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ABSTRACT 

Laita, Anne 
Conservation in space  
Jyväskylä: University of Jyväskylä, 2012, 41 p. 
(Jyväskylä Studies in Biological and Environmental Science 
ISSN 1456-9701; 234) 
ISBN 978-951-39-4617-3 (nid.) 
ISBN 978-951-39-4618-0 (PDF) 
Yhteenveto: Lajien suojelu tilassa 
Diss. 

Species distributions are highly spatially structured owing to three primary 
reasons. First, the spatial structure in environmental factors is passed to species 
distributions. Second, species respond to their environments in a hierarchical 
manner – at the spatial scales rising from species ecology. Third, ecological 
processes themselves are affected by space as the interactions between 
organisms are, to a high degree, limited by distance. Explicit consideration of 
space as an important underlying force affecting ecological processes and 
patterns does not only provide new theoretical and empirical knowledge but 
offers tools for conservation planning that targets for the long-term persistence 
of biodiversity. In this thesis, I have examined two current conservation issues 
from a spatial perspective and at the landscape level. First, I studied the role of 
woodland key habitats as an additional part of the traditional protected area 
network. My results showed that dispersal ability of species is linked with the 
potential conservation merits of woodland key habitats. The protected habitat 
area served as a misleading measure for the amount of protected habitat 
actually available to species at the landscape level. Second, I studied the habitat 
associations of the Siberian Jay (Perisoreus infaustus) in boreal forest landscapes 
by using spatially explicit species distribution modeling (SDM) methods with a 
multi-scale approach. My results showed that the species distribution is affected 
by the landscape context, and is most probably shaped by the intrinsic 
aggregation rising from species behavior. The comparisons of various spatial 
methods indicated that their conceptual underpinnings are passed on to the 
results they are producing, which emphasizes the role of understanding 
theoretical assumptions and the intricacies of spatial effects when interpreting 
spatial results. My results add to the accumulated scientific evidence for the 
notable role of space affecting species living in fragmented landscapes, and 
emphasize the importance of spatial considerations in conservation planning. 
 
Keywords: Connectivity; graph theory; hierarchical model; Siberian Jay; spatial 
autocorrelation; species distribution model; woodland key habitat. 
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TERMINOLOGY 

The glossary briefly describes the terms that are used in the thesis. For the 
terms, essential references are also provided.  

 

Connectivity Potential for dispersal;  rises in interaction between 
the landscape structure and species ecological traits 
(Taylor et al. 1993). 

Fragmentation Dissection of habitat into smaller and more distant 
parcels than postulated basis on the habitat loss alone 
(Fahrig 1997, Fahrig 2003). 

Habitat loss Loss of habitat for a particular species; comes with 
many changes in landscape structure and 
configuration, e.g., larger inter-patch distances and 
smaller patch sizes (Fischer & Lindenmayer 2007). 

Hierarchical scales Species-specific assemblages of spatial scales at 
which the species respond to environment, the 
operation scales of different mechanisms underlying 
species distributions (Wiens 1989, Levin 1992). 

Matrix Landscape area that surrounds habitat patches;  non-
habitat (see Haila 2002). 

Matrix effects General term for the great variety of ways and 
mechanisms that the matrix exerts on both ecological 
quality of individual habitat patches as well as 
interpatch movements (see Bender & Fahrig 2005, 
Fischer & Lindenmayer 2007). 

Spatial autocorrelation Correlation of a response variable with itself in space; 
correlation may be produced by extrinsic (thereby 
rising correlation may be also referred as spatial 
dependence) and intrinsic factors rising from species 
ecology (Legendre 1993). 

Species distribution 
model (SDM) 

“A model that relates species distribution data 
(occurrence or abundance at known locations) with 
information on the environmental and/or spatial 
characteristics of those locations”, as defined by Elith 
& Leathwick (2009) (see also Guisan & Zimmermann 
2000, Austin 2002, Guisan & Thuiller 2005). 

 
  



  
 

 

1 INTRODUCTION 

1.1 Conservation goals 

Habitat loss, degradation and fragmentation are the key drivers of biodiversity 
loss at scales ranging from global to local ones (e.g., Fischer and Lindenmayer 
2007). Fragmentation means dissection of habitat to smaller and more isolated 
patches, and although it operates usually in concert with habitat loss, it has also 
independent adverse effect on species (e.g, Villard et al. 1999, Wiegand et al. 
2005, but see also Trzcinski et al. 1999). There are theoretical and empirical 
evidence that the effect of fragmentation (independently from the effect of 
habitat loss) intensifies when the amount of habitat falls below a critical species- 
and landscape-specific threshold (Andrén 1994, Mönkkönen and Reunanen 
1999, With and King 1999, Fahrig 2001). As the amount of suitable habitat in a 
landscape is globally very low for many specialized species, it turns essential to 
take actions against fragmentation as part of conservation planning. 
Conservation that successfully and in an ecologically founded way operates on 
these three components – habitat amount, quality and the spatial configuration 
of habitat at the landscape level – forms the essential basis for halting the loss of 
biodiversity and safeguarding the persistence of biodiversity in the long run. 

Successful biodiversity conservation poses two requirements for a reserve 
network (sensu Margules & Pressey 2000). First is representativeness, a widely 
acknowledged goal of encompassing a full variety of biodiversity. Second, 
much less considered goal, is species persistence, i.e., a reserve network should 
maintain its biodiversity values also in the long run. Many pursuits of 
evaluating or supplementing existing networks have concentrated on the 
criteria of representativeness. There exist many kinds of site selection 
algorithms that aim at maximizing the species pool residing in the protected 
area network based on different criteria. However, the criteria of 
representativeness and persistence may be in conflict; the realization of the 
criteria of representativeness may result in overly small population sizes and 
non-functional, i.e. weakly connected, protected area networks that do not 
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assure species persistence in a best possible way. The goal of ensuring species 
persistence is implicitly or explicitly underlying various spatial considerations 
in the designation of a conservation area network (Araújo & Williams 2000). 
The integration of spatial criteria to site-selection algorithms may be used to 
emphasize the objective of population persistence (e.g., Cabeza 2003, Cabeza 
and Moilanen 2003, Williams et al. 2005, Önal & Briers 2005, van Teeffelen et al. 
2006, Rayfield et al. 2009). So, instead of safeguarding the realized pattern, the 
spatial considerations in conservation shift the focus more to arranging 
preconditions for ecological processes to operate. Usually, considering the effect 
of space on ecological processes leads to more aggregated conservation 
networks and acts than carried out on pure non-spatial grounds.  

Conservation of ecological processes necessitates the spatial and temporal 
domains of conservation to be extended (Angelstam et al. 2004). Spatial 
considerations are essentially linked with the temporal dimension of 
conservation, because habitat provided with suitable configuration implicitly 
provides potential for the ecological processes to operate over time. Landscape 
scale exhibits the cumulative effect of local level activities, and is the scale over 
which activities affect the persistence of populations. Landscape-scale 
represents an increasingly more important scale of conservation management, 
because the whole cannot be understood based on distinct elements but as an 
interrelated system. This calls for the integrated view on landscapes and their 
management. 

1.2 Theoretical basis of spatial ecology 

Many important ecological theories have a spatial dimension in their cores, 
including e.g., theory of island biogeography (MacArthur and Wilson 1967), the 
source-sink theory (Pulliam 1988) and metapopulation theory (Hanski 1999). 
This underlines the effect of space in shaping ecological patterns and processes. 
Conservation planning and reserve design has been influenced and shaped by 
these theories for many decades (see e.g., Diamond 1975). These theories 
provide conceptual answers for the allocation of conservation efforts in space.  

Metapopulation theory, focusing on the dynamics of spatially interrelating 
populations, is the leading theory of spatially oriented ecology. Theoretical and 
empirical work rooted in metapopulation theory has shown that the spatial 
structure of ecological interactions has a profound effect on population 
dynamics (Hanski 1998). Dispersal between habitat patches has major influence 
on the rates of patch colonization and extinction, and is thus essentially linked 
with population dynamics in fragmented landscapes. Combining this spatially 
driven component with the models on within-patch dynamics allows to end up 
with the evaluation for the long-term persistence of a species in a landscape.  

The theoretical background for spatial ecology offers mainly a 
dichotomous view on landscapes – habitat patches interspersed in the matrix 
formed by non-habitat. Within this spatial theoretical framework, the sizes and 
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configuration of habitat patches are the main drivers of spatial ecological 
effects. However, patch size and isolation have not always proved to be 
especially powerful predictors of species occupancy, which has been deduced 
to result from the strong ecological effect of the matrix that surrounds habitat 
patches (see e.g., Bender & Fahrig 2005, Prugh et al. 2008, Watling et al. 2011). 
Depending on the species ecology, the habitat/non-habitat dichotomy may be 
an oversimplification of the landscape as actually experienced by organisms.  

The field of landscape ecology emphasizes the interaction between spatial 
pattern and ecological process across a range of scales (Turner at al. 2001). 
Although landscape ecology does not provide any well-defined and concrete 
theoretical theoretical framework, it is the discipline that has greatly increased 
the knowledge on species living in heterogeneous and spatially structured 
landscapes. Landscape ecological research has provided insights into the 
complexities of real landscapes, and profound influences of these landscape 
structures on species. Landscape ecology as a discipline has also raised the 
concept of scale to one of the central tenets of ecological phenomena (Levin 
1992, Schneider 2001, Dungan et al. 2002).  

1.3 Species embedded in landscapes 

Matrix surrounding habitat patches may have various effects on ecological 
responses, and those effects may be mediated by several mechanisms. All these 
effects are missed if landscapes are viewed only within a dichotomous 
framework. Habitat patches are not in many cases embedded in a totally 
inhospitable matrix but are surrounded by landscape elements providing 
different kinds of supplemental resources as well as varying permeability for 
species dispersal (see Ricketts 2001, Manning et al. 2004). In addition to shaping 
effective isolation between habitat patches, matrix may also have additional 
profound influences on the species living in a habitat fragments. For example, 
matrix may cast effects on habitat patches through edge effects (Harrison & 
Bruna 1999), or by altering biotic interactions (Cronin 2007). Matrix has been 
shown to influence biodiversity values of habitat patches in a wealth of studies 
(for a review, see Prevedello & Vieira 2010). Appreciating the importance of 
matrix affecting ecological processes, conservation through distinct parcels of 
protected habitat should be increasingly replaced by the landscape-scale 
conservation strategies that would safeguard ecological variability in space and 
time (Lindenmayer & Franklin 2002, Villard & Jonsson 2009). 

Species respond to their environments in a hierarchical manner and over 
assemblages of species-specific spatial scales (Wiens 1989, Levin 1992), which 
further inflates the role of the larger spatial context in shaping biodiversity 
values at local levels. Many multi-scale studies have shown that the occurrence 
and abundance of species cannot be explained based on local factors alone, but 
also broader scales are important (Drapeau et al. 2000, Bakker et al. 2002, 
Cushman & McGarigal 2004). The relative importance of different 
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environmental variables on determining species distributions changes with the 
spatial scale of analysis (see e.g., Buler et al. 2007). Ecological processes may 
show differences in their responses to hierarchical scales. For example, Sirami et 
al. (2008) showed that colonization events in a bird community were multi-scale 
dependent while the extinction was driven solely by local habitat factors.  

The response of the species to environmental factors beyond the local ones 
has important implications for the scale of species conservation. In many cases, 
there might be a mismatch between the scale over which species respond to 
their environments and the scale over which conservation is planned (e.g., 
Nilsson 2009, Villard & Jonsson 2009). Usually this means that the conservation 
is planned at the scale notably smaller than that of species environmental 
response. This can rise because of the practical conservation constraints set by 
the landownership structure. For example, high share of private ownerships in 
a landscape may force conservation planning to a spatial scale unavoidably too 
small with respect to domain of ecological responses. However, the mismatch 
of scales may also be due to the lack of knowledge and expertise to view the 
ecological processes so tightly and in a rich manner operating in space. 

1.4 Species distributions exhibit aggregation 

Ecological responses (e.g. species occurrence, abundance, species richness) 
usually exhibit positive spatial autocorrelation so that nearby locations have 
more similar response values than those further apart. This similarity may rise 
mainly via two different mechanisms - extrinsic and intrinsic factors (Legendre 
1993, Fortin & Dale 2005). Extrinsic factors (such as climate, land cover and 
forest characteristics) that either indirectly or directly control ecological 
processes are usually themselves spatially structured. The positive 
autocorrelation in their structure is then transferred to the ecological response. 
This extrinsic form of autocorrelation may be referred to as spatial dependence to 
distinguish it from the true autocorrelation (correlation of a response variable 
with itself) rising from intrinsic factors (Legendre 1993, Lichstein et al. 2002) 
The intrinsic factors leading to spatial autocorrelation in a response (over the 
control of environmental factors) are generated by species ecology. The most 
evident intrinsic factor underlying spatial autocorrelation in species 
distributions is dispersal that is limited by distance (e.g., Bahn 2008). In 
addition, many kinds of ecological factors like biotic interactions (competition 
and predation) and social behavior may generate aggregation in a response (for 
a list of extrinsic and intrinsic factors producing positive autocorrelation in a 
response, see Miller et al. 2007).  

The spatial dependence and autocorrelation in a response is usually seen 
as a statistical nuisance, because spatial autocorrelation poses many kinds of 
problems for statistical testing, parameter estimation and model selection. The 
statistical problems are caused by the spatial dependence and autocorrelation 
that is left to model residuals after environmental covariates are included to a 
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model. The residual autocorrelation may rise as an outcome of several intrinsic 
and extrinsic factors, e.g., missing environmental covariates (Ishihama et al. 
2010), misidentified shape of response (Santika & Hutchinson 2009) and 
observation bias. Spatial autocorrelation represents one form of 
pseudoreplication so that samples provide partly overlapping information, and 
an individual sample does not contribute information worth of full degree of 
freedom (e.g, Dale & Fortin 2002, Fortin & Dale 2005). Because of this sample 
dependence, the degrees of freedom are overrated in non-spatial statistical 
analyses. This leads to too small standard error for the parameters, and thus 
inflation of Type I error rate (Dormann et al. 2007, Hoeting 2009). Non-spatial 
statistical tests carried out in the presence of positive spatial autocorrelation 
thus lead to too liberal test results (Cliff & Ord 1981). Spatial autocorrelation 
may also cause shifts in coefficient values (Dormann 2007, Bini et al. 2009), even 
inverting the direction of relationship (Kühn 2007). The relative importance of 
explanatory variables has also been shown to be affected when switched from 
non-spatial models to spatial ones, which have implications for the model 
selection in the presence of autocorrelation (Tognelli & Kelt 2004, Hoeting et al. 
2006, Segurado et al. 2006, Diniz-Filho et al. 2008). As results from statistical 
testing and modeling essentially guide conservation practices, the problems of 
inference in a presence of autocorrelation are not trivial.  Overall, accounting for 
the spatial autocorrelation allows for accurate and valid inferences made about 
the species-environment relationships (Keitt et al. 2002), and provides also 
sound basis for conservation management. 

