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Abstract: Zero-shot learning (ZSL) is widely studied in recent years to solve the problem of 

lacking annotations. Currently, most studies on ZSL are for image classification and object 

detection. But zero-shot semantic segmentation, pixel level classification, is still at its early stage. 

Therefore, this thesis proposes to extend a zero-shot image classification model, Relation Network 

(RN), to semantic segmentation tasks. This thesis modifies the structure of RN based on other 

state-of-the-arts semantic segmentation models (i.e. U-Net and DeepLab) and utilizes word 

embeddings from Caltech-UCSD Birds 200-2011 attributes and natural language processing 

models (i.e. word2vec and fastText). Because meta-learning is limited to binary tasks, this thesis 

proposes to join multiple binary semantic segmentation pipelines for multi-class semantic 

segmentation. It is proved by experiments that RN could improve accuracy of U-Net with the help 

of semantic side information on binary semantic segmentation and it could also be applied on 

multi-class semantic segmentation with simpler structure than the baseline model, SPNet, but 

higher accuracy under ZSL setting. However, the capability of RN under generalized zero-shot 

learning (GZSL) setting still needs improvement. This thesis also studies on how different word 

embeddings, network structures and data affect RN and what could be done to improve its results. 
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Suomenkielinen tiivistelmä: Zero-shot learning (ZSL) is widely studied in recent years to solve 

the problem of lacking annotations. Currently, most studies on ZSL are for image classification 

and object detection. But zero-shot semantic segmentation, pixel level classification, is still at its 

early stage. Therefore, this thesis proposes to extend a zero-shot image classification model, 

Relation Network (RN), to semantic segmentation tasks. This thesis modifies the structure of RN 

based on other state-of-the-arts semantic segmentation models (i.e. U-Net and DeepLab) and 

utilizes word embeddings from Caltech-UCSD Birds 200-2011 attributes and natural language 

processing models (i.e. word2vec and fastText). Because meta-learning is limited to binary tasks, 

this thesis proposes to join multiple binary semantic segmentation pipelines for multi-class 

semantic segmentation. It is proved by experiments that RN could improve accuracy of U-Net with 

the help of semantic side information on binary semantic segmentation and it could also be applied 

on multi-class semantic segmentation with simpler structure than the baseline model, SPNet, but 

higher accuracy under ZSL setting. However, the capability of RN under generalized zero-shot 

learning (GZSL) setting still needs improvement. This thesis also studies on how different word 

embeddings, network structures and data affect RN and what could be done to improve its results. 

Avainsanat: Zero-shot Learning, Semantic Segmentation, Relation Network, Meta-learning 
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Glossary 

semantic segmentation: Pixel level classification 

loss function: A function used to calculate the distance between prediction 

and ground truth while training 

batch size: The number of selected images in each episode 

learning rate: Step size in each episode 

IoU: An evaluation metric for semantic segmentation called 

intersection over union  

seen class: A class that is included in the training data 

unseen class: A class that is not included in the training data 

ZSL: Zero-shot learning where the model recognizes unseen classes 

during testing 

GZSL: Generalized zero-shot learning where the model recognizes 

both seen and unseen classes during testing 

ZLSS: Zero-label semantic segmentation, same as zero-shot semantic 

segmentation 

GZLSS: 

 

Generalized semantic segmentation, same as generalized zero-

shot semantic segmentation 

query image: An image needs to be recognized 

RAM: Random access memory 

feature maps: A set of two-dimensional matrices 

channels: Depth of feature maps 

embeddings: A set of models or techniques that extract feature maps from 

words or images 

semantic features: A set of feature maps representing words 

visual features: A set of feature maps representing images 

attribute: A numeric value representing a visual feature of a class or an 

object 

NLP: Natural language processing 
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1. Introduction 

Increasing public datasets is an important boost for computer vision field. At first, computer vision 

datasets were rather small. For example, PASCAL VOC 1(Everingham et al. 2012), as one of the 

most influential benchmarks established in 2005, only has 20 classes. Researchers focused more 

on improving algorithms instead of enriching their training data. But ImageNet (Deng et al. 2009), 

including 14,197,122 images covering 21841 categories, became a game changer for this filed by 

proving the importance of diverse and balanced data. Since the success of ImageNet, more and 

more huge datasets are created for all kinds of computer vision tasks, such as COCO-Stuff 2(Caesar, 

Uijlings, and Ferrari 2018). At the beginning, these datasets only had image classification 

annotations, but now object detection annotations (i.e. annotate bound boxes of objects) and 

semantic segmentation annotations (i.e. annotate label of each pixel) are also included in many 

large-scale datasets. 

Huge datasets also unleash potential of neural networks. Since the first ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) in 2010, participating teams managed to decrease their 

error rate from more than 25% to lower than 5% on image classification (Russakovsky et al. 2015). 

And since AlexNet (Krizhevsky, Sutskever, and Hinton 2012) achieved 15% of error rate by 

utilizing neural network, this technique has been widely used in recent models.  

Therefore, with the development of datasets, neural networks and graphics processing units 

(GPUs), many deep learning models emerged and are deployed to practical applications. For 

example, Visual Geometry Group (VGG) was published in ILSVRC 2014 with wider and deeper 

network structure than previous models, reaching 7.32% error rate on the image classification task 

(Zhang et al. 2015). Later, Residual Network (ResNet), as the champion of ILSVRC 2015, solves 

the “accuracy decreasing” problem in very deep networks. Moreover, image classification tasks 

sometimes come with localization, which requires models to locate the classified object (Deng et 

al. 2009). Image classification models could be applied on garbage classification, plants 

 
1 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ 

2 https://github.com/nightrome/cocostuff#downloads 
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classification etc. But to extract more information from the real world more tasks are defined, 

including object detection and semantic segmentation. 

Object detection can be considered as an extended task of the classification and localization task, 

because it requires models classifying multiple objects in one image and meanwhile recognize 

their locations and sizes. Figure 1 displays an example of object detection form ILSVRC2013 

when it started to include object detection tasks. Object detection is a more realistic task, since 

there is usually more than one object in in-vehicle cameras, photos etc.  

 
Figure 1. Example of object detection from ILSVRC2013 (Deng et al. 2009). 

Furthermore, researchers propose to challenge pixel level classification - semantic segmentation. 

Semantic segmentation could be considered as an extension of image classification. Because the 

feature maps extracted by classification models could also be utilized for segmentation, researchers 

often develop their segmentation models based on successful classification models. One of the 

most common use cases of it is medical image segmentation. For example, as Figure 2 shows, on 

the left cells are segmented from background, and on the right different cells are segmented and 

classified. Besides, semantic segmentation could also be utilized in satellite image processing, 

facial segmentation etc. Moreover, as shown in Figure 2, it can be categorized into binary task (i.e. 

classify pixels into one class or background) and multi-class task (i.e. classify pixels into multiple 

classes and background). In current models, U-Net (Ronneberger, Fischer, and Brox 2015) has 

excellent performance in binary semantic segmentation tasks (e.g. medical images segmentation) 

and DeepLab-v3 (Chen et al. 2018) framework is more popular in multi-class segmentation tasks. 
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Figure 2. Example of segmenting cells from medical images (Ronneberger, Fischer, and Brox 2015). 

Although neural networks are intensely studied, labelling is still a big obstacle in practical 

applications with supervised learning because it is impossible to label everything. Therefore, there 

are increasing studies on few-shot learning (FSL) and zero-shot learning (ZSL) which means 

predicting on classes that have been seen only a few times or never during training. FSL tasks are 

denoted as k-shot c-way problems, where k means the number of sample images from each class 

and c means the number of classes (see an example of a 1-shot 5-way problem in Figure 3) (Sung 

et al. 2018). And ZSL tasks are denoted as 0-shot c-way problems, because ZSL does not have 

sample images. FSL could also be applied on medical images as they often lack labelling. Whereas 

ZSL is more common in practice, such as recognizing objects on the street and recognizing 

handwriting text in an unseen language. 

 

Figure 3. Example of a 1-shot 5-way problem. 

In ZSL there are seen classes and unseen classes. The goal of ZSL is to transfer the knowledge 

learnt from seen classes to unseen classes. Although there is no labelled data for unseen classes, 
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we can import side information to help it, such as semantic information. Semantic side information 

in ZSL usually refers to attributes and natural language processing (NLP) models. Attributes are 

visual characteristics of a class or an object. Figure 4 shows an example image from Caltech-

UCSD Birds 200-2011 3(CUB) (Wah et al. 2011) with some of its class attributes and image 

attributes. CUB class attributes have continuous value which is “the percentage of the time 

(between 0 and 100) when a human thinks that the attribute is present for a given class (Wah et al. 

2011)”. And CUB image attributes are Boolean values where 1 means “is present” and 0 means 

“is not present”. In Figure 4, the class “Black Footed Albatross” mostly likely has “hooked seabird” 

shape bills (59.85% is the highest among all the bill shapes), and the image on the right fulfills this 

characteristic of “Black Footed Albatross”.  

 

Figure 4. Attributes of class “black footed albatross” and an image from CUB. 

Another useful technique for FSL and ZSL is meta-learning. Meta-learning aims to help models 

learn to adapt to new classes by feeding models random samples and random label space in every 

episode. In meta-learning, the concept of epoch is substituted by the same amount of iterations - 

“episodes”. A successful method of meta-learning is to learn the best initial weights from training 

data, and then fine tune models based on testing data. But it is also possible to train a model which 

does not require fine tuning (Sung et al. 2018). 

Additionally, researchers also propose to do ZSL with recurrent neural networks and generative 

networks. The former one could update its knowledge while running which means it could 

 
3 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html 
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continue learning. The latter one could generate synthetic images from semantic information and 

compare them with the input images. But these two types of networks are usually battery-

consuming and computing-consuming which makes them difficult to be deployed on small devices 

(Sung et al. 2018). 

Currently, most ZSL models in computer vision field are for image classification and object 

detection, including Relation Network (RN) (Sung et al. 2018). RN is originally designed for few-

shot image classification by utilizing meta-learning, but it could be easily extended to ZSL (Sung 

et al. 2018). As for zero-shot semantic segmentation, it is still at its very early stage. Xian et al. 

(2019) propose new tasks of zero-label semantic segmentation (ZLSS) and general zero-label 

semantic segmentation (GZLSS) with a baseline model called Semantic Projection Network 

(SPNet). In ZLSS it is assumed that there are only unseen classes in testing data. For example, a 

segmentation model is trained on a huge dataset of forest animals, but it will be applied on sea 

animals which does not have any annotations. Whereas, GZLSS is more practical where both seen 

and unseen classes could appear during testing. For example, the forest animal trained model will 

be applied on jungle animals. 

 K-shot C-way Testing classes 

Binary ZLSS K = 0 C = 2 𝐶𝑢 

Multi-class ZLSS K = 0 C >= 2 𝐶𝑢 

Multi-class GZLSS K = 0 C >= 2 𝐶𝑢 ∪  𝐶𝑠  

Table 1. Characteristics of tasks. 

As shown in Table 1, this thesis categorized all zero-shot semantic segmentation tasks into binary 

ZLSS, multi-class ZLSS and multi-class GZLSS. Same to ordinary binary segmentation tasks, in 

binary ZLSS, the model only needs to distinguish background and the target class in one image, 

and its training data and testing data has different target classes. As binary tasks are limited to 2-

way, they do not apply to GZLSS. As for multi-class tasks, the model segments multiple classes 

and background in one image. In multi-class ZLSS, training data and testing data has disjointed 

label space, whereas multi-class GZLSS have jointed label space.  
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To study on ZLSS and GZLSS, one feasible idea is extending existing models. For example, Xian 

et al (2019) construct SPNet by removing the last classifier layer of DeepLab and appending a 

projection layer to it. A similar idea is to extend a zero-shot image classification model to a zero-

shot semantic segmentation model. Therefore, this thesis proposes to extend RN for ZLSS and 

GZLSS. In the following research, this thesis aims to explore how RN could be extended, whether 

it has advantages over baseline models and how to improve its capability. 

