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Highlights

Thea-solanine levels were reduced in potato plants growGBH-treated soil.

The survival of the beetles was not affected leysthil-mediated GBH treatment.

Indirect GBH treatment modify the antioxidant deferof the Colorado potato beetle larvae.

Soil-mediated GBH treatment at larval stage mayeHamg-term effects on the adult beetles.
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Abstract

Glyphosate is the most used herbicide worldwidegeting physiological pathways in plants.
Recent studies have shown that glyphosate carcalsge toxic effects in animals. We investigated
the glyphosate-based herbicide (GBH)-induced changepotato $olanum tuberosumplant
chemistry and the effects of a GBH on the surviaé¢ and oxidative status of the Colorado potato
beetle Leptinotarsa decemlinegta The beetles were reared on potato plants grawrmpats
containing soil treated with a GBH (Roundup Gol804/l) or untreated soil (water control). The
2" instar larvae were introduced to the potato plams then collected in 2 phases: Ssidstar
larvae and as adults. The main glycoalkaloids ef pbtato plantsg-solanine andi-chaconine,
were measured twice during the experiment. ddselanine was reduced in potato plants grown in
GBH-treated soil, which can be detrimental to pldetenses against herbivores. GBH treatment
had no effect on the survival rate or body masheflarvae or the adult beetles. In the larvaal tot
glutathione (tGSH) concentration and the enzymiiacof catalase (CAT), superoxide dismutase,
and glutathione-S-transferase were increased iGBid treatment group. In the adult beetles, CAT
activity and tGSH levels were affected by the iattive effect of GBH treatment and the body
mass. To conclude, environmentally relevant comaéionhs of a GBH can affect the potato plant’s
glycoalkaloid concentrations, but are not likelydioectly affect the survival rate of the Colorado

potato beetle, but instead, modify the antioxidiefense of the beetles via diet.

Keywords: Antioxidant defense, Herbivores, Insects, Potagdemse chemicals, Roundup;

solanine
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1. Introduction

Glyphosate (N-(phosphonomethyl)glycins)the most commonly used herbicide worldwide, give

its effectiveness and broad spectrum ability toweéeds (Myers et al., 2016; Woodburn, 2000). It
has been proclaimed to be safe for the environrdastto its low accumulation rate and rapid
inactivation in soils (Giesy et al., 2000, Vereatk005). However, accumulating evidence has
demonstrated that glyphosate and its degradatidaboktes (e.g., aminomethylphosphonic acid,
AMPA) can remain in the soil for years and affeon#iarget organisms (Helander et al., 2018;
Larsen et al.,, 2012). Furthermore, non-target asgas may be directly exposed to glyphosate
products by the unwanted loss of substance duramgsportation, handling, and storage, and by
wind action during field application (Torretta dt,2018). Glyphosate exposure may also occur
when it is used to synchronize and accelerateipeming of forage cereals (Helander et al., 2012).
Glyphosate use is intended to tackle weeds, b#nteoxicological studies have shown harmful
effects of glyphosate products in animals, sucbhamnges in cell function, tissues, physiology, and

survival rate of the animals (Claus et al., 201@r@lis et al., 2019; Mesnage et al., 2015).

Glyphosate is also the most important herbicideedlly affecting the synthesis of secondary
compounds in plants (Duke and Powles, 2008). Tlyphgisate-based reduction of secondary
compounds in plants (i.e., defense chemicals) mpgse plants to herbivore attacks; influence the
flavor-producing chemicals important in herbivorehbvior or food quality (El-keltawi and

Croteau, 1987); and reduce plant resistance taogatis and fungal infections (Lydon and Duke,
1989). On the other hand, glyphosate may also aserethe production of plant secondary
metabolites (Ossipov et al. 2003). Overall, the-lgtival effects of herbicides on non-target plants
may affect agricultural ecosystems by altering slyathesis of compounds that are important in

inter- and intraspecific interactions (Lydon and kBu 1989). Plant-herbivore interactions are
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central to both food production and biological dsry, affecting the dynamics of various

ecosystems (Blumenthal and Augustine, 2009).

Glyphosate is the only herbicide affecting the tnation of the 5-enolpyruvylshikimate-3-
phosphate synthase (EPSPS) enzyme (Duke and P&0I@8, Steinriicken and Amrhein, 1980).
This enzyme belongs to the shikimate metabolic ywagth which appears in plants and in some
bacteria and fungi (Bentley, 1990; Haslam, 1993jakiger et al., 2018). Glyphosate blocks
phosphoenolpyruvate (PEP) binding sites, thus itih@ the reaction between shikimate 3-
phosphate (S3P) and PEP (Funke et al., 2006). dctivation of EPSPS leads to the accumulation
of high levels of shikimate in plant tissues (Amrheet al., 1980; Lydon and Duke, 1989),
preventing the biosynthesis of essential aromatina acids (e.g., phenylalanine, tyrosine, and
tryptophan) necessary in protein synthesis (Dula Rowles, 2008) and as precursors for several
secondary metabolites important in plant growthifTand Galili, 2010). This can result in
shortages of carbon for other essential pathwagh(SL.997) and reduce (Kishore and Shah, 1988;
Martinez et al., 2018; Shilo et al., 2016; Sihtn@eal., 2013) or increase (Ossipov et al., 2003)
secondary metabolites in some species of plantsn@ombbes. For example, while blocking the
production of arogenic acid, glyphosate may ditket conversion of secondary metabolites into
hydrolysable tannins via 3-dehydroshikimic acid,ichhhave been shown to accumulate under
glyphosate treatment (Ossipov et al., 2003). Glgal®is also a strong chelating agent that creates
the complexes that immobilize the mineral micromumits of soil, making them unavailable to

plants (Glass, 1984).

Both glyphosate and plant defense chemicals arevikrio impair the antioxidant defense system
and increase the production of reactive oxygenispe@ROS) in plants (Adamski et al., 2014;

Chowaski et al., 2016; Gomes et al., 2016; Liu et &01@ Radman and Fayez, 2016) and animals
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(Annett et al., 2014; Hultberg, 2007; Modesto andriihez, 2010; Uren Webster and Santos,
2015), which can, in turn, cause cellular biochexhstress, called oxidative stress, and consequent
oxidative damage to biomolecules (George and Gasshd@013; Halliwell and Gutteridge, 2007).
Previous studies in animals have shown increasedatxe stress or alteration in antioxidant
defense systems in relation to various glyphosased herbicides (thereafter GBHs; Contardo-Jara
et al., 2009; El-Shenawy, 2009; Glusczak et al072Modesto and Martinez, 2010; Rainio et al.,
2019; Uren Webster and Santos, 2015). Also, thakioieevn products of glutathione (e.g-
glutamylglutamine and cysteinylglycine), involved the regulation of redox balance, have been
shown to increase in rats exposed to GBH (Mesnagd. €019). Moreover, GBHs have been
shown to affect the survival rate, development, asdroduction of invertebrates found in
agroecosystems (Benamu et al., 2010; Castilla.e2@10; Evans et al., 2010; Saska et al., 2016;
Schneider et al., 2009), though there are alsoesu@porting little or no effects (Margus et al.,
2019; Salvio et al., 2016; Thompson et al., 20T4e impacts of GBHs on plants and non-target
organisms may differ substantially depending onube of commercial formulations that differ in
their surfactant and salts, which are added to mg#hdhe effectiveness of glyphosate. Some
adjuvants used in GBHs may be even more toxic tharglyphosate itself (Mesnage et al., 2014).
Previous studies have shown that the consequeric€Bld use in target ecosystems and their
surrounding areas are relatively poorly known agguire further studies from a multidisciplinary

approach.

The increasing evidence of glyphosate toxicity am-target organisms has caused growing
concern about the use of glyphosate as the primwwagd management strategy (Helander et al.,
2012; Torretta et al., 2018; Van Bruggen et al180The environmental risks of glyphosate are
likely to be pronounced in northern ecosystems,ciwrare characterized by long biologically

inactive winters and short growing seasons, lingitime time period of peak glyphosate degradation
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activity to the summer months (Laitinen, 2009; heler et al., 2012; Helander et al., 2018; Silva et
al., 2018). On the other hand, plant-protectivenégare required for effective crop productionsthu

it is important to find safe and sustainable wayprobtect plants in the future.

