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Earth’s temperature is increasing due to anthropogenic CO2 emissions; and organisms need either to adapt to higher temperatures,

migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism’s physiology via its influence

on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve

compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher

temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the ther-

mal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal

performance curves and examined possible genetic constraints by estimating the G-matrix. We observed a substantial amount of

genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary

to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder

temperatures. We also simulated short-term evolution of thermal performance curves of N. crassa, and suggest that they can have

versatile responses to selection.

KEY WORDS: Evolvability, fungi, G-matrix, phenotypic plasticity, reaction norm.

Earth’s temperature is rising due to anthropogenic activities

(IPCC 2013). The challenge most organisms will face in a warm-

ing world is that they have to either adapt to warmer conditions

or migrate into colder areas to avoid extinction (Deutsch et al.

2008; Dillon et al. 2010; Araújo et al. 2013; Merilä and Hendry

2014). Temperature is a unique abiotic stress because the kinetics

of all biochemical reactions and protein stability are affected by

temperature. As such, temperature influences nearly all aspects

of an ectothermic organism’s physiology (Schulte 2015; Arcus

et al. 2016). Therefore, adapting to a higher temperature may be

much more difficult than adapting to a more specific environmen-

tal stress. For some anthropogenic stresses, such as antibiotics or

herbicides, decades of research have revealed strong evolutionary

adaptation to these stresses (Davies and Davies 2010; Powles and

Yu 2010). However, genetic basis of adaptation to temperature is

likely to be much more complex (Hochachka and Somero 2002).

The ability of an organism to tolerate different temperatures

is often described by a thermal performance curve (Huey and

Kingsolver 1989, 1993), which is the fitness or performance of

an organism as a function of temperature (Fig. 1A). These curves

have been used to predict how organisms potentially respond to

increased temperatures (Deutsch et al. 2008; Araújo et al. 2013;

Sinclair et al. 2016). In general, thermal performance curves or

reaction norms have been thought to evolve by either changes in

elevation (Fig. 1B), left or right shifts in the curve that lead to

changes in optimum temperature or temperature limits (Fig. 1C),

or changes in curve shape (Fig. 1D).

Certain biochemical constraints may explain the charac-

teristic shape changes of performance curves (Angilletta et al.

2003). For example, high enzyme stability could allow tolerating

high temperatures with the expense of reduction of perfor-

mance in cold temperatures resulting in a hot-cold trade-off.

Synthesis of two enzymes with different optima could allow

broader thermal tolerance but with an energetic expense of

expressing two proteins, leading to reduction of performance

at intermediate temperatures and producing a broad–narrow

performance trade-off. Furthermore, the biochemical acti-

vation energy provided by higher temperatures can lead to
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Figure 1. (A) An illustration of a hypothetical temperature performance curve. Temperature is on the horizontal axis and growth rate is

on the vertical axis. Topt shows the optimal temperature, where growth rate has its maximum value, μmax . Temperature where growth

rate reaches zero as temperature increases is denoted as CTmax . (B) Change in reaction norm elevation shifts the reaction norm on the

vertical axis. (C) A horizontal shift. (D) Change in reaction norm shape.

thermodynamic effects: genotypes with higher optimal temper-

atures are expected to have higher performance (Hochachka and

Somero 2002). Thermodynamic effect is also called the “hotter

is better” hypothesis.

While several studies have tested how different species

or populations differ in their thermal performance curves, or

if evolution has been able to shape them (e.g., Krenek et al.

2011; Klepsatel et al. 2013; Ketola and Saarinen 2015; Ashrafi

et al. 2018; Maclean et al. 2019), only a few studies have

determined the evolutionary potential of thermal performance

curves. In these studies, the genetic variance-covariance matrix

(G-matrix) for thermal performance across several temperatures

has been estimated, and how genetic variation is aligned with

characteristic directions of reaction norm evolution has been

determined (e.g., Izem and Kingsolver 2005; Stinchcombe et al.

2010; Latimer et al. 2015; Logan et al. 2020). This is essen-

tial to explore how freely thermal performance can evolve in

different environments, and to quantify if thermal performance

evolution is bound to follow a certain evolutionary path or perfor-

mance curve shape. Constraints on performance curve evolution

will affect the ability of populations to respond to increasing

temperatures, which is crucial, as studies suggest that plastic

responses alone may not be enough for most species for dealing

with coming temperature increases (Gunderson and Stillman

2015).

However, in the midst of multivariate genetics and the

emphasis on finding genetic constraints, it should be remem-

bered that evolutionary change in a particular direction is not

necessarily completely prevented by moderate constraints. From

quantitative genetic parameters one can only deduce which

traits have the highest amount of variation, and what is the

alignment of the G-matrix with respect to characteristic thermal

performance curve shapes. However, unless genetic correlations

are exactly −1 or 1, or if selection occurs exactly to the direction

of zero genetic variatiosn, evolutionary change to a particular

direction is not prohibited, only slowed down.
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To explore constraints of thermal performance curve evo-

lution, we are using the filamentous fungus Neurospora crassa

as a model system to study the quantitative genetics of thermal

performance curves. Neurospora crassa is a genetic model

system that has been used extensively in different aspects of

genetic research (Roche et al. 2014). Recently, some studies have

started to explore quantitative variation in N. crassa (Ellison

et al. 2011; Palma-Guerrero et al. 2013). This is despite N. crassa

having excellent properties for the study of quantitative genetics:

N. crassa can reproduce either asexually or sexually, so analysis

of clones is possible for quantitative genetic experiments and

controlled crosses can be made. Comparatively little is known

about the ecology of N. crassa; it is a saprotrophic organism that

decomposes dead plant matter, and it is particularly found on

burned vegetation. Its geographic distribution is concentrated in

mainly tropical and subtropical regions (Turner et al. 2001). Most

strains have been collected from the Caribbean basin, southeast-

ern United States, west Africa, and India (Turner et al. 2001), but

the species also occurs in southern Europe (Jacobson et al. 2006).