Following Section 2 first introduces recent state-of-the-art semantic segmentation models, ZSL 

models and word embedding techniques. Then it illustrates RN and current ZLSS models. Section 

3 describes research questions in details and research methods. Section 4 covers how to extend RN 

and how to train extended models. Section 5 documents implementation details and experiments 

results. Section 6 compares quantitative results of RN extended models with baseline models and 

analyzes qualitative results of them. In the end, Section 6 summaries work of this thesis and what 

could be done in the future.  
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2. Computer Vision and Zero-shot Learning 

2.1. Semantic segmentation 

Semantic image segmentation refers to pixel classification, where each pixel is labeled with an 

object category. For example, in Figure 5, the left image is segmented into person and motorbike, 

displayed in the right image. It can be applied to autonomous driving, medical areas etc. Recent 

state-of-the-art semantic segmentation models all benefit from convolutional neural networks 

(CNNs) (Long, Shelhamer, and Darrell 2015; Ronneberger, Fischer, and Brox 2015; 

Badrinarayanan, Kendall, and Cipolla 2017; Chen et al. 2017). With CNNs, a basic image 

classification model consists of multiple CNN layers for extracting dense features and ends with a 

fully connected (FC) layer for classification. As for pixel level classification, CNN can also be 

applied to extract features and classify each pixel. But there is an accuracy and computation 

dilemma: complete predictions require CNN layers to keep the original size to contain each pixel, 

however faster computation needs smaller layer size.  

 

Figure 5. An example of semantic segmentation. (Everingham et al. 2012) 

A common resolution is encoder-decoder structure. Fully Convolutional Networks (FCN) is the 

first one to utilize this structure for semantic segmentation tasks (Long, Shelhamer, and Darrell 

2015). As Figure 6 demonstrates, FCN replaces last fully connected layers of pretrained image 

classification models with convolutional layers in order to generate heat maps and then uses 
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deconvolution (also called upsampling) to classify each pixel. They also propose skip connections 

in upsampling layers to improve FCN’s accuracy.  

 

Figure 6. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks 

like semantic segmentation. (Long, Shelhamer, and Darrell 2015) 

Based on FCN, U-Net is designed for medical image segmentation with more flexible network 

structure (Ronneberger, Fischer, and Brox 2015). As Figure 7 shows, it has a U shape, where the 

left part is the encoder and the right part is the decoder. Medical images usually are in large size, 

lack of labelling and only have one target class. Therefore, U-Net is popular in few-shot binary 

semantic segmentation tasks. Furthermore, because U-Net does not contain any pretrained model, 

it can be easily adjusted according to image size. SegNet improves FCN in terms of speed and 

memory consumption by utilizing max-pooling indices during upsampling (Badrinarayanan, 

Kendall, and Cipolla 2017).  
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Figure 7. U-net architecture (example for 32x32 pixels in the lowest resolution). (Ronneberger, Fischer, 

and Brox 2015) 

Furthermore, DeepLab is one of the most important semantic segmentation models because it 

adopts ResNet as its backbone and proposes atrous/dilated convolution and pyramid pooling (Chen 

et al. 2017). As mentioned in Section 1, ResNet allows models to be deep without reducing their 

accuracy. As for atrous convolution, Figure 8 illustrates how it works in 1-dimensional data: 

because neighbor pixels usually are very similar to each other, the kernel expands its cover space 

with ignoring some input. Figure 8 (a) is a sparse feature extraction with standard convolution, and 

(b) shows dense features extraction with atrous convolution with rate = 2. By doing this DeepLab 

is able to expand the view scope of kernels. In another point of view, it could reduce number of 

parameters and save memory usage. However, ignoring some input causing losing some contextual 

information. So, they also propose pyramid pooling to solve this problem. As Figure 9 

demonstrates, multiple filters are used to provide multi-scale information. 
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Figure 8. Illustration of atrous convolution in 1-D. (Chen et al. 2017) 

 

Figure 9. Illustration of atrous convolution pyramid pooling. (Chen et al. 2017) 

2.2. Zero-shot learning 

However, collecting and annotating data is expensive and time-consuming which motivates 

researchers to study on few-shot learning (FSL) and zero-shot learning (ZSL). If there are 5 classes 

and 1 sample image in each class, it is called a 5-way 1-shot problem (Sung et al. 2018). In practice, 

ZSL, where models have to recognize classes that they have never seen during training based on 

seen classes, is more common than FSL (Sung et al. 2018). 
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Based on attributes, Lampert, Nickisch, and Harmeling (2013) propose an intermediate task called 

direct attribute prediction (DAP) for zero-shot image classification. DAP predicts attributes of an 

input image and then searches its most similar class according to its attributes. However, this 

intermediate task may cause a domain shift problem where the model focuses on optimizing 

attribute classifiers, instead of predicting class labels (Fu et al. 2015). As Figure 10(a) displays, a 

zebra and a pig both have a tail, but different visual appearance. Figure 10(b)(c) represent zero-

shot prototypes as red stars and predicted semantic attribute projections as blue dots. In Figure 10 

(b), zebras and pigs have similar attribute space which would cause the model to predict a wrong 

label for the pig image. This is because it learns each attribute classifier separately but misses the 

relationships among attributes. Besides, human effort is required for extracting attributes from 

unseen classes. 

 

Figure 10. An illustration of the projection domain shift problem. (Fu et al. 2015) 

To solve the domain shift problem, researchers try to directly map from visual space to semantic 

space without intermediate tasks. For example, Akata et al. (2013) propose an approach called 

Attribute Label Embedding (ALE) to use a bilinear function to measure the compatibility between 

image embeddings and label embeddings. As Figure 11 shows, its left side is image embedding 

and right side is label embedding. ALE uses attributes as side information for the label embedding 
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and measure the “compatibility” between the embedded inputs and outputs with a function F. 

During training, image embeddings are the input, label embeddings are the output, the goal is to 

optimize 𝑤 to maximize the image-label pairs’ compatibility. In this way, ALE is able to directly 

predict on labels without intermediate tasks.  

 

Figure 11. An illustration of ALE. (Akata et al. 2013) 

Then, Akata et al. (2015) developed Structured Joint Embedding (SJE) framework based on ALE 

by replacing manually annotated attributes with multiple side information (e.g. attributes, 

hierarchical models, and text-based models). SJE includes multiple bilinear functions 𝐹  for 

multiple semantic information sources. In another word, it uses multiple 𝑊𝑖 to capture different 

visual features. However, bilinear functions are not enough for more complex tasks, so Xian et al. 

(2016) suggest Latent Embedding Model (LatEm) where a single bilinear function is extended to 

multiple linear functions to capture diverse visual features (see Figure 12).  
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Figure 12. An illustration of LatEm. (Xian et al. 2016) 

In addition to directly projecting visual space into semantic space, it is also possible to map both 

into a third space and optimize their embeddings together. Zhang & Saligrama (2015) propose a 

method called semantic similarity embedding (SSE) where both visual features and semantic 

features are projected into histograms separately. For example, in Figure 13 “dog” and “car” are 

unseen classes represented by light blue color on the left and a query image is represented on the 

right. Unseen classes and this query image are projected into histograms composed by seen classes 

separately. As it shows the image histogram is more similar to the label ‘car’ histogram, so it would 

be predicted as ‘car’.  

 

Figure 13. An example of SSE. (Zhang & Saligrama 2015) 

Above models all belong to metric-based approaches: learn fixed metrics (e.g. ALE) to embed 

images (and labels) and then classify images by fixed classifiers (e.g. k-nearest neighbor). 
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Therefore, research on metric-based approaches usually focus on how to embed input data or how 

to recognize embedded features. 

Additionally, generative ZSL is also a popular direction, because it is closer to how humans think 

(Bucher et al. 2019). When a human reads a description, he will have a fuzzy image in mind and 

recognize the target based on this fuzzy image. Similarly, generative models generate synthetic 

features from texts and classify query image features based on synthetic features. But complex 

models, including generative ones, may be too memory-consuming, battery-consuming and slow 

in production. 

2.3. Word embeddings 

As mentioned above, attribute is one of the popular semantic side information ZSL (Wah et al. 

2011; Xian et al. 2018). Attributes are visual characteristics annotated manually, such as “hooked 

seabird shape” has 59.85% probability to be recognized in class “black footed albatross” (see 

Figure 4). However, because of the nature of attribute datasets, extending them always require 

human effort. 

Compared with attributes, NLP models are easier to apply to generalized tasks because they use 

neural network to learn word vectors (i.e. word representing) from free text in unsupervised 

learning method. For example, as Figure 14 shows, when Word2vec (Mikolov et al. 2013a) learns 

a new word w, it actually learns from its t neighbor words. The other way around, word2vec could 

predict word w by its neighbor words. In this way, the distance between two words are not affected 

by their letters but their neighbor words. For example, NLP models are able to learn the implicit 

relationships between countries and their capital cities because they are in similar contexts 

(Mikolov et al. 2013a). 
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Figure 14. Illustration of the skip-gram model architecture. (Mikolov et al. 2013a) 

Furthermore, fastText (Joulin et al. 2016) utilizes characters n-gram to extract word vectors within 

the target word itself. Different from word2vec, fastText represent a word by a set of characters 

instead of words. For example, the word where with 𝑛 = 3 can be represented by character n-

grams: “wh”, “whe”, “her”, “ere”, “re” and itself “where” (Joulin et al. 2016). With character n-

gram, fastText is not limited to the training corpus, because it could represent unseen words. 

2.4. Relation Network 

Sung et al. (2018) propose to utilize CNN to learn embeddings for query images and semantic side 

information and a rather flexible classifier. They stress that because meta-learning keeps feeding 

RN random label space during training, it could focus on learning a classifier (i.e. how to compare 

images and semantic information), instead of learning features of training data. Figure 15 displays 

that RN consists of an image embedding module and a relation module. In FSL, the image 

embedding module extracts feature maps from both query images and support images. Then the 

relation module computes relation scores of each class based on the concatenations of query 

features and support features. In the end, the class with the highest relation score is the prediction 

class for query images.  
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Sung et al. (2018) claim that RN could learn to adapt to new classes through meta-learning, where 

the model is fed by different support data in each episode. In another word, each episode selects 

random label space to help RN learn metrics and a classifier that can be shared by all classes. They 

also stress a well-established meta-learning approach is to learn a set of proper initial parameters, 

and then fine-tune them with new data. But RN does not require fine-tuning making it easier to be 

applied on general tasks. 

 

Figure 15. RN pipeline for a 5-way 1-shot image classification problem with one query example. (Sung et 

al. 2018) 

Furthermore, they state and prove RN could be easily extended to ZSL tasks by adding a word 

embedding module. Semantic feature maps are concatenated with visual feature maps as input of 

the relation module (see Figure 16). Their experiments results demonstrate that the RN performs 

better than most classical zero-shot image classification models (e.g. SJE and SSE).  
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Figure 16. RN architecture for zero-shot learning. (Sung et al. 2018) 

Referred to Section 2.2, RN firstly projects visual space and semantic space into a third space 

(same as SSE) by two embedding modules. Then it classifies images by a relation module. The 

biggest difference between RN and those ZSL models in Section 2.4 is that RN uses neural 

networks as its fixed metrics and fixed classifier. 

