∑

N
i=1 βi,k)−∏

L
k=1(1−wk ∑

N
i=1 βi,k)

∑
N
j=1 ∏

L
k=1(wkβ j,k +1−wk ∑

N
i=1 βi,k)− (N−1)∏

L
k=1(1−wk ∑

N
i=1 βi,k)−∏

L
k=1(1−wk)

,

(3.20)

where n ∈ [1,N] refers to the nth consequent in D. It is evident in (3.20) that when a rule k is

not activated – meaning its activation weight wk is zero – the combined belief βn will not be

affected by rule k. Furthermore in (3.20), if a rule k is active and the rule has an individual

belief degree βn,k associated to the output Dn in the rule, the combined belief degree βn

associated to Dn must be non-zero. The magnitude of the degree of a rule k affecting the

combined belief degree is affected both by the importance of the kth rule to the overall

output, indicated by the rule weight θk, and by the degree of activation of the precedent in

the kth rule by an input vector, which is indicated by the activation weight wk.
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Symbol Meaning

A packet precedent

Ai a vector of real values representing the referential values for the i precedent

Ai, j the j referential value for the ith precedent

D a vector of real values representing the referential values for the consequent

Di the ith referential value for the consequent

R a belief rule base

Rk the kth belief rule of a belief rule base

X the input to a belief rule

xi the ith attribute value in the input X

F the logical mapping between an input and the packet precedent in a belief rule

Ak
i the precedent referential value taken by the the attribute xi in rule Rk

βi,k belief degree associated to rule Rk and consequent referential value Di

βn the combined belief degrees associated to D

θk the rule weight associated to rule Rk

δi,k the attribute weight associated to attribute xi in rule Rk

δ̄i,k the normalized attribute weight associated to attribute xi in rule Rk

H a vector consisting of observed attributes

hi the ith observed attribute ion H

si the belief distribution associated to hi

αi,n a vector of belief degrees associated to hi

wk the activation weight associated to rule Rk

S′ the set of belief distribution associated to H and each vector αi,n

S the set of belief distribution associated to D and each βn

u an utility function

y the numerical output aggregated from S using u

Table 1: List of symbols used for defining belief rule-based systems. Symbols with the sub-

index n are to be regarded as vectors consisting of real valued elements. See the text for a

more detailed description for each of the symbols.



3.5 Building belief rule-based systems

In the previous sections various concepts like a belief rule base, input transformation, and an

inference mechanism have been introduced. A belief-rule based (BRB) system is a system

that combines those concepts. In Figure 2, a schematic representation of a BRB system is

given illustrating its various components, and how the components depend on each other

through different parameters. In essence, BRB systems model relationships between prece-

dent and consequent attributes given an input based on an observation. A summary of the

different symbols introduced is given in Table 1.

Figure 2: A schematic representation of the components of a BRB system. The arrows repre-

sent the dependencies between the components.

To build a BRB system, an initial3 rule base must be build. This is best demonstrated using

a simple example.

Example 1: Consider a BRB system, which models the relationship of an input X of two

numerical attributes x1 and x2 to some numerical output y, which in turn will be represented

by three consequent referential values D = {D1,D2,D3 }. The packet precedent A of such a

system has two components, namely A1 and A2. Furthermore, suppose that the components

A1 and A2 contain both three referential values, that is A1 =
{

A1,1,A1,2,A1,3
}

and A2 ={
A2,1,A2,2,A2,3

}
. From these precedents, a total of nine belief rules can be constructed.

The nine rules cover all the cases of possible value pairs of the input X = (x1,x2), where

the attributes x1 and x2 take on values available in the vectors A1 and A2, respectively. An

example of such a belief rule according to (3.6) is
3Before any training is done.
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IF x1 is A1
1 ∧ x2 is A1

2 ,

R1 : THEN
{
(Di,βi,1) | i ∈ [1,3]

}
,

with an associated rule weight θ1,

and attribute weights
{

δi,1 | i ∈ [1,2]
}
.

(3.21)

The possible combinations of the precedent referential values present in the precedent of the

rule can be calculated using the Cartesian product over the two referential value vectors A1

and A2:

A1⊗A2 = { (a1,a2) | a1 ∈ A1 and a2 ∈ A2 } , (3.22)

which results in nine different combinations.

The Cartesian product (3.22) can be generalized for any packet precedent with any number

of referential value vectors T as

T⊗
i=1

Ai = { (a1,a2, . . . ,aT ) | a1 ∈ A1 and a2 ∈ A2 . . . and aT ∈ AT } . (3.23)

The number of rules L in a rule base, with the packet precedent A, is then the total number

of combinations in the Cartesian product (3.23), or equivalently

L =
T

∏
i=1
|Ai| . (3.24)

Returning to Example 1, using (3.24) with the defined vectors A1 and A2, the total number

of rules amounts to L = 9, just like previously stated.

The belief degrees βi,k, rule weights θk, and attribute weights δi,k are yet to be defined. The

belief degrees βi,k can be assigned by an expert with expertise on the system being modelled

by the BRB system, or be inferred from existing data. For example, suppose the BRB system
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in Example 1 is used to model the function

f : R2→ R; f (x1,x2) = x1 + x2, (3.25)

that is, the goal is to construct a BRB system able to map the input variables x1 and x2 to the

numerical output x1 + x2.

Using f defined in (3.25), the numerical consequent for each possible combination of the

precedents in (3.22) can be calculated. However, the calculated value for each pair of prece-

dent referential values must be transformed into a belief distribution to produce the belief

degrees βi,k for each rule. Equation (3.11) can be used, with the calculated values using

(3.25) for each rule, to produce a belief distribution of βi,k over the consequent values D

using the substitutions

αi,n→ βi,k, and Ai,→ D. (3.26)

This way all the belief degrees βi,k for each rule can be calculated in the initial rule base.

The remaining rule weights θk, and the attribute weights δi,k, cannot be calculated using

(3.25), and must be inferred in some other way. One way is to assume in the initial rule base

for all the rules and attributes being of equal importance. In that case, the rule weights and

attribute weights are set to be

θk =
1
L

and δi,k = 1, (3.27)

in the initial rule base according to (3.16) and (3.15).

All the necessary components of the initial rule base have now been defined. Input trans-

formation for some observed attributes H can be done using (3.11). The defined packet

precedent A can be used with H to produce the belief degrees αi,k, which can then be used

in conjunction with the rule weights θk, and attribute weights δi,k to calculate the rule activa-

tion weights wk using (3.14). Information of the Example 1’s rule base can be summarized
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Input Belief output

D1 D2 D3

A1(w1) β1,1 β2,1 β3,1

A2(w2) β1,2 β2,2 β3,2

A3(w3) β1,3 β2,3 β3,3

A4(w4) β1,4 β2,4 β3,4

A5(w5) β1,5 β2,5 β3,5

A6(w6) β1,6 β2,6 β3,6

A7(w7) β1,7 β2,7 β3,7

A8(w8) β1,8 β2,8 β3,8

A9(w9) β1,9 β2,9 β3,9

Table 2: A belief rule expression matrix summarizing the information of the rule base for a

rule base with nine belief rules, and three consequent referential values.

in what is called a belief rule expression matrix shown in Table 2.

Each row in Table 2 represents one rule in the rule base with the associated consequent

belief degrees. The first column in Table 2 represents the inputs, each being one of the pairs

of referential values emerging from the Cartesian product in (3.22) to each rule with that

rule’s activation weight.

The information in Table 2 for some input X can now be used to infer the combined belief

degrees of the BRB system using (3.20) to produce the output of the system S as defined in

(3.17). Assuming a simple identity utility function with (3.18),

u(Dn) = Dn, (3.28)

the numerical output of the BRB system can be finally calculated using (3.19) and the cal-

culated combined belief degrees βn. As an example of this, consider the belief distribution

{0.25,0.5,0.25} over the consequent referential values D in Example 1. The numerical
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output according to the utility defined in (3.28) is

y = 0.25×D1 +0.5×D2 +0.25×D3. (3.29)

3.6 Training belief rule-based systems

By tuning the internal parameters of a BRB system: the rule weights θk, the precedent ref-

erential values Ai, the individual belief degrees βi,k, and the attribute weights δi,k, the BRB

system can be trained to model some external system. By modelling an external system, it

is meant that the BRB system is able to map inputs to outputs approximating the behavior

of the system being modelled. This is done in the examples presented in Section 3.7. For

example, a BRB model could be trained to model the behavior of a non-linear function of

which the analytical form is not fully known, but the output to certain inputs are known.

One way of choosing suitable parameter values for a BRB system is to use adaptive training

utilizing observed data of a system being modelled in the form of m input-output pairs (x̂, ŷ).

Then, an initial BRB system can be used to compute an output y using a suitable utility

function to transform the belief distribution over the consequent referential values into a form

comparable to ŷ for every input x̂. The outputs produced by the BRB system can then finally

be compared to the observed outputs, and using a suitable difference metric, the difference

between the observed output and the output produced by the BRB system can be computed.

By aggregating all of the differences, a cost function can be formulated. Assuming all the

outputs to be scalar valued: ŷ = ŷ and y = y, a cost function can be defined as

ξ (P) =
1
m

m

∑
i=1

(ŷi− yi)
2, (3.30)

where the internal parameters of a BRB system are denoted as P = P(θk,Ai,βi,k,δi,k), the

chosen difference metric is the mean squared error, and the index i refers to the ith output
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out of the m total outputs. Using the cost function (3.30), a minimization problem is defined

min
P∈P

ξ (P), (3.31)

where the parameters in P are subject to constraints indicated by P ∈ P in (3.31), and where

P is the set of parameters P abiding the following constraints: the rule weights must sum

to unity (3.24), the individual belief degrees for each consequent value in the kth rule must

be less than or equal to one (3.7), and the precedent referential values are assumed to be

hierarchical, that is, Ai,n ≤ Ai,n+1 for all Ai present in the rule base. The constraint to keep

the referential values hierarchical stems from the assumption that the input attributes xi are

monotonically increasing in terms of Ai, meaning, the higher the value of xi is the higher the

referential values Ai,n to which xi is assigned to are. Each of the parameters, apart from the

precedent referential values, is also assumed to be constrained in the range [0,1].

The problem in (3.31) can then be solved using conventional methods for solving differen-

tiable single-objective optimization problems, like SLSQP as discussed in Section 2.3. The

optimal solution P̃ contains the parameters for a BRB system that can reproduce outputs

y close to the observed outputs ŷ, using the corresponding input vectors x̂. If the optimal

parameters P̃ to the problem (3.31) results in the cost function value to be zero, then the

resulting BRB system can predict the outputs corresponding to x̂ with a 100% confidence,

which means that for all y, y = ŷ. Otherwise, a degree of error is present, which is directly

proportional to the value of the cost function (3.31) with parameters P̃, and is defined as the

mean squared error. After solving (3.31), the BRB system can be regarded as being trained

to model an external system characterized by the observed input-output data.

3.7 A numerical example

In this section, a numerical example4 is presented, where the ideas discussed in Section 3.5

and Section 3.6, are conceptualized into a practical example on how to build and train a

simple BRB system.

