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CAUTIONARY NOTE ON THE TWO-STEP TRANSFORMATION TO NORMALITY 

 

ABSTRACT 

Templeton and Burney (2017) proposed a two-step normality transformation as a remedy for 

non-normally distributed data, which is commonly found in AIS research. We argue that, rather 

than transforming the data towards normality, researchers should first seek to analyze and 

understand the sources of non-normality. Using simulated datasets, we demonstrate three sources 

of non-normality and their consequences for regression estimation. We then demonstrate that the 

two-step transformation cannot solve any of these problems and that each source of non-

normality can be handled with alternative, existing techniques. We further present two empirical 

examples to demonstrate these issues with real datasets. 

Keywords: normal distribution, regression analysis, two-step transformation  
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INTRODUCTION 

In a recent publication, Templeton and Burney (2017) proposed the use of a two-step 

normality transformation, first introduced to information systems (IS) research by Templeton 

(2011), as a remedy for non-normally distributed data, which are common in accounting 

information systems (AIS) research. The technique belongs to the class of rank-based inverse 

normal transformations, whose first introduction to the literature is often attributed to Fisher and 

Yates (1938). A number of alternative techniques were also presented in the 1950’s and 1960’s 

(Bliss, 1967; Blom, 1958; Tukey, 1962; Van der Waerden, 1952). This type of transformations 

are commonly called normal scores in statistical software such as SPSS1. In the variant proposed 

by Templeton and Burney (2017), the data are first transformed into percentile ranks and these 

percentile ranks are then converted to normally distributed variables by applying the inverse of 

the cumulative normal probability distribution. Unfortunately, the technique has several 

problems that go unaddressed by Templeton and Burney (2017) and which we discuss in more 

detail below.  

In their article, Templeton and Burney (2017) focused exclusively on comparing the 

outcomes of performing analyses on original and transformed variables, and whether the results 

using transformed data would be more preferable for researchers that seek to publish their work. 

For example, the two-step transformation may increase the correlation between two variables, 

and this is seen as a positive outcome by the authors. More precisely, Templeton and Burney 

(2017) concluded that “Generally, researchers can expect the Two-Step to increase effect sizes 

and correspondingly, probabilities of significant findings” (p. 17). We see this rationale for the 

                                                 
1 In SPSS normal scores can be calculated by choosing Transform > Rank Cases and choosing 
“Normal scores” from “Rank Types”. 
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justification of the two-step approach as problematic. That a technique produces estimates that 

are larger or stronger than would otherwise be the case does not necessarily imply that the 

estimates are more accurate, as it may be possible that the estimates are simply biased. The same 

logic applies to the frequency of significant results.  

Consider the following analogy. If you plan to go to a beach on the weekend, you want the 

weather forecast to predict a sunny weekend. However, we do not judge a forecaster by how 

frequently she forecasts nice weather, but rather by how accurate her predictions of the weather 

are, which we can only observe after we know how the weather turned out to be. If we valued 

forecasters only by the frequency with which they forecasted nice weather, an ideal forecaster 

would be one that would simply say that it will be always sunny. Yet, a forecaster that did this 

would be completely useless because such predictions are not informative of the upcoming 

weather. Similarly, the quality of our research tools should not be judged on their ability to 

produce results that are seen as desirable by researchers, but rather based on whether the tools 

produce results that can be expected to be correct in some well-defined sense. For example, 

when our technique produces a statistically significant estimate, we want to be confident that 

there actually is an effect in the population of interest. In other words, we want our analysis tools 

to both correctly indicate when an effect exists (low Type II / false negative error rate) and when 

it does not (low Type I / false positive error rate). As an extreme example, consider the fact that 

the bootstrap-based confidence intervals in commonly used PLS software can be configured to 

always indicate a statistically significant effect (Rönkkö, McIntosh, & Antonakis, 2015)2. 

                                                 
2 This can be achieved by using the individual sign-change correction and interpreting empirical 
confidence intervals as statistical tests by checking if zero is included in the interval. While there 
are debates on the merits of PLS (Rigdon, 2016; e.g. Rönkkö, McIntosh, & Antonakis, 2015; 
Rönkkö, McIntosh, Antonakis, & Edwards, 2016), the purpose of this example is not to get into 
that debate. In fact, also some proponents of the PLS technique caution against the use of the 
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Clearly, like a forecaster that will always say that the weather will be sunny regardless of what 

the actual weather looks like, a technique that will always indicate the presence of an effect 

regardless of whether the effect exists in the population is not a useful technique for testing the 

existence of the effect. 

Unfortunately, whether results are correct is in most cases impossible to assess with 

empirical datasets because we do not know the true value of the effect under examination. For 

example, if the value of the correlation between two untransformed variables is .3 and that 

between the two-step transformed variables is .5, we are not able to state which of the two results 

is more accurate unless we know the true (population) value of the correlation. Judging which of 

the two estimates is more accurate is only possible if we know the true effect, to which we can 

then compare our estimates.  

Because the true effects in populations from which empirical datasets are drawn are rarely, 

if ever, known, comparing statistical techniques can generally only be achieved through the use 

of simulated data, where the characteristics of interest are both known and under the control of 

the researcher (Bandalos, Hancock, & Mueller, 2006). If a technique can be demonstrated to 

work perfectly under conditions that are fully under researcher’s control, then we can conclude 

that the technique may also work sufficiently well under non-ideal real-world scenarios. 

However, if we cannot get a technique to work even under ideal conditions, the claim that it 

would work in real world conditions that may be non-ideal would be implausible. For this 

                                                 
individual sign-change correction (Henseler, Hubona, & Ray, 2016). Instead, we bring up this 
example because it was the only example of a technique that we could come up with that a) has 
been used in published research, b) can be explained in a way that sounds reasonable, and c) 
always produces the result that a researcher wants to see, but d) is clearly not a valid approach 
for drawing inferences from the data. Note also that the sign-change correction is by no means 
specific to PLS estimates, and could be applied to any set of bootstrap replications regardless of 
the analysis technique and would produce the same 100% false positive rate. 



 6 

reason, empirical examples have their place in methodological research, but their role is limited 

to illustrating analysis techniques, not to assessing their properties (Boomsma, 2013; Goodhue, 

Lewis, & Thompson, 2012).  

The issue of non-normality is a complex one and unfortunately there are often no simple 

and general solutions to complex problems, as indicated by the extensive research on 

transformations in the structural equation modeling literature (e.g., Liu, Chen, Lu, & Song, 2015; 

Montfort, Mooijaart, & Meijerink, 2009; Mooijaart, 1993; Yuan, Chan, & Bentler, 2000). 

Furthermore, it is important to consider why a focal variable may not be normally distributed, 

because different causes of non-normality require different solutions. In this commentary, we 

address a number of issues with the two-step approach proposed by Templeton and Burney 

(2017) using simple regression analysis applied to simulated datasets with known properties. Our 

simulated demonstrations show that the two-step procedure is not an effective solution to any of 

the possible sources of non-normality in the data; moreover, its use introduces new problems for 

both statistical inference and interpretation of the results. Our findings are consistent with prior 

research questioning the usefulness of rank-based inverse normal transformations (Beasley, 

Erickson, & Allison, 2009). 

SOURCES AND CONSEQUENCES OF NON-NORMALITY 

Non-normal data may be problematic for a given statistical analysis, but whether this is the 

case depends on both the purpose of the analysis and the source of non-normality. The 

assumptions of statistical procedures are generally not about sample data, but rather about the 

distribution of the variables in the population from which data is assumed to originate3. 

