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Abstract

We study how visual interaction techniques considered in visual analytics can be

utilized when implementing interactive multiobjective optimization methods, where

a decision maker iteratively participates in the solution process. We want to benefit

from previous research and avoid re-inventing ideas. Our aim is to widen awareness

and increase the applicability of interactive methods for solving real-world problems.

As a concrete approach, we introduce seven high-level tasks that are relevant for

interactive methods. These high-level tasks are based on low-level tasks proposed in

the visual analytics literature. In addition, we give an example on how the high-level

tasks can be implemented and demonstrate this in the context of a real-world mul-

tiobjective optimization problem related to wastewater treatment plant operation.

Finally, we make recommendations for implementations of interactive methods. We

conclude that task-based visual analytics can help in implementing interaction be-

tween human decision makers and interactive multiobjective optimization methods.

Keywords: Decision maker, preference information, multiple criteria optimization,

visualization, task taxonomy, user interface
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1 Introduction

Real-world optimization problems typically contain multiple conflicting objectives that

need to be optimized simultaneously, e.g., minimize costs, maximize quality, minimize

negative environmental impact and maximize reliability. Appropriate methods are needed

(see e.g. Hwang and Masud (1979); Miettinen (1999)) to solve these multiobjective opti-

mization problems. In this paper, we concentrate on so-called interactive methods (Miet-

tinen, 1999; Miettinen, Ruiz, & Wierzbicki, 2008), which involve a human decision maker

(e.g. a designer or an operator) in an iterative solution process of finding a most preferred

Pareto optimal solution between the conflicting objectives. Pareto optimality means that

none of the objective values can be improved without impairing some other(s). By ”most

preferred”, we mean a Pareto optimal solution found during the solution process that the

decision maker prefers over the other ones.

In interactive methods, a decision maker (DM) iteratively directs the solution process

by providing preference information. Interactive methods differ from each other in terms

of how and in which form a DM is expected to provide preference information and how

this information is used in generating new Pareto optimal solutions. By employing an

interactive method, a DM is able to learn about both the interdependencies between

the objectives and the feasibility of one’s preferences. Thanks to this learning and the

insight gained, a DM can get convinced of the goodness of the most preferred solution.

This makes interactive methods well-suited in solving real-world optimization problems

(Miettinen, Hakanen, & Podkopaev, 2016; Miettinen et al., 2008).

Even though many interactive methods have been developed, very few implementa-

tions enabling their real-world application are available. In Kaliszewski (2004), it was

observed that the number of applications of interactive methods to real-world problems

was modest despite the availability of computer implementations. The complexity of the

methods available for use by real DMs was assumed to explain this. In Stewart et al.

(2008) as one potential reason for the limited use of interactive methods in engineering

and design was assumed to be the reluctance to accept new methods since they have

mainly relied on automated optimization processes without much subjectivity.

In Poles, Vassileva, and Sasaki (2008), as properties of good multiobjective optimiza-

tion software were mentioned an easy-to-use graphical user interface and a good tool for

visualizing results and choosing the final solution. It was also stated that multiobjective

optimization had become more popular among engineering and scientific communities for

solving real-world problems. The lack of available implementations can be seen as an
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obstacle in applying these methods in practical decision making.

The purpose of this paper is to support developers of interactive multiobjective op-

timization methods and software in their work to enhance interaction with the help of

appropriate visualization techniques. When implementing any interactive method, a user

interface facilitating the interaction between the method and the DM plays a crucial role

(see e.g., Korhonen (2005)). For example, a badly implemented user interface can hinder

a DM from using the method regardless of how good the method itself is. On the other

hand, a well implemented user interface can make a ’not so good’ method popular if it

is easy and intuitive to use. Therefore, well implemented methods are needed in order

to enable wider use of interactive methods in practical decision making (as emphasized

e.g., in Weistroffer and Narula (1997)). Typically, developers of optimization methods

are not experts in visualization (and other user interface techniques), so it is natural that

they focus on what happens in the method itself. Thus, implementations of interactive

methods may lack effective visualization.

In this paper, for the above-mentioned reasons, we turn to visual analytics to get as-

sistance in implementing interaction in interactive multiobjective optimization methods.

Visual analytics can be defined as follows (Keim et al., 2008): ”Visual analytics combines

automated analysis techniques with interactive visualizations for an effective understand-

ing, reasoning and decision making on the basis of very large and complex data sets.”

Based on the definition, visual analytics is relevant in the visual interaction between an

interactive multiobjective optimization method and a human DM. In this paper, we use

the term visual interaction when referring to interaction between a DM and a visual-

ization in order to distinguish this from interaction between a DM and a multiobjective

optimization method.

We assume here that the DM is expected to compare several solutions in the solution

process while using an interactive method. Further, we divide our consideration to DM

providing preference information and analyzing Pareto optimal solutions. We devote our

main focus to the latter as the former is more method-dependent. As far as visualiza-

tion aspects are considered, the multiobjective optimization literature has mainly been

interested in how to visually represent the Pareto optimal solutions to the DM, espe-

cially, when more than three objective functions are considered (Miettinen, 2014; Tusar

& Filipic, 2015). Typical visualization techniques which are used include, among oth-

ers, parallel coordinates plots (Wang, Purshouse, & Fleming, 2013), scatter plots, spider

web charts (Trinkaus & Hanne, 2005), interactive decision maps (Lotov, Bushenkov, &

Kamenev, 2004), heatmaps (Hettenhausen, Lewis, & Mostaghim, 2010), and radial vi-
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sualizations (He & Yen, 2016; Ibrahim, Rahnamayan, Martin, & Deb, 2016). Most of

the methods utilize individual visualization techniques (e.g., those discussed in Mietti-

nen (2006)) but some use linked visualizations like Woodruff, Reed, and Simpson (2013).

However, how the DM should analyse the generated solutions in order to gain more insight

in the problem and provide updated preferences meaningfully has not been in main focus.

Our mission is to support decision making further with appropriate visual interaction

techniques.

We think that bringing the two research fields closer to each other can benefit both of

them: visual analytics can offer support for the DM and, on the other hand, interactive

multiobjective optimization can provide visual analytics with a new application area.

