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Many-body quantum systems far from equilibrium can exhibit universal scaling dynamics which defy
standard classification schemes. Here, we disentangle the dominant excitations in the universal dynamics of
highly occupied N-component scalar systems using unequal-time correlators. While previous equal-time
studies have conjectured the infrared properties to be universal for all N, we clearly identify for the first
time two fundamentally different phenomena relevant at different N. We find all N ≥ 3 to be indeed
dominated by the same Lorentzian “large-N” peak, whereas N ¼ 1 is characterized instead by a non-
Lorentzian peak with different properties, and for N ¼ 2, we see a mixture of two contributions. Our results
represent a crucial step toward obtaining a classification scheme of universality classes far from
equilibrium.
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I. INTRODUCTION

Universality constitutes a powerful tool to understand
complex many-body systems. A remarkable example is
equilibrium phase transitions, where theories can be clas-
sified into universality classes based on only few system
parameters [1]. Out of equilibrium, while a comprehensive
picture is lacking, universal scaling phenomena have been
found in turbulence [2], coarsening [3], aging [4], or
driven-dissipative systems [5]. In recent years, new far-
from-equilibrium universality classes for isolated quantum
systems have been theoretically identified [6–24], which
have recently started to be probed in cold-atom experiments
[25–29]. These universality classes can encompass vastly
different theories such as gauge and scalar theories [20,30],
or relativistic and nonrelativistic theories [12]. These
unexpected connections raise the question of what the
relevant physics behind the observed universality is.
The study of these far-from-equilibrium universality

classes in isolated systems has so far primarily focused
on the properties of equal-time momentum distribution
functions, fðt; pÞ. These functions describe the occupancy
of momentum modes f ∼ hâ†pâpi for a suitably defined
basis of excitations âp. The typical scenario is depicted in
Fig. 1(a). Starting with high occupation numbers, which
may be obtained, e.g., from instabilities or strong cooling

quenches [25,26], the system quickly approaches an
attractor solution characterized by self-similar scaling,
fðt; pÞ ¼ tαfSðtβpÞ, also referred to as nonthermal fixed
point. During this phase, the evolution is determined by the
universal exponents α, β, and the universal function fS,
which are largely insensitive to system parameters and
details of the initial conditions.
Scalar field theories with OðNÞ symmetry have been

shown to exhibit such universal dynamics. In the infrared,
they are characterized by α ¼ βd and β ≈ 1=2 in d spatial
dimensions [12]. The physics is linked to particle number
transport toward low momenta and the growth of a zero-
mode condensate. Remarkably, previous works have found
α, β, and the form of fS to be universal for all values of N
[see Fig. 1(b)], including both relativistic OðNÞ and non-
relativistic UðNÞ theories describing ultracold Bose gases
[12–16]. The origin of this universality has remained so far
a mystery. Both exponents and scaling function have been
successfully calculated using a large-N kinetic theory,
which describes elastic collisions of quasiparticles with
free dispersion and a renormalized interaction [12–15,31].
However, it is unclear if and why this description should
apply at small N as well. At the same time, descriptions
based on defects, e.g., vortices, have provided alternative
explanations of related models at small N [10,11,32,33].
In this paper, we resolve this long-standing puzzle on the

universality observed in OðNÞ scalar theories using instead
unequal-time (two-point) correlation functions. By provid-
ing information on both occupancies and dispersion rela-
tions, these observables allow us to identify the dominant
far-from-equilibrium excitations [34,35], and further pro-
vide access to the universal dynamical exponent z [36–42].
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As our main result, we find that the previously believed
N-universality actually breaks up into (at least) two clearly
distinct universality classes characterized by different
phenomena, which are, however, almost indistinguishable
from equal-time correlators and even the dynamical critical
exponent z alone.

