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ABSTRACT 13 

Visual distraction by secondary in-car tasks is a major contributing factor in traffic incidents. In-car 14 

user interface design may mitigate these negative effects but to accomplish this, design factors’ 15 

visual distraction potential should be better understood. The effects of touch screen size, user 16 

interface design, and subtask boundaries on in-car task’s visual demand and visual distraction 17 

potential were studied in two driving simulator experiments with 48 participants. Multilevel 18 

modeling was utilized to control the visual demands of driving and individual differences on in-car 19 

glance durations. The 2.5” larger touch screen slightly decreased the in-car glance durations and 20 

had a diminishing impact on both visual demand and visual distraction potential of the secondary 21 

task. Larger relative impact was discovered concerning user interface design: an automotive-22 

targeted application decreased the visual demand and visual distraction potential of the in-car 23 

tasks compared to the use of regular smartphone applications. Also, impact of subtask boundaries 24 

was discovered: increase in the preferred number of visual or visual-manual interaction steps 25 

during a single in-car glance (e.g., pressing one button vs. typing one word) increased the duration 26 

of the in-car glance and its visual distraction potential. The findings also emphasize that even if 27 

increasing visual demand of a task – as measured by in-car glance duration or number of glances – 28 

may increase its visual distraction potential, these two are not necessarily equal. 29 

Keywords: Visual distraction; visual demand; visual occlusion; in-vehicle user interface; subtask 30 

boundary; multilevel model 31 

1 INTRODUCTION 32 

Over the past decade, the effects of smartphone usage on traffic safety have been in the focus of 33 

research all over the world. Several studies have explored the detrimental impacts of using 34 

smartphone while driving with different methods. For instance, there have been many naturalistic 35 

(e.g., Guo et al., 2010; Tivesten and Dozza, 2015) and simulator studies (e.g., Choudhary and 36 

Velaga, 2017; He et al., 2015a; Rumschlag et al., 2015) as well as surveys (e.g., Bayer and 37 

Campbell, 2012; Gauld et al., 2017) and meta-analyses (e.g., Caird et al., 2014; Oviedo-38 
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Trespalacios et al., 2016) investigating drivers’ smartphone use and its effects on driver 1 

performance and safety. As a general finding, these studies have strengthened the association 2 

between smartphone usage and drivers’ visual distraction.  3 

One countermeasure to mitigate the distraction smartphone usage causes to drivers is through 4 

legislation. For instance, several states in the US have forbidden the usage of cellular phones while 5 

driving and almost each state have posited texting bans. However, the use of smartphones while 6 

driving goes beyond just texting, since drivers tend to use all kinds of phone applications – from 7 

Facebook to YouTube (Ahlström et al., 2019; Kujala and Mäkelä, 2018). 8 

Unfortunately, the user interfaces (UI) of regular smartphone applications are rarely designed to 9 

be visually and cognitively low demanding for a car driver. The lack of driver-friendly user 10 

interfaces for these applications raises a need for in-car systems that are optimized for the 11 

automotive context and which can provide easy access to information and entertainment drivers 12 

need on the road. If designed well and accepted by drivers, these interfaces could diminish drivers’ 13 

visual distraction as well as the use of smartphone applications while driving since the legislation 14 

has not fulfilled this urge (e.g., Gauld et al., 2017). However, little is still known about the exact 15 

user interface design factors which can effectively reduce drivers’ visual distraction by secondary 16 

activities. 17 

That said, one design factor that could mitigate drivers’ visual distraction is to utilize speech-to-18 

text function in order to decrease the visual-manual demands of an in-vehicle system. Speech-to-19 

text technology recognizes driver’s speech and converts it into commands that the system can 20 

understand. Various studies have assessed the efficacy of speech-to-text function (or voice 21 

recognition) to mitigate driver distraction compared to manual text entry (e.g., Beckers et al., 22 

2017; He et al., 2015b, 2014; Tsimhoni et al., 2004). Typically, manual text entries are nowadays 23 

conducted with touch screen keyboards – which are visually highly demanding and causing 24 

distraction for drivers (e.g., Crandall and Chaparro, 2012; Kujala et al., 2013; Kujala and Grahn, 25 

2017; McKeever et al., 2013; Reimer et al., 2014b). Another design factor that could mitigate 26 

drivers’ visual distraction is to utilize read-aloud function which is a technology that reads selected 27 

text aloud. However, there is little published glance duration data on read-aloud function in the 28 

driving context. According to Owens et al. (2011) read-aloud function does not cause longer 29 

glances away from the road compared to baseline driving. Conversely, other studies that are not 30 

based on glance duration metrics have found that read-aloud functions may not be distraction-31 

free either (Jamson et al., 2004; Lee et al., 2001). Actually, Reimer and Mehler (2013) and Reimer 32 

et al. (2014a) have pointed out that both speech-to-text and read-aloud functions are rarely 33 

completely free of visual or manual interaction and can therefore be visually distracting. There are 34 

also some task types, such as checking all nearby gas stations from a navigation system, that may 35 

be inefficient to be conducted using verbal communications only as the read-aloud function would 36 

orally list all the options.  37 

Previous research has also established, in general, that screen size affects efficiency when 38 

conducting different tasks (Hancock et al., 2015; Raptis et al., 2013). Gaffar and Kouchak (2017) 39 

studied in automotive context drivers’ reaction times when selecting target icon on either 7” or 40 
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10” screen. They concluded that there was no difference in reaction times between those two 1 

relatively large screens. No glance durations were measured in their study. Hence, to our best 2 

knowledge, there are no existing well-controlled studies in automotive context about the effects 3 

of screen size on glance durations, comparing for instance a smartphone screen versus a tablet 4 

screen. Similarly, previous studies have not extensively dealt with screen orientation’s effects on 5 

visual distraction in detail. 6 

Yet another design factor that could diminish drivers’ visual distraction while conducting 7 

secondary in-car tasks, are well designed task structures (i.e., “how a task breaks down into 8 

smaller subtasks” [Salvucci and Kujala, 2016]) that are based on scientific knowledge of human 9 

multitasking behavior. It has previously been observed that people have a tendency to switch 10 

tasks at subtask boundaries (e.g., Janssen et al., 2012; Lee et al., 2015; Lee and Lee, 2019; Salvucci 11 

and Kujala, 2016), for instance dialing a phone number in chunks or typing one word at a time 12 

(Janssen et al., 2012). Empirical evidence also suggests that when the duration of a secondary 13 

visual search task increases, the glance durations tend to increase as well (Kujala and Salvucci, 14 

2015; Lee et al., 2012). Particularly in a time-critical situation like driving, these findings are crucial 15 

to take into account when designing user-interfaces for the automotive context. 16 

In order to clarify some of the key design factors which may have an impact on drivers’ visual 17 

distraction, we studied features of a novel automotive-targeted infotainment application called 18 

Carrio – which is designed exclusively for in-car use. Since drivers use smartphones while driving 19 

for various means, we compared Carrio’s visual distraction potential to regular (Android) 20 

smartphone applications and studied different in-car tasks’ visual demands in two experiments 21 

with 48 participants in a driving simulator. Our general intention was to examine if – and how 22 

much – an automotive-targeted application is able to reduce real-world in-car tasks’ visual 23 

distraction potential compared to regular smartphone applications. The research questions were:  24 

RQ1) Are there significant differences in the visual distraction potential between automotive-25 

targeted application (Carrio) and regular smartphone applications (Android)? 26 

RQ2) Are there differences in the visual demand of the tasks conducted with automotive-targeted 27 

application (Carrio) and regular smartphone applications (Android)? 28 

RQ3) If there are differences, what are the design factors that are responsible for these? 29 

We have divided the remaining paper into seven sections The second section after the 30 

introduction describes the general method used in both experiments. The third section deals with 31 

Experiment 1 studying visual distraction potential of automotive-targeted application compared to 32 

regular smartphone applications. Since Experiment 1 did not fully answer the posited research 33 

questions, we conducted second experiment, which is dealt in the fourth section of the paper. 34 

Experiment 2 examines visual distraction potential of the same applications as in Experiment 1 35 

while the effects of screen size and screen orientation are controlled for. The fifth section presents 36 

two multilevel models constructed using data from both experiments. These multilevel models 37 

enable studying the effects of screen size, screen orientation, application, and task type on in-car 38 

glance durations together when controlling for visual demands of driving and individual 39 

differences between the participants. The sixth section deals with general discussion and answers 40 
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to the posited research questions. Lastly, the seventh section summarizes the conclusions of this 1 

paper. 2 

Results of Experiment 1 indicated that an automotive-targeted application (Carrio) seemed to 3 

diminish visual distraction compared to regular smartphone applications. Since larger screen size 4 

and landscape orientation could have favored this automotive-targeted application, we conducted 5 