Specifically, we asked the following questions: (1) Is there

genetic variation in thermal performance curves in N. crassa?

(2) Is variation in performance curves mainly for elevation,

location, or shape? (3) Do constraints exist for performance

curve evolution in the short term and what are these constraints?

To address how much genetic variation exists in tempera-

ture performance curves, we used a panel of strains of N. crassa

that had previously been sampled from natural populations. We

also crossed certain strains together to generate additional fam-

ilies. We measured the growth rates of these strains in different

temperatures and combined these measurements into a thermal

performance curve. We used a multivariate model to estimate the

G-matrix of performance at different temperatures. We then used

the empirical estimates of genetic variation in a quantitative ge-

netic model to describe the short-term evolutionary potential of

temperature performance curves of N. crassa.

Materials and Methods
Neurospora crassa STRAINS

We used a panel of strains originally obtained from the Fungal

Genetics Stock Center (McCluskey et al. 2010). Our sample

included natural strains collected from Louisiana (USA), the

Caribbean, and Central America (Ellison et al. 2011; Palma-

Guerrero et al. 2013), 113 natural strains in total. In addition we

made crosses between some of the strains to obtain additional

families to increase the genetic variation segregating among our

lines. We crossed strains 10948 × 10886 to obtain family A

(n = 94), 10932 × 1165 to obtain family B, (n = 50), 4498 ×
8816 to obtain family C (n = 50), 3223 × 8845 to obtain family

D (n = 52), and 10904 × 851 to obtain family G (n = 69).

Parents were chosen to have crosses within the Louisiana strains

and between the Louisiana and Caribbean strains. In total, the

panel contained 428 strains and based on genotypic data (Ellison

et al. 2011; Palma-Guerrero et al. 2013) all strains represent

unique genotypes. Table S1 contains a list and information about

the strains. Strain numbering in family G runs up to 72 because

strains G2, G9, and G51 grew very poorly and were excluded

from the experiment.

PHENOTYPING

Standard laboratory methods were used to maintain Neurospora

cultures (Davis and de Serres 1970). We measured growth rates

using a tube method described in Kronholm et al. (2016) but

instead of parafilm we used silicone plugs to cap the tubes. We

measured the linear growth rate of each genotype in six different

temperatures: 20◦C, 25◦C, 30◦C, 35◦C, 37.5◦C, and 40◦C.

Temperatures were chosen based on the known reaction norm

for strain 2489 (Kronholm et al. 2016). Three clonal replicates

were measured for each genotype at each temperature. This gave

a total of 7704 growth assays. In some assays the inoculation

failed and the strain did not grow, or water droplets moved the

inoculum along the pipette and linear growth rate could no longer

be measured. There were 19 such assays and these were recorded

as missing data, thus the number of growth assays in the final

dataset was 7685. Strains were grown in two growth chambers

(MTM-313 Plant Growth Chamber, HiPoint Corp., Taiwan) that

contained three compartments, each with adjustable temperature.

We rotated the temperatures among the different compartments

between replicates, so that replicates of the same temperature

were measured in different compartments, and monitored the

temperature in the compartments with data loggers.

STATISTICAL ANALYSIS

All statistical analyses were performed with R 3.6.0 (R Core

Team 2019). Bayesian models were implemented using the Stan

language (Carpenter et al. 2017) which uses Hamiltonian Monte

Carlo sampling. Hamiltonian Monte Carlo is much more efficient

than traditional Markov chain Monte Carlo (MCMC) algorithms,

such as Gibbs sampling, and can potentially accommodate very

large number of parameters. An accessible introduction can be

found in McElreath (2015). Stan was interfaced using the “brms”

2.9.0 R package (Bürkner 2018). MCMC convergence was

monitored by trace plots and R̂ values. We considered parameter

values to be different if their 95% highest posterior density

(HPD) intervals did not overlap.

Thermodynamics of thermal performance curves
Theory predicts that if differences between hot and cold adapted

genotypes are determined solely by an effect of temperature on

metabolic rate, the thermodynamic effect or “hotter is better”
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hypothesis, there should be a negative relationship between the

logarithm of maximal growth rate, μmax , and 1/(kTopt ), where

k is Boltzmann’s constant and Topt is the temperature (in K) at

which maximal growth rate occurs (Savage et al. 2004). We ex-

amined whether differences between N. crassa genotypes could

be solely explained by a thermodynamic effect. When ln(μmax ) is

plotted against 1/(kTopt ) the slope of a regression line is equal to

negative activation energy, −E . The thermodynamic expectation

for the slope is −0.6 because 0.6 eV is the average activation en-

ergy for biochemical reactions in the cell. This pattern generally

holds across taxa adapted to different temperatures (Savage et al.

2004; Sørensen et al. 2018). Slopes >−0.6 have been interpreted

as an indication of other physiological or biochemical reasons

rather than a thermodynamic effect (Sørensen et al. 2018).

To calculate the optimum temperature for each genotype

without using a specific model that may fit for some genotypes

better than others, we fitted natural splines for each genotype.

We extracted the maximum growth rate (μmax) and optimum

temperature (Topt ) from the spline fit. We then fit a model

ln(yi ) ∼ N(μi, σ)

μi = α + β × Topt,i (1)

α, β ∼ N(0, 10)

σ ∼ hC(0, 2),

where yi is the ith maximum growth rate, α is the intercept, β

is the slope, and Topt,i is the ith optimum temperature. We used

weakly regularizing priors: a normal distribution for α and β,

and a half-Cauchy distribution for σ with location 0 and scale 2.