4The code is available at https://github.com/gialmisi/desdeo-brb/blob/master/

desdeo_brb/example_nonlinear_scalar_function.py
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Suppose the non-linear scalar valued function

f : R→ R : f (x) = cos(
√

x)2 + cos(x)2, where x ∈ [0,5], (3.32)

is to be modelled using a BRB system. The packet precedent of the BRB system con-

sists of one vector of referential values, and is chosen by taking into account the lim-

its imposed on the variable x in (3.32). The precedent referential values are chosen to

be A = A1 = {0,1,2,3,4,5}. The consequent referential values are defined to be D =

{D1,D2,D3,D4,D5 } = {0,0.5,1,1.5,2}, where the first and last components are chosen

based on the maximum an minimum values (3.32) can take, respectively. The rest of the

components in D are chosen in a way to keep D evenly distributed, so that the referential

values in the consequent can best represent any value between D1 and D5.

Using the function (3.32), the initial rules for the BRB system can be inferred. The value of

(3.32) is computed for each of the precedent referential values in A. The resulting function

value is then converted to a distribution of belief degrees using the substitutions described in

(3.26), and (3.11). This results in six rules, L = 6, to be used in the BRB system.

The initial rule weights are chosen to be equal for each rule, that is θk =
1
L = 1

6 , k ∈ [1,6], and

the initial attribute weights are all chosen to be 1 in each rule: δi,k = δ1,k = δk = 1, k ∈ [1,6].

Each rule has now only one attribute weight, since the packet precedent A of the rule base,

has only one element defined in it.

Rule k θk δk x f (x) Consequent belief distribution
{
. . . ,(βi,k,Di), . . .

}
1 0.18 1 0 2.00 { (0,D1),(0,D2),(0,D3),(0,D4),(1.00,D5)}

2 0.18 1 1 0.58 { (0,D1),(0.83,D2),(0.17,D3),(0,D4),(0,D5)}

3 0.18 1 2 0.20 { (0.61,D1),(0.40,D2),(0,D3),(0,D4),(0,D5)}

4 0.18 1 3 1.01 { (0,D1),(0,D2),(0.99,D3),(0.01,D4),(0,D5)}

5 0.18 1 4 0.60 { (0,D1),(0.80,D2),(0.19,D3),(0,D4),(0,D5)}

6 0.18 1 5 0.46 { (0,D1),(0.08,D2),(0.92,D3),(0,D4),(0,D5)}

Table 3: The initial rule base of the BRB system modelling the function (3.32). The values

tabulated are rounded to two decimals.
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Table 3 summarizes the parameters and the rules of the initial rule base defined. It is impor-

tant to note that taking the sum of the consequent values, weighed by the individual belief

degrees βi,k, in each rule, should result in the corresponding tabulated f (x) value in Table 3.

To train the rule base, a thousand5 input attributes x̂ are generated evenly distributed on the

domain of (3.32). For each generated x̂, an output ŷ is computed using (3.32). This results

in a thousand input-output pairs (x̂, ŷ) that will act as observed data, as discussed in Section

3.6, which will be used to train the BRB system.

For each of the observed input attribute x̂, an output y can be calculated using the BRB

system according to (3.19), and the utility function defined in (3.18). The outputs y can be

compared to the observed outputs ŷ, and a cost function (3.30) is formulated. Solving the

minimization problem (3.31), the set of optimal parameters P̃ is obtained, which results in a

BRB system able to produce from each input x̂ an output y, which is close to the observed

output ŷ. The lower the value of the cost function in (3.31) is, the closer the outputs of the

BRB system will be to be observed outputs. The trained BRB system is summarized in Table

4.

Rule k θk δk x f (x) Consequent belief distribution
{
. . . ,(βi,k,Di), . . .

}
1 0.11 1 0 2.00 { (0.04,D1),(0,D2),(0,D3),(0,D4),(0.96,D5)}

2 0.09 1 0.57 1.24 { (0.40,D1),(0,D2),(0,D3),(0,D4),(0.60,D5)}

3 0.16 1 1.75 0.09 { (0.95,D1),(0,D2),(0,D3),(0,D4),(0.06,D5)}

4 0.22 1 3.21 1.04 { (0.46,D1),(0,D2),(0,D3),(0.04,D4),(0.50,D5)}

5 0.20 1 4.67 0.31 { (0.71,D1),(0.18,D2),(0,D3),(0,D4),(0.11,D5)}

6 0.23 1 5 0.46 { (0.36,D1),(0.56,D2),(0,D3),(0,D4),(0.08,D5)}

Table 4: The trained rule base of the BRB system for modelling the function (3.32). Tabulated

values are rounded to two decimals.

Computing the numerical output for each rule in Table 4 by taking the sum (3.19) over the

consequents weighted by the belief degrees, and using the utility (3.28), will not necessarily

exactly agree with the function’s true output on the f (x) column for the same input attribute

5Which is arguably a few hundred too many for such a simple problem.
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Figure 3: The trained and untrained output of the BRB system for the evaluation attributes x̃

plotted alongside the true values of the function the BRB system is trying to model.

x. This is the expected behavior, which results from the way the BRB parameters P are

trained using the minimization problem (3.31), where the value of the final minimized cost

function is greater than zero. The minimized value of the cost function resulting from the

example in this section was 0.00045, therefore some margin of error is expected.

To test the trained BRB system, and compare it to its untrained initial state, where the BRB

system’s parameters P have not been computed by minimizing (3.31), a set of a hundred

evaluation input attributes x̃ is generated, all differing from the observed input attributes x̂.

This way the predictive capability of the BRB system can be tested on data the system has

not seen before.

In Figure 3, the output of both the trained and untrained BRB systems is plotted for the

evaluation input attributes x̃, alongside with the actual function values f (x̃) computed using

(3.32). It is evident from Figure 3 that the trained BRB system is more capable of modelling

the original function. However, it is also worth noticing that the untrained BRB system is not

far off from the original function either, which shows the predictive power of BRB systems

with only the initial rule base being defined.
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Figure 4: The trained and untrained output of the BRB system modelling the function

xsin(x)2, which was used in an example presented in [36].

The example given in this section was calculated using the BRB software framework to be

discussed in Chapter 4. Additionally, the original example in [36] has been reproduced using

the same software framework.6 In the original example, the function xsin(x2) was modelled,

but was otherwise identical to the numerical example in this section. The original example

was reproduced to verify that the software framework works as intended. The results of the

reproduction are depicted in Figure 4.

3.8 Examples of real-world applications

Belief-rule based systems have been used in real world applications as well. For example

in [37], a BRB system has been used for the fault diagnosis of marine diesel engines. The

used BRB system consists of many concurrently activated BRB systems, referred to as sub-

systems. Each subsystem is trained to predict a different kind of possible diesel engine fault,

and a single input is fed concurrently to all the subsystems resulting in a concurrent BRB

6The code used to compute the results is available at https://github.com/gialmisi/desdeo-

brb/blob/master/desdeo_brb/example_original_article.py
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system. The authors of [37] argue that the concurrent BRB system is able to detect coexisting

fault modes in marine diesel engines. The performance of the concurrent BRB system is also

compared to more conventional machine learning models: artificial neural networks, support

vector machines, and binary logistic regression. The authors conclude that the concurrent

BRB system outperforms all the models it is compared to, both in accuracy of the fault pre-

dictions and stability. The concurrent BRB system is therefore concluded to be suitable for

predicting faults in marine diesel engines.

Similarly in [38], BRB systems have been used to build a decision support system for physi-

cians to predict in-hospital death and intensive care unit admission among trauma patients.

The BRB based system is also compared to artificial neural networks, support vector ma-

chines, several logistic regression models, all using the same data set. The authors argue that

the BRB system has the best predictive capabilities, and is possible to be improved further

using historical data.

Additionally, in [39] a BRB system has been used for pipeline leak detection, and in [40] for

portfolio optimization with non-linear cash flows and constraints. BRB systems have also

been used to assess the clinical risk of cardiac chest pains under uncertainty in [41].

It is evident that BRB systems are a viable method to model a wide array of systems. They

seem to be comparable, and arguably even better in some cases, when compared to conven-

tional machine learning methods, such as neural networks and support vector machines.
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4 The INFRINGER method

In this chapter the interactive multi-objective optimization method developed in this thesis is

introduced. The method aims to combine BRB systems discussed in Chapter 3 with multi-

objective optimization discussed in Chapter 2. The method is named INFRINGER, which

stands for Interactive inference of preferences using belief rules. The name tries to capture

the central idea behind the method.

This chapter will begin with Section 4.1 where the INFRINGER method and its two variants

are described. Section 4.2 will give a brief description of the software framework developed

by the author of this thesis to build and train belief-rule based systems. And finally, in Section

4.3 the software implementation of the INFRINGER method is discussed.

4.1 INFRINGER

INFRINGER is an interactive multi-objective optimization method, which aims to learn the

preferences of a decision maker utilizing a value function discussed in Section 2.4.2, and by

modeling the value function using a BRB system.

The central idea of the method is to interactively show a decision maker Pareto optimal

objective vectors related to a multi-objective optimization problem being solved and interac-

tively ask the decision maker for his/her preferences. Using the preference information, the

underlying BRB system is trained to model the decision maker’s preferences. The type of

preference asked from the decision maker depends on which variant of the method is used.

Two variants of the INFRINGER are described in this section: Variant 1 and Variant 2. In

both variants, it is assumed that the preferences of the decision maker do not change during

the course of the algorithm.

In what follows, the different steps of the INFRINGER method are described in detail. Based

on the descriptions given, the method is then summarized in Algorithm 1.
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4.1.1 Input and output

Common to both variants of INFRINGER, the method requires as its input the following:

1. A set of non-dominated objective vectors ZPareto approximating the Pareto optimal set

of a multi-objective optimization problem.

2. The ideal point z∗ and (representation of) the nadir point znad of the representation of

the Pareto optimal set.

3. A fitness threshold γth ∈ R+ used to asses the fitness of the learned value function –

How well does the learned value function approximate the true value function of the

decision maker? – and to act as a termination criterion in the method.

The representation of the Pareto optimal set, the nadir point, and the ideal point, can be

computed for a multi-objective optimization problem using the methods discussed in Section

2.3. The threshold can be set by either the analyst1 or it can be decided between the decision

maker and the analyst.

The output for both variants include:

1. A trained BRB system able to model the decision maker’s preferences using a learned

value function.

2. The five most preferred objective vectors in ZPareto according to the learned value func-

tion.

4.1.2 Conceptualizing the representation of the Pareto optimal set to the decision

maker

After the required input to the INFRINGER method has been acquired, the nadir and ideal

points are shown to the decision maker. He/she is then asked whether they would like to

give a reference point z̄, with each element being restricted to the bounds spanned by the

elements in the nadir and the ideal points. If the decision maker does not wish to give a

1Person in charge of formulating the problem and operating the method.
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reference point, the reference point is set to be

z̄ =
{

znad
i + z∗i

2
| i ∈ [1,m]

}
, (4.1)

where maximization is assumed for all objectives in the underlying optimization problem,

and m is the number of objectives present in the optimization problem. The reference point

acts as the mid-point when building the initial rule base of the underlying BRB system used

in the method.