Experiment 2 to control for these possible effects. Results of Experiment 2 indicated that only one 6 

(email replying task) out of three tasks conducted with the automotive-targeted application 7 

decreased visual distraction significantly compared to regular smartphone applications. In order to 8 

further analyze the combined data of the two experiments while controlling for visual demands of 9 

driving and individual differences, we used multilevel modeling to study how screen size, screen 10 

orientation, application, and task type affect visual demand of the tasks. 11 

Utilizing data from both experiments, we constructed two multilevel models. Based on the 12 

multilevel models, the 2.5” larger screen slightly decreased the in-car glance durations and thus, 13 

diminished the visual demand of the in-car tasks. However, the type of application had larger 14 

relative impact than the screen size – the automotive-targeted application (Carrio) seemed to 15 

decrease the visual demand and visual distraction potential of the in-car tasks compared to 16 

regular smartphone applications (Android). A possible impact of subtask boundaries were also 17 

recognized: driver’s ability to break in-car tasks into smaller subtasks seem to decline individual in-18 

car glances’ durations, facilitating better adjustment of glancing behavior in relation to the 19 

demands of the driving situation. Additionally, the findings of the paper stress that visual demand 20 

of a task – measured as in-car glance duration or number of glances –  and visual distraction 21 

potential of the task are not inevitably equal. 22 

2 GENERAL METHOD 23 

For measuring the visual distraction potential of different in-car tasks, we used a method 24 

introduced by Kujala and Mäkelä (2015), which has been applied in studies by Grahn and Kujala 25 

(2018), Kujala et al. (2016a) as well as in Kujala and Grahn (2017). The method contains two parts: 26 

visual distraction potential testing and driver sample validation. This novel method was used in 27 

order to categorize the in-vehicle glances as appropriate or inappropriate based on the situational 28 

visual demand of the driving task, to control these demands of the driving task in statistical 29 

modeling, and to control the driver sample.  30 

The method of Kujala and Mäkelä (2015) utilizes visual occlusion technique, which was initially 31 

introduced by Senders et al. (1967). Traditionally visual occlusion refers to a condition where the 32 

driver’s vision is occasionally occluded (i.e., driving blind) and the duration of the self-selected 33 

occlusion is measured. In the method we used, distance that is driven during the occluded period 34 

is measured, not time as Senders et al. (1967) did. This enables free speed control for the driver. 35 

Here, the blindly driven distance is called occlusion distance (OD). Higher OD can be interpreted to 36 

refer to lower visual demands of driving. 37 

In the visual distraction potential testing, the operationalization of visual distraction is based on 38 

the data collected by Kujala et al. (2016b), where 97 drivers’ preferred occlusion distances on 39 
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simulated highway and suburban roads were measured while the drivers were only focusing on 1 

safe driving. Afterwards the measured occlusion distances were mapped on the same test routes. 2 

This means that each 1x1 meter route point in the map holds information on occlusion distances 3 

that were driven in that particular route point in the experiment. When the same test routes are 4 

used in the visual distraction potential testing, it enables the categorization of in-car glances (i.e., 5 

glances that are directed to the in-car device) to appropriate or inappropriate. The categorization 6 

is based on the distance driven during the in-car glance from a particular route point where the 7 

glance begins. An inappropriate or red in-car glance refers to an in-car glance length that exceeds 8 

the 85th percentile of the 97-driver sample’s occlusion distance on the route point. Red glances 9 

can thus be considered as inappropriately long in-car glances in relation to the visual demand of 10 

the given driving situation and which can be considered as visual distraction. 11 

This operationalization of visual distraction takes into account the dynamic visual demands of the 12 

driving task. Compared to operationalizations of visual distraction with static glance thresholds 13 

(e.g., 2.0 seconds by NHTSA, 2013), it enables the driver more tactical freedom to adjust these 14 

demands by lowering speed and/or selecting low-demand conditions for interacting with in-car 15 

devices.  16 

Visual demand of the secondary in-car task is often operationalized as mean or total in-car glance 17 

durations (e.g., NHTSA, 2013) or as number of in-car glances but the effects of the variable visual 18 

demands of the driving task on these are not considered. For instance, Wierwille (1993) has shown 19 

that the demands of the driving task affect significantly off-road glance durations. Measurement 20 

of the visual demand of the driving situation as the median-OD of the 97-driver sample enables 21 

control of this variable factor in the statistical modeling of the visual demand of the in-car tasks as 22 

in-car glance durations.  23 

In addition, in the method, occlusion distances are utilized to validate the driver sample to match 24 

the occlusion distance distribution with the 97-driver sample (Kujala et al., 2016b) to ensure that 25 

the sample contains all kinds of drivers – from those who are able to drive short distances 26 

occluded to those who are able to drive long distances occluded. That is, participants who need 27 

much visual information on the road and participants who need less visual information on the 28 

road to be able to drive safely and accurately. This is important, since according to previous 29 

studies, drivers tend to have individual preferences for off-road glance durations (Broström et al., 30 

2016; Kujala et al., 2014), which may have an effect on the distraction test results (Broström et al., 31 

2013; Lee and Lee, 2017). 32 

3 EXPERIMENT 1 33 

In Experiment 1 we wanted to study if there are significant differences between the distraction 34 

potential of an automotive-targeted application (Carrio) and regular smartphone applications 35 

(Android). To study this, 24 participants conducted common in-car tasks during simulated driving 36 

with Carrio and Android applications. 37 
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3.1 Method 1 

3.1.1 Experimental design 2 

The experimental design for the analyses of the effects of the in-car task types between 3 

automotive-targeted application (Carrio) and regular smartphone applications (Android) was 4 

within-subjects 2 x 3. The independent variables (IV) were application (Carrio and Android) and 5 

task type (email reading, view-switching, song searching). The dependent variables were number 6 

of in-car glances and percentages of red in-car glances. 7 

3.1.2 Participants 8 

In all, 24 participants were recruited by convenience sampling using different mailing lists. The 9 

NHTSA (2013) recommendations on the driver sample selection were followed as accurately as 10 

possible. Seventeen participants were male and seven were female. The imbalance between the 11 

genders was a result from simulator sickness: five females with symptoms were replaced with 12 

males. 13 

Eight participants were 18 to 24 years old, nine 25 to 39 years old, four 40 to 54 years old and 14 

three were older than 55 years. The age of participants varied from 20 to 79 years, mean age 15 

being 34.8 years (SD = 16.0). Each participant had a valid driver’s license and drove at least 5 000 16 

kilometers per year. The driven kilometers per year varied from 5 000 to 30 000 kilometers with a 17 

mean of 12 938 kilometers (SD = 7 046) per year. The range of driving experience was from two to 18 

55 years and the mean was 16.0 years (SD = 15.0). All participants were generally healthy and had 19 

normal or corrected-to-normal vision. The experiments were instructed in Finnish and all 20 

participants understood and spoke Finnish. Time to complete the experiment ranged from 1 hour 21 

and 7 minutes to 1 hour and 40 minutes. After the experiment, each participant was rewarded 22 

with a gift certificate (15 EUR). 23 

3.1.3 Apparatus 24 

The experiments took place at the University of Jyväskylä’s driving simulator laboratory. The 25 

medium-fidelity driving simulator has a CKAS Mechatronics 2-DOF motion platform, automatic 26 

transmission, longitudinally adjustable seat as well as Logitech G27 force-feedback steering wheel 27 

and pedals. The simulator had three 40” LED screens (95.6 cm x 57.4) with a resolution of 1440 x 28 

900 pixels per screen. The middle screen displayed a head-up display (HUD) tachometer, a HUD 29 

speedometer, and a rear-view mirror, and the side screens had side mirrors (see Figure 1). 30 
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 1 

Figure 1: The experimental setup. The smartphone and the tablet are located next to the steering wheel. The 2 

participant is wearing a head-mounted eye-tracker. 3 

Driving simulator software was provided by Eepsoft (http://www.eepsoft.fi/) and it saved the 4 

driving log data at 10 Hz. The steering wheel was outfitted with two levers that exposed the 5 

driving scene for 500 milliseconds per press during the occlusion trial following the original 6 

occlusion method by Senders et al. (1967). If the levers were constantly pressed, the driving scene 7 

was constantly visible. The routes used simulated real suburban roads that are located in southern 8 