MCMC estimation was done using two chains, with a warmup

of 1000 iterations, followed by 4000 iterations of sampling. For

this analysis, we removed genotypes from the data that had very

low maximal growth rates ln(μmax ) < 1, which is μmax < 2.72

mm/h, as they did not have the typical tolerance curve shape and

were outliers. These genotypes typically grew very slowly and

reaction norms were much flatter than typical ones, which leads

to larger uncertainty in estimating the optimal temperature from

the spline fits (Fig. S1A). Fourteen genotypes were removed, this

left 414 genotypes for the analysis. However, because remov-

ing outlier observations can be considered subjective, we also

applied robust regression with bisquare weights to the full data.

Robust regression is a method that gives less weight to individual

data points than ordinary regression and is less affected by outlier

observations (Venables and Ripley 2002).

Estimation of genetic variance and covariance
components
We were interested in estimating the genetic variance and covari-

ance components for growth rates at different temperatures that

together describe different aspects of temperature performance

curves. Because Neurospora can be propagated clonally, we

can estimate genetic variance components using clonal analysis.

Among genotype variance is an estimate of the genetic variance

and within genotype variance is an estimate of the environmental

variance (Lynch and Walsh 1998). We used a multivariate model

to estimate genetic variance components at each temperature

and the genetic correlations of all possible temperature pairs.

The advantage of this approach is that we do not have to assume

any particular shape for the temperature reaction norm. The

multivariate model was

yi ∼ MVN(μi, E) (2)

μi = α + αg[i]

αg[i] ∼ MVN(0, G)

G = SGRGSG

E = SE RE SE ,

where α is a vector of intercepts, αg[i] is a vector of genotypic

effects, SG and SE are 6 × 6 diagonal matrices with genetic

or environmental standard deviations on the diagonal, and RG

and RE are matrices for genetic and environmental correlations,

respectively. We used weakly informative priors by using the

half location-scale version of Student’s t-distribution with three

degrees of freedom and 10 as the scale parameter. Thus, the prior

for intercept effects was

α ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hT (3, 2, 10)

hT (3, 3, 10)

hT (3, 4, 10)

hT (3, 4, 10)

hT (3, 4, 10)

hT (3, 3, 10)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

for growth rates from 20◦C to 40◦C. The prior for each standard

deviation in the model was σ ∼ hT(3, 0, 10), and we used an lkj

prior (McElreath 2015) for the correlation matrices: RE , RG ∼
LKJ(1). For MCMC estimation two chains were run with a

warmup period of 1000 iterations, followed by 5000 iterations of

sampling, with thinning set to 2. By inspecting MCMC traceplots

(Fig. S2) and the diagnostic summary statistic R̂, which was 1 for

all parameters, we found no evidence of convergence problems.

Genetic correlations and temperature differences
We were also interested in how the genetic correlation of growth

rates changes as temperatures are further apart. To examine

how correlations change in a statistically rigorous manner, we

calculated pairwise temperature differences for each estimated

genetic correlation (n = 15), and fitted a Bayesian linear model

with genetic correlation as the response, taking into account
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Table 1. Genetic variances, covariances, correlations, and environmental variances for growth rates in different temperatures estimated

from the multivariate model.

(◦C) 20 25 30 35 37.5 40 σ2
E

20 0.08 (0.07–0.09) 0.11 (0.1–0.13) 0.14 (0.12–0.16) 0.15 (0.13–0.18) 0.13 (0.11–0.15) 0.07 (0.05–0.09) 0.01 (0.01–0.01)
25 0.94 (0.93–0.96) 0.17 (0.15–0.19) 0.22 (0.19–0.25) 0.24 (0.21–0.28) 0.19 (0.16–0.22) 0.11 (0.09–0.14) 0.02 (0.02–0.02)
30 0.86 (0.83–0.89) 0.96 (0.94–0.97) 0.32 (0.28–0.36) 0.36 (0.31–0.41) 0.28 (0.23–0.32) 0.17 (0.13–0.21) 0.04 (0.03–0.04)
35 0.75 (0.7–0.79) 0.83 (0.79–0.86) 0.9 (0.88–0.92) 0.5 (0.43–0.57) 0.42 (0.36–0.48) 0.25 (0.2–0.3) 0.06 (0.05–0.07)
37.5 0.68 (0.62–0.73) 0.7 (0.65–0.75) 0.75 (0.7–0.8) 0.9 (0.88–0.92) 0.43 (0.37–0.49) 0.3 (0.25–0.35) 0.09 (0.08–0.1)
40 0.42 (0.33–0.51) 0.47 (0.39–0.56) 0.51 (0.43–0.59) 0.61 (0.54–0.68) 0.77 (0.72–0.82) 0.34 (0.29–0.4) 0.2 (0.18–0.22)

Note: The diagonal (in bold) contains genetic variances (σ2
G), upper triangle contains genetic covariances (σGx σGy rGx,y ), and lower triangle contains genetic

correlations (rGx,y ). The last column contains environmental variances (σ2
E ). Estimates are posterior means with 95% HPD intervals shown in parentheses.

Table 2. Comparison of different models for relationship between genetic correlations and temperature differences.

Model terms LOOIC diff (±SE) Weight

α + α40 × ci + β × di −38.54 0 (0) 0.84
α + α40 × ci + β × di + β40 × di × ci −35.18 3.36 (1.24) 0.16
α + β × di + β40 × di × ci −26.07 12.47 (5.49) 0
α + β × di −14.12 24.42 (5.54) 0
α −7.61 30.93 (6.34) 0

Note: Model terms correspond to different deterministic parts of the model in equation (4), α40 is an intercept effect for correlations involving 40◦C and β40

is a slope effect for correlations involving 40◦C. LOOIC, leave-one-out information criterion; SE, standard error.

the uncertainty in the estimated genetic correlations. This is a

linear model with measurement error where uncertainty in the

estimated genetic correlations is propagated to the intercept and

slope estimates of the linear model; see McElreath (2015) for

details. We compared models with or without slope effects for

temperature and whether genetic correlations involving growth

rate at 40◦C had a different intercept or slope (Table 2). We used

the leave-one-out cross-validation method for model compar-

isons, implemented in the “loo” R package (Vehtari et al. 2017).