The rigorous control of spatial autocorrelation has, however, merits far 
beyond the better meeting of statistical assumptions. As different spatial 
modeling methods have become widely available, with accumulated 
experiences and knowledge of their use, the understanding of the nuanced 
effects of space has risen to a new level. The capture of spatial autocorrelation 
leads usually to better predictive performance of the distribution models 
compared to non-spatial ones (Augustin et al. 1996, Knapp et al. 2003, Wintle & 
Bardos 2006, Hoeting 2009). This indicates that, in many cases, species 
distributions cannot be explained and predicted without explicit consideration 
of spatial effects. There may lie important information in spatial 
autocorrelation, the explicit use of which may offer qualitative and quantitative 
insights to the aggregating forces underlying patterns. The range and strength 
of spatial autocorrelation may serve as important cues to the nature and scale of 
process creating the patterns. It has also been suggested that accounting for the 
spatial autocorrelation may allow unravelling the hierarchical nature of 
environmental control, and identifying the environmental factors that act at 
finer spatial scales (Diniz-Filho et al. 2003). 

Further, comparisons of results from different spatial methods, or from the 
variations within one method, can be used to gain information on the role of 
intrinsic and extrinsic factors leading to aggregation (van Teeffelen & 
Ovaskainen 2007). However, the full quantification of their independent effects 
on aggregation is not possible. The interpretations in favour of intrinsic 
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autocorrelation are strengthened by the identification of plausible, species-
specific ecological traits and mechanisms expected to produce aggregation. The 
identification of intrinsic spatial factors behind aggregation would be especially 
important from the point of view of species conservation, because this offers a 
founded basis for the level and scale of aggregation to be targeted with spatial 
conservation planning. The aggregation produced by intrinsic factors is the 
element that cannot be understood and taken into account in conservation 
leaning on environmental factors alone, but it really creates needs for rigorous 
spatial thinking and planning. 

1.5 Connectivity 

Connectivity, in short, describes the potential for the intrinsic factors, which are 
mediated by dispersal, to operate. Ultimately, connectivity can be viewed as a 
realization of dispersal events (for example, as verified by population genetic 
analyses, see Segelbacher et al. 2010). Habitat connectivity is a prerequisite for 
the operation of ecological processes in space and time. Connectivity has been 
empirically shown to have positive effect on patch occupancy (e.g., Brouwers & 
Newton 2009b, Ranius et al. 2010), patch colonization (Hanski 1999, van 
Langevelde 2000), population size and density (Hanski et al. 1994), population 
growth rate, genetic variability, species persistence and species richness 
(Brückmann et al. 2010), and negative effect on patch extinction (Franken & Hik 
2004). Connectivity can be viewed as a key concept in spatially oriented 
ecology, and it serves an essential basis for spatial conservation planning.  

Connectivity is an emergent property, rising in an interaction between the 
physical structure of a given landscape and the ecological properties of a 
species (i.e. dispersal ability and propensity, habitat specialization, social 
system) so that landscape connectivity is always very species-specific 
phenomenon, not describable by a single value (Merriam 1984, Taylor et al. 
1993, Crooks & Sanjayan 2006). For the part of the physical landscape structure, 
connectivity embraces two components, habitat amount (and quality) and its 
configuration, while still allowing explicit considerations of both.  Connectivity 
is not, however, only a function of habitat amount and configuration, but 
encompasses ultimately a complexity of other factors of how organisms interact 
with spatial heterogeneity in a landscape (e.g., properties of a matrix) 
(Gustafsson & Gardner 1996, Mönkkönen & Reunanen 1999). Depending on 
species ecological traits, composition and configuration of the landscape mosaic 
surrounding habitat patches may have notable effects on species perception of 
connectivity. In these cases, straight-line distances between habitat patches may 
serve as a misleading and overly optimistic measure of the inter-patch 
separation actually experienced by a species (e.g., Chardon et al. 2003). 

The concept of connectivity has been approached from several (partly 
conflicting) perspectives during the last decade (see Tischendorf & Fahrig 2000, 
Moilanen & Hanski 2001, Tischendorf & Fahrig 2001), much reflecting the 
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complexity of the concept. Indeed, deep down the concept integrates much of 
the accumulated theoretical and empirical knowledge on species living in 
spatially heterogeneous, fragmented landscapes. The species specific perception 
of connectivity turns also the evaluation and management of landscape 
connectivity into challenging task. Differences in dispersal modes between 
group of organisms (i.e. whether they are active vs. passive dispersers, have 
knowledge of their surroundings) may affect the suitability of different 
connectivity measures (e.g., Ranius et al. 2010). From the management point of 
view, the optimal connectivity conservation will almost inevitably differ 
between species. For many species, the connectivity conservation does not only 
include habitat conservation and spatial planning, but also the management 
efforts to improve the quality of matrix.  

Species dispersal and conservation 

Species dispersal has been attributed to have a major role in shaping species 
distributions (Bahn 2008) and affecting population dynamics (Hanski 1994, 
Hanski 1999) in fragmented landscapes. Species dispersal ability is an 
important ecological trait in affecting connectivity responses of a species. 
Dispersal ability of a species may thus have implications for the optimal 
conservation strategy applied. However, there still exists a poor knowledge of 
the quantitative aspects of dispersal (range and rate) for most species (but see 
e.g., Edman et al. 2004b, Öckenger et al. 2005, Ranius 2006, Brouwers & Newton 
2009a). Dispersal ability of a species is not even quantifiable in a 
straightforward way because it is a realization of many kinds of ecological and 
behavioral traits. The dispersal ability of passively dispersing species is difficult 
to determine. For example, Schleicher et al. (2011) found out in their study on 
plants living in urban fragments that positive connectivity response was not 
only linked with dispersal range, but also with the number of seeds produced 
by an individual plant. On the other hand, for actively dispersing species the 
properties of matrix and behavioral traits linked with dispersal may play an 
important role in their connectivity responses.  

The role of stochastic dispersal events (e.g. extreme wind conditions) in 
species dispersal is dependent on temporal and spatial scale. At the very local 
scale and in a narrow timeframe, the probability of extreme dispersal events is 
low. Rare events, however, turn more probable when the spatial and temporal 
frames are broadened. From the point of view of species conservation, the 
emphasis should be on the more systematic component of species dispersal 
rather than the more unpredictable one, driven by stochastic extremes. In wind-
dispersed wood-decaying fungi with a high potential dispersal range, local 
spore sources have been still found to drive colonization patterns (Edman et al. 
2004a). 

Species with poor dispersal ability are suggested to be especially sensitive 
to habitat fragmentation (e.g., Henle et al. 2004). Range of dispersal sets the 
species-specific scale at which the effects of fragmentation are experienced. 
Susceptibility to isolation has been shown to be associated with the 
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conservation status of species (Penttilä et al. 2006). However, dispersal ability of 
a species is still one ecological characteristics among the others, and for 
example, competitive ability of a species and intrinsic rate of population growth 
may have as important role as dispersal on the success of populations in 
fragmented landscapes. The relative role of these different ecological traits on 
the population dynamics of species will probably vary with respect to 
landscape context.  

1.6 Preparing for the future 

Conservation planning is at its best proactive, preparing for the expected and 
unexpected environmental changes brought about by the future. Spatial 
considerations in conservation may play a great role in our successful 
preparation for these changes. Global climate change is predicted to pose a 
major threat to global biodiversity over the next century. Landscape 
fragmentation may further magnify the effects of climate change, because the 
range shifts may be restricted in highly fragmented landscapes. This interaction 
between climate and habitat fragmentation is empirically supported, e.g., by 
Hill et al. (1999), Hill et al. (2001) and Melles et al. (2011) (see also Opdam & 
Wascher 2004), and may be especially profound for species with low dispersal 
ability (Pearson and Dawson 2005). The predictions for range shifts based 
purely on climatic variables may thus be overly optimistic. Landscape 
connectivity will not only be related to species’ abilities to track shifts in their 
habitats, but also their abilities to adapt to new conditions and their persistence 
in the new landscapes they will colonize (Taylor 2006) Connectivity 
management may thus be justifiably seen as one important mean to mitigate 
some of the negative biodiversity effects caused by the climate change.  

Designation of habitat networks that would be resistant to environmental 
changes and population extirpations poses great challenges to spatial 
conservation planning. Resistant networks possess redundant connections, so 
that passages between habitat patches are not dependent on one route only but 
there exist alternative connections. This is a topic largely ignored so far, 
although the importance of habitat network robustness is already 
acknowledged (Williams et al. 2005, Matisziw & Murray 2009, Spring et al. 
2010) Long-term management of connectivity is a more complex practice than 
managing connectivity in one point of time (Matisziw & Murray 2009). 



  
 

 

2 AIMS OF THE THESIS 

My thesis aims at understanding the multiple effects of space behind species 
distributions and their implications for species conservation. My thesis consists 
of four papers (I-IV), all covering space considerations and associated 
methodology from different angles. I have viewed and evaluated conservation 
practices at the landscape level and in a spatial context. When comparing 
different spatial methods (i.e., connectivity measures and spatial modelling 
methods), my main interest has been in the better understanding of a 
phenomenon itself, not the mechanistic comparisons of the measures as such. I 
have viewed the space effects through connectivity concept as well as trough 
spatial autocorrelation and hierarchical scale effects, finally bringing them 
altogether in the last study. In the first two papers (I –II), I had a look on a 
forested landscape from a binary perspective – protected reserve areas 
embedded in unprotected matrix. Whereas in the consequent papers (IIII –IV), I 
have viewed the landscapes as spatially heterogeneous continuities, composed 
of different cover types. Here, I undergo the general background and main 
questions behind each study. 

In the first study (I), I addressed contributions of so called woodland key 
habitats (WKHs) to landscape level connectivity.  WKHs are small-sized habitat 
patches whose natural characteristics the Finnish Forest Act obliges to be 
maintained. WKHs are embedded in managed forest landscapes, and represent 
a branch of new forestry practices that aim at integrating biodiversity concerns 
to economically profitable forest management (Hansson 2001, Timonen et al. 
2010). At the landscape level, they form a protected area network with 
traditional reserves which represent the primary mean of biodiversity 
protection. In this study, my interests focused on evaluating the protected area 
network from a spatial perspective, and to understand the connectivity merits 
and spatial roles of the WKH patches as additional participants in that network.  

In the second study (II), I used the networks of the previous study (I) as a 
testing platform for the performance of various connectivity measures rooted in 
graph theory (see the Materials and Methods part). An increasing interest in 
landscape connectivity has been accompanied with a proliferation of various 
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connectivity measures, rising from different theoretical backgrounds and uses 
(Kindlmann & Burel 2008). I wanted to investigate whether the different 
connectivity measures value the connectivity contributions of the WKHs 
consistently at the level of the whole landscape and individual patches. I also 
wanted to test the role of network density (i.e. the amount of patches per area) 
as one potential factor leading to possible evaluational disparity among 
measures. 

In the third study (III), I pursued to shed light on the habitat association of 
the Siberian Jay (Perisoreus infaustus) at the territory and landscape level, 
because these broader spatial scales of association are rather poorly known for 
this species. In southern Finland, the species occurs at the southern range of its 
distribution area. The declines of the species during recent decades have been 
particularly directed to the southern populations, whose current distribution 
pattern has turned to highly patchy (Väisänen et al. 1998). The declines have 
been attributed to commercial forestry, and the conservation of the species is a 
hot and current issue in Finland. Social behavior of the species is complex and 
its dispersal is restricted to rather short distances. Therefore, I wanted to 
examine the additional power of spatial methods at explaining the recent 
distribution pattern in the southern Finland.  

In the fourth study (IV), I compared the parameter estimation and 
predictive performance of two spatial modeling methods with Bayesian 
implementation. Modeling results for the binary response variable, like species 
occurrence, has been found to be especially sensitive to the choice of spatial 
modeling method (Dormann et al. 2007). For that reason, I wanted to 
investigate whether this also holds for the two different spatial approaches 
fitted on the Siberian Jay data of the previous study (III). I was also interested in 
pondering the reasons behind the possible differences in the parameter 
estimates and predictions. As connectivity represents potential for intrinsic 
processes (mediated by dispersal) to operate, I also investigated the role of 
landscape connectivity in explaining the distribution pattern of the species – 
either alone or used along with the spatial methods. 

Together these four studies reveal the importance of many kinds of spatial 
effects controlling ecological processes, the effects of which are transferred to 
observed patterns. While relying on the theoretical background of classical 
spatial theories, my thesis aim at broadening the look on spatial effects by 
viewing landscapes as spatially structured and heterogeneous entities, and 
further complicating a scene by adding the hierarchical spatial effects. The 
important aim of the thesis is also to understand how the characteristics of the 
species themselves affect, in interaction with landscape structure, their 
responses. The thesis aims at demonstrating the independent and interrelated 
effects of the different spatial phenomena, and clarifies their relevance for 
species conservation. 



  
 

 

3 MATERIALS AND METHODS 

3.1 Boreal forest landscapes as a context 

In the boreal forest zone, landscapes are characterized by a great share of forest 
cover. For example, in Finland 86 % of the land area is classified as forestry land 
(Anonymous 2010). However, within these seemingly forested landscapes 
many forest species suffer from the loss, degradation and fragmentation of 
habitats. The habitat loss is brought about by intensive modern forestry that has 
resulted in many kinds of changes in the structural features and compositions 
of forest stands. Forest stands that undergo typical forest management 
according to present-day forestry recommendations (including prescribed 
planting of seedlings, two to three high thinnings and clear-cutting after a 
growth period of ca. 80-100 years) (Anonymous 2007) are characterized by 
even-sized and -aged forest structure without natural vertical tree layering, lack 
of old deciduous trees and low amount of dead wood (Esseen et al. 1997, 
Östlund et al. 1997). At the larger scale, forest landscapes have been subject to 
changes in their composition and configuration; e.g. old-growth areas are 
increasingly separated by clear-cut areas and young stands (Kouki et al. 2001, 
Löfman and Kouki 2001). 

According to latest IUCN evaluation (Rassi et al. 2010), a great share of 
threatened species in Finland (36 per cent) are dependent on forests. Forest 
species that are specialized in structural elements or habitats that are altered or 
decreased by forest management (e.g., coarse wood debris, productive forest 
biotopes, late successional stages) are the main sufferers. As the boreal forests 
are naturally very dynamic, many forest species have probably dispersal 
strategies well suited to locate available habitat and resources at the landscape 
level. In this kind of case, species respond mostly to the habitat loss caused by 
forest management. However, forest species with poor dispersal ability (for 
example, due to their dependence on static resources or stable habitats, see e.g., 
Hedin et al. 2008), or with otherwise restricted dispersal range (for example, 
due to social constraints), experience forested landscapes as dispersal-limited. 
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Then, in addition to habitat loss, species respond also to the effects of habitat 
fragmentation. Sensitivity to fragmentation intensifies the effects of habitat loss, 
and thereby represents one important species trait that inflates the vulnerability 
of a species to landscape level changes induced by commercial forestry (e.g., 
Penttilä et al. 2006). 