Inspired by RN, Wei et al. (2019) build a baseline model for their few-shot segmentation dataset 

(i.e. FSS-1000) based on U-Net and RN. As Figure 17 displays, their model consists of encoder 

module, relation module and decoder module. Compared with the original U-Net, their baseline 

model does not only embed query images and concatenate query feature maps but also support 

images and support feature maps. Their proposed dataset (i.e. FSS-1000) only has binary 

segmentation labels, so they only implement their baseline model on binary semantic segmentation. 

However, since U-Net itself is designed for binary semantic segmentation tasks, their experiments 

cannot prove whether the RN improves their baseline model’s accuracy. 
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Figure 17. Baseline network architecture of FSS-1000 using VGG-16 as Backbone. (Wei et al. 2019) 

2.5. Current zero-shot semantic segmentation 

Although zero-shot semantic segmentation is still at its early stage, researchers have proven that 

this task is possible to complete by extending current ZSL and semantic segmentation models. For 

example, Xian et al. (2019) utilize the structure of DeepLab to design a zero-shot semantic 

segmentation model called SPNet. As shown in below figure, they remove the last classifier layer 

of a DNN (i.e. DeepLab or FCN) as their visual-semantic embedding, where 𝑎, 𝑏 is width and 

height, 𝑑𝑤 is the size of word vectors. For example, the channel size of word2vec word vectors is 

300, so 𝑑𝑤 should be 300 too. Afterwards, in semantic projection these visual-semantic features 

are projected into the fixed semantic space (i.e. fastText or word2vec) where word vectors are 

utilized as weights of the projection layer. Projection layer’s output has the same depth as label 

space (i.e. |𝑆| or |𝑈|). In the end SPNet outputs the probability of each class for each pixel. SPNet 

is similar to ALE as they both project visual space directly into semantic space. In addition to this, 

Xian et al. (2019) explain the reason why they do not use meta-learning is because it is limited to 

binary tasks. 



19 

 

Figure 18. An example of SPNet pipeline including visual semantic embedding and semantic projection 

under ZLSS setting. (Xian et al. 2019) 

Another related model, zero-shot semantic segmentation network (ZS3Net) (Bucher et al. 2019), 

is a generative ZSL model which produces synthetic image features of unseen classes (see Figure 

19). However, ZS3Net is designed for semi-supervised learning where some labels of test instances 

are available during training, which means train classes and test classes are not disjointed in 

ZS3Net. Therefore, it could only be applied to GZLSS tasks. Besides, what is worth noting is that 

in their experiments Bucher et al. (2019) adopt a baseline model that is similar to SPNet and ALE. 

In their baseline model, they replace the last classifier layer of DeepLab-v3 with a CNN layer 

which produces word vectors. Then they calculate similarities between predicted vectors and each 

class’s vectors to classify query images.  

 

Figure 19. ZS3Net pipeline under GZLSS setting. (Bucher et al. 2019)  
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3. Methodology 

3.1. Problem definition 

In ZSL, each episode’s input data consists of a query set and a support set that share the same label 

space. In this thesis, the query set refers to query images 𝑄 = {(𝑥𝑖,𝑗,𝑘 , 𝑦𝑖,𝑗,𝑘)}𝑖,𝑗,𝑘=1
𝑤,ℎ,𝑛

, where 𝑥𝑖,𝑗,𝑘 is 

the pixel at coordinate 𝑖, 𝑗 of image 𝑘, 𝑦𝑖,𝑗,𝑘 is the label of that pixel, and 𝑤, ℎ, 𝑛 is the width, height, 

batch size of images. And let denote seen classes as 𝐶𝑠 and unseen classes as 𝐶𝑢. The support set 

refers to semantic side information 𝑆𝑡𝑟𝑎𝑖𝑛 = {𝜐𝑐 ;  𝑐 ∈ 𝐶𝑠} where 𝜐𝑐  is attributes or word vectors 

of class 𝑐. The goal of model is to predict scores 𝑟𝑖,𝑗,𝑘,𝑐 of each pixel over each class, and minimize 

the distance 𝑓𝑑 between prediction scores and ground truth 𝑦𝑖,𝑗,𝑘,𝑐: 

𝑟𝑖,𝑗,𝑘,𝑐 ← 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑓𝑑(𝑟𝑖,𝑗,𝑘,𝑐, 𝑦𝑖,𝑗,𝑘,𝑐)𝐶
𝑐=1

𝑛
𝑘=1

ℎ
𝑗=1

𝑤
𝑖=1                               (1) 

Because of the meta-learning setting, in each episode a random combination of Q and 𝑆𝑡𝑟𝑎𝑖𝑛 is 

selected. And classes, that are not included in 𝑆𝑡𝑟𝑎𝑖𝑛, are ignored in this episode (Xian et al. 2019). 

In another word, pixels belonging to unselected classes should not affect loss calculation and 

accuracy calculation. 

In multi-class training, each query image features are combined with each class’s semantic 

information as a pair. For example, if there are 𝑘 images and 𝑐 classes in one episode, this episode 

has 𝑘 × 𝑐 pairs. Figure 20 displays an example pipeline of one episode, where 1 query image and 

5 classes are selected. Firstly, semantic and visual feather maps are concatenated as the input of 

relation module. Then the relation module computes relation scores for each class over each pixel. 

During multi-class testing, under ZLSS setting the support set 𝑆𝑡𝑒𝑠𝑡 = {𝜐𝑐  ;  𝑐 ∈ 𝐶𝑢}, but under 

GZLSS setting 𝑆𝑡𝑒𝑠𝑡 = {𝜐𝑐 ;  𝑐 ∈ 𝐶𝑠 ∪ 𝐶𝑢}. In the binary ZLSS task, training classes and testing 

classes are disjointed, and each image is only paired with its target class (i.e. k query images result 

in k pairs). 



21 

 

Figure 20. An example pipeline of one episode in multi-class tasks. 

This thesis studies on: 

• How to extend RN from zero-shot image classification to binary ZLSS, multi-class ZLSS 

and multi-class GZLSS? 

• Does RN have advantages over baseline models? 

• What factors would affect the capability of RN and how could it be improved? 

3.2. Baseline: U-Net and SPNet 

For binary zero-shot semantic segmentation tasks U-Net (see Figure 7) is set as the baseline model. 

Because in these tasks, similar classes could make them be considered as few-shot tasks as well. 

Moreover, U-Net is designed for few-shot binary semantic segmentation which concatenate 

downsampling feature maps with upsampling ones. Therefore, this thesis aims to investigate if 

semantic side information could improve the accuracy of U-Net. 

SPNet (see Figure 18) is set as the baseline model for multiclass semantic segmentation tasks. The 

crucial part of SPNet is projecting image features into semantic space which is flexible in terms of 

label space and does not require fine tuning. But using DeepLab framework makes their model 
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heavy to train and apply to applications, so this thesis studies on if RN could outperform it with a 

simpler architecture. 

3.3. Evaluation 

All models are evaluated by the average intersection over union (mIoU) (2) over classes. 𝐼𝑖  refers 

to the intersection area of prediction and ground truth of class 𝑖, and 𝑈𝑖 refers to their union area. 

𝑚𝐼𝑜𝑈 = (∑
𝐼𝑖

𝑈𝑖

𝑛
𝑖=0 ) ÷ 𝑛                                                         (2) 

And under GZLSS setting, the models are evaluated by mIoU of unseen classes, mIoU of seen 

classes, and harmonic mean (H) of them: 

𝐻 =
2 ∗ 𝑚𝐼𝑜𝑈𝑠𝑒𝑒𝑛 ∗ 𝑚𝐼𝑜𝑈𝑢𝑛𝑠𝑒𝑒𝑛

𝑚𝐼𝑜𝑈𝑠𝑒𝑒𝑛 + 𝑚𝐼𝑜𝑈𝑢𝑛𝑠𝑒𝑒𝑛
                                                (3) 
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4. RN for zero-shot semantic segmentation  

4.1. Network architecture 

RN consists of three modules: a word embedding module 𝑓𝜙1(𝑣𝑐) for extracting semantic features 

from classes, an image embedding module 𝑓𝜙2(𝑥𝑖,𝑗,𝑘) for extracting visual features from query 

images, and a relation module 𝑔𝜑(𝑓1⨁𝑓2)  for computing relation scores for each visual features 

and semantic features pair. Therefore, RN predicts relation scores 𝑟𝑖,𝑗,𝑘,𝑐 for each pixel over each 

class (see Equation 4). The goal of RN is to learn metrics (i.e. embeddings 𝑓𝜙1 and 𝑓𝜙2) and a 

classifier (i.e. relation module 𝑔𝜑) for categorizing the concatenation of feature maps into a class. 

In semantic segmentation, besides metrics, it also learns a set of classifiers for categorizing 

concatenations on pixels into classes.  

𝑟𝑖,𝑗,𝑘,𝑐 = 𝑔𝜑 (𝑓𝜙1(𝑣𝑐) ⨁ 𝑓𝜙2(𝑥𝑖,𝑗,𝑘))                                            (4) 

Relation module is the key point of how to extend RN from image classification to semantic 

segmentation. Inspired by U-Net and baseline model of FSS-1000 dataset (Wei et al. 2019), 

relation module uses the same structure as the decoder of U-Net. Based on this, Figure 21 

demonstrates RN architecture for the binary ZLSS task (also called 0-shot 2-way task): word 

embedding module is on the top which transforms semantic information into proper channels for 

concatenation, image embedding is on the left which is ImageNet pretrained VGG16 (Zhang et al. 

2015), and relation module is on the right which predicts scores for each pixel. As it shows, the 

relation module consists of upsampling and CNN layers, where feature maps from image 

embedding module and word embedding module are utilized to improve its accuracy.  
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Figure 21. Relation Network architecture for binary semantic segmentation tasks with pre-trained VGG16 

and U-Net decoder. 

Inspired by SPNet, another method is using a DNN as image embeddings and directly classify on 

the concatenation of semantic feature maps and visual feature maps by CNN layers. Figure 22 

displays RN architecture of using DeepLab-v3 (without its last 4 classifier layers) as image 

embeddings, ImageNet pretrained ResNet101 (He et al. 2016) as its backbone, FC layers as word 

embeddings and upsampling and CNN layers as relation module. 
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Figure 22. Relation Network architecture for binary semantic segmentation tasks with DeepLab-v3 

removing its last 4 classifier layers. 

Moreover, the word embedding module could be composed by FC layers or upsampling and CNN 

layers. Neural networks learn feature maps from input data by kernels. In fully connected (FC) 

layers, kernels have the same size as the input, but in convolutional neural networks (CNN) layers 

kernel size is smaller than input (e.g. 3 × 3). As Figure 23 demonstrates, with the same input (i.e. 

5 × 5) FC kernel on the left has the same size of input but CNN kernel on the right is 3 × 3, and 

each kernel multiplies with all channels’ feature maps and sums up its results. Therefore, when the 

input data size is 10 × 15 × 5 × 5, both FC and CNN layers have 5 kernels, step size is 1 and no 

padding, the output of FC layer would be 10 × 5 × 5 × 5, but the output of CNN layer would be 

10 × 5 × 3 × 3. Compared with FC, CNN focuses on a part of the input data at a time, which is 

helpful in Computer Vision. For example, when we recognize a cat from an image, what helps us 

are those key features (e.g., ears and eyes), instead of the whole image. Therefore, using a smaller 

kernel helps models to learn more useful feature maps.  
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Figure 23. Comparison of FC kernel (left) and CNN kernel (right). 