The models were compared using the leave-one-out information

criterion; smaller values indicate greater support for a model.

The final model was

xest,i ∼ N(μi, σ) (4)

μi = α + α40 × ci + β × di

xobs,i ∼ N(xest,i, xsd,i )

α, α40, β ∼ N(0, 10)

σ ∼ hC(0, 2),

where xobs,i is the median of ith observed genetic correlation,

xsd,i is the observed standard deviation of ith genetic correlation,

xest,i is the estimated genetic correlation for ith observation,

α is the intercept, α40 is the intercept effect when one of the

temperatures is 40◦C, ci is an indicator variable whether one

of the temperatures is 40◦C, β is the slope effect, and di is the

temperature difference for the ith observation. MCMC estimation

was done using two chains, with a warmup of 1000 iterations,

followed by 4000 iterations of sampling.

Quantitative genetics
We estimated broad-sense heritability, the proportion of genetic

variance of the total variance, for each temperature as

H2 = σ2
G

σ2
G + σ2

E

, (5)

where σ2
G is the genetic variance component and σ2

E the environ-

mental variance component. Because Neurospora is haploid, the

dominance variance component is not defined. Genetic variance

in haploids is composed of

σ2
G = σ2

A + σ2
AA + σ2

AAA + · · · , (6)

where σ2
A is the additive variance and σ2

AA is the additive × addi-

tive epistatic variance, σ2
AAA is the additive × additive × additive

variance, and so on (Lynch and Walsh 1998). With our experi-

mental design we cannot estimate the epistatic variance terms,

as is the case with many other common quantitative genetic de-

signs, and going further we assumed that epistatic variances were

small and were ignored. This seems like a strong assumption, but

there is some justification for doing so: even if there is plenty of

epistasis at the level of gene action, this is not necessarily trans-

lated into epistatic variance (Hill et al. 2008; Mäki-Tanila and

Hill 2014). Empirical data also suggest that most genetic varia-

tion is additive (Hill et al. 2008). The genetic covariance of traits
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1 and 2 is covG1,2 = σG1σG2 rG1,2 , where rG1,2 is the correlation of

the standard deviations or the genetic correlation. Thus, the ge-

netic correlation for traits 1 and 2 can be defined as

rG1,2 = covG1,2

σG1σG2

. (7)

In addition to heritabilities, we used coefficients of variation

to compare genetic and environmental variances. Heritability

can be influenced by changes in either genetic or environmental

variance, and genetic variance by itself is not a unitless variable

(Houle 1992). The genetic coefficient of variation was

CVG = 100 × σG

z̄
, (8)

where z̄ is the mean phenotype. Accordingly, the environmental

coefficient of variation was CVE = 100σE/z̄.

We obtained the G-matrix to describe how the growth rates

at different temperatures were correlated and to be able to calcu-

late multivariate responses to selection for thermal performance

curves. This matrix contains genetic variance components on the

diagonal and covariance components on off-diagonals, so for n

traits G is an n × n matrix:

G =

⎛
⎜⎜⎜⎜⎝

σ2
G1

σG1σG2 rG1,2 · · · σG1σGn rG1,n

σG1σG2 rG1,2 σ2
G2

· · · σG2σGn rG2,n

...
...

. . .
...

σG1σGn rG1,n σG2σGn rG2,n · · · σ2
Gn

⎞
⎟⎟⎟⎟⎠

. (9)

For environmental variance, it is possible to construct an analo-

gous E-matrix that is the environmental variance-covariance ma-

trix.

We performed eigen decomposition of the G-matrix to

gain insight into genetic constraints of reaction norm evolution.

The eigenvector corresponding to the leading eigenvalue, or the

first principle component, gives the direction of multivariate

evolution with the least genetic resistance (Schluter 1996). We

obtained these components by principle component analysis of

the G-matrix. To assess uncertainty in the eigen decomposi-

tion we constructed a G-matrix for each posterior sample and

performed decomposition for each G-matrix to obtain posterior

distributions for how much variance the different components

explained and for the component loadings. Obtaining interval

estimates for the loadings this way is valid only if the order of

eigenvectors stays consistent between the samples, and we could

confirm this for components one and two.

To assess evolvability and constraint across the different

growth rates we used the approach of Hansen and Houle (2008).

Assuming there is a directional selection gradient β in multivari-

ate space, they define evolvability as the length of the response

to selection in the direction of β, this is the same as projection of

response to selection on β (Hansen and Houle 2008). Evolvability

was calculated as

e(β) = β�Gβ

|β|2 . (10)

Furthermore they define conditional evolvability as the response

to selection in the direction of β, assuming that there is stabiliz-

ing selection around the direction of β and the population cannot

deviate from this direction. For conditional evolvability we first

calculated the unit vector of β as

β̂ = β

|β|
and conditional evolvability is then

c(β̂) = (β̂G−1β̂)−1. (11)

To assess whether evolvability along a certain selection gradi-

ent is particularly high or low it is possible to calculate aver-

age evolvabilities over random selection gradients in phenotypic

space. Hansen and Houle (2008) derived analytical and approxi-

mate solutions for average evolvability and average conditional

evolvability and we calculated these following their approach.

Evolvabilities for single traits are just the genetic variances of

those traits. Conditional evolvability for a single trait can be mea-

sured with respect to other traits. Conditional evolvability for

trait i is ci = 1/[G−1]ii, where [G]ii is the ith diagonal element

of the G-matrix. Trait autonomy, the proportion of evolvability

that remains after conditioning for the other traits, is calculated

as ai = ([G−1]ii[G]ii )−1 (Hansen and Houle 2008). As there are

scale differences in the growth rates at different temperatures, we

calculated conditional evolvabilities for both on the original scale

and on mean standardized scale. The G-matrix can be mean stan-

dardized by dividing i jth element by the product of the means of

traits i and j. Gμ = G � (z̄z̄�), where z̄ is a vector of trait means

and � symbol for element-wise division. The mean standard-

ized selection gradient was calculated as βμ = z̄ � β, where �
is element-wise multiplication. Interval estimates for these statis-

tics were obtained by calculating them for each posterior sample.