II. OðNÞ THEORIES AND STATISTICAL
FUNCTION

We consider an OðNÞ-symmetric scalar field theory for
relativistic scalar fields φaðt;xÞ, a ¼ 1;…; N, in d ¼ 3
spatial dimensions with classical action (c ¼ kB ¼ ℏ ¼ 1)

S½φ� ¼
Z
t;x

�
1

2
∂μφa∂μφa −

m2

2
φaφa −

λ

4!N
ðφaφaÞ2

�
: ð1Þ

Here,
R
t;x ≡

R
dt
R
d3x, and sum over repeated indices is

implied. We consider a weak coupling λ ≪ 1 and different
values of m. However, since field fluctuations generate an
effective mass M > m, the exact value of m is not relevant
for the infrared physics discussed in this work.
We focus first on the unequal-time statistical function,

defined for a translation invariant system as the anti-
commutator expectation value of scalar Heisenberg field
operators φ̂a,

Fðt; t0;x − x0Þ ¼ 1

2N
hfφ̂aðt;xÞ; φ̂aðt0;x0Þgic; ð2Þ

where c denotes the connected part. Introducing the center
and relative time coordinates, τ≡ ðtþ t0Þ=2 and Δt ¼
t − t0, we Fourier transform it according to Fðτ;ω;pÞ≡R
dx

R
dΔteiðωΔt−pxÞFðt; t0;xÞ.

The statistical function can be seen as an unequal-time
generalization of the distribution function, which at low
momenta p≡ jpj≲M is given by fðt;pÞ ≈ Fðt; t;pÞM
[43]. F contains information not only about the occupancy
of excitations in the system but also about their frequency
dependence. Thus, the information contained in F can be
crucial to understand which excitations dominate the
dynamics of a system.
We consider far-from-equilibrium initial conditions with

large (Gaussian) fluctuations up to a characteristic scale Q
as given by fðt ¼ 0;pÞ ¼ n0

λ ΘðQ − pÞ. Due to the initial
“overoccupation” of mode excitations around Q, the
subsequent redistribution dynamics is dominated by trans-
port of particles to lower momenta, and is characterized
by universal scaling in the infrared as explained in the
Introduction.
To describe the system we employ classical-statistical

simulations (Truncated Wigner Approximation), which are
justified in the limit of high occupancies and small
couplings as considered here [44–47]. We perform large-
scale simulations averaging over up to 40 runs using
n0 ¼ 100, and give all dimensionful quantities in units
of Q. We use either m ¼ 0 or m ¼ 0.5 and extract M from
our data. F is computed from a classical correlation
function, and the relative-time Fourier transforms are
performed using standard signal-processing methods. If
not stated otherwise, we show data for τ ¼ 1000. Further
details are given in the Supplementary Material [48].

III. LARGE-N PEAK

We consider first the dynamics in the large-N limit. In
general, the statistical function F exhibits several peaks at
different frequencies. However, for large N, we find the
signal to be clearly dominated by one single contribution,
as shown for N ¼ 8 in Fig. 1(e). We refer to it as the
“large-N peak.” This peak is depicted for fixed p in the
inset (red points), including error bars. It is well described
by a Lorentzian parametrized as

FlargeNðτ;ω; pÞ ≃
AlargeNðτ; pÞγlargeNðτ; pÞ

ðω − ωlargeNðpÞÞ2 þ γlargeNðτ; pÞ2
; ð3Þ

which is shown as a black dashed line and accurately agrees
with the data.
The results of the fitting procedure with Eq. (3) are

shown in the right column of Fig. 2 for N ¼ 8. The
dispersion relation [Fig. 2(b)] is time independent and
accurately agrees with a free-particle dispersion of the form

FIG. 1. (a) Typical thermalization scenario for large initial
occupancies; the system approaches an attractor during its
evolution. (b) The distribution function fðt; pÞ at low momenta
close to the attractor for N ¼ 1, 2, 3, 4, 8 at times t ¼ 600, 600,
750, 1000, 2000, respectively. (c) Illustration of universality
classes for different N. Statistical function Fðτ;ω; pÞ=fðτ; pÞ for
N ¼ 1 (d) and N ¼ 8 (e) at τ ¼ 1000. Red lines correspond to F
at fixed p, also shown in the insets. Black dashed lines are fits
with Eqs. (5) and (3), respectively. FnL is shown after filtering out
other small peaks. A (blue dashed) Lorentzian curve is included
for comparison.
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ωlargeNðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. Hence, the dispersion scales