Visual analytics is useful since it combines the strengths of human and machines by using

their respective distinct capabilities for the most effective results (Keim et al., 2008). As

stated in Keim et al. (2008), ”the user has to be the ultimate authority in giving the

direction of the analysis along his or her specific task” which is in line with the idea of

interactive methods.

As far as we know, there are only two papers where visual analytics and interactive

multiobjective optimization have been combined. In Tarkkanen, Miettinen, Hakanen,

and Isomäki (2013), implementation challenges were considered by studying what kind of

visual interaction techniques can support the decision making process. As an example,

interaction design was applied to the Pareto Navigator method (Eskelinen, Miettinen,

Klamroth, & Hakanen, 2010). The other example is the interactive multiobjective particle

swarm optimization method introduced in Hettenhausen et al. (2010), where the user

interface is based on a heatmap visualization and the design includes ideas from visual

analytics. Furthermore, interactive visual analysis was applied to supporting selection of

the most preferred PO solution after a set of PO solutions was generated in Berger and

Piringer (2010).

In this paper, we study how and which visual interaction techniques from visual an-

alytics can be utilized in designing and implementing interaction between an interactive

multiobjective optimization method and a DM. We introduce high-level tasks that are

relevant for interactive methods. These tasks are based on low-level tasks derived from

the visualization literature. We also demonstrate how to implement the high-level tasks

with a real-world example related to wastewater treatment plant operation. To summa-

rize, our novel contribution is four-fold: 1) introduce seven high-level tasks, 2) give an

example of how to implement these high-level tasks, 3) demonstrate the applicability with

a real-world decision making process, and 4) make recommendations for implementations
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of interactive methods.

The structure of the paper is as follows. Section 2 contains relevant concepts used in

multiobjective optimization and describes a general interactive multiobjective optimiza-

tion algorithm. The proposed high-level tasks in interactive multiobjective optimization

and how they are enabled by low-level tasks are introduced and discussed in Section 3. An

example of how the high-level tasks can be implemented and applied is given in Section

4 based on a real-world solution process. Recommendations are given for implementing

interactive methods applying lessons learned in the field of visual analytics in Section 5.

Finally, the paper is concluded in Section 6.

2 Basics of interactive multiobjective optimization

Here, we briefly introduce the basic concepts and operating principles of interactive mul-

tiobjective optimization methods. Furthermore, we present a general algorithm for inter-

active methods to enable easier association to its phases, where visual interaction with

the DM is beneficial.

2.1 Concepts

We consider multiobjective optimization problems with two or more (conflicting) nonlinear

objective functions, which are optimized with respect to decision variable vectors over a

feasible set. The feasible set may be formed by inequality, equality and/or box constraints.

As an objective vector in the objective space we refer to a vector of objective function

values calculated at any feasible decision variable vector. The objective functions can

be either minimized or maximized depending on what they describe. In this paper, we

demonstrate our ideas with a continuous nonlinear multiobjective optimization problem

but the techniques discussed are applicable to other types of multiobjective optimization

problems.

Because of the conflicting nature of the objective functions, no solution, where all the

objectives can reach their individual optima, exists. Instead, we can identify a set of so-

called Pareto optimal solutions where no objective function value can be improved without

impairing at least one of the others. To be more specific, a feasible decision vector and the

corresponding objective vector are Pareto optimal (PO) if there does not exist another

feasible decision vector such that it gives a better or equal value for all the objectives and

the value is strictly better for at least one of them. Typically, multiobjective optimization
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problems have many PO solutions and they form a Pareto optimal set. The number of

PO solutions can be even infinite.

By solving a multiobjective optimization problem one can mean identifying the most

preferred PO solution according to the preferences of a human DM or finding a represen-

tation of the PO set. Because real problems usually need one solution to be implemented,

the final solution must be selected in one way or the other. As PO objective vectors cannot

be ordered completely without additional information, the role of the DM is important

because she can express preference information. Further, a DM can judge trade-offs be-

tween the conflicting objectives which roughly speaking means the ratio of change related

to how much one objective improves when some other objective impairs (for a pair of

objectives), see e.g. Miettinen (1999).

Multiobjective optimization methods can be classified according to the role of the DM

(see e.g. Miettinen (1999)) in four classes. In no-preference methods, no preference infor-

mation is available and some neutral compromise (Wierzbicki, 1999) has to be identified.

In a priori methods, the DM first specifies some hopes or expectations and the solution

best corresponding to them is found, whereas in a posteriori methods a representation of

the PO set is generated and shown to the DM, who then must select the most preferred

one. Examples of visualizations to support a DM in the selection can be found in He

and Yen (2016); Ibrahim et al. (2016); Lotov and Miettinen (2008); Tusar and Filipic

(2015). The fourth class, namely interactive methods, involves a solution pattern which

is iteratively repeated: first the DM specifies preferences and, then, PO solution(s) are

generated that obey the preferences as well as possible. They are shown to the DM, and

during this interactive solution process, the DM can provide and/or correct one’s prefer-

ences and gradually get convinced of which solution meets her preferences and needs best.

Here, the amount of solutions generated and information the DM must handle at a time

remain limited. Importantly, the DM can learn about the interdependencies among the

objectives and the feasibility of one’s preferences. For these desirable reasons, we mostly

discuss interactive methods in this paper.

In many methods, ranges of the objective function values in the PO set provide valu-

able understanding about what kind of solutions are available. The best individual optima

of the objective functions form an ideal objective vector in the objective space. The worst

values in the PO set cannot be calculated easily as the entire PO set is unknown but they

can be estimated to get a nadir objective vector in the objective space (see e.g. Miettinen

(1999) and references therein).
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2.2 General interactive multiobjective optimization algorithm

In this section, we present a general algorithm for interactive multiobjective optimization

methods, which shows essential steps of interaction with the DM. Besides individual in-

teractive methods, there have also been attempts to gather different types of interactive

methods under a joint framework, which enables using different ways of expressing pref-

erences during the interactive solution process, if necessary (Gardiner & Steuer, 1994a,

1994b; Luque, Ruiz, & Miettinen, 2011; Ruiz, Luque, & Miettinen, 2012).

Next, we present main steps of a general interactive multiobjective optimization al-

gorithm based on Ojalehto, Miettinen, and Laukkanen (2014). The general algorithm

involves two active parties: the DM and the algorithm. Here, the DM is asked to provide

preference information and to select the solution that best corresponds to the preferences.