With FC layers its input is 2-dimensional data (i.e. batch size × channel size). FC layers transform 

the channel size of semantic feature maps (e.g. from 300 to 512), so semantic feature maps need 

to be repeated in width and height before concatenation. With CNN layers, its input is 4-

dimensional data (i.e. batch size × channel size × width × height) which can be upsampled and 

transformed to the proper size. Using FC layers is closer to the original concept of RN where each 

pixel is concatenated with the same semantic feature maps and makes model size smaller in this 

case. But the other one may provide more context information for semantic segmentation models. 

In the end, relation module uses sigmoid at its last layer to restrict relation scores between 0 and 1 

representing the probability of this pixel belonging to the target class. In the binary ZLSS task, if 

a score is higher than or equal to 0.5, this pixel is predicted as target class, otherwise it is predicted 

as background. 

In C-way 0-shot semantic segmentation tasks, as shown in Figure 24, RN predicts relation scores 

for each word-image pair and compare relation scores among classes. Then for each pixel the class 

with the highest relation score is its prediction class. With this network architecture, a multi-class 

segmentation task is essentially a series of binary segmentation tasks. 
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Figure 24. C-way 0-shot semantic segmentation pipeline. 

4.2. Loss function 

In both binary segmentation training and multiclass segmentation training, binary cross entropy 

(BCE) loss (5) is adopted for backpropagation, where 𝑟𝑖,𝑗,𝑘,𝑐 is the relation score of a pixel over 

class c and 𝑦𝑖,𝑗,𝑘,𝑐 is the ground truth of it. If this pixel belongs to class c, its ground truth is 1, 

otherwise it is 0. Mean square error (MSE) could also be used here but does not make much 

difference. As for categorical cross entropy, experiments show that its convergence speed is not as 

fast as BCE. 

 𝜔, 𝑟𝑖,𝑗,𝑘,𝑐 ← 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑤(−𝑦𝑖,𝑗,𝑘,𝑐𝑙𝑜𝑔(𝑟𝑖,𝑗,𝑘,𝑐) − (1 − 𝑦𝑖,𝑗,𝑘,𝑐)𝑙𝑜𝑔(1 − 𝑟𝑖,𝑗,𝑘,𝑐))𝐶
𝑐=1

𝑛
𝑘=1

ℎ
𝑗=1

𝑤
𝑖=1       (5) 

 



28 

5. Experiments  

5.1. Datasets and splits 

Sung et al. (2018) used Animals with Attributes (AwA2) (Xian et al. 2018) and CUB for zero-shot 

image classification. They both provide attributes information which could be input of the word 

embedding module. However, AwA2 does not have segmentation labels. Whereas, besides 200 

bird species and corresponding 312 numeric attributes values, CUB also provides rough 

segmentation labels for each image. And PASCAL VOC 2012 (Everingham et al. 2012) and 

COCO-Stuff are also popular semantic segmentation datasets (Xian et al. 2019; Bucher et al. 2019). 

PASCAL contains 2913 images with segmentation annotations, covering 20 classes and 1 

background class. COCO has 123K annotated images, including 182 classes and 1 background 

class. 

So, experiments are made on CUB, PASCAL and COCO in this thesis. The train/test split of CUB 

is provided by Sung et al. (2018) from their GitHub repository: 150 seen classes and 50 unseen 

classes. Because there is only one target class in each image, its class split is the same as its image 

split and this dataset can be utilized in both binary segmentation and multiclass segmentation. As 

for PASCAL and COCO, I directly adopt the class train/test splits proposed by Xian et al. (2019): 

split classes based on whether they are included in ImageNet 1K because the pre-trained models 

are trained on it. In PASCAL the last 5 classes are unseen classes (i.e., potted plant, sheep, sofa, 

train and tv/monitor) and the rest 15 ones are seen classes. In COCO 15 classes are unseen classes 

(i.e. cow, giraffe, suitcase, frisbee, skateboard, carrot, scissors, cardboard, clouds, grass, playing 

field, river, road, tree and wall-concrete) and the rest 167 are seen classes. The train/test splits from 

PASCAL and COCO are directly used as the image split. Unseen classes are ignored in loss 

function during training, seen classes are ignored in accuracy calculation under ZLSS setting, and 

no class is ignored in accuracy calculation under GZLSS setting. 

As for word embeddings, all datasets could be trained with NLP models (i.e., word2vec and 

fastText). Following choices of Xian et al. (2019), my experiments use Google News (Mikolov et 



29 

al. 2013b) pre-trained word2vec model, Common Crawl (Mikolov et al. 2017) pre-trained fastText 

model and their concatenation. When a class has multiple words, their word vectors are summed. 

5.2. Implementation details 

Experiments are implemented with PyTorch (Paszke et al. 2019). Pre-trained models and 

DeepLab-v3 framework are imported from PyTorch sub-package “models”. The U-Net based 

model uses VGG16 as its image embeddings module and DeepLab-v3 uses ResNet101 as its 

backbone. Both VGG16 and ResNet101 are pre-trained on ImageNet 1K. Implementation codes 

of preprocessing, training and testing on PASCAL and models are demonstrated in Appendix B, 

C, D, and E. 

For pre-processing the data, all the input images, which are in JPG format, are resized to size 

(224,224) and normalized with mean value [0.485, 0.456, 0.406] and std value [0.229, 0.224, 0.225] 

to be aligned with ImageNet pre-trained models implemented by PyTorch team. All the labels, 

which are in PNG format, are converted to classes index. Specifically, each pixel in binary 

segmentation labels (i.e. CUB labels) are converted to 0 as background or 1 as target classes. As 

for multi-class segmentation labels (i.e. PASCAL and COCO-Stuff) 0 indicates background, -1 

indicates difficult or ambiguous pixels, positive numbers represent classes. PASCAL annotations 

are represented by 22 different colors, and during preprocessing they are converted to numbers 

from -1 to 20 (see its palette in Appendix A). COCO annotations are indexed images where 0-181 

refers to classes and 255 refers to background (COCO do not annotate difficult pixels). Besides, it 

is worth noting that annotation images are resized by OpenCV (Bradski 2000) with 

“INTER_NEAREST” parameter to avoid generating new pixels. 

5.3. Binary semantic segmentation 

While training each model, the total episode number is 50,000, batch size is 32, learning rate is 1e-

6 and is reduced by 50% every 5,000 episodes, and Adam is chosen as optimizer. 
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5.3.1. Effect of word embeddings 

Compared with U-Net, combination of U-Net and RN has higher mIoU over classes, as 

demonstrated in Table 1. Among four different word embeddings, the model with CUB attributes 

has the best accuracy which achieves 81.18% on unseen classes and 81.84% on seen classes. But 

the accuracy difference between the attributes-based model and other three is smaller than 3%, so 

this may be not enough to imply that in semantic segmentation tasks, human annotated visual side 

information is more helpful than NLP models. Besides, different from experiments of Xian et al. 

(2019), concatenation of word2vec and fastText does not have obvious advantages compared with 

other word embeddings. 

 unseen class mIoU (%)  seen class mIoU (%)  H (%)  

No word embeddings 74.69 74.41 74.55 

CUB attributes 81.18 81.84 81.51 

word2vec 78.69 78.82 78.75 

fastText 79.79 79.92 79.86 

word2vec + fastText 78.51 78.69 78.60 

Table 2. Effect of word embeddings: mIoU of binary semantic segmentation on CUB with U-Net based 

model. 

5.3.2. Effect of network structure 

When use FC layers in the word embedding module, semantic feature map size is always 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 1 × 1, and then they are repeated to the same width and height as the visual features. 

And when use CNN layers, word embeddings are upsampled and then transformed by CNN layers 

with 3 × 3 size kernels. As below table displays, after training two U-Net based RN models with 

the same semantic information (i.e. CUB attributes), the one uses FC layers performs slightly better 

than the one uses CNN layers. Besides, using FC layers decreases model size, because its kernel 

size is only1 × 1. Therefore, following experiments all adopt FC layers in their word embeddings. 
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 unseen class mIoU (%)  seen class mIoU (%)  H (%)  

FC layers 81.18 81.84 81.51 

CNN layers 78.12 78.79 78.45 

Table 3. Effect of word embeddings module structure: mIoU of binary semantic segmentation on CUB 

and its attributes with U-Net based models. 

It is obvious that the U-Net framework performs better than DeepLab in this binary task. In Table 

4 both models are trained and evaluated with CUB images and CUB attributes and the U-Net based 

model outperforms DeepLab based model in all criteria. 

 unseen class mIoU (%)  seen class mIoU (%)  H (%)  

U-Net_VGG16 81.18 81.84 81.51 

DeepLab_Resnet101 72.85 74.17 73.51 

Table 4. Effect of network structure: mIoU of binary semantic segmentation on CUB and CUB attributes 

with U-Net based model. 

5.4. Multi-class semantic segmentation 

In multi-class training, the total episode number is 50,000 for PASCAL, 100,000 for COCO. The 

initial learning rate is 1e-4 and is reduced by 50% every 10,000 episodes, and optimizer is Adam. 

The batch size for U-Net based models is 32, but for DeepLab based models is 8 because of the 

limit of random access memory (RAM) (i.e. 16 GB). After trying using checkpoints and adjusting 

activation functions’ parameters to reduce memory usage, I still had to reduce its batch size. In 

each episode, 10 classes are randomly selected from all classes, and then unseen classes are 

excluded from the label space. Because COCO has many more classes (i.e. 182 classes), to speed 

its converging speed, labels are randomly selected within the label space of each episode. 

When calculating the loss, unselected classes are ignored (i.e. unselected seen classes and all 

unseen classes). During testing, under ZLSS setting label space is unseen classes (i.e. 5 classes in 
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PASCAL and 15 classes in COCO) and under GZLSS setting label space is both seen and unseen 

classes. 

5.4.1. Effect of word embeddings 

As Table 5 and Table 6 show, three kinds of word vectors are adopted to study the effect of word 

embeddings on PASCAL. With U-Net based models, similar experiment results as Xian et al. 

(2019) are collected: the concatenation of word2vec and fastText has the best performance among 

them. However, the concatenated vectors have poor performance with the DeepLab based model. 

Moreover, although label space is randomly chosen during training, their loss is still able to 

decrease to 1e-7 and the best ZLSS mIoU is reached within the first 15,000 episodes. Furthermore, 

in GLZSS the mIoU over seen classes is much higher than the mIoU over unseen classes. These 

indicate models are able to converge with seen classes, but is overfitting on PASCAL, causing 

poor performance with unseen classes. Besides, in Table 5 the model with concatenated vectors 

ends with higher loss than the other two, which indicates its overfitting is less serious. One reason 

for overfitting is that training data is not diverse enough because there are only 20 classes in 

PASCAL. 

 ZLSS mIoU 

(%) 

GZLSS 

unseen mIoU 

(%) 

GZLSS seen 

mIoU (%) 

GZLSS H 

(%) 

Lowest loss 

word2vec 40.09 10.87 51.03 17.92 1e-7 

fastText 41.84 15.75 52.56 24.23 1e-7 

w2v + ft 48.93 16.09 50.49 24.40 1e-4 

Table 5. Effect of word embeddings: mIoU of multi-class semantic segmentation on PASCAL with U-Net 

and VGG16 based models. 
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 ZLSS mIoU 

(%) 

GZLSS 

unseen mIoU 

(%) 

GZLSS seen 

mIoU (%) 

GZLSS H 

(%) 

Lowest loss 

word2vec 41.38 17.13 67.80 27.35 1e-3 

fastText 40.02 7.6 58.66 13.45 1e-3 

w2v + ft 36.18 5.27 39.14 9.29 1e-3 

Table 6. Effect of word embeddings: mIoU of multi-class semantic segmentation on PASCAL with 

DeepLab and ResNet101 based models. 