                                                 
3 Strictly speaking, sample data can never be normally distributed because normal distribution is 
a continuous probability distribution where observations can take infinitely many different 
values, but a sample is a finite set of observations. 
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Moreover, the normality assumption pertains neither to observed (fixed) exogenous variables nor 

to observed endogenous variables, but rather to the unobserved exogenous part of the model 

(exogenous latent variables, including error terms). For example, ordinary least squares (OLS) 

regression analysis does not assume that the observed variables are normally distributed in the 

sample, but rather that the error term (a latent variable) is normally distributed in the population 

from which the data were sampled. Applying the two-step transformation therefore addresses an 

incorrect problem (Beasley et al., 2009) and its application can do more harm than good.  

We demonstrate the problems with the two-step approach with the following simple 

regression model: 

 𝑦 = 𝛽0 + 𝛽1𝑥 +  𝑢, (1) 

where 𝑦 is the observed dependent variable, 𝑥 is observed independent variable, and 𝑢 is the 

unobserved (i.e., latent) error term. For simplicity, we set the intercept  𝛽0 = 0  and the 

regression coefficient 𝛽1 = 1 . The dependent variable 𝑦 can be non-normal under three 

scenarios (or a combination of them), each of which implies a different solution: 

1. 𝑥 is non-normal 

2. 𝑢 is is non-normal 

3. the relationship between 𝑥 and 𝑦 is non-linear. 

The first scenario is not problematic because OLS regression makes no assumptions about 

the distribution of the independent variables, the second scenario is a violation of one of the 

standard regression assumptions but the consequences of failing this assumption are typically not 

serious for applied research, and the third scenario is a serious problem that needs to be 

addressed by adjusting the model. We now consider each of these three cases in detail and assess 

the performance of the two-step transformation under each condition. 
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Non-normal Independent Variable 

In our first scenario, the unobserved error 𝑢 has standard normal distribution and 𝑥 is non-

normal, distributed as a chi-square with one degree of freedom (i.e., the square of a standard 

normal distribution). Here the OLS assumption of a normally distributed error term 𝑢 holds in 

the population, but 𝑦 has a mixture distribution, which is severely non-normal. However, 

because all OLS assumptions hold its application is not problematic. To demonstrate this, we 

generated a large sample of 1000 observations from this known model4, and estimated an OLS 

regression with the (1) original data, (2) data where the two-step transformation was applied to y, 

and (3) data where the two-step transformation was applied to both 𝑥 and 𝑦. The results are 

shown in Table 1 below. 

----- Insert Table 1 about here ----- 

The results show that, with the original data, the OLS estimator can accurately recover the 

population parameters, whereas applying the two-step transformation produces estimates of the 

relationship and variance explained that are substantially biased, and negatively so. The error is 

even more marked when the two-step transformation is applied to both the independent and the 

dependent variables. In contrast to the results presented by Templeton and Burney (2017), whose 

correlation estimates using the two-step transformation were larger than correlations obtained 

from the untransformed data, this simple example demonstrates the effect can also be the 

opposite. We explain the mechanism leading to the bias later in this research. Moreover, as noted 

                                                 
4 Our empirical demonstrations were implemented in R (R Core Team, 2016). The analysis file is 
included as Online Supplement A. While statistical techniques are commonly evaluated with 
Monte Carlo simulations where repeated samples are drawn from the same population model, we 
opted for one large sample for simplicity of presentation. To verify that these results are not 
idiosyncratic to our sample, we include a proper Monte Carlo simulation as Online Supplement 
B. 



 9 

above, this type of comparison – between the true value of a relationship and the different 

estimates obtained from different analytical approaches – is not possible without recourse to the 

use of controlled, simulated data, where the value of the relevant parameter is known.  

Non-normal Error Term 

In the second scenario, the independent variable 𝑥 is normally distributed, but the error 

term 𝑢 follows a chi-square distribution with one degree of freedom centered at zero in the 

population. As before, we estimate three different models, one without any transformation, then 

applying the two-step transformation to the dependent variable 𝑦 only followed by its application 

on both the independent variable 𝑥 and dependent variable 𝑦. The results are shown in Table 2 

below. 

----- Insert Table 2 about here ----- 

Again, OLS without any transformation produces an accurate estimate of the population 

regression coefficient but applying the two-step transformation to the data produces substantially 

biased estimates and R2 values, but in the opposite direction from the first example. In the 

current scenario, the transformation of the independent variable had little influence on the results 

because 𝑥 was already normal in the population and the sample size was large.  

We now explain the source of the bias and why the direction of the bias differs between the 

two scenarios. The two-step approach can be thought of as a non-parametric transformation that 

maps the original observations to the transformed values: 

 𝑦𝑡𝑤𝑜−𝑠𝑡𝑒𝑝  = 𝑦 + 𝑠ℎ𝑖𝑓𝑡 (2) 

Figure 1 below shows the mapping from original 𝑦 values to transformed values (first plot) and 

the amount by which each observation is shifted sideways (second plot) as a function of the 
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original value for our latest example (𝑠ℎ𝑖𝑓𝑡). The dashed line depicts identity mapping that does 

not transform the values in any way. 

----- Insert Figure 1 about here ----- 

The figure shows that, in this scenario, both small and very large values of the original y 

variable are decreased (shifted left) and values closer to the mean of the original variable are 

relatively less affected. What this means is that, in this scenario, the transformation makes the 

positive tail of the distribution shorter and the negative tail longer. The original data were 

substantially right skewed because the chi-square distribution is bounded at zero and has a long 

positive tail, and transforming the data in this way reduces the skewness. To understand the 

source of the bias, we need to first understand how 𝑠ℎ𝑖𝑓𝑡 is related to 𝑥 and 𝑢.  In linear models, 

such as linear regression, the information provided by the covariance matrix is sufficient for 

estimating the model. The covariances for our last example are presented in Table 3 below. The 

table shows that 𝑠ℎ𝑖𝑓𝑡 is negatively correlated with 𝑢, but positively correlated with 𝑥. This is 

natural because extreme positive values that are shifted the most are mostly due to extreme 

values of 𝑢, which followed the chi square distribution having a long positive tail. The positive 

correlation between 𝑥 and 𝑠ℎ𝑖𝑓𝑡 is due to shifting observations in the negative tail of 𝑦 to the 

left. How these dependencies between 𝑥, 𝑢, and 𝑠ℎ𝑖𝑓𝑡 influence regression estimates can be 

understood from two different perspectives. 

----- Insert Table 3 about here ----- 

The first way to understand the source of bias is by focusing on how the regression 

coefficients are calculated. The regression coefficient of 𝑦𝑡𝑤𝑜−𝑠𝑡𝑒𝑝 on 𝑥 is given by 

 𝑐𝑜𝑣(𝑥, 𝑦𝑡𝑤𝑜−𝑠𝑡𝑒𝑝)
𝑣𝑎𝑟(𝑥)

 
(3) 

Which can be rewritten as 
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 𝑐𝑜𝑣(𝑥, 𝑦 + 𝑠ℎ𝑖𝑓𝑡)
𝑣𝑎𝑟(𝑥)  

𝑐𝑜𝑣(𝑥, 𝑦) + 𝑐𝑜𝑣(𝑥, 𝑠ℎ𝑖𝑓𝑡)
𝑣𝑎𝑟(𝑥)  

𝑐𝑜𝑣(𝑥, 𝑦)
𝑣𝑎𝑟(𝑥) +

𝑐𝑜𝑣(𝑥, 𝑠ℎ𝑖𝑓𝑡)
𝑣𝑎𝑟(𝑥) , 

(4) 

which shows that the regression coefficient after the two-step transformation equals the 

sum of the original regression coefficient (given by 𝑐𝑜𝑣(𝑥,𝑦)
𝑣𝑎𝑟(𝑥) ) and the covariance between 𝑥 and 

𝑠ℎ𝑖𝑓𝑡, divided by variance of 𝑥. Thus, the direction of the bias depends on the sign of the 

covariance. In the second example this sign was negative because 𝑥 had a long positive tail but 

no negative tail. The first example presented the opposite scenario where 𝑢 followed a chi-square 

distribution, leading to a positive covariance between 𝑥 and 𝑠ℎ𝑖𝑓𝑡 and therefore positive bias.  

