
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Monte Carlo Simulations of Au38(SCH3)24 Nanocluster Using Distance-Based Machine
Learning Methods

© 2020 American Chemical Society

Accepted version (Final draft)

Pihlajamäki, Antti; Hämäläinen, Joonas; Linja, Joakim; Nieminen, Paavo; Malola,
Sami; Kärkkäinen, Tommi; Häkkinen, Hannu

Pihlajamäki, A., Hämäläinen, J., Linja, J., Nieminen, P., Malola, S., Kärkkäinen, T., & Häkkinen, H.
(2020). Monte Carlo Simulations of Au38(SCH3)24 Nanocluster Using Distance-Based Machine
Learning Methods. Journal of Physical Chemistry A, 124(23), 4827-4836.
https://doi.org/10.1021/acs.jpca.0c01512

2020



Subscriber access provided by JYVASKYLAN UNIV

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

Monte Carlo Simulations of Au
38

(SCH
3

)
24

 Nanocluster
Using Distance-Based Machine Learning Methods

Antti Pihlajamäki, Joonas Hämäläinen, Joakim Linja, Paavo
Nieminen, Sami Malola, Tommi Kärkkäinen, and Hannu Häkkinen

J. Phys. Chem. A, Just Accepted Manuscript • DOI: 10.1021/acs.jpca.0c01512 • Publication Date (Web): 15 May 2020

Downloaded from pubs.acs.org on May 17, 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



Monte Carlo Simulations of Au38(SCH3)24

Nanocluster Using Distance-Based Machine

Learning Methods

Antti Pihlajamäki,† Joonas Hämäläinen,‡ Joakim Linja,‡ Paavo Nieminen,‡ Sami

Malola,† Tommi Kärkkäinen,‡ and Hannu Häkkinen∗,†,¶

†Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä,

Finland

‡Faculty of Information Technology, University of Jyväskylä, FI-40014 Jyväskylä, Finland

¶Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014

Jyväskylä, Finland

E-mail: hannu.j.hakkinen@jyu.fi

1

Page 1 of 30

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Abstract

We present an implementation of distance-based machine learning (ML) methods to

create a realistic atomistic interaction potential to be used in Monte Carlo simulations

of thermal dynamics of thiolate (SR) protected gold nanoclusters. The ML poten-

tial is trained for Au38(SR)24 by using previously published, density functional theory

(DFT) -based, molecular dynamics (MD) simulation data on two experimentally char-

acterised structural isomers of the cluster, and validated against independent DFT

MD simulations. This method opens a door to efficient probing of the configuration

space for further investigations of thermal-dependent electronic and optical properties

of Au38(SR)24. Our ML implementation strategy allows for generalisation and accu-

racy control of distance-based ML models for complex nanostructures having several

chemical elements and interactions of varying strength.

Introduction

Monolayer protected clusters (MPCs) are small metal nanoparticles that have a metal core

with size ranging from a few atoms to a few hundred atoms, and a protecting surface layer of

organic molecules such as thiols, phosphines, alkynyls, or carbenes.1 MPCs are synthesised

via wet chemistry by reducing metal salts in presence of the protecting molecules. A variety of

synthesis recipes and combination of metals and protecting molecules yields a rich chemistry

and a large array of products in terms of size, shape, and composition of metal cores and the

molecular overlayer. The wide range of synthetic parameters gives a unique possibility to

study the fundamental structure-stability-property relations, and to engineer the properties

for applications such as catalysis, plasmonics, biosensing, and drug delivery.

The first crystallographically resolved MPCs were reported already over 50 years ago

(such as the so-called undecagold Au11 cluster protected by phosphines2), and first advances

in synthesis and structural characterization produced a series of mostly noble metal clusters

protected by L-type (such as phosphine) and mixed L-X type (X being an electronegative
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ligand such as halide or thiolate) ligands. The largest such known cluster was the phosphine-

halide protected Au39, reported in 1992.3

Considerable steps forward were taken when Brust and coworkers4 reported a synthesis

that produced all-thiolate protected gold clusters for an average size of two nanometers.