Finland. The routes were copied from the study of Kujala et al. (2016b). 9 

Ergoneers’ Dikablis Essential 50 Hz head-mounted eye-tracking system was used to record eye 10 

movements. To synchronize the driving simulator data (x, y, and speed) and the eye-tracking data, 11 

a LAN bridge and a custom logging software were used. 12 

The automotive-targeted application (Carrio, https://carrioapp.com/) was running on a 7” Lenovo 13 

TB3-730X tablet (Android 6.0). A Samsung Galaxy A3 smartphone (4.5”, Android 6.0.1) was utilized 14 

to run different applications that were compared to the Carrio application (see Figures 2 and 3). 15 

Both devices were on a holder placed on the right side of the steering wheel (see Figure 1). Carrio 16 

was used in landscape mode for which the application is optimized for, whereas the smartphone 17 

was in portrait mode, which can be argued to be the most typical mode of use for smartphones in 18 

this context (i.e., for single-handed use) and the Android operating system’s default mode. Rstudio 19 

(version 1.0.136) and IBM SPSS Statistics 24 were utilized to conduct the statistical analyses. 20 
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 1 

Figure 2: Views of the automotive-targeted application (Carrio). Left upper corner: email reading view, right 2 

upper corner: navigation view, left lower corner: weather condition view, and right lower: corner song 3 

searching view. The navigation view and the weather condition view were only used in the view switching 4 

task. 5 

 6 

Figure 3: Views of regular smartphone applications (Android). From left: email reading view, navigation view, 7 

weather condition view, and song searching view. The navigation view and the weather condition view were 8 

only used in the view switching task. 9 
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 1 

Figure 4: The qwerty touch screen keyboard of the Android smartphone. 2 

3.1.4 Procedure 3 

Demographic data was collected beforehand via email. Upon arrival, participants read and signed 4 

the informed consent form and were informed about the purpose and the setup of the study. First 5 

participants practiced driving with the driving simulator in an artificial city environment with other 6 

traffic. This was done in order to gain experience on driving the simulator, especially on left and 7 

right turns. The average practice time was 6 minutes. After they felt comfortable with driving, they 8 

started to practice for the occlusion trial, that is, how to drive when vision is occasionally 9 

occluded. The environment for the occlusion trial was the same artificial city with other road users 10 

as in the previous practice but the starting point was different. The average practice time was four 11 

and half minutes. 12 

First task after the practices was the occlusion trial for the validation of the test sample. During 13 

the occlusion trial the driving simulator’s screens were blank by default and the driving scenery 14 

could be revealed for 500 milliseconds (as in Senders et al., 1967) by pressing the levers that were 15 

attached to the steering wheel. The two-lane highway route without traffic was the same that was 16 

used to gather the baseline data of Kujala et al. (2016b). Before the trial, each participant received 17 

instructions to obey the traffic regulations, to drive safely and accurately but still to try to drive 18 

without visual information (i.e., vision occluded) as long as possible. Those six participants who 19 

could drive the longest median distances without visual information and still accurately, were 20 

promised a movie ticket as an extra reward. The reward was promised in order to get participants 21 

to concentrate on the driving task but still trying to maximize the occlusion distance to their 22 

preference. The speed limits varied from 60 to 80 to 120 kilometers per hour depending on the 23 

highway section. Every change in the speed limit was told to each participant at the same point of 24 
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the route. However, sections that were driven 60 km/h were junctions from a highway to another 1 

highway and were not included in the final data. After the trial, NASA-TLX questionnaire (Hart and 2 

Staveland, 1988) was filled out in order to measure task workload. 3 

The distraction potential testing followed the occlusion trial. The routes used were the same 4 

suburban roads as in Kujala et al. (2016b). First, the head-mounted eye-tracker was put on, 5 

adjusted and calibrated. The instructed speed limit during the trials was 50 kilometers per hour 6 

but the speed could be adjusted freely if needed. Before each task the experimenter gave 7 

instructions and showed how to perform similar tasks as in the actual distraction testing. The 8 

participants repeated the example tasks to get familiar with the features of the Carrio application 9 

and the different applications of the Android smartphone. 10 

In the beginning of the distraction potential testing, the participants were told to prioritize driving, 11 

to follow traffic regulations, and to drive safely. Each participant conducted three different types 12 

of tasks per application (Carrio and Android). After every task type, there was a short break with 13 

instructions to the following task. The task types were selected to represent plausible activities 14 

drivers may be conducting with their smartphones while driving, related to information search, 15 

entertainment, and switching between applications. The tasks are listed in Table 1. 16 

Experiment 1 Email reading View-switching Song searching 

 Read 20 emails (104–179 

characters in one email) 

and search answers to 

questions asked by the 

experimenter. In total 

four questions. 

Switch between different 

views (email, map, 

weather, Spotify). 15 

switches in total. 

1) Search and start to play a song announced by the 

experimenter (repeated four times). 2) Look for the 

album where the song in question is included 

(repeated two times) OR look for the five most 

popular songs of the artist who performed the song 

in question (repeated two times). 

Table 1: Tasks in Experiment 1. 17 

The task procedures differed between the applications. Task procedures are explained in Table 2. 18 

Experiment 1 Email reading (20 tasks) View-switching (15 tasks) Song searching (4 tasks) 

Carrio Application read the 

selected emails out loud 

(read-aloud function) by 

tapping the message 

header. One button press 

per task. 

Conducted by swiping the 

screen either to left or 

right to find the right 

view. One to three 

swipes per task. 

Conducted using speech-to-text function for 

searching the target songs. Found songs were 

selected by tapping the right one from a list of 

suggestions. A song was associated with a menu in 

which the information about the album or the artist 

could be opened by tapping the desired menu item. 

Nine button presses per task. 

Android  Participants read the 

emails by themselves by 

tapping message headers 

one by one and then 

returning back to the list 

of received emails. Two 

button presses per task. 

Conducted by pressing a 

button on the left lower 

corner of the phone that 

presented all the active 

applications and the right 

one was chosen by 

tapping it. Two button 

presses per task. 

Conducted using a keyboard for searching the target 

songs and by selecting the correct items on the 

menus associated with the playing song. In addition 

to typing the names of the songs, seven button 

presses per task were required. 

Table 2: Task procedures in Experiment 1. 19 
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Three different routes were used (see Figure 5) and the order of the routes and the tasks were 1 

counterbalanced. However, similar tasks between the applications were always done on the same 2 

routes per participant. The same routes for equivalent tasks were used in order to control the 3 

visual demands of the routes. There was no other traffic on the roads during the trials. After each 4 

task, NASA-TLX questionnaire (Hart and Staveland, 1988) was filled out, in total six times during 5 

the distraction testing. 6 

 7 

Figure 5: The pre-defined routes for the experiments. Color indicates the visual demand of the route point as 8 

occlusion distance: the demand increases from green to yellow to orange to red. 9 

3.1.5 Data preparation 10 

For measuring the occlusion distances, driving simulator’s log data was used to automatically 11 

calculate the driven distance during the occlusion. A script calculated and logged the driven 12 

distance in between the start of each occlusion event and the following lever press based on the 13 

odometer reading. Scoring of the in-car glance lengths was conducted in real time with a script 14 

that read the x and y coordinates of the pupil as well as the timestamp provided by the eye-15 

tracker. The pupil coordinates were synchronized with the location and timestamp data afforded 16 

by the driving simulator. After the experiment, Noldus Observer XT software was used to manually 17 

inspect each in-car glance length from a synchronized video (25 frames per second) provided by 18 

the eye-tracking software. All inaccuracies were manually corrected frame-by-frame. SAE-J2396 19 

(Society of Automotive Engineers, 2000) definition was followed when scoring the in-car glance 20 

lengths. However, to enable more direct comparability with the occlusion distance, the gaze 21 

transition time back to the driving scene from the in-car device was added to the glance length. 22 

Based on the data by Kujala et al. (2016a), all in-car glances exceeding the 85th percentile of the 23 

original 97-driver sample’s occlusion distance on the route point were categorized as red in-car 24 

glances. 25 
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Unfortunately, due to technical issues during the trials, and thus missing data points, one 1 

participant had to be removed from the objective data (N = 23). However, raw NASA-TLX 2 

questionnaire (Hart, 2006; Hart and Staveland, 1988) results, that are reported in Table 11, include 3 

all participants (N = 24). 4 

3.2 Results and discussion 5 

3.2.1 Occlusion distances 6 

To validate the driver sample, the distribution of the occlusion distances was compared to the 7 

original occlusion distance distribution of the 97-driver sample (Kujala et al., 2016b) where the 8 

occlusion distances varied from  3.21 meters to 41.88 meters (Mdn = 13.67). In this experiment, 9 

the occlusion distances varied from 6.35 meters to 35.82 meters with a median of 17.37 meters. 10 