The second way to understand the direction of bias is to consider the example as an 

instance of omitted variable bias in regression. To understand why this is the case, we substitute 

the regression equation of 𝑦 into the definition of 𝑦𝑡𝑤𝑜−𝑠𝑡𝑒𝑝 

 𝑦𝑡𝑤𝑜−𝑠𝑡𝑒𝑝  = 𝑦 + 𝑠ℎ𝑖𝑓𝑡 

𝑦𝑡𝑤𝑜−𝑠𝑡𝑒𝑝  = 𝛽0 +  𝛽1𝑥 + 𝑠ℎ𝑖𝑓𝑡 +  𝑢 

(5) 

Regressing 𝑦𝑡𝑤𝑜−𝑠𝑡𝑒𝑝 on 𝑥 is essentially a misspecified model because 𝑠ℎ𝑖𝑓𝑡 is not included in 

the estimated regression equation. The direction of bias follows directly from how regression 

behaves when variables are omitted from the estimated model (Wooldridge, 2009, pp. 89–93). 

Model misspecification 

The third possible source of non-normality arises when the relationship between 𝑥 and 𝑦 is 

non-linear, in which case a linear regression model is misspecified. Assume that the population 

model is 



 12 

 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2  +  𝑢, (6) 

where both 𝑥 and 𝑢 are normally distributed and, for simplicity, all regression coefficients are set 

to 1. We fit six regression models to the data. Following the two earlier examples, the first three 

models are linear models fitted to original data, data where the two-step transformation is applied 

first to the dependent variable only, and finally to both 𝑥 and 𝑦 variables. The remaining three 

models are fitted to the same data but include a quadratic term (u-shape) and are thus correctly 

specified. The results are shown in Table 4 below. 

----- Insert Table 4 about here ----- 

All misspecified models produced severely biased results. Fortunately, in all scenarios, the 

residuals vs. fitted plot that is commonly used for model diagnostics (e.g., Cohen, Cohen, West, 

& Aiken, 2003, Chapter 4; Draper & Smith, 1998, Chapter 2; Fox, 2015, Chapter 6), shown in 

Figure 2, reveal that the linear model is misspecified regardless of whether the two-step 

transformation was applied (first row of plots). Of the correctly specified models that contained 

the quadratic term, the one estimated with non-transformed data accurately reproduced the 

population parameters whereas applying the two-step transformation lead to substantially biased 

estimates and R2. Moreover, while the diagnostic plot for the correctly specified model estimated 

with original data (first plot on the second row) demonstrates no problems, the plots generated 

using the two-step transformed data (last two plots on the second row) still indicated model 

misspecification thus, leading to the incorrect conclusion that the quadratic model was 

inappropriate for the data. 

----- Insert Figure 2 about here -----  

The three examples discussed here, representing different sources of non-normal data, 

provide a clear picture: when the dependent variable is non-normal, manipulating the data so that 
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it is closer to normality in the sample produces biased estimates. If the source of non-normality is 

a non-normal independent variable or error term, non-normality has virtually no impact on the 

accuracy of the estimates. On the other hand, in the scenario where non-normality is due to 

model misspecification, the most appropriate action is not to transform the dependent variable 

toward normality, but to diagnose the model and include nonlinear terms to make the model 

correctly specified (that is, where the structure of the relationships included in the model matches 

that in the population from which the data were sampled). Indeed, some textbooks on regression 

explicitly present transformations as a way to achieve linearity instead of normality (Chatterjee 

& Hadi, 2012, Chapter 6; Greene, 2012, Chapters 6–7; Kennedy, 2008, Chapter 6.3). 

DOES LACK OF NORMALITY REALLY MATTER? 

Given that none of the scenarios presented in the previous section provided evidence of 

major problems in the analysis of non-normal data except when this was due to model 

misspecification, one could question whether the consequences of non-normality have been 

exaggerated. To answer the question, we now focus on the assumptions and properties of the 

OLS estimator of linear regression models.  

The Normality Assumption in OLS Regression 

Neither the proof that OLS is the best linear unbiased estimator (the Gauss-Markov 

theorem) nor the unbiasedness of the standard errors requires any normality assumptions 

(Wooldridge, 2009, Chapter 3). However, to derive the exact sampling distribution of the 

estimates to calculate p values, we must know the distribution of the error term. If the error term 

is normally distributed, the regression estimates will also be normal over repeated samples and 

the t statistic, defined as the ratio of regression estimate to its standard error, will follow 

Student’s t distribution with 𝑛 − 𝑘 − 1 degrees of freedom when the null hypothesis of no effects 



 14 

holds (Wooldridge, 2009, Chapter 4), where 𝑛  is the sample size and 𝑘 is the number of 

predictors in the equation. Even then, the normality assumption is not particularly important 

because the regression estimates are asymptotically normal regardless of the distribution of the 

error term (Wooldridge, 2009, Chapter 5). That is, the distribution of the regression estimates 

approaches normality as sample size increases and consequently the non-normality of the error 

term is rarely an important issue for applied research (Cohen et al., 2003, p. 120; Wooldridge, 

2009, pp. 174–175). 

Impact of Transformations on Standard Errors 

While normality is largely a non-issue for statistical inference based on OLS estimates (and 

we note that OLS regression is prevalent in AIS research; also Templeton and Burney (2017) 

focused on OLS regression), the covariance matrix of the transformed data will almost certainly 

not have the same sampling distribution as the covariance matrix of the original data. Therefore, 

it is unclear whether the commonly used test statistics will follow their theoretical distributions 

after the data have been transformed (Yuan et al., 2000), thus compromising statistical inference. 

We demonstrate this issue with a Monte Carlo simulation of 10 000 samples of 1000 from the 

model with a normally distributed independent variable 𝑥 and a chi-squared distributed error 𝑢, 

again applying OLS to each sample first using the original data, then after applying the two-step 

transformation on the dependent variable, and finally on both variables. Table 5 displays the 

variances of the regression estimates and the means of estimated variances of the estimates 

----- Insert Table 5 about here ----- 

The results show that applying the two-step transformation increases the variance of the 

estimates (i.e., decreases the precision) and produces variance estimates (squares of standard 

errors) that are severely negatively biased. The variance estimates are on average just half of the 
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true variance of the estimates, which translates to a standard error bias of about -30 percent. In 

this scenario, the estimates are positively biased and thus applying the two-step leads to 

overstating both the effects and the precision of the estimates.  

Transformations and Interpretation of Non-linear Effects  

While transformations are largely unnecessary for achieving normality, there are scenarios 

where transformations are useful because, in many cases, effects are non-linear and thus using a 

linear regression model would not be appropriate (e.g., Wooldridge, 2009, sec. 6.2). However, 

the use of transformations can complicate the interpretation of regression results. As highlighted 

by Lin et al. (2013) it is not sufficient to just asses the significance and sign of a regression 

coefficient, but we must also assess the size of the effects, particularly when using large samples 

where trivially small effects become statistically significant. Lin et al. (2013) illustrate effect size 

assessment with the following two examples “each additional apple consumed per day reduces 

the chances of going to the doctor on average by 33%” and “including an apple a day in your diet 

is likely to reduce your risk of becoming ill from 3% to 2%”. Making such interpretations is 

straightforward in regression analysis with untransformed data, because the coefficients can be 

interpreted directly. However, applying transformations may alter the meaning of the coefficients 

(Lin et al., 2013, Table 2), which we illustrate in our first empirical example in the next section.  