Several new chemical compositions of both organo-soluble and water-soluble clusters were

reported soon after,5–8 culminating to the breakthroughs of the first crystal structure of a

large Water-soluble all-thiol protected cluster Au102(pMBA)44 (pMBA = para mercapto ben-

zoic acid) by the Kornberg group in 20079 as well as the organo-soluble Au25(PET)
–
18

10–12 in

2008 and Au38(PET)24 (PET = phenyl ethyl thiolate)13,14 clusters in 2008-2010. Up to date,

atomic structures of at least 150 different compounds are crystallographically known, which

facilitates detailed theoretical computations and dynamical simulations of the properties of

MPCs and greatly helps to correlate structures to measured properties in experimental data.

Density functional theory (DFT) methods are the cornerstone for all computations that

need to deal with details of the electronic structure, such as studies of optical absorption,

optical excitation, fluorescence, and magnetism. However, while giving the most accurate

and detailed information, DFT methods are also numerically the most demanding. DFT

computations of some of the largest structurally known MPCs like the thiolate protected

Ag37415,16 have to deal with up to 13 000 valence electrons, and even a single-point DFT

energy calculation can take minutes and use hundreds or even thousands of CPU cores in a

supercomputer. Force fields describing gold-thiolate MPCs have been developed to be used

in molecular dynamics (MD) simulations , e.g., in the context of ReaxFF17 and AMBER-

GROMACS.18 Effective but reliable methods to simulate the atomic dynamics of MPCs

are needed, for instance, to study interactions of the clusters with the environment in the

solvent phase, or with biomolecules and biological materials (viruses, proteins, lipid layers

etc.).19–21 However, developing such force fields may be time-consuming, system- or problem-

specific and suffer from poor transferability. Finally, understanding of nucleation processes

in formation reactions of MPCs or reactions between two different MPCs are fundamental

3
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unsolved issues that are currently out of reach of any usable simulation method.

Machine learning (ML) and data-driven methods are emerging as a promising alternative

to analyse structure-property correlations and make systematic predictions of physicochemi-

cal properties in materials science.22,23 So far, ML has been applied to relatively small systems

such as molecules with up to a few tens of atoms or systems where degrees of freedom can

be limited such as binding of an atom to the surface.24–28 A few homogeneous systems such

as bulk water29,30 or pure metal nanoparticles31,32 have been studied as well. There has

been very few studies of applying ML to MPCs. Recently deep neural networks and support

vector machines were applied successfully to predict formation of MPCs in varying synthesis

conditions.33,34

Systems with diverse chemical environments, such as MPCs, possess a large number of

degrees of freedom, a range of chemical interactions of varying strength, and may require large

training sets in order to cover the chemical space thoroughly enough. The most popular ML

methods include neural networks, kernel ridge regression and Gaussian processes.35 Neural

networks have a great potential to learn very complicated data, because of their large number

of parameters, weights and network shapes to be adjusted during training. On the other

hand, this flexibility also makes the method prone to overfitting. Kernel ridge regression and

Gaussian processes are versatile tools, since one can define different kernel functions suiting

a problem at hand. These kernels can easily transform the method to a complex one.

Here we demonstrate that even simple distance-based methods are applicable to complex

systems such as MPCs. We use two methods, the so-called Minimal Learning Machine

(MLM)36 and the Extreme Minimal Learning Machine (EMLM)37 and create a ML potential

for a gold-thiolate Au38(SR)24 cluster. We utilize our previously published extensive DFTMD

simulation data38 based on two known structural isomers of Au38(PET)2413,39 (Figure 1A,B )

as the initial training set. We test the ML potential by performing Monte Carlo simulations

up to 300 K and compare the cluster dynamics to that from DFT MD simulations. To

our knowledge, this work reports the first successful demonstration of a ML potential for

4
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MPCs, suitable for fast explorations of the configurational space. An immediate application

could be to combine the MLM/EMLM potential with the recently published algorithm40

designed to build complete nanoparticle structures based only on information about the

metal core, in order to accelerate structural discovery. Alternatively, the efficient probing of

the configuration space at a desired temperature can be utilised to generate realistic cluster

structures for further investigations of thermal-dependent electronic and optical properties

of Au38(SR)24.