Next, ZPareto, znad, z∗, and z̄ are visualized to the decision maker. In this thesis, only multi-

objective optimization problems with a maximum of three objectives are considered. It is

therefore out of the scope of this thesis to go into details about techniques for visualizing

m > 3 dimensional objective vectors. For discussions on how to visualize problems with

m > 3 objectives, see [42] and [43] for example. Henceforth, a maximum of three objectives

is assumed, and visualization techniques like 3-dimensional scatter plots can be assumed to

be suitable. However, it is important to note that the INFRINGER method is not limited

by the number of objectives present in the underlying multi-objective optimization problem,

and could be applied to problems with more than three objective functions.

4.1.3 Belief rule-based system initialization

Using the reference point given, as discussed in Section 4.1.2, the BRB system of the IN-

FRINGER method is initialized. The BRB system is built like described in Sections 3.5 and

3.7.

Internal data2 used in the INFRINGER method is always assumed to be normalized. For

the objective values, normalization means that all the objective values will have a maximum

possible values of 1, and a minimum possible value of 0. The ideal and nadir points are used

to compute the normalization, and are also normalized to the same scale. This means that

internally, and assuming maximization, the nadir point will have all its components set to 0,

and the ideal point will have all its components set to 1. The Pareto optimal objective vectors

2Data not shown to the decision maker, but used for internal computation in the INFRINGER method.
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will then have all their components restricted between 0 and 1.

The packet precedent A of the belief rule-base is defined to have m finite referential value ar-

rays Ai as its elements – one array for each objective. Each Ai has three precedent referential

values as their elements, and each Ai defines the possible referential values for each of the

objectives. The first element in each Ai is set to be 0, and the last element is set to be 1. The

middle element is set to be Ai,2 = z̄i, i ∈ [1,m]. The choice of three elements for each Ai has

been a result of trial and error. However, the author of this thesis has concluded that three

referential values for each objective offer a reasonable trade-off between predictive power

and computational efficiency in the resulting BRB system. Consequent referential values are

set to be D = {0,0.25,0.5,0.75,1}, the choice of which is also a result of trial and error.

Because the choice of referential values, both for the precedents and consequent, are a result

of trial and error, the formulation of the referential values could be experimented with for

potentially enhancing the performance of INFRINGER further.

The rule base of the BRB system will have 3m rules according to (3.24). The numerical

output of each rule is computed using the principle

fp(z) =
∑

m
i=1 zi

m
, (4.2)

which is chosen to represent a simplest possible initial value function congruent with the as-

sumptions made in Section 2.4.2. In (4.2), the p present in the sub-index is part of the name

of the function, and to remind the reader, z is an objective vector with components zi. The

computed value using (4.2) is then transformed in a belief distribution over the consequent

referential values D, like discussed in Section 3.5. This kind of belief distribution is com-

puted for each belief rule in the initial rule base with each rule being defined as presented

in (3.6). The rest of the parameters in the BRB system: the rule weights and the attribute

weights are initialized according to (3.27).

A simple identity utility function is chosen equivalent to (3.28). The BRB system can then

be used to compute a numerical output for any of the objective vectors present in ZPareto as

described in Section 3.4. The numerical value computed by the BRB system for an objective
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vector z will be referred to as the score given by the BRB system for that particular vector.

As a short-hand notation, let

B(z) = score calculated for z (4.3)

denote the score computed by the BRB system for the objective vector z. The score calcu-

lated using (4.3) will be limited between 0 and 1 as a direct consequence of the normalization

of the parameters used in the BRB system.

According to (4.2), the nadir and ideal points will yield B(znad) = 0 and B(z∗) = 1, and

(4.3) is also congruent to the assumptions made regarding the value function in Section 2.4.2.

Therefore, the initial BRB system is assumed to model – or at least approximate closely – a

valid value function.

4.1.4 Assessing the initial fitness of the model

With the BRB system initialized, a score according to the BRB system can be calculated for

each objective vector in ZPareto using (4.3). The scores will form a set

SBRB =
{
B(z) | z ∈ ZPareto } . (4.4)

Calculating the mean µ and standard deviation σ for the scores in (4.4), five objective vector

pairs are chosen from ZPareto based on the values of µ and σ in the following way: the

vectors are chosen such that the first pair consists of a pair of vectors with score values being

a standard deviation σ apart from each other 3 centered around the mean µ . The second

pair is picked similarly to the first pair, but 2σ apart, the third pair being 3σ apart. The

fourth pair will consist of the objective vectors with the highest and lowest scores in the

representation of the Pareto optimal set according to (4.4), and the fifth pair will consist of

two randomly chosen objective vectors in the representation of the Pareto optimal set. The

goal of choosing the pairs in the manner described is to get a representation of the objective

vectors in the Pareto set with enough variety for the vectors to be interesting to the decision

3Or as close as possible to being one standard deviation apart in respect to their scores. The same is true for

the rest of the pairs, respectively.
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maker, and to capture preference information based on noticeably different objective vectors.

The pairs are then shown to the decision maker.

For each pair of objective vectors, the decision maker is asked whether they prefer the first

or the second vector or if the decision maker deems the vectors to be equally preferable.

An objective vector being preferred to another means that its value should be higher than the

other’s according to the value function of the decision maker. Assuming a true value function

sDM exists, which is able to model the decision maker’s true preferences, the preferences can

be expressed using sDM as

z1 is preferred to z2 : sDM(z1)> sDM(z2)

z2 is preferred to z1 : sDM(z1)< sDM(z2)

z1 is equally preferred to z2 : sDM(z1) = sDM(z2),

(4.5)

where z1,z2 ∈ ZPareto. The BRB system in the INFRINGER method tries to model the true

value function of the decision maker sDM.

The preference information on the left hand side of the statements in (4.5) is given explicitly

by the decision maker for the five pairs of objective vectors shown. The same pairs can be

used with the BRB system, and the preference according to the value function modelled by

the BRB system can then be compared to the preferences which were given by the decision

maker. The true form of sDM is never assumed to be known.

A metric indicating how well the value function modelled by the BRB system agrees with

the true value function of the decision maker can then be computed as

ffit(z1,z2) =


1 if any of


sDM(z1)> sDM(z2) ∧ B(z1)>B(z2)

sDM(z1)< sDM(z2) ∧ B(z1)<B(z2)

sDM(z1) = sDM(z2) ∧ B(z1) =B(z1)

,

0 otherwise,

(4.6)

where the left hand sides of the conditionals for ffit being 1, are replaced by the information
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gathered from the decision maker according to (4.5). In other words, it is not necessary to

know the form of sDM.

Finally, a fitness γ can be computed

γ = ∑
for all five pairs (z1,z2)

ffit(z1,z2)/5 (4.7)

to indicate a degree of agreement between the utility function B being modelled, and the

true value function for the decision maker sDM. The fitness γ will take values between 0 and

1: 0 indicating a full disagreement and 1 indicating a full agreement. The fitness parameter

γ can also be transformed into a percentage value multiplying it by 100. A percentage value

can sometimes be more readily understood by humans than a value between 0 and 1.

4.1.5 The cost function

Before the two variants of the INFRINGER method are described, it is necessary to define

the cost function used to optimize the internal parameters P = P(θk,Ai,βi,k,δi,k) of the BRB

system in a similar fashion to what was done in Section 3.6.

The cost function is defined as an aggregated cost function

ξ (P→B) = (ξnadir +ξideal +ξmono +ξscores +ξpair)/5, (4.8)

where P→B indicates that the underlying BRB system is always updated with the parame-

ters P before it is evaluated, and the ξ ’s on the right hand side are other cost functions related

to different criteria, which will be discussed in the remainder of this subsection.

In (4.8), ξnadir is the nadir cost function and ξideal is the ideal cost function. The nadir and

ideal cost function are defined as

ξnadir = ξnadir(P→B;znad) =

0 if |B(znad)|−δ ≤ 0,

|B(znad)| elsewhere,
(4.9)
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and

ξideal = ξideal(P→B;z∗) =

0 if |B(z∗)−1|−δ ≤ 0,

|B(z∗)−1| elsewhere,
(4.10)

where in both equations δ is some small positive real value, which is used to allow the value

of B to differ from a target value by δ . The cost functions (4.9) and (4.10) are used to limit

the value of B to be between 0 and 1, such that it will score the nadir point to be as close as

possible to 0 and the ideal point to be as close as possible to 1. If the output of B is not in

the target range, which depends on the magnitude of δ , then the cost function’s value will be

a positive value greater than zero.

The function ξmono in (4.8) is the monotonic cost function, and is defined as

ξmono = ξmono(P→B;Emono) = ∑
∀ei∈Emono

ei, (4.11)

where

Emono =


0 if ¬

∨m
i=1(z

′
i ≥ z′′i )∧B(z′)≥B(z′′),

1
|Emono| else,

∣∣∣∣∣∣∣z′ ∈ Z′ and z′′ ∈ Z′′

 , (4.12)

is a set of real-valued numbers, where each element ei represents the monotonicity of (4.3)

when tested with two vectors z′ and z′′ according to a similar condition for monotonicity

defined in (2.20), but with maximization assumed; if (4.3) is monotonic, ei is zero, otherwise

it will take on the value of the reciprocal of |Emono|. In (4.12), Z′ and Z′′ are two sets of equal

size, |Z′|= |Z′′|, which consist of objective vectors with components limited to the range set

by the nadir and ideal points defined in the underlying multi-objective optimization prob-

lem. The two sets have been chosen to contain randomly chosen objective vectors uniformly

spread in the space limited by the ideal and nadir points. The elements in Z′ and Z′′ should

be mutually unique, that is, no same objective vector should be present in both sets to avoid

degeneracy. The unary operator "¬" in (4.12) is the logical negation operator.
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If all the elements ei in Emono are zero, it means that B is monotonic at least in the discrete

space spanned by Z′ and Z′′ and (4.11) will be equal to 0. Otherwise (4.11) will have a

positive value greater than zero.

It is assumed in the INFRINGER method that if B is monotonic in the discrete space spanned

by Z′ and Z′′, then it is sufficiently monotonic elsewhere. This is an approximation. How

good the approximation for the monotonicity of B is depends on the quality of the spread

of the objective vectors in both Z′ and Z′′ and the size of the sets. If Z′ and Z′′ are large sets

with evenly spread vectors, then the approximation is assumed to be sufficiently good.

The cost function ξscore in (4.8) represents the score cost function related to how well B

scores individual objective vectors compared to the scores the decision maker has assigned

to the same vectors. This cost function ξscore is only relevant in the first variant of the

INFRINGER method. How the decision maker assigns these scores, is discussed in Sec-

tion 4.1.6. The cost function ξscore is defined as

ξscore(P→B;Zs,Ss) =
1
ns

ns

∑
i=1

fs(zs
i ,si), zs

i ∈ Zs,si ∈ Ss, (4.13)

where

fs(z,s) =

0 if |B(z)− s|−δ ≤ 0,

|B(z)− s| elsewhere.
(4.14)

In (4.13), Zs and Ss are sets, where the index s refers to the sth objective vector in Zs scored

by the decision maker with score Ss, and ns dentoes the number of objective vectors scored

by the decision maker. Therefore, the set Zs is composed of objective vectors, and Ss is a set

of real valued numbers representing the scores given by the decision maker for the vectors

in Zs. Both sets are also of equal size, |Zs| = |Ss| = ns. The threshold δ in (4.14) plays a

similar role to the δ s present in the nadir and ideal cost functions in (4.9) and (4.10).