According to Levene’s test, the variance of the occlusion distance distribution does not differ 11 

significantly from the original OD distribution of Kujala et al. (2016b): (F (1,116) = .645, p = .424). 12 

3.2.2 Number of in-car glances by user interface and task type 13 

The number of in-car glances for each task type was sufficient for meaningful and reliable 14 

analyses, see Table 3. According to paired-samples t-test, differences between email reading task 15 

(t(22) = -7.188, p < .001, d = 1.895) and view-switching task (t(22) = -10.642, p < .001, d = 2.340 ) 16 

were significant, Carrio having lower mean number of in-car glances. No significant difference was 17 

found in song searching task (p = .468). 18 

Experiment 1 Email reading (20 tasks) View-switching (15 tasks) Song searching (4 tasks) 

Carrio M = 41.52 (12.43) M = 20.12 (9.58) M = 65.14 (19.11) 

Android  M = 86.83 (31.44) M = 39.57 (6.81) M = 63.78 (23.68) 

Table 3: Mean number of in-car glances per user interface task type (standard deviation in parentheses). 19 

3.2.3 Red in-car glance percentages by user interface and task type 20 

Because the distributions of the red in-car glance percentages were non-Gaussian, median was 21 

used as a measure of central tendency instead of mean in statistical testing. According to Wilcoxon 22 

Signed Rank test, all the differences in the percentages of red in-car glances between Carrio and 23 

Android applications per task type were significant with medium effect sizes in favor of Carrio 24 

(email reading: Z = 2.584, p = .010, d = 0.666; view-switching: Z = 2.458, p = .014, d = 0.688; song 25 

searching: Z = 2.795, p = .005, d = 0.677, see Table 4). 26 

Experiment 1 Email reading View-switching Song searching 

Carrio Mdn = 10.00 (16.00) Mdn = .00 (3.25) Mdn = 6.00 (13.50) 

Android  Mdn = 19.00 (19.50) Mdn = 6.00 (8.25) Mdn = 16.00 (14.25) 

Table 4: Median red in-car glance percentages per user interface and task type (interquartile range in 27 

parentheses). 28 

3.2.4 Discussion 29 

In Experiment 1, based on the significant differences on red in-car glances (i.e., visual distraction), 30 

it can be argued that the tested features of Carrio application seem to have significantly lower 31 

visual distraction potential compared to similar tasks conducted with regular smartphone 32 

applications (Android) while driving.  33 
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The tested applications had some differences in their functionalities which are reported in Table 2. 1 

Android’s email reading task had the highest percentages of red in-car glances (19.00 %). This task 2 

did not demand many button presses (2 per email) or typing but it demanded reading from the 3 

screen in order to complete the task. When conducted with Carrio application (red in-car glance: 4 

10.00 %), the task required one button press per email and no reading since the application read 5 

the email aloud. Second highest percentage of red in-car glances (16.00 %) was discovered in the 6 

Android smartphone’s song searching task. This task required several button presses (7 per song) 7 

and some typing with quite small buttons (see Figure 4) before the target song was found. When 8 

conducted with Carrio application (6.00 %), this task required nine button presses and no typing as 9 

the application utilized speech-to-text function. 10 

The view-switching task with both applications had the lowest percentages of red in-car glances 11 

(.00 % vs. 6.00 %). Conducted with Android smartphone, this task required two button presses per 12 

switch. Carrio’s view-switching task required only swiping between four different views (one to 13 

three swipes per task) and participants were able to learn easily the order of the views. This may 14 

have enabled participants to keep their eyes on the road during the task. On the other hand, 15 

Android’s view-switching task required more looking at the device since the participants had to 16 

tap to the right spot on the screen in order to complete the task. Overall, Carrio application had 17 

lower distraction potential compared to similar tasks conducted with regular smartphone 18 

applications. 19 

During the experiment, both devices were placed in a holder (see Figure 1) that was moving with 20 

the simulator. The motion of the driving simulator may have increased the difficulty of conducting 21 

the tasks but it may have affected the Carrio tasks less because of application’s larger buttons and 22 

the screen size of the tablet. 23 

Overall, these findings indicate the potential of well-designed in-car applications to decrease visual 24 

distraction compared to the use of regular smartphone applications while driving. The 25 

automotive-targeted application Carrio is designed to be used easily while driving with its large 26 

buttons, multimodal interactions, and simplistic design. We assume that the advantage of Carrio in 27 

the tested tasks could have been mainly due to the speech-to-text function in the song searching 28 

tasks and read-aloud functions in the email tasks. In addition, Carrio was used in a tablet with 29 

larger screen and in landscape mode whereas the smartphone had 2.5” smaller screen and was 30 

used in portrait mode – this arrangement could have also favored Carrio.  31 

Due to these confounding factors, we cannot exactly pinpoint with this data alone the most 32 

important design factors that favored Carrio. Therefore, we cannot fully answer to the posited 33 

research questions. To control for these confounded factors, we conducted a second experiment 34 

to better answer our research questions. 35 

4 EXPERIMENT 2 36 

Our aim in Experiment 2 was to examine if the observed lower distraction potential of the Carrio 37 

tasks in Experiment 1 was due to the larger tablet screen or its landscape orientation compared to 38 

the smaller-sized smartphone in portrait mode. To be able to compare the effects of these factors 39 

between the experiments, participants conducted in this experiment the same email reading and 40 
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song searching tasks as in Experiment 1. However, this time both Carrio and regular smartphone 1 

applications were running on 4.5” smartphone in landscape mode. The view-switching task was 2 

omitted since it was found relatively easy and low-distracting in Experiment 1 with both, Carrio 3 

and Android. Instead, participants had an extra task to reply to four emails to get data from a text 4 

entry task with manual typing compared to a speech-to-text function. Based on previous research 5 

(e.g., Crandall and Chaparro, 2012; McKeever et al., 2013; Reimer et al., 2014b), the manual text 6 

entry task was assumed to be the most visually distracting due to task structure (preferred typing 7 

of word per glance) and manual keyboard input requiring high accuracy. 8 

4.1 Method 9 

4.1.1 Experimental design 10 

Again, the experimental design for the analyses of the effects of task types between automotive-11 

targeted application (Carrio) and regular smartphone applications (Android) was within-subjects 2 12 

x 3 (task types: email reading, email replying, song searching). The independent and dependent 13 

variables were the same as in Experiment 1 (IVs: application and task type, DVs: number of in-car 14 

glances and percentages of red in-car glances). 15 

4.1.2 Participants 16 

In total 24 participants took part in Experiment 2. None of these participants took part in  17 

Experiment 1. The sample was a convenient sample in that regard the participants were recruited 18 

via different mailing lists. Again, the NHTSA  (2013) recommendations were followed as closely as 19 

possible when selecting the participants. 20 

In the driving sample, 16 participants were male and 8 were female. Again, the imbalance 21 

between the genders was due to simulator sickness females were reporting. If the participant felt 22 

sick during the experiment, the experiment was cancelled and the gathered data was discarded.  23 

Seven participants were 18 to 24 years old, nine 25 to 39 years old, five 40 to 54 years old and 24 

three were older than 55 years. The age of participants varied from 19 to 66, mean being 35.3 25 

years (SD = 13.9). Each participant had a valid driver’s license and drove at least 5 000 kilometers 26 

per year. The driven kilometers per year varied from 5 000 to 55 000 kilometers, mean being 14 27 

625 kilometers (SD = 11 854) per year. The range of driving experience was from two to 48 years, 28 

mean being 16.9 years (SD = 13.9). All participants were generally healthy and had normal or 29 

corrected-to-normal vision. The experiments were instructed in Finnish and all participants were 30 

fluent in Finnish. Time to complete the experiment ranged from 1 hour and 8 minutes to 1 hour 31 

and 37 minutes. After the experiment, each participant was rewarded with a gift certificate (10 32 

EUR). 33 

4.1.3 Apparatus 34 

The exactly same driving simulator (see Figure 1), other equipment (excluding the tablet), routes 35 

(see Figure 5), and statistical tools were used in this experiment. A software update to the 36 

commercial Carrio application between the experiments enabled us to study speech-to-text 37 

function in the text entry task. However, an additional smartphone had to be used for this task to 38 

keep the same older version of Carrio for the email reading and song searching tasks in the same 39 

phone as in Experiment 1. Changing the versions of Carrio during the experiment was evaluated to 40 
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be too risky since it could have caused technical difficulties during the experiment. In addition, this 1 

would have extended the duration of experiments. Since the same version of Samsung Galaxy A3 2 

did not exist in the market anymore, the additional phone was Samsung Galaxy A3 (2017) with 3 