EMPIRICAL EXAMPLES 

Empirical Example 1: Econometrics Textbook 

Our first example is an analysis presented in a highly regarded introductory econometrics 

book (Wooldridge, 2009). We chose this example because the data are freely available and thus 

allow for easy replication of the analysis, and because the availability of a textbook format 

treatment of the example greatly facilitates learning over what can be presented in the tight space 
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of a journal article. The example from Wooldridge (2009) is from a chapter that explains that 

transformations should be driven by theoretical considerations over empirical ones. One 

particularly relevant scenario is when the effect of change in 𝑥 is expected to be proportional to 

the current level of 𝑥. For example, raises in salary are often proportional to current salary levels. 

Indeed, in many countries, labor unions negotiate salary increases on a percentage rather than 

absolute unit basis. The logarithm transformation (Wooldridge, 2009, secs. 2.4, 6.2) is common 

choice for linearization in this scenario. To showcase these issues, we used a cross-sectional 

dataset on the wages of 526 working individuals from 1976 used by Wooldridge (2009, Example 

2.10) and analyzed the non-linear effect of years of education on wages. 

----- Insert Table 6 about here ----- 

The regression results in Table 6 show that years of education has a statistically significant 

and positive effect on wages regardless of which transformation is applied. This result in and of 

itself is not particularly interesting because trivially small effect sizes become significant in large 

samples (Lin et al., 2013); instead, we should focus on the magnitude of the estimates and what 

they mean. The interpretations of the three regression models are “One additional year of 

education increases the logarithm of hourly wages by 0.08”, “One additional year of education 

increases the two-step transformed hourly wages by 0.59”, and “One additional unit of two-step 

transformed education increases the two-step transformed hourly wages by 0.62”. However, we 

are rarely interested in the transformed units but on the effects expressed in the original units 

instead. The question that we must therefore ask is how large the effect of one additional year of 

education on the expected hourly wages is. For the model with logarithm transformation, the 

interpretation is straightforward because the logarithm transformation itself has a natural 

interpretation as relative change. The regression coefficient of 0.08 means that an additional year 
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of education increases the expected wages by 8 percent compared to the current wage level. 

Templeton and Burney (2017) state that the two-step transformed regression results can be 

interpreted in the original metric: “One additional year of education increases the hourly wages 

by 0.59/0.62”. This interpretation would be problematic for two reasons: a) it masks the fact that 

relative effects have a better fit with how wages behave both theoretically and empirically, and 

b) because the interpretation is linear (i.e. constant, absolute effect), it means that the two-step 

transformation is essentially an alternative way (estimator) to draw the regression line. However, 

it is not clear what kind of statistical properties a line drawn this way would have. 

In the case of logarithm transformation, the transformed results have a natural 

interpretation. However, in some cases a natural interpretation may not be available or 

interpreting the effects may be difficult for some other reason. In this case marginal prediction 

plots, available in many commonly used statistical packages (Fox, 2003; Williams, 2012), 

provide an invaluable tool for interpretation of the size and nature of the effects  (Lin et al., 2013, 

p. 909). Marginal prediction plots are prepared by calculating fitted values for the regression 

model using several combinations of the independent variables, transforming these values back 

to the original metric, and plotting the data. To do this, we need an inverse transformation that 

allows interpreting the results. We demonstrate the use of a marginal prediction plot in Figure 3 

below using the wage data example. The figure makes it clear on how the expected hourly wage 

depends on the years of education. 

----- Insert Figure 3 about here ------ 

Because the two-step transformation does not have an inverse transformation, interpreting 

the results by back transforming the predictions to the original metric as done above is 

impossible. It is for this reason that introductory texts on statistical analysis only explain 
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transformations that have inverse transformations (e.g., Kline, 2011, pp. 63–64; Schumacker, 

2010, p. 28).  

Empirical Example 2: Actual Accounting Data 

For our second empirical example, we replicated parts of the analyses presented by 

Templeton and Burney (2017). We started by obtaining data for all companies in the Compustat 

database from 1990 to 2014, resulting in 286,236 observations of 29,866 unique companies5. 

Thereafter, we typed the 1992 Computerworld Premier 100 table (“Premier 100 tables,” 1992) 

into a data file. Out of the 100 companies in the list, we were able to match 94 with the 

Compustat data, out of which 86 observations had complete data for replicating the regression 

models presented by Templeton and Burney (2017). 

Instead of presenting a full replication of all analyses done by Templeton and Burney 

(2017), we focus on one particular example. However, before presenting the example, there is 

one general issue that requires addressing. Many of the accounting variables used by Templeton 

and Burney (2017) are ratios, which can cause problems in analysis regardless of how the data 

are analyzed. The two key problems in ratios are that a) if the numerator and denominator have 

different interpretations on their own, just by observing a change in the ratio does not allow us to 

infer which of the two components changed, thus leading to confounding of the effects and b) if 

the range of the denominator includes zero, the ratio may become infinitely large or even 

indeterminate. While these issues have been noted in other disciplines (see Certo, Busenbark, 

Kalm, & LePine, 2018 for a review) and textbooks (e.g., Cohen et al., 2003, pp. 60–61) they 

                                                 
5 These numbers are about 15% and 20% larger than the numbers reported by Templeton and 
Burney (2017). The difference may be due to database versions. We used the Compustat 
Monthly Updates - Fundamentals Annual dataset.  
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have been largely ignored in AIS research. Because of these issues, we chose to focus on the 

non-ratio variable net income (NI, in millions of dollars), to demonstrate effects of the two-step 

transformation without confounding its effects with the challenges caused by using ratio 

variables. 

We will first consider the relationship between SIZE, defined as the natural logarithm of 

total revenue in dollars, which was one of the control variables used by Templeton and Burney 

(2017), and NI. Figure 4 shows the relationship between the original variables and the same 

relationships after the two-step transformation. The first panel shows the full data, the second 

panel the part of the original data that fall into the range of the two-step transformed NI, and the 

third panel shows the two-step transformed NI. The first panel shows that the variance of NI 

depends on SIZE and that there are a few potential outliers. Therefore, we followed the 

guidelines presented by Aguinis, Gottfredson, and Joo (2013) and first inspected what the 

extreme observations are. These included Fannie Mae, Freddie Mac, American International 

Group, and General Motors, each of which produced an outlier observation due to government 

intervention during the 2007-2008 financial crisis, Time-Warner and JDS Uniphase, which are 

extreme observations due to write-offs of acquisitions done during the dot-com bubble, and 

Vodafone’s 2013 sale of its stake of Verizon Wireless. Because these extreme observations 

clearly have nothing to do with how IT investments influence company performance, the most 

appropriate course of action would be elimination of these observations as outliers. 

----- Insert Figure 4 about here ----- 
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The main thing to observe in Figure 46 is that it demonstrates why the correlations after the 

two-step transformation can be larger than when using the original data. In this sample, the 

correlation between SIZE and NI was originally 0.21, but increased to 0.50 when the two-step 

transformation was applied to NI. This difference in the correlations can be attributed to how the 

two-step transformation treats outliers. Outliers increase the variance of the data and produce a 

distribution with longer tails. The transformations that are specifically designed to address 

outliers, such as winsorizing, address this issue by pulling the tails containing the outliers toward 

the mean of the data, thus decreasing the variance. While the two-step transformation does the 

same, to maintain the original variance, the technique also pulls other observations towards the 

outliers, as comparing the second and third panel in Figure 4 clearly shows. We are not aware of 

any statistical principle that would justify transforming non-outlier observations to be more 

similar to outliers. To summarize, in this example, the two-step transformation does not 

eliminate the effect of outliers but, on the contrary, amplifies their effect by pulling other 

observations toward the outliers, which is almost certainly not something that an AIS researcher 

would want to do. 