Lastly, the function ξpair denotes the cost function related to the pair-wise comparison of
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objective vectors discussed in Section 4.1.4. It is defined as

ξpair(P→B;Zpairs) = ∑
∀(z1,z2)∈Zpairs

f f it(z1,z2)/np, (4.15)

where Zpairs is a set of objective vector pairs compared by the decision maker and |Zpairs|=

np denotes the number of pairs. If the value function being modelled is congruent with the

decision maker’s value function, then (4.15) will equal to zero.

All the cost functions defined in (4.8) have a maximum possible value of 1 and a minimum

value of 0. Therefore, the value of (4.8) is also bound between 0 and 1. When (4.8) is

minimized as a function of P, a set of optimal parameters P̃ is found. After the BRB system

is updated with the optimal values P̃ found, the BRB system is assumed to be trained to

model the preferences of the decision maker. Then, B represents the decision maker’s value

function. The minimization problem can be formulated as

min
P∈P

ξ (P→B), (4.16)

where the parameters P are restricted to the feasible set P, which is defined by the same

constraints discussed in Section 3.6.

4.1.6 Variant 1: scoring of individual points

In the first variant of the INFRINGER method, the decision maker is asked to score five

objective vectors in ZPareto. The amount of five vectors is chosen because it is low enough

to not tire the decision maker too much cognitively, yet high enough to provide enough

information for the BRB system to be able to learn. The objective vectors to be shown

to the decision maker are chosen by computing the mean µ and standard deviation σ for

the scores in (4.4). The objective vectors are chosen based on their scores (4.4). The first

objective vector is chosen to have a score as close as possible to the mean. The second and

third objective vectors are chosen such that their scores are as close as possible to µ−σ and

µ +σ , respectively. The fourth and fifth vectors are chosen based on their scores being as

close as possible to µ − 2σ and µ + 2σ , respectively. The decision maker is then asked to
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score each of the objective vectors on a scale from 0 to 100, where 0 is the worst possible

score, indicating a very strong dissatisfaction in the objective vector, and where 100 indicates

a very strong satisfaction in objective vector. This scale is chosen because it is assumed that

this kind of scale is a familiar way for scoring things for the decision maker, and the scale

also offers the possibility to fine-tune the scores if for example two vectors being scored are

both almost equally preferable to the decision maker. This sort of fine-tuning is not possible

if the scale for the scores was chosen to be from 1 to 5, for instance.

Using the objective vectors shown and the scores given by the decision maker, the cost

functions (4.8) can be formulated and ξpair is set to be zero. The scores given by the decision

maker are scaled to be between 0 and 1. Now (4.16) can be solved, and the found optimal

value for the parameters P is used to update the BRB system. The resulting value function

B modelled by the updated BRB system is then visualized to the decision maker, and the

partial ranking of the representation of the Pareto optimal set ZPareto is also visualized to

the decision maker. The partial ranking is based on the scores given by the modelled utility

function B. Examples of both visualizations mentioned can be found in Chapter 5.

Next, the fitness γ is calculated according to (4.7) by asking the decision maker to compare

five pairs of objective vectors as was discussed in Section 4.1.4. If the fitness is satisfac-

tory, meaning that it is greater than the fitness threshold γth, then the INFRINGER method

terminates. If the fitness is not satisfactory, the cost function related to the pair-wise com-

parisons ξpair defined in (4.15) is formulated using the preference information given by the

decision maker in the pair-wise comparisons. The cost function (4.8) is then updated and it

is minimized again.

The same visualizations are presented to the decision maker, which were presented after

the individual scoring of objective vectors and the fitness of the BRB system is once again

calculated by asking the decision maker to compare five objective vector pairs. If the fitness

is still not satisfactory, the new pair-wise comparisons are used to update in an additive way

the cost function ξpair. Here, additive means that the information from the previous pair-

wise comparisons is kept, with an exception made in regard the first pair-wise comparisons

conducted from which comparison information is not kept as it is used to only assess the

fitness of the initial value function modelled by the BRB system. Continuing, (4.16) is then
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solved once again.

This whole process described, where the decision maker is asked to compare objective vector

pairs, the fitness of the BRB system is calculated, and the cost function (4.16) is solved

with an updated ξpair is repeated until a satisfactory fitness γ is reached. To quantify the

termination criterion, the fitness threshold γth is used. When γ > γth holds, the method is

terminated.

4.1.7 Variant 2: pair-wise comparisons only

The second variant of the INFRINGER method is a simplified version of the first variant.

Instead of individually scoring objective vectors, the preference information gathered from

the initial pair-wise comparison is used to formulate ξpair from the very beginning. Then,

(4.16) is solved immediately after the initial fitness of the BRB system is calculated and the

method continues just as in the first variant. In the aggregated cost function (4.8), the cost

function associated with the score ξscore is set to be always zero in the second variant.

4.1.8 Termination

After a satisfactory fitness for the BRB system is reached, the INFRINGER method is termi-

nated. Before the termination, the decision maker is shown the five highest scoring objective

vectors in ZPareto according to B from which the decision maker can then choose their most

preferred solution. Five objective vectors are shown because the modelled value function

will likely contain a margin of error dependant on the non-zero value of the aggregated cost

function (4.8) when evaluated for the value function modelled by the final BRB system. If

the value was zero, then it can be assumed that the highest scoring objective vector in the

representation of the Pareto optimal set used in the INFRINGER method to be the best.

Supposedly, B in the final BRB system is able to model the preferences of the decision maker

in terms of his/her value function. The best objective vectors shown can be traced back to the

corresponding decision variable vectors. However, these decision variable vectors can often

be dimensionally large, as is the case in the case study discussed in Chapter 5 with near 1.3e4

independent decision variables. It is not feasible to show the vectors in a numerical form,
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but they should be visualized to the decision maker in one form or another. The visualization

of such decision variable vectors is out of the scope of this thesis and will therefore not be

discussed further.

4.1.9 Summarizing the INFRINGER method

The INFRINGER method described in this section is summarized in Algorithm 1 for both

variants Variant 1 and Variant 2. Many of the abstract ideas, especially how the interaction

with the decision maker takes place and the visualizations, are conceptualized in Chapter 5,

where the INFRINGER method is used to solve a real-life problem in Finnish forestation.

4.2 The belief rule-based systems software framework

To build the necessary belief-rule based system used in the INFRINGER method, a software

framework has been developed by the author of this thesis which has been implemented

using Python [44]. In the software framework, the ideas discussed in Chapter 3 are im-

plemented in an extensible and flexible modular software structure using object-oriented

programming. The advantages that come with implementing the BRB system using object-

oriented programming allow many of the individual components of a BRB system to be

individually modified and accessed as needed. This is done for example in implementing the

cost function specified in (4.8) by inheriting from a base cost function class and modifying

the inherited version to be congruent with (4.8).

In the software framework implementation for building BRB systems, SciPy (the library)4

[45], NumPy5 [46], and Matplotlib6 [47] software libraries have been used. All the soft-

ware libraries used are part of the SciPy – which unfortunately shares the same name with

the SciPy software library – Python-based ecosystem7 of open-source software for scientific

and numerical computing. Many of the equations used in the inference of a BRB system

have been vectorized using the data structures available in NumPy, resulting in good com-

4https://docs.scipy.org/doc/scipy/reference/ (July 3, 2020)
5https://numpy.org/ (July 3, 2020)
6https://matplotlib.org/ (July 3, 2020)
7https://www.scipy.org/ (July 3, 2020)
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putational efficiency. SciPy has been used to minimize the cost function with the sequential

least squares programming method discussed in Section 2.3. Matplotlib has been used to

implement visualizations.

The software framework can be used to define a BRB system with an arbitrary amount of

input attributes. The only limitation is that the BRB system built should have a packed

precedent A with elements Ai all having the same size. This limitation arises from the afore-

mentioned vectorization, and has been a conscious trade-off made by the author of this thesis

when developing said framework.

Section 3.7 contains a couple of examples on the usage of the framework for building BRB

systems to model simple, nonlinear scalar valued functions with adaptive training. In Ap-

pendix A, a source code example to build and train a BRB system to model the Himmelblau8

function is given. The example in Appendix A demonstrates how a BRB system with multi-

ple input attributes can be modelled using the software framework. The software framework

described in this section is available on GitHub9 as freely distributable open-source software.

4.3 Implementation of the INFRINGER method

The INFRINGER method has been implemented in Python by the author of this thesis using

the BRB software framework discussed in Section 4.2. The implementation has been used

in the case study in Chapter 5, and the source code of the implementation is also available on

GitHub10. The graphical user interface in the implementation of the INFRINGER method

has been implemented using the bindings to the Tk graphical user interface toolkit11 present

in the Python library tkinter12.

8 f (x,y) = (x2 + y−11)2 +(x+ y2−7)2

9https://github.com/gialmisi/desdeo-brb (July 3, 2020)
10https://github.com/gialmisi/desdeo-brb/blob/master/desdeo_brb/method.

py (July 3, 2020)
11https://www.tcl.tk/ (July 3, 2020)
12https://docs.python.org/3/library/tkinter.html (July 3, 2020)
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Algorithm 1 The INFRINGER method

INPUT:

1. A set of non-dominated objective vectors ap-

proximating a Pareto optimal set: ZPareto.

2. The ideal and (approximation of the) nadir

points, z∗ and znad, of ZPareto.

3. A fitness threshold γth to asses the learned

model’s fitness, and to act as a termination

criterion.

OUTPUT:

1. A BRB system trained to model a decision

maker’s preferences using a value function.

2. The five most preferred objective vectors

in ZPareto, according to the value function

learned by the trained BRB system.

Step 1: Show the decision maker z∗ and znad, and

ask if he/she would like to supply a reference point

z̄ with each objective value being between the cor-

responding values in z∗ and znad.

Step 2: If z̄ was given in Step 1, continue to Step 3.

Otherwise set z̄ to be an objective vector, with ob-

jective values being in the middle of the objective

values in z∗ and znad.

Step 3: Visualize ZPareto, z∗ and znad, and z̄, to the

decision maker.

Step 4: Initialize the BRB system as described in

Section 4.1.3.

Step 5: Ask the decision maker to compare five

pairs of objective vectors in ZPareto chosen accord-

ing to Section 4.1.4.

Step 6: Assess the fitness γ of the initial BRB sys-

tem according to (4.7) using preference information

gathered in Step 5.

Step 7: If γ ≥ γth, go to Step 10.

if Variant 1 then

Step 8.1: Ask the decision maker to score

five objective vectors chosen from ZPareto as

described in Section 4.1.6.

Step 8.2: Formulate the cost function (4.8)

of the BRB system using preferences given

in Step 8.1.

Step 8.3: Solve (4.16), and update the BRB

system parameters with the optimal P found.

Step 8.4: Visualize to the decision maker

his/her learned value function, and the rank-

ing of the objective vectors in ZPareto accord-

ing to the learned value function.

Step 8.5: Repeat Steps 5 and 6, and update

γ . Continue to Step 8.6.

Step 8.6: If γ ≥ γth, go to Step 10.

Step 8.7: Update (4.8) according to the pref-

erence information gathered in Step 8.5, and

go to Step 8.3.

if Variant 2 then

Step 9.1: Formulate the cost function (4.8)

of the BRB system using preferences given

in Step 5.

Step 9.2: Solve (4.16), and update the BRB

system parameters with the optimal P found.