3.2 Conservation area network analyses (I and II) 

The network analyses conducted on reserve networks in three areas in Central 
Finland are based on digital datasets obtained from authorities, Metsähallitus 
and the forest company UPM Kymmene Oy. The reserve networks consisted of 
traditional conservation areas supplemented with woodland key habitats 
(WKHs). For traditional conservation areas, the data consisted of stand 
delineation with associated biotope information. For WKHs, the data provided 
information on the habitat delineation and the type(s) of the habitat. The three 
study areas comprised ca. 500 km2 each, and they differed in terms of density of 
WKHs and coverage of conservation area network. 

The network connectivity analyses were carried out using graph-theoretic 
connectivity approach. Graph-theory, or network theory, is a branch of science 
dedicated to the properties and functioning of networks (Gross and Yellen 
2006). Graph-theory, with its supply of various algorithms, allows for analyses 
at the level of the whole network or at the level of individual patches. In 
landscape ecology, the network level analyses can be used to evaluate 
landscape connectivity (Urban and Keitt 2001, Fall et al. 2007, Urban et al. 2009). 
The analyses at the level of individual patches enable the connectivity 
contributions and functional roles of individual patches to be evaluated. The 
patch-level analyses may be based on network centrality measures (see e.g., 
Estrada & Bodin 2008) or so called node removal analysis. In the node removal 
analysis, each patch is systematically removed from the network and the 
reconstructed network is compared with the original network which included 
the patch (Keitt et al. 1997). The connectivity loss caused by the removal of a 
patch measures the contribution of the patch to the network connectivity. Patch-
level connectivity evaluation with the mean of node removal analysis is often 
called the procedure of patch prioritization.  

I varied a critical species attribute, i.e. dispersal ability, systematically 
from 200 m to 25 km. I constructed six habitat networks with a hierarchical 
formulation. Forests and peat lands were the habitat types highest in the 
hierarchy, and the other, more specialized habitat types were subsets of these 
more general networks. This resulted in habitat networks having a substantial 
variation in terms of patch number and network coverage. I compared the 
absolute and relative connectivity contributions from the WKHs by comparing 
the network comprised solely of traditional reserves to the reserve networks 
augmented with WKHs. Connectivity evaluations were based on Integral Index 
of Connectivity - measure, a binary index that allows patches to be linked also 
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via indirect connections, i.e. paths (I). I also compared the connectivity 
evaluations of different graph theoretic connectivity measures, especially in 
terms of how they reacted when WKH patches were augmented to the reserve 
network (II). At the patch level, I assessed the connectivity contributions of 
individual WKH patches and their spatial potential to serve as a stepping stone 
patches in habitat networks (I). I evaluated also the consistency of different 
graph-theoretic connectivity measures to rate the connectivity values of habitat 
patches in three habitat networks varying in terms of patch density (II). As the 
connectivity value of a patch is combined effect of its area and position in a 
network, I evaluated the consistency separately for this composite value (i.e., 
determined by patch size and location) and for the value that is determined 
solely by patch location. I also investigated how different connectivity measures 
allocate relative weight between patch size and patch location on their 
connectivity ratings across the range of dispersal distances.  

3.3 Distribution modeling of the Siberian Jay (III and IV) 

The distribution modeling of the Siberian Jay was conducted in two areas 
(roughly 20 000 km2 each), situated at the southern edge of the continuous 
range of the species. The modeling of the habitat association of the Siberian Jay 
(Perisoreus infaustus) was based on two different kinds of occurrence data. The 
one dataset consisted of sighting records (reported by ornithologists and public) 
from databases administered by local ornithological societies. The other dataset 
included occupancy information that was got from repeated feeding site 
surveys. The dataset from the feeding sites was burdened with imperfect 
detection so that any visit to an occupied site yielded detection with a 
probability of far less than one.  

I used the multi-source Natural Forest Inventory (NFI9) data produced by 
The Finnish Forest Research Institute, National CORINE database of Finland 
and a raster-format digital elevation model. I calculated 14 territory level and 5 
landscape level covariates (Fig. 1) as candidates to explain the species 
distribution pattern. I used an information theoretic framework to assess the 
support for candidate models formed as prescribed combinations of 
environmental covariates. I constructed two separate model sets; one included 
only territory level covariates (i.e., territory level model) and the other also 
landscape level covariates (i.e., multi-scale model). In the modeling, I accounted 
for the imperfect detection inherent in the occurrence dataset. As a preceding 
step of parametric modeling, I created additional pseudo-absence points to the 
improbable occurrence zone as predicted by the Environmental Niche Factor 
Analysis. This helped me to correct for the effect of survey effort that was 
biased towards high-quality sites, thus providing only limited range of 
variation for many environmental covariates. 

For the best-supported models, I fitted Bayesian logistic regression and 
their correspondent spatially explicit Bayesian Gaussian Conditional 
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autoregressive (CAR) models (III). In the Bayesian framework, I also accounted 
for the imperfect detection using a hierarchical model formulation. I evaluated 
the models based on their model fit, ability to remove residual autocorrelation 
and their discrimination capacity. For the best-performing model of Central 
Finland, I also fitted autologistic regression model to compare its parameter 
estimates and model performance with the ones produced by the non-spatial 
and CAR model (IV). Based on the predictions for the species occurrence 
probability, I also calculated a surface to represent landscape connectivity. This 
so-formed new variable was fed to modeling in order to investigate the role of 
landscape connectivity underlying the aggregation in species distribution (IV). 
 
 
 

 

FIGURE 1 Territory and landscape level covariates were calculated with a circular 
moving window. A circle with a radius of 750 m encompasses area (1.8 km2) 
of the order of territory size in Southern Finland, 1-5 km2 (Lillandt 2000). A 
radius of 5 km corresponds to the average-range dispersal distances of the 
Siberian Jay (Gienapp & Merilä 2011). 
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4 RESULTS AND DISCUSSION 

4.1 Connectivity contributions from the woodland key habitats 
(I) 

My results show that the established reserve networks, with and without 
woodland key habitats (WKHs) set quite high demands on species dispersal 
ability in order to be functionally connected. Landscape connectivity seemed to 
be more informative measure for the amount of habitat actually available to 
organisms at the landscape level than total habitat area of a network, as the 
habitat area alone ignores the species specific differences in the access to 
available habitat. Species with poor dispersal ability were not able to exploit the 
habitat area provided by the WKHs to full degree. These species would require 
either larger set-asides or remarkably denser reserve network than exists 
presently. For the species with better dispersal ability, WKHs seemed to have 
potential to improve the network functionally by not only providing new 
protected habitat area but also by providing linkages between reserves. 

For the rather rare habitat types (herb-rich forests and spruce mires), 
WKH-based conservation seemed to be an efficient way to improve network 
coverage and functional connectivity. These kinds of habitats are located also 
naturally highly scattered in a landscape, and a WKH-based, highly targeted 
conservation seems to be an efficient way to increase their representativeness in 
a reserve network.  
Traditional reserves were better connected to other habitat patches than the 
WKH patches. These larger set-asides form the cornerstone of the reserve 
network, and form an essential support for the WKH-based conservation. WKH 
sites greatly benefit from having large reserve areas nearby. The results of the 
study show that also small-sized and scattered sites can be potentially valuable 
if the habitat distribution patterns and large-scale connectivity are 
acknowledged. Thus, spatial considerations do not exclusively support network 
aggregation and protection of large continuities, but may identify the 
combination of aggregation and scattering as a suitable conservation strategy. 
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The mere spatial properties of the WKHs are not a sufficient condition for their 
ecological value, but increased attention should be paid to maintaining their 
ecological quality in the future. 

4.2 Insights into the evaluation of connectivity (II) 

Although it is widely acknowledged that an increased connectivity is a desired 
property of habitat networks and individual patches, the definition and 
evaluation of connectivity is ambiguous. In this study, I compared the 
consistency and performance of various graph-theoretic connectivity measures 
in evaluating connectivity at the network and patch level. Graph-theoretic 
connectivity measures varied in terms of their conceptual underpinnings, and 
these differences were expectedly reflected to their ability to meaningfully 
measure network and patch level habitat connectivity.  

Some measures expressed the addition of WKH patches to reserve 
network leading as a negative connectivity effect, especially for species with 
rather poor dispersal ability. All the measures that acknowledge the 
connectivity contributions between all the pairs of patches indicated a positive 
connectivity effect of adding the WKH patches. The measures also showed 
differences in terms of how the connectivity contributions from the WKH 
patches were rated as a function of dispersal ability. In contrast to the measures 
using a probabilistic connectivity model, measures with a binary connectivity 
model indicated an existence of a transition range for connectivity, i.e., a range 
where a small change in dispersal ability yields a huge increment in 
connectivity.  

The patch prioritizations from the different connectivity measures were 
highly correlated, because the patch prioritizations were, to a large degree, 
driven by patch sizes. However, the prioritizations from the measures differed 
in terms of how much emphasis they put on patch size versus patch location 
across the range of dispersal distances. When the effect of patch size was 
controlled for, the measures value the locations of patches in a network context 
rather differently. Because in a sparser network the prioritizations were more 
determined by patch location than in a denser network, the inconsistency of 
patch prioritizations may be inflated in sparser networks.  

My results underline the fact that the network connectivity analyses and 
patch prioritizations should be interpreted with caution. Different measures do 
not provide consistent solutions to the problems of connectivity management, 
but are operating within their conceptual restrictions. The performance of 
measures should be evaluated with a full range of empirical datasets so that 
their applicability would be better understood.  
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4.3 Habitat associations of the Siberian Jay in boreal forest 
landscapes (III) 

While controlling for the imperfect detection and spatial autocorrelation, the 
Siberian Jay occurrence responded to the landscape context in both study areas. 
In the study area in central Finland, the Siberian Jay exhibited a stricter habitat 
association than in northern Karelia that is connected to a continuous 
distribution area of a northern Finland. In Central Finland, the occurrence of the 
Siberian Jay was especially enhanced by the spruce mires at the territory level 
and the forest cover at the landscape level. In Karelia, the occurrence was 
promoted, for example, by the mature spruce coverage at the territory level, 
and mires and low human impact at the landscape level. My results suggest 
that support the prevailing thinning recommendations may produce too open 
and uniform forest structure for the Siberian Jay.  

The comparisons between the non-spatial logistic regression and spatial 
CAR models showed that the spatially explicit approach led to a better model 
fit and predictive capacity than did the non-spatial approach. Especially at the 
territory-level, the superiority of the spatially explicit modeling was striking. 
For the multi-scale models (i.e., models that incorporated both territory and 
landscape level covariates), the performance of the spatial models was not 
remarkably better compared with the non-spatial ones. This indicated that 
spatially structured error in the territory level models also accounted for the 
missing landscape level covariates. Based on the social system and restricted 
dispersal, it was to be expected that the species distribution was also 
aggregated due to intrinsic factors. This intrinsic aggregation was supported in 
the study area in Central Finland, where the spatially explicit approach further 
improved the model performance of the multi-scale models. It is also possible 
that the structure of landscape variables may partly and coincidentally account 
for the inherent structure of the response. 

My results show that successful conservation for the species operates at 
the scales beyond the size of a single territory. For the long-term protection of 
the Siberian Jay, dense spruce forests and spruce mires should be available with 
suitable configuration at the landscape scale to support also the functioning of 
its spatially structured social system. This calls for aggregated conservation 
efforts in the landscape to enable natural rate of exchange of individuals 
between territories, and colonization of new empty territories near the source 
territories.  
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4.4 Alternative ways to account for space in distribution 
modeling (IV) 

While the CAR model incorporates the spatial dependence in a response to a 
spatially structured error term, the autologistic regression puts the spatial 
dependency into a form of a new variable. My results showed that the 
parameter estimates from the CAR model and autologistic regression differed 
notably; the parameter estimates from the CAR model were constantly greater 
in magnitude than those from the autologistic model. Two parameters turned 
out to be insignificant when switched from the CAR model to the autologistic 
regression model. The parameter estimates from the CAR model were roughly 
of the same magnitude with the one produced by the nonspatial model, 
although the confidence intervals of the parameter estimates were wider for the 
CAR model than for the non-spatial model. The narrow confidence intervals of 
parameter estimates for the non-spatial model are indicative of the tendency of 
non-spatial models to overrate the certainty in parameter estimates, thus 
leading to too liberal test results.  

However, when looked from the point of view of model outcome, 
modeling performance of the both spatial methods was superior to the one of 
the non-spatial model. Still, although their captured the same broad patterns for 
the species distribution, their predictions at the cell level showed 
inconsistencies. My results emphasize the fact that environment and space are 
strongly confounded, and modeling methods handle this interrelation between 
space and environment in different manners. Autologistic regression, that 
represents the spatial autocorrelation with a new variable, seemed to have 
greater tendency to allocate explanatory power to spatial effect (instead of 
environmental effect) than the CAR model, which in turn gives more weight to 
environmental factors. My results show that alternative modeling methods do 
not necessarily provide standard kind of control over spatial autocorrelation, 
but their characteristics can be also reflected to the inferences made about the 
association of species with their environments.  

I investigated also the explanatory role of landscape connectivity in 
explaining species occurrence pattern. The addition of new variable 
representing landscape connectivity did improve the model performance 
compared to results of the non-spatial models, but the model performance 
lacked behind those of spatially explicit CAR models (with the second order 
neighborhood). The benefit of using connectivity information along with a CAR 
model was only marginal, which indicates that CAR model can successfully 
handle the spatial correlation rising from intrinsic aggregation. So, the CAR 
approach, incorporating both extrinsic and intrinsic factors behind species 
distributions, seemed to be efficient for predictive purposes. However, the 
enhanced model performance of the non-spatial model when supplemented 
with the landscape connectivity component provided a qualitative insight into a 
role of intrinsic autocorrelation  shaping species distribution. 



  
 

 

5 CONCLUSIONS AND IMPLICATIONS 

Spatial structure in ecological patterns stems mostly from three reasons (see 
Wagner & Fortin 2005). First, species respond to environmental factors that 
exert control on their distribution and abundance, and those environmental 
factors themselves are spatially structured. The environment of a species is 
structured at many different scales, and with respect to many different factors 
at the same time. Second, species respond to their environments at their species-
specific scales and in a hierarchical manner so that a complex interaction exists 
between the spatially structured environment and spatially structured species 
responses. And third, many ecological processes are spatial, controlled by 
distances between operating units, which leads to intrinsic autocorrelation in a 
response on top of the all extrinsically rising dependence. My results on the 
Siberian Jay manifest all these three mechanisms operating on the spatial 
patterning of its distribution.  