In this study, we investigated the soil-mediatetea$ of a GBH on the glyphosate-induced
changes in plant chemistry, and the survival ratgk @xidative status of a non-target herbivore, by
using potato plantSolanum tuberosunand the Colorado potato beetleeptinotarsa decemlineata,
Coleoptera, Chrysomelidae) as a model system. Tdler&lo potato beetle is an economically
important potato pest worldwide (Casagrande, 1987apputo et al.,, 2005; Walsh, 1865;),
including in Finland, where it is classified as @atantine pest species (Vanninen et al., 2011).
Potato plants and the Colorado potato beetle farnexaellent study system, since glyphosate is
known to affect herbivores not only directly, busaavia potato plant defense chemicals. At the
larval stage, the beetles can be exposed to glgbhossidues or glyphosate metabolites via diet or
due to possible changes in potato plant qualityereds, at the pupal stage, the beetles may be

exposed to GBH residues also via the soil.

Potato plants are characterized by the presenseeddidal glycoalkaloids, such assolanine and
a-chaconine (Lachman et al., 2001; Matthews e@D5), which are biosynthetically derived from
cholesterol (Chowski et al., 2016). These glycoalkaloids are produiceall parts of the plant,
having the highest concentrations in the leavesydts, and unripe fruits (Adamski et al., 2014,
Friedman, 2006). Glycoalkaloids have insecticidad afungicidal properties, and are often
synthesized when plants are under stress, suchhas ey have been injured by herbivores
(Chowanski et al., 2016). They disrupt the cellular funos of herbivores, increase the generation
of ROS (Chowaski et al., 2016), act as acetylcholinesterasebitdrs (Friedman et al., 1997), and

also elicit behavioral responses by insects (Lwytiret al., 2007; Nylin and Janz, 1993). Potato
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plant glycoalkaloids have been previously showmetduce the growth rate and food consumption
rate in the khapra beetl&rpgoderma granariurmNenaah, 2011), decrease reproduction rates in the
potato aphid Nacrosiphum euphorbiad&sintner et al., 1997); decrease fertility, survikae, and
hatchability in the greater wax motkedlleria mellonella Adamski et al., 2014); and increase
mortality in peach potato aphidslyzus persicaeFragoyiannis et al., 1998). On the other hand, it
possible that under a certain threshold level bad¢e glycoalkaloids, the herbivores may still feed
and reproduce (Khan et al., 2013). Colorado pdiattle larvae have shown either negative (Hare,
1987) or no response (Kowalski et al., 1999) iratreh to glycoalkaloids, suggesting that the
effects of glycoalkaloids may vary with the lifage of the beetle or the length of exposure

(Lyytinen et al., 2007).

To examine the soil-mediated effects of the GBH tba oxidative status of the beetles, we
measured antioxidant glutathione (total glutathja@®SH) and the ratio of its reduced and oxidized
form (GSH:GSSG). Glutathione (GSH) is one of thesmmportant small antioxidant molecules in
almost all organisms (Andrews, 2000) and the GSIbG$atio, which indicates the overall redox
status of cells, is commonly used as an indicatoxamlative stress (Halliwell and Gutteridge, 2007,
Isaksson et al., 2005; Rainio et al., 2013). Initemtd we measured the activity of insect homologs’
antioxidant enzymes glutathione peroxidase (GP>x) glutathione reductase (GR), as well as
glutathione-S-transferases (GSTs) related to GSithlmoésm (Halliwell and Gutteridge, 2007).
GSTs are a ubiquitous and important family of enggr{isozymes) participating in detoxification
processes by catalyzing the conjugation of GSHsxemobiotics (Alghamdi and Frey, 2017;
Halliwell and Gutteridge, 2007) and showing thegpétative activity function in insects (Corona
and Robinson, 2006; Farjan et al., 2012). ROS etigm enzymes, superoxide dismutase (SOD)
and catalase (CAT), were measured to study fingt-éintioxidant defense (Fridovich, 1974), where

superoxides are transformed to hydrogen peroxig®{Hby SOD and further catalyzed to water
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(H20) and molecular oxygen by CAT (Finkel and Holbrp2R00; Pinto et al., 2003). To determine
oxidative damage, we measured lipid hydroperox{tet?), which have been suggested to increase
with ROS production. Lipid peroxidation can be harmn insects, because, in addition to being
essential components in cell membranes, they ase hnique physiological functions (e.g., in

developmental and reproductive physiology; Dowt685).

We hypothesize the followind:) Environmentally relevant levels of a GBH in thel snay cause
guantitative effects in the production of glycoadtkds, since GBHSs affect the aromatic amino acid
L-tryptophan (Santos-Sanchez et al., 2019), whighai precursor of alkaloids in secondary
metabolism (Dewick, 2009). If the GBH affects plal@fense chemicals, it may change the plant
quality and resource allocation for growth and deéeand change plant-herbivore interactions by
making the potato plants more (or less) sensitvieerbivore attack®) The GBH may reduce the
survival rate and body mass of the beetle larvacaahult beetles, and increase the developmental
time of the adult beetles in cases where the GB&bsorbed into the potato plant via the .s8)l
The GBH may further show negative soil-mediatecd@# during the pupal stage of the beetles,
which may reflect the adult’s survival rate as wé)IThe GBH may affect the antioxidant defense
system of the beetles by changing the antioxidanyme activity or GSH concentrations, either via

diet or soil-mediated effects during the pupal stafjthe beetles.

2. Materials and methods

2.1. Study design

The GBH (Roundup Gold, Monsanto, USA) treatment e@sducted in summer 2016 in a licensed

guarantine greenhouse in the Botanical Gardenetuhiversity of Turku (60° 26° N, 22°10’ E).
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We preferred to use the commercial formulation lgplgosate rather than pure glyphosate, since
those are more relevant in the agricultural contégtstudy the soil-mediated effects of the GBH
on the Colorado potato beetles in the greenhouserexent, we used soil that had been pre-treated
with the GBH. The soil was collected from a longatdield experiment established in 2013 at the
Botanical Garden (see more details in Hagner g2@l9). The experimental soil was treated with a
permitted dose of Roundup Gold (450 g/l isopropytemglyphosate salt, CAS: 38641-94-0,
application rate: 6.4 |/ha) that was applied twpee year (specifically, May 2014, 2015, and 2016;
and October 2014 and 2015). The control soil reszethe same amount of tap water as the treated
soil. The soil type in the field was medium clayttwa high organic matter content (>120 g'kg
and pH 5.9. In June 2016, the soil for the greesboexperiment was collected from the field
experiment 2 weeks after a GBH treatment and dividéo 100 pots (& 19 cm; 50 controls, 50
GBH-treated). The organic variety ‘Ditta’ potatogsre planted in the pots with the GBH-treated
and control soils, and the pots were then fullyd@nized in the greenhouse. The position of the
pots was further changed during the growing petmgrevent the uneven growth of the potato
plants. The plants were grown in ambient June-dalylengths in southwest Finland (about 17-19

h day length) under a 20°C/15°C day/night tempeeatu

We used the United States (Vermont) Colorado pdbetetle population collected from the field

(44°43°N, 73°20°W) in 2010, which had been sinaaagr in laboratory conditions (see Lehmann et
al., 2015). Altogether, 500 Colorado potato bedHevae (250 larvael/treatment group, 30
larvae/family) from 16 families (full-sib design)ere used in this experiment. After 3.5 weeks of
the potato planting, small 2-day-old larva& i@star) were randomly introduced to the potataisia