Android 7.0 operating system. It has 4,7” screen which is 0.2” larger than in Samsung Galaxy A3 4 

used in Experiment 1. In each task both smartphones were used in landscape mode in order to be 5 

able to control the effects of the screen orientation. 6 

4.1.4 Procedure 7 

Each participant went through exact same practices as in Experiment 1. In the artificial city 8 

scenario, the average practice time was five minutes, and in the occlusion drive the average 9 

practice time was four minutes. After the practices, the occlusion trial was conducted exactly the 10 

same as in Experiment 1. The general instructions, routes, experimenter, counterbalancing, and 11 

practicing the mock tasks were the same as in Experiment 1. 12 

Also, two of the selected task types were the same as in the previous experiment – email reading 13 

and song searching (see Figures 6 and 7). However, we added an email replying task to compare 14 

Carrio’s speech-to-text function to Android’s touch screen keyboard (see Figures 8 and 9). These 15 

tasks are listed in Table 5. In addition, NASA-TLX questionnaire (Hart and Staveland, 1988) was 16 

filled out after each task, in total seven times. 17 

 18 

Figure 6: Views of the automotive-targeted application (Carrio). From left: email reading view and song 19 

searching view. 20 

 21 

Figure 7: Views of regular smartphone applications (Android). From left: email reading view and song 22 

searching view. 23 
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 1 

Figure 8: Views of the automotive-targeted application (Carrio). From left: email replying view and view when 2 

the email is being listened to. 3 

 4 

Figure 9: Views of regular smartphone application (Android). From left: email view and view when the email is 5 

being replied to. 6 

Experiment 2 Email reading Email replying Song searching 

 Read 20 emails (104–179 

characters in one email) 

and search answers to 

questions asked by the 

experimenter. In total 

four questions. 

Read and reply to emails 

with an answer told by the 

experimenter. In total four 

replies. 

1) Search and start to play a song announced by the 

experimenter (repeated four times). 2) Look for the 

album where the song in question is included 

(repeated two times) OR look for the five most 

popular songs of the artist who performed the song 

in question (repeated two times). 

Table 5: Tasks in Experiment 2. 7 

The task procedures differed a bit depending on the application used. Detailed task procedures 8 

can be seen in Table 6.  9 
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Experiment 2 Email reading (20 tasks) Email replying (4 tasks) Song searching (4 tasks) 

Carrio Application read the 

selected emails out 

loud (read-aloud 

function) by tapping the 

message header. One 

button press per task. 

Application read the selected 

emails out loud (read-aloud 

function) by tapping the 

message header. Participants 

replied by tapping a reply 

button, said the answer out 

loud and finally tapped send 

button. Four button presses 

per task. 

Conducted using speech-to-text function for 

searching the target songs. Found songs were 

selected by tapping the right one from a list of 

suggestions. A song was associated with a menu 

in which the information about the album or the 

artist could be opened by tapping the desired 

menu item. Nine button presses per task. 

Android  Participants read the 

emails by themselves 

tapping message 

headers one by one and 

then returning back to 

the list of received 

emails. Two button 

presses per task. 

Participants read the emails 

by themselves, tapped reply 

button, typed the answer 

using keyboard (15–23 

characters) and finally tapped 

send button. In addition to 

typing the replies, four 

button presses per task were 

required. Predictive text 

function was omitted. 

Conducted using a keyboard for searching the 

target songs and by selecting the correct items 

on the menus associated with the playing song. 

In addition to typing the names of the songs, 

seven button presses per task were required. 

Table 6: Task procedures in Experiment 2. 1 

4.1.5 Data preparation 2 

The data preparation in this experiment was conducted exactly the same as in Experiment 1.  3 

4.2 Results and discussion 4 

4.2.1 Occlusion distances 5 

Occlusion distances varied from 4.77 meters to 35.99 meters median being 16.53 meters. 6 

According to Levene’s test, the variance of the occlusion distance distribution does not differ 7 

significantly from the original OD distribution of Kujala et al. (2016b): (F (1,117) = .032, p = .859). 8 

4.2.2 Number of in-car glances by user interface and task type 9 

The number of in-car glances for each task type was sufficient for meaningful and reliable analyses 10 

(Table 7). According to paired-samples t-test, differences between email reading task (t(23) = -11 

10.028, p < .001, d = 3.020) and email replying task (t(23) = -3.479, p = .002, d = 0.875) were 12 

significant, Carrio having lower mean number of in-car glances. No significant difference was 13 

found in song searching task (p = .170). 14 

Experiment 2 Email reading (20 tasks) Email replying (4 tasks) Song searching (4 tasks) 

Carrio M = 38.92 (12.33) M = 38.50 (8.23) M = 57.21 (12.45) 

Android  M = 85.63 (18.07) M = 51.42 (19.20) M = 51.83 (15.08) 

Table 7: Mean number of in-car glances per application and task type (standard deviation in parentheses). 15 

4.2.3 Red in-car glances by user interface and task type 16 

Because the distributions of the red in-car glance percentages were non-Gaussian, median was 17 

used as a measure of central tendency instead of mean in statistical testing. According to Wilxocon 18 

Signed Rank test, only statistically significant difference was observed between the applications in 19 

the email replying task, favoring Carrio (Z = 3.254, p = .001, d = 0.531, see Table 8). Other 20 

differences were not significant (email reading: p = .424; song searching: p = .503). 21 
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Experiment 2 Email reading Email replying Song searching 

Carrio Mdn = 14.14 (16.62) Mdn = 4.83 (12.91) Mdn = 8.30 (10.66) 

Android  Mdn = 13.93 (12.19) Mdn = 12.40 (17.69) Mdn = 8.14 (14.08) 

Table 8: Median red in-car glance percentages per application and task type (interquartile range in 1 

parentheses). 2 

4.2.4 Discussion 3 

In Experiment 2, based on the significant differences in red in-car glances (i.e., visual distraction), 4 

email replying task with Carrio had significantly lower visual distraction potential compared to a 5 

similar task conducted with a regular smartphone application (Android) while driving, as 6 

hypothesized. However, no significant differences in visual distraction was found in email reading 7 

or song searching tasks. 8 

Since in Experiment 2 the tasks were conducted with the same screen size and in landscape mode 9 

with both Carrio and Android, Carrio did not have the possible advantage of bigger screen size or 10 

orientation as in Experiment 1. This suggests that screen size or device orientation may have a 11 

significant impact on visual distraction potential of in-car tasks together with speech-to-text and 12 

read-aloud functions. 13 

However, again, due to possible confounding factors, including individual differences between 14 

participants, we have to analyze the relative effects of the different UI design factors together 15 

with the data from Experiment 1 using multilevel modeling. 16 

5 MULTILEVEL MODELING AND ANALYSES OF DESIGN FACTORS 17 

5.1 Model 1 18 

In order to analyze in detail the effects of screen size, screen orientation, application, and in-car 19 

task on in-car glance durations, two multilevel models (Hox, 1998) were created. For Model 1, the 20 

glance data from both experiments was organized in a longitudinal format and only tasks which 21 

were conducted in both experiments (email reading and song searching) were included in the 22 

data. According to the “30/30 rule”, sufficient statistical power is reached in multilevel analysis if 23 

there are at least 30 observations on level 1 and which are nested on level 2 within 30 units 24 

(Richter, 2006). The data contained 11 459 in-car glances (level 1) that belonged to 47 participants 25 

(level 2). 26 

5.1.1 Screen size, screen orientation, and application 27 

The dependent variable in the first model was in-car glance duration. The model construction 28 

started with exploring the intraclass correlation (ICC) which was 11.89 % in the intercept only 29 

model. This justifies the use of a multilevel model. After that, we added fixed factors one by one, 30 

inspected the -2 Log-Likelihood Ratio and tested with chi-squared test (χ2) if the new model had 31 

significantly better fit than the previous one. If it had not, the added fixed factor was removed 32 

from the model. This inspection revealed that both driving speed and age groups after NHTSA 33 