Quantitative genetic model for the evolution of
performance curves
To examine how thermal performance curves of N. crassa can

evolve, we used a quantitative genetic model with the empirically

estimated G-matrix. Response to selection can be calculated us-

ing the multivariate breeder’s equation

R = GP−1S, (12)

where S is a vector of selection differentials for each temperature,

G and P are the genetic and phenotypic variance-covariance ma-

trices, respectively, and R is the response to selection. Response
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to selection can also be expressed in terms of the selection gradi-

ent, β, as

R = Gβ, (13)

where β = P−1S. The biological interpretation of selection dif-

ferential and selection gradient are different, as a selection differ-

ential of 0 for a given trait does not imply selective neutrality but

rather stabilizing selection, whereas a selection gradient of 0 for a

trait implies that the trait is selectively neutral. See Figure S3 for

an illustration of the differences between these concepts. When

we asked how evolution would proceed in a particular direction,

we simulated the response to selection using selection gradient

(eq. 13). And when we asked whether selection could generate a

particular phenotype we simulated the response to selection us-

ing selection differentials (eq. 12). Our goal is not to predict the

evolution of tolerance curves in nature, as the real selection gradi-

ents are unknown and the assumption that G remains constant is

likely violated in real populations. Indeed, there are considerable

difficulties in predicting the response to selection in nature (Mor-

rissey et al. 2010). Instead, our goal is to illustrate how thermal

performance curves could evolve in a population with a similar

G as estimated empirically here.

The phenotypic matrix was calculated from P = G + E.

The environmental variance-covariance matrix E, which uses en-

vironmental standard deviations and their correlations analogous

to equation (9), was obtained from the same model fit as G. As

there is uncertainty in our estimates of G and E we incorporated

this uncertainty in the selection responses by sampling 1000 G
and E matrices from the posterior distributions of genetic and

environmental standard deviations and calculating a response to

selection for each sample. We calculated responses to selection

after 1, 3, and 5 generations of selection, assuming that the

selection differentials, G, and E matrices stay the same. We

always normalized the sum of absolute values of selection differ-

entials or gradients across all temperatures for different selection

regimes. First, we used selection gradients that corresponded

to the first two eigenvectors of the G-matrix. The summed

absolute values of selection gradients or selection differentials

across all temperatures were normalized to be 0.6 mm/h. We

estimated evolvability and conditional evolvability along these

gradients as explained above. Then we used different selection

regimes to examine how we could change the performance

curve elevation, optimum, or shape (Fig. 1). We used six dif-

ferent vectors of S: S1 = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1} and S2 =
{−0.1,−0.1,−0.1,−0.1,−0.1,−0.1}, which correspond to

selection on elevation change; S3 = {0, 0.1, 0.1,−0.2,−0.2, 0}
and S4 = {0,−0.05,−0.05,−0.1, 0.2, 0.2}, which correspond

to a shift in optimum temperature; S5 = {0.1, 0.2, 0, 0, 0.1, 0.2}
and S6 = {0,−0.1,−0.25, 0.05,−0.1,−0.1}, which correspond

to change in reaction norm shape. The selection differentials

were chosen so that they would produce the desired phenotypic

change, choice of numerical values was otherwise arbitrary.

For evolvability calculations, we calculated realized selection

gradients based on these selection differentials as β = P−1S.

Results
GROWTH OF Neurospora AT DIFFERENT

TEMPERATURES

Temperature had a large effect on growth, at 20◦C growth rate

was between 2 and 2.5 mm/h (mean 2.17 and 95% HPD interval

2.15–2.20) for most strains, and as temperature increased up to

35◦C growth rates rose to between 3 and 5 mm/h (mean 4.15%

and 95% HPD interval 4.08–4.22) for most strains (Fig. 2A). This

represents an increase of 91% in mean growth rate. For many

strains growth rate peaked at 35◦C and then decreased as temper-

ature was increased (Fig. 2A), at 40◦C mean growth rate was 2.35

(2.29–2.41 95% HPD interval) mm/h. The performance curves of

N. crassa exhibited a typical performance curve form: with an op-

timum temperature and decrease in growth rate in other temper-

atures, and performance declined faster in temperatures warmer

than the optimum (Sinclair et al. 2016). Few genotypes grew

very slowly and had unusual tolerance curve shapes (Fig. 2A),

possibly reflecting that these genotypes were poorly suited to lab

conditions, due to specific nutritional requirements, for example.

THERMODYNAMICS OF THERMAL PERFORMANCE

CURVES

We examined whether differences between genotypes could be

explained by a thermodynamic effect, that is, does the maximum

growth rate increase with optimum temperature. We obtained

μmax and Topt from the natural spline fits and plotted ln(μmax )

against 1/(kTopt ) (Fig. 2B). For the bulk of the genotype data, the

estimated slope was −0.16 (95% HPD from −0.22 to −0.10),

which corresponds to activation energy of 0.16 eV. This was

lower than the theoretical expectation of 0.6 eV. Moreover, there

was substantial amount of variation around the regression line

(Fig. 2B); optimum temperature explains only a small proportion

of the observed variation. This indicates that while a small

thermodynamic effect exists, most variation within N. crassa is

due to other physiological and biochemical causes. As this result

was obtained in an analysis where we removed genotypes that

had atypical reaction norms (Fig. S1A), we also fitted a robust

regression to the full data (Fig. S1B) and obtained a slope of

−0.17, which is very close to our original estimate of −0.16.