(5 larvae to each plant), which were covered bliytlgermeable fabric bags. After 9 days, when the
larvae were at theirinstar, 184 larvae (94 controls, 90 GBH-treate@yavcollected, weighed,

and stored in a freezer at -80°C for oxidativeustadnalyses. The remaining larvae were grown
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until they dropped from the plant and burrowed itit@ soil to pupate. Once all larvae had
burrowed into the solil, the potato plant shootsenart and removed. Emerged adult beetles (133
controls, 134 GBH-treated) were collected every, dasighed, sexed, and used for oxidative status
analyses to study the possible soil-mediated aw-aarer effects of the GBH. To analyze potato
plant glycoalkaloidsp-solanine andi-chaconine, we took ca 5 leaves per potato plafte&jre
placing the larvae on the plants™(heasurement) and b) when the larvae had pupatedhand
shoots had been cut down"{Zneasurement). Leaves were freeze-dried, groundsu@isser,
Qiagen, Austin, TX, USA), and stored in a freezer-20°C until the chemical analyses. The
licenses for rearing quarantine pest species ior&bry conditions were given by the Finnish Food
Authority, Finland (Ruokavirasto, permission 405%74@/2016). Licenses for conducting

experiments with insects are not necessary in kahla

2.2. Determination of potato plant defense chersical

For the quantitation of potato plant glycoalkalgidschaconine and-solanine, 5 mg of ground
potato plant leaf material was weighed in a 2 npétmlorf tube. Samples were extracted with 2 ml
of 5% aqueous acetic acid (5:95, v/v) utilizing wight maceration in a cold room (4°C) and were
shaken with a planar shaker (280 Mifor 3 hours at room temperature. Extracts wergrifaged
(14,000 mif') for 10 min and decanted into new 2 ml Eppendags. 100 x dilutions were made
with the extraction solvent and samples were Bitlevia polytetrafluoroethylene filters (13 mm i.d.;
0.2 um) and analyzed with a UHPLC-DAD-ESI-Orbitid® instrument. One of the potato plant
leaf extracts was chosen as the quality controlpéanit was analyzed before and after every 10
samples to monitor the changes in the performaricthe mass spectrometer. The ultrahigh
performance liquid chromatograph was coupled tohatquiode array detector (UHPLC-DAD,

Waters Corporation, Milford, MA, USA) and a hybrgiadrupole-Orbitrap mass spectrometer (Q
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Exactive, Thermo Fisher Scientific, Bremen, Germa®CQUITY UPLC BEH Phenyl (100*2.1
mm i.d., 1.7 um, Waters Technologies Ireland, Wekfdreland) columns were utilized. The
mobile phase consisted of acetonitrile (A) and Oddgweous formic acid (99.9:0.1, v/v) (B): 0-0.5
min, 0.1% A in B; 0.5-6 min, 0.1-30% A in B; andl6-5 min, column wash and stabilization. The
heated electrospray ionization (ESI) source (H-H®8krmo Fisher Scientific, Bremen, Germany)
was operated in the positive ion mode. Source patensiwere as follows: spray voltage, +3.8 kV;
sheath gas (N flow rate, 60 (arbitrary units); auxiliary gas JjNlow rate, 20 (arbitrary units);
sweep gas flow rate, O (arbitrary units); capilléeynperature, 380°C. The Orbitrap spectrometer
was operated with a resolution of 35,000 and a masge ofm/z 150-2250. Data processing was
done using Thermo Xcalibur Quan Browser softwarergion 4.1.31.9, Thermo Fisher Scientific,
Waltham, MA, USA). Concentrations efchaconine and-solanine in samples were quantified
using external calibration curves made from the roential standards of botirchaconine and-

solanine (Carbosynth, Compton, UK).

2.3. Oxidative status analyses

Beetle homogenates (larvae and adults) were usetessure oxidative status biomarkers (GST,
GPx, GR, CAT, SOD, tGSH, and GSH:GSSG) and oxidatamage (LHP) of the beetles. All
antioxidant and enzyme activities was measuredipficate (intra-assay coefficient of variability
[CV] < 15% in all cases) using 96- (CAT and LHP)3&4-well (GPx, GR, GST, SOD, tGSH, and
GSH:GSSG) microplates, which in most cases requiaddcing the reagent volumes as per the kit
instructions. All analyses were measured with arVi§ion® microplate reader (PerkinElmer
Finland, Turku, Finland). There were 3 control sleapised with each plate to be able to correct

inter-assay precision with the ratio specific te garticular plate (range 0.8-1.2).
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Samples were homogenized individually (TissueLy$giggen, Austin, TX, USA) with 180 pl
(larvae) or 150 pl (adults) KF buffer (0.1 MHPO, + 0.15 M KCI, pH 7.4). The protein
concentration (mg/ml) was measured with bicinchimnacid (BCA) protein assay (Smith et al.,
1985) using bovine serum albumin (BSA) as a stahd@mgma-Aldrich Finland, Espoo, Finland)

with an EnVisioff microplate reader at an absorbance of 570 nm.

GST assay (Sigma-Aldrich CS0410) was adjusted faof6- to 384-well plate. We used 2 ul of
each sample in triplicate and our own reagentsb&edo’s phosphate-buffered saline (DPBS), 200
mM GSH (Sigma G4251), and 100 mM 1-Chloro-2,4-dobenzene (CDNB; Sigma-Aldrich
C6396) in ethanol. The change in absorbance wasureghat 340 nm. GPx assay (Sigma-Aldrich
CGP1) was adjusted from a cuvette to a 384-wetk@ad the activity was measured according to
kit instructions, using 2 mM ¥, instead of t-Bu-OOH as a substrate (see detaiRainio et al.,
2019). The change in absorbance was measured atn34GR-assay (Sigma-Aldrich GR-SA) was
adjusted from a cuvette to a 384-well plate andifreatifrom the kit instructions by using our own
reagents: assay buffer (100 mM potassiumphosphdtert- 1 mM EDTA, pH 7.5), 2 mM GSSG
(Sigma-Aldrich GG4626), 3 mM DTNB (Sigma-Aldrich @80), and 2 mM NADPH (Sigma-
Aldrich N1630). The change in absorbance was medsar 412 nm. SOD assay (Sigma-Aldrich
19160) was adjusted from 96- to 384-well plate amehsured according to kit instructions. We
used 0.3 mg/ml sample dilution and the activity wapressed as inhibition % at an absorbance of
450 nm. CAT-assay (Sigma-Aldrich CAT100) was adidsirom a cuvette to a 96-well plate. We
used 0.6 mg/ml sample dilution and tested each leammpriplicate. We made our own reagents: 10
x CAT assay buffer (500 mM KF, pH 7.0), CAT dilutiduffer (50 mM KF + 0.1% TritonX, pH
7.0), chromogen reagent (0.25 mM 4-aminoantipyrere 2 mM 3,5-dicloro-2-
hydroxybenzenesulfonic acid in 150 mM potassiumsphate buffer, pH 7.0), peroxidase solutions

(from horseradish), stop solution (15 mM NaBigma-Aldrich), and 200 mM and 10 mM,Gh
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according to information provided in the techniballetin (see also Deisseroth and Dounce, 1970;
Fossati et al., 1980). The change in absorbancengasured at 520 nm. Total GSH and the ratio of
GSH:GSSG were measured with a ThioSt&lutathione Fluorescent Detection Kit (KOO5-FI,

Arbor Assays, Ann Arbor, MI, USA) according to kitstructions, and the fluorescence was
measured at an excitation/emission wavelength &/5A® nm. Prior to analyses, the sample
homogenate was deproteinized with 5% sulfosalicaticl (SSA), incubated on ice for 10 min, and

centrifuged for 10 min at 10,000 g in 4°C.

For the LHP measurement, the larvae were first emigand then homogenized with 125 pl
methanol. LHP were measured using the FOX-Il methoddified from Nourooz-Zadeh et al.
(1995) and Bou et al. (2008). We used 45 ul ofsglmmple, 5 ul 10 mM thiamine pyrophosphate
(TPP) or methanol, and 950 ul of FOX reagent ($&@\duori et al., 2015). Cumene hydroperoxide
(0/8/16/32/64/96/128/160 mM, Sigma-Aldrich, USA)svased as a standard (see more details in
Rainio et al. 2019). The absorbance was measur&¥@Gihm. The results were set against the

weight of the body mass of the beetles.