Spatially structured ecological processes may bring about situations that 
species distributions and persistence cannot be understood and managed based 
on environmental factors or present-day species occurrences alone. For 
example, spatially structured processes may lead to species also occurring in 
suboptimal environmental conditions if supplied with the individuals from 
high-quality sources. Or alternatively, species may not occur in a high-quality 
site due to spatial constraints posed by a landscape. These both sides of a coin 
were demonstrated in the distribution pattern of the Siberian Jay in central 
Finland: occupied sites in the landscape strongly, and over the control of 
environmental factors, promoted the species occurrence in the neighboring 
sites. This effect was passed on to the species distribution pattern that expressed 
clear aggregation. Spatiality may break down the realization of the traditional 
niche concept, i.e. that species occur within the bounds of their environmental 
requirements in a n-dimensional environmental space, those bounds being also 
modified by biotic interactions (Hutchinson 1957). Thus, non-spatial snapshot 
views on distribution patterns may provide severely biased information on 
species niche and its relationship to environmental factors (see Pulliam 2000).  
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As indicated by my results on the connectivity of the reserve networks, the 
role of spatial planning plays a largest role for species that experience landscape 
as intermediately dispersal-limited. The greatest relative gainers of the WKH-
based conservation (in terms of enhanced network connectivity) were the 
species with intermediate dispersal ability, for which the WKH sites efficiently 
linked otherwise unconnected protected areas. In cases where the dispersal is 
not a limiting factor, conservation can operate at the local scale without the 
need for rigorous spatial planning. On the other hand, species with highly 
restricted dispersal would mainly benefit from large-sized reserves, because for 
such species the landscape is too fragmented irrespective of additional 
connectivity provided by WKHs. Therefore, there exists a limited potential for 
spatial planning in fragmented landscapes for the poorly dispersing species. In 
a similar manner, also the landscape context affects the potential value of 
spatial conservation planning. There exists greatest potential for spatial 
planning in landscapes whose degree of fragmentation is intermediate.  

The fact that the conservation value of a patch, along with other factors 
(such as its area, quality and species pool), is also determined by its spatial 
location in a habitat network, has important conservation implications. In 
practice, there might be situations where criteria for habitat quality, habitat 
area, recent species pool and spatial position of a proposed area in a network 
are in conflict. For example, when an isolated, high-quality proposed 
conservation area competes for reserve inclusion with the one of lower quality, 
well-connected area, there is a clear conflict. In order to weight these competing 
criteria in conservation decisions in an ecologically informed way, much 
knowledge on species-specific landscape responses is needed. As pointed out 
by my results on patch prioritizations derived from different connectivity 
measures, these measures do not provide consistent solutions to the weighting 
problem. Special emphasis should be given to the requirement that the modeled 
connectivity would really capture, or at least roughly approximate, the 
ecological process to be conserved. 

The theoretical and empirical evidence clearly indicates the ecological 
benefits of aggregated conservation acts and reserve design. However, even for 
a single species, connectivity exists at many spatial scales. Connectivity one 
detects is always linked with the scale of the analyses. Conservation should 
safeguard landscape connectivity at all spatial scales. If conservation efforts are 
viewed and aggregated overly with a local emphasis, and the broader scale of 
connectivity is ignored, the processes operating over broad spatial domains 
may be compromised. Thus, even the best-planned, independently 
implemented conservation schemes with a rather local focus do not necessarily 
form a functional whole at the larger scales (like regional or national). Thus, the 
general recommendation of aggregating conservation effort in a landscape does 
not provide particularly unequivocal guideline for conservation, but should be 
accompanied by the explicit consideration of the spatial scales.  

Conservation operates across the range of spatial scales – from global to 
very local ones. Connectivity conservation aims building interconnected 
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systems of habitats. According to Bennet et al. (2006): “By increasing the flow of 
organisms or continuity of processes between parts of the landscape mosaics, 
there is potential to build habitat networks that integrate conservation efforts at 
multiple levels – including local, landscape, regional, continental and even 
global scales”. Connectivity conservation may be thus viewed as a way to 
bridge these different spatial scales of conservations together, to form a 
functional whole in space and time. It is clear that the approaches and methods 
that give empirical support for the connectivity conservation also change with 
the scale of conservation (see Cabeza et al. 2010). When descended down from 
the broader spatial scales to local scales, general, multi-scale conservation 
problems are usually replaced by more specific ones. This is accompanied by 
the shift from rather implicit connectivity approaches to more explicit, complex 
and data-demanding, dynamic and species-centered ones.  

Too often fragmentation is falsely equated with the indisputable changes 
in spatial patterning of landscapes brought about by habitat loss (increasing 
interpatch distances, smaller patch sizes etc.). Apart from the popular use of the 
concept of fragmentation, it is also the problem in scientific research that the 
two components, habitat loss and fragmentation, underlying the spatial 
patterning of habitat and affecting ecological processes remain coupled (Fahrig 
2003). It would be important to make distinction between these two 
independent components when investigating species’ landscape responses. This 
would make it possible to tell apart the real fragmentation sensitive species 
from the species that merely respond to the effects of habitat loss. This would 
bring along a more founded basis for spatial conservation planning.  

In this thesis, I have worked upon a full range of spatial phenomena that 
underlie species distributions. My results have demonstrated that all these 
spatial effects are acting on species distribution patterns. Taking them into 
account in species conservation does not only safeguard the functioning of 
ecological processes, but at best brings about effectiveness into conservation. 
With careful spatial planning it is possible to yield a greater ecological 
effectiveness for a given investment to conservation. But to gain this 
effectiveness, the intricacies and complexities of spatial questions should be 
well understood both theoretically and empirically.  
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YHTEENVETO (RÉSUMÉ IN FINNISH) 

Lajien suojelu tilassa 

Lajien levinneisyys maisematasolla on useiden tilajärjestykseen nivoutuvien il-
miöiden, prosessien ja niiden välisten vuorovaikutusten monimutkainen loppu-
tulos. Lajeja säätelevät elinympäristötekijät ovat tilallisesti rakentuneita, jolloin 
niiden tilarakenne välittyy myös lajien esiintymiseen. Lisäksi lajit vastaavat 
elinympäristöönsä yhtäaikaisesti usealla eri tilallisella mittakaavalla. Lajien eko-
logiset ominaisuudet vaikuttavat näihin hyvin lajikohtaisten tilallisten mitta-
kaavojen määräytymiseen. Tämän kaiken lisäksi ekologiset prosessit itsessään 
ovat tilajärjestykseen sitoutuneita, mikä aiheuttaa lajien esiintymiseen yleensä 
vielä elinympäristön tilajärjestystä voimakkaamman tilallisen rakenteen.  

Tilaan liittyvät ekologiset ilmiöt korostuvat sopivan elinympäristön vä-
hentyessä maisematasolla. Tämän vuoksi tilaan liittyvien suojelukysymysten 
merkitys kasvaa erityisesti uhanalaisilla lajeilla, joiden elinympäristöjä ihmis-
toiminta on voimakkaasti vähentänyt ja heikentänyt. Tilassa tapahtuvien ekolo-
gisten prosessien ymmärtäminen ja huomioiminen on tärkeä osa lajistonsuoje-
lua, jonka tavoitteena on lajien pitkäaikainen säilyttäminen muuttuvassa maa-
ilmassa. Lisäksi tilallisten tekijöiden huomioimisella on tärkeä osa ekologisen 
tiedon käsittelyssä, jotta lajien esiintymisen ja runsauden suhteesta niitä sääte-
leviin elinympäristötekijöihin voidaan tehdä oikeita johtopäätöksiä.  

Väitöskirjani yhtenä boreaalisten metsien suojelukysymyksenä tutkin met-
sälakikohteiden merkitystä ja roolia osana perinteisten suojelualueiden muo-
dostamaa maisematason suojeluverkostoa. Käytin arvioinnissa verkkoteoriaa, 
joka tarjosi mahdollisuuksia tarkastella metsälakikohteiden merkitystä niin ko-
ko verkoston kuin yksittäisten suojelukohteiden tasolla. Tulokset osoittivat, että 
lajien liikkumiskyvyllä voi olla merkittävä vaikutus metsälakikohteiden tarjoa-
maan suojeluhyötyyn. Kytkeytyneisyysarviot voivat antaa realistisemman ku-
van suojeltavan pinta-alan ekologisesta vaikuttavuudesta kuin itse pinta-ala. 
Vaikka suuret suojelualueet ovat luonnonsuojelun tukiranka, maisematason 
kytkeytyneisyyttä voidaan suhteellisen hyvin liikkuvien lajien osalta parantaa 
myös pienialaisilla, talousmetsien suojelukohteilla. Erityisen tehokkaasti metsä-
lakikohteet lisäsivät verkostossa harvinaisten ja rehevien biotooppien (esimerk-
keinä lehdot ja rehevät korvet) edustusta, koska näiden biotooppien luontaisesti 
laikuttainen esiintymiskuva on vaikea saada turvattua suurten, keskittyneiden 
suojelualueiden keinoin.  

Toisena väitöskirjan suojelukysymyksenä tutkin lajistonsuojelua ja siihen 
liittyviä tilakysymyksiä kuukkelin (Perisoreus infaustus) näkökulmasta. Kuukke-
li on eteläsuomalaisessa metsämaisemassa viime vuosikymmeninä voimakkaasti 
taantunut ja nykyään hyvin laikuttaisesti esiintyvä pohjoisten taigametsien lin-
tulaji. Tutkin kuukkelin elinympäristövaatimuksia eteläisen Suomen metsämai-
semassa levinneisyysmallinnuksen keinoin. Mallinnuksessa käsittelin kuukke-
lin elinympäristösuhdetta kahdella tilallisella mittakaavalla, reviiritasolla ja 
maisematasolla. Käsittelin mallinnuksessa niin ekologisista prosesseista kuin 
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elinympäristön rakenteellisuudesta välittyvää vaikutusta kuukkelin esiintymi-
sen jakautumiseen maisematasolla. Tilallisten tekijöiden eksplisiittinen huomi-
oiminen mallinnuksessa tarjosi yhä paremman ja luotettavamman mahdolli-
suuden ymmärtää lajin elinympäristösuhdetta metsämaisematasolla. Tulokset 
antoivat viitettä siitä, että lajin esiintymistä metsämaisemassa yhtenäisen levin-
neisyysalueen ulkopuolella on vaikea ymmärtää puhtaasti elinympäristömuut-
tujien perusteella, vaan lajin ekologiset ominaisuudet ja käyttäytymispiirteet 
vaikuttavat sen esiintymiskuvaan. Lisäksi myös maisematason tekijät selittivät 
tuloksissani kuukkelin esiintymistä. Tulokseni antavat viitettä, että lajin suoje-
lua täytyy tarkastella tarpeeksi suurella mittakaavalla, ja suojeluponnistuksia 
pitäisi keskittää maisematasolla.  

Yksi keskeinen osa väitöskirjaani oli myös erilaisten tilaan liittyvien mene-
telmien (kytkeytyneisyysmittareiden ja tilallisten mallinnusmenetelmien) ver-
tailu. Tulokset osoittivat, että tilalliset menetelmät itsessään voivat vaikuttaa 
tuloksiin. Tämän vuoksi tilallisten analyysien tulkinta ja soveltaminen vaatii 
laajaa ymmärtämistä niiden takana olevista oletuksista ja tilaan liittyvien kysy-
mysten monimuotoisuudesta.  

Väitöskirjani tuo yhteen monia tilallisia ilmiöitä ja niiden käsittelyyn tar-
koitettuja menetelmiä. Metsämaisemataso on monien ekologisten prosessien 
näyttämö, jossa tapahtuvat sekä elinympäristön ja eliöiden että eliöiden väliset 
vuorovaikutukset. Monilla näillä prosesseilla on tilallinen ulottuvuus. Tämän 
ulottuvuuden yhä monipuolisempi huomioiminen tarjoaa mahdollisuuksia 
ymmärtää paremmin lajien esiintymistä sääteleviä tekijöitä ja prosesseja pirs-
toutuneissa metsämaisemissa. Tätä ymmärrystä voidaan käyttää hyvin monella 
tavalla hyödyksi käytännön lajistonsuojelutyössä.  
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a b s t r a c t

Woodland key habitats (WKHs) represent a potentially cost-efficient means to protect biodiversity in
managed forests. The Forest Act of Finland defines 13 habitat types of WKHs, which enjoy legal protec-
tion. It has been argued that WKHs are too small-sized and scattered in occurrence to be actually impor-
tant in the maintenance of forest biodiversity. However, from the species’ perspective, WKHs form a
network together with nature reserves. We evaluated the value and role of WKHs as a part of the whole
reserve network using a graph-theoretical connectivity approach in three areas (ca. 500 km2 each)
located in Central Finland. The networks were formed separately for different habitat types and dispersal
distances (ranging from 200 m to 25 km). We compared networks with and without WKHs, and thereby
quantified the contribution of WKHs to overall network connectivity. We also examined the role of WKHs
in the networks based on patch importance and network centrality measures. The results showed that
the connectivity contributions of WKHs are tightly linked with the dispersal abilities of threatened spe-
cies: WKHs enhance habitat connectivity, especially for species with an intermediate dispersal ability. For
species with a poor dispersal ability, the protection of large set-asides would be a more efficient way to
increase habitat connectivity than WKHs. WKH-based conservation seems to improve the connectivity of
naturally rare and scattered habitat types relatively more than common habitat types, but in sparse net-
works a greater dispersal ability is required to gain enhanced connectivity than in dense ones. The con-
nectivity value of WKHs can be understood as an emergent and scale-dependent property, appearing at
the level of the entire functional network. Provided that the site characteristics of WKHs can be safe-
guarded, they can be a valuable and efficient addition to the reserve network.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Habitat loss and fragmentation are major global threats to bio-
diversity, and efficient tools are needed to combat their negative
effects. Supplementing existing protected-area networks is one of
these tools. The history of protected-area establishment in many
global regions has produced a network that is biased toward infer-
tile landscapes that are not economically valuable for production
(Pressey, 1994; Balmford and Whitten, 2003). As a consequence
of bias towards landscapes of low productivity, areas of high prior-
ity for nature conservation tend to be located on unprotected pri-
vate lands (Knight, 1999). Protecting privately-owned land for
biodiversity involves many challenges, including the acceptance
of additional conservation efforts by the landowners.

Fragmentation can intensify the effects of pure habitat loss pro-
ducing potential population decline greater than expected solely
on the basis of remaining area (Andrén, 1994; Bender et al.,
1998) because of the loss of landscape connectivity. Connectivity
has been linked to various ecological processes: it affects species

colonisation and dispersal success (van Langevelde, 2000; Moila-
nen and Nieminen, 2002; Walters, 2007), extinction risk (Franken
and Hik, 2004), population density (Fahrig and Paloheimo, 1988;
Hanski et al., 1994) and population growth rate (Fahrig and Mer-
riam, 1985). Connectivity can thus be considered to be a desirable
quality of protected-area networks. Connectivity can only be
understood in the light of two components. Structural connectivity
refers to the degree to which some landscape elements are contig-
uous or physically linked to one another (With et al., 1997; Tis-
chendorf and Fahrig, 2000), whereas functional connectivity
recognises the behavioural responses of organisms to the physical
structure of the landscape (Taylor et al., 1993; Bélisle, 2005). Thus,
landscape connectivity depends not only on the amount and pat-
terning of habitat, but also on the habitat affinities and dispersal
abilities of species.

Modern forestry has severely altered the overall dynamics and
structure of Fennoscandian forest ecosystems, although the total
area of forest land has not changed (Östlund et al., 1997). Produc-
tion forests are younger, more even-aged, more homogeneous,
have less dead wood and deciduous trees than natural forests (Es-
seen et al., 1997). As a result of intensive forest management, many
forest-dwelling species have become threatened. According to the

0006-3207/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.biocon.2010.02.029

* Corresponding author. Tel.: +358 40 5419299; fax: +358 14 260 2321.
E-mail address: anne.laita@bytl.jyu.fi (A. Laita).