On the other hand, the algorithm generates for the DM the initial solution and new PO

solutions based on the preference information.

The steps of the general algorithm are the following:

1. Initialize the solution process, e.g., calculate the ideal and estimate the nadir objec-

tive vector.

2. By solving a method-specific subproblem, generate an initial PO solution to be used

as a current solution.

3. Show the current solution to the DM.

4. Ask the DM to provide preference information related to the current solution.

5. Generate new solution(s) based on the preference information by solving appropriate

subproblem(s).

6. Show the solutions generated in step 5 to the DM. Ask her to select the best one

and denote it as the current solution.

7. If the selected current solution is satisfactory for the DM, stop. Otherwise, continue

from step 4.

The interactive solution process can often be divided in two phases, namely, the learn-

ing phase and the decision phase (see e.g. Miettinen et al. (2008)). In the learning phase,

the DM can specify different preferences in order to search for promising regions in dif-

ferent parts of the PO set and learn about problem characteristics. On the other hand,
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the preferences used in the decision phase are not necessarily that different from each

other and the idea is to converge towards the most preferred PO solution in the region

of interest identified in the learning phase. Note that it is not always easy to see where

the learning phase ends and the decision phase starts. We will refer to these phases in

Section 4, when we describe an example of a real interactive solution process.

The general interactive algorithm presented above does not directly apply to interac-

tive evolutionary multiobjective optimization methods where the DM guides a popula-

tion of solutions towards interesting parts of the PO set with her preferences (see, e.g.,

Jaszkiewicz and Branke (2008); Purshouse, Deb, Mansor, Mostaghim, and Wang (2014)).

The reason for the difference is that such algorithms operate on a population of solutions

at a time instead of formulating and solving single objective subproblems. However, the

visual interaction techniques presented later in this paper can also be applied to support

the implementation of interactive evolutionary multiobjective optimization methods.

An implementation of an interactive method can be characterized with two distinct

parts: the user interface (steps 3, 4 and 6) and the algorithm (steps 1, 2 and 5). The

preferences of the DM can be asked in different ways in step 4. For example, in Luque

et al. (2011); Ruiz et al. (2012), four ways of expressing preferences are considered: a

DM can 1) give a reference point consisting of aspiration levels, that is, desired values

for each objective function (Jaszkiewicz & Slowinski, 1999; Wierzbicki, 1982; Wierzbicki,

Makowski, & Wessels, 2000), 2) classify the objective functions in a current PO solution to

reflect how function values should be changed to get a more preferred solution (Miettinen

& Mäkelä, 2006; Nakayama & Furukawa, 1985), 3) select a preferred solution from a

small set of sample solutions provided (Steuer & Choo, 1983) or 4) give desirable values

for trade-offs involving different objectives (Luque, Yang, & Wong, 2009) (called marginal

rates of substitution (Miettinen, 1999)).

Furthermore, one can consider navigation based methods that dynamically generate

and visualize multiple PO solutions to the DM in a given direction in the objective space.

In these methods (Eskelinen et al., 2010; Hartikainen, Miettinen, & Klamroth, 2019), the

idea is to create an illusion of a continuous movement and the DM controls both the

direction and the speed of movement when navigating among PO solutions.

Not all interactive multiobjective optimization methods contain an explicit possibility

to return to previously generated solutions in their algorithms. However, it is often possi-

ble to enable this, when actually implementing the algorithm. We think that an ability to

return to previously generated solutions and reconsider them will offer more support and

learning possibilities for a DM. Therefore, it is advisable to have an archive to store all
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the generated solutions. In that case, appropriate visual interaction techniques can sup-

port their efficient analysis. More information on interactive multiobjective optimization

methods can be found e.g. in Miettinen (1999); Miettinen et al. (2016, 2008).

3 High-level tasks in interactive multiobjective opti-

mization

As already mentioned in the introduction, we want to study how techniques from visual

analytics can be used to aid implementation of interactive multiobjective optimization

methods from the interaction point of view. In the visual analytics field, task-based vi-

sual interaction techniques (along with task abstraction) have been proposed (see e.g.

Amar and Stasko (2004); Lee, Plaisant, Parr, Fekete, and Henry (2006); Munzner (2014);

Valiati, Pimenta, and Freitas (2006) together with ideas of how they could be imple-

mented efficiently). These techniques enable users to directly or indirectly manipulate

and interpret visual representations of solutions considered.

Static images or autonomously animated images do not have associated visual inter-

action techniques (Yi, Kang, Stasko, & Jacko, 2007), that is, a user can not interact

with them. Static images are useful for many cases, but their usefulness is limited when

considering large data sets consisting of high-dimensional data (Yi et al., 2007). This

is the case in multiobjective optimization, since there are usually more than three ob-

jectives and several objective vectors to be analyzed and compared. In addition to the

objectives, there can be a large number of decision variables which describe how each

solution is implemented in practice and, thus, may contain very important information

for DMs. However, visualizing the decision variables is typically application dependent

and, therefore, not considered in this paper.

In interactive multiobjective optimization methods, the DM needs to constantly inter-

act with the algorithm. While doing so, she faces tasks such as 1) compare PO solutions,

2) specify preferences, 3) check feasibility of preferences, 4) determine a most preferred

solution in a subset of alternatives, 5) learn about problem characteristics, 6) detect

correlations, and 7) post-process the most preferred solution, e.g., in terms of sensitiv-

ity, robustness or uncertainty. These tasks are here called high-level tasks. To enable

achieving those tasks, visual interaction techniques can be implemented. The high-level

tasks can be facilitated by combining simpler low-level tasks as shown in Figure 1. Dif-

ferent low-level tasks are considered e.g. in Heer and Schneiderman (2012); Kerren and
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Schreiber (2012); Yi et al. (2007). Among those, we have selected those that are related

to the high-level tasks mentioned above. They are connect, filter, explore, encode, select,

organize, abstract/elaborate, derive/adjust and reconfigure and they will be introduced

in the following section.

Figure 1: Low-level tasks facilitating high-level tasks in interactive multiobjective opti-
mization.