Step 9.3: Visualize to the decision maker

his/her learned value function, and the rank-

ing of the objective vectors in ZPareto accord-

ing to the learned value function.

Step 9.4: Repeat Steps 5 and 6, and update

γ . Continue to Step 9.5.

Step 9.5: If γ ≥ γth, go to Step 10.

Step 9.6: Update (4.8) according to the pref-

erence information gathered in Step 9.4, and

go to Step 9.2.

Step 10: Show the decision maker the five most

preferred objective vectors in ZPareto according to

the learned value function in (4.3).

Step 11: End.



5 Case study

In this chapter, a case study is conducted using the INFRINGER method discussed in Chapter

4 with the aid of an expert decision maker. The purpose of the case study is to test the

INFRINGER method with a real world multi-objective optimization problem, see how the

method works in practice in aiding the decision maker, and how the method is able to learn

the preferences of the decision maker. Additionally, in this chapter many of the topics left

on an abstract level in Chapter 4 will be conceptualized.

5.1 A case study in Finnish forestation

5.1.1 Introduction and motivation

The case study discussed in this chapter is a problem in Finnish forestation, where different

management strategies must be chosen for different areas of a forest to be executed during

a certain time period. These areas are referred to as forest stands, which are the individual

managerial parts a forest is divided into. Each strategy chosen for a forest stand has eco-

nomical and environmental consequences. It is possible to simulate the effects of employing

certain strategies for different forest stands in a forest using a simulation framework like dis-

cussed in [48]. However, the decision on what strategies to employ must still be made by a

human decision maker.

The impact of the strategies chosen for each forest stand is simulated over a certain amount

of years. Each strategy will cause the forest stand1 to change. This change is measured by

indicators like income produced by selling the harvested timber from a stand and the total

carbon-dioxide stored in the stand. These indicators are the conflicting criteria the decision

maker will base his/her decision on.

To aid the decision maker, different criteria must be quantified to him/her and the decision

maker should be allowed to explore different options available. Assuming the decision maker

to be rational like discussed in Section 2.4.1, it is assumed that he/she is only interested in

1Unless the stand is chosen to be set aside.
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the objective vectors in the Pareto optimal set. Therefore, before the problem can be solved

by the decision maker with the aid of the INFRINGER method, a representation of the Pareto

optimal set must be generated.

5.1.2 Available data

Simulation data on Finnish forestation averaged over a one hundred year time horizon, is

available for 1475 forest stands, each forest stand employing one possible strategy out of

59 available strategies. The data has been simulated using the simulation framework SIMO

described in [48]. For each stand and strategy chosen, the following indicators for the con-

sequences for employing a certain management strategy for a stand were chosen from the

data:

1. Total average income.

2. Average stored carbon-dioxide.

3. Average combined habitat suitability index.

Other indicators were also available, but not used in the case study.

The data was available in multiple CSV2 files, each file containing values of one indicator for

each forest stand and for all available strategies. In each file, each row contained the indicator

values for one stand separated in individual columns for each strategy. The first column and

first row contained header information. The first row contained column names and the first

column contained stand identification numbers. If some strategy was not applicable to a

stand, the value on the column on that stand’s row contained a blank value.

A total of 20 strategies were chosen to be considered in the case study together by the author

of this thesis and the decision maker in the case study. Stands that were not possible to be

managed by all of the 20 chosen strategies had the blank value replaced by a zero. Another

option would have been to drop the incompatible stands from the final data completely, but

because the small amount of initial data available, it was decided to not drop any stands from

the data. In hindsight, this was not a good decision because indicators like stored carbon-

2Comma separated values.
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dioxide would be set to be zero for a stand incompatible with a strategy. This would lead

to a smaller value in the average value over all stands compared to what would result if the

incompatible stands were just left aside, indicating no strategy being employed for the stand.

However, the data was still applicable in the case study, and the aforementioned oversight

regarding blank values did not introduce any unusual anomalies in the final computed rep-

resentation of the Pareto optimal set, or at least the decision maker in the case study did not

seem to notice any.

5.1.3 Modelling the problem

The problem in Finnish forestation can be modelled as a discrete data-based integer multi-

objective optimization problem, with three objective functions to be maximized:

max
X

{ f1(X), f2(X), f3(X)}

s.t.
nstrat

∑
i=1

xi = 1, where xi are components in x, ∀x ∈ X,
(5.1)

where f1 is the total average income summed over all stands, f2 is the average stored carbon

dioxide summed over all stands, and f3 is average combined suitable habitat index summed

over all stands, x is a decision variable vector with nstrat = 20 components xi, and X is the set

containing all the decision variable vectors x in the problem. The functions f1, f2 and f3 are

defined later in this subsection.

The jth component of X, namely x j, indicates the management strategy employed for the

jth forest stand. The components of x j are all binary values, restricted to be either 0 or

1. The constraint in (5.1) implies that only one of the components in a decision variable

vector x j may have the value 1, while all the other values must be 0. In other words, only

one management strategy can be chosen to be employed for each stand. Therefore, the

ith component of x j being 1, indicates that the ith available management strategy has been

chosen for the stand that corresponds to x j. The set X consists of nstand = 1475 elements.
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Objective functions present in (5.1) can each be formulated as follows:

fi(X) =
nstand

∑
j=1

x j(si
j)

T , x j ∈ X,si
j ∈ Si, (5.2)

where Si is a set of nstand real-valued vectors si, where the jth element si
j corresponds to the

values of the indicators of the jth stands for each available management strategy. This means

that the kth component of the vector si, namely si
k, is the indicator value when the kth avail-

able strategy is chosen for the stand corresponding to si. The index i in Si and si, indicates

which indicator the values in the vectors si correspond to. Total average income corresponds

to i = 1, the average stored carbon corresponds to i = 2, and the average combined suitable

habitat index corresponds to i= 3. In the summand of (5.2), the product between x j and (si
j)

T

is a matrix product, where the former vector is in row-form, and the latter in column-form

indicated by the transposition ()T .

All the values contained in the elements of the sets S1,S2, and S3, are discrete. The values

are read from a CSV file provided for each indicator, like was described in Section 5.1.2.

5.1.4 Computing the representation of the Pareto optimal set

To compute a representation of the Pareto optimal set for the problem in (5.1), the ideal and

nadir points were calculated using a payoff table. Next, a set of evenly spaced objective value

vectors in the objective space was generated akin to a grid, with individual objective values

being limited by the ideal and nadir point; the maximum values for each objective limited by

the ideal values, and the minimum values limited by the nadir values.

Each of the vectors generated was then used in a GUESS achievement scalarizing function,

defined in (2.16), as a reference point. This resulted in many individual single-objective

optimization problems, which were each solved using the Coin-or branch and cut method

discussed in Section 2.3, because it is suitable for solving integer based problems. Each

solved single-objective optimization problem resulted in one Pareto optimal objective vector.

The values of the components of the vectors are plotted in Figure 5 as a 3-dimensional scatter

plot, and in Figure 6 as three projections on the three different planes. Plots in both figures
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Figure 5: The ideal, the nadir, and the Pareto optimal objective vectors computed for the

problem in Finnish forestation, plotted as a 3-dimensional scatter plot.

also include the computed ideal and nadir points. In the aforementioned figures, the average

income is labeled as income, the average stored carbon-dioxide is labeled as CO2, and the

average combined suitable habitat index is labeled as CSHI.

The set of Pareto optimal objective vectors computed using an achievement scalarizing func-

tion was additionally modified by removing all duplicate vectors. What was left, was a set of

mutually non-dominated objective vectors, which were used as a representation of a Pareto

optimal set for the Finnish forestation problem in this case study. The original number of ref-

erence point generated was around two thousand which resulted in around a thousand Pareto

optimal objective vectors.

In practice, the problem was modelled in Python[44] using Pyomo [49, 50]: a Python soft-

ware library implementing an optimization modelling language. The code3 used by Jose

3https://github.com/josejuhani/gradu-code (July 3, 2020)
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Figure 6: The ideal point, the nadir point, and the values of the Pareto optimal objective

vectors computed for the problem in Finnish forestation, plotted as 2-dimensional scatter

plots in three different planes.

Malmberg in his MSc thesis [51] was used in part to model the optimization problem in this

thesis. Code used to generate the representation of the Pareto optimal set presented in this

chapter is available on GitHub 4 alongside the original data used.

5.2 INFRINGER in practice

In this section, the representation of the Pareto optimal set computed for the problem de-

scribed in Section 5.1 is used in the INFRINGER method, which was described in Chapter

4. With the aid of a human decision maker with expertise in Finnish forestation, the IN-

FINGER method is used to aid the decision maker in a decision making process. The value

function of the decision maker is also learned using the method. Both variants of the IN-

FRINGER method were used. In what follows, analyst will refer to the author of this thesis.

A fitness threshold value of γth = 1 was chosen in both variants of the method tested.

4https://github.com/gialmisi/forest-opt (July 3, 2020)
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The session with the human decision maker documented in this section took place over a

video call using Skype5. The INFINGER method was ran on the laptop of the analyst, who

was also in charge of operating the method. The analyst shared the screen of his laptop over

Skype with the decision maker. The whole session was recorded for both audio and video.

The session had to be stopped soon after the test of the first variant of INFRINGER had

begun due to a technical problem, where the analyst had to reboot his laptop. The recording

resumed soon after, and was finished without further problems.

No particular research methods were employed in conducting the practical tests documented

in this section. The results are mainly anecdotal and qualitative in nature and should be

treated as such. That being said, the results of the practical test were still valuable in analyz-

ing the effectiveness of the INFINGER method as an interactive multi-objective optimization

tool, and in analyzing how well the method was able to learn the value function of the de-

cision maker. The information gained in this case study can be used to further develop the

INFRINGER method.

5.2.1 Before the tests

Before any of the tests were conducted, the decision maker was asked if he was willing to

participate in the test and if the information gained during the tests could be used in this

thesis. It was also asked if the decision maker would be comfortable with the whole test

session being recorded. The decision maker’s answers were all affirmative.

Next, the decision maker was briefly presented the different phases of the INFRINGER

method, with the analyst giving dummy preference information when prompted for in the

method. The aim was to make the decision maker familiar with the different steps of the

INFRINGER method shown in Algorithm 1.

5.2.2 Testing the first variant

The decision maker was shown the nadir and ideal points of the representation of the Pareto

optimal set like shown in Figure 7 and according to Step 1 in Algorithm 1. The deci-

5https://www.skype.com (July 3, 2020)
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Figure 7: The nadir and ideal points shown to the decision maker during the case study. The

same points were used in both tests of the two variants of the INFRINGER method.

Figure 8: Input of the reference point in the INFRINGER method.

sion maker was then asked whether he would like to give a reference point according to

Step 2 in Algorithm 1. After a while of thinking, the decision maker decided that he

wanted to give a reference point. The reference point was given to the method in a win-

dow like shown in Figure 8. The actual reference point chosen by the decision maker was{
2×107,8.2×109,2.8×104 } for the income, CO2, and CSHI, respectively. The reference

point was given by the decision maker in the original scale of the objectives and the units

were omitted as they were not relevant during the test. The decision maker expected the

trade-offs between the objectives to be inversely proportional to each other.