While fitting an ordinary regression to the full data gives a

more negative slope (−0.34), the few atypical observations have

high leverage in the model. As results of robust regression and
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Figure 2. (A) Phenotypic means for each genotype. (B) Logarithm ofmaximum growth rate, μmax , plotted against inverse of kTopt , where

k is the Boltzmann’s constant and Topt the temperature where maximal growth rate occurs. The slope gives an estimate of negative

activation energy −E.

removing outliers agree, it seems that removing the outliers is

quite reasonable in this case.

QUANTITATIVE GENETICS

To analyze the data without forcing the tolerance curves to fit any

predetermined shape, or underlying latent structures as in Izem

and Kingsolver (2005), we fit a multivariate model to the data

where growth at each temperature was modeled as potentially

correlated with growth at other temperatures. We obtained the

G-matrix from the multivariate model fit (eq. 2). There was

genetic variation for growth in all temperatures and all genetic

covariances and correlations were positive (Table 1).

By plotting the model means and genetic correlations it

appeared that genetic correlation between adjacent temperatures

was generally high, and decreased as temperatures were fur-

ther apart and correlations involving 40◦C also seemed lower

(Fig. 3A). We tested this idea formally and fitted a model of

genetic correlations and temperature differences. We compared

the different models, and the best model had different intercepts

for correlations involving 40◦C and for correlations not involving

40◦C, and identical slopes for these two groups (Table 2). A

model with both different slopes and different intercepts had

marginal weight in the model comparison but the β40 parameter

had an estimate overlapping with zero, so this model gave the

same results as the simpler model and thus we report results

only from the different intercepts model. The model confirmed

our observation that the genetic correlation between any two

temperatures was indeed lower if one of those temperatures was

40◦C (Fig. 3B), the intercept effect α40 had an estimate of −0.24

(with a 95% HPD interval from −0.31 to −0.17 ). The genetic

correlation of growth rates in two temperatures decreased by 0.02

(0.02–0.01 95% HPD interval) units as temperature difference

increased by 1◦C. This result suggested that variation in different

genes contributes to genetic variation for growth at 40◦C than in

lower temperatures.

Most of the variation observed in growth rates was due

to genetic variation present among the strains. Heritabilities

for growth at different temperatures were high, around 0.89

for temperatures from 20◦C to 35◦C (Fig. 3C). As temperature

increased further heritability dropped to 0.63 at 40◦C (Fig. 3C).

However, this lower heritability was not due to decreased genetic

variation but to increased environmental variance at 37.5◦C and

40◦C (Table 1). Therefore there was substantial genetic variation

for growth rate at 40◦C but environmental variation increased as

well; looking at heritability alone would have been misleading in

this case. Furthermore, as trait means differ across the different

temperatures looking at genetic variances alone would have

suggested that 35◦C has the most genetic variance (Table 1),

but this would have been also misleading as the coefficient of

genetic variation reveals that growth at 40◦C has the most genetic

variation followed by the other temperatures in decreasing order

(Fig. 3D). The same was true for coefficient of environmental

variation (Fig. 3D).

Eigen decomposition of the G-matrix can reveal what

are the main axes along which correlated traits most readily

evolve. We used principle component analysis to decompose
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Figure 3. (A) Model means and genetic correlations for each temperature. Arcs connect each pair of temperatures and arc color corre-

sponds to the strength of their genetic correlation. (B) Genetic correlations against temperature differences. Line is the mean slope of

the model and envelope the 95% HPD interval for the slope. (C) Heritabilities of growth rate at each temperature, means and 95% HPD

intervals. (D) Coefficients of genetic and environmental variation for each temperature, means and 95% HPD intervals. Note that points

obscure small error bars. (E) Principle component analysis of the G-matrix: proportions of variance explained by the different components.

Error bars are 95% HPD intervals. (F) Loadings of components 1 and 2 for each temperature. Error bars are 95% HPD intervals.

the G-matrix. The first two principle components explained

most of the variance with the first component explaining 79.5%

(72.4–86.0%) and the second component 19.3% (13.1–26.6%)

of the variance (Fig. 3E). The rest of the components explained

the remaining 1.2% of the variance, but the sizes of their corre-

sponding eigenvalues were so small that this 1.2% is unlikely to

have any biological meaning. Moreover, the interval estimates

for the loadings of components 1 and 2 were consistent with

no sign changes (Fig. 3F), but this was not the case for rest

of the components, indicating that loadings for the rest of the

components are very uncertain. All the loadings of the first

principle component were positive (Fig. 3F), indicating that

most variation in tolerance curves is mainly for elevation. The

second component suggested that growth rate at 40◦C and to

a lesser extent at 37.5◦C are more independent from the other

temperatures, even though the genetic correlation between 40◦C

and the other temperatures were positive (Table 1).

When looking at trait-specific evolvabilities, we also ob-

served that growth rate at 40◦C had the highest conditional evolv-

ability and the highest autonomy (Table 3). This indicates that

out of all of the growth rates, growth rate at 40◦C can evolve by

itself most easily. The rest of the traits had very low autonomies

reflecting their high genetic correlations (Tables 1 and 3).

EVOLUTION OF PERFORMANCE CURVES

To examine how a performance curve of a population that has

the same G-matrix as estimated here could evolve, we performed

simulations with a quantitative genetic model of performance

curve evolution. First we asked how performance curves re-

sponded to selection if selection were to operate in the same
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Table 3. Conditional evolvabilities (ci) and autonomies (ai) for growth rates at different temperatures, values are posterior medians and

95% HPD interval is shown in parentheses.