3.1 Basic terminology on visualization

Visual analytics is defined as ”the science of analytical reasoning facilitated by interactive

visual interfaces” (Thomas & Cook, 2005). It is a combination of interactive exploration

by means of interactive visualization and computational analysis methods. When consid-

ering the quickly growing number of success stories in academia and in many applications,

interactive visualization and visual analysis can certainly be seen as an already well es-

tablished and useful complement to computational data analysis, when it comes to the

study of data with challenging content or structure.

In case of complex problems, a straight-forward use of automated methods is often

not possible. An example of a complex problem is multiobjective optimization. The

visual part is essential to integrate the user in the loop, to support her, and to exploit her

imagination and intuition in order to solve complex problems. Instead of being automated,

the whole process of insight gaining is rather iterative loop of refining parameters and

analyzing results.
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One of the most often deployed methods in visual analysis are coordinated multiple

views (Gresh, Rogowitz, Winslow, Scollan, & Yung, 2000; North & Shneiderman, 2000;

Roberts, 2007). The main idea of the coordinated multiple views is to depict different

attributes of data items in at least two views. Now, the user can interactively select a

subset of data points in one view and the same subset of data points is highlighted in

all other views. The user selection is called brushing. The consistent emphasis of the

same data points across all views is called linking and emphasizing certain data points

in a visualization, for example by a consistent coloring scheme, is called focus+context

visualization (Hauser, 2006).

Figures 2, 3, and 4 illustrate linking and brushing using two views. In what follows,

we use a set of PO solutions for the DTLZ7 problem (Deb, Thiele, Laumanns, & Zitzler,

2001) having eight objectives as an example. The scatter plot on the left in Figure 2

shows the objective values for f1 and f2 while the parallel coordinates plot on the right

shows the values for f3−f8. Each PO solution or one record in the data set is represented

by a point in the scatter plot and by a poly-line in the parallel coordinates plot.

Figure 2: Linking and brushing. Two views show eight attributes (objective function
values) of the data set.

What we cannot see is how the data items are connected, i.e. which points in the left

scatter plot correspond to which lines in the right view. Linking and brushing solves this

problem. Let us assume that a user is interested in the points with low values of f1 and

f2. The user draws a rectangle selection in the left scatter plot and the brushed points are

highlighted (Figure 3, top, left). At the same time the data items that correspond to the

same records are highlighted in the linked view on the right (Figure 3, top, right). Now

the user can move the brush in the left view, and observe what is happening in the right
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view (Figure 3, bottom). Note, for example changes on the right most axis in the right

view. The low values of f1 and f2 have high values of f8. If we brush high f1 and keep

the f2 low, then f8 decreases. In this way, the user gets insight into data and understands

much better what is going on.

Figure 3: Linking and brushing. Top: The interactive selection of a data subset in one
view (called brushing) leads to a consistent highlighting of this subset in all views (called
linking). Bottom: The user can move the brush and observe changes in all views.

It is easy to refine selection by composite brushing. Brushes are combined using

Boolean operations. In Figure 4 top, the user refines previous selection by brushing low

values on the f7 axis in the parallel coordinates plot. Note that there are some gray points

in the brush area in the scatter plot and on the parallel coordinate axis. Only data items

that are in both ranges at the same time are highlighted. Brushes from different views or

from one view can be combined in a composite brush.

In the example which is depicted in Figure 4 bottom, the user combined three brushes

in the parallel coordinates view.
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Figure 4: Composite brushing. It is possible to combine brushes using Boolean operations.
The AND operation is used here. Individual brushes can be from any view.

In this simple illustrative example, only two views are used; usually, a more advanced

analysis will depend on several (linked) views. Already a simple solution (like two views

with linking and brushing) represents a significant improvement over static plots or the

manual inspection of data. More views and advanced visual interaction solutions including

multiple brushes, make the exploration even more powerful.

In case of multiple brushes, the user can combine several brushes using Boolean oper-

ations in an iterative interactive drill-down process. The user can easily refine selection

using the AND operation and, if needed, can broaden the selection using the OR opera-

tion.

The qualitative nature of interactive visualization is its biggest advantage and a draw-

back at the same time. Radoš et al. (2016) propose several ways how to structure brushing

in order to make it reproducible, and how to enhance linked views in order to make them

more quantitative. Konyha, Lež, Matković, Jelović, and Hauser (2012) introduce three
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levels of interactive visual analysis. On the first level a single brush is available, the sec-

ond level supports multiple brushes, and the third level, in addition, supports complex

brushes and on-the fly data derivation and aggregation. A detailed overview of available

linking and brushing research is beyond the scope of this paper.

Let us summarize the basic concepts used in visualization when coordinated multiple

views are deployed.

Linking means that a selected data item(s) can be simultaneously identified in two or

more views representing the same data. Linking enables studying the same data in dif-

ferent representations at the same time and helps in getting more insight when compared

to only using a single representation.

Brushing refers to highlighting some data items among the data visualized. Typical

to brushing is that the data items not highlighted are still shown in a view but differently

e.g. in a different color. Brushing is closely related to filtering where some elements of the

data are filtered out of the consideration and they are typically not shown. However, the

definition of filtering in Yi et al. (2007) says that ”data items outside of the range or not

satisfying the condition are hidden from the display or shown differently” and ”the hidden

or differently shown data items can be recovered”. Since we use Yi et al. (2007) as the

basis of our low-level tasks introduced in the next section, we will follow this definition

and use filtering and brushing here as synonyms.

Select is usually defined depending on application scenario. In case of multiobjective

optimization, we define it as selecting few solutions. It is usually done at the end of the

drill-down process when some interesting cases are identified. It is not the end of the

analysis process, but it is used to mark some of the solutions as potentially interesting.

3.2 Low-level tasks

Often in visual analytics, all pieces of the data are assumed to be readily available (e.g. in

some database) and different parts of it can be explored. On the contrary in interactive

multiobjective optimization, it is typical that not all PO solutions are known but they are

continuously generated during the interactive solution process. In other words, actually,

no complete set of solutions is ever available. Furthermore, visual interaction techniques

in visual analytics do not typically make any changes to the data but only show subsets

of it to the user.

In the visual analytics literature, research has been done in order to categorize visual

interaction techniques. In Yi et al. (2007), seven categories of visual interaction techniques
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were proposed based on a thorough review of the existing literature and commercial sys-

tems of information visualization (in total, 59 papers and 51 systems were considered).