quadratically at low momenta as ωlargeN −M ∼ p2=ð2MÞ,
implying a dynamical critical exponent z ¼ 2.
The decay rate, on the other hand, decreases with

time and depends approximately linearly on momentum
at low p [Fig. 2(d)]. As shown in the inset, its time
evolution obeys self-similar scaling given by γlargeNðτ; pÞ ¼
τ−βzγlargeN;SðτβpÞ with β ¼ 1=2 and z ¼ 2, consistent with
the dispersion. Interestingly, we find that the lifetime
of the large-N quasiparticles grows with time since
γlargeNðτ; pÞ → 0, such that the form of the large-N peak
approaches a δ-function.
The dominance of this peak implies FlargeNðτ;ω; pÞ ≈

Fðτ;ω; pÞ and AlargeNðτ; pÞ ≈ fðτ; pÞ=M. Together with the
scaling behavior of the dispersion and width, this leads to a
self-similar evolution

Fðτ;ω; pÞ ¼ ταþβzFSðτβzðω −MÞ; τβpÞ: ð4Þ

To understand the nature of the large-N excitations, we
study the behavior of fluctuations with the classical
equation of motion ½∂μ∂μ þm2 þ λ

6N φbφb�φa ¼ 0 (see
Supplemental Material [48] for details). This equation
has stable rotating solutions parametrized by φ⃗0ðt;xÞ ¼
jφ⃗0jeðtÞ, where ëðtÞ ¼ −M2eðtÞ. They correspond to
rotations in a two-dimensional hyperplane in φ-space,
which have been observed numerically [16]. By studying
linear fluctuations around these solutions, we find two
in-plane (phase and radial) excitations, and a set of ∼N
out-of-plane excitations which correspond to rotations

perpendicular to the plane spanned by eðtÞ and _eðtÞ.
The out-of-plane excitations have a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
dispersion

and dominate in the large-N limit. These excitations
correspond to the large-N peak discussed here.

IV. N = 1 NON-LORENTZIAN PEAK

We consider now the statistical function F of a single-
component theory as shown in Fig. 1(d). At low momenta
p≲ 0.4, it is again dominated by a single peak [49], shown
for fixed p in the inset (red points). While a Lorentzian fit
(blue dashed line) with (3) fails to capture the tails of the
peak, we find it to be phenomenologically well described
by (black dashed curve)

FnLðτ;ω; pÞ ≃
π

2

AnLðτ; pÞ
γnLðpÞ

sech

�
π

2

ω − ωnLðτ; pÞ
γnLðpÞ

�
; ð5Þ

where the subscript nL stands for non-Lorentzian.
We employ this form as a fit function to extract the

properties of this peak leading to the results in the
left column of Fig. 2. The dispersion relation ωnLðτ; pÞ
[Fig. 2(a)] is approximately linear and obeys a self-similar
scaling formωnLðτ; pÞ −M ¼ τ−βzω̃SðτβpÞwith exponents
β ¼ 1=2 and z ¼ 2, as shown in the inset. The decay rate
γnLðpÞ [Fig. 2(c)] is found to be instead time independent
and to scale as γnL ∼ pz. This implies a self-similar evolu-
tion as in Eq. (4), notably with the same scaling exponents
as for the large-N peak and AnLðτ; pÞ ≈ fðτ; pÞ=M.
Remarkably, we find the properties of this non-

Lorentzian peak to be identical to the infrared peak found
in Ref. [35] for a nonrelativistic Uð1Þ complex scalar
theory. This can be explained by noticing that at small
momenta, p ≪ M, particle number changing processes are
suppressed and the Oð1Þ theory is hence described by an
emergent nonrelativistic Uð1Þ theory. The mapping can be
made more rigorous by defining the nonrelativistic degrees
of freedom ψ ¼ eiMt½ ffiffiffiffiffiffi

ωx
p

φþ i=
ffiffiffiffiffiffi
ωx

p
π�= ffiffiffi

2
p

with π ¼ _φ

and ωx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −∇2

p
[33,50].