(2013) were significant in the model, that is, affecting glance durations, but they did not 34 

significantly improve the fit of the model. Screen orientation had no significant effect on in-car 35 

glance duration. We found no significant interactions of the factors. 36 
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In the final model (Table 9), as fixed factors we entered user interface, screen size, and occlusion 1 

distance. As random factors, we had intercepts for participants (i.e., drivers). After constructing 2 

the model, we visually inspected residual plots and they did not indicate any clear deviations from 3 

normality or homoscedasticity. 4 

The equation for the first model is: 5 

durationij = b0 + b1sizeij + b2appij + b3ODij + u0j + e0ij (1) 6 

where durationij is in-car glance duration (DV), b0 is the intercept (grand mean), b1sizeij is the 7 

screen size, b2appij is the application (Carrio or Android), b3ODij is occlusion duration (m, inverse of 8 

visual demand of the driving situation), u0j is the random effect (driver), and e0ij is the residual. 9 

Fixed effects estimate standard error p 95 % confidence 

interval 

Intercept 932 32 < .001 867–996 

Screen size small (4,5”) 39 18 .031 3–75 

Screen size large (7”) 0* 0*   

Regular smartphone application 

(Android) 
279 13 < .001 253–304 

Automotive-targeted 

application (Carrio) 
0* 0*   

Occlusion distance (m)** 12 1 < .001 10–14 

Random effects 
2
    

Intercept (participant) 35 3 < .001  

Residual 228 7 < .001  

Intraclass correlation (ICC)     

Participant .133    

Model fit (-2RLL) 15710.22    

Table 9: Multilevel model for in-car glance duration (ms) – Model 1. 10 

* The factor above is compared to factor that gets the value of zero. 11 

**Occlusion distance: inverse of visual demand of the driving situation. 12 

In the model, the grand mean of the in-car glance duration is 932 milliseconds for Carrio on the 13 

larger 7” screen. Compared to the Carrio application, the use of regular smartphone applications 14 

(Android) increase the in-car glance duration by 279 milliseconds and when the size of the screen 15 

decreases from 7” to 4.5”, the duration of the in-car glance increases by 39 milliseconds. The 16 

model indicates also that one-meter increase in occlusion distance – which can be interpreted as 17 

inverse of visual demand of the driving situation – increases the duration of the in-car glance by 12 18 

milliseconds. This means that there is a 120-milliseconds increase in in-car glance duration by 10 19 

meter increase in occlusion distance. In other words, when the driving scenario was less visually 20 

demanding (e.g., no junctions ahead), participants were able to glance the in-car device longer. 21 
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5.2 Model 2 1 

In order to estimate which task features affect in-car glance duration and how much, we 2 

constructed another multilevel model. The glance data from both experiments was organized in a 3 

longitudinal format and all tasks were included in the data. The data contained 14 990 in-car 4 

glances that belonged to 47 participants. 5 

5.2.1 Task features 6 

The dependent variable in the model was again in-car glance duration. In the intercept only model 7 

the ICC was 12.3 %. Again, this justifies the use of a multilevel model. The construction procedure 8 

of the model was identical with the previous one. Again, the inspection of the model revealed that 9 

both driving speed and age groups after NHTSA (2013) were significant in the model, affecting 10 

glance durations, but they did not significantly improve the fit of the model. In the final model 11 

(Table 10), the fixed factors were task and occlusion distance. As random factors, we had 12 

intercepts for participants. We found no significant interactions of the factors. Again, we visually 13 

inspected residual plots and they did not indicate any clear aberrations from normality or 14 

homoscedasticity. 15 

The equation for the second model is: 16 

durationij = b0 + b1taskij + b2ODij + u0j + e0ij (2) 17 

where durationij is in-car glance duration (DV), b0 is the intercept (grand mean), b1taskij is the in-18 

car task, b2ODij is occlusion duration (m, inverse of visual demand of the driving situation), u0j is 19 

the random effect (driver), and e0ij is the residual. 20 
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Fixed effects 

 

estimate standard  

error 

p 95 % confidence 

interval 

Intercept 580 46 < .001 488 – 672 

Email replying (Android, landscape, 4.7”, manual 

text entry) 

747 60 < .001 627 – 867 

Email reading (Android, landscape, 4.5”, manual text 

entry) 

726 59 < .001 607 – 845 

Email reading (Android, portrait, 4.5”, tapping) 693 25 < .001 645 – 741 

Song searching (Android, landscape, 4.5”, manual 

text entry) 

656 60 < .001 536 – 776 

Song searching (Android, portrait, 4.5”, manual text 

entry) 

643 25 < .001 593 – 692 

Email replying (Carrio, landscape, 4.7”, speech-to-

text function + tapping) 

442 61 < .001 321 – 563 

Song searching (Carrio, landscape, 4.5”, speech-to-

text function + tapping) 

429 60 < .001 309 – 549 

Email reading (Carrio, landscape, 4.5”, read-aloud 

function + tapping) 

399 61 < .001 278 – 520 

Song searching (Carrio, landscape, 7”, speech-to-text 

function + tapping) 

373 25 < .001 323 – 423 

Email reading (Carrio, landscape, 7”, read-aloud 

function + tapping) 

322 27 < .001 269 – 375 

View-switching (Android, portrait, 4.5”, tapping) 303 27 < .001 251 – 356 

View-switching (Carrio, landscape, 7”, swiping) 0* 0*   

Occlusion distance (m)** 11 0 < .001 9–13 

Random effects 
2
    

Intercept (participant) 35 3 < .001  

Residual 222 7 < .001  

Intraclass correlation (ICC)     

Participant .136    

Model fit (-2RLL) 20179.88    

Table 10: Multilevel model for in-car glance duration (ms) per task – Model 2. 1 

* The factor above is compared to factor that gets the value of zero. 2 

**Occlusion distance: inverse of visual demand of the driving situation. 3 

The model represents the relative visual demand of the studied tasks when controlling for the 4 

visual demands of the driving. The grand mean of the in-car glance duration is 580 milliseconds for 5 

the easiest task of view-switching with Carrio on the large screen. In Table 10, the tasks are sorted 6 

from the visually most demanding task (email replying with Android) to the visually least 7 
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demanding task (view-switching with Carrio) based on the estimates. The estimate tells how much 1 

a single in-car glance duration is expected to increase in milliseconds compared to the least 2 

demanding task.  3 

5.2.2 Tasks grouped by visual demand 4 

Since the tasks’ estimates’ 95 % confidence intervals in Model 2 (Table 10) partly overlap, reliable 5 

interpretation of the exact order of the tasks regarding their visual demand cannot be made. That 6 

is why we organized the tasks into three groups based on the overlaps in the confidence intervals: 7 

visually high demanding, visually intermediately demanding, and visually low demanding tasks 8 

(Table 11). We also added the percentages of red in-car glances to Table 11 in order to compare 9 

the visual demand (i.e., in which group the task belonged to) with the visual distraction potential 10 

of the task (i.e., red in-car glances). The tasks’ red in-car glance percentages in Table 11 have a 11 

strong correlation with the visual demand estimates of the tasks in Table 10: r = .772 (p = .003, N = 12 

12). In addition, we added mean number of in-car glances and mean NASA-TLX scores  (Hart and 13 

Staveland, 1988) into Table 11 in order to compare these figures with the estimated visual 14 

demand and visual distraction potential of the tasks. 15 
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Visually high demanding tasks 

(application, screen orientation, 

screen size, interaction methods) 

median red in-car  

glance %  

(IQR) 

range of  

red in-car  

glance % 

mean number 

 of in-car 

 glances (SD) 

mean  

NASA-TLX (SD) 

range of mean 

NASA-TLX 

Email replying (Android, landscape, 

4.7”, manual text entry) 
12.40 (17.69)  51.42 (19.20) 51.28 (14.52)  

Email reading (Android, landscape, 

4.5”, manual text entry) 
13.93 (12.19)  85.63 (18.07) 51.28 (11.82)  

Email reading (Android, portrait, 

4.5”, tapping) 
19.00 (19.50) 8.14–19.00 86.83 (31.44) 48.68 (16.52) 48.68–56.49 

Song searching (Android, landscape, 

4.5”, manual text entry) 
8.14 (14.08)  51.83 (15.08) 50.62 (13.88)  

Song searching (Android, portrait, 

4.5”, manual text entry) 
16.00 (14.25)  63.78 (23.68) 56.49 (16.38)  

Visually intermediately demanding 

tasks 
     

Email replying (Carrio, landscape, 

4.7”, speech-to-text function + 

tapping) 

4.83 (12.91)  38.50 (8.23) 38.95 (12.98)  

Song searching (Carrio, landscape, 

4.5”, speech-to-text function + 

tapping) 

8.30 (10.66)  57.21 (12.45) 39.44 (13.00)  

Email reading (Carrio, landscape, 

4.5”, read-aloud function + tapping) 
14.14 (16.62) 4.83–14.14 38.92 (12.33) 36.77 (16.01) 36.74–43.73 