The larger correlations produced by the two-step transformation lead to larger R2 values in 

regression analysis, as shown in Table 7 below. To demonstrate this feature, we first regressed 

NI on SIZE, LEVERAGE, and the four Computerworld variables used by Templeton and 

Burney (2017, pp. 152–153). The R2 values for the two models were 0.42 and 0.48. We then 

                                                 
6 As a technical side note, Figure 4 also demonstrates that while the two-step transformation can 
make the data closer to univariate normality, the data are not multivariate normal because the 
two-variable plot lacks the elliptical shape of a multivariate normal distribution. That univariate 
normality does not imply multivariate normality and the implications of this fact for research 
methods literature is beyond the article, by we refer interested readers to e.g., the work by Mair, 
Satorra, and Bentler (2012). 
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regressed NI on just SIZE producing R2 values of 0.36 and 0.46 showing that the difference in R2 

between the transformed and non-transformed data can be traced back to how the two-step 

transformation increased the correlation between the two focal variables in our example. To 

demonstrate this effect graphically, Figure 5 shows the added variable or partial regression plots 

for SIZE for the original NI (first plot) and two-step transformed NI (second plot). The plots 

show that, also in the multiple regression context, the two-step transformation pulls outliers 

toward the mean of the data while also pulling other non-outlier observations away from the 

mean and toward the outliers as shown before, producing a steeper regression line.  

----- Insert Table 7 and Figure 5 about here ----- 

Figure 5 also demonstrates clearly that with the original data (first plot), the relationship 

between SIZE and NI is nonlinear, but that a linear relationship is not an appropriate explanation 

for the data goes unnoticed when the two-step transformation is used (second plot). In this rare 

case, we know that the relationship between SIZE and NI is non-linear by definition: SIZE is 

defined as a natural logarithm of total revenues, but total revenues has a direct linear relationship 

with NI: holding all other things constant, one dollar increase in total revenues will lead to one 

dollar increase in net income. If two variables are originally linearly associated, they cannot be 

associated in the nonlinear fashion that the logarithm transformation presents. With the original 

data, this misspecification of the model would have been detected using standard regression 

diagnostics, but this misspecification is masked by the two-step transformation. 

DISCUSSION AND CONCLUSIONS 

Our simple simulation examples show that the two-step transformation produces regression 

coefficients that are biased and less precise than would be the case using the original 

untransformed data, and which have biased standard errors. Moreover, the two-step 
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transformation does not have an inverse transformation, making interpretation of the size of the 

effects nearly impossible. Our research is not the only study demonstrating these problems 

(Beasley et al., 2009). That our assessment of the two-step technique differs radically from that 

by Templeton and Burney (2017) naturally raises the question of why this is the case.  

While our assessment of the two-step transformation presented by Templeton and Burney 

(2017) is negative, we do agree that severe non-normality may require some adjustments to the 

statistical techniques used in AIS research. However, non-normality should not be viewed as a 

problem per-se, but as a symptom of one or more different problems that each require different 

remedies. In the following two sections, we will address the methodological implications and 

practical implications for AIS research in turn.  

Methodological Implications 

The underlying reason for the radically different conclusions between our work here and 

Templeton and Burney’s (2017) article is that most of the results by Templeton and Burney 

(2017) are based on correlations, which may be inflated (positively biased) by the two-step 

procedure, as shown by our simple simulation study above. These results highlight the fact that, 

in the same way we cannot judge a weather forecaster solely on how frequently she predicts 

sunny weather, we cannot assess results of statistical procedures based on just whether the results 

produced from a real samples of data are desirable from the point of view of researchers, but 

must instead focus on whether the results can be expected to be correct in some sense.  

Because we can generally only know the population value of a statistic in simulated 

datasets, but not in empirical ones, whether a technique produces correct results can only be 

judged based on a simulation study. This is in stark contrast to the claim by Templeton and 

Burney (2017): “Thus, our findings suggest that real data may often be preferred in studies 
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comparing research methods, since inferences from our comparisons using real data normalized 

by the Two-Step procedure are not possible with randomly generated data” (p. 159). The logic of 

this sentence is difficult to understand. It is certainly possible to analyze the performance of the 

two-step using simulated data, which we prove by doing so. To assess the claim, we need to 

understand its context, which starts by that stating the results from original data were more 

similar to results obtained from analyzing uncorrelated random variables than they were to 

results after the two-step transformation. This does not invalidate using simulated datasets, for 

two reasons. First, such argument can only be made by demonstrating that analyzing simulated 

datasets using the proposed approach leads to erroneous results. However, Templeton and 

Burney (2017) actually never apply the two-step procedure to simulated datasets in their article. 

Instead, they compare their results to a regression model where the dependent variable is a 

random variable generated independently of the other data, which is hardly representative of an 

informative simulation study. Second, we cannot infer that because the results from two-step 

were quite different from the original results and results from random data, they would be more 

appropriate. An equally plausible explanation, and one that is supported by the evidence that we 

present, is that the results based on the two-step transformation were simply substantially biased. 

Because the true value of a relationship is rarely, if ever, known with real data, we simply cannot 

say which of the results using alternative techniques produced the most accurate results. 

Therefore, simulated datasets from known populations must be used. This is also exclusively the 

approach followed in methodological investigations of existing or proposed new analytical 

approaches.  

There are also purely statistical reasons, which go beyond the use of simulated datasets, 

which suggest that the use of the two-step transformation is likely not an optimal analysis 
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technique. A variable gives us information about the location of each observation as well as the 

ranks of the observations in the sample. By applying the two-step transformation, we first 

convert the data to ranks, thus discarding the location information. Mapping the ranks on to the 

normal distribution does not add new information to the data, but simply expresses the rank 

information in a different metric. This raises two important concerns. First, the two-step 

transformation is information destroying, which is never a desirable feature. Second, because the 

transformed data contain only information about ranks, it would be more appropriate to use 

statistical tools specifically designed for rank data, rather than assuming – incorrectly – that the 

transformed data also contain location information. Indeed, rank-based approaches have been 

used in the past in the AIS literature (e.g., Stratopoulos & Dehning, 2000). 

The information destroying nature of the transformation also has a direct implication on the 

claim that the two-step transformation would have a positive effect on reliability. The concept of 

reliability originates from classical test theory (Markus & Borsboom, 2013, sec. 3.1.1) and is 

about the degree to which the data are contaminated with random noise.  If a variable has low 

reliability, then the ratio of random noise to useful information in the variable is low. It is 

mathematically impossible that a transformation would improve reliability because statistical 

transformation can only destroy but not create new information in the data (MacKay, 2003). The 

reason why Templeton and Burney (2017) reached a different conclusion is because they did not 

actually study reliability, but rather the behavior of test-retest statistic over a five-year lag. This 

presents two problems: First, the test-retest statistic is a valid estimate of reliability only if the 

underlying trait remains unchanged between the test and the retest. This is hardly true for 

companies and financial ratios, particularly over such a long period of time. Second, this statistic 
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is based on a correlation, and it is simply possible that the two-step transformation produced a 

positively biased correlation estimate, which lead to overstating test-retest reliability. 

Implications for AIS Research 

Finally, we address the implications of non-normality for the productivity paradox and for 

the AIS research more generally. Templeton and Burney (2017) begin their article by stating that 

“non-normality is barely mentioned as a potential reason for confounding statistical results in 

AIS” (p. 149) thus suggesting that non-normality of the data may be one of the causes of the 

productivity paradox. Dating back to seminal article by Brynjolfsson (1993), who attributed the 

lack of a positive correlation between productivity statistics and IT investments to 

mismeasurement of inputs and outputs, lags due to learning, redistribution of profits, and 

mismanagement, various explanations – both methodological as well as substantial – have been 

put forward for the inconsistent finding between studies (Schryen, 2013). That non-normality is 

not mentioned as a potential cause of these inconsistent finding in AIS research is a natural 

outcome considering that in regression analysis, which is one of the most commonly used 

statistical tools in AIS research, no normality assumptions are made about the explanatory 

variables and sample sizes are typically large enough that non-normality of the error term is 

hardly an issue.  