V. INTERMEDIATE N

Which of these two distinct physical phenomena, if any,
dominates for intermediate N at low momenta is a priori
not obvious.
We find that the N ¼ 2 theory is a special case. The

statistical function F appears to have two distinct contri-
butions with a similar weight at low momenta, as shown in
Fig. 3(a). The inset shows a fit (black dashed line) to these
peaks with the sum of both functions (5) and (3). Each of
these peaks is included in the inset as separate dashed lines
(green and yellow), and their respective dispersions are
shown in the main plot. We find that the dispersion of the
left peak agrees with ωnL of the non-Lorentzian peak in
Oð1Þ theory, while the dispersion of the right peak obeys
approximately ωlargeN of the large-N peak. However, at low

(a) (b)

(c) (d)

FIG. 2. Dispersion relations ωðpÞ −M (a,b) and peak
width γðpÞ (c,d) at different times for the dominating peak
of N ¼ 1 (a,c) and N ¼ 8 (b,d), extracted from F (red) and ρ
(blue). Arrows mark their time evolution. Insets show rescaled
data (β ¼ 1=2, z ¼ 2).
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momenta, both contributions overlap so strongly that they
become almost indistinguishable. Therefore, their p → 0
asymptotic behavior is hard to extract.
For N ≥ 3, we find the infrared dynamics to be domi-

nated by the large-N peak. The statistical function for
N ¼ 3 is shown in Fig. 3(b) and for fixed momentum in the
inset. The dominant peak has a dispersion that agrees with
ωlargeNðpÞ (gray dashed line), and we confirmed that the
width shows a similar behavior as in the large-N limit. We
note, however, that for small N we find evidence of an
additional contribution overlapping with the main peak at
lower frequencies. Based on the above, this is possibly
related to a non-Lorentzian contribution, which appears to
quickly disappear as N or momentum increases.

VI. SPECTRAL FUNCTION AND
GENERALIZED FDR

To further characterize the non-Lorentzian and large-N
Lorentzian peaks, we study the spectral function defined as

ρðt; t0;x − x0Þ ¼ i
N
h½φ̂aðt;xÞ; φ̂aðt0;x0Þ�i: ð6Þ

At equal times, t ¼ t0, it is determined by the equal-time
commutation relations, ρjt¼t0 ¼ 0 and ∂tρjt¼t0 ¼ δðx − x0Þ.
For unequal times, this quantity encapsulates the linear
response of the system to perturbations and thus contains
information about the low-lying excitations of the system.
To compute it, we employ a linear response approach as
described in Refs. [34,35] (see Ref. [48] for details).
In Fig. 4, we show color plots of the spectral function for

N ¼ 1 and N ¼ 8. In general, we find that ρ shows the
same peak structure as F but with different relative weights
between the peaks. However, since ρ does not contain
information about occupancies, the weight of the peaks
does not reveal the dominant excitations.
In particular, for N ¼ 1, we find that the non-Lorentzian

peak in ρ has a very small weight [51] [upper inset of

Fig. 4(a)], which becomes visible only at low momenta.
Nevertheless, this peak has the same dispersion and width
as the peak in F [blue points in Figs. 2(a) and (c)]. In fact,
we find that the non-Lorentzian peaks in F and ρ fulfill a
generalized fluctuation-dissipation relation (FDR) given by

FnLðτ;ω; pÞ ≃
TnLðτ; pÞ
ω − μ

ρnLðτ;ω; pÞ: ð7Þ

We show this in the lower inset of Fig. 4(a) by filtering out
all peaks but the non-Lorentzian peak [48]. Here, μ≡M is
an effective chemical potential linked to the approximate
conservation of particle number at low momenta.
Equation (7) is reminiscent of the equilibrium FDR [52],
except with a mode-dependent temperature TnLðτ; pÞ.
In the large-N limit, the spectral function is dominated

by the large-N peak [Fig. 4(b)] with a dispersion and width
which also match the results for the corresponding large-N
peak in F [Figs. 2(b) and 2(d)]. The two peaks can again be
related through a generalized FDR as in Eq. (7) [lower inset
of Fig. 4(b)]. However, since the large-N peak dominates in
both F and ρ, and since its width becomes narrower with
time, Eq. (7) can be simplified in the long-time, large-N
limit to

FlargeNðτ;ω; pÞ ≃ fðτ; pÞρlargeNðτ;ω; pÞ: ð8Þ

This is again similar to the thermal case, except with a time-
dependent nonequilibrium distribution, and is reminiscent
of kinetic approximations [53]. At intermediate N ≥ 3, we
find small deviations from this behavior, which vanish
as N → ∞.