After the reference point was given according to Step 3 in Algorithm 1, the decision maker

was shown the representation of the Pareto optimal set, the nadir point, the ideal point, and

the given reference point in a three-dimensional scatter plot like shown in Figure 9. After
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Figure 9: An example of the initial representation of the Pareto optimal set shown to the de-

cision maker after the reference point has been determined in the INFRINGER method. The

nadir, the ideal, and the reference point are also shown. In the title on the plot, ‘Paretofront’

refers to the (representation of the) Pareto optimal set.

seeing the representation of the Pareto optimal set, the decision maker concluded that his

initial reference point given was less optimistic than he expected.

At this point, the laptop of the analyst froze and it had to be rebooted. The test was then

continued and the BRB system was initialized as described in Step 4 in Algorithm 1.

Continuing, the decision maker was asked to give his preference by conducting a pair-wise

comparison of five pairs of Pareto optimal objective vectors as described in Step 5 in Algo-

rithm 1. The results of the comparisons can be found in Table 6. An example of the interface

the decision maker was shown when asked to conduct the pair-wise comparisons can be seen

in Figure 10 and an example of the radar plot shown to the decision maker for comparing
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Candidate Objective values Score

Income CO2 CHSI

1 5.69e7 7.15e9 2.52e4 30

2 5.59e7 6.84e9 2.78e4 30

3 4.79e7 7.13e9 2.97e4 50

4 5.11e7 7.70e9 2.66e4 70

5 4.56e7 7.73e9 2.90e4 80

Table 5: The scores given by the decision maker to the Pareto optimal objective vectors

shown while testing the first variant of the INFRINGER method.

a single pair is shown in Figure 11. The initial fitness calculated was 60%6 based on the

pair-wise comparisons as described in Step 6 of Algorithm 1.

After the initial fitness was calculated and assessed according to the Step 7 in Algorithm 1,

the INFRINGER method was continued. The decision maker was asked to score five Pareto

optimal objective vectors as described in Step 8.1 in Algorithm 1. The decision maker asked

at this point how the scores are related to each other, and the analyst explained that the

scores are relative to each other. The decision maker seemed to understand what the analyst

meant. To aid the decision maker in comparing the vectors, a parallel coordinate plot, of

which an example can be seen in Figure 12, was also shown to him. The scores given by

the decision maker can be seen in Table 5. Based on the scores given, the cost function of

the INFRINGER method was formulated and optimized according to Step 8.2 and 8.3 in

Algorithm 1.

The first time training the BRB model in the INFRINGER method took over two minutes,

as is seen from Table 7. After the training, a plot of the learned value function was shown to

the to the decision maker and a three-dimensional scatter plot of the ranked Pareto optimal

objective vectors using the learned value function was shown right after according to Step

8.4 in Algorithm 1. Examples of both plots can be seen in Figures 13 and 14, respectively.

6Equivalent to γ = 0.6

74



75
Pair Candidate 1 objective values Candidate 2 objective values Preference Comments

Income CO2 CHSI Income CO2 CHSI

Iteration 1 (γ = 0.60)

1 4.19e7 7.27e9 3.08e4 4.87e7 7.02e9 2.96e4 = Cannot see difference.

2 5.13e7 7.73e9 2.61e4 5.00e7 6.98e9 2.93e4 2

3 5.11e7 7.70e9 2.66e4 5.59e7 6.84e9 2.78e4 1

4 3.62e7 7.94e9 3.10e4 6.29e7 6.73e9 2.14e4 1

5 6.29e7 6.73e9 2.14e4 3.62e7 7.94e9 3.10e4 2 Same as pair 4, but candidate 1 and 2 switched.

Iteration 2 (γ = 0.40)

1 5.31e7 7.23e9 2.82e4 4.57e7 7.14e9 3.02e4 2

2 4.24e7 7.35e9 3.07e4 4.62e7 7.11e9 3.01e4 =

3 5.29e7 7.32e9 2.80e4 4.78e7 7.04e9 2.98e4 2 Not quite sure about preference.

4 3.62e7 7.94e9 3.10e4 6.29e7 6.73e9 2.14e4 1

5 4.87e7 7.40e9 2.91e4 3.62e7 7.94e9 3.10e4 2 Second candidate same as first candidate in pair 4.

Iteration 3 (γ = 0.60)

1 4.70e7 7.18e9 2.99e4 4.78e7 7.05e9 2.98e4 =

2 4.12e7 7.30e9 3.09e4 5.19e7 7.11e9 2.88e4 1

3 3.22e7 7.69e9 3.19e4 4.69e7 7.00e9 2.94e4 = Decision maker felt candidates to be equally bad.

4 4.16e7 7.94e9 2.94e4 6.29e7 6.73e9 2.14e4 2

5 4.16e7 7.94e9 2.94e4 6.29e7 6.73e9 2.14e4 2 Same as pair 4.

Table 6: The preference information given by the decision maker in each iteration while

testing the first variant of the INFRINGER method. The equal sign indicates the two can-

didates were equal preference wise. The fitness after each comparison is also reported for

each iteration.

Figure 10: Example of the interface shown to the decision maker in the INFRINGER method

when asked to compare five pairs of Pareto optimal objective vectors, which are referred to

as candidates in the figure. In the middle, the drop down menu offers three alternatives: ‘is

as good as’, ‘is better than’, and ‘is worse than’, indicating which vector in each pair is

preferred. On the right, the ‘Plot’ button may be pressed to show a radar plot of the two

candidates, like shown Figure 11
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Figure 11: Example of the radar plot shown to the decision maker in the INFRINGER

method, during the pair-wise comparisons. Both objective vectors are shown, and are called

candidates in the figure. The radar plot is scaled between the nadir and ideal points, where

the ideal values are on the outer edge of the plot, and the nadir values are on the inner circle,

for each of the three objectives.
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Figure 12: An example of the parallel coordinates plot shown to the decision maker in the

INFRINGER method to help him/her compare the five Pareto optimal objective vectors, re-

ferred to as candidates in the figure, in the first variant of the method. The nadir and ideal

points are also shown in the figure.



78

Iteration Optimal cost function value Training time

Variant 1

1 0.0049 1min 59s

2 0.013 1min 33s

3 0.015* 7min 45s

Variant 2

1 2.0e-18 40s

2 0.0015 1min 10s

3 0.0030 26s

4 0.0070 18s

5 2.2e-17 24s

6 0.0068 39s

Table 7: The optimal value found in each iteration for the cost function during the testing of

both variants of the INFRINGER method. The elapsed time in minimizing the cost function

is also shown. The computations to minimize the cost functions were executed on a Dell

Latitude 7480 laptop equipped with an Intel Core i5-7300U processor clocked at 2.60GHz

per core. The star in the table indicates that the last iteration of the first variant had to be

halted before an optimal value was found. The value trailing the star was the best value

found before the termination.
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Figure 13: An example of the value function shown to the decision maker in the INFRINGER

method. In each of the three plots, one of the attributes, referring to an objective function’s

values, is varied, while the others are kept constant. Plots for five different constant values,

for the objectives not being varied, are shown in each plot. The values are all scaled to be

between 0 and 1, where 0 is the nadir point’s value for each objective, and 1 is the ideal

point’s value for each objective. The value of the value function is shown on the vertical axis

in each plot, and its value varies between 0 and 1.
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Figure 14: An example of the ranked Pareto optimal objective vectors shown to the decision

maker in the INFINGER method. The value computed using the learned value function is

shown as a color for each Pareto optimal objective vector. The maximum possible value is

1 represented by a dark red color, and the minimum is 0 represented by a deep blue color.

A black diamond is also shown (at the very top of the plot) indicating the point having the

highest value according to the value function. Each of the axes is scaled between 0 and 1,

according to the nadir and ideal points, similarly to Figure 13.



(a) Ranking of the objective vectors in itera-

tion 1.

(b) Ranking of the objective vectors in itera-

tion 2.

Figure 15: The ranking of the objective vectors shown to the decision maker during the

testing of the first variant of the INFRINGER method. Refer to Figure 14 for an explanation

of the plots shown. The best scoring objective vector is indicated by a black diamond in the

middle of the black circle.

The decision maker was puzzled by one of the lines shown in the value function plot and he

asked the analyst what it meant. The analyst assured that an explanation exists, but could not

give it on the spot.

After inspecting the ranking and value function plots shown, the decision maker was asked

again to assess five pairs of Pareto optimal objective vectors, like described in Step 8.5 of

Algorithm 1. The decision maker commented that the shown objective vectors seemed to be

closer to his preferences, or more focused to what he was looking for, which he thought to

be good. The second fitness computed was 40%, which was lower than the fitness computed

for the initial BRB model. This might indicate that the model was deteriorating.

Using the pair-wise comparisons, the cost function of the BRB model was updated according

to Step 8.7 of Algorithm 1, and the consequent training of the model took around two minutes

once again. The resulting value function plot is clearly different from the previous one, and

the new ranking, based on the value function, was also noticeably different as can be seen

from Figures 15 and 16.
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(a) Value function learned in iteration 1. (b) Value function learned in iteration 2.

Figure 16: The value functions learned during the testing of the first variant of the IN-

FRINGER method. Refer to Figure 13 for an explanation of the plots shown.

For a third time, the decision maker was asked to conduct pair-wise comparisons. The result-

ing fitness was 60%. This time, however, the training of the BRB model was taking a lot of

time probably because the solver for finding the optimal parameters of the BRB system was

not converging. Observing the cost function values found during the optimization process,

the value seemed to vary sporadically between values 0.001 and 0.1. The analyst decided

after consulting the decision maker, to stop the training process, which ended the test run of

the first variant.

After the first test, the decision maker commented that the learning part part of the method

was good, and the second shown best objective vector, shown in the plot with the ranked

Pareto optimal objective vectors, was better than the first in his opinion. The decision maker

was also happy with this point, and felt that his initial preference for money7 had changed

noticeably during the test. The final solution found for the first variant can be seen as the

black diamond in Figure 15(b).

5.2.3 Testing the second variant

Testing of the second variant of the INFRINGER method begun immediately after the testing

of the first variant terminated. The same reference point was used as in the first variant, by

7Which he used to refer to the total average income.
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request of the decision maker. Therefore, actions taken for Steps 1 through 4 in Algorithm 1

were identical to the testing of the first variant.

After the first pair-wise comparisons were done according to Step 5 in Algorithm 1, the

fitness of the initial model was calculated to be 80% in Step 6 on Algorithm 1. Following

Steps 9.1 and 9.2 in Algorithm 1, the first time training of the BRB system took less than a

minute, as seen in Table 7.

Next, a plot showing the learned value function, and the ranked Pareto optimal objective

vectors, were shown to the decision maker according to Step 9.3 in Algorithm 1. After

which a pair-wise comparison was conducted again according to Step 9.4 in Algorithm 1,

and the fitness was calculated according to Step 9.5 in Algorithm 1, which was once again

80%. Continuing from Step 9.3 in Algorithm 1, during the second pair-wise comparison, the

decision maker made an important remark: he felt that he did not want to give an opinion

regarding the 4th pair of objective vectors shown to him, and tabulated in Table 8. Still,

the option chosen for the preference was as good as, indicating an equal preference by the

decision maker.