5.4.2. Effect of network structure 

Although DeepLab has a more complex structure, it does not always have better results than U-Net in this 

case. By comparing Table 5 and Table 6, it is observed that DeepLab based models are more difficult to 

converge, which indicates its overfitting problem as less serious than U-Net based models. The first 

model (i.e. the one uses word2vec) in Table 5 does not have the highest ZLSS mIoU, but it reaches the 

best harmonic mean among above two tables. However, the other two DeepLab based models have rather 

poor performance, so it is hard to say whether DeepLab has better capability on multi-class tasks. 

5.4.3. Effect of data 

As there are only 20 classes in PASCAL, the label spaces are highly overlapped among episodes. 

However, meta learning aims to feed random and various classes to the model to make it adapt to 

new classes. As mentioned in Section 4.4.1, RN is overfitting on PASCAL, so to investigate 

whether more diverse training data could boost its performance, RN is also trained and evaluated 

on COCO. With word2vec as semantic side information, VGG16 as image embedding module, U-

Net as relation module, RN is able to reach 37.37% of ZLSS mIoU, 6.42% of GZLSS harmonic 

mean (3.80% over unseen classes and 20.55% over seen classes). Furthermore, models trained on 

these two datasets are cross evaluated on each other. As shown in Table 6, COCO trained model 

surpasses PASCAL trained model in ZLSS of both datasets. 
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ZLSS mIoU (%) PASCAL-evaluated COCO-evaluated 

PASCAL-trained 40.09 5.09 

COCO-trained 78.69 37.37 

Table 7. PASCAL and COCO trained U-Net based models with word2vec and VGG16 cross evaluated on 

each other’s testing data. 

Meanwhile, size of objects could also affect prediction scores. Below two figures demonstrate the 

relationship between IoU and average object size of unseen classes from PASCAL and COCO 

under ZLSS setting. For PASCAL classes and most COCO classes, it is obvious that IoU has a 

significantly positive correlation with object size. 

 

Figure 25. Relationship between IoU and average object size of unseen classes in PASCAL under ZLSS 

setting. 
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Figure 26. Relationship between IoU and average object size of unseen classes in COCO under ZLSS 

setting.  
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6. Discussion 

6.1. Compare with baseline models 

In binary ZLSS, compared with the baseline model U-Net, RN is able to improve the accuracy 

with the help of semantic side information (see Table 1). But in multi-class tasks, accuracy of RN 

depends on how diverse training data is, as shown in Table 8 and Table 9 where their best results 

are picked up for comparison. In both tables, SPNet adopts concatenation of word2vec and 

fastText as its word embeddings and DeepLab as its framework. But RN uses VGG16 and U-Net 

as its image embedding module and relation module separately. In Table 8 RN uses concatenation 

of word2vec and fastText as well, but in Table 9 it uses word2vec only. 

When RN is trained on PASCAL, its ZLSS mIoU is close to SPNet but its GZLSS accuracy is 

much better than SPNet. And as expected, a bigger dataset (i.e. COCO-Stuff) could boost 

performance of RN with meta-learning. After only 50,000 episodes, RN achieves higher mIoU 

than SPNet in both ZLSS and GZLSS tasks on COCO. But its loss (i.e. 5e-2) is still big and its 

mIoU on seen classes (i.e. 20.07%) is rather low, compared with other experiments, implying it is 

underfitting. 

However, Xian et al. (2019) is able to increase the GZLSS accuracy of SPNet dramatically by 

reducing its prediction scores on seen classes (i.e. calibration). After calibrating, SPNet-C could 

maintain its mIoU on seen classes and increase its mIoU on unseen classes. On the other hand, 

although calibrating RN could improve its unseen mIoU a little, it would decrease seen mIoU 

dramatically, resulting in lower harmonic mean. 
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 ZLSS mIoU 

(%) 

GZLSS unseen 

mIoU (%) 

GZLSS seen 

mIoU (%) 

GZLSS H (%) 

RN 48.93 16.09 50.49 24.40 

SPNet 49.50 0.01 75.51 0.02 

SPNet-C  29.33 76.84 42.45 

Table 8. Comparison of mIoU between SPNet on PASCAL. (SPNet data is from Xian et al. 2019) 

 ZLSS mIoU 

(%) 

GZLSS unseen 

mIoU (%) 

GZLSS seen 

mIoU (%) 

GZLSS H (%) 

RN 37.37 3.80 20.55 6.42 

SPNet 35.20 0.20 34.05 0.33 

SPNet-C  8.33 34.52 13.42 

Table 9. Comparison of mIoU between SPNet on COCO. (SPNet data is from Xian et al. 2019) 

6.2. Qualitative results 

According to mIoU (see Table 2), the effect of different word embeddings is small. But in Figure 

27, it is obvious that attributes boost the model’s accuracy and fastText performs better than 

word2vec. This is because in Figure 27 prediction scores (i.e. from 0 to 1) are directly shown in 

images, but in Table 1 prediction scores are converted to prediction labels (i.e. 0 or 1) to calculate 

the mIoU. 
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Figure 27. Qualitative results on CUB unseen classes by U-Net based models with no-vector, attributes, 

word2vec, fastText and the concatenation of word2vec and fastText. 

Figure 28 displays the segmentation results on PASCAL predicted by different RNs. The first three 

models from the left are trained on PASCAL with the same U-Net structure but different word 

embeddings. The fourth one adopts DeepLab structure and word2vec embeddings. The last one 

has the same setting as the first model, but is trained on COCO. Different from the above binary 

task, each predicted pixel in Figure 28 is converted to RGB format by PASCAL palette. Because 

in ZLSS the search scope is unseen classes, all seen classes are represented by black color as the 

background. And ZLSS results on COCO are shown in Figure 29 made by a U-Net based model 

with wor2vec embeddings. Seen classes are drawn in black, but unseen classes are represented 

directly by their class indexes. At each row, expected classes are listed on the left. 
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As analyzed in Section 4.4.3, big objects (e.g. trains and sofas) are easier to be recognized than 

small objects. Additionally, the poor recognition of monitors may be caused by their colorful 

screens which is misleading when the data is not diverse enough. Although the COCO trained 

model could segment monitors well, it still has difficulty on sheep and glass (see the glass part of 

trains in Figure 28).  

 

Figure 28. Qualitative results on PASCAL unseen classes under ZLSS setting by RN.  
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Figure 29. Qualitative results on COCO unseen classes under ZLSS setting by U-Net based model with 

word2vec.  
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7. Conclusion 

This thesis proves it is feasible to extend RN from zero-shot image classification tasks to ZLSS 

and GZLSS tasks. Because semantic feature maps of each class are concatenated with visual 

feature maps separately, RN is limited to binary semantic segmentation. But this thesis manages 

to do multi-class semantic segmentation tasks by joining multiple binary semantic segmentation 

pipelines. U-Net and SPNet frameworks are referred to in network structure designing. ImageNet 

pretrained DNNs (i.e. VGG16, ResNet101 and DeepLab-v3) are adopted in image embedding 

module, attributes and NLP models are utilized as word embeddings.  

In the binary ZLSS task on CUB, although there is only one object in each image and classes are 

similar to each other, RN could improve semantic segmentation accuracy with the help of semantic 

information. And in multi-class tasks, the effect of data is obvious. Because RN is trained by meta-

learning, more diverse training data could boost its accuracy. As above experiments shown, in 

ZLSS tasks, RN has a close mIoU as SPNet on PASCAL, but outperforms it on COCO. However, 

under GZLSS setting, although RN has obviously higher harmonic mean than SPNet, SPNet can 

effectively improve its accuracy by calibrating, whereas calibrating does not help RN. The poor 

performance in GZLSS tasks may be caused by U-Net structure, as U-Net was originally designed 

for binary segmentation tasks and may not be suitable for multi-class ones. Moreover, DeepLab 

could achieve better harmonic mean than U-Net but has a bigger model size and needs more time 

to train.  

In terms of practical application, U-Net based RN has a smaller model size and a simpler 

architecture than SPNet and could maintain a similar ZLSS mIoU. But as the number of classes 

grows in GZLSS tasks, U-Net based models have rather low mIoU. DeepLab based models may 

have better results in mult-class tasks but costs more RAM usage. 

In experiments, the effect of different settings is also studied for optimizing the capability of RN. 

In binary segmentation, although attributes are more helpful than NLP models, they are more 

expensive to extend and apply on real problems. Overall, NLP models have unstable performance 
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in experiments, so it is hard to make a conclusion which one is the best in this case. While choosing 

between U-Net and DeepLab, the former one has an advantage when the search space is small.  

Nevertheless, while designing network structure, this thesis simply removes the last 4 classifier 

layers of DeepLab and appended upsampling and CNN layers to it. But there may be other options 

on how to utilize DeepLab framework. Moreover, different semantic side information (e.g. 

Ontologies) could also be utilized to improve their accuracy. Because this thesis is a part of 

preparation of a scientific paper, the capability of DeepLab based models and more diverse 

semantic information could be further investigated based on this thesis in future work. And it is 

worth noting because of limited GPU RAM, DeepLab based models were trained with 

batch size =  8, which would influence convergence.
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Appendices 

A. Palette of PASCAL VOC 2012 

[0,0,0] [128,0,0] [0,128,0] 
[128,128,0] [0,0,128] [128,0,128] 

background Aeroplane Bicycle Bird Boat Bottle 

[0,128,128] [128,128,12

8] 

[64,0,0] [192,0,0] [64,128,0] [192,128,0] 

Bus Car Cat Chair Cow DiningTable 

[64,0,128] [192,0,128] [64,128,128] [192,128,12

8] 

[0,64,0] [128,64,0] 

Dog Horse Motorbike Person PottedPlant Sheep 

[0,192,0] [128,192,0] [0,64,128] 
Others 

Sofa Train Tv/Monitor border/difficult pixels 

B. Implementation codes of network structure 

import torch 

import torch.nn as nn 

from torchvision import models 

import torch.nn.functional as F 

 

class RelationNetworkWithVGG16(nn.Module): 

    def __init__(self,vgg16,class_num,vec_d): 

        super(RelationNetworkWithVGG16, self).__init__() 
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        self.vgg16 = vgg16 

        for p in vgg16.parameters(): 

          p.requires_grad = False 

        self.up1 = nn.Upsample(size=(14,14)) 

        self.conv1 = nn.Conv2d(in_channels=1536,out_channels=512,kernel_size=3,padding=1) 

        self.up2 = nn.Upsample(size=(28,28)) 

        self.conv2_1 = nn.Conv2d(in_channels=512,out_channels=256,kernel_size=3,padding=1) 

        self.conv2_2 = nn.Conv2d(in_channels=768,out_channels=256,kernel_size=3,padding=1) 

        self.up3 = nn.Upsample(size=(56,56)) 

        self.conv3_1 = nn.Conv2d(in_channels=256,out_channels=128,kernel_size=3,padding=1) 

        self.conv3_2 = nn.Conv2d(in_channels=384,out_channels=128,kernel_size=3,padding=1) 

        self.up4 = nn.Upsample(size=(112,112)) 

        self.conv4_1 = nn.Conv2d(in_channels=128,out_channels=64,kernel_size=3,padding=1) 

        self.conv4_2 = nn.Conv2d(in_channels=192,out_channels=64,kernel_size=3,padding=1) 

        self.up5 = nn.Upsample(size=(224,224)) 

        self.conv5_1 = nn.Conv2d(in_channels=64,out_channels=3,kernel_size=3,padding=1) 

        self.conv5_2 = nn.Conv2d(in_channels=9,out_channels=3,kernel_size=3,padding=1) 

        self.conv6 = nn.Conv2d(in_channels=3,out_channels=class_num,kernel_size=1) 