2.4. Statistics

All statistical analyses were performed with SA&tistical software 9.4 (SAS, 2013) and the
figures were prepared with GraphPad Prism 8.4f&wace (GraphPad Prism, 2020). Differences in
potato plant glycoalkaloidsa{solanine andu-chaconine) between the treatment groups (GBH-
treated and control) were analyzed with repeatatemgdized linear models (GLMs; Gaussian
distribution and identity link function, Glimmix pcedure in SAS). Degrees of freedom were
calculated with the Kenward-Roger method. The Reacsrrelation coefficient was used to test the

correlations between potato plant defense chemicals
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The survival rate of the beetles between the dewedmtal stage (larvae, adults) and treatment
groups (GBH-treated, control) and their interactvoais analyzed with a generalized linear mixed
model (GLMM; with binary distribution and logit lknfunction, events/trials syntax in GLIMMIX

procedure, SAS). Family was used as a random fé&ztoontrol for the non-independence of larvae

used from the same family. Degrees of freedom walaulated with the Kenward-Roger method.

The developmental time of the adult beetles wasutated from hatching of the larvae to newly
emerged adult beetles, and the differences in dpugntal time between the treatment groups was
analyzed with a GLMM (Gaussian distribution andnitky link function), using treatment (GBH-
treated, control), sex (female, male), and treatmersex interaction as explanatory variables.
Family was used as a random factor. The effectBifl &@eatment on body mass (larvae and adults,
female and males) was analyzed with a GLMM (Gausdiatribution and identity link function)

using family as a random factor.

To examine the effects of GBH treatment on the atwe status of the beetles, we performed a
GLMM (with lognormal distribution and identity linkunction, except for CAT and tGSH [for
larvae only], in which we used Gaussian distributamd identity link function) for each parameter,
separately for larvae and the adult beetles, usgmiment (GBH treatment, control), body mass,
treatment x body mass, sex (female, male, adullg),0oand treatment x sex (adults only) as
explanatory variables. Family was used as a rani@otor in the models when applicable (larvae:
GST, GR, SOD, tGSH, LHP; adults: GP, CAT, tGSH).nMignificant terms were dropped
sequentially from the final model, but the maireeffof treatment was always kept in the model, as
this was our main study question. Degrees of freedere calculated as mentioned above. Prior to

GLMMs, the normality of each parameter was checkédhe parameter was not normally
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376  distributed, lognormal distribution was used in thedels. The Spearman correlation coefficient
377 was used to test the correlations between oxidatatis parameters, body mass, and potato plant
378 glycoalkaloids for larvae and adult beetles, sdparan both treatment groups.

379

380 3. Results

381

382  3.1. Potato plant defense chemicals

383

384 Thea-solanine levels were significantly reduced in plogato plants grown in the GBH-treated soil
385 (F4=6.05, ¢35 p=0.016), and the concentrations differed betwdka measurement times
386 (F4=98.08 o p= <0.001, Fig. 1), being clearly lower at them® measurement. The treatment x
387 measurement time interaction was not significagi=(F44 o¢7 p=0.509). Ther-chaconine levels
388 did not differ between the treatment groups<6.36, 95 p=0.552, Fig. 1), but the concentrations
389 differed between the measurement timg=F6.17% o5 p=0.0001, Fig. 1), being likewise lower at
390 the second measurement. There was no significaatntient X measurement time interaction
391 (F4=0.02, o7 p=0.880). The defense chemicals also correlatéth wach other. The first
392 measurement ofi-solanine correlated positively with the second soeament ofa-solanine
393 (rp’=0.64, p = <0.001) and with the first measuremént-chaconine ¢=0.30, p=0.036); whereas,
394 the second measurementebolanine correlated positively with the first’¢0.42, p=0.002) and
395 second measurement&0.74, p= <0.001) ofi-chaconine. The first measurementoe¢haconine
396 further correlated positively with the second meament ofu-chaconine @=0.61, p= <0.001).

397
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Potato glycoalkaloids

40— *
3 3

Glycoalkaloid concentration
(mg/kg) + 95% CI
N
(4, ]
|
o
HEH
—eo—i
——

10 T T
a~solanine a~chaconine

Chemical group

Figure 1. Potato glycoalkaloid of-solanine andu-chaconine) concentrations (mean = 95% CI)
between the treatment groups (GBH treatment, chratdwo measurement points (measurement 1,
measurement 2). The color of the symbols indicatesisurement time (white=measurement 1,
black=measurement 2) and different symbols therreat groups (circle=control, square=GBH).

The star above the bars indicate the significariferdince between the treatment groups

(generalized linear mixed model, p<0.05).

3.2. Survival rate and changes in developmentad tim

GBH treatment had no effect on the survival ratéhef Colorado potato beetle larvae or the adult
beetles (Fig. 2). The survival rate of the larvad the adult beetles differed significantly frontlea
other, but there was no treatment x age intera¢fiable 1). Larval survival rate in the GBH and
control groups was 98.9% and 97.9%, respectivehereas, adult survival was 83.9% and 83.4%,
respectively (Table 1). The body mass of the lamathe adult beetles was not affected by GBH

treatment (larvae: §=0.58 1663 P=0.447; adults: §=0.0L 2545 p=0.929). In the adult beetles,
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neither the body mass of the femaleg<6.614 1296 pP=0.434) nor males {E0.27% 1114 p=0.606)

differed between the treatment groups. However diwelopmental time of the adult beetles was

significantly increased in the GBH-treated groupnpared to the control group (Table 1). Yet, the

estimated difference was only 0.56 days (marginedms: GBH-treated: 30.22, SE: 0.268; control:

29.66, SE: 0.268). Developmental time was not &fitdy sex or sex x treatment interaction

(Table 1).

1.00-
0.95-
0.90-
0.85-
0.80-
0.75-

Survival (Mean + 95% ClI)

.

0.70

Larvae

T
Adults

Age

® Control
m GBH

Figure 2. Survival of the Colorado potato beetle decemlineatplarvae (Qd instar to &' instar)

and adults (¥ instar to adult) between the treatment groups tfobrblack circle, GBH

treatment=black square). The bars represent meanvalu(+ 95% CIl) between the treatment

groups.

Table 1

The
glyphosate-based
treatment and age (larvae and adults)
survival rate of the Colorado potato beg
(L. decemlineatp Significant results are

indicated in bold.

relationship  betwee
herbicide

Survival
Model* F g p
Treatment 0.0/ 50; 0.797
Age 1693 502 <0.001
Treatment x age | 0.24,: | 0.623

Developmental time

Model** Fai p

Treatment 6.26 »53; | 0.013
Sex 1.77 255 | 0.185
Treatment x sex 0.19s,. | 0.667

(GBH)

on

tle
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* Generalized linear mixed model (GLMM) with binadistribution and logit link function, family usex$ a
random factor in the model.

* GLMM with Gaussian distribution and identity kifunction, family used as a random factor in the
model.

3.3. Oxidative status

Oxidative status parameters (GR and GPx homolo@,, 8GGSH, GSH:GSSG, CAT, SOD and
LHP) were analyzed separately between the develom@inestages (larvae, adults, Table Al).
Oxidative status parameters of the larvae werecestso with GBH treatment and body mass, but
the body mass x treatment interaction was not &ssoc with any of the oxidative status
parameters (Table 2). In the larvae, tGSH conciotrand the activity of GST, CAT, and SOD
were up-regulated in the GBH treatment group coegpés the control group (Table 2, Fig 3.). The
other oxidative status parameters (GPx, GR, GSH(& %8d LHP) were not associated with GBH
treatment. In addition, GST activity was negativagsociated with larval body mass, while tGSH
concentrations had a positive association with hodgs (Table 2). No association between body

mass and other oxidative status parameters weng fou
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Figure 3. Variation in A) total glutathione (tGSH) concentoat, B) glutathione-S-transferase
(GST), C) superoxide dismutase (SOD), and D) ca¢a{&AT) activity in larvae of the Colorado
potato beetle L decemlineatp between treatment groups (control=black circleBHG
treatment=black square). The bars represent thgimaumeans from the models (x 95% CI). The
star above the bars indicate significant differeneaveen the treatment groups (generalized linear

mixed model, p<0.05).