The second time training the model took around one minute, as seen in Table 7, and the

resulting value function plot was found to be interesting by the decision maker. More impor-

tantly, the best objective vector shown in the ranking plot was noticeably different compared

to first iteration. The decision maker noticed that the best vector was similar to the corre-

sponding best vector shown in the second iteration during the testing of the first variant. This

was a good thing according to the decision maker.

Iterations continued according to Algorithm 1, and the decision maker was asked four more

times to give their preference by conducting pair-wise comparisons. The calculated fitness

values varied between 40% and 80% as seen in Table 8, and the training of the model never

took more than a minute, which is evident from Table 7. After the fourth iteration, the deci-

sion maker felt that the pair-wise comparisons were getting tricky: the compared objective

vectors were close in their objective values to each other, and it was hard for the decision

maker to give a clear preference which one of the vectors in a pair they preferred.

There was also an additional inconsistency in the decision maker’s preferences. In the 5th
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(a) Ranking of the objective vectors in itera-

tion 1.

(b) Ranking of the objective vectors in itera-

tion 2.

(c) Ranking of the objective vectors in itera-

tion 3.

(d) Ranking of the objective vectors in itera-

tion 4.

(e) Ranking of the objective vectors in itera-

tion 5.

(f) Ranking of the objective vectors in itera-

tion 6.

Figure 17: The ranking of the objective vectors shown to the decision maker during the test-

ing of the second variant of the INFRINGER method. Refer to Figure 14 for an explanation

of the plots shown. The best scoring objective vector is indicated by a black diamond in the

middle of the black circle.
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(a) Value function learned in iteration 1. (b) Value function learned in iteration 2.

(c) Value function learned in iteration 3. (d) Value function learned in iteration 4.

(e) Value function learned in iteration 5. (f) Value function learned in iteration 6.

Figure 18: The value functions learned during the testing of the second variant of the IN-

FRINGER method. Refer to Figure 13 for an explanation of the plots shown.
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Pair Candidate 1 objective values Candidate 2 objective values Preference Comments

Income CO2 CHSI Income CO2 CHSI

Iteration 1 (γ = 0.80)

1 4.19e7 7.27e9 3.08e4 4.87e7 7.02e9 2.96e4 =

2 5.13e7 7.73e9 2.61e4 5.00e7 6.98e9 2.93e4 1 Preference was initially 2, but changed later.

3 5.11e7 7.70e9 2.66e4 5.59e7 6.84e9 2.78e4 1

4 3.62e7 7.94e9 3.10e4 6.29e7 6.73e9 2.14e4 1

5 3.62e7 7.94e9 3.10e4 6.29e7 6.73e9 2.14e4 1 Same as pair 4.

Iteration 2 (γ = 0.80)

1 4.34e7 7.35e9 3.05e4 5.31e7 6.91e9 2.86e4 1

2 4.51e7 7.34e9 3.02e4 5.67e7 6.84e9 2.75e4 1

3 4.22e7 7.51e9 3.06e4 5.87e7 6.85e9 2.66e4 1

4 1.88e7 8.27e9 3.24e4 6.29e7 6.73e9 2.14e4 = Decision maker did not want to really give an opinion here.

5 4.50e7 7.88e9 2.84e4 6.28e7 6.75e9 2.18e4 1

Iteration 3 (γ = 0.80)

1 4.31e7 7.44e9 3.05e4 5.61e7 6.84e9 2.77e4 1

2 5.73e7 7.11e9 2.69e4 5.31e7 6.91e9 2.86e4 1

3 5.61e7 7.50e9 2.50e4 1.88e7 8.27e9 3.24e4 = Both far away from what decision maker wanted.

4 4.63e7 7.86e9 2.79e4 3.22e7 7.69e9 3.19e4 1

5 4.63e7 7.86e9 2.79e4 4.63e7 7.86e9 2.79e4 = Identical candidates.

Iteration 4 (γ = 0.40)

1 5.76e7 6.88e9 2.71e4 4.44e7 7.19e9 3.04e4 2

2 5.93e7 6.99e9 2.60e4 4.36e7 7.22e9 3.05e4 2

3 5.31e7 7.23e9 2.82e4 4.29e7 7.24e9 3.06e4 2

4 4.46e7 7.70e9 2.95e4 3.22e7 7.69e9 3.19e4 1

5 4.46e7 7.70e9 2.95e4 3.22e7 7.69e9 3.19e4 1 Same as pair 4.

Iteration 5 (γ = 0.60)

1 4.60e7 7.75e9 2.87e4 4.80e7 7.68e9 2.83e4 = Decision maker felt possibly indifferent for pairs 1-3.

2 5.00e7 7.35e9 2.89e4 4.98e7 7.54e9 2.83e4 1

3 4.94e7 7.07e9 2.94e4 5.21e7 6.95e9 2.88e4 1 Was ‘=’ before the analyst asked for clarification.

4 4.12e7 7.68e9 3.05e4 3.22e7 7.69e9 3.19e4 1

5 3.22e7 7.69e9 3.19e4 3.22e7 7.69e9 3.19e4 =

Iteration 6 (γ = 0.60)

1 5.63e7 7.15e9 2.72e4 5.08e7 6.97e9 2.91e4 =

2 4.37e7 7.42e9 3.04e4 5.18e7 6.95e9 2.89e4 1

3 4.77e7 7.26e9 2.97e4 3.93e7 7.51e9 3.11e4 2

4 4.63e7 7.86e9 2.79e4 3.22e7 7.69e9 3.19e4 1

5 4.63e7 7.86e9 2.79e4 3.22e7 7.69e9 3.19e4 1 Same as pair 4.

Table 8: The preference information given by the decision maker for each iteration while

testing the second variant of the INFRINGER method. The equal sign indicates the two

candidates were equal preference wise. The fitness after each comparison is also reported

for each iteration.



iteration, the analyst asked for clarification which one of the vectors, in the third pair shown,

the decision maker preferred, to which the decision maker replied, that he preferred the first

one. However, after analyzing the recorded video of the session, the decision maker had

clearly indicated indifference between the pairs, just moments before the analyst asked for

clarifications.

A fitness of 100%, which was the fitness threshold γth set during this case study, was never

reached, and the test of the second variant was terminated after six iterations. The decision

maker felt that the final best objective vector shown in the ranking plot was, in his words,

approximately right. The solution found in the second variant of the INFRINGER method

can be seen in Figure 17(f).

5.2.4 Concluding remarks

After the tests of both variants of the INFRINGER method were conducted, the decision

maker gave a few general comments. He felt that an option to give a preference of indiffer-

ence should be possible in the pair-wise comparisons of the method. The equal preference

option, as good as, did not always reflect the decision maker’s preferences, which was there-

fore chosen as a selected option erroneously in some of the pair-wise comparisons. The

decision maker felt that the shown best objective vectors in the ranking plots were in his

region of interest after the first iteration during the testing of both variants. Additionally, the

decision maker felt that the method was partially slow during the training processes where

the cost function was minimized; this was especially true during the testing of the first vari-

ant.

Overall, the decision maker was happy with the results, even if the end of the INFRINGER

method, Steps 10 and 11 in Algorithm 1, were never reached during the testing of both

variants. The whole testing process took a total of 47 minutes, after which the video call

with the decision maker was terminated.
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6 Discussion

In this chapter the viability of the INFRINGER method, which was presented in Chap-

ter 4 will be assessed based on its performance in the case study discussed in Chapter 5.

The results produced by the two variants of the INFRINGER method in the case study are

compared, and the method’s overall performance is briefly and qualitatively contrasted with

works in existing literature.

6.1 Viability of the INFRINGER method as a decision support tool

6.1.1 Thoughts on the first variant

Testing the first variant had to be halted after the second iteration due to the cost function of

the underlying BRB system not converging to a minimum in a feasible time. The process of

minimizing the cost function had to be stopped by the analyst.

Observing the value function plots in Figure 16, it is evident that the resulting value function

is not monotonic, and the assumptions made in Chapter 2 made for the value function do

not hold. There are three plausible explanations for the value function learned not to be

monotonic.

The first explanation for the learned value function not to be monotonic, is that the cost

function (4.11) formulated to enforce the monotonicity is not appropriate. The cost function

does not cover all possible values for the three objectives present in the objective function.

Therefore, the cost function allows for the value function to breach monotonicity in areas

where the monotonicity is not tested for. Since the optimal value found for the aggregated

cost function (3.30) was never truly zero, as evident in Table 7, it is also possible that the

optimal value found for the aggregate cost function consisted mostly of the monotonic cost

function’s possible non-zero value, meaning the BRB system was simply not able to model

a monotonic value function.

The second explanation for the learned value function to not be monotonic, is the possibility

that the assumptions made regarding the decision maker, or the cost function, are not true.
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It is possible that the decision maker was not rational, and therefore the assumption of a

monotonic value function was wrong. This in turn made it impossible for the monotonic cost

function to be zero. Alternatively, the assumption that a cost function can be found, which

models the preferences of a decision maker could be false. These explanations may also

manifest themselves in the cost function regarding the scores given by the decision maker

(4.13) or the cost function regarding the pair-wise comparisons (4.15), which were also both

relevant during the minimization of the aggregated cost function. The assumption made

regarding the pair-wise cost function related to the pair-wise comparisons is also supported

by the observation where the decision maker had expressed a change in his preferences

for the total average income during the case study. This change of preferences during the

INFRINGER method is not accounted for in the additive update strategy of the pair-wise cost

function, where it was assumed that the preferences of the decision maker do not change.

It is also possible that the cost function related to the scores given by the decision maker

imposed restrictions on the BRB system, such that the aggregated cost function could not be

minimized. Lowering the δ value in (4.13) could have alleviated this effect.

However, after the test the decision maker felt like the best objective vector suggested in the

second iteration was close to what he would have deemed preferable. The decision maker

felt like some learning had happened. Indeed, observing Figure 16 it is clear that the value

function has changed between iterations, and observing Figure 15 it is evident that the best

objective vector indicated by a black diamond and surrounded by a black circle has moved

between iterations. This would also suggest that the underlying value function has changed.

Because of the decision maker’s remark and the observation of both the best objective vector

changing and the plotted value function changing, it is concluded that the underlying BRB

system did learn a value function reflecting the decision maker’s preferences.

6.1.2 Thoughts on the second variant

The testing of the second variant had to be also stopped by the analyst. After six iterations,

the fitness threshold was never reached, and the decision maker got tired. The analyst and

decision maker agreed to stop the method after the sixth iteration.
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Not reaching the fitness threshold set might have been due to the decision maker getting tired,

as is evident in Table 8 in the comparison of pair 2 during iteration 5: the decision maker gave

a different preference concerning the second pair, when asked for his preference a moment

later he had given his initial preference. This suggests that the decision maker might have

been more and more inconsistent also in his other decisions, even if not as evident as in

the case of the aforementioned pair-wise comparison. Therefore, from the possibility for

the decision maker to have become inconsistent because of tiredness in conjunction with

the fact that the INFRINGER method expects consistent preference information from the

decision maker, it could have lead to the possibility that no feasible value function exists for

modelling the preferences of the decision maker if the assumption made regarding the value

function are assumed to be true. Moreover, a possible future research topic could be testing

for the consistency of the preferences of a decision maker.

Regardless, the value function learned in the second variant was noticeably better than in

the first variant. This is evident when observing Figure 18, where the learned value function

are, for the most part, monotonically increasing, and noticeably different between iterations.