 

        self.fc1 = nn.Linear(vec_d,512) 

        self.fc2 = nn.Linear(512,512) 

        self.fc3 = nn.Linear(512,256) 

        self.fc4 = nn.Linear(256,128) 

        self.fc5 = nn.Linear(128,64) 

        self.fc6 = nn.Linear(64,3) 

 

    def forward(self,imgs,vecs): 

        pre_x_112 = self.vgg16[0:5](imgs) # 64*112*112 

        pre_x_56 = self.vgg16[5:10](pre_x_112) # 128*56*56 

        pre_x_28 = self.vgg16[10:17](pre_x_56) # 256*28*28 

        pre_x_14 = self.vgg16[17:24](pre_x_28) # 512*14*14 

        pre_x_7 = self.vgg16[24:31](pre_x_14) # 512*7*7 

 

        vecs_1 = F.relu(self.fc1(vecs),inplace=True) # 512 

        vecs_2 = F.relu(self.fc2(vecs_1),inplace=True) # 512 

        vecs_3 = F.relu(self.fc3(vecs_2),inplace=True) # 256 

        vecs_4 = F.relu(self.fc4(vecs_3),inplace=True) # 128 

        vecs_5 = F.relu(self.fc5(vecs_4),inplace=True) # 64 

        vecs_6 = F.relu(self.fc6(vecs_5),inplace=True) # 3 

 

        vecs_1 = vecs_1.unsqueeze(2).unsqueeze(3) 

        vecs_2 = vecs_2.unsqueeze(2).unsqueeze(3) 

        vecs_3 = vecs_3.unsqueeze(2).unsqueeze(3) 

        vecs_4 = vecs_4.unsqueeze(2).unsqueeze(3) 
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        vecs_5 = vecs_5.unsqueeze(2).unsqueeze(3) 

        vecs_6 = vecs_6.unsqueeze(2).unsqueeze(3) 

 

        Y = torch.cat((pre_x_7,vecs_1.repeat(1,1,7,7)),1) # 1024*7*7 

        y = self.up1(pre_x_7) 

        y = torch.cat((y,pre_x_14,vecs_2.repeat(1,1,14,14)),1) # 1536*14*14 

        y = F.relu(self.conv1(y),inplace=True) # 512*14*14 

 

        y = self.up2(y) # 512*28*28 

        y = F.relu(self.conv2_1(y),inplace=True) # 256*28*28 

        y = torch.cat((y,pre_x_28,vecs_3.repeat(1,1,28,28)),1) # 768*28*28 

        y = F.relu(self.conv2_2(y),inplace=True) # 256*28*28 

 

        y = self.up3(y) # 256*56*56 

        y = F.relu(self.conv3_1(y),inplace=True) # 128*56*56 

        y = torch.cat((y,pre_x_56,vecs_4.repeat(1,1,56,56)),1) 

        y = F.relu(self.conv3_2(y),inplace=True) # 128*56*56 

 

        y = self.up4(y) # 128*112*112 

        y = F.relu(self.conv4_1(y),inplace=True) # 64*112*112 

        y = torch.cat((y,pre_x_112,vecs_5.repeat(1,1,112,112)),1) 

        y = F.relu(self.conv4_2(y),inplace=True) # 64*112*112 

 

        y = self.up5(y) # 64*224*224 

        y = F.relu(self.conv5_1(y),inplace=True) # 3*224*224 

        y = torch.cat((y,imgs,vecs_6.repeat(1,1,224,224)),1) 

        y = F.relu(self.conv5_2(y),inplace=True) # 3*224*224 

 

        y = torch.sigmoid(self.conv6(y)) 

        return y 

 

class RelationNetworkWithVGG16NoVec(nn.Module): 

    def __init__(self,vgg16,class_num): 

        super(RelationNetworkWithVGG16NoVec, self).__init__() 

        self.vgg16 = vgg16 

        for p in vgg16.parameters(): 

          p.requires_grad = False 

        self.up1 = nn.Upsample(size=(14,14)) 

        self.conv1 = nn.Conv2d(in_channels=1024,out_channels=512,kernel_size=3,padding=1) 

        self.up2 = nn.Upsample(size=(28,28)) 

        self.conv2_1 = nn.Conv2d(in_channels=512,out_channels=256,kernel_size=3,padding=1) 

        self.conv2_2 = nn.Conv2d(in_channels=512,out_channels=256,kernel_size=3,padding=1) 

        self.up3 = nn.Upsample(size=(56,56)) 

        self.conv3_1 = nn.Conv2d(in_channels=256,out_channels=128,kernel_size=3,padding=1) 
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        self.conv3_2 = nn.Conv2d(in_channels=256,out_channels=128,kernel_size=3,padding=1) 

        self.up4 = nn.Upsample(size=(112,112)) 

        self.conv4_1 = nn.Conv2d(in_channels=128,out_channels=64,kernel_size=3,padding=1) 

        self.conv4_2 = nn.Conv2d(in_channels=128,out_channels=64,kernel_size=3,padding=1) 

        self.up5 = nn.Upsample(size=(224,224)) 

        self.conv5_1 = nn.Conv2d(in_channels=64,out_channels=3,kernel_size=3,padding=1) 

        self.conv5_2 = nn.Conv2d(in_channels=6,out_channels=3,kernel_size=3,padding=1) 

        self.conv6 = nn.Conv2d(in_channels=3,out_channels=class_num,kernel_size=1) 

 

    def forward(self,imgs): 

        pre_x_112 = self.vgg16[0:5](imgs) # 64*112*112 

        pre_x_56 = self.vgg16[5:10](pre_x_112) # 128*56*56 

        pre_x_28 = self.vgg16[10:17](pre_x_56) # 256*28*28 

        pre_x_14 = self.vgg16[17:24](pre_x_28) # 512*14*14 

        pre_x_7 = self.vgg16[24:31](pre_x_14) # 512*7*7 

 

        y = self.up1(pre_x_7) 

        y = torch.cat((y,pre_x_14),1) # 1024*14*14 

        y = F.relu(self.conv1(y),inplace=True) # 512*14*14 

 

        y = self.up2(y) # 512*28*28 

        y = F.relu(self.conv2_1(y),inplace=True) # 256*28*28 

        y = torch.cat((y,pre_x_28),1) 

        y = F.relu(self.conv2_2(y),inplace=True) # 256*28*28 

 

        y = self.up3(y) # 256*56*56 

        y = F.relu(self.conv3_1(y),inplace=True) # 128*56*56 

        y = torch.cat((y,pre_x_56),1) 

        y = F.relu(self.conv3_2(y),inplace=True) # 128*56*56 

 

        y = self.up4(y) # 128*112*112 

        y = F.relu(self.conv4_1(y),inplace=True) # 64*112*112 

        y = torch.cat((y,pre_x_112),1) 

        y = F.relu(self.conv4_2(y),inplace=True) # 64*112*112 

 

        y = self.up5(y) # 64*224*224 

        y = F.relu(self.conv5_1(y),inplace=True) # 3*224*224 

        y = torch.cat((y,imgs),1) 

        y = F.relu(self.conv5_2(y),inplace=True) # 3*224*224 

 

        y = torch.sigmoid(self.conv6(y)) 

        return y 

 

class RelationNetworkWithVGG16AllConv(nn.Module): 
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    def __init__(self,vgg16,class_num,vec_d): 

        super(RelationNetworkWithVGG16, self).__init__() 

        self.vgg16 = vgg16 

        for p in vgg16.parameters(): 

          p.requires_grad = False 

        self.up1 = nn.Upsample(size=(14,14)) 

        self.conv1 = nn.Conv2d(in_channels=1536,out_channels=512,kernel_size=3,padding=1) 

        self.up2 = nn.Upsample(size=(28,28)) 

        self.conv2_1 = nn.Conv2d(in_channels=512,out_channels=256,kernel_size=3,padding=1) 

        self.conv2_2 = nn.Conv2d(in_channels=768,out_channels=256,kernel_size=3,padding=1) 

        self.up3 = nn.Upsample(size=(56,56)) 

        self.conv3_1 = nn.Conv2d(in_channels=256,out_channels=128,kernel_size=3,padding=1) 

        self.conv3_2 = nn.Conv2d(in_channels=384,out_channels=128,kernel_size=3,padding=1) 

        self.up4 = nn.Upsample(size=(112,112)) 

        self.conv4_1 = nn.Conv2d(in_channels=128,out_channels=64,kernel_size=3,padding=1) 

        self.conv4_2 = nn.Conv2d(in_channels=192,out_channels=64,kernel_size=3,padding=1) 

        self.up5 = nn.Upsample(size=(224,224)) 

        self.conv5_1 = nn.Conv2d(in_channels=64,out_channels=3,kernel_size=3,padding=1) 

        self.conv5_2 = nn.Conv2d(in_channels=9,out_channels=3,kernel_size=3,padding=1) 

        self.conv6 = nn.Conv2d(in_channels=3,out_channels=class_num,kernel_size=1) 

 

        self.vec_up1 = nn.Upsample(size=(7,7)) 

        self.vec_conv1 = 

nn.Conv2d(in_channels=vec_d,out_channels=512,kernel_size=3,padding=1) 

        self.vec_up2 = nn.Upsample(size=(14,14)) 

        self.vec_conv2 = 

nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,padding=1) 

        self.vec_up3 = nn.Upsample(size=(28,28)) 

        self.vec_conv3 = 

nn.Conv2d(in_channels=512,out_channels=256,kernel_size=3,padding=1) 

        self.vec_up4 = nn.Upsample(size=(56,56)) 

        self.vec_conv4 = 

nn.Conv2d(in_channels=256,out_channels=128,kernel_size=3,padding=1) 

        self.vec_up5 = nn.Upsample(size=(112,112)) 

        self.vec_conv5 = nn.Conv2d(in_channels=128,out_channels=64,kernel_size=3,padding=1) 

        self.vec_up6 = nn.Upsample(size=(224,224)) 

        self.vec_conv6 = nn.Conv2d(in_channels=64,out_channels=3,kernel_size=3,padding=1) 

 

 

    def forward(self,imgs,vecs): 

        pre_x_112 = self.vgg16[0:5](imgs) # 64*112*112 

        pre_x_56 = self.vgg16[5:10](pre_x_112) # 128*56*56 

        pre_x_28 = self.vgg16[10:17](pre_x_56) # 256*28*28 

        pre_x_14 = self.vgg16[17:24](pre_x_28) # 512*14*14 
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        pre_x_7 = self.vgg16[24:31](pre_x_14) # 512*7*7 