Theoretical methods

Here we discuss the necessary components of the development of the ML method to deal

with dynamical simulations of thiolate protected gold nanoclusters. We introduce the used

descriptor for the cluster structures, the general principles of the distance-based machine

learning, and the Monte Carlo method to probe the configuration space.

Many-Body Tensor Representation

The Cartesian coordinates of atomic positions include the whole structural information about

a single nanostructure, however one cannot use them to describe the system for a machine

learning method. If even a small rotation or translation is applied to the system, the coordi-

nates would change but physically the situation is still the same. In order to overcome this

problem one needs to use suitable structural descriptor, which are required to be invariant to

translation, rotation and permutation. Cartesian coordinates are not fulfilling any of these

requirements. In addition to these requirements it is desirable that description would be con-

tinuous, unique in the sense of description-property correlation and fast to be computed.41

There have been several different approaches with a varying level of complexity to describe

nanostructures for machine learning methods. Frequently used descriptors in the field are

atom-centered symmetry functions,42 Coulomb matrices,43 Ewald sum and sine matrices,44

5
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Bag of Bonds,45 Zernike functions,46,47 Smooth Overlap of Atomic Positions (SOAP),48 to

name a few. These descriptors can be divided to local and global ones depending on whether

they describe the environment around a single atom or the whole system as relationships

between atoms. In this study, we used a global descriptor called Many-Body Tensor Rep-

resentation (MBTR),41 which is implemented in the DScribe package.49 We chose to use

a global descriptor instead of a local one, because it gives a straightforward and fast way

to describe the system. It gives a single representation for a single configuration. A local

descriptor, on the other hand, would have to be evaluated several times in order to describe

every atom in the system. Since our system is quite large and has many different chemical

interactions, a global descriptor such as the MBTR keeps the process simple and transparent.

The basic idea of the MBTR is based on Bag of Bonds description. There, the system

is first divided into the contributions of different element pairs and then described with

pairwise distances between the atoms belonging to the elements of interest. Huo and Rupp

used this as a starting point and formalized the basis of MBTR.41 Afterwards Jäger et al.

simplified the theoretical presentation50 and Himanen et al. implemented it into the DScribe

package.49 The backbone of the description is

fk(x, z1, z2) =

Natoms,1∑
i=1

Natoms,2∑
j=1

wk(i, j)D(x, gk(i, j)), (1)

where

D(x, g) = (σ
√

2π)−1exp
(

(x− g)2

2σ2

)
. (2)

In equation (1) summations are going through atoms with atomic (element) number of z1

and z2. Function D(x, g) introduces broadening, which can be controlled by changing the

parameter σ. Here x is sweeping variable, which probes the values produced by the function

gk(i, j). Parameter k is the one defining the properties, that are used to describe the system.

In the theory there is no limits for k, therefore in principle one can freely define suitable

6
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property. Usually choices are k = 1 for atomic numbers, k = 2 for pairwise atomic distances

(or the inverse of the distance) and k = 3 for angles formed by three different atoms. In

this study, we chose to set k = 2 in order to use pairwise distances, therefore the weights

are w2(i, j) = exp(−dRij) and the property measure is defined as g2(i, j) = R−1i,j . Here d is

a parameter, which is used to define the amount of weight for the contributions of atoms i

and j if they are Ri,j apart from each other.

As the name suggest, MBTR is a tensor with dimensions of Nelements × Nelements × nx,

when k = 2. Nelements is the number of different elements in the system and nx is the

number of points that variable x can probe. Every element pair is described with their own

summation but all pairs are using the same set of parameters. We list parameters as sets of

{min,max,nx,σ,d,cut-off}. First there are minimum and maximum values of the variable x.

nx is the number of points for x. As mentioned earlier σ controls the broadening and d is

used in weighting. DScribe package has also its own parameter to define cut-off. Only the

values of the equation (1), which are greater than the cut-off, are used in summation for every

value of x. This affects the sensitivity of the descriptor and also the speed of computations.