Biological Conservation 143 (2010) 1212–1227

Contents lists available at ScienceDirect

Biological Conservation

journal homepage: www.elsevier .com/locate /b iocon



latest assessment, 38% of the red-listed species in Finland are forest
species, and about 8% of all assessed forest species are threatened
(Rassi et al., 2001). A large number of forest species has adapted to
living under conditions that are not met in intensively managed
forests.

Also in Fennoscandia, the majority of protected areas are lo-
cated at high elevations and high latitudes, or in remote landscapes
with low economic value (Nilsson and Gotmark, 1992; Virkkala,
1996; Stokland, 1997). Protected-area networks in more produc-
tive regions of Fennoscandia appear to be inadequate, and there
is an imminent need to supplement the networks, particularly
for forests (Angelstam and Andersson, 2001). In reaction to the no-
tion that protected areas are not sufficient for forest biodiversity
conservation, new forestry practices have been implemented in
the managed forests of Fennoscandia. Woodland key habitats
(WKHs) represent a new means in ecologically more sustainable
forestry. WKHs are defined as habitats in which red-listed species
are likely to occur (but not necessarily observed), and they are con-
sidered as sites harboring forest biodiversity (Hansson, 2001).
WKHs are situated in managed forests, but still have many charac-
teristics of natural stands. The idea in supplementing the network
with WKHs is that although WKHs are usually rather small in size,
they are putative biodiversity hotspots. Thus, they may represent a
cost-efficient tool in safeguarding the forest biodiversity.

The Forest Act of Finland (1996/1093) defines a total of 13 dis-
tinct habitat types. The Forest Act obliges the forest owners to
maintain the special features of these ‘‘habitats of particular signif-
icance”, and allows only selective felling to be practiced on the
sites. Alongside with traditional reserves, WKH-based conserva-
tion, as implemented in Finland, ensures the permanent protection
of WKH sites. If not designated as WKH, the sites would be man-
aged as typical commercial forests (thinned and clear-cut accord-
ing to the prevailing recommendations). In the year 2007,
delimited WKH sites covered ca. 85,000 ha (0.6% of the total forest
land) of the private forests in Finland (Anonymous, 2008). In this
study, the term WKH refers to the WKHs enjoying legal protection,
although the concept of woodland key habitats in broad terms cov-
ers also other forest habitats besides the ‘‘Forest Act habitats”. The
other valuable habitats are preserved voluntarily by good forestry
practices (Meriluoto and Soininen, 1998).

WKH-based conservation has received a lot of criticism, largely
directed towards the small size of the WKHs and the associated
aversive ecological consequences (e.g. Hansson, 2001) (covered in
more detail in Section 4). The area of a delimited WKH is on aver-
age 0.62 ha (median 0.36 ha) (Yrjönen, 2004). It has also been ar-
gued that the WKHs form such a sparse network in a forest
landscape that they cannot be important in biodiversity protection
in the long term (e.g. Hanski, 2006; Pykälä, 2007). The too-small-
too-isolated critique neglects the fact that WKHs are embedded
in the landscapes together with the protected-area network. Pro-
tected areas and WKHs may have different functions in species
conservation, and they should be viewed as conservation means
that complement each other. Thus, the neteffect of WKHs on biodi-
versity hinges on their ability to support the network, and the con-
tribution of WKHs to biodiversity can only be assessed if evaluated
as integrated components in the landscapes. In the past decade, a
lot of effort has been put to compare WKHs and more traditional
protected areas (larger set-asides). We think it is time to evaluate
the combined effects and efficiency of both of the set-aside types.

Graphs are abstractions of landscapes, where patches are repre-
sented by nodes connected by links. Links stands for functional in-
ter-patch connections, and in the landscape-ecological context
they usually represent the dispersal potential or the number of dis-
persing individuals between patches. Graph theory and its termi-
nology in the field of landscape ecology have been reviewed by
Bunn et al. (2000), Urban and Keitt (2001), as well as Urban and

others (2009). A graph-theoretic approach makes it possible to
analyse how patches are linked at various distance thresholds
(i.e. dispersal abilities), which makes it possible to address the con-
nectivity of the landscape from the species’ perspective.

In this study we investigated the role of WKHs as an integral
part of the traditional reserve network. We used a graph-theoretic
approach to evaluate how and to what degree the WKHs support
the reserve network by not only augmenting the protected habitat
area, but most importantly, by creating functional connections
among reserves. We tracked the amount of habitat that is function-
ally connected from the species’ perspective to allow for spatially
dependent ecological processes. We have used a habitat-based ap-
proach and not tried to account for any specific ecological pro-
cesses (other than the dispersal potential among reserve
patches). We think that this landscape-ecological approach may
provide an insight into the value of WKHs not previously consid-
ered. We like to emphasise, however, that this is not a sufficient
evaluation of the real ecological value of WKHs, as this is a product
of many factors besides habitat connectivity (e.g. the habitat qual-
ity in WKHs, the effects of the surrounding matrix) (discussed
later).

We wanted to shed light on the following questions: (1) How
much do WKHs contribute to the connectivity of the network?
(2) Are WKHs an efficient way to supplement the reserve network?
Here we consider WKH-based conservation to be efficient if WKHs
contribute to network connectivity more than expected by their
contribution to habitat area. (3) What is the role of individual
WKH patches in the network? The contribution of WKHs in the
protection of rare and red-listed species obviously varies among
species according to their habitat affinities and dispersal abilities.
Thus we address question (4) What kinds of species benefit the
most from the WKHs (in terms of habitat specialisation and dis-
persal ability)? We analysed the resulting network separately for
different habitat types. In addition, to encompass a wide spectrum
of species dispersal abilities, the networks were scrutinised using
several threshold distances among patches varying between
200 m and 25 km.

It is expected that the value of WKHs may depend on the level
of habitat availability in the landscape. For that reason, we com-
pared the contribution and the role of WKHs in three areas which
differed in terms of their reserve coverage and density of WKHs.

2. Materials and methods

2.1. Study area

This study was conducted in Central Finland, which extends
some 240 km in the south–north direction (Fig. 1), and where for-
est characteristics vary in different parts of the region. In the re-
gion, forested land (including productive forest land, scrubland
and barren land) covers 85.5% of the total land area, and 96.6% of
this forest land is used for forestry (Korhonen et al., 2007). Pine-
dominated (Pinus sylvestris L.) forests cover 59%, spruce-dominated
(Picea abies (L.) Karst.) 31% and deciduous-dominated (mainly
birch, Betula pendula Roth and B. pubescens Ehrh.) 9% of the produc-
tive forest land.

Due to the strict privacy protection policy of forest owners in
Finland, there is no general access even for researchers to the data
containing the exact locations and delimitations of WKHs. For this
reason, we were obliged to restrict our analysis to three separate
study areas (Fig. 1) for which data were obtainable by special nego-
tiations. Our study areas are not a random sample of the region,
but represent the overall variation in landscape structures and
WKH densities across the region. Each study area covers approxi-
mately 500 km2 (Table 1).
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Area 1 is located in themiddle boreal vegetation zone and repre-
sents the low-productive watershed divide area of Suomenselkä,
characterised by sparsely forested mires, xeric heath forests and
rocky areas. In Area 1, forests cover 65.0%, mires and bogs 9.7% and
other scrublands and barren land 18.3% of the total land area (based
on thenationalCORINEdatabaseof Finland, spatial resolution25 m).

Area 2 is situated in the transitional zone between the southern
and middle boreal vegetation zones. This region is characterised by
numerous lakes and small water bodies. Forests cover 76.2%, mires
and bogs 4.9% and other scrublands and barren land 15.7% of the
total land area.

Area 3 is located in the southern boreal vegetation zone. This
southern area of Central Finland hosts many herb-rich forests
and other fertile habitat types. The vegetation in this area is more
varied than in other parts of the region (Uusitalo and Paakkolanva-
ara, 2007). Varied rock areas are also typical of this area. In Area 3
forests cover 64.6%, mires and bogs 4.5% and other scrublands and
barren land 21.2% of the total land area.

The proportion of strictly protected areas (of the total area of
forests and scrublands) in the whole of Finland is 8.9% (Southern
Finland 2.2%; Northern Finland 15.6%). The share of strictly pro-
tected areas in Central Finland is 1.9%. When protected areas
where cautious felling is allowed (WKHs, habitat types protected
under the Nature Conservation Act and areas set aside by industry)
are considered, the share of protected areas rises to 9.5% in the
whole of Finland (Southern Finland 2.7%; Northern Finland
16.3%; Central Finland 2.5%). In our study areas, protected areas
are more common than in Central Finland in general (Table 1) be-
cause all study areas host a national park, which increases their re-
serve coverage above the average. In Central Finland, WKHs on
private lands cover 0.4% of the forestry land (compared to 0.6% in
the whole country, 0.4% in Southern Finland and 0.8% in Northern
Finland) (Anonymous, 2008). Coverages of WKHs in our study
Areas 1 and 2 are on the average level, but Area 3 comprises more
WKHs than average forest landscapes.

Fig. 1. The three study areas located in Central Finland.

Table 1
Areal information for the three study areas.

Measure Area 1 Area 2 Area 3

Total area (km2) 507 517 465
Total land area (km2) 454 487 374
Area of forests, scrubland and barren land (km2) 431 483 347
Total area of reserves (ha) 5749 2244 4030
Coverage of reserves (%)a 13.3 4.6 11.6
Number of WKHs 195 279 533
Total area of WKHs (ha) 165 215 310
Coverage of WKHs (%)a 0.38 0.45 0.89

a % of area of forests, scrubland and barren land.
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2.2. Landscape and habitat data

Data on the habitat types and exact locations of WKHs in the
study areas were obtained from Metsähallitus (state-owned land),
forest companies in the region, and from the Forest Centre in Cen-
tral Finland (privately-owned forests). Fourteen landowners de-
nied permission to data on their forest holdings, which excluded
68 WKH sites from our analyses. The excluded sites comprise
6.2% of the total number of WKHs in our three study areas, and
all WKH-habitat types were represented in them. Because of this,
our analyses will be conservative and the overall contribution of
WKHs to the network connectivity for all habitat types is in reality
somewhat greater than our results indicate.

The protected-area network included national parks, nature
conservation program reserves, privately-owned protected areas,
Natura 2000 areas, habitat types protected under the Nature Con-
servation Act, protected areas included in the regional plan, and
sites protected by forest companies’ own decisions. Hereafter we
shall refer to all these other protected areas besides WKHs as ‘re-
serves’. The habitat type information for the reserves was obtained
from the GIS-based database administered by Metsähallitus, which
contains detailed habitat type classifications for all patches in re-
serves. For some privately-owned reserves, habitat type informa-
tion was obtained from the Regional Environment Centre and
from the Regional Council of Central Finland.

Habitat type information was classified to form six habitat net-
works (Tables 2 and 3). All adjoining patches of the same habitat
type were aggregated to present the network from the species’
point of view. The reserves and WKHs were dealt with separately
in the analyses, however. The networks formed a hierarchical orga-
nisation. Forest and peatlands were highest in the hierarchy, and
the networks in the lower levels were subclasses of the more gen-
eral networks. Networks also overlapped with each other. For
example, forests and peatlands shared spruce-birch fens that foster
species that are common to both habitat types. Herb-rich spruce
mires were also included in herb-rich forest network as they host

species typical of herb-rich forests in addition to their own charac-
teristic species.

A WKH can comprise more than one habitat type. For example,
the immediate surroundings of brooks can also have characteristics
of herb-rich forests and herb-rich spruce mires. Usually the habitat
subtypes are also registered in the database, and we treated aWKH
as representative of all the habitat types recorded.

2.3. Network analyses

We calculated the overall network connectivity for all six habi-
tat networks with a threshold distance ranging from 200 m to
25 km. The increment of threshold distance was calculated as
xh+1 = xh � e0.4, starting with the minimum distance threshold of
200 m. This yielded a (rounded) series of distance thresholds:
200 m, 300 m, 400 m, 700 m, 1 km, 1.5 km, 2 km, 3 km, 5 km,
7 km, 10 km, 15 km and 25 km. We wanted to make the incre-
ments larger with increasing threshold distance. For poor dispers-
ers, an increment of 100 m may have a great influence on
functional connectivity, but for good dispersers only increments
of kilometres in distance will matter.

For every habitat type two networks were constructed: one
without WKHs and the other with WKHs. By comparing the two
networks, we inferred the contribution of WKHs to the network
connectivity at different threshold distances. We calculated the
%-increase in connectivity that was produced by the addition of
WKHs to the network. We also calculated the proportion of the
overall network connectivity that was contributed by the WKHs.

Networks were analysed as undirected graphs. Link weights
were determined based on Euclidean edge-to-edge distances be-
tween patches. The network interpretations were based on the
Integral Index of Connectivity (IIC) (Pascual-Hortal and Saura,
2006, 2008), which ranges from 0 to 1 and is computed as:

IIC ¼
Pn

i¼1

Pn
j¼1

ai �aj
1þlij

A2
L

Table 2
Habitat networks analysed in our study. Habitat network refers to our reclassification of habitat types in reserves and WKH types outside reserves to provide six networks. The
networks are to some extent hierarchical as, for example, ‘‘Forests” include habitat types and WKHs of ‘‘Heath forests”.

Habitat network Habitat types in reserves WKH types

Peatlands Pine mires, fens, eutrophic fens and spruce-birch fens � Sparsely forested mires
� Eutrophic fens
� The immediate surroundings of small ponds (if not defined as flooded meadow)

Forests Heath forests, herb-rich forests, spruce mires, wooded
swamps and forests on rocky terrain

� Immediate surroundings of brooks, rivulets and springs (in forest area)
� Fertile patches of herb-rich forests
� Herb-rich spruce mires
� Heathland forest islets in undrained peatland
� Steep bluffs and the underlying forest stands
� Gorges and ravines
� Sandy soils, exposed bedrocks and boulder fields

Heath forests Heath forests (barren, xeric, sub-xeric, mesic, herb-rich),
herb-rich forests and spruce mires (excluding spruce-
birch fens)

� Immediate surroundings of brooks and rivulets
� Fertile patches of herb-rich forests
� Herb-rich spruce mires
� Heathland forest islets in undrained peatlands
� Steep bluffs and the underlying forest stands

Herb-rich forests Herb-rich forests, herb-rich heath forests and herb-rich
spruce mires

� Fertile patches of herb-rich forests
� Herb-rich spruce mires

Spruce-mires Spruce mires and spruce-birch fens � Herb-rich spruce mires

Herb-rich spruce mires Herb-rich spruce mires � Herb-rich spruce mires
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where n is the total number of patches, ai and aj are the sizes of
patches i and j, lij is the number of links in the shortest path be-
tween patches i and j, and AL is the total area of forested land (for-
ests, scrubland and barren land) in the landscape. IIC reaches unity
when all of the forested land is occupied by the given habitat type.