The driving force in defining these categories was user intent, that is, ”What a user wants

to achieve”. The categories were given the following names (a short name and a descrip-

tive phrase, respectively (Yi et al., 2007)): 1) Select: mark something as interesting, 2)

Explore: show me something else, 3) Reconfigure: show me a different arrangement, 4)

Encode: show me a different representation, 5) Abstract/Elaborate: show me more or

less detail, 6) Filter: show me something conditionally, and 7) Connect: show me related

items. A more detailed description of these categories can be found in Yi et al. (2007).

More recently, Heer and Schneiderman (2012) and Kerren and Schreiber (2012) pre-

sented a taxonomy of interactive dynamics to assist designers in creating visualization

tools. Within the taxonomy, visual interaction techniques were divided into three main

categories: 1) data and view specification (encode/visualize, reconfigure, filter, sort, de-

rive, adjust), 2) view manipulation (select, navigate/explore, coordinate/connect, orga-

nize), and 3) process and provenance (record, annotate, share, guide). The first category

deals with initial exploration of the data and how it is visually represented, the second

category considers interaction with the data through usage of different ways to use visual

representations while the third category is mainly related to collaboration and information

sharing.

The visual interaction techniques presented in Yi et al. (2007) and the ones in the three

categories of Heer and Schneiderman (2012); Kerren and Schreiber (2012) implement low-

level tasks and they are basic actions for the user to interact with data. Further, they

can be used as building blocks for enabling high-level tasks. The three categories in Heer

and Schneiderman (2012); Kerren and Schreiber (2012) describe general high-level goals.

A more concrete example related to multiobjective optimization is that in order to be

able to compare objective vectors (high-level task), one often has to first manipulate how

they are visualized, e.g., filter or sort them or visualize them in some other way (low-level

tasks). Examples of high-level tasks related to interactive multiobjective optimization are

given in the next section.

We think that augmenting the seven user intent based visual interaction techniques

from Yi et al. (2007) with derive/adjust and organize interactions from Heer and Schnei-

derman (2012); Kerren and Schreiber (2012) provide a meaningful approach to study

visual interaction techniques related to implementing interaction in interactive multi-

objective optimization. Although collaboration and information sharing is important

especially when dealing with multidisciplinary optimization, we will not consider visual
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interaction techniques related to them here.

Next, we briefly describe some of the selected ones (whose meaning is not obvious).

In the explore interaction, the aim of the user is to see some other data items instead of

the ones that are currently shown. The aim of the reconfigure interaction is to provide

different ways of representing a given dataset. As opposed to the reconfigure interaction

that considers spatial arrangement of the data, the encode interaction can be used to

change how the data is represented visually. Encode is related, for example, to the visual

appearance of each data item including colour, size and shape. The connect interaction

connects related data items if multiple representations of the same data items are shown

simultaneously. Derive/adjust in our context means that some of the parameters of the

computations can be changed from the visual interface by the user (e.g. indirectly changing

the parameters of scalarizing functions by specifying preferences). Finally, organize refers

to how the different views are arranged in a user interface (e.g. have a two dimensional

scatter plot next to a parallel coordinate plot or on top/on bottom of it).

3.3 High-level tasks

As already mentioned, we have identified seven high-level tasks that are relevant in in-

teractive multiobjective optimization. From the visual interaction point of view, those

can be facilitated by the low-level tasks introduced in Section 3.2. In this section, we will

discuss the high-level tasks in more details. In the following subsections, the graphical

representations associated with each high-level task are shown next to the descriptions

and they follow the style applied in Bernold, Matkovic, Gröller, and Raidou (2019). The

green color represents the related low-level tasks while the yellow color denotes the high-

level task in question. In addition, input and output of the high-level task is shown. We

also give concrete examples of use cases in the style adopted from Lee et al. (2006).

3.3.1 Compare Pareto optimal solutions

In different phases of an interactive solution process, the

DM has to compare different PO solutions. As already

mentioned, without any additional information, all PO

solutions are mathematically equally good so the DM

can use her domain knowledge to make the compari-

son supported by visual interactions. Note that all the

low-level tasks shown in the examples below are not nec-
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essarily needed in all the cases.

Examples

• ”I want to compare solutions that were generated in the last iteration”

[filter to get solutions from the last iteration + encode (use different ways of visu-

alization) + reconfigure (use different arrangement/order of data) + connect indi-

vidual solutions in different visualizations + elaborate to see more details on some

solutions]

• ”I want to compare solutions where the first objective has values below 5.0”

[filter all solutions (f1 ≤ 5.0) + encode (use different ways of visualization) +

reconfigure (use different arrangement/order of data) + abstract to get an overview

+ connect individual solutions in different visualizations + elaborate to see more

details on some solutions]

• ”I want to compare solutions that I find promising”

[abstract to get an overview + filter to get solutions to be compared + encode (use

different ways of visualization) + reconfigure (use different arrangement/order of

data) + connect individual solutions in different visualizations + elaborate to see

more details on some solutions]

3.3.2 Specify preferences

At each interaction, the DM is assumed to specify prefer-

ences. By specifying preferences, she wants to improve

the current solution because the ones generated so far

are not yet satisfying enough or she wants to explore

other areas in the objective space. Therefore, this can

be seen as an explore low-level task. In interactive meth-

ods based on solving scalarized problems, the preferences

the DM specifies are used to change the parameters of

the scalarized problems and, thus, the corresponding low-level task is derive/adjust. The

DM does not need to know how the preferences are exactly converted to parameter values

but only how she wants to improve the current solution. The style of expressing preference
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information depends on the method applied.

Examples

• ”I want to improve current solution by classifying objective functions”

[select current solution + adjust (specify preferences as classifying objectives)]

• ”I want to generate solutions in the area that I specify by giving corresponding ranges

for each objective function”

[filter solutions to see whether there already exist such solutions + explore new area

(generate new solutions) + specify preferences as ranges for each objective (adjust

parameters for scalarization functions)]

• ”I want to see other solutions in the neighborhood of a selected solution”

[select one solution + adjust (specify preferences as desirable values for each objec-

tive)]

3.3.3 Check feasibility of preferences

In the learning phase, the DM often wants to explore

different areas of the objective space, i.e., study differ-

ent trade-offs. For this, she sets preferences accordingly

to see whether there exist any PO solutions satisfying

those preferences. If the method used can not find such

solutions it means either that i) there does not exist such

solutions or ii) the method is not able to find them. Here,

filter and explore are the relevant low-level tasks.