A small cut-off value allows a large number of values to be included into the summation

increasing the time spent for every element pair. On the other hand, a small cut-off would

allow smaller changes in the structure to be visible in the description than a large cut-off.

Using small cut-off values makes the descriptor sensitive but also very system-specific. Thus,

there is a trade-off between accuracy and transferability.

Distance-based machine learning methods

Minimal Learning Machine MLM. Here we briefly introduce the theoretical background

of the utilized distance-based machine learning methods. First we go through Minimal

Learning Machine (MLM) formalized by de Souza Júnior et al.36 In general, we assume that

a set ofNd input pointsX = {xi}Nd
i=1, xi ∈ Rn, are given with the corresponding output points

Y = {yi}Nd
i=1, yi ∈ Rp, to be predicted. We restrict here to univariate (nonlinear) regression

7
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problems. In supervised machine learning one usually trains a model to map input points to

certain output directly or through some kernel space. In that case the mapping f : X → Y

between input and output spaces would be used to make regression model as

Y = f(X) + E, (3)

where E denotes residuals. MLM, on the other hand, determines the Euclidean distances

between input and reference points and then uses these distances to construct a linear regres-

sion model to predict the Euclidean distances in the output space. These predicted distances

with respect to the output space reference points form a multilateration problem from which

the actual output is computed.

Reference points are defined as M = {mk}Kk=1 with M ⊆ X and corresponding outputs

are naturally T = {tk}Kk=1 with T ⊆ Y . Then input space distances d(xi,mk) = |xi−mk| are

forming the distance matrix Dx ∈ RNd×K . Analogously output space distances δ(yi, tk) =

|yi − tk| are presented in a matrix ∆y ∈ RNd×K . In the notation Greek letters are used for

output space distances in order to distinguish them from input space notations. Next the

mapping g is used to create regression model between distances in input and output spaces

as

∆y = g(Dx) + E. (4)

Next, de Souza Júnior et al. assume that the mapping g has a linear structure for each

response. The model simplifies into a matrix product36

∆y = DxB + E. (5)

In order to get the matrix B containing the coefficients for the K responses some approxi-

mations are needed. B is estimated from training data through minimizing the multivariate

residual sum of squares. This provides a least squares estimate of the matrix

8
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B̂ = (DT
xDx)−1DT

x ∆y (6)

Solving the B̂ corresponds to training of the model.

Now the last task is the multilateration problem in the output space. There is no single

definite way to approach this problem but many approaches can be applied.51 The idea is

to minimize the objective function of single output regression problem

J(y) =
K∑
k=1

(
(y − tk)2 − (d(x̃,M)B̂)2k

)2
, (7)

where d(x̃,M) ∈ R1×K is a vector containing distances between a new input x̃ and all

reference points M . The task is to find suitable output y, which minimizes the objective

function. In our case we adopted cubic equation introduced by Mesquita et al.52 The mini-

mum or minima are found where the derivative equals zero. Differentiation yields

Ky3 − 3
K∑
k=1

tky
2 +

K∑
k=1

(
3t2k − (d(x̃,M)B̂)2k

)
y +

K∑
k=1

(
(d(x̃,M)B̂)2k − t3k

)
= 0. (8)

This can be thought as a cubic equation ay3 + by2 + cy + d = 0. From three possible roots

we choose the one that yields the smallest value of the objective function.