IIC is based on a binary connection model, and it treats two
patches as connected if a link weight is below a threshold distance
and otherwise as unconnected. IIC appreciates the habitat avail-
ability concept by integrating the habitat amount and connections
between patches in a single measure. This approach recognises
that connectivity also happens within a habitat patch, not only be-
tween patches. Area-informed indices avoid the ecologically coun-
terintuitive outcome that network connectivity increases with the
number of patches, irrespective of the total patch area.

In addition to the overall network evaluation, we calculated
patch importance and centrality measures for individual
patches. With the patch-level measures we wanted to analyse
the role of WKHs in the network based on comparisons between
WKH and reserve patches. Patch importance and network cen-
trality measures were calculated at the distance thresholds of
500 m, 1 km, 2.5 km, 5 km, 7.5 km and 10 km. Patch importance
values were calculated with the node removal analysis: each
patch is systematically removed from the network and the
reconstructed network is compared with the original network
including the patch. The connectivity loss (per cent) measures
the contribution of the patch to the network connectivity. Patch
importance values were calculated based on IIC connectivity. We
also calculated the per area based importance values by dividing
the patch importance value by the patch area. Inferences were
based on averaged patch importance values over all the thresh-
old distances.

The network centrality of nodes was evaluated with two mea-
sures: degree and betweenness centrality. The degree of a patch
equals the number of its direct neighbors. It is a good and simple
measure of determining how well a patch is connected to other
patches at a local scale (Estrada and Bodin, 2008).

The betweenness centrality of a patch is the proportion of the
shortest paths (based on topological distance) between all pairs
of patches which run along the patch. For patch xi the betweenness
centrality is calculated as

CBðxiÞ ¼
XnXn

j<k

bjkðxiÞ

where bjk(xi) is the proportion of the shortest paths linking xj and xk
that contain xi and i– j– k (according to Freeman et al. (1991)).
The contribution of a patch to the large-scale connectivity of the
landscape increases with the betweenness centrality measure
(Estrada and Bodin, 2008). Betweenness centrality can be used to
point out the patches that are located in critical positions relative
to other patches from the point of view of a functional network,
and has been used to identify stepping stone patches in a patch net-
work. If these critical patches (cut-nodes in graph terminology)
were removed, the network would risk being dissected into isolated
groups of patches.

We confined our analyses to top-ranking patches in between-
ness centrality, because low to intermediate centrality scores do
not necessarily hold any meaningful information about the role
of the patch in the network (Estrada and Bodin, 2008). We calcu-
lated the average for betweenness centrality over all the threshold
distances. The patches with an average value >0.01 were desig-
nated as top-patches. To check if WKHs contribute to betweenness
centrality more than expected by chance, we calculated the prob-
ability of finding k WKH patches among n top-patches based on
binomial distribution with the following formula:

PðX ¼ kÞ ¼ ðn; kÞpkð1� pÞn�k

where p is the proportion of WKH patches in a network.
Graphs were analysed with Conefor Sensinode v.2.2 (Saura and

Torné, 2009) and Pajek v.1.23 (de Nooy et al., 2005).

3. Results

The patch sizes in reserves were generally consistently larger
than those in WKHs (Appendix A). The differences were not so
marked, however, for fertile and rare habitat types (e.g. herb-rich
forests, spruce mire, herb-rich spruce mires). The difference was
even reversed for spruce mires in Area 2. In Area 2 herb-rich spruce
mires only occurred in WKHs.

The influence of threshold distance on connectivity was evident
in all the results. Networks experienced radical changes with
increasing threshold distance; they were mainly composed of iso-
lated patches at small threshold distances, whereas at larger dis-
tances they mainly occurred as one component with multiple
pathways between patches (Fig. 2).

Table 3
Number of patches and total area (ha) of different habitat types in WKHs and reserves for the three study areas.

Biotope Area 1 Area 2 Area 3

WKH sites Reserves WKH sites Reserves WKH sites Reserves

Peatlands
N 53 123 89 82 113 137
Area total 46.2 2738.3 96.2 756.1 88.4 1461.3

Forests
N 123 309 162 165 355 301
Area total 117.3 2664.0 127.8 1400.6 224.0 2516.7

Heath forests
N 62 317 74 156 242 286
Area total 69.7 2551.5 78.2 1367.0 155.9 2478.2

Herb-rich forests
N 25 17 17 3 112 116
Area total 28.3 50.2 17.2 8.0 67.4 312.9

Spruce mires
N 24 134 10 59 43 163
Area total 27.3 255.8 14.2 180.7 28.9 174.8

Herb-rich spruce mires
N 24 12 10 0 43 38
Area total 27.3 34.2 14.2 – 28.9 27.0
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For all habitat types, the connectivity of the network in Area 2
was remarkably lower than in other areas (Fig. 3.) Area 3 exceeded
other areas in connectivity for forest habitats, whereas Area 1 had

the highest connectivity for peatlands and spruce mires. The
enhancement in connectivity from WKHs varied according to the
threshold distance and among areas as well as habitat types
(Fig. 3). This becomes evident when looking at the percentage in-
crease in connectivity with increasing threshold distance calcu-
lated for all habitat types (Fig. 4). WKHs benefited mostly
dispersal-limited species in networks of common habitat types
(peatlands, forests, heath forests), for which the connectivity in-
crease brought about by WKHs peaked at about threshold dis-
tances ranging from ca. 2 to 5 km. In networks of rare habitat
types (e.g. herb-rich forests, spruce mires, herb-rich spruce mires),
the relative contribution of WKHs to connectivity peaked at much
larger threshold distances. But in sparse networks of rare habitat
types, the level of the relative connectivity increase was much
higher than in dense networks of common habitat types across
all threshold distances (except the very smallest ones). This
sparse-dense difference was also evident when different areas
were compared with each other. Area 2, with small reserve cover-
age, gained generally more connectivity from WKHs than the other
areas. For example, for the herb-rich forest network in Area 2,
WKHs increased the habitat area by over 200%, leading to a con-
nectivity increase of over 600%. For more dense networks, the con-
nectivity increases were not so pronounced. For example, in
networks of forests the areal increases of ca. 4–9% yielded connec-
tivity increases of ca. 20–50%.

The efficiency of WKH-based conservation was highly depen-
dent on the threshold distance. The proportion of the connectivity
contributed by WKHs was smaller than their areal proportion (i.e.,
the proportion of WKHs of total network area) at small threshold
distances, but with greater threshold distances the relative contri-
bution exceeded the areal proportion in all cases (Fig. 5; see
Appendix B for result summary). The threshold distance at which
the relative connectivity contribution exceeded the areal propor-
tion was network-specific, ranging between 1 and 10 km. For
example, in the herb-rich forest networks of Areas 1 and 2, effi-
ciency was achieved at the threshold distance of 5 km, whereas
the networks of common habitat types reached the efficiency at
a smaller threshold distance, for example heath forests at 1–2 km.

At the level of individual patches, the reserves exceeded the
WKHs in patch importance values calculated per area unit (Table
4) (area-informed IIC-patch importance values are summarised in
Appendix C). The median values for patch importance were in
every case larger in reserves than in WKHs. Reserve patches are
thus in general more valuable thanWKHs, not only because of their
larger size, but also due to their favourable configuration. Some
small-sized stepping-stone WKHs had high patch importance val-
ues per area unit, which in some cases raised the average patch
importance values of WKHs to a higher level than in the reserves.
For example, the herb-rich forest WKH patches in Areas 2 and 3
contributed, on average, more to network connectivity per area
unit than their reserve counterparts. In networks of rare habitat
types, the importance of one area unit was higher than in the net-
works of common habitat types. For example, one hectare patch in
the herb-rich spruce mire networks was approximately worth 3%
of the overall network connectivity, whereas in the forest network,
one hectare patch was worth 0.05–0.1%. Any single WKH patch in a
network of rare habitat type may have a notable value, contribut-
ing several percent to the whole network connectivity.

Reserve patches had on average more neighbors than WKHs at
all threshold distances, and thus were better connected at the local
scale. This applied, for example, to herb-rich forests in Area 3
(Fig. 6). Only in the herb-rich forest network in Area 2 did WKHs
have on average a higher degree of scores than reserves across
all scales. The degree centrality measures are given in Appendix D.

In sparse networks, proportionally more patches scored high in
betweenness centrality than in dense ones. Individual patches in

1km

5 km 

10 km

Fig. 2. The herb-rich forest network of Area 1. WKHs (in pale gray) and other
reserves (in dark grey) are shown as spheres proportional to their patch sizes. This
is a complete graph presentation of the habitat network, where the connections
between patches are thresholded at link weights of 1 km, 5 km and 10 km.
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dense networks did not play such a critical role in betweenness
due to numerous alternative connections. The proportion of top-

patches (of the total number of patches in an area) ranged from
2% in the heath forest network (network size 656 patches) of Area

with WKHs
w/o WKHs

Threshold distance (km)
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Fig. 3. Overall network connectivity based on the Integral Index of Connectivity (IIC) for different habitat networks as a function of threshold distance (i.e. dispersal ability).
Two networks are formed; one without WKHs and another with WKHs.
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3–55% in the herb-rich forest network (network size 20 patches) of
Area 2. The median proportion for top-patches for all area-habitat
type network combinations was 11.6%.

In general, top-patches were distributed among reserves and
WKHs in direct proportion to their numbers. However, in the for-
est, spruce mire and herb-rich spruce mire networks of Area 3,
there were more WKHs among top-patches than expected by
chance (p = 0.022, p = 0.014 and p = 0.019, respectively).

4. Discussion

When analysed from the point of view of a functional network,
WKHs seem to be valuable. WKHs did not just contribute to the re-
serve network in terms of area, but they also created new inter-
patch connections. To ensure the availability of habitats that occur
naturally scattered in a landscape, WKHs may be a more efficient
and straightforward form of conservation than large reserves. We

Fig. 4. Increase in IIC connectivity (per cent) brought about by the additions of WKHs to the different reserve networks as a function of threshold distance.
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suggest that WKHs provide a means to supplement the nature re-
serve network in rare and scattered habitat types. This was evident
particularly for herb-rich forests and herb-rich spruce mires. Large
continuous forest reserves do not provide area or connectivity for
these habitat types, and WKHs are definitely needed both to in-
crease habitat availability and to promote the dispersal of species
specialised in such habitat types.

The efficiency of theWKH-based conservation depended greatly
on the dispersal abilities of species. For species with weak dispersal
capabilities, WKHs are not likely to be an optimal way of providing
habitat, but larger set-asides would be a more efficient solution.
For species with good dispersal capabilities, WKH-based conserva-
tion seems to be efficient when analysed from the network per-
spective. For these species the WKHs are also bridging habitats in
reserves that would otherwise remain unconnected, and thus in-
crease habitat availability over their own areal proportion. There
is no specific limit for the dispersal capacity above which the

WKH would prove to be efficient; instead, the outcome is depen-
dent on the characteristics of the network. For species requiring
more rare and scattered habitat types, a greater dispersal capacity
is required in order for them to benefit from the contribution of
WKHs to connectivity than for species requiring more common
habitat types.

The result of our study, i.e., that the networks were in general
considerably more connected with than without WKHs, points to
the value of WKHs at the level of the whole network, not at the le-
vel of individual WKHs. Reserve patches were generally larger in
size and more strategically located than WKHs. It is the combined
effect of all the WKHs together with reserves that makes them
valuable in the network. The relatively high density of WKHs is
the most likely reason for their value in the network as a whole.
However, WKHs among the top-patches in between centrality
indicate that some individual WKHs are also important in sustain-
ing the large-scale connectivity of the networks. Without WKHs,

Fig. 5. The proportion (%) of WKHs of overall network connectivity as a function of threshold distance for the herb-rich forest and heath forest network of Area 1. The
proportion (%) of WKHs of the total network area is shown with a dashed line. WKHs are an efficient way to increase landscape connectivity when their proportional
connectivity contribution exceeds their areal proportion in the network.

Table 4
Patch importance values per area unit (ha) (based on the Integral Index of Connectivity, IIC) compared between WKHs and reserves for three study areas. Results were WKHs have
higher average patch importance values per area unit than reserves are in bold.

Area 1 Area 2 Area 3

WKHs Reserves WKHs Reserves WKHs Reserves

Peatlands
Median 0.027 0.054 0.107 0.109 0.049 0.083
Mean ± SD 0.031 ± 0.01 0.053 ± 0.03 0.118 ± 0.05 0.127 ± 0.06 0.053 ± 0.02 0.086 ± 0.04

Forests
Median 0.036 0.067 0.073 0.081 0.035 0.068
Mean ± SD 0.101 ± 0.01 0.063 ± 0.47 0.107 ± 0.18 0.101 ± 0.05 0.046 ± 0.06 0.064 ± 0.02

Heath forests
Median 0.032 0.073 0.084 0.084 0.038 0.071
Mean ± SD 0.045 ± 0.09 0.068 ± 0.01 0.898 ± 6.83 0.103 ± 0.05 0.048 ± 0.05 0.068 ± 0.02

Herb-rich forests
Median 1.174 2.313 4.472 5.320 0.355 0.389
Mean ± SD 1.416 ± 0.78 2.319 ± 0.53 4.576 ± 1.76 2.319 ± 1.90 0.424 ± 0.42 0.406 ± 0.13

Spruce mires
Median 0.303 0.714 0.525 1.069 0.445 1.114
Mean ± SD 0.369 ± 0.27 0.750 ± 0.34 0.625 ± 0.21 0.919 ± 0.53 0.449 ± 0.12 1.088 ± 0.46

Herb-rich spruce mires
Median 1.440 2.989 10.532 – 2.355 3.705
Mean ± SD 3.214 ± 5.20 2.811 ± 0.61 10.368 ± 2.24 – 3.340 ± 4.14 3.773 ± 1.62
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dispersing individuals would experience the network as more
fragmented.

The coverage of the reserve network in Area 2 is closest to the
typical level in Southern Finland, although somewhat above the
average. The share of WKHs in Area 2 represents the average level
in Central Finland and is ca. 0.1% lower than in Southern Finland as
a whole. In our study, Area 2 exemplified an area with a sparse re-
serve network, and in this area the connectivity of the reserve net-
work was greatly enhanced by WKHs. This reflects the potentially
important role of WKHs as part of the reserve network in Southern
Finland. In regions with substantially greater reserve coverage, the
WKH-based conservation most likely serves species that are highly
dispersal-limited. The results from Area 3 indicate that the high
density of WKHs increases the value of WKH-based conservation.
This is most evident when comparing the results from Area 1
and Area 3 which cover approximately the same reserve area while
WKHs are more numerous in Area 3.

The target species of WKHs are red-listed species with small
areal demands, mainly bryophytes, invertebrates (though very
poorly studied), lichens, polypores, and vascular plants. Empirical
evidence suggests that WKHs may be biodiversity hotspots for epi-
phytic lichens (e.g. Johansson and Gustafsson, 2001; Pykälä, 2004)
and rare bryophytes (Perhans et al., 2007; but see Gustafsson et al.,
2004), but not necessarily for polypore fungi (Sippola et al., 2005).
Dispersal has been considered a limiting factor for many threa-
tened forest species, which call for spatial considerations in their
protection (see Edman et al. (2004a) and Penttila et al. (2006) for
polypores; Sillett et al. (2000) and Johansson and Ehrlén (2003)
for epiphytic lichens).