Table 2.The effects of glyphosate treatment (GBH, contiaddy mass (bm), sex (female, mal
body mass x treatment, and sex x treatment interscton oxidative status paramets
glutathione-S-transferase (GST), glutathione pelase (GPx). glutathione reductase (G
catalase (CAT), superoxide dismutase (SOD), tokalathione (tGSH), ratio of reduced a
oxidized glutathione (GSH:GSSG) and lipid hydropétes (LHP) in larvae and adult Colora
potato beetlesL{ decemlineata Non-significant terms were dropped sequentifilym each
model, starting from interactions (generalizeddinmixed model with lognormal distribution a

identity link function). Significant results arehn in bold.
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e),
2rS
R),
nd
do

nd

Parameters Model Larvae Adults
Fat p n Fat p n
GST treatment 3881 49.97 0.054 68 03]}_ 60 0.578 64
bm 33.99 4640 <0.001 4.59 40 0.036
est. -0.007 SE 0.001 est. -0.005, SE 0.002
bm*treatment | 0.72¢1.4: 0.399 1.60 = 0.211
sex - - 10§ 6( 0.303
sex*treatment | - - 0.Q0; 0.979
GPx treatment 0-4ﬂ,'65 0.511 68 0.3943_9; 0.536 61
bm 075' 6t 0.389 3.481’ 47.6 0.068
bm*treatment | 1.02. 0.316 0.19 45 0.669
sex - - 114; 55.1° 0.289
sex*treatment | - - 0.3043.3: 0.588
GR treatment 0.0b47.7 0.823 66 | 3.39; 5o 0.071 | 64
bm 055' 58.7 0.460 6.771' 59 0.012
est. 0.003, SE 0.004
bm*treatment | 0.4/s5.4. 0.495 3.33 s 0.073
sex - - 1.76 s 0.189
sex*treatment | - - 0.Q4 0.842
CAT treatment 11.48 &: 0.001 65 | 5.57 506 0.022 | 64
bm 22]1' 62 0.142 165_' 48.1 0.206
bm*treatment | 1.92¢; 0.171 4.6 508 0.037
sex - - 0.811' 56.0! 0.373
sex*treatment | - - 1.11 475 0.297
SOD treatment 7.79 s 0.007 68 | 3.16¢; 0.080 | 64
bm 003' 46.7° 0.862 1SZ 61 0.215
bm*treatment | 1.80¢0.4. 0.184 0.28 5 0.599
sex - - 0.00 & 0.999
sex*treatment | - - 0.43; 0.512
tGSH treatment 42.1Q 355 <.001 43 | 9.22 44 0.004 | 56
bm 51Q' 37.36 0030 Ol]g_' 42.31 0736
est. 0.089, SE 0.0:
bm*treatment | 1.6H3ss: 0.206 10.04 44, 0.003
Sex - - 085 48.4: 0.362
sex*treatment | - - 2.689s. 0.110
GSH:GSSG | treatment 1.144 0.291 43 | 0.1% 5, 0.743 54
bm 0.15 4 0.704 0.10 5 0.756
bm*treatment | 0.223 0.642 0.38 4 0.543
Sex - - 0.711' 571 0.402
sex*treatment | - - 0.00,, 4 0.991
LHP treatment 1.40151 0.255 33 | 0.0% & 0.908 | 57
bm 0.26 ,7.0. 0.613 2.48 = 0.122
bm*treatment | 0.7815.1; 0.390 0.15 s, 0.700
Sex - - 0.571' 5: 0.452
sex*treatment | - - 0.50 5 0.484
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In adult beetles, tGSH concentration and CAT aistiliad a significant association with treatment
x body mass interaction (Table 2), and a similadémcy was also found for GR activity (see Table
2). The GR and CAT activity increased with body mas the adult beetles in GBH treatment;
whereas, in the control adult beetles, the enzyniwily decreased with increased body mass
(Fig. 4). The tGSH had the opposite trend; the tdokgtles in the GBH treatment showed decreased
tGSH concentrations with increased body mass; wimlethe control, adult beetle tGSH
concentrations increased with body mass (Tablei@®, 4. Further, GST activity was negatively
associated with body mass; whereas, GPx had arnteynde be positively associated with body
mass (Table 2). No associations were found foiother measured parameters (SOD, GSH:GSSG,

and LHP) of the oxidative status.
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Figure 4. The relationship between oxidative status pararsé@AT and tGSH) and body mass in
adult Colorado potato beetlds decemlineatpindirectly exposed to glyphosate (predicted value
from the model; tGSH log transformed values). Legavhite triangle = control male, white

circle = control female, grey triangle = GBH malegy circle = GBH female.

We further examined the correlations between thidabive status parameters and potato plant
glycoalkaloids in the larvae and the adult beetkgzarately in both treatment groups. We found that
in the GBH treatment group, the CAT activity of thevae correlated negatively with both
measurements ef-chaconine @=-0.606, p=0.028 and#=-0.628, p=0.022, respectively) and with
the second measurementee$olanine (£=-0.694, p=0.009, Table A2 A). Also, the GST levels
the larvae in the GBH treatment group correlategatieely with the second measurementaef
solanine and-chaconine @=-0.558, p=0.038 and*-0.593, p=0.025, respectively, Table A2 A).
There was also a tendency for a negative correlddeween GST and the first measurement-of
chaconine @=-0.513, p=0.061, Table A2 A). The GSH:GSSG ratad la nearly significant
negative correlation with the first measurement-sblanine (£=-0.592, =0.055, Table A2 A). The
larvae in the control group had a negative coricdbetween CAT and the second measurement of
o-solanine (¥=-0.824, p=0.006), and a nearly significant negatiorrelation between CAT and
the second measurement efchaconine @=-0.656, p=0.055, Table A2 B). There were no
significant correlations between the other paramsgi@>0.05). In the adult beetles, no correlations
between the potato plant glycoalkaloids and oxi@asitatus parameters were shown in the GBH
treatment group (p>.05, Table A2 C), but in thetoargroup, LHP correlated negatively with the
first measurement ofi-solanine (€=-0.558, p=0.031, Table A2 D). There were no sigaiit
correlations between the body mass of the larvae tae adult beetles and the potato plant

glycoalkaloids (p>0.05) in either of the treatmgrdgups.
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4. Discussion

4.1. Potato plant defense chemicals

Soil-mediated exposure to a GBH affected potatmtptdycoalkaloid levels. The amount af
solanine, one of the main defense chemicals oftpgitants, was reduced in the potato plants
grown in GBH-treated soil compared to the contraelsgreas, the-chaconine levels did not differ
between the treatment groups. Correspondingly, Egsret al. (2019, preprint) showed in their
studies a notable decrease in solanidine (a swrailtkaloid likewise found in plants of the
Solanaceae family) levels in the cecal contentat§ exposed to GBH, suggesting that GBH may
have a role in the microbial metabolism of alka$oidSBH has been shown to reduce other
secondary compounds in plants as well, such asritad synthesis in barleyHprdeum vulgarg
seedlings (Laanest, 1987), medicarpin in alfalf@dicago sativaLatunde-Dada and Lucas, 1985),
and glyceollin in soybean&lycine max Ward, 1984). However, opposite results have hksen
reported, such as the increase of hydrolysableiriann mountain birch Retula pubescens ssp.
czerepanovjiOssipov et al., 2003). Overall, the effects ofi&Bon secondary compounds in plants
are surprisingly little studied. The reduction arsolanine levels may have negative effects on
potato plant defense against herbivores, but magflieghe beetles due to lower toxicity of their
food items. On the other hand, Colorado potato Ibeesre specialist herbivores, feeding on
Solanaceaespecies with high glycoalkaloid contents, andvee#t adapted to the defense chemicals

of the host plant (Harvey et al., 2005).