Extreme Minimal Learning Machine EMLM. Another distance-based machine

learning method, which was used in this study, is the Extreme Minimal Learning Machine

(EMLM). The origin of the method lies in the so-called Extreme Learning Machine (ELM),

which are single-layer perceptrons with special training and optimization methods.53–57 When

their training methods are combined with the Euclidean distance basis of MLMs, one gets

EMLM.37

The first step is again to collect Nd input points into a matrix X ∈ Rn×Nd . Corresponding

outputs are in a matrix Y ∈ Rp×Nd . Here n and p are the lengths of single input and output

9
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vectors xi an yi. Input points xi are first operated with a kernel function h(·) forming new

inputs H ∈ RK×Nd . Here h(·) is a vector valued function, which is used to calculate the

input vector in a kernel space. Due to the fact that we are using distance-based method, K

is the number of reference points, therefore the elements of H are defined as

Hi,j = (h(xj))i = |mi − xj|. (9)

This is just the Euclidean distance between a reference point and an input point. We simplify

the notation by writing hj ≡ h(xj). Now hj ∈ RK×1 and H ∈ RK×Nd . Then as Kärkkäinen

states, the training of the model is done through regularized least-squares (RLS) optimization

problem37

min
V∈Rp×K

1

2Nd

Nd∑
i=1

|Vhi − yi|2 +
α

2K

p∑
i=1

K∑
j=1

|Vij|2. (10)

The parameter α is a small positive real number (square root of machine ε by default) used

for regularization. V is a matrix containing the coefficients used for the actual regression and

V ∈ Rp×K . One could say, that V and reference points together form the actual machine

learning model. The minimum of the optimization problem lies on the zero point of the

matrix derivative. The optimal solution W ≡ Voptimal satisfies

1

Nd

(WH−Y)HT +
α

K
I = 0. (11)

After getting the optimal solution for the RLS problem one can use W to predict output for

a new arbitary input x̃. This is done as

f(x̃) = Wh(x̃), (12)

where h is the same vector valued kernel function as before. With input vector x̃ it yields

K × 1 vector. The elements of this vector are defined to be Euclidean distances as |mi− x̃|.

10
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We can see that the EMLM framework is fundamentally a Kernel Ridge Regression

with the Euclidean distance basis as a kernel. Because of the structural similarity to the

linear radial basis function network, the EMLM model possesses the universal approximation

capability.58–60 MLM and EMLM have just one hyperparameter, which is the number of

reference points. Overfitting is rarely an issue for distance based ML methods, therefore we

can use all data points as reference points in training without worrying about overfitting.37,61

There is no need for optimization of hyper- or metaparameters. This is a significant difference

compared to the artificial neural networks, support vector machines, gaussian processes or

other popular ML methods. These methods require hyper- or metaparameter optimization

through, for example, cross-validation.

Monte Carlo

We used Monte Carlo to simulate the dynamics of the Au38(SCH3)24 clusters with simplified

methyl ligands. Clusters are divided to three different moving parts: gold, sulfur and methyl.

Gold atoms are moved into a random direction according to the step size. Sulfur is moved in

a similar fashion but in order to preserve the orientation of sulfur-carbon bond the methyl

group is rotated making it to face the sulfur atom. The same principle is applied for the

movement of the methyl groups. When methyl is moved according to the step size, the S-C

bond orientation is preserved. In addition to this we allowed methyl group to rotate around

the sulfur-carbon bond. The way how the alignment of sulfur-carbon bond is preserved is

visualized in Figures 1C and 1D. The stretching of carbon-hydrogen bond does not have a

significant contribution to the total potential energy of the system, therefore we decided to

fix these bonds.

The acceptance of every move is decided according to the Metropolis question. The

probability of the move to be accepted is defined as

P = min
{

1, exp
(
−(Ei+1 − Ei)

kBT

)}
. (13)

11
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Ei is the potential energy of the ith configuration and Ei+1 is the potential energy of the

configuration after a proposed move. Going downhill in energy landscape is always permitted

but going uphill is accepted with certain probability defined by the energy difference and

simulation temperature T . In the exponent kB is the Boltzmann constant. The step size

of a single move is adjusted during the simulations so that the acceptance of the moves is

between 40% and 60%. This step size is the same throughout the whole cluster and it is not

affected by the type of the moved block. During a MC step, all moving parts are sampled

randomly and every one of them has an opportunity to move. This means that one MC step

consists of 38+24+24=86 trial moves.