While non-normality is hardly an issue itself, it can be a symptom of a number of other 

underlying concerns. As our results indicate, there is no panacea for non-normal data. Rather 

than applying transformations, researchers should first learn from their data and apply their 

understanding of the studied phenomenon to identify the sources of non-normality, because not 

all sources of non-normality are problematic and even when non-normality may be an indication 

of a problem, the appropriate remedies depend on what exactly the problem is. We provide four 
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recommendations for dealing with non-normality. First, as Templeton and Burney (2017) note, 

non-normality can be due to outliers. An outlier can be simply a data entry mistake, in which 

case the data can often be corrected. Another alternative is that the outlier falls outside the study 

population and hence should be removed. Regardless of the type of outlier, these should be 

studied and researchers should make informed decisions rather than automatically trimming or 

transforming outliers (Aguinis et al., 2013), as we did in our second empirical example.  

Second, the source of non-normality can be a nonlinear effect in the model. In the case of a 

regression model, residual diagnostics plots (e.g., Cohen et al., 2003, Chapter 4; Draper & Smith, 

1998, Chapter 2; Fox, 2015, Chapter 6) provide an invaluable set of tools for detecting these 

problems and models can be adjusted accordingly. While there is no excuse for not performing 

these diagnostics, reporting that models were diagnosed is unfortunately rare in AIS research. A 

typical remedy for non-linearity is to linearize the model by transforming the variables, most 

commonly by taking a natural logarithm of a variable. In these cases, the interpretation of the 

effect sizes should be carried out with the help of marginal prediction plots (Fox, 2003; Lin et al., 

2013; Williams, 2012), as demonstrated in our first empirical example. If the model cannot be 

linearized with a transformation, we suggest that AIS researchers consider the use of non-linear 

models, such as fractional polynomials (Nikolaeva, Bhatnagar, & Ghose, 2015) or other similar 

techniques (Greene, 2012, Chapter 6; Tan, Shiyko, Li, Li, & Dierker, 2012). 

Third, while it is beyond the scope of our article to address the issue in full detail, future 

AIS research should pay more attention to the difficulties in analyzing ratio data. Consider return 

on assets (ROA), often used as a dependent variable in AIS research (Lim, Dehning, Richardson, 

& Smith, 2011) and defined as the ratio of net income to average total assets. When a firm 

invests in IT, the investment is added to the firm’s assets where it is depreciated over time. If the 
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IT investment influences firm productivity, it can also be expected to influence net income. 

Because the IT investment can thus be expected to influence both the numerator and the 

denominator of the ratio, these effects, which have clearly different interpretations, are easily 

confounded. Wiseman (2009) and Certo et al. (2018) provide an accessible introduction to the 

problems of using financial ratios as dependent variables and discusses some of the solutions to 

these problems. While we are not advocating that AIS researchers completely abandon financial 

ratios as dependent variables, this is clearly an issue that future AIS research should investigate. 

Finally, if all else fails, we have a few robust and non-parametric approaches that could be 

used when an approach that does not assume normality in any way is truly needed. One 

alternative that has seen some use in AIS research are non-parametric techniques, particularly in 

the form of rank comparisons (Stratopoulos & Dehning, 2000). However, these techniques, while 

effective for comparing groups, have a major weakness in that they do not allow for assessing 

what is the (statistical) impact of IT spending on various performance measures. That is, they do 

not readily answer the question of how large productivity impact an IT investment is expected to 

have. Nevertheless, based on the analysis presented in this article, it is difficult to see a scenario 

where the proposed two-step transformation technique would be preferable over these alternative 

techniques.  
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TABLES AND FIGURES 

Table 1 Regression of 𝑦 on non-normal 𝑥 

 Original data Two-step transformation 
applied to 𝑦 

Two-step transformation 
applied to 𝑥 and  𝑦 

Population 
value 

Intercept -0.04  0.14 ** 0.20 *** 0    

 (0.04 ) (0.05 ) (0.05 )  

𝑥 1.02 *** 0.85 *** 0.80 *** 1 

 (0.02 ) (0.03 ) (0.03 )  

R2 0.69  0.48  0.43  0.67 

Adj. R2 0.69  0.48  0.43   

N = 1000. Standard errors in parentheses. 
*** p < 0.001, ** p < 0.01, * p < 0.05, two-tailed tests 
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Table 2 Regression of 𝑦 on normal 𝑥 with chi-squared  𝑢  

 Original data Two-step transformation 
applied to 𝑦 

Two-step transformation 
applied to 𝑥 and  𝑦 

Population 
value 

Intercept 0.08  0.08  0.08  0    

 (0.05 ) (0.04 ) (0.04 )  

𝑥 0.99 *** 1.18 *** 1.18 *** 1 

 (0.05 ) (0.04 ) (0.04 )  

R2 0.31  0.45  0.45  0.33 

Adj. R2 0.31  0.45  0.45   

N = 1000. Standard errors in parentheses. 
*** p < 0.001, ** p < 0.01, * p < 0.05, two-tailed tests 
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Table 3 Covariance matrix of original variables, shift, and two-step transformed y 

 𝑥 𝑢 𝑦 𝑠ℎ𝑖𝑓𝑡 𝑦𝑡𝑤𝑜−𝑠𝑡𝑒𝑝 

𝑥 1.06     

𝑢 -0.01 2.29    

𝑦 1.05 2.28 3.33   

𝑠ℎ𝑖𝑓𝑡 1.26 1.91 3.17 3.33  

𝑦𝑡𝑤𝑜−𝑠𝑡𝑒𝑝 0.21 -0.37 -0.16 0.16 0.32 
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Table 4 Regression of 𝑦 on normal 𝑥 and x2  

 Misspecified model Correctly specified model  
 Original 

data 
Two-step 

transformation 
applied to 𝑦 

Two-step 
transformation 

applied to 𝑥 
and  𝑦 

Original 
data 

Two-step 
transformation 

applied to 𝑦 

Two-step 
transformation 

applied to 𝑥 
and  𝑦 

Population 
value 

Intercept 0.96 *** 0.96 *** 0.96 *** -0.05  0.11 * 0.12 * 0    

 (0.05 ) (0.06 ) (0.06 ) (0.04 ) (0.05 ) (0.05 )  

𝑥 0.87 *** 0.78 *** 0.79 *** 0.97 *** 0.86 *** 0.83 *** 1 

 (0.05 ) (0.06 ) (0.06 ) (0.06 ) (0.04 ) (0.04 )  

𝑥2       1.04 *** 0.87 *** 0.86 *** 1 

       (0.02 ) (0.03 ) (0.03 )  

R2 0.20  0.16  0.17  0.74  0.54  0.53  0.75 

Adj. R2 0.20  0.16  0.17  0.74  0.54  0.53   

N = 1000. Standard errors in parentheses. 
*** p < 0.001, ** p < 0.01, * p < 0.05, two-tailed tests 
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Table 5 Results of Monte Carlo study of the two-step transformation 

 Variance of regression 

estimate (𝑣𝑎𝑟(𝛽1̂)) 

Mean of estimated variance 

of regression estimate 

(𝔼 [(𝑣𝑎𝑟(𝛽1̂)̂ ]) 

Original data 0.0020 0.0020 

Two-step applied to 𝑦 0.0034 0.0016 

Two-step applied to both 𝑦 

and 𝑥 

0.0034 0.0016 

Monte Carlo simulation with 10 000 replications. N = 1000. 
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Table 6 Regression of logarithm of hourly wages on years of education 

 Logarithm 
transformation applied 

to wages 

Two-step transformation 
applied to wages 

Two-step transformation 
applied to wages and education 

Intercept 0.58 *** -1.48 * -1.82 ** 

 (0.10 ) (0.67 ) (0.67 ) 