Examples

• ”I want to check whether there are any solutions generated in an area of the objective

space that I am currently interested in”

[filter generated solutions + if no solutions available, explore]

• ”I want to see solutions that are different from the ones already generated”
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[filter to find interesting areas that do not have any solutions generated + explore

(try to find such solutions and obtain insight about feasibility)]

3.3.4 Determine most preferred solution

The DM has to determine a most preferred PO so-

lution at the end of the interactive solution process

and, sometimes, also during the solution process to con-

tinue with. This high-level task also requires to ap-

ply another high-level task: compare a set of PO so-

lutions. The associated low-level tasks are select and

filter.

Example

• ”I want to select the most preferred solution among a set of solutions available”

[filter potential solutions + compare selected solutions + filter to exclude undesir-

able solutions + select the most preferred solution]

3.3.5 Learn about problem characteristics

The main task in multiobjective optimization is learn-

ing about trade-offs between conflicting objectives. The

more objectives the problem has, the more challeng-

ing this learning becomes. Therefore, visual interac-

tion plays here a crucial role. The six related low-

level tasks can be seen on the right. Note that the

low-level task organize is included here as an example

but it can be present in any of the high-level tasks if

needed.

Examples

• ”I want to find out how the values of two or more objectives change within a given

set of solutions”
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[filter to get the set of solutions + decide the objectives of interest + encode the

selected objectives differently + reconfigure (use different ways of visualization) +

connect solutions in different visualizations + organize views differently (optional)]

• ”I want to see whether I can improve these two objectives simultaneously from the

current values”

[select the current solution + decide two objectives of interest + filter to show

solutions having better values for the selected objectives + encode the selected

objectives differently + reconfigure (use different ways of visualization) + connect

solutions in different visualizations]

3.3.6 Detect correlations

A part of learning about trade-offs is detecting corre-

lations between different (pairs) of objectives. To sup-

port in this, different types of visualization techniques

can be used together with different representations of

the PO solutions to be visualized. Combining informa-

tion from different visualizations is aided through link-

ing.

Examples

• ”I want to find out whether these two objectives are correlated”

[decide on two objectives of interest and reconfigure accordingly + encode the se-

lected objectives differently + sort solutions based on objective values (reconfigure)

+ reconfigure (use different ways of visualization) + connect solutions in different

visualizations]

• ”I want to learn what happens to the other objectives if I improve this objective

function”

[decide the objective to be improved + filter to get solutions having better values

for this objective function + encode the selected objectives differently + reconfigure

(use different ways of visualization) + connect solutions in different visualizations]
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3.3.7 Post-process the most preferred solution

In many decision making tasks it is important to take

into account the quality of the most preferred solution,

e.g., with respect to sensitivity, robustness or uncer-

tainty. This task is optional and depends on what kind

of information the optimization algorithms used can pro-

vide. If the algorithms directly provide the needed in-

formation, then this task deals with analyzing the infor-

mation given. On the other hand, if the algorithms used

do not produce any additional information about the quality, then analysis can be done

manually, e.g., as described in the example below. The relevant low-level tasks here are

select, filter and explore.

Example

• ”Is a selected solution sensitive to small changes in decision variable values?”

[select a solution + filter to find neighboring solutions in the decision space (if no

solutions close enough, explore new area) + compare neighboring solutions in the

objective space to get information about quality]

4 Example of implementing task-based visual inter-

actions

Next, we demonstrate how a DM can be supported in some of the high-level tasks identified

in Section 3.3 by using visual interaction techniques. We focus on illustrating the usage

of visual interaction techniques, not the design of a graphical user interface as such.

Illustrations of visual interaction techniques in this section are produced with the ComVis

software (Matkovic, Freiler, Gracanin, & Hauser, 2008).

In the following, we consider an example of how a real interactive solution process

could be visually supported in case of a real-world problem with five objective functions

related to wastewater treatment plant operation (Hakanen, Sahlstedt, & Miettinen, 2013).

The objectives are to 1) minimize total nitrogen in effluent, 2) minimize consumption of

aeration energy, 3) minimize methanol dose, 4) minimize dried sludge accumulation, and
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5) maximize biogas production. The entire solution process is described in the above-

mentioned reference.

Here, we present some parts of the solution process divided in three parts: the initial

analysis, the learning phase, and selecting the final solution (i.e. the decision phase). A

visual representation of each part including the relevant high-level tasks is included and

they follow the same format as the ones used to represent high-level tasks in Section 3.3.

The yellow color represents high-level tasks as before, and the red color denotes the part

of the solution process. In addition, input and output for the part is also shown. In what

follows, the objectives are named f1− f5 instead of the real names for the sake of brevity.

4.1 Initial analysis

In the initial analysis, the relevant high-

level task is specify preferences. At the

beginning of the solution process, the DM

can see the first current PO solution that

is used as a starting point and the ranges

of the objective function values that are

reachable within the PO set, as shown in Figure 5.

As can be seen, the PO solution is visualized here by using two different visualization

techniques, namely, a parallel coordinates plot (left) and a two-dimensional scatter plot

(right). Note that the number of views shown can also be higher than two. The parallel

coordinates plot shows the ranges each objective can reach within the PO set. This

can be useful information for the DM when specifying preferences. At the moment, the

DM has decided to view the objectives f2 and f4 in the scatter plot. However, they

can be changed at any time, if needed. Since people have different abilities to interpret

visualizations, the DM can configure the views by deciding to use such views that she

finds the most informative. If desired, the colors used to show objectives and/or different

PO solutions can also be changed.

The first four objectives are to be minimized while f5 is to be maximized. There are

options for visualizing this. In Figure 5, this is shown in the views with text min or max

after the objective names and real values of f5 are shown. Instead, function values could

be converted into negative ones corresponding to minimizing −f5. Another alternative

would be to use the actual values but change the orientation of the axis such that smaller

values would be on top and larger values at bottom. In this way, the trade-offs between
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Figure 5: Initial analysis. The starting point of an interactive solution process is visual-
ized. Here, this PO solution is shown to the DM in two different ways. The preferences
given by the DM are shown as green arrows.

objectives to be maximized and minimized could be seen more easily. The DM can be

given options whether she prefers to see converted objective function values or reverted

axis to enable analyzing the parallel coordinates plot (and other visualizations) or the

original function values for the understandability of their magnitudes.