Figure 1: The initial structures of Au38(SCH3)24 are visualized for Q and T isomers in (A)
and (B) respectively. While moving sulfur atoms and methyls the orientation of the S-C
bond has to be preserved. (C) shows how alignment is preserved if methyl is moved. (D)
show the same when sulfur atom is moved. Long protecting unit is visualized in Figure (E)
and short unit in (F). In (E) and (F) methyls are omitted for the sake of clarity. Orange:
gold, yellow: sulfur, gray: carbon, white: hydrogen.
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Results and Discussion

Generating training data and training the models

The training data from the Au38(SCH3)24 clusters was generated using density functional

theory (DFT) run with GPAW code.62,63 The major training data was published earlier

by Juarez-Mosqueda et al.38 In that work, Born-Oppenheimer NVT molecular dynamics

simulations were run for the so-called Q13 and T39 isomers of Au38(SCH3)24 at various tem-

peratures between 400 and 1200 K. To be consistent with the training data we used same

level of theory (the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional64). The

DFT MD simulation trajectories of Juarez-Mosqueda et al.38 contained 12413 configurations

for the Q isomer and 12647 for the T isomer.

We used two different sets of MBTR parameters {min,max,nx,σ,d,cut-off}. The first set

was {0, 1.4, 100, 0.1, 0.5, 10−3} and the second set was {0, 1.2, 100, 0.045, 0.8, 10−5} ( for

discussion on choosing the parameters, see Supporting Information text and Figures S1 and

S2). In the beginning, we trained MLM for the MBTR data corresponding to the first set

of parameters. Minmax scaling was applied to the training data so that descriptor values

belonged to interval [0, 1]. As we mentioned earlier in the Theory section, overfitting is

rarely an issue for MLM and EMLM. Therefore, we used the Full MLM and EMLM variants

meaning that all data points were selected as reference points. We used MLM to predict

potential energies during the Monte Carlo simulations in various simulation temperatures

and with different starting structures taken from the training data. Monte Carlo frequently

found the outer boundaries of the reference points pushing itself out of the working range

of MLM. This resulted in erroneous potential energy values and non-physical structures. In

the Supporting Information text and Figure S3 we show that the MLM, which was trained

only with the initial MD data,38 is not able to handle configurations produced by the Monte

Carlo. However, it can still find clear structure-energy correlation within the training data.

To cope with the erroneous behaviour, we expanded the MLM training set including
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the MC-generated "unrealistic" configurations and their energies from DFT. The training

set was expanded with 1580 new configurations for Q and 2124 for T isomer. After this

we used the second set of MBTR parameters, which had improved descriptive possibilities

(see Supporting Information). With the expanded training set and improved descriptor we

trained both MLM and EMLM. In Figure 2 the principal component analysis (PCA) of the

MBTR shows that the training set contains a large variety of configurations of both isomers

spanning a large area of the feature space. Due to the fact that MLM/EMLM methods

are using the Euclidean distances to measure the similarity of input point it is educative to

visualize how the datapoints are arranged in the feature space.

Figure 2: PCA visualisation of MBTR descriptors of the training data. For the sake of
clarity only 25% of the points are present in the graph. (i) the initial structures and (ii)
high-temperature structures of the original MD simulations38 (iii) snapshots from Monte
Carlo simulations, where S-Au bonds have been broken. In (ii) and (iii) left/right structures
originate from Q/T isomers. Orange: gold, yellow: sulfur, gray: carbon, white: hydrogen.

Validation: potential energy MLM/EMLM vs. DFT-MD

For validation, we created new independent DFT MD reference data sets both for Q and

T isomers. For the Q isomer we ran 2000 steps at 269 K , 2000 steps at 475 K, and 3653
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steps at 795 K. For the T isomer we ran 2000 steps at 273 K and 2049 steps at 486 K.

Potential energies were predicted for every configuration using both MLM and EMLM and

compared to the actual DFT values from the MD run. The performance is seen in Figure 3.