Song searching (Carrio, landscape, 

7”, speech-to-text function + 

tapping) 

6.00 (13.50)  65.14 (19.11) 43.73 (17.14)  

Email reading (Carrio, landscape, 7”, 

read-aloud function + tapping) 
10.00 (16.00)  41.52 (12.43) 38.89 (17.65)  

View-switching (Android, portrait, 

4.5”, tapping) 
6.00 (8.25)  39.57 (6.81) 36.74 (15.28)  

Visually low demanding tasks      

View-switching (Carrio, landscape, 

7”, swiping) 
0 (3.25) 0 20.12 (9.58) 25.03 (10.50)  

Table 11: Task groups based on the confidence intervals of the multilevel model (Model 2) in Table 10. 1 

In Table 11, all tasks labelled as visually high demanding, are tasks conducted with regular 2 

smartphone applications (Android). Three out of five tasks were performed using touch screen 3 

keyboard which in many studies has indicated high visual distraction potential (e.g., Crandall and 4 

Chaparro, 2012; McKeever et al., 2013; Reimer et al., 2014b; Tsimhoni et al., 2004). The group 5 

includes two email reading tasks and one email replying task. 6 

All the emails in the reading tasks started with a short greeting, other than that, the emails 7 

contained on average four sentences of meaningful information. Based on the mean number of 8 

glances, participants made on average 4.34 glances per email in Experiment 1 and 4.28 glances in 9 

Experiment 2. This indicates that participants read one sentence per glance, on average. To 10 
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complete one task in the email replying task conducted with Android, participants had to read an 1 

email (1–2 meaningful short sentences) and type an answer (2–3 words, 16.75 characters on 2 

average). In addition, four button presses were required. Based on the mean number of glances, 3 

to read and type one email required on average 12.85 glances. The average should be close to 4 

21.75 glances if the participants had typed a single character per glance. Here, end of a sentence 5 

or finishing typing a word can be assumed to be the self-selected subtask boundary that offered a 6 

natural break point to participants. In general, subtask boundaries are used while multitasking to 7 

switch attention in natural break points to reduce cognitive load (e.g., Janssen et al., 2012; Payne 8 

et al., 2007) and our findings are consistent with this idea. 9 

The range of the red in-car glances is mainly in line with the visual demand grouping – one 10 

exception in the high visual demand group is the song searching task that had lower red in-car 11 

glance percentage than some tasks in the visually intermediately demanding group. This task was 12 

conducted with Android in landscape mode. Landscape mode slightly widens the touch screen 13 

keyboard’s buttons compared to portrait mode (see Figures 4 and 7). This width difference of 14 

buttons could have caused more typing errors in portrait mode and less typing errors in landscape 15 

mode. Lee et al. (2016) found that errors during the in-car tasks, for instance, increased the 16 

duration of the in-car glances and total task time. Based on this, hypothetically, the errors in 17 

portrait mode may have caused participants to glance the in-car device at a road point where they 18 

would have not glanced without the cognitive distraction (Lee et al., 2016, 2007) caused by the 19 

typing errors. This could explain the higher red in-car glance percentage in the song searching task 20 

in the portrait mode and the lower percentage in the landscape mode.  However, we were not 21 

able to measure the typing errors participants made during the tasks to test this hypothesis. 22 

The intermediate group consisted of mainly Carrio tasks which required only button presses and 23 

either speaking (speech-to-text function) or listening (read-aloud function) but no typing. In 24 

addition, there is one Android task, view-switching, which required only two button presses to be 25 

successfully conducted. Interesting is, that in this group some of the tasks required in the software 26 

level equal amount or even more button presses to be completed (see Tables 2 and 6) than the 27 

ones in the group of visually high demanding tasks. Even though some Carrio tasks in the 28 

intermediate group had more button presses than the Android tasks in high group, together with 29 

speech-to-text and read-aloud functions these button presses may have formed subtask 30 

boundaries that were beneficial to participants for decreasing visual distraction of the tasks. 31 

Notable is, that against common belief, as discovered earlier by Reimer and Mehler (2013) and 32 

Reimer et al. (2014a), these voice-based interfaces often require visual-manual input too.  33 

As in the group of visually high demanding tasks, the intermediate group also had one deviation 34 

among the red in-car glance percentages. Carrio’s email reading task conducted with the 4.5” 35 

screen had higher red in-car glance percentage than some tasks in the visually high demanding 36 

group. The observed errors made during the selection of the next email (see Figure 8) could have 37 

an effect on these red glance percentages. That is, some participants selected same emails twice 38 

since they were confused which email was most recently selected. Alternatively, the presence of 39 

email’s first line of text (see Figure 8) could have affected both red in-car glance percentages and 40 
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mean number of in-car glances: participants may have read the presented line of text instead of 1 

just listening to the email. Again, hypothetically, the errors may have caused participants to glance 2 

the in-car device at a road point where they would have not glanced without this cognitive 3 

distraction (Lee et al., 2016, 2007). However, unfortunately we do not have access to error data in 4 

these tasks. Otherwise, the range of the red in-car glance percentages is well in line with the visual 5 

demand grouping. 6 

Finally, there was only one task in the group of visually low demanding tasks: view-switching task 7 

with Carrio. This task was relatively easy since the order of the views seemed to be easily 8 

learnable and this enabled drivers to switch views with a simple gesture while looking at the road 9 

ahead. This task had the lowest mean number of in-car glances (see Table 3). This is a similar 10 

finding as in previous studies that found simple gestures for scrolling pages one-by-one to be the 11 

most visually least demanding and distracting when compared to button presses or kinetic 12 

scrolling (e.g., Kujala, 2013; Lasch and Kujala, 2012). 13 

Additionally, the range of mean NASA-TLX scores (Hart and Staveland, 1988) – which measure 14 

subjective task workload – is well in line with the visual demand grouping of the tasks. This 15 

suggests that subjectively experienced task workload is particularly connected with the visual 16 

demand of the tasks. 17 

6 GENERAL DISCUSSION 18 

We conducted two driving simulator experiments with 48 participants in order to study the 19 

impacts of touch screen size, interaction methods, and subtask boundaries on secondary task’s 20 

visual demand and visual distraction potential. For controlling the visual demand of the driving 21 

situation and participants’ individual differences in in-car glance durations, we utilized multilevel 22 

modeling. 23 

In Experiment 1, automotive-targeted application (Carrio) was running in a 7” tablet in landscape 24 

mode and was compared to regular smartphone (4.5”, portrait mode) applications (Android). The 25 

distraction potential of the tested tasks was assessed with a novel method introduced by Kujala 26 

and Mäkelä (2015) which categorizes part of the in-car glances into red in-car glances, that is, 27 

inappropriately long in-car glances in relation to the visual demand of the given driving situation 28 

(i.e., visual distraction). This novel testing method allowed us to compare visual distraction 29 

potential of the tested tasks when the visual demands of the driving scenario was controlled for. 30 

In Experiment 1 Carrio had significantly lower percentages of red in-car glances in each task 31 

compared to the tasks conducted with regular smartphone applications (Research Question 1). 32 

Since there were two confounding factors, screen size and orientation of the device, we could not 33 

exactly point out which design factors caused Carrio’s lower red in-car percentages, and therefore 34 

we conducted another experiment. In Experiment 2, both Carrio and Android tasks were 35 

conducted with a smartphone in landscape mode. Based on the distraction potential testing, only 36 

Carrio’s email replying task had significantly lower red in-car glance percentage than any Android 37 

task (Research Question 1). 38 

Since these results from Experiment 1 and Experiment 2 individually did not clarify the effects of 39 

the different design factors, we constructed two multilevel models based on the data from both 40 
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experiments. With multilevel models we investigated how screen size, screen orientation, 1 

application, and task affect in-car glance durations in the tested tasks. Multilevel modeling 2 

enabled us to control the effects of visual demand of the driving scenario and individual 3 

differences on in-car glance durations. Together with the accompanying data from the 4 

experiments, these models indicated that, in general, Carrio tasks had lower visual demand and 5 

visual distraction potential compared to the tasks conducted with the regular smartphone 6 

applications (Research Questions 1 and 2). 7 

It is intuitive to think that bigger touch screen size enables more efficient task performance (e.g., 8 

Hancock et al., 2015; Raptis et al., 2013). Based on the multilevel models, the 2.5 inches larger 9 

touch screen slightly diminished the durations (39 ms) of in-car glances (see Model 1) as well as 10 

visual demand and visual distraction potential of the secondary task (see Model 2 and Table 11) 11 