 

        vecs = vecs.unsqueeze(2).unsqueeze(3) 

        vecs_1 = self.vec_up1(vecs) 

        vecs_1 = self.vec_conv1(vecs_1) 

        vecs_2 = self.vec_up2(vecs_1) 

        vecs_2 = self.vec_conv2(vecs_2) 

        vecs_3 = self.vec_up3(vecs_2) 

        vecs_3 = self.vec_conv3(vecs_3) 

        vecs_4 = self.vec_up4(vecs_3) 

        vecs_4 = self.vec_conv4(vecs_4) 

        vecs_5 = self.vec_up5(vecs_4) 

        vecs_5 = self.vec_conv5(vecs_5) 

        vecs_6 = self.vec_up6(vecs_5) 

        vecs_6 = self.vec_conv6(vecs_6) 

 

        Y = torch.cat((pre_x_7,vecs_1),1) # 1024*7*7 

        y = self.up1(pre_x_7) 

        y = torch.cat((y,pre_x_14,vecs_2),1) # 1536*14*14 

        y = F.relu(self.conv1(y),inplace=True) # 512*14*14 

 

        y = self.up2(y) # 512*28*28 

        y = F.relu(self.conv2_1(y),inplace=True) # 256*28*28 

        y = torch.cat((y,pre_x_28,vecs_3),1) # 768*28*28 

        y = F.relu(self.conv2_2(y),inplace=True) # 256*28*28 

 

        y = self.up3(y) # 256*56*56 

        y = F.relu(self.conv3_1(y),inplace=True) # 128*56*56 

        y = torch.cat((y,pre_x_56,vecs_4),1) 

        y = F.relu(self.conv3_2(y),inplace=True) # 128*56*56 

 

        y = self.up4(y) # 128*112*112 

        y = F.relu(self.conv4_1(y),inplace=True) # 64*112*112 

        y = torch.cat((y,pre_x_112,vecs_5),1) 

        y = F.relu(self.conv4_2(y),inplace=True) # 64*112*112 

 

        y = self.up5(y) # 64*224*224 

        y = F.relu(self.conv5_1(y),inplace=True) # 3*224*224 

        y = torch.cat((y,imgs,vecs_6),1) 

        y = F.relu(self.conv5_2(y),inplace=True) # 3*224*224 

 

        y = torch.sigmoid(self.conv6(y)) 

        return y 
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class Identity(nn.Module): 

    def __init__(self): 

        super(Identity, self).__init__() 

    def forward(self, x): 

        return x 

 

class RelationNetworkWithDeepLab(nn.Module): 

    def __init__(self,deeplab,class_num,vec_d): 

        super(RelationNetworkWithDeepLab, self).__init__() 

        self.deeplab = deeplab 

        for p in deeplab.backbone.parameters(): 

          p.requires_grad = False 

        self.conv1 = nn.Conv2d(in_channels=512,out_channels=64,kernel_size=3,padding=1) 

        self.conv2 = 

nn.Conv2d(in_channels=128,out_channels=class_num,kernel_size=3,padding=1) 

 

        self.fc1 = nn.Linear(vec_d,256) 

        self.fc2 = nn.Linear(256,64) 

 

    def forward(self,x,vecs): 

        vecs_1 = F.relu(self.fc1(vecs),inplace=True) 

        vecs_2 = F.relu(self.fc2(vecs_1),inplace=True) 

 

        vecs_1 = vecs_1.unsqueeze(2).unsqueeze(3) 

        vecs_2 = vecs_2.unsqueeze(2).unsqueeze(3) 

 

        y = self.deeplab(x)['out'] 

        y = torch.cat((y, vecs_1.repeat(1,1,224,224)),1) 

        y = F.relu(self.conv1(y)) 

        y = torch.cat((y, vecs_2.repeat(1,1,224,224)),1) 

        y = self.conv2(y) 

        y = torch.sigmoid(y) 

        return y 

 

def initModel(vec_d, model=0, allConv=False): 

  if model == 0: 

    vgg16 = models.vgg16(pretrained=True) 

    print("load pre-trained vgg16") 

    if vec_d > 0: 

      if not allConv: 

        relation_network = RelationNetworkWithVGG16(vgg16.features,1,vec_d) 

      else: 

        relation_network = RelationNetworkWithVGG16(vgg16.features,1,vec_d) 

    else: 



54 

       relation_network = RelationNetworkWithVGG16AllConv(vgg16.features,1) 

    return relation_network 

  elif model == 1: 

    # in not pre-trained deeplabv3_resnet101, its backbone is ImageNet pre-trained reset101 

    deeplab = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', pretrained=False) 

    deeplab.classifier[4] = Identity() 

    print("load pre-trained deepLab") 

    relation_network = RelationNetworkWithDeepLab(deeplab,1,vec_d) 

    return relation_network 

 

C. Implementation codes of IoU computing 

import numpy as np 

import torch 

from torch.utils.data import DataLoader,TensorDataset 

 

def mIoU_of_class(prediction, predict_label, target, target_label): 

  target_args = torch.where(target == target_label) 

  target_size = target_args[0].shape[0] 

  if target_size == 0: 

    return None 

  else: 

    intersection = prediction[target_args] == predict_label 

    intersection = torch.sum(intersection) 

    predict_args = torch.where(prediction == predict_label) 

    predict_size = predict_args[0].shape[0] 

    union = target_size + predict_size - intersection 

    mIoU = intersection.float()/union.float() 

    return mIoU 

 

# test_classes is search space starting from 0. 

# 0 is background class 

def IoU_per_class(model, test_features, test_labels, word_vectors, test_classes, test_batch, GPU, 

calibrate_classes, calibrate):  

  if (test_classes < 0).any(): 

    return False 

 

  test_data = TensorDataset(test_features, test_labels) 

  test_loader = DataLoader(test_data,batch_size=test_batch,shuffle=False) 

  test_size = test_features.shape[0] 

 

  test_classes = np.sort(test_classes) 
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  if test_classes[0] == 0: 

    includeBack = True 

  else: 

    includeBack = False 

  class_num = len(test_classes) 

  test_vectors = torch.tensor([word_vectors[int(c-1)] for c in test_classes if c > 0]).view(-1, 

word_vectors.shape[1]).float().cuda(GPU) # -1*300 

 

  class_acc = [None] * class_num 

  predict_total = None 

 

  for batch_features, batch_labels in test_loader: 

    batch_size = batch_features.shape[0] 

    support_features = test_vectors.repeat(batch_size,1) # -1*300*1*1 -> -1*256*28*28 

 

    query_features = batch_features.repeat(1,test_vectors.shape[0],1,1).view(-1,3,224,224) 

    query_features = query_features.cuda(GPU).float() 

 

    relations = 

model(query_features,support_features).view(batch_size,test_vectors.shape[0],224,224)  

    if includeBack: 

      background_scores = 1-torch.max(relations,1)[0].view(-1,1,224,224) 

      scores = torch.cat((background_scores,relations),1) 

    else: 

      scores = relations 

 

    if calibrate_classes is not None and len(calibrate_classes) > 0: 

      scores[:,calibrate_classes,:,:] = scores[:,calibrate_classes,:,:] * calibrate 

 

    prediction = torch.max(scores,1)[1] 

 

    if predict_total is None: 

      predict_total = prediction.cpu().detach() 

    else: 

      predict_total = torch.cat((predict_total,prediction.cpu().detach())) 

 

  # ignore unselected classes 

  test_labels = test_labels.view(-1,224,224) 

  select_args = np.where(np.isin(test_labels,test_classes)) 

  test_labels = test_labels[select_args] 

  predict_total = predict_total[select_args] 

 

  for c_i in range(class_num): 

    mIoU = mIoU_of_class(predict_total, c_i, test_labels, test_classes[c_i]) 
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    if mIoU is not None: 

      class_acc[c_i] = mIoU.item() 

  return class_acc 

D. Implementation codes of preprocessing PASCAL 

import scipy.io as sio 

import numpy as np 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import os 

from torchvision import transforms 

import torchvision.datasets.folder as torch_folder 

from torch.utils.data import DataLoader,TensorDataset 

from torch.optim.lr_scheduler import StepLR 

import matplotlib.pyplot as plt 

import torchvision.models as models 

from gensim.models.keyedvectors import KeyedVectors 

from gensim.models import word2vec 

from torch.utils.checkpoint import checkpoint 

drive_path = "./" 

 

# step 0: read train.txt and val.txt 

train_txt = drive_path + "data/VOC2012/train.txt" 

train_loc = [] 

f = open(train_txt, 'r') 

for line in f.readlines(): 

  train_loc.append(line.strip()) 

train_loc = np.array(train_loc) 

f.close() 

 

val_txt = drive_path + "data/VOC2012/val.txt" 

test_loc = [] 

f = open(val_txt, 'r') 

for line in f.readlines(): 

  test_loc.append(line.strip()) 

test_loc = np.array(test_loc) 

f.close() 

sio.savemat(drive_path + "data/VOC2012/split.mat", {'train_loc': train_loc, 'test_loc': test_loc}) 

 

# Step 1: preprocess images 

def preprocess_batch_img(batch_path): 
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  batch_num = len(batch_path) 

  input_batch = torch.zeros([batch_num,3,224,224], dtype=torch.float64) 

  preprocess = transforms.Compose([ 

        transforms.Resize((224,224)), 

        transforms.ToTensor(), 

        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), 

    ]) 

  for i in range(batch_num): 

    path = batch_path[i].strip() 

    print(path) 

    input_image = torch_folder.pil_loader(path) 

    input_tensor = preprocess(input_image) 

    input_batch[i] = input_tensor 

  return input_batch 

 

image_root = drive_path + "data/VOC2012/JPEGImages/" 

 

train_img_path = [image_root + i + ".jpg" for i in train_loc] 

train_features = preprocess_batch_img(train_img_path) 

train_features = train_features.numpy() 

print(train_features.shape) 

sio.savemat(drive_path + 

"data/VOC2012/images_224_224_RGB_train.mat",{'features':train_features}) 

 

test_img_path = [image_root + i + ".jpg" for i in test_loc] 

test_features = preprocess_batch_img(test_img_path) 

test_features = test_features.numpy() 

print(test_features.shape) 

sio.savemat(drive_path + 

"data/VOC2012/images_224_224_RGB_test.mat",{'features':test_features}) 

 

# Step 2: prepare seen classes, unseen classes and their vectors 

# PASCAL VOC 2012 has 20 classes: 

class_names = 

["Aeroplane","Bicycle","Bird","Boat","Bottle","Bus","Car","Cat","Chair","Cow","Dining_table"

,"Dog","Horse","Motorbike","Person","Potted_plant","Sheep","Sofa","Train","Tv_monitor"] 

seen_c = range(15) 

unseen_c = range(15,20) 

 

word2vec_path = drive_path + "data/word2vec/GoogleNews-vectors-negative300.bin" 

model = KeyedVectors.load_word2vec_format(word2vec_path, binary=True) 

 

word2vectors = [] 

for c_name in class_names: 
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  words = c_name.strip().split('_') 

  vec = np.array([0] * 300, dtype='float64') 

  for w in words: 

    if w in model.vocab: 

      vec += model[w] 

  word2vectors.append(vec) 

word2vectors = np.array(word2vectors) 

print(word2vectors.shape) 

 

# pre-trained fastText model with common crawl 

import io 

fastText_path = drive_path + "data/fastText/crawl-300d-2M.vec" 

fin = io.open(fastText_path, 'r', encoding='utf-8', newline='\n', errors='ignore') 

n, d = map(int, fin.readline().split()) 

lines = fin.readlines() 

crawl_voc_list = {} # read word index first to avoid running out of RAM 

for i in range(n): 

  word = lines[i].split()[0] 

  crawl_voc_list[word]=i 

 

ftvectors = [] 

for c_name in class_names: 

  words = c_name.strip().split('_') 

  vec = np.array([0] * 300, dtype='float64') 

  for w in words: 

    if w in crawl_voc_list: 

      index = crawl_voc_list[w] 

      tokens = [float(num) for num in lines[index].split()[1:]] 

      vec += tokens 

  ftvectors.append(vec) 

ftvectors = np.array(ftvectors) 

print(ftvectors.shape) 