Both a-solanine andi-chaconine levels were reduced in the second measmt compared to the
first measurement. The observed difference is riksly related to the size of the potato plant

leaves, since the leaves were bigger at the tintheosecond measurement. Thus, the amount of
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glycoalkaloids may have become diluted with thé ¢gawth (personal observations by Rainio and
Salminen). However, we cannot entirely rule outitifeience of larval feeding or changes caused
by potato plant growth on the levels of defensenthals. For example, Colorado potato beetles
have been shown to secrete symbiotic bacteriagpreas plant defenses in tomato plaS@gnum
lycopersicum Chung et al., 2013), which may apply to potatanpldefense chemicals as well.
Moreover, GBHs have been shown to affect the grdgittlander et al., 2019) and quality of plants,
such as nutrient accumulation (Zobiole et al., 2042 well as antioxidant defense (Radwan and
Fayez, 2016). For example, glyphosate has beenrstmlewer photosynthesis and reduce protein-
and free amino acid levels as well as induce aim#amnt enzyme activities (e.g. CAT, SOD and
peroxidases) in peanuBArachis hypogaed.. cv. Giza; Radwan and Fayez, 2016). We did not
monitor potato plant growth in this study, but Helar et al. (2019) have shown in their greenhouse
experiment that potato plants growing in GBH-trdageil had shorter sprouts soon after planting,
but the height of the plants did not differ laterridg the growing season. However, in the field
experiment, the potato plant shoot and tuber bismas 25% and 14% higher, respectively, from

plants grown in GBH-treated soil compared to thgr@avn in control soil (Helander et al., 2019).

4.2. Survival rate and developmental time

Soil-mediated exposure to a GBH had no effect enstirvival rate of the Colorado potato beetle
larvae or the adult beetles, indicating that theirenmentally relevant concentrations used in the
soil did not increase mortality during the larvige or show carry-over or soil-mediated effects in
adult beetles. The soil used in our experimentaioatl some glyphosate residues (glyphosate July:
0.41-0.91 mg/kg, AMPA: 0.24-1.00 mg/kg, certifiembbratory, Groen Agro Control, Delfgauw,
Netherlands, LC-MS/MS, with a detection limit oDQ.mg/kg). The glyphosate concentrations of

the leaves from the present study were not measbrgdootato plant leaves, measured from the
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potato plants grown outside in the field, had nted@able residues (<0.01 mg/kg), unlike potato
tubers (glyphosate: 0.02-0.07 mg/kg, AMPA: 0.0670n0g/kg). The adult beetles were also tested
for GBH residues to see whether the GBH accumulatesetles via food at the larval stage or via
soil during the pupal phase. Low levels of AMPA wendeed detected in the beetles (AMPA:
0.11mg/kg, glyphosate: 0.013mg/kg), but the residuels were low and did not affect the survival
rate of the beetles at any developmental stage.r@sults are in accordance with some other
invertebrate studies, which show no effects of GBHsurvival rate (Baker et al., 2014; Haughton
et al., 2001; Michalkové and Pekér, 2009; Salvialgt2016; Thompson et al., 2014). On the other
hand, several studies of invertebrates (Benamil,204.0; Castilla et al., 2008; Evans et al., 2010
Janssens and Stoks, 2017; Schneider et al., 2G0@) $hown either direct mortality effects or
sublethal effects when exposed to various GBHScatithg temporal and dose-dependent effects,
as well as species-specific differences in insestaptibility to GBHs. In our earlier study (Rainio
et al.,, 2019), where the Colorado potato beetleaarwere directly exposed to different
concentrations of the GBH, low (environmentallyexednt) concentrations had no effect on larval

survival rate, whereas high concentrations incrés®al mortality.

In the present study, neither the body mass ofatvae or the newly emerged adult beetles (neither
females nor males) was affected by GBH treatmehichvwas expected since the larvae never
come in direct contact with the GBH, supporting fmeling that the GBH does not affect the

beetles’ survival rate. However, the developmetita¢ of the adult beetles increased significantly
in the GBH treatment group compared to the corgroup, but the difference (0.56 days) was
rather low in a biological sense and likely does mave notable effects on the overall survival rate
of the beetles. In general, the Colorado potatdiddelerates pesticides relatively well, and has
developed resistance to several synthetic insdesgciincluding organophosphates (Kostic et al.,

2016; Piiroinen et al., 2013), used as a contradhoekin potato farms. The metabolic adaptation is
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manifested by a complex set of detoxifying enzynsegh as GSTs, P450 monooxygenases, and
esterases (Ben-Abdallah et al., 2019). Glyphoski® lzelongs to the organophosphate chemical
group, which may potentially affect the suscepitipibf the Colorado potato beetles to GBHSs.

However, this has not been examined in detail.

4.3. Oxidative status

Soil-mediated early-life exposure to the GBH aféecthe antioxidant defense system of the beetles,
more specifically the enzymes related to ROS remgulaand detoxification of xenobiotics. From
the measured oxidative status parameters, GST, @Ad,SOD activity and the concentration of
tGSH were up-regulated in the larvae of the GBHtrd group compared to the control group, but
this was not seen in the adult stage. The up-régal@an be due to an activation of antioxidant
enzymes that work efficiently against increased R@8duction to prevent oxidative stress.
However, since we did not measure ROS levels, waaldknow the exact levels caused by the
GBH. On the other hand, it is possible that theafmoplant quality (e.g. antioxidant defence,
nutrient accumulation) or microbial changes in pmtalant (Nissinen et al., unpublished) might
have changed due to the GBH treatment, which,rm taight explain the differences we observe in
beetles. In earlier studies, GST activity has bsleown to increase in blackworrhumbriculus
variegatus; Contardo-Jara et al., 2009) or decrease in teanstish (Samanta et al., 2014) in
relation to GBHs or other organophosphorus peggilg. in fish and amphibian studies (Diepens
et al., 2014; Oruc, 2011). Insecticide exposure d&as been reported to induce GST activity in
many insect species (Che-Mendoza et al., 2009).uphegulation of SOD and CAT activity—the
enzymes that catalytically remove ROS (Halliweltl @butteridge, 2007)—was shown in the larvae,
but not in the adult beetles. Since these enzymegte together, it was expected that they would

show a similar trend in relation to GBH treatmedtievated hepatic SOD and CAT activity has also
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been found in bullfrogLithobates catesbeiah@adpoles exposed to Roundup Original (Costa.gt al
2008), increased SOD activity in blackworm exposedRoundup Ultra (Contardo-Jara et al.,
2009), and increased CAT activity in teleost fistp@sed to GBHs (Samanta et al., 2014). Our
previous direct exposure study of Colorado potaetles (Rainio et al. 2019) did not show any
differences in those same markers of oxidativeistathich may be related to the exposure time or
the absorption of the GBH by the beetles’ bodidsdgption through the cuticle and epidermis vs.

via food or soil).

In addition to enzyme activity, tGSH concentratiansthe larvae were elevated in the GBH
treatment group compared to the control group. Gfétects cells from oxidative stress by
scavenging and neutralizing ROS and simultaneocshwerting them to GSSG (Halliwell and
Gutteridge, 2007; Singh, 2002). The detoxificateapacity of GSH is related to its reduced thiol
group, and thus the reduced form is the most inapobiin resisting oxidative stress (Singh, 2002).
Larsen et al. (2012) reported elevated GSH conagotis in rats exposed to GBHs via drinking
water, while some other studies have shown the ©ifgptvend (EI-Shenawy, 2009). Increased GSH
synthesis, as an adaptive response during modexatative stress, has been previously reported in
aguatic organisms by Slaninova et al. (2009). Feunttore, GSH has been suggested to be depleted
after short periods of oxidative stress, but eledatfter long-term exposure to oxidants (Slaninova
et al., 2009). The contradictory results highligha species- (see also Berglund et al., 2014; Raini
et al., 2013;) and tissue-specificity (Yang et aD13) of antioxidant defense, but also the use of
various GBHSs, the dose and the susceptibility éfecént species to GBH exposure may induce
opposite results. In the present study, the GSH&E&fHo and the LHP levels of the larvae did not
differ between the treatment groups, suggesting ttie& increased tGSH level, together with up-
regulated enzyme activities, has been effectivauginon keeping the cellular redox balance (i.e.,

GSH:GSSG ratio) stable (Lushchak, 2012). Howevss, long-term up-regulation of antioxidant
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enzyme activity is energetically costly and may, the long-term, increase oxidative stress,

ultimately trading-off with the overall survivalteaand fitness of the beetles.