The dispersal capacities of threatened forest species are poorly
known, and thus we cannot draw firm conclusions about how large
a proportion of the red-listed species are good enough dispersers to
gain benefit from the enhanced connectivity provided by the
WKHs. Our range of threshold distances (from 200 m to 25 km)
is based on the dispersal estimates for threatened forest beetles,
as they represent the extremes of reported dispersal abilities for
threatened forest biota. The maximum detected dispersal distance
of a hollow-tree specialist Osmoderma eremita was found to be
190 m (Ranius and Hedin, 2001), whereas Jonsson (2003) recorded

a median dispersal distance of 12 km and a maximum distance of
28.7 km for the saproxylic beetle Oplocephala haemorrhoidalis in a
flight-mill experiment. When more information on species dis-
persal distances becomes available, our results can be interpreted
a posteriori for any given threatened species with an estimate of
its dispersal ability. It is worth noting that a functional reserve net-
work cannot be based on extreme dispersal events. For example,
although the individual airborne spores of polyporous fungi can
travel very long distances, the successful colonisation (requiring
large number of spores) of polypore species has been suggested
to be dispersal-limited (Edman et al., 2004a,b). Thus, it is impor-
tant that the dispersal ability estimates used for interpretations
are ecologically realistic and not overly optimistic.

To be functionally connected, reserve networks (even with
WKHs) place great demands on the dispersal ability of organisms.
If a species’ maximum dispersal distance is 3 km, all habitat type
networks are unconnected (based on IIC). Networks of peatlands,
forests and heath forests are very close to being connected with
this threshold distance, but individuals would still perceive the
other networks disconnected. It seems that the sparser networks
are too fragmented for dispersal-limited forest species. The WKH
patches considerably increased the connectivity of the sparse net-
works, but the increase in connectivity benefits most the species
with a good dispersal ability (up to 5 km). It is kilometres that mat-
ter in these networks, not hundreds of metres. For poor dispersers,
the networks with or without WKHs consist mainly of isolated
patches.

The binary approach to a landscape consisting of a matrix sur-
rounding the suitable ‘‘islands” of habitat patches is appropriate
for the species that perceive the matrix as predominantly hostile.
Many red-listed species have such specific habitat requirements
(for example, those requiring a shady microclimate or a high den-
sity of dead-wood) that they cannot easily be fulfilled in produc-
tion forests. The degree to which the reserves are functionally
linked by dispersal becomes increasingly important for those spec-
ialised forest species. By contrast, the species for which the matrix
also provides habitats and resources, perceive the landscape as a
more gradually varying entity of different resource densities. For
such species, our analysis may severely underestimate habitat
availability and landscape connectivity.

In our study, the distances between patches were calculated as
Euclidean distances. As the target species of WKHs mainly disperse
by airborne spores and seeds, a geographical distance is a good
approximation of the inter-patch distance experienced by an
organism. For those species that use insect vectors or active move-
ment (shaped by the matrix) for their dispersal, the straight-line
distance may underestimate the effective distance between
patches.

We analysed the value of WKHs only from the habitat connec-
tivity perspective. There are also other things that need to be con-
sidered to determine the ultimate value of WKHs in the
conservation of threatened species. There are many qualitative
problems in setting aside small forest parcels embedded in a man-
aged forest matrix. Many of the problems are directly related to the
small size of the WKHs. Our study was conducted on the assump-
tion that WKHs contribute to connectivity worth their habitat area.
Ecological processes are, however, usually weighted down in small
patches surrounded by an intensively managed matrix, so the hab-
itat area does not necessarily equal the ecological value. The smal-
ler the patch is, the greater the influence external factors are likely
to have on the microclimatic conditions (Saunders et al., 1991).
According to a study by Aune et al. (2005) most of the small-sized
WKHs totally lack core area. The areas of WKHs based on official
delimitations may be too optimistic, especially from the point of
view of species that are sensitive to microclimatic conditions.

Fig. 6. Comparisons of degree centrality measures between WKHs and reserves for
the herb-rich forest patches in Area 3 at threshold distances ranging from 0.5 km to
10 km.
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Small WKH sites can host only small populations, and thus
the populations in WKHs are prone to extinctions (e.g. Hansson,
2001). Pykälä (2004) found in his monitoring study on epiphytic
macrolichens that although concentrated in WKHs, their small
population sizes predisposed them to local extinctions in less
than 10 years. The long term occurrence of species in WKHs
may thus depend on repeated colonisation to compensate for lo-
cal extinctions. Colonisation rate has been shown to depend on
the isolation of a patch (e.g. Verboom et al., 1991). The immigra-
tion of individuals to a small population may save that popula-
tion from extinction (called ‘the rescue effect’) (Brown and
Kodric-Brown, 1977). The rescue effect, and thus also extinction
risk, is also related to the isolation of patches as the possible
immigration diminishes with increasing distance from the other
occupied patches. The configuration of suitable patches may thus
be a critical issue for the viability of populations residing in
WKHs. In our study, we evaluated the connectivity contributions
of WKHs from the point of view of the reserve network, but the
traditional reserve network is likewise a prerequisite for success-
ful WKH-based biodiversity protection.

Finnish legislation allows cautious selective logging in WKHs as
long as site features are not destroyed or altered. This may cause
reductions in ecological values, a decrease in the amount of dead
wood in long term, for example. Selective logging can also change
the microclimatic conditions and make them unsuitable for most
sensitive species. Pykälä (2004) found that logging in WKHs was
the main cause of extinctions in epiphytic macrolichens. To sustain
population persistence and to augment the existing reserve net-
work, it is important that WKHs maintain their habitat qualities.
It may be necessary to refrain from any logging in WKHs. Similarly,
a buffer zone around WKHs would give protection against the det-
rimental effects that a surrounding matrix exerts on WKHs. For
example, 30-m buffer zones have been found adequate to maintain
the original species composition in riparian WKH sites (Selonen
and Kotiaho, 2006).

It has been suggested that there is a threshold value of habitat
availability below which the effect of habitat patterns on popula-
tion persistence may become evident (Andrén, 1994). For example,
Andrén (1994) reported an empirical threshold value of 10–30% of
habitat availability for birds and mammals. The threshold value is
species- and landscape-context-specific and supposedly higher for
species dispersing less well than birds and mammals (Mönkkönen
and Reunanen, 1999). As the coverage of reserves in Finland appar-
ently falls below any critical threshold, the configuration of re-
serves in the landscape is important for the persistence of many
threatened forest species. Thus, WKHs have a potentially impor-
tant role in providing connectivity for species for which production
forests are unsuitable.

The importance of reserve configuration is scale dependent. For
organisms that perceive the landscape at fine scales, landscape
configuration is of little consequence, because populations are re-
stricted to local habitat patches (Keitt et al., 1997). For these poor
dispersers the importance of a reserve is thus largely determined
by its size. Likewise, landscape configuration is likely to be of min-
or importance for species capable of traversing long distances
across hostile landscapes. In contrast, species with a dispersal abil-
ity within a critical threshold range (i.e. the range where a small
change in dispersal ability produces a great change in connectivity)
experience the importance of spatial configuration the most (Keitt
et al., 1997). WKHs shift the critical threshold range towards lower
threshold distances, and species with a dispersal ability within this
range shift are the ones that WKH-based conservation serves the
best. As the critical threshold range is network-specific (for com-
mon habitat types occurring at lower threshold distances than
for rare habitat types), the benefits associated with any given dis-
persal ability vary among different networks.

We suggest that WKH-based conservation would bring the
greatest benefits in landscapes with a rather low habitat availabil-
ity. Thus, setting aside WKHs would seem to be a more efficient
and well-founded conservation tool in landscapes with intensive
land use and forest management history. By contrast, we see little
value in WKHs in landscapes where habitat availability is still at a
high level for most species. However, in landscapes with a very low
habitat availability and a highly fragmented habitat network,
WKH-based conservation may not serve dispersal-limited species
but only efficient dispersers instead. The benefits of WKH-based
conservation can be evaluated in the light of the landscape context
and the dispersal abilities of the species.

5. Conclusions

The smaller the land parcels we are setting aside, the more
important the issue of functional connectivity becomes. New ap-
proaches are needed that deal explicitly with the spatial arrange-
ment of the reserves in order to form ecologically sustainable
and functional networks. To effectively maintain biodiversity
through time, a reserve network needs to be designed and eval-
uated with explicit consideration to the reserve configuration.
Woodland key habitats have been criticised as being too small
and scattered in distribution. However, WKHs are not detached
conservation elements in the forest landscape. We argue that
they form a network with other reserves, and their real ecolog-
ical value can only be understood as an integral part of the
network.

Our main aim here was to evaluate the importance and role
of WKHs within the reserve network. Our results show that,
especially for species requiring fertile habitat types that occur
naturally scattered in the forest landscape, WKH-based conserva-
tion can be very valuable. The value of setting aside WKHs is
strongly linked with the dispersal ability of threatened species.
It is evident in our analysis that the protection of large set-
asides would be a more efficient conservation strategy for spe-
cies with weak dispersal abilities. From the perspective of the
functional connectivity in the protected-area network, the whole
is clearly more than the sum of its constituent parts. Network
connectivity is an emergent property that can only be under-
stood at the level of the whole network.

Finally, even though we found that WKHs are important from
the connectivity perspective, we note that the conservation of
small-sized WKHs surrounded by an intensively managed forest
matrix does also have its pitfalls. Most importantly, the site
characteristics of WKHs must be safeguarded for them to be able
to contribute to the connectivity of the reserve network. The del-
eterious effects of selective logging should be prevented in the
first place. Buffer zones around WKHs would also moderate
the edge effects from the surrounding matrix on WKH sites.
On these conditions, WKHs seem to have the potential to con-
tribute to network connectivity up to the level shown in our
study.
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Appendix A

Mean (±SD) and median patch sizes of different habitat types in WKHs and reserves for three study areas.

Biotope Area 1 Area 2 Area 3

WKH sites Reserves WKH sites Reserves WKH sites Reserves

Peatlands
Mean patch size ± SD 0.87 ± 0.75 22.26 ± 119.03 1.08 ± 1.68 9.22 ± 43.43 0.78 ± 1.27 10.67 ± 59.53
Md for patch size 0.59 1.53 0.63 1.82 0.43 0.95

Forests
Mean patch size ± SD 0.95 ± 1.43 8.62 ± 31.69 0.79 ± 1.08 8.49 ± 27.43 0.63 ± 0.95 8.36 ± 38.50
Md for patch size 0.58 1.07 0.41 1.00 0.34 0.57

Heath forests
Mean patch size ± SD 1.12 ± 1.50 8.05 ± 24.46 1.06 ± 1.21 8.76 ± 27.54 0.64 ± 0.86 8.66 ± 34.01
Md for patch size 0.68 1.07 0.63 1.05 0.37 0.62

Herb-rich forests
Mean patch size ± SD 1.13 ± 1.40 2.95 ± 3.57 1.01 ± 0.80 2.67 ± 3.11 0.60 ± 0.94 2.70 ± 6.60
Md for patch size 0.77 1.18 0.81 0.95 0.33 0.77

Spruce mires
Mean patch size ± SD 1.14 ± 1.43 1.91 ± 2.51 1.42 ± 0.77 3.06 ± 5.68 0.67 ± 1.15 1.07 ± 1.62
Md for patch size 0.75 1.10 1.42 1.31 0.38 0.60

Herb-rich spruce mires
Mean patch size ± SD 1.14 ± 1.43 2.85 ± 3.33 1.42 ± 0.77 – 0.67 ± 1.15 0.71 ± 0.84
Md for patch size 0.75 1.23 1.42 – 0.38 0.47

Appendix B

The proportion (%) of WKHs of total network area and of overall network connectivity at different threshold distances. Results were
WKH have higher network connectivity than their areal proportion are in bold.

Area 1 Area 2 Area 3

Peatlands
Area 1.66 11.29 5.71
Overall
200 m 0.11 0.32 0.10
1 km 0.27 2.72 0.37
2 km 2.04 9.26 1.10
3 km 1.18 16.75 6.64
5 km 1.96 15.37 8.16
10 km 2.30 16.23 8.04
25 km 2.67 17.49 9.19

Forests
Area 4.22 8.36 8.17
Overall
200 m 0.24 1.78 0.16
1 km 2.51 7.22 4.97
2 km 8.14 28.27 7.41
3 km 6.71 32.04 21.27
5 km 5.85 16.08 26.58
10 km 6.76 14.68 14.31
25 km 7.89 15.14 14.75

(continued on next page)
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Appendix B (continued)

Area 1 Area 2 Area 3

Heath forests
Area 2.66 5.41 5.92
Overall
200 m 0.17 1.34 0.11
1 km 0.90 6.13 3.75
2 km 6.50 9.37 5.87
3 km 3.73 27.60 19.98
5 km 3.73 12.86 24.18
10 km 4.16 9.94 10.84
25 km 5.08 9.92 10.92

Herb-rich forests
Area 36.00 68.22 17.72
Overall
200 m 17.64 40.48 2.40
1 km 13.47 45.91 7.30
2 km 11.62 49.63 39.16
3 km 14.84 54.06 53.11
5 km 36.54 66.28 48.54
10 km 47.00 85.83 33.46
25 km 55.75 84.95 31.10

Spruce mires
Area 9.64 7.26 14.20
Overall
200 m 4.23 0.59 6.97
1 km 1.02 0.67 1.91
2 km 1.35 4.79 2.44
3 km 4.39 9.81 6.09
5 km 11.11 12.63 23.76
10 km 13.92 15.21 30.23
25 km 18.02 13.22 26.13

Herb-rich spruce mires
Area 44.37 100 51.73
Overall
200 m 24.04 – 59.84
1 km 25.42 – 44.45
2 km 18.90 – 38.71
3 km 23.52 – 48.63
5 km 27.83 – 65.34
10 km 56.27 – 76.27
25 km 65.22 – 76.16

Appendix C

Patch importance values (based on Integral Index of Connectivity, IIC) compared between WKHs and reserves for three study areas.