The DM must now figure out how to specify preferences to improve the current PO

solution. This directly corresponds to one of the high-level tasks. The PO solution is in

this case visualized by using a parallel coordinate plot and a two dimensional scatter plot

projection of f2 and f4, as already mentioned, while also showing numerical values of the

objectives and the decision variables (at the bottom). The DM can specify preferences

(in this case, as a reference point) by interacting with any of the views available and the

given preferences are shown in all of them (as green arrows) because they are linked.
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4.2 Learning phase

Typically, at the beginning of a solution

process, the DM wants to explore what

kind of trade-offs exist between the ob-

jectives. The aim is to learn about the

problem, its possibilities and limitations.

Therefore, the most relevant high-level tasks are compare PO solutions, detect corre-

lations, learn about problem characteristics, check feasibility of preferences, and specify

preferences. Furthermore, determine most preferred solution is used as a way to select a

solution to continue with, if exploration is continued.

Figure 6: Learning phase. PO solutions generated based on DM’s preferences are analyzed
to learn about the problem characteristics.

In Figure 6, a set of PO solutions has been generated based on the preferences the DM

has given after the initial analysis. Compared to Figure 5, the DM has changed the order

of the objective functions in the parallel coordinate plot. This is because one can more

easily study trade-offs between the objectives that are next to each other, which should

support detecting correlations that potentially exist between the objectives and learning
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about problem characteristics in general.

Now, comparing PO solutions also becomes important since there are more solutions

available. As a part of this comparison, the DM has used filtering by applying two different

brushes (Brush1 and Brush2 ) in the parallel coordinates plot for the objectives f4 and f3,

respectively. The PO solutions that remain within either of the brushes (OR operation as

described in Section 3.1) are shown in the orange color, while the ones that do not, have

the grey color. The same coloring is also shown in the scatter plot.

The DM has changed the objectives shown in the scatter plot to be f1 and f5. Further-

more, statistics (mean, median and midrange) about the solutions satisfying the filtering

are shown numerically next to the scatter plot and the ranges of those solutions graphi-

cally in the scatter plot (a combination of a vertical and a horizontal line in the scatter

plot representing the ranges of the solutions shown in orange).

When the DM wants to explore new solutions during the learning phase, she has to

select a most preferred solution to continue with and specify new preferences to search

for improved solutions. Again, the preferences are denoted by green arrows in Figure 6.

After having explored potential PO solutions enough, the DM is ready to move to the

last part of the solution process and select the most preferred solution.

4.3 Selecting the final solution

After the DM has explored different PO so-

lutions sufficiently, she can finally identify

a region of interest to fine-tune the solution

in it and eventually select the most pre-

ferred one. The idea of the decision phase

is to convince the DM that no better solu-

tions exist, which makes her trust more in

the solution she identifies as the most preferred one. In this example, the selection of the

most preferred solution is done within the set of PO solutions generated so far. In other

words, no new PO solutions are generated anymore. Therefore, the most relevant high-

level tasks are compare PO solutions and determine most preferred PO solution. Typically,

the most preferred solution has to be thoroughly analyzed and then, post-processing the

most preferred solution becomes relevant as well.

As shown in Figure 7, when analyzing all the PO solutions generated so far, the DM

has used filtering within the parallel coordinates plot to identify interesting solutions.
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Figure 7: Selecting the final solution. The most preferred PO solution is determined
among the set of PO solutions generated. After that, it is further post-processed, if
necessary.

She has this time applied brushes to f1 and f5 using the AND operator (as described in

Section 3.1) which highlights in orange color only those PO solutions that satisfy both

the brushes. When compared to Figures 5 and 6, the DM has replaced the scatter plot

by a box plot having individual box plots for each objective. The filtering is also visible

in the box plot (in orange for the PO solutions satisfying the brushes and in grey for all

the PO solutions).

The DM decides to stop the solution process here and has to determine the most

preferred solution. In addition, she might want to post-process the final solution. The

solution selected by the DM as a final solution is shown in dark blue color in the parallel

coordinate plot.

Note that in addition to visualizing only the objective function values, the values of

the decision variables could also be visualized. This could be done either numerically,

graphically or, in specific applications, by visualizing the actual design/solution that they

correspond with. This is not shown here, but can be optional for the DM when selecting

26



which views to have. If the number of decision variables is large, then some dimension

reduction techniques may be needed since, typically, the number of decision variables is

higher than the number of objectives.

5 Recommendations

In this section, we present some recommendations for the developers of interactive multi-

objective optimization methods on how to implement the interaction between a method

and a DM. The recommendations are based on the high-level tasks from Section 3.3,

demonstrations of their implementations shown in Section 4, and best practices from

visual analytics.

First of all, as with all interactive systems, implementations should be responsive, i.e.,

a DM’s action should result in some change in the views without too long a delay. Card,

Robertson, and Mackinlay (1991) describe three human time constants which cannot be

changed, and which have to be met. One of them is an immediate response time constant.

According to it, a human can make an unprepared response to some stimulus within about

a second. We use it in every-day human-to-human communication. In a dialog, a pause

of more than a second interrupts the communication. We should, thus, strive to provide

(at least partial) response to DM’s requests in about a second.

Secondly, we highly recommend using coordinated multiple views that are often used

in visual analytics, as already mentioned in Section 3.1. They can support a DM in

analyzing PO solutions in a more versatile way than individual visualizations, especially

when problems have more than three objective functions. As the number of objectives

increases, the cognitive capabilities of a DM are stretched and the ability to inspect PO

solutions from different perspectives (even seeing some projections to lower dimensions)

may help.

Based on what was recommended above and the examples shown in Section 4, we

propose here a minimal set of views that can be used in implementing interactive mul-

tiobjective optimization methods. The set contains two different views for visualizing

solutions (in our example, a parallel coordinate plot and a scatter plot were used). Op-

tionally, the set of views may also contain a view for post-processing (which in our example

was a box plot). Furthermore, we recommend including a view for showing the numerical

values of the solutions considered (objective function and decision variable values) in case

more accurate understanding of the solutions is required. If more views are needed, it
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should be possible to add new ones.