VII. DISCUSSION

Our results reveal the existence of (at least) two distinct
infrared universality classes governed by two different
types of phenomena, despite being characterized by very
similar universal exponents.

FIG. 3. Statistical function Fðτ;ω; pÞ=fðτ; pÞ for N ¼ 2 (a)
and N ¼ 3 (b). The insets show F (red) for the fixed momentum
marked by the vertical red lines. (a) green/yellow dashed lines
show the peak positions extracted from fits, as well as the fit
results in the inset. (b) a relativistic dispersion (gray) is added for
comparison.

FIG. 4. Spectral function jρj for N ¼ 1 (a) and N ¼ 8 (b). The
upper insets show F=fðτ; pÞ and ρ for fixed p marked by vertical
blue lines. The lower insets show the validity of Eq. (7) by
comparing ðω −MÞF and ρ, both normalized to weight 1. The
ratio of normalizations gives TnLðτ; pÞ. Black/yellow dashed
lines are fits to F, ρ.
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For N ≥ 3, the dynamics is dominated by a Lorentzian
large-N peak. It results from a set of excitations with
relativistic dispersion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
which dominate due to

their number scaling with N. The fact that this physics
dominates even at low N is, however, remarkable, espe-
cially for N ¼ 3 where only one such excitation exists.
A possible explanation for this is the fact that the dispersion
ωp −M scales as ∼p2 in the infrared. Thus, at low
momenta, large-N excitations are energetically easier to
excite compared to the Bogoliubov mode which scales as
∼p and other excitations with larger effective mass [48].
Apart from this, given that the lifetime of these quasipar-
ticles grows with time, and the fact that they fulfill the
generalized FDR of Eq. (8), our results validate the analytic
large-N kinetic theory used in Refs. [12–14].
For N ¼ 1, the dynamics is instead dominated by a peak

of non-Lorentzian shape with time-dependent dispersion
and time-independent quadratic width, which coincides
with the findings for the nonrelativistic Uð1Þ theory [35].
This hints at a common origin for these infrared excitations.
We suggest that this non-Lorentzian peak in Oð1Þ corre-
sponds to vortex line excitations in effective nonrelativistic
degrees of freedom. This claim is motivated by previous
works on Uð1Þ dynamics [8,10] and Oð1Þ dynamics
[16,33], where evidence of vortex excitations was seen
in real-space snapshots of the field.
Our results for N ¼ 2 show a mixture of two different

contributions. We found evidence that one contribution has
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
dispersion, analogously to the large-N peak.

Analytically, however, we do not find any excitation with
such a dispersion for the Oð2Þ theory [48]. The second
contribution was found to share the same properties as the
non-Lorentzian peak of Oð1Þ. Thus, we hypothesize that

these two peaks possibly originate from vortex-type exci-
tations and domain walls, such as those observed in
Refs. [11,16]. In turn, this could explain why the non-
Lorentzian contribution is suppressed at large N. Vortex
and domain wall excitations can be easily unwound or
smoothed out in configuration space when φa has N ≥ 3-
components. Thus, they are not stable enough to contribute
to the self-similar dynamics at large N.

VIII. CONCLUSION

In this work, we have disentangled the physical origin of
the infrared universal dynamics of OðNÞ scalar theories.
Despite equal-time properties being universal for all N,
unequal-time correlators have allowed us to identify at least
two distinct universality classes as a function of N: non-
Lorentzian excitations for N ¼ 1 and Lorentzian rotational
excitations for N ≥ 3, while for N ¼ 2, we find a mixture.
This constitutes a crucial step in classifying universality
classes far from equilibrium. In a broader context, our work
shows the importance of the unequal-time statistical func-
tion F to reveal the dominant physical phenomena in far-
from-equilibrium systems, and will potentially trigger
future research in this direction. In particular, measuring
unequal-time functions [54,55] could substantially improve
our understanding of running cold-atom experiments.
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