 

sio.savemat(drive_path + 

"data/VOC2012/matfiles/classes_info.mat",{'class_names':class_names,'seen_c':seen_c,'unseen_

c':unseen_c,'word2vectors':word2vectors,'ftvectors':ftvectors}) 

 

# Step 3: read and resize labels and save to mat 

colors of each class above. [0,0,0] is background. 

class_color = 

[[0,0,0],[128,0,0],[0,128,0],[128,128,0],[0,0,128],[128,0,128],[0,128,128],[128,128,128],[64,0,0]

,[192,0,0],[64,128,0],[192,128,0],[64,0,128],[192,0,128],[64,128,128],[192,128,128],[0,64,0], 

 [128,64,0],[0,192,0],[128,192,0],[0,64,128]] 
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def preprocessLabel(image_index): 

  print(image_index) 

  import cv2 

  label = cv2.imread(drive_path + "data/VOC2012/SegmentationClass/"+image_index+".png") 

  label = cv2.resize(label, (224,224), interpolation=cv2.INTER_NEAREST) 

  label = np.array(label) 

  # background: 0; classes: 1-20; other pixels(segmentation borders): -1 

  l_converted = np.zeros((224,224),dtype=int) -1  

  for i in range(len(class_color)): 

    color = class_color[i] 

    args = np.where((label == [color[2],color[1],color[0]]).all(-1)) # opencv read in BGR not RGB 

    l_converted[args] = i 

  return l_converted 

 

train_labels = np.empty((train_loc.shape[0],1,224,224), dtype=int) 

for i in range(train_loc.shape[0]): 

  index = train_loc[i] 

  train_labels[i,0,:,:] = preprocessLabel(image_index=index) 

print(train_labels.shape) 

 

test_labels = np.empty((test_loc.shape[0],1,224,224), dtype=int) 

for i in range(test_loc.shape[0]): 

  index = test_loc[i] 

  test_labels[i,0,:,:] = preprocessLabel(image_index=index) 

print(test_labels.shape) 

 

sio.savemat(drive_path + 

"data/VOC2012/seg_class_labels.mat",{'train_labels':train_labels,'test_labels':test_labels}) 

 

background: 0; classes: 1-20; other pixels(segmentation borders): -1 

train_labels = sio.loadmat(drive_path + "data/VOC2012/seg_class_labels.mat")['train_labels'] 

test_labels = sio.loadmat(drive_path + "data/VOC2012/seg_class_labels.mat")['test_labels'] 

print(train_labels.shape) 

print(test_labels.shape) 

E. Implementation codes of training PASCAL 

import scipy.io as sio 

import numpy as np 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import os 
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from torchvision import transforms 

import torchvision.datasets.folder as torch_folder 

from torch.utils.data import DataLoader,TensorDataset 

from torch.optim.lr_scheduler import StepLR 

from gensim.models.keyedvectors import KeyedVectors 

from gensim.models import word2vec 

import argparse 

import models 

from iou import IoU_per_class 

 

BATCH_SIZE = args.batch_size 

TEST_BATCH_SIZE = args.test_batch_size 

EPISODE = args.episode 

LEARNING_RATE = args.learning_rate 

LOAD_MODEL = args.load_model 

relation_model_path = args.root_path + "models/" + args.relation_model_file_name + ".pkl" 

best_zsl_model_path = args.root_path + "models/" + args.relation_model_file_name + 

"_best_zsl.pkl" 

best_gzsl_model_path = args.root_path + "models/" + args.relation_model_file_name + 

"_best_gzsl.pkl" 

VEC = args.vec 

IMG_MODEL = args.img_model 

gpu_list = list(map(int,args.gpu_list.split(","))) 

GPU = gpu_list[0] 

bce_w = args.bce_weights 

 

# step 1: read train/test split 

split = sio.loadmat(args.root_path + "data/VOC2012/split.mat") 

train_loc = split['train_loc'] 

print(train_loc.shape) 

test_loc = split['test_loc'] 

print(test_loc.shape) 

 

# Step 2: resize images 

train_features = sio.loadmat(args.root_path + 

"data/VOC2012/images_224_224_RGB_train.mat")['features'] 

print(train_features.shape) 

test_features = sio.loadmat(args.root_path + 

"data/VOC2012/images_224_224_RGB_test.mat")['features'] 

print(test_features.shape) 

 

# Step 3: prepare seen classes, unseen classes and their vectors 

class_info = sio.loadmat(args.root_path + "data/VOC2012/matfiles/classes_info.mat") 

class_name = class_info['class_name'] 
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seen_c = class_info['seen_c'][0] 

unseen_c = class_info['unseen_c'][0] 

if VEC == 0: # word2vec 

  word_vectors = class_info['word2vectors']   

  vec_d = 300 

  print(word_vectors.shape) 

  print("load word2vec") 

elif VEC == 1: # fastText 

  word_vectors = class_info['ftvectors']   

  vec_d = 300 

  print(word_vectors.shape) 

  print("load fastText") 

elif VEC == 2: # word2vec::fastText 

  word2vectors = class_info['word2vectors']   

  ftvectors = class_info['ftvectors']   

  word_vectors = np.concatenate((word2vectors,ftvectors),1) 

  vec_d = 600 

  print(word_vectors.shape) 

  print("load np.cat(word2vec, fastText)") 

 

# Step 4: read and resize labels 

train_labels = sio.loadmat(args.root_path + 

"data/VOC2012/matfiles/seg_class_labels.mat")['train_labels'] 

test_labels = sio.loadmat(args.root_path + 

"data/VOC2012/matfiles/seg_class_labels.mat")['test_labels'] 

print(train_labels.shape) 

print(test_labels.shape) 

 

# Step 5: read image's classes from annotation files (skipped) 

# Step 6: prepare dataset 

train_features = torch.from_numpy(train_features) 

train_labels = torch.from_numpy(train_labels) 

train_data = TensorDataset(train_features, train_labels) 

test_features = torch.from_numpy(test_features) 

test_labels = torch.from_numpy(test_labels) 

 

# Step 7: define and init models 

relation_network = models.initModel(vec_d, IMG_MODEL) 

relation_network = torch.nn.DataParallel(relation_network, device_ids=gpu_list) 

relation_network.cuda(GPU) 

 

relation_network_optim = 

torch.optim.Adam(relation_network.parameters(),lr=LEARNING_RATE) 

relation_network_scheduler = StepLR(relation_network_optim,step_size=10000,gamma=0.5) 
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if LOAD_MODEL: 

  print("load model: ",LOAD_MODEL) 

  relation_network.load_state_dict(torch.load(relation_model_path)) 

 

last_accuracy = args.last_accuracy 

last_H = args.last_H 

 

# Step 8: episode training 

for episode in range(EPISODE): 

  relation_network.train() 

  relation_network_scheduler.step(episode) 

 

  train_loader = DataLoader(train_data,batch_size=BATCH_SIZE,shuffle=True) 

  batch_features, batch_labels = train_loader.__iter__().next() 

 

  # episode_classes = np.unique(batch_labels) 

  episode_classes = np.unique(np.random.randint(20, size=10)+1) 

  filtered = np.isin(episode_classes, seen_c+1) 

  filtered = np.where(filtered) 

  sample_features = torch.tensor([word_vectors[int(c-1)] for c in 

episode_classes[filtered]]).view(-1,vec_d).float().cuda(GPU) # -1*300 

  class_num = sample_features.shape[0] 

  sample_features = sample_features.repeat(BATCH_SIZE,1) 

 

  batch_features = batch_features.cuda(GPU).float() # -1*3*224*224 

  batch_features = batch_features.repeat(1,class_num,1,1).view(-1,3,224,224) 

 

  relations = 

relation_network(batch_features,sample_features).view(BATCH_SIZE,class_num,224,224) 

   

  for c in range(1,21): # ignore other classes 

    if c not in episode_classes[filtered]: 

      args = np.where(batch_labels == c) 

      batch_labels[args] = -1 

 

  args = torch.where(batch_labels != -1) # only seen labels left 

  one_hot_index = batch_labels[args] 

 

  for c_i in range(class_num): # re-order labels 

    c = episode_classes[filtered][c_i] 

    c_args = np.where(one_hot_index == c) 

    one_hot_index[c_args] = c_i+1 
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  one_hot_labels = 

torch.zeros(one_hot_index.shape[0],class_num+1).scatter_(1,one_hot_index.view(-1,1).long(),1) 

  one_hot_weights = 

torch.ones(one_hot_index.shape[0],class_num+1).scatter_(1,one_hot_index.view(-

1,1).long(),bce_w) 

  one_hot_labels = one_hot_labels[:,1:] 

  one_hot_weights = one_hot_weights[:,1:] 

  relations = relations[args[0],:,args[2],args[3]] 

 

  bce = nn.BCELoss(weight=one_hot_weights).cuda(GPU) 

  loss = bce(relations, one_hot_labels.cuda(GPU)) 

 

  loss.backward() 

  # update 

  relation_network_optim.step() 

  relation_network.zero_grad() 

 

  if (episode+1)%100 == 0: 

    torch.save(relation_network.state_dict(),relation_model_path) 

    print("episode:",episode+1,"loss",loss.item()," models saved!") 

  if (episode+1)%1000 == 0: 

    relation_network.eval() 

    zsl_label_space = np.array(range(16,21)) 

    zsl_acc_per_class = IoU_per_class(relation_network, test_features, test_labels, word_vectors, 

zsl_label_space, TEST_BATCH_SIZE, GPU, None, None) 

    print(zsl_acc_per_class) 

    zsl_acc_per_class = [acc for acc in zsl_acc_per_class if acc is not None] 

    zsl_mIoU = sum(zsl_acc_per_class) / len(zsl_acc_per_class) 

    print('zsl = %.4f' % (zsl_mIoU)) 

 

    if zsl_mIoU > last_accuracy: 

      last_accuracy = zsl_mIoU 

      torch.save(relation_network.state_dict(), best_zsl_model_path)  

      print("Last zsl accuracy updated! Best zsl model saved!") 

    else: 

      print("last zsl accuracy is ", last_accuracy) 

   

    gzsl_label_space = np.array(range(1,21)) 

    gzsl_acc_per_class = IoU_per_class(relation_network, test_features, test_labels, 

word_vectors, gzsl_label_space, TEST_BATCH_SIZE, GPU, None, None) 

    print(gzsl_acc_per_class) 

    gzsl_acc_unseen = [gzsl_acc_per_class[c] for c in unseen_c] 

    gzsl_acc_unseen = [acc for acc in gzsl_acc_unseen if acc is not None] 

    unseen_mIoU = sum(gzsl_acc_unseen) / len(gzsl_acc_unseen) 
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    gzsl_acc_seen = [gzsl_acc_per_class[c] for c in seen_c] 

    gzsl_acc_seen = [acc for acc in gzsl_acc_seen if acc is not None] 

    seen_mIoU = sum(gzsl_acc_seen) / len(gzsl_acc_seen) 

    H = (2 * seen_mIoU * unseen_mIoU) / (seen_mIoU + unseen_mIoU) 

    print('gzsl: seen=%.4f, unseen=%.4f, h=%.4f' % (seen_mIoU, unseen_mIoU, H)) 
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