The effect of body mass on oxidative status pararsetas further studied in the larvae and the
adult beetles, since it has been previously shdwah the enzyme activity can be linked to body
mass, which is often associated with overall aniomaidition (Koivula et al., 2011; Rainio et al.,
2015). In the larvae (as also in the adults), tbeybmass had a negative association with GSTs,
meaning that the lighter larvae had higher GSTvagtcompared to heavier larvae. It is possible
that, in general, the lighter larvae that are iorpo condition need to up-regulate GST activity enor
for detoxification processes, which may be energganding, than the heavier ones that are in
better condition. A similar results between theiamatlant enzyme activities of GPx, SOD, and
CAT and body mass have been found in birds, sut¢heagreat tit Parus majoj, when exposed to
metal pollution (Rainio et al., 2015). The larvaettier showed a positive association between body
mass and tGSH concentrations, meaning that hetaieae had higher tGSH levels, which is
opposite to what we found for GST. However, it nbeythat the heavier larvae can produce more
GSH in their system, reflecting better antioxideapacity, compared to the lighter larvae thatare i

poorer condition.

In this study, we were able to follow the individkidrom the larvae to the adult stage to examine
the long-term effects of early-life GBH exposuréeTGBH directly decreased the oxidative status
parameters CAT and tGSH in the adult beetles, haecketwas a significant treatment x body mass
interaction. In the adult beetles, CAT activity a@R activity to some extent) increased with body
mass in the GBH treatment group, but decreaseldeircdntrol group. The opposite was shown for
tGSH, where the levels increased with body magkencontrol group, but decreased in the GBH

treatment group. The higher CAT activity of the Vieaadult beetles in the GBH treatment group
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may be due to being in better condition, allowihgn to allocate more resources for their defense
in case of increased ROS production compared taotdigones that are in poorer condition.
However, in the controls, the body mass may nosderitical since their activities stay rather

constant.

The increased tGSH levels may reflect the bettadition of heavier adults in the control group;
whereas, in the GBH treatment group, the decret38Hl levels may suggest either lesser need of
tGSH (e.g. due to up-regulated enzyme activitieshore rapid transformation of GSH to GSSG to
cope with the potential increase in ROS productibims is further supported by the higher GR
activity in the bigger adults than the smaller omegshe GBH treatment group, since the main
function of GR is to transform oxidized GSH (i.eS8G) back to its reduced form (GSH; Halliwell
and Gutteridge, 2007). The results suggest thae#nky-life indirect GBH exposure via diet may
show some long-term effects on the adult beetlasth® other hand, the pupa may also be directly
exposed to GBH residues during their 2-week putagesin the soil, which can partly explain the
observed effects on the adults’ physiology and libgveental time between the treatment groups. In
future, it would be important to concentrate moretioe plant-mediated effects and separate them
from the soil-mediated effects at the pupal stagel, moreover, extend the studies to observe the
following breeding season to see whether the GBldctd the overwintering and reproduction

success of the adult beetles later in life.

We also examined the relationships between oxidastatus parameters and potato plant

glycoalkaloids separately in larvae and the adeétles to see whether these chemicals affect the
beetle’s oxidative status. We found that for theda in the GBH treatment group (as also in the

control group), the activity of CAT and GST corteld negatively withu-solanine andi-chaconine

levels, either with both of the measurements (leeéord after larval feeding) or with only one of the
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measurements. Interestingly, these are the saraenpters that were affected by GBH treatment in
larvae, but in the opposite direction. The GST dWT activity decreased with increased
a-solanine andi-chaconine levels, but increased with GBH treatméheé results are logical, since
the lower a-solanine levels were shown in the GBH treatmemugrwith higher antioxidant
enzyme activity. The observed changes in antioxidafense of the beetles can be derived from the
GBH itself or from the GBH-mediated effects on potaglycoalkaloid levels, in case the
glycoalkaloids affect the potato quality as foaemts. Thex-solanine has been previously shown to
increase lipid peroxidation (measured as malondralde [MDA] concentration) and GST activity
in the mid-gut, but decrease the GST activity imyodat in Lepidoptera, such &. mellonella
indicating the oxidative activity of glycoalkaloigddamski et al., 2014). Furthermore, GSH:GSSG
ratio had a similar tendency for a negative coti@awith only the first measurement @fsolanine
(see table S2), reflecting the increased oxidatib@SH to GSSG in the higher concentrations of
glycoalkaloids. In the adult beetles, on the othand, none of the oxidative status parameters
correlated with potato plant glycoalkaloids. Eveonugh both potato plant defense chemicals and
GBH treatment seemed to affect the same oxidatawis parameters of the beetle larvae (e.g.,
GST, CAT), we cannot say for sure whether they shdditive or synergistic effects on the beetles.
More experimental studies with different concemtrad of glycoalkaloids and GBHs would be
needed to understand the complex combined efféa/coalkaloids and GBHs on the oxidative

status parameters of the beetles.

4.4. Conclusions

The reduction ofi-solanine levels in potato plants grown in GBH-teelasoil suggests the potential

reduction of potato plant defense against the @drpotato beetle, but more dose-dependent

studies would be needed to examine the significaricthe reduction of defense chemicals on
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potato plants, since the herbicides may signifigaaffect the inter- and intraspecies interactiohs
agricultural ecosystems. The survival rate of teetles was not affected by the soil-mediated early-
life GBH treatment, but the oxidative status parteree GST, SOD, CAT, and tGSH, were
increased in the larvae in the GBH treatment grouppared to the control group. The long-term
up-regulation of antioxidant enzyme activity is egetically costly and may increase oxidative
stress in the larvae, which could in turn delay degelopmental time. In the adult beetles, CAT
activity and tGSH levels were affected by the iatéive effect of GBH treatment and body mass of
the adult beetles, suggesting that the early-lifplgpsate treatment or soil-mediated effects at the
pupal stage may have long-term effects on the dddtles. Our results highlight the importance of
measuring the physiological parameters, such agatxe status, along with life-history traits in
sublethal herbicide studies, since they may be rtapbfactors in affecting the health and survival
of animals. In future, it would be important to extl the monitoring of the adult beetles to the
following breeding season, to study the effectsGi#Hs on fertility, reproductive success, and