Years of 

education 

0.08 *** 0.59 *** 0.62 *** 

 (0.01 ) (0.05 ) (0.05 ) 

R2 0.19  0.20  0.21  

Adj. R2 0.18  0.19  0.21  

N = 526. Standard errors in parentheses. 
*** p < 0.001, ** p < 0.01, * p < 0.05, two-tailed tests 
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Table 7 Regression of NI (net income) as modeled by Templeton and Burney (2017) 

 Original NI Two-step transformation applied to 
NI 

Intercept -2820.01 *** -3157.18 *** -3199.71 *** -3628.57 *** 

 (653.03)  (557.38)  (615.08)  (512.15)  

IS budget as % revenue -14.97    -17.92    

 (16.44)    (15.48)    

% of IS budget for staff -3.42    -8.62    

 (8.18)    (7.71)    

% of IS budget for 

training 

8.94    4.98    

 (25.02)    (23.56)    

% of employess with 

PCs/terminals 

-3.68    -0.67    

 (2.74)    (2.58)    

LEVERAGE 98.35 *   20.81    

 (47.50)    (44.74)    

SIZE 427.24 *** 436.25 *** 492.44 *** 493.26 *** 

 (63.44)  (63.65)  (59.76)  (58.49)  

R2 0.42  0.36  0.48  0.46  

Adj. R2 0.37  0.35  0.44  0.45  

N = 86. Standard errors in parentheses. 
*** p < 0.001, ** p < 0.01, * p < 0.05, two-tailed tests 
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Figure 1 Non-parametric transformation curve and shift as a function of original value 
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Figure 2 Residual vs. fitted regression diagnostic plots for misspecified linear and correctly 
specified quadratic models 
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Figure 3 Marginal prediction plot of hourly wages on years of education 
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Figure 4 Relationship between NI and SIZE and two-step(NI) and SIZE. 
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Figure 5 Added variable plots of NI on SIZE with and without two-step transformation 



Online supplement 1: R code for the study

# Packages for producing effects plots and doing regression diagnostics
library(texreg)

## Version: 1.36.23
## Date: 2017-03-03
## Author: Philip Leifeld (University of Glasgow)
##
## Please cite the JSS article in your publications -- see citation("texreg").

library(car)

# Two-step transformation, as presented by Templeton et al.

twoStep <- function(x){
prank <- rank(x)/length(x)
prank[prank == 1] <- 1-1/length(x) # A workaround for percentile rank = 1.
r <- qnorm(prank)
r/sd(r)*sd(x)+mean(x) # Scale to have original mean and variance

}

# Set the seed and sample size
set.seed(1); N <- 1000

Example 1: Non-normal x

x <- rnorm(N)^2
y <- x + rnorm(N)

ty <- twoStep(y)
tx <- twoStep(x)

m1 <- lm(y ~ x)
m2 <- lm(ty ~ x)
m3 <- lm(ty ~ tx)

screenreg(list(m1, m2, m3))

##
## ==================================================
## Model 1 Model 2 Model 3
## --------------------------------------------------
## (Intercept) -0.04 0.14 ** 0.20 ***
## (0.04) (0.05) (0.05)
## x 1.02 *** 0.86 ***
## (0.02) (0.03)
## tx 0.80 ***
## (0.03)
## --------------------------------------------------
## R^2 0.69 0.48 0.43
## Adj. R^2 0.69 0.48 0.43

1



## Num. obs. 1000 1000 1000
## RMSE 1.04 1.34 1.41
## ==================================================
## *** p < 0.001, ** p < 0.01, * p < 0.05

Example 2: Non-normal error

x <- rnorm(N)
# Subtract 1 from the error term to center at zero
u <- rnorm(N)^2 - 1
y <- x + u

ty <- twoStep(y)
tx <- twoStep(x)

m1 <- lm(y ~ x)
m2 <- lm(ty ~ x)
m3 <- lm(ty ~ tx)

screenreg(list(m1, m2, m3))

##
## ==================================================
## Model 1 Model 2 Model 3
## --------------------------------------------------
## (Intercept) 0.08 0.08 0.08
## (0.05) (0.04) (0.04)
## x 0.99 *** 1.18 ***
## (0.05) (0.04)
## tx 1.18 ***
## (0.04)
## --------------------------------------------------
## R^2 0.31 0.45 0.45
## Adj. R^2 0.31 0.45 0.45
## Num. obs. 1000 1000 1000
## RMSE 1.51 1.36 1.36
## ==================================================
## *** p < 0.001, ** p < 0.01, * p < 0.05

Analysis of the source and direction of the bias

# First construct the transformation function

o <- order(y)

par(mfrow = c(1,2))
plot(y[o], ty[o], type ="l", ylab="Transformed", xlab = "Original")
lines(x = c(min(ty),max(ty)), y = c(min(ty),max(ty)), lty = 2)

shift <- ty - y
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plot(y[o], shift[o], type ="l", ylab="Shift", xlab = "Original")
lines(x = c(min(ty),max(y)), y = c(0,0), lty = 2)
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# Print covariances
round(cov(cbind(x, u ,y, ty, shift)), digits =2)

## x u y ty shift
## x 1.06 -0.01 1.05 1.26 0.21
## u -0.01 2.29 2.28 1.92 -0.36
## y 1.05 2.28 3.33 3.18 -0.15
## ty 1.26 1.92 3.18 3.33 0.15
## shift 0.21 -0.36 -0.15 0.15 0.31

Example 3: Nonlinear relationship

x <- rnorm(N)
y <-x+x^2+ rnorm(N)

ty <- twoStep(y)
tx <- twoStep(x)

m1 <- lm(y ~ x)
m2 <- lm(ty ~ x)
m3 <- lm(ty ~ tx)
m4 <- lm(y ~ x + I(x^2))
m5 <- lm(ty ~ x + I(x^2))
m6 <- lm(ty ~ tx + I(tx^2))

# Diagnostics plots

par(mfrow=c(2,3))
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residualPlot(m1, main = "Model 1")
residualPlot(m2, main = "Model 2")
residualPlot(m3, main = "Model 3")
residualPlot(m4, main = "Model 4")
residualPlot(m5, main = "Model 5")
residualPlot(m6, main = "Model 6")
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screenreg(list(m1, m2, m3, m4, m5, m6))

##
## =========================================================================================
## Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
## -----------------------------------------------------------------------------------------
## (Intercept) 0.96 *** 0.97 *** 0.97 *** -0.05 0.11 * 0.14 **
## (0.05) (0.06) (0.06) (0.04) (0.05) (0.05)
## x 0.87 *** 0.78 *** 0.97 *** 0.86 ***
## (0.05) (0.06) (0.03) (0.04)
## tx 0.80 *** 0.81 ***
## (0.06) (0.04)
## I(x^2) 1.04 *** 0.88 ***
## (0.02) (0.03)
## I(tx^2) 0.85 ***
## (0.03)
## -----------------------------------------------------------------------------------------
## R^2 0.20 0.16 0.17 0.74 0.54 0.53
## Adj. R^2 0.20 0.16 0.17 0.74 0.54 0.53
## Num. obs. 1000 1000 1000 1000 1000 1000
## RMSE 1.71 1.75 1.75 0.98 1.30 1.31
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## =========================================================================================
## *** p < 0.001, ** p < 0.01, * p < 0.05

Inference

r <- replicate(10000,{
x <- rnorm(N)
y <- x + rnorm(N)^2
ty <- twoStep(y)

m1 <- lm(y ~ x)
m2 <- lm(ty ~ x)
x <- twoStep(x)
m3 <- lm(ty ~ x)

# Return estimates and their estimated variances
c(coef(m1)[2], vcov(m1)[2,2],

coef(m2)[2], vcov(m2)[2,2],
coef(m3)[2], vcov(m3)[2,2])

})

round(matrix(c(var(r[1,]),
var(r[3,]),
var(r[5,]),
mean(r[2,]),
mean(r[4,]),
mean(r[6,])),3,2), digits = 4)

## [,1] [,2]
## [1,] 0.0020 0.0020
## [2,] 0.0035 0.0016
## [3,] 0.0035 0.0016

Empirical example of transformation from Wooldridge.