Generally, the predicted values correlate clearly with the DFT values, with the root-mean-

squared error (RMSE) being 2.98 eV for MLM and 2.67 eV for EMLM. The corresponding

average relative errors are only 0.38% and 0.33%, respectively. The predicted energies are

somewhat higher (less negative) than those from DFT. Our training set contains a lot of high

energy configurations of Au38(SCH3)24, therefore the set might be biased. The visualization

of PCA in Figure 4 indicates that the new MD simulations are rather far away from the

points in the original training set. However, they are not outside of the working region of

the MLM and EMLM like the first Monte Carlo simulations, which were used to expand

the training set. This enables distance-based methods to predict well the potential energy

values.

MC simulations with EMLM-predicted energies

As the most stringent test, we performed MC simulations of both Q and T isomers at

temperatures of 200 K, 250 K, and 300 K, using the EMLM-predicted potential energy in

the Metropolis criterion while advancing the dynamics. Typical simulations were run for

9000 to 10000 MC steps, one MC step consisting of 86 independent trial moves of the atoms

(hence 86 EMLM energy evaluations per MC step). PCA of the runs at 300 K is shown in

Figure 5(A) indicating that the MC dynamics of both isomers is concentrated on a quite

small region close to the T = 0 K local potential energy minimum, as expected for this rather

low temperature. Figure 5(B) shows the evolution of the potential energy of both isomers

at 300 K indicating that the potential energy of the Q isomer is consistently lower by about

1 eV than that of the T isomer. This result is consistent with the energetics known from

DFT.

We analysed the statistics of selected bond distances and bond angles for both isomers
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Figure 3: Correlation between the predicted potential energy from (A) MLM and (B) EMLM
to the DFT energy from the MD calculations for Q and T isomers.

from the MC runs at 200 K, 250 K, and 300 K. Last 500 MC steps from each simulations were

used for the analysis. Figure 6 shows the statistics for the nearest neighbour Au-Au bonds

in the metal core as well as for the S-Au and S-C bonds, and compares them to the statistics

obtained from DFT MD runs at 268 K and 474 K for Q isomer and 272 K and 486 K for

T isomer. We observe that the EMLM-MC runs generally slightly overestimate the Au-Au

bonds in both isomers as compared to DFT MD. The peaks of the distributions are at 2.862

Å(MC) and 2.805 Å(MD) for Q isomer, and 2.845 Å(MC) and 2.805 Å(MD) for T isomer.

For S-Au and S-C bonds, EMLM-MC and DFT-MD produce very similar distributions both

regarding the peak position and width. This analysis shows that the EMLM-MC runs indeed

are able to simulate the bond dynamics of the atoms in the harmonic vibration regime.

Figure 7 shows the corresponding comparison between EMLM-MC and DFT-MD data
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Figure 4: Visualization for PCA from training data and test MD data. Potential energies
on z axis are computed with DFT. The graph is rotated with respect to Figure 2. In order
to keep visualization clear, only 25% of the points are included

Figure 5: (A) Same as Figure 2, but including also the PCA analysis of EMLM MC runs at
300 K for isomers Q and T. The arrow highlights the region of the MC data. The analysis
indicates that both of the isomers are vibrating close to their minima. Only 25% of the
points are included into the Figure and PC1 values are multiplied with −1 to produce a
comparable graph. (B) shows the evolution of potential energies of both isomers predicted
by EMLM during MC.
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Figure 6: Top row: bond distance distributions from EMLM MC simulations at the indicted
temperatures. Bottom row: the same data from DFT MD simulations at indicated tem-
peratures. Labels on the top indicate the isomer and bond type. The vertical dashed lines
indicate the average peak positions for every angle distribution in both MC and MD cases
for every column (purple: MC, black: MD). Most of them are overlapping and only black
lines are visible. The statistics is summed from gaussian-smoothened (σ = 0.05 Å) data
points.

for Au-S-Au and S-Au-S angles. In the crystal structures of these isomers the Au-S-Au angle

is close to 90 ◦ and S-Au-S angle close to 170◦ (Figure 1). We observe that the maxima of