No standardization Mean standardized
(◦C) ci ci ai

20 0.006 (0.004–0.008) 0.0013 (0.0008–0.0018) 0.07 (0.05–0.10)
25 0.004 (0.003–0.006) 0.0005 (0.0003–0.0007) 0.03 (0.02–0.04)
30 0.012 (0.008–0.017) 0.0008 (0.0006–0.0011) 0.04 (0.03–0.05)
35 0.029 (0.021–0.038) 0.0017 (0.0012–0.0022) 0.06 (0.04–0.08)
37.5 0.033 (0.022–0.045) 0.0026 (0.0017–0.0035) 0.08 (0.05–0.11)
40 0.106 (0.075–0.139) 0.0190 (0.0134–0.0249) 0.31 (0.22–0.40)

Note: For conditional evolvability values for both without standardization and with mean standardized G-matrices are shown. Values for trait-specific

autonomy are the same with and without standardization.

direction as the two first observed loadings of the G-matrix eigen

decomposition (Fig. 3F). We normalized the summed absolute

values of selection gradients across all temperatures to be 0.6

mm/h and their relative weights to be proportional to the loadings

of each principle component. Theoretical prediction is that when

β is in the same direction as the first component, evolvability

should be the greatest (Schluter 1996). Indeed, this is what we

observed, as the response to selection was also greatest in this

direction (Fig. 4). Moreover, evolvability and conditional evolv-

ability greatly surpassed the average evolvability across the entire

phenotypic space (Fig. 4D). When the selection gradient pointed

to the direction of the second component, unconditional evolv-

ability was no longer larger than expected, while conditional

evolvability still remained larger than average (Fig. 4D).

Next we examined responses to different selection differ-

entials with the idea that we want to know whether particular

phenotypic change in the performance curve was possible, what-

ever the selection gradient implied by the selection differentials.

For instance, when we simulated selection for increased growth

at a single temperature this led to positive correlated responses in

other temperatures if the other traits were neutral, as in the case

when selection gradient is zero for a given trait. However, when

there was selection for increased growth at a single temperature

and to maintain the original phenotype at the other temperatures

there were also correlated responses but these were less uniform

(Fig. S3). Accordingly, selection at a single temperature often

leads to correlated responses in nearby temperatures (Fig. S4).

Selection at multiple temperatures led to stronger responses to se-

lection and correlated responses (Figs. S5 and S6). For instance,

selection at 25 and 30◦C also increased growth rate at 20◦C (Fig.

S5). When selection happened at multiple temperatures, response

could be larger in certain temperature than if selection happened

for that temperature alone. For example, if there was selection

for higher growth at 20◦C, 25◦C, and 30◦C, response to selection

was greater than if there was selection for higher growth only

at 20◦C (Fig. S4 and S6). With selection differential of 0.2 only

at 20◦C, response to selection after five generations was 2.80

(2.75–2.84, 95% HPD), whereas if selection differential was 0.2

at 20, 25, and 30◦C, response to selection after five generations

of selection was 3.01 (2.98–3.04, 95% HPD). Thus, it was not

possible to change a certain temperature completely indepen-

dently of the others, but often extreme temperatures could be

changed without affecting the growth at the other extreme.

We then asked is it possible to create similar evolutionary

responses in performance curves as shown in Figure 1. We were

able to find a set of selection differentials that were able to

generate changes in elevation, horizontal shift, or shape (Fig. 5).

This shows that despite strong genetic correlations it is possible

for the performance curves to evolve in almost any manner if

selection favors such a performance curve. However, selection

regimes involving horizontal shifts require selection for increased

growth rate in some temperatures and decreased growth rate in

others (Fig. 5). Evolvabilities and conditional evolvabilities were

highest for elevation changes. For optimum shifts and shape

changes conditional evolvabilites were lower than the average

conditional evolvability over all phenotypic space (Fig. 5C).

This indicates that elevation changes are less constrained than

changes in optimum temperature or performance curve shape.

Discussion
We have shown that there is substantial genetic variation in

thermal performance curves of N. crassa. Most of this variation

is in performance curve elevation and there is very little evidence

of strong trade-offs. Genetic variation in growth is strongly

correlated among nearby temperatures but there is a threshold

before or at 40◦C after which this correlation drops, indicating

that physiological processes at 40◦C are different from those

at lower temperatures. Such thresholds are common in many

organisms, including Drosophila where different expression

profiles were observed in cold, moderate, and hot temperatures

(Colinet et al. 2013).
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Figure 4. Simulated responses to selection using selection gradients, β. (A) Selection gradients correspond to the loadings of the first

two components of the G-matrix eigen decomposition. Black line is the mean empirical performance curve and dots represent values

of selection gradient for each temperature. Blue dots represent selection for increased growth and red dots for decreased growth. (B)

Simulated responses to selection, black line is the empirical mean and blue lines are the simulated performance curves after selection.

Shaded regions contain 95% of the simulations. Note that variability due to uncertainty in the G-matrix is not visible for many of the

simulations. Columns show selection responses after 1, 3, or 5 generations of selection and rows show results for different selection

regimes. (C) Summed absolute values for response to selection in a single generation for the two gradients. (D)Medians and 95% intervals

for mean standardized evolvabilities for the two gradients, blue horizontal lines (ē) show the average unconditional evolvability across

random selection gradients and red horizontal lines (c̄) show the average conditional evolvability, dotted lines show the 95%HPD interval.

In many ways, variation in performance curves of N. crassa

are quite typical for many ectotherms that have been studied

(Sinclair et al. 2016). Most genetic variation in N. crassa is

variation in performance curve elevation, which contrasts with

previous studies in other species that have found most variation

to be for reaction norm shapes (Izem and Kingsolver 2005;

Logan et al. 2020). Yet variation in performance curve elevation

is commonly found. A review of thermal performance curves in

insects found that elevation shifts were the most common type of

change along environmental gradients (Tüzün and Stoks 2018),

see also Scheiner (1993). We also observed quite substantial

heritabilities overall, and while comparisons between animals

and fungi should be treated with caution, other studies have

observed much lower heritabilities (e.g., Logan et al. 2018;

Castañeda et al. 2019; Martins et al. 2019).