(Research Question 3). However, the effect was surprisingly small. To our best knowledge, this was 12 

the first controlled study that investigated glance durations in the automotive context regarding 13 

the effects of touch screen size. 14 

The application had larger relative impact than the screen size – use of the automotive-targeted 15 

Carrio application decreased the duration of in-car glances by 279 milliseconds (Model 1) as well 16 

as the secondary tasks’ visual demand and visual distraction potential (see Model 2 and Table 11) 17 

compared to regular smartphone applications (Research Questions 1 and 2). This implies that the 18 

application’s interaction methods may be more crucial than the size of the in-vehicle screen used 19 

for safe use while driving (Research Question 3). There was no effect of orientation of the device 20 

on in-car glance durations (Research Question 3), which was discovered also in the study of Lasch 21 

and Kujala (2012). Model 1 (Table 9) also indicated that when the driving scenario was less visually 22 

demanding (e.g., no junctions ahead), participants were able to glance the in-car device longer. 23 

This finding is consistent with, for instance, Wierwille's, (1993) visual sampling model and 24 

endorses Kircher and Ahlström's (2017) proposal about the minimum required attention for each 25 

driving scenario, which can be achieved with diverse patterns of visual sampling. 26 

Further, based on the overlaps in the confidence intervals in the Model 2, we identified three task 27 

groups (see Table 11): visually high demanding, visually intermediately demanding, and visually 28 

low demanding tasks (Research Question 2) which all have their own common features (Research 29 

Question 3). The main features of visually high demanding tasks were touch screen typing and 30 

self-selected subtask boundaries – which are not derived from the user interface. All of these tasks 31 

were also conducted with the regular smartphone applications (Android). The main feature of the 32 

visually intermediate task group was the invocation of speech-to-text and read-aloud functions as 33 

well as the automotive-targeted application design. Because of the design, all of the visual-manual 34 

interactions could be easily split into brief visual encoding – single button press steps without 35 

inducing cognitive load for keeping in mind the task state during on-road glancing. Finally, the 36 

visually least demanding task group contained only one task which required only simple swiping 37 

gestures at any point of the touch screen and visual confirmation of the target view. The 38 

measured red in-car glance percentages and experienced task workload were generally well in line 39 

with the visual demand grouping. 40 
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Additionally, we found a plausible impact of subtask boundaries on the visual demand and 1 

distraction potential of the tested tasks. As mentioned above, one common feature of the visually 2 

high demanding tasks were self-selected subtask boundaries. Similarly, one common feature of 3 

visually intermediately demanding tasks was that all the visual-manual interactions could be 4 

effortlessly split into small subtasks of button presses. Together with speech-to-text and read-5 

aloud functions these button presses may have formed beneficial subtask boundaries for 6 

participants reducing visual demand and distraction potential of the tasks. Based on these 7 

findings, increase in the preferred number of visual or visual-manual interaction steps during an 8 

in-car glance (e.g., pressing one button vs. typing one word), increases both the duration of the in-9 

car glance as well as its visual distraction potential. These observations of subtask boundaries 10 

support the previous findings of, for instance, Janssen et al. (2012), Lee et al. (2015) and Lee and 11 

Lee (2019). 12 

Interesting discovery was that some Carrio tasks had higher mean number of glances per task than 13 

the corresponding Android tasks. Regardless of that, Carrio’s in-car glance duration estimates and 14 

red in-car glance percentages were lower than or at the same level with Android in these tasks. 15 

This indicates that the mean number of glances is not alone a sufficient metric for assessing in-car 16 

task’s visual demand or visual distraction. Therefore, we suggest that visual demand of the tasks is 17 

not necessarily equal to visual distraction caused by the tasks. For instance, NHTSA’s driver 18 

distraction guidelines for in-vehicle electronic devices (2013) are based on static glance metrics 19 

which are supposed to determine if a certain task is visually distracting or not. NHTSA’s (2013) 20 

guidelines seem to measure, before anything, visual demands of the tasks, not visual distraction 21 

per se. Based on this study, glance metrics – at least alone – cannot specify if a task is distracting 22 

or not since the visual demands of the driving situation have an impact on the glance durations, 23 

and even more importantly, on how distractive the particular in-car glance is. Besides testing and 24 

regulation of in-vehicle devices, this is important to be realized in the development of risk-based 25 

insurance systems (e.g., Yin and Chen, 2018) , and distraction warning and other driver monitoring 26 

systems (e.g., Hu et al., 2017; Wu et al., 2013; Yin et al., 2018). 27 

6.1 Limitations and further research 28 

The presented results concern only the type of tasks that we studied in this paper. To analyze even 29 

more carefully the user interface design factors that could diminish visual distraction, other types 30 

of tasks should be studied and preferably in experimental designs with lower number of variables.  31 

The level and generalizability of the analysis could be further improved by extracting the glances 32 

related to particular features of the task. However, here our general aim was to investigate, if, and 33 

to what extent, an automotive-targeted application can reduce visual distraction potential of real-34 

world in-car tasks (without splitting these into subtasks) compared to regular smartphone 35 

applications. 36 

Unfortunately, we were not monitoring the typing errors participants possibly made. Task errors 37 

and the associated recoveries have an effect on the number of the in-car glances as well as glance 38 

durations (e.g., Lee et al., 2016) and therefore are something that should be taken into 39 

consideration in the analyses in the future.  40 
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Another important point of view is the acceptance of the interaction methods used in automotive-1 

targeted applications. It should be further studied which kind of interaction methods – that should 2 

diminish drivers’ visual inattention – drivers accept and are willing to use during driving. Whereas 3 

read-aloud function could decrease visual distraction, it does not achieve this in real life, if drivers 4 

prefer to read the messages. For instance, they may find listening messages too slow compared to 5 

reading them. Since Carrio’s read-aloud function – with the possibility to read the first lines of the 6 

messages – produced high number of in-car glances, this could suggest that read-aloud function is 7 

not the most accepted interaction modality for all kind of in-car tasks. 8 

7 CONCLUSIONS 9 

Despite legislation, people are still talking on the phone, dialing, texting (Oviedo-Trespalacios et 10 

al., 2016), and even playing games (Ahlström et al., 2019; Mäkelä and Kujala, 2017) while driving. 11 

User interfaces that are designed for the automotive context and accepted by the drivers could be 12 

a solution to diminish visual distraction by smartphones. In order to be able to design automotive-13 

targeted user interfaces, the design factors’ visual distraction potential should be better 14 

understood. 15 

In this paper, we conducted two driving simulator experiments with 48 participants in order to 16 

study the effects of touch screen size, user interface design, and subtask boundaries on secondary 17 

task’s visual demand and visual distraction potential. With multilevel modeling, we controlled the 18 

effects of visual demand of the driving scenario and individual differences on in-car glance 19 

durations. To our best knowledge, this was the first study that investigated the selected 20 

application features’ effects and screen size on in-car tasks’ visual demand and distraction 21 

potential while controlling for the varying visual demand of the driving situation. 22 

The findings indicate the potential of well-designed and driver-friendly in-car user interfaces to 23 

decrease visual demands of in-car tasks and the associated visual distraction potential compared 24 

to use of regular smartphone applications. In addition, a small impact of 2.5” larger in-vehicle 25 

screen size decreasing in-car glance durations and diminishing visual demand and visual 26 

distraction potential of the secondary task was found. However, the effect of screen size was 27 

small. In line with previous research (e.g., Janssen et al., 2012; Lee and Lee, 2019), drivers’ ability 28 

to break down an in-car task into smaller subtasks (e.g., pressing one button vs. typing one word) 29 

seem to decrease in-car glance durations and enable better adjustment of glancing behavior in 30 

relation to the demands of the driving situation. 31 

The most important methodical discovery in the present study comes from the dissociation of the 32 

visual demand from the visual distraction potential in two of the tasks. Also, some of the in-car 33 

tasks required high number of in-car glances even though the measured visual distraction 34 

potential (i.e., red in-car glance percentage) was low.  Even if increasing visual demand of a task – 35 

as measured by in-car glance duration or number of glances – may increase its visual distraction 36 

potential, these two are not necessarily equal. Another notable observation was that when the 37 

visual demand of the driving situation decreased, the durations of the in-car glances increased. 38 

This finding is in line with, for instance, Wierwille's, (1993) visual sampling model and supports the 39 

suggestion of Kircher and Ahlstrom (2017) about the minimum required attention for each driving 40 
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scenario that can be fulfilled with various patterns of visual sampling. Therefore, a red in-car 1 

glance can be interpreted as a failure to reach the minimum required attention in the particular 2 

driving situation – or, in other words, visual distraction. 3 
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