Special attention should be paid to the interaction and usability. In case of interactive

methods, a brush interpretability plays an important role. With a parallel coordinate

plot, the most simple and intuitive brush is the one enabling a selection of a range on an

axis. Another possibility, which is probably more suitable for special cases, is an angular

brush (Hauser, Ledermann, & Doleisch, 2002). It selects only lines of a specific slope

range in a parallel coordinate plot. It certainly offers more possibilities, but is harder to

interpret.

In what follows, we provide some more tips on brushing. In case of a two-dimensional

scatter plot, a free-form selection (as available in most image editing software), or a

polygonal brush are easy to implement. A rectangular brush with axis aligned edges

may seem restricting when a selection of point clusters is needed, but it is clear how to

interpret such a brush. The DM immediately sees what is selected, a range on the x-axis

and a range on the y-axis. A possibility to exactly specify brush ranges, as well as some

means to increase reproducibility help adoption of the linking and brushing methods.

Composite brushing makes an iterative drill-down possible. A DM gradually reduces

the potential range of solutions in several views. There are basically two possibilities how

to implement composite brushing. One takes the current selection and combines it with a

brush using a Boolean operator. Then, the process continues. Another possibility is to use

a feature specification language as proposed by Doleisch, Gasser, and Hauser (2003). The

main idea is to provide a user interface which allows an exact mathematical specification

of the brushes’ operations. While very powerful, the system is more complicated to use

and has a steeper learning curve.

As mentioned in the introduction, our objective is to build bridges between the fields

of multiobjective optimization and visual analytics. The recommendations above strive

mostly from visual analytics and should lower the threshold of implementing interactive

methods that are convenient and informative for DMs to apply.

6 Conclusions

In this paper, we have studied how visual interaction techniques studied in visual analytics

can be utilized in implementing interactive multiobjective optimization methods. The

interaction between an interactive method and a human decision maker benefits highly

from applying visual means to support the DM’s tasks.
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We have identified seven high-level tasks of a DM that are typical of interactive solution

processes. To facilitate them, we have selected nine low-level tasks proposed in the visual

analytics literature. They match best the needs of applying interactive methods.

As a concrete example, we have considered a real five-objective optimization problem

and demonstrated how the low-level tasks can support the DM in her high-level tasks in

different phases of the interactive solution process.

This consideration is hoped to support the development of implementations of in-

teractive multiobjective optimization methods and making them more widely available.

Because of the iterative nature of interactive methods, various types of visualizations play

an important role in supporting the DM in finding the most preferred solution. In this,

findings of the visual analytics literature are of high value. We decided to focus on visual

interaction techniques but also user interface design plays an important role in making

methods convenient to apply.

To take this research further, some future research ideas are identified. First of all, a

practical implementation of an interactive method that utilizes the ideas of this paper is

needed. Secondly, getting feedback from real-world DMs on the above mentioned imple-

mentation when solving a real-world decision making problem would give ideas for further

development. Lastly, it would be interesting to study how the ideas of this paper would

work when applied to interactions using e.g. touch screens that are nowadays widely used

in different mobile devices and whether they present new challenges in visual interaction

for interactive multiobjective optimization. This is closely related to a novel research area

called immersive analytics.

Acknowledgements

The authors wish to thank MSc Suvi Tarkkanen for initiating interest in the visual ana-

lytics field. This research was supported by the Academy of Finland (grant no 311877)

and is related to the thematic research area DEMO (Decision Analytics utilizing Causal

Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyväskylä.
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Konyha, Z., Lež, A., Matković, K., Jelović, M., & Hauser, H. (2012). Interactive visual analysis of families

of curves using data aggregation and derivation. In Proceedings of the 12th international conference

on knowledge management and knowledge technologies (pp. 24:1–24:8). ACM.

Korhonen, P. (2005). Interactive methods. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple

criteria decision analysis: State of the art surveys (pp. 641–661). New York: Springer.

Lee, B., Plaisant, C., Parr, C. S., Fekete, J.-D., & Henry, N. (2006). Task taxonomy for graph visualiza-

tion. In Proceedings of the 2006 avi workshop on beyond time and errors: Novel evaluation methods

for information visualization (pp. 1–5). ACM.

Lotov, A. V., Bushenkov, V. A., & Kamenev, G. K. (2004). Interactive decision maps: Approximation

and visualization of Pareto frontier. Boston: Kluwer Academic Publishers.

Lotov, A. V., & Miettinen, K. (2008). Visualizing the Pareto frontier. In J. Branke, K. Deb, K. Miettinen,

& R. Slowinski (Eds.), Multiobjective optimization: Interactive and evolutionary approaches (pp. 213–

243). Berlin: Springer.

Luque, M., Ruiz, F., & Miettinen, K. (2011). Global formulation for interactive multiobjective optimiza-

tion. OR Spectrum, 33 , 27-48.

Luque, M., Yang, J. B., & Wong, B. Y. H. (2009). PROJECT method for multiobjective optimiza-

tion based on gradient projection and reference points. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 39 (4), 864–879.

Matkovic, K., Freiler, W., Gracanin, D., & Hauser, H. (2008). ComVis: A coordinated multiple views

system for prototyping new visualization technology. In Proceedings of the 12th international conference

on information visualisation (p. 215-220).

31



Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic Publishers.

Miettinen, K. (2006). IND-NIMBUS for demanding interactive multiobjective optimization. In T. Trza-

skalik (Ed.), Multiple criteria decision making ’05 (pp. 137–150). Katowice: The Karol Adamiecki

University of Economics in Katowice.

Miettinen, K. (2014). Survey of methods to visualize alternatives in multiple criteria decision making

problems. OR Spectrum, 36 (1), 3–37.

Miettinen, K., Hakanen, J., & Podkopaev, D. (2016). Interactive nonlinear multiobjective optimization

methods. In S. Greco, M. Ehrgott, & J. Figueira (Eds.), Multiple criteria decision analysis: State of

the art surveys (2nd ed., pp. 931–980). New York: Springer.
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