#The data are from the crs package
library(crs)

## Categorical Regression Splines (version 0.15-27)
## [vignette("crs_faq") provides answers to frequently asked questions]

library(effects)

## Loading required package: carData

##
## Attaching package: �carData�

## The following objects are masked from �package:car�:
##
## Guyer, UN, Vocab

## lattice theme set by effectsTheme()
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## See ?effectsTheme for details.

data("wage1")
attach(wage1)
m1 <- lm(log(wage) ~ educ)
screenreg(m1)

##
## =======================
## Model 1
## -----------------------
## (Intercept) 0.58 ***
## (0.10)
## educ 0.08 ***
## (0.01)
## -----------------------
## R^2 0.19
## Adj. R^2 0.18
## Num. obs. 526
## RMSE 0.48
## =======================
## *** p < 0.001, ** p < 0.01, * p < 0.05

par(mfrow=c(1,1))
# Marginal effects plot
plot(effect("educ",m1, transformation = list(link = log, inverse = exp)), type ="response",

ylab ="Hourly wage", xlab="Years of education")
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Online supplement 2: Monte Carlo simulations of the

examples

# Two-step transformation, as presented by Templeton et al.

twoStep <- function(x){

prank <- rank(x)/length(x)

prank[prank == 1] <- 1-1/length(x) # A workaround for percentile rank = 1.
r <- qnorm(prank)

r/sd(r)*sd(x)+mean(x) # Scale to have original mean and variance
}

# Set the seed, sample size, and number of replications
set.seed(1); N <- 1000; rep <- 10000

Example 1: Non-normal x

r <- replicate(rep,{

x <- rnorm(N)^2

y <- x + rnorm(N)

ty <- twoStep(y)

m1 <- lm(y ~ x)

m2 <- lm(ty ~ x)

x <- twoStep(x)

m3 <- lm(ty ~ x)

# Return estimates and their estimated variances
c(coef(m1)[2], vcov(m1)[2,2],

coef(m2)[2], vcov(m2)[2,2],

coef(m3)[2], vcov(m3)[2,2])

})

m <- matrix(c(mean(r[1,]), mean(r[3,]), mean(r[5,]),

var(r[1,]), var(r[3,]), var(r[5,]),

mean(r[2,]), mean(r[4,]), mean(r[6,]),

var(r[2,]), var(r[4,]), var(r[6,])),3,4)

# Print mean and variance of estimates and their estimated variances
colnames(m) <- c("mean est x", "var est x", "mean est x var", "var est x var")

rownames(m) <- c("Original", "Two-step y", "Two-step x and y")

m

## mean est x var est x mean est x var var est x var

## Original 1.0000942 0.0004912537 0.0005073543 4.244487e-09

## Two-step y 0.8418287 0.0008196411 0.0007991223 2.721078e-09

## Two-step x and y 0.7901424 0.0008151196 0.0008836465 4.210087e-09
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Example 2: Non-normal error

r <- replicate(rep,{

x <- rnorm(N)

y <- x + rnorm(N)^2

ty <- twoStep(y)

m1 <- lm(y ~ x)

m2 <- lm(ty ~ x)

x <- twoStep(x)

m3 <- lm(ty ~ x)

# Return estimates and their estimated variances
c(coef(m1)[2], vcov(m1)[2,2],

coef(m2)[2], vcov(m2)[2,2],

coef(m3)[2], vcov(m3)[2,2])

})

m <- matrix(c(mean(r[1,]), mean(r[3,]), mean(r[5,]),

var(r[1,]), var(r[3,]), var(r[5,]),

mean(r[2,]), mean(r[4,]), mean(r[6,]),

var(r[2,]), var(r[4,]), var(r[6,])),3,4)

# Print mean and variance of estimates and their estimated variances
colnames(m) <- c("mean est x", "var est x", "mean est x var", "var est x var")

rownames(m) <- c("Original", "Two-step y", "Two-step x and y")

m

## mean est x var est x mean est x var var est x var

## Original 0.9997521 0.002032579 0.002008972 6.315940e-08

## Two-step y 1.1836703 0.003402467 0.001605224 3.205844e-08

## Two-step x and y 1.1828521 0.003384242 0.001607182 3.217682e-08

Example 3: Nonlinear relationship

r <- replicate(rep,{

x <- rnorm(N)

y <-x+x^2+ rnorm(N)

ty <- twoStep(y)

m1 <- lm(y ~ x)

m2 <- lm(ty ~ x)

m4 <- lm(y ~ x + I(x^2))

m5 <- lm(ty ~ x + I(x^2))

x <- twoStep(x)

m3 <- lm(ty ~ x)
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m6 <- lm(ty ~ x + I(x^2))

# Return estimates and their estimated variances
c(coef(m1)[2], vcov(m1)[2,2],

coef(m2)[2], vcov(m2)[2,2],

coef(m3)[2], vcov(m3)[2,2],

coef(m4)[2], vcov(m4)[2,2], coef(m4)[3], vcov(m4)[3,3],

coef(m5)[2], vcov(m5)[2,2], coef(m5)[3], vcov(m5)[3,3],

coef(m6)[2], vcov(m6)[2,2], coef(m6)[3], vcov(m6)[3,3])

})

# Print mean and variance of estimates and their estimated variances
m <- matrix(c(mean(r[1,]), mean(r[3,]), mean(r[5,]),

var(r[1,]), var(r[3,]), var(r[5,]),

mean(r[2,]), mean(r[4,]), mean(r[6,]),

var(r[2,]), var(r[4,]), var(r[6,]),

mean(r[7,]), mean(r[11,]), mean(r[15,]),

var(r[7,]), var(r[11,]), var(r[15,]),

mean(r[8,]), mean(r[12,]), mean(r[16,]),

var(r[8,]), var(r[12,]), var(r[16,]),

mean(r[9,]), mean(r[13,]), mean(r[17,]),

var(r[9,]), var(r[13,]), var(r[17,]),

mean(r[10,]), mean(r[14,]), mean(r[18,]),

var(r[10,]), var(r[14,]), var(r[18,])),3,12)

colnames(m) <- c("mean est x", "var est x", "mean est x var", "var est x var",

"mean est x", "var est x", "mean est x var", "var est x var",

"mean est x2", "var est x2", "mean est x2 var", "var est x2 var")

rownames(m) <- c("Original", "Two-step y", "Two-step x and y")

# Misspecified models
m[,1:4]

## mean est x var est x mean est x var var est x var

## Original 1.0005600 0.010836474 0.002993815 3.553639e-08

## Two-step y 0.8801684 0.007737571 0.003223797 4.159906e-08

## Two-step x and y 0.8863784 0.005856969 0.003214689 4.419034e-08

# Correctly specified models that include interactions
m[,5:12]

## mean est x var est x mean est x var var est x var

## Original 1.0000497 0.001026762 0.001007681 4.200643e-09

## Two-step y 0.8810495 0.001340722 0.001904941 2.987884e-08

## Two-step x and y 0.8642437 0.002378002 0.001899727 1.634617e-08

## mean est x2 var est x2 mean est x2 var var est x2 var

## Original 0.9998288 0.0005090145 0.0005094466 4.155089e-09

## Two-step y 0.8179674 0.0010222612 0.0009570562 6.684633e-09

## Two-step x and y 0.8242887 0.0009728987 0.0009797492 6.604082e-09
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