Au-S-Au angles produced by EMLM-MC are slightly smaller than 90◦, with a small side

peak around 130◦ for the T isomer. We see a wider scatter in describing the S-Au-S angles

in EMLM-MC as compared to DFT-MD, with the distributions having a maximum around

150◦ and tail extending close to 100◦. MD simulations shows distributions peaked around

170◦. We assign these slight discrepancies to the k2 description of the MBTR which does

not take into account any angular information.
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Figure 7: Top row: Selected bond angles distributions from EMLM MC simulations at the
indicted temperatures. Bottom row: the same data from DFT MD simulations at indicated
temperatures. Labels on the top indicate the isomer and type of the angle. The vertical
dashed lines indicate the average peak positions for every angle distribution in both MC
and MD cases for every column (purple: MC, black: MD). The colored numbers show the
averages. The statistics is summed from gaussian-smoothened (σ = 1.75◦) data points.

Conclusion

Distance-based machine learning methods discussed in this study are conceptually straight-

forward and very simple to implement. We have shown here that they are suitable to simulate

complex systems such as MPCs that have a number of chemical interactions with varying

strength, while resulting in significantly reduced computational cost as compared to DFT.

The CPU time to predict the energy by using MLM or EMLM with MBTR k2-level descrip-

tors for the atomic structure is several magnitudes smaller than for DFT. For a comparison,

MLM/EMLM energy predictions were run on a single core of Intel Xeon CPU E5-2680 v3

@ 2.50GHz with 8GB memory. Computing MBTR k2 with our parameters took about 0.07

seconds for one atomic structure. Prediction of the potential energy using MBTR k2 took

about 0.05 seconds with EMLM and 0.56 seconds with MLM. The order-of-magnitude differ-
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ence between MLM and EMLM arises from the fact that the EMLM needs reference points

only in the input space and is ready to give an output estimate from matrix and vector

multiplication, while the MLM is predicting distances in the output space and solving a

multilateration problem.

Excluding all angular information and using only pairwise distances to describe atomic

structures with MBTR k2-level further helps to make these methods computationally light.

The lack of angular information in MBTR k2 description does not mean, that our methods

would not be able to reproduce reasonable bond angles. As shown in the SI, we could improve

the description of the angles of protecting RS(AuSR)n=1,2 units by tuning the parameters,

although the MC simulations showed that the energy landscape produced by EMLM slightly

differed from the one that DFT would yield.

Monte Carlo showed to be an efficient strategy to study the energy landscape learned by

MLM and EMLM. The method is not bound by any assumptions, therefore it freely explores

the feature space and gives useful insight of possible weaknesses of the machine learning

method. An important lesson learned in this work was that the initial MC simulations showed

that our initial DFT-MD training set38 was not extensive enough to train a comprehensive

machine learning method, since the DFT-MD produced atomistic configurations that were

all “physical”. By enlarging the training data with the structures corresponding to the

DFT energies of the “unphysical” configurations predicted by MLM/EMLM-MC back to the

training data, we were able to teach the methods to avoid the unphysical regions of the

configurational phase space.

Our future work involves further development of the models and descriptors for MPCs

and other heterogeneous nanostructures. Here we used a global descriptor and predicted the

potential energy of the system as a property of a whole system. Dividing the potential energy

into atomic or molecular contributions creates in principle a way to get spatial insight into the

energetics.26 Fabrizio et al. have pointed out that it is reasonable to use global description

when predicting global properties but it might cause size-dependence, which sometimes can
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be overcome with usage of local descriptions.65 Our method is currently trained solely for

Au38(SCH3)24 with the goal to demonstrate that distance-based machine learning methods

can be used to handle complex systems such as MPCs. We aim to generalize the methods

by including other MPCs (other metals and ligands) and other sizes of gold-thiolate clusters

in the training set.
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Additional discussion on testing of the MBTR parameters (SI text and Figures S1, S2).
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