Additionally, observing the rankings of the objective vectors in the second variant seen in

Figure 17, it seems that the best objective vector is converging – the differences between its

position in plots between consequent iterations is getting smaller. Based on these observa-

tions, it is concluded that learning is happening in the second variant as well. The reason why

the second variant was able to learn a better value function could be because it was simpler

– only pair-wise comparisons were required from the decision maker, therefore, imposing a

lighter cognitive load on the decision maker compared to the first variant.

It was also observed that the minimization of the cost function during the second variant

was a lot faster as can be seen from Table 7. Training never took more than two minutes

suggesting that the second variant could be more usable in a real life application, where

excessive waiting is not desired.

The decision maker was happy with the results of the second variant, even if the method

had to be halted before the last Steps 10 and 11 in Algorithm 1. Nevertheless, the suggested

best objective vector was in the region of interest of the decision maker after the first few

iterations.
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Variant Income CO2 CHSI

1 4.16e7 7.94e9 2.94e4

2 4.63e7 7.86e9 2.79e4

Table 9: The best objective vectors according to the learned value function in the case study

produced by both variants of the INFRINGER method. The vectors are taken from the partial

final partial ranking calculated in each variant because neither of the variants was able to

reach the last steps of Algorithm 1.

6.1.3 General remarks

Even though neither of the variants reached the end of the INFRINGER method, the most

recent best objective vector in both variants, in terms of the score given by value function

modelled by the BRB system, can be extracted from Tables 6 and 8: the first candidate in the

fourth pair is always chosen to be the objective vector with the highest score, as described in

Section 4.1.4. The two best objective vectors extracted are presented in Table 9.

Observing Table 9, it is clear the the suggested best objective vectors in both variants were

close to each other. This is also somewhat evident from the ranking produced in the final

iteration of both variants as seen in Figures 15(b) and 17(f). The rankings are similar, with

the values of the objective vectors increasing in the direction of increased CO21. Based on

the similarity of the best objective vectors suggested by both variants, it is concluded that

both variants were able to learn a similar value function for the same decision maker. This

suggests that the INFRINGER method works with definite intent behind it instead of just

expressing random behavior.

A recurring theme during the case study was a need for distinction between equal preference

and no preference. As is seen from the comments-column in both Tables 6 and 8, there

were multiple occasions during the testing of both variants where the decision maker felt

indifferent or did not want to give an opinion when tasked with comparing a pair of objective

vectors2. The learned value function does not capture indifference as a kind of preference,

1Carbon in the figure.
2Dubbed as Candidates in the tables.
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and during the case study, indifference was synonymous to equal preference. This is partly

caused by an oversight by the author of this thesis and should be addressed in future iterations

of the INFRINGER method.

Another note worthy theme evident from Tables 6 and 8 is the presence of duplicate objective

vectors present in a pair or between two different pairs during the pair-wise comparisons

in the same iteration. This phenomenon is not necessarily bad. The consistency of the

decision maker can be checked in the comparison of candidates like in iteration 4 in Table

8, where both pairs 4 and 5 were identical. It can be seen that the decision maker gave the

same preference for both pairs; this is an indication of a consistent decision maker and is a

recurring phenomena in other similar comparisons throughout the iterations of both variants.

It is therefore concluded that the decision maker was mostly consistent and the oversight in

the comparison of pair 3 during iteration 5 shown in Table 8 was most likely due to tiredness.

However, the decision maker was still inconsistent to some degree, because he expressed that

his preferences had changed after the testing of the first iteration. This comment from the

decision maker cannot be ignored and must be accounted for.

However, the method for choosing the objective vectors to be compared in both variants

of the INFRINGER method should be still refined, even if duplicate vectors in pairs could

function as a way to check the consistency of the decision maker in expressing his/her prefer-

ences. Comparison of identical pairs is redundant and conveys no new information useful in

learning the decision maker’s value function. The aforementioned consistency check of the

decision maker’s preferences emerging from the comparison of identical pairs, was mostly

due to sheer luck and was not an intended feature of the method. Therefore, the method for

choosing the pairs to be compared should be reworked. A way to check for the consistency

of the decision maker can then be implemented separately with clearer intent.

The method for choosing the objective vectors to be scored by the decision maker in the first

variant is based on similar principles as the choice of the pairs in the pair-wise comparisons.

This could lead to similar problems to what were encountered with choosing the pairs for

the pair-wise comparisons. Therefore, it is suggested that the way for choosing the objective

vectors to be scored should also be refined.
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Different times elapsed during the minimization of the cost function are shown in Table 7

for both variants of the INFRINGER method alongside with the optimal value found for the

cost function. The elapsed times, and optimal cost function values, are noticeably lower in

the second variant, which indicates that the second variant may be more suitable in eliciting

the decision maker’s preferences, considering the fact that both variants produced a similar

best objective vector after their corresponding last iterations.

Lastly, one obvious remark remains to be discussed. Many of the choices, especially regard-

ing the structure of the BRB system in the INFRINGER method, have been mostly a result

of a pragmatic approach consisting of trial and error. The author of this thesis argues that

the chosen parameters discussed in Chapter 4 offer a good trade-off between prediction and

computational efficiency of the BRB system. However, these claims cannot be backed up

quantitatively. This can be excused, if the method is treated as a proof of concept, which it

is.

6.2 A brief qualitative comparison of the INFRINGER method to other

similar methods

Existing methods in literature, which try to learn a preference model of a decision maker

were briefly presented in Section 1.3. Albeit comparing the INFRINGER method directly to

existing methods is impossible due to its novel nature and lack of quantitative results, a brief

qualitative comparison can still be conducted.

Common between the methods mentioned in Section 1.3 and the INFRINGER method, is the

use of pair-wise comparisons to elicit preference information from a decision maker. Another

common factor is the use of value functions to model the preferences. All the methods

strive to aid the decision maker(s) reach a satisfying decision, which is also common to the

INFRINGER method. Lastly, the interactive nature of the methods seems to be a common

factor as well, suggesting that the best way to elicit preference information from a decision

maker should be conducted in situ.

The belief rule-based system the INFRINGER method is based on offers the potential for

producing explainable results regarding the learned preference model for a decision maker.
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While this thesis does not dive into the details of explainable machine learning models, it

can be shown that belief-rule based systems can offer explainable results [16, 17]. The

potential for explainability, and use of rule-based belief systems, are the two main factors

which differentiate the INFRINGER method from existing methods in literature.

All methods in literature, and the INFRINGER method, have their own set of test of prob-

lem(s), which are used to assess the method’s capability to learn a decision maker’s pref-

erence model. Test problems may have been tailored, or chosen appropriately fitting the

specific needs and features of the tested method, and a test problem that performs very well

with one method, might perform poorly with another method. The need to compare different

methods for learning the preferences of a decision maker, calls for a uniform testing frame-

work to be developed. This framework should contain established problems, and artificial3

decision makers with preference models known a priori. This kind of framework could be

used to assess different methods in their ability of learning the preference model of a deci-

sion maker, and to produce comparable, quantitative results. To the knowledge of the author

of this thesis, this kind of framework does not yet exist.

3As in having either simulated or predefined preference behavior.
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7 Conclusions

Based on the discussion in Chapter 6 regarding the case study, it is concluded that the IN-

FRINGER method could be a plausible tool to aid a decision maker to reach a satisfying

decision in a multi-objective optimization problem. The method also manifested promising

results in modelling the preferences of the decision maker in the case study, as is evident

from not only the consistency of the method between the two tested variants in predicting

a similar best objective vector, but is also evident from the fact that the predicted objective

vectors were both close to what the decision maker was aiming for. However, many of the

choices made in the development of the INFRINGER method were purely based on trial

and error. It could be possible to significantly improve the performance of the INFRINGER

method by conducting a more through analysis on the effect of the different parameters in

the BRB system have on the performance of the method.

The explainability of the results of the INFRINGER method in modelling a preference model

were not explored in this thesis to an extent were a conclusion could be drawn. However,

the explainable nature of the belief-rule based systems used in the INFRINGER method

was established, which leads to the notion that the INFRINGER method could be further

developed to produce explainable results.

In conclusion, the research question 1, 2, and 3 listed in Section 1.4 can be answered af-

firmatively, or at least with a very strong perhaps. Question 4 remains unanswered in this

thesis, but the existing literature suggests that it is very plausible that the resulting preference

model is explainable. If any future research is conducted based on the INFRINGER method

or a method similar to it, a special emphasis should be put on the study of the model’s ability

to produce explainable results. It is also evident that some methodology is needed for com-

paring methods that aim to learn a decision maker’s preferences. The author of this thesis

suggests that a testing framework should be developed for this purpose.
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Appendices

A Code example of using the BRB software framework developed in

this thesis

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from brb import BRB

4

5 def himmelblau_example():

6 def himmelblau(x):

7 """The himmelblau function.

8

9 """

10 x = np.squeeze(x)

11 res = (x[:, 0] ** 2 + x[:, 1] - 11) ** 2 + (

12 x[:, 0] + x[:, 1] ** 2 - 7

13 ) ** 2

14 return res.reshape(1, -1, 1)

15

16 def linspace2d(low, up, n):

17 """Used to create evenly distributed sparce 2D coordinate points.

18

19 """

20 step_s = (up - low) / n

21 return (

22 np.mgrid[

23 low[0] : up[0] + 0.1 : step_s[0],

24 low[1] : up[1] + 0.1 : step_s[1],

25 ]

26 .reshape(2, -1)

27 .T

28 )

29

30 # Define the precedent referential values

31 refs = np.array([[-6, -4, -2, 0, 2, 4, 6], [-6, -4, -2, 0, 2, 4, 6]])
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32 # Define the consequent referential values

33 consequents = np.array([[0, 200, 500, 1000, 2200]])

34

35 # Construct an initial model

36 brb = BRB(refs, consequents, f=himmelblau)

37

38 # Generate a random set of inputs and outputs

39 low = np.array([-6, -6])

40 up = np.array([6, 6])

41 n = 8

42 xs_train = linspace2d(low, up, n)

43 ys_train = himmelblau(xs_train)

44

45 # Real data to compare to

46 xs = linspace2d(low, up, 14)

47 ys = himmelblau(xs)

48

49 # Untrained data

50 res = brb.predict(xs)

51 ys_untrained = np.sum(

52 res.consequents * res.consequent_belief_degrees, axis=1

53 )

54

55 # Train the BRB

56 brb.train(xs_train, ys_train, brb._flatten_parameters())

57

58 # trained data

59 res = brb.predict(xs)

60 ys_trained = np.sum(

61 res.consequents * res.consequent_belief_degrees, axis=1

62 )

63

64 # Plot the results

65 ys = np.squeeze(ys)

66 plt.plot(np.linspace(0, len(ys), len(ys)), ys, label="The Himmelblau

function")↪→
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67 plt.plot(np.linspace(0, len(ys), len(ys)), ys_untrained,

label="Untrained")↪→

68 plt.plot(np.linspace(0, len(ys), len(ys)), ys_trained,

label="Trained")↪→

69 plt.xlabel("arb")

70 plt.ylabel("$f(x_1, x_2)$")

71 plt.title("Trained vs untrained BRB system for predicting the

Himmelblau function")↪→

72 plt.legend()

73 plt.show()

74

75

76 if __name__=="__main__":

77 himmelblau_example()
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