Genetic variation in performance curve elevation could

reflect differences in genetic condition of individuals, that is,

the number of deleterious mutations different individuals carry,

rather than temperature-specific adaptation. A good estimate

of effective population size is not available at the moment, so

some uncertainty remains. However, deleterious mutations seem

an unlikely explanation as N. crassa is haploid, so deleterious

mutations are immediately exposed to selection and would be

removed, as in nature there is plenty of sexual reproduction as
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indicated by rapid decay of linkage disequilibrium in the pop-

ulation genetic data (Ellison et al. 2011; Palma-Guerrero et al.

2013). Another possibility, that is not temperature-specific adap-

tation, is that genetic differences between the strains in how well

they are able to grow in lab conditions are thermodynamically

amplified, as increasing temperature also increases metabolic rate

(Schulte 2015). However, our estimates of activation energy were

much lower than the thermodynamic expectation, and contrast

with previous studies that have found much stronger relationship

between growth rate and optimum temperatures (Savage et al.

2004; Knies et al. 2009; Sørensen et al. 2018). While we cannot

exclude that some of the differences were due to the thermody-

namic effect, this cannot be the whole explanation as there were

clear genotype by environment interactions indicated by genetic

correlations across environments that were less than one. There

have to be alleles segregating in the population that have different

effects in different temperatures. Particularly, genetic variation

after the optimum of the thermal performance curve has been

reached cannot be accounted by thermodynamic effects (Schulte

2015).

There was no indication of strong trade-offs between tem-

peratures, and certainly not the kind of trade-offs that have been

assumed in many models of tolerance curve or reaction norm

evolution in general (Angilletta et al. 2003). The absence of

any trade-offs suggests that theoretical models of reaction norm

evolution that assume trade-offs should be treated with caution.
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It further poses a question: if growth rate is closely linked to

fitness, and if there are no trade-offs, why there is genetic vari-

ation in growth? It seems reasonable that mycelial growth rate

should be a fitness component in filamentous fungi. In a previous

study, no trade-off was detected between mycelial growth rate

and spore production (Anderson et al. 2018). However, there is

some evidence that strains that have higher growth rates also

have higher competitive fitness (Kronholm et al. 2020). It may

be that there is a trade-off between growth rate and some other

trait that we have not measured, for example, Ketola et al. (2013)

found a trade-off between bacterial virulence and growth in high

temperatures. Alternatively, the evolution of performance curves

may be limited by the environments, and thus the selection

pressures, the strains encounter rather than genetic trade-offs

(Whitlock 1996; Kassen 2002). If there is no selection at a

particular temperature, then variation at those temperatures may

be neutral. The evidence for trade-offs and cost of plasticity

for temperatures has been mixed; some studies have observed

trade-offs (Knies et al. 2006; Romero-Olivares et al. 2015;

Le Vinh Thuy et al. 2016), while others have observed that

adapting to one temperature did not limit plasticity (Manenti

et al. 2015; Fragata et al. 2016), most genetic variation has been

observed for overall performance (Klepsatel et al. 2013; Latimer

et al. 2015), or that adaptation was largely temperature specific

with no apparent trade-offs (Bennett et al. 1992).

Genetic correlations between growth rates at nearby temper-

atures were strong, which is to be expected, as a difference of a

few◦C is likely to be a very similar physiological environment for

an organism. However, growth rate at 40◦C had a lower genetic

correlation to growth rates at other temperatures. This suggests

that at 40◦C there was some physiological process activated,

which has genetic variation, but that was not active or was at

much lower level of activity in lower temperatures. The most

obvious candidate for such a process is the heat-shock response

(Piper 1993; Feder and Hofmann 1999; Sørensen et al. 2003).

Previously, the heat-shock response of N. crassa has been studied

at 42◦C or higher (Plesofsky-Vig and Brambl 1985; Guy et al.

1986; Mohsenzadeh et al. 1998) but it probably occurs already

at lower temperatures, as we observed significant slowdown of

growth at 40◦C. The canonical heat-shock proteins are important

for the physiological heat-shock response, but there can be

additional mechanisms involved: there is evidence that the sugar

trehalose plays some role in N. crassa heat-shock response

(Bonini et al. 1995). Furthermore, changes in cell membrane

composition are involved in temperature acclimation and the

proportion of highly unsaturated fats increases in low tempera-

tures (Martin et al. 1981). These responses have been observed in

yeasts as well (Glatz et al. 2015). It is likely that there is genetic

variation in the heat-shock response induction threshold or in the

magnitude of heat-shock response, and this physiological varia-

tion can explain why the genetic correlation across temperatures

is lower when 40◦C is involved. Further investigation into vari-

ation of heat-shock responses at the physiological level seems

warranted.

Conclusions
At the species level, populations of N. crassa contain plenty

of genetic variation for growth at different temperatures, and

may be able to respond to increasing temperatures and thermal

fluctuations via genetic adaptation mainly by increasing overall

performance. An experimental evolution study with a related

species, N. discreta, also demonstrated adaptation to higher

temperature (Romero-Olivares et al. 2015). Previous studies

have suggested that warming may pose the greatest risk to

tropical animal species, as they live already close to their thermal

maxima (Deutsch et al. 2008), but N. crassa may be different

in this respect as high temperatures in the Caribbean average

around 30◦C. Whether this is true for all fungi or if N. crassa is

a special case remains to be investigated.

We did not observe any inherent genetic trade-off between

hotter and colder temperatures, which is in contrast to common

theoretical assumptions. Thermal performance curves of N.

crassa can in theory evolve to have nearly any shape provided

that appropriate selection gradients exist. Whether such selection

gradients occur in nature is another matter. However, it seems

more plausible that if there would be selection for increased

growth at higher temperatures, evolutionary response will hap-

pen by increasing the overall elevation of the performance curve,

which was the line of highest evolvability.

Revealing the genetic basis of performance curve variation is

a topic for future studies, and would allow investigating whether

trade-offs exists at the level of specific alleles. We are pursuing

this question in future work.
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