overwinter survival rate of the adult beetles.
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1186  Appendices:
Table Al.Mean (+ 95% CI) activities of oxidative status paedersyglutathione-S-transferase (GST),
glutathione oxidase (GPx), glutathione reductad®)(@atalase (CAT), superoxide dismutase (SOD)
total glutathione (tGSH), ratio of reduced and @ed glutathione (GSH:GSSG), and lipid
hydroperoxides (LHP) in control and GBH treatmenttugs of larval and adult Colorado potato beetles
(L. decemlineatp
Larvae Adults
Control GBH Control GBH
Biomarker Mean n Mean n Mean n Mean n
(£ 95% Cl) (£ 95% Cl) (£ 95% Cl) (£ 95% CI)
GST 14.62 34 | 17.28 34 | 35.76 32 | 35.15 32
(hmol/min/mg) | (13.26-15.97) (14.65-19.91) (32.12-39.41) (31.60-38.71)
GPx 5.31 34 | 5.59 34 | 271 30 | 3.17 31
(nmol/min/mg) | (4.90-5.72) (5.06-6.13) (1.67-3.75) (1.75-4.58)
GR 4.93 33 | 5.37 33 | 4.03 32 | 3.78 32
(nmol/min/mg) | (3.94-5.92) (3.86-6.88) (3.30-4.77) (3.09-4.46)
CAT 143.04 34 | 165.80 31 | 116.90 32 | 103.14 32
(umol/min/mg) | (134.46-151.63) 154.98-176.63) (107.74-126.06) (90.67-115.61)
SOD 73.70 34 | 77.42 34 | 80.94 32 | 78.12 32
(inhibition %) (71.65-75.74) (75.31-79.54) (78.84-83.04) (75.71-80.53)
tGSH 11.23 20 | 20.77 23 | 41.88 31 | 40.35 25
(umol/mg) (8.78-13.68) (17.55-23.99) (35.88-47.89) (33.98-46.72)
GSH:GSSG | 0.45 20 | 0.62 23 | 351 29 | 4.37 25
(ratio) (0.082-0.83) (0.23-1.01) (2.39-4.62) (1.84-6.89)
LHP 0.57 16 | 0.40 17 | 0.018 27 | 0.017 30
(nmol/mg bm) | (0.11-1.04) (-0.01-0.82) (0.014-0.023) (0.014-0.020)
1187
1188
Table A2 A. Spearman correlation coefficient§, @@-value, n) between the potato glycoalkaloigs (
solanine and--chaconine) and oxidative status biomarkers gligagiS-transferase (GST), glutathione
oxidase (GPx), glutathione reductase (GR), catglaad’), superoxide dismutase (SOD), total glutatieio
(tGSH), ratio of reduced and oxidized glutathio8&SH:GSSG), lipid hydroperoxides (LHP) and body mass
(9) in the Colorado potato beetle lanfhedecemlineata)n the GBH treatment.
GST GPx GR CAT | SOD| tGSH| GSH:| LHP Body
GSSG mass
a-solanine (1) | #| 0.111] -0.243| -0.163| -0.517| -0.126| -0.326| -0.041] -0.476| -0.387
p| 0.707) 0.402] 0.594| 0.070| 0.668 0.328 0.904| 0.233 0.171
n 14 14 13 13 14 11 11 8 14
a-solanine (2) | f| -0.558 0.053 -0.202| -0.694| -0.268| -0.436| -0.592| -0.167 0.144
p| 0.038 0.857] 0.508 0.009] 0.355| 0.180, 0.055| 0.693  0.624
n 14 14 13 13 14 11 11 8 14
a-chaconine (1)| f| -0.513| -0.226| -0.147| -0.606 -0.285 -0.454) -0.537| -0.286 0.002
p 0.06| 0.438 0.632] 0.028/ 0.323 0.161) 0.089] 0.493 0.994
n 14 14 13 13 14 11 11 8 14
a-chaconine (2)| f| -0.593 0.199 -0.091| -0.628 -0.215/ -0.087| -0.500 -0.048  0.400
p| 0.025 0.495 0.767] 0.022] 0.461 0.799  0.117| 0.911 0.156
n 14 14 13 13 14 11 11 8 14
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Table A2 B. Spearman correlation coefficient§, (-value, n) between the potato glycoalkaloids (
solanine and--chaconine) and oxidative status biomarkers gligagiS-transferase (GST), glutathione
oxidase (GPXx), glutathione reductase (GR), catdl@asd), superoxide dismutase (SOD), total glutatkeio
(tGSH), ratio of reduced and oxidized glutathio8&SH:GSSG), lipid hydroperoxides (LHP) and body mass
(9) in the Colorado potato beetle larfdedecemlineatain the control treatment.
GST | GP GR CAT SOD | tGSH| GSH:| LHP Body
GSSG mass
a-solanine (1) F| -0.193] 0.067| -0.034| 0.269| 0.168 0.154] 0.410 -0.257| 0.269
p| 0.618 0.864 0.932] 0.484] 0.666] 0.805 0.493 0.623 0.484
n 9 9 9 9 9 5 5 6 9
a-solanine (2) F| 0.193] 0.185 -0.135| -0.824| -0.572| 0.667| -0.205 -0.371| -0.303
p| 0.618 0.634 0.730] 0.006f 0.108 0.219] 0.741 0.469 0.429
n 9 9 9 9 9 5 5 6 9
a-chaconine (1) f| -0.126/ 0.252] -0.118/ 0.017| 0.168| 0.154 0.410] -0.257| 0.168
p| 0.747 0.513 0.763] 0.966 0.666| 0.805 0.493 0.623 0.666
n 9 9 9 9 9 5 5 6 9
a-chaconine (2) f| 0.261] 0.387| 0.151] -0.656| -0.454| 0.667| -0.205 0.029] -0.437
p| 0.498 0.304] 0.698 0.055 0.220, 0.219] 0.741 0.957 0.240
n 9 9 9 9 9 5 5 6 9

Table A2 C. Spearman correlation coefficient$, (p-value, n) between the potato glycoalkaloigsglanine
anda-chaconine) and oxidative status biomarkers gludatiS-transferase (GST), glutathione oxidase
(GPx), glutathione reductase (GR), catalase (CAdperoxide dismutase (SOD), total glutathione (t§;SHI
ratio of reduced and oxidized glutathione (GSH:Gx3@id hydroperoxides (LHP) and body mass (g) in
the Colorado potato beetle adylts decemlineatain the GBH treatment.
GST | GPx GR CAT | SOD | tGSH| GSH:| LHP | Body
GSSG mass
a-solanine (1) | f| -0.062 -0.061] 0.064] -0.021| 0.054| -0.050 -0.177| -0.102| 0.341
p| 0.807, 0.810f 0.801] 0.932 0.832] 0.859 0.528 0.687 0.167
n 18 18 18 18 18 15 15 18 18
a-solanine (2) | f| 0.068 0.131 0.019 0.199| 0.180 0.032] -0.134] 0.331 0.250
p| 0.788 0.604| 0.942] 0.428 0.476] 0.909] 0.634| 0.179] 0.317
n 18 18 18 18 18 15 15 18 18
a-chaconine (1) | f| 0.165 0.049] 0.015] -0.018] -0.025] -0.093| -0.120| 0.084 -0.066
p| 0512/ 0.848 0.955 0.945 0.922] 0.742] 0.671 0.741] 0.795
n 18 18 18 18 18 15 15 18 18
a-chaconine (2) | f| 0.235 0.179 -0.079] 0.129 -0.006| 0.004| -0.216/ 0.206] 0.145
p| 0.347] 0.478 0.757] 0.610, 0.981 0.990, 0.439 0.413 0.567
n 18 18 18 18 18 15 15 18 18
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Table A2 D. Spearman correlation coefficient§, @@-value, n) between the potato glycoalkaloigs (
solanine and--chaconine) and oxidative status biomarkers glidattS-transferase (GST), glutathione
oxidase (GPXx), glutathione reductase (GR), catdl@asd), superoxide dismutase (SOD), total glutatkeio
(tGSH), ratio of reduced and oxidized glutathio®SH:GSSG), lipid hydroperoxides (LHP) and body m

(9) in the Colorado potato beetle adltsdecemlineatain the control treatment.

ASS

GST | GPx| GR | CAT| SOD| tGSH | GSH:| LHP | Body
GSSG mass
o-solanine (1) | f| -0.385| -0.005| -0.218 -0.096| 0.039] 0.010 -0.282| -0.558 0.437
p| 0.127] 0.985] 0.400 0.715 0.881] 0.970| 0.273] 0.031] 0.070
n 17 17 17 17 17 17 17 15 18
o-solanine (2) | f| -0.128| -0.135| -0.306 -0.230| -0.326| -0.289] -0.24| 0.075 0.385
p| 0.626) 0.606] 0.232] 0.374] 0.202] 0.260 0.353] 0.790| 0.115
n 17 17 17 17 17 17 17 15 18
a-chaconine (1) | f| -0.299 -0.164] -0.015| -0.341] 0.005 0.159 -0.326| -0.329] 0.270
p| 0.244) 0.529] 0.955 0.181] 0.985 0.54]1 0.202] 0.231 0.280
n 17 17 17 17 17 17 17 15 18
a-chaconine (2) | f| -0.103| -0.174] 0.034| -0.279| -0.081| -0.015| -0.123| -0.021] -0.038
p| 0.694 0.504] 0.896] 0.277| 0.758 0.955 0.639] 0.940/ 0.880
n 17 17 17 17 17 17 17 15 18
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1202  Figure A2. Variation in A) total glutathione (tGSH) concernioa, B) glutathione-S-transferase
1203  (GST), C) superoxide dismutase (SOD), and D) cega(€AT) activity in larvae of the Colorado
1204 potato beetle L decemlineata between treatment groups (control=white circleBHG

1205 treatment=Dblack circle). The dots represent thedata (mean + 95% CI).
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Rainio et al. Glyphosate-based herbicide has soil-mediated effects on potato glycoa kaloids and

oxidative status of a potato pest

Highlights

The a-solanine levels were reduced in potato plants grown in GBH-treated soil.

The survival of the beetles was not affected by the soil-mediated GBH treatment.

Indirect GBH treatment modify the antioxidant defense of the Colorado potato beetle larvae.

Soil-mediated GBH treatment at larval stage may have long-term effects on the adult beetles.
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