Area 1 Area 2 Area 3
WKHs Reserves WKHs Reserves WKHs Reserves

Peatlands
Min–max 0.002–0.081 0.001–63.329 0.007–1.020 0.006–83.617 0.001–0.540 0.001–78.033
Median 0.018 0.084 0.071 0.176 0.022 0.076
Mean ± SD 0.025 ± 0.02 1.286 ± 7.05 0.118 ± 0.14 1.719 ± 9.34 0.042 ± 0.07 1.102 ± 6.84
Sum 1.326 158.23 10.479 140.945 4.753 150.979

Forests
Min–max 0.000–0.361 0.001–29.442 0.002–0.878 0.002–44.115 0.001–0.302 0.009–39.958
Median 0.022 0.067 0.029 0.095 0.014 0.031
Mean ± SD 0.039 ± 0.059 0.619 ± 2.549 0.073 ± 0.116 1.026 ± 4.022 0.027 ± 0.041 0.587 ± 3.172
Sum 4.858 191.121 11.756 169.304 9.587 176.631
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Appendix C (continued)

Area 1 Area 2 Area 3
WKHs Reserves WKHs Reserves WKHs Reserves

Heath forests
Min–max 0.001–0.317 0.001–17.438 0.003–2.599 0.002–46.054 0.001–0.254 0.001–30.841
Median 0.022 0.070 0.055 0.100 0.016 0.038
Mean ± SD 0.042 ± 0.06 0.615 ± 2.06 0.147 ± 0.33 1.104 ± 4.28 0.030 ± 0.04 0.640 ± 2.89
Sum 2.584 194.966 10.849 172.302 7.211 182.933

Herb-rich forests
Min–max 0.212–10.632 0.715–42.583 0.172–15.557 2.414–42.583 0.007–2.716 0.004–36.847
Median 0.873 1.900 4.174 5.070 0.116 0.310
Mean ± SD 1.682 ± 2.28 7.530 ± 10.51 5.377 ± 5.21 16.689 ± 22.46 0.223 ± 0.36 1.245 ± 3.74
Sum 42.049 128.016 91.407 50.067 24.991 144.408

Spruce mires
Min–max 0.057–1.963 0.031–16.549 0.167–2.379 0.027–49.613 0.008–3.963 0.009–13.605
Median 0.252 0.775 0.637 0.933 0.159 0.622
Mean ± SD 0.345 ± 0.39 1.430 ± 1.20 0.890 ± 0.66 2.812 ± 6.74 0.322 ± 0.61 1.137 ± 1.70
Sum 8.286 191.671 8.895 165.914 13.832 185.366

Herb-rich spruce mires
Min–max 0.255–14.892 0.954–43.492 1.379–29.260 – 0.033–27.031 0.030–3.194
Median 1.160 3.024 12.568 – 0.867 1.427
Mean ± SD 2.557 ± 3.26 9.064 ± 12.12 15.276 ± 9.24 – 2.122 ± 4.19 2.633 ± 3.19
Sum 61.36 108.765 152.764 91.225 100.040

Appendix D

Means (±SD) for degree centrality measure of different habitat types in WKHs and reserves for three study areas. Results where WKHs
have higher average degree scores than reserves are in bold.

Area 1 Area 2 Area 3
WKHs Reserves WKHs Reserves WKHs Reserves

Peatlands
500 m 1.1 ± 1.6 5.2 ± 5.3 1.2 ± 1.2 2.2 ± 2.2 2.2 ± 2.6 4.8 ± 3.4
1 km 2.7 ± 3.0 10.4 ± 7.4 3.2 ± 3.0 4.2 ± 3.2 5.5 ± 5.7 10.2 ± 5.2
2.5 km 10.2 ± 8.9 32.9 ± 16.8 11.7 ± 7.5 12.1 ± 7.0 17.8 ± 15.2 34.3 ± 13.0
5 km 30.7 ± 24.6 70.1 ± 24.4 34.4 ± 15.0 33.3 ± 12.7 44.8 ± 21.4 80.6 ± 19.9
7.5 km 54.7 ± 39.0 100.1 ± 25.3 58.6 ± 19.1 62.2 ± 20.3 81.1 ± 28.8 117.1 ± 19.8
10 km 83.1 ± 50.1 126.7 ± 21.4 82.7 ± 21.9 89.2 ± 25.1 125.5 ± 40.8 149.2 ± 24.7

Forests
500 m 1.5 ± 1.5 8.1 ± 6.2 1.3 ± 1.4 4.9 ± 4.5 3.2 ± 2.1 4.7 ± 3.6
1 km 3.9 ± 3.0 17.8 ± 10.5 3.4 ± 3.0 9.4 ± 7.5 9.2 ± 4.5 10.2 ± 6.2
2.5 km 18.8 ± 14.9 59.7 ± 24.7 15.3 ± 8.1 23.8 ± 12.33 37.8 ± 16.3 37.6 ± 19.4
5 km 61.38 ± 42.1 146.6 ± 48.9 49.5 ± 19.6 62.0 ± 21.42 110.3 ± 29.4 107.7 ± 40.9
7.5 km 124.4 ± 75.9 223.2 ± 64.3 92.98 ± 31.2 104.7 ± 28.0 184.0 ± 32.4 198.9 ± 63.0
10 km 203.6 ± 114.1 295.9 ± 63.4 139.3 ± 46.0 155.4 ± 38.37 271.1 ± 49.1 306.0 ± 80.8

Heath forests
500 m 1.2 ± 1.5 8.4 ± 6.1 1.2 ± 1.4 4.8 ± 4.7 2.9 ± 2.2 7.3 ± 5.2
1 km 2.8 ± 2.7 18.4 ± 10.8 3.2 ± 3.5 9.0 ± 7.9 6.7 ± 3.8 17.5 ± 11.4
2.5 km 12.1 ± 12.1 62.3 ± 28.2 12.6 ± 9.2 20.4 ± 13.6 25.9 ± 11.6 61.7 ± 28.0
5 km 41.0 ± 35.2 149.3 ± 55.1 41.0 ± 22.3 49.1 ± 23.8 79.8 ± 35.0 152.6 ± 50.6
7.5 km 83.2 ± 67.8 217.5 ± 67.2 71.9 ± 30.2 76.9 ± 26.3 150.4 ± 58.8 234.0 ± 61.1
10 km 143.3 ± 108.9 275.9 ± 60.5 103.2 ± 36.4 112.1 ± 32.1 226.6 ± 75.5 295.8 ± 62.9

Herb-rich forests
500 m 0.6 ± 0.9 1.2 ± 1.0 0.4 ± 0.5 0.0 ± 0.0 1.6 ± 1.6 3.1 ± 3.0
1 km 1.2 ± 0.9 2.0 ± 1.1 1.4 ± 1.4 0.7 ± 0.6 3.6 ± 2.5 6.3 ± 4.7
2.5 km 2.1 ± 1.2 4.2 ± 2.3 1.3 ± 1.4 0.7 ± 0.6 12.1 ± 6.6 21.7 ± 9.8
5 km 6.4 ± 1.4 9.6 ± 3.1 3.0 ± 2.6 1.7 ± 1.2 37.4 ± 14.5 54.0 ± 14.6
7.5 km 11.6 ± 2.6 12.9 ± 1.9 5.8 ± 3.0 5.3 ± 5.1 71.5 ± 20.0 82.6 ± 14.5
10 km 15.5 ± 4.8 17.3 ± 3.5 8.1 ± 3.5 7.3 ± 4.5 108.8 ± 26.4 109.0 ± 13.4

(continued on next page)
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Appendix D (continued)

Area 1 Area 2 Area 3
WKHs Reserves WKHs Reserves WKHs Reserves

Spruce mires
500 m 0.7 ± 0.9 3.3 ± 2.3 0.6 ± 0.5 3.3 ± 2.9 0.9 ± 1.1 5.9 ± 4.2
1 km 1.3 ± 0.8 7.6 ± 4.6 0.7 ± 0.5 6.8 ± 5.4 1.6 ± 1.4 15.9 ± 10.8
2.5 km 3.7 ± 1.7 29.0 ± 15.4 5.5 ± 4.3 16.4 ± 12.5 4.8 ± 3.1 54.7 ± 29.5
5 km 14.4 ± 10.7 68.7 ± 26.7 20.4 ± 11.8 23.8 ± 14.9 18.6 ± 8.0 105.1 ± 35.0
7.5 km 29.4 ± 21.1 95.8 ± 27.9 36.9 ± 11.2 30.0 ± 15.2 43.7 ± 20.9 134.4 ± 31.6
10 km 55.5 ± 41.9 119.1 ± 23.3 42.8 ± 11.0 36.8 ± 15.3 80.3 ± 43.3 150.8 ± 32.3

Herb-rich spruce mires
500 m 0.7 ± 0.9 1.2 ± 1.1 – – 0.8 ± 1.1 2.0 ± 1.7
1 km 0.7 ± 0.9 1.2 ± 1.1 – – 1.5 ± 1.4 5.0 ± 3.8
2.5 km 2.2 ± 1.1 4.0 ± 1.7 – – 3.9 ± 2.6 14.1 ± 7.3
5 km 6.0 ± 1.5 9.3 ± 2.2 – – 12.6 ± 6.7 28.9 ± 6.4
7.5 km 10.2 ± 2.1 10.7 ± 1.7 – – 24.5 ± 8.5 36.5 ± 4.5
10 km 13.6 ± 3.5 14.5 ± 2.1 – – 40.6 ± 12.1 46.3 ± 6.0
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Abstract Graph-theoretic connectivity analyses

have received much attention in connectivity evalu-

ation during the last few years. Here, we explore the

underlying conceptual differences of various graph-

theoretic connectivity measures. Based on connec-

tivity analyses from three reserve networks in

forested landscapes in Central Finland, we illustrate

how these conceptual differences cause inconsistent

connectivity evaluations at both the landscape and

patch level. Our results also illustrate how the

characteristics of the networks (patch density) may

affect the performance of the different measures.

Many of the connectivity measures react to changes

in habitat connectivity in an ecologically undesirable

manner. Patch prioritisations based on a node

removal analysis were sensitive to the connectivity

measure they were based on. The patch prioritisations

derived from different measures showed a disparity in

terms of how much weight they put on patch size

versus patch location and how they value patch

location. Although graphs operate at the interface of

structure and function, there is still much to do for

incorporating the inferred ecological process into

graph structures and analyses. If graph analyses are

going to be used for real-world management and

conservation purposes, a more thorough understand-

ing of the caveats and justifications of the graph-

theoretic connectivity measures will be needed.

Keywords Functional connectivity � Graph theory �
Reserve network � Component � Patch prioritisation

Introduction

Habitat loss and fragmentation pose two primary

threats to biodiversity across spatial scales that range

from the global to very local ones. Fragmentation

confounds and intensifies the effect of pure habitat

loss when the amount of habitat falls below a critical

threshold (Andren 1994; Mönkkönen and Reunanen

1999). Although habitat loss and fragmentation are

separate components affecting the patterning of

habitat (i.e. habitat amount and its configuration in

a landscape), their independent roles are difficult to

evaluate (Fahrig 1997,2003; Bender et al. 1998;

Wiegand et al. 2005).

The intertwined ecological consequences of hab-

itat loss and fragmentation can be understood and

measured on the basis of the concept of connectivity.

Connectivity supports ecological flows in a landscape

and, with various mechanisms, influences the viabil-

ity of spatially structured populations. Habitat con-

nectivity is needed to sustain spatially dependent

ecological processes, and it is a necessity for the

long-term persistence of biodiversity (Fahrig and
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Merriam 1994; Hanski 1999). Connectivity conser-

vation can also be considered to be a prerequisite for

ecologically and economically efficient conservation

practices.

The most commonly used definition for landscape

connectivity is rooted in a functional connectivity

concept, and it is described as ‘the degree to which

landscape facilitates or impedes movement of organ-

isms among resource patches’ (Taylor et al. 1993).

Underlying the functional connectivity concept is the

idea that the connectivity experienced by an organism

is result of the behavioural responses of the organ-

isms to physical landscape structure (e.g. Tischendorf

and Fahrig 2000a, b; Bélisle 2005; Kindlmann and

Burel 2008). However, all of the definitions of

functional connectivity are conceptually so broad

that they leave room for a range of interpretations and

applications. The very nature of the concept of

connectivity has been approached from several (also

conflicting) perspectives during the past decade

(Tischendorf and Fahrig 2000a, 2001; Moilanen and

Hanski 2001; Goodwin 2003), which indicates that

the definition of the concept is far from simple, and

that the focuses of the researcher are reflected in it.

Graphs are versatile models for analysing a wide

range of practical problems concerned with the

properties and functions of networks (Gross and

Yellen 2006). In landscape ecology, graphs are

abstractions of landscapes where habitat patches are

represented as spatially explicit nodes and functional

connections between the nodes as links (Fall et al.

2007; for in-depth graph definitions in the field of

landscape ecology we recommend Bunn et al. 2000,

Urban and Keitt 2001; Urban et al. 2009). Graph

theory, with its algorithms, has given rise to many

connectivity measures with varying degrees of com-

plexity and differing underlying assumptions. Some

connectivity measures have been adopted to land-

scape ecology from the general graph definitions and

methodology of other disciplines, while other mea-

sures were specifically designed for the evaluation of

landscape connectivity. Graph metrics that were

developed for the uses of other disciplines may not,

however, be suitable for the evaluation of landscape

connectivity due to its very special characteristics and

needs (Saura and Rubio 2010).

Graphs operate at the interface of structure and

process (e.g. Urban and Keitt 2001; Urban et al.

2009). In landscape ecology, graph structures are

defined in reference to the dispersal ability of a

species and can be analysed as structures as such or

with a specific relevance to the underlying process,

such as gene flow, flux of dispersing individuals

(Urban and Keitt 2001; Minor and Urban 2007a, b),

species occurrence (Andersson and Bodin 2009) or

species invasions (Ferrari and Lookingbill 2009).

Graph-theoretic connectivity measures vary in terms

of how they infuse and deal with the underlying

ecological process, although they are ultimately

founded on the concept of metapopulation with

spatially interrelated subpopulations (Urban et al.

2009).

Graph-theoretic connectivity analyses lend them-

selves to functional connectivity evaluations both at

the level of the entire networks and at the level of

individual patches. At the network level, they have

been used to evaluate network connectedness for a

focal species (Keitt et al. 1997; Bunn et al. 2000), in

the design of reserve network (Fuller et al. 2006) and

in connectivity conservation for the habitat of

threatened species (Fall et al. 2007). Connectivity

evaluation at the level of individual patches is often

called patch prioritisation, because in many cases it is

used to select the most valuable patches in a habitat

network (Jordán et al. 2003; Rothley and Rae 2005;

Pascual-Hortal and Saura 2008). Patch prioritisation

has also been used to extract configurational proper-

ties of patches into a variable that can be used in

statistical analyses to explain ecological process (e.g.

species occurrence, colonisation probability) (van

Langevelde 2000) or to reveal the roles of patches in

a landscape (Keitt et al. 1997; Bunn et al. 2000;

Urban and Keitt 2001).

The graph-theoretic connectivity measures do not

form a single story about connectivity, but represent a

full spectrum of specific measures that capture differ-

ent aspects of connectivity. This is important to

remember when themeasures are selected for different

kinds of applications and their outcomes interpreted.

Pascual-Hortal and Saura (2006) and Saura and

Pascual-Hortal (2007) have made a valuable effort in

the systematic comparison of different measures and

their properties. They have investigated the perfor-

mance of measures in landscapes varying in their level

of habitat loss and fragmentation with an emphasis on

the outcome (whether it is desirable or not) rather than

on the mechanisms that produced the outcome.

Although empirical data sets on the movements of
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individuals (i.e. realised connectivity) represent the

‘‘truth’’ against which the performance of connectivity

measures should be evaluated and calibrated, connec-

tivity measures can also, to some extent, be evaluated

and understood on theoretical grounds. Theoretical

evaluation is especially suitable for revealing possible

unwanted behaviour of the measures (that is not in

agreement with the concept of connectivity), and

comparisons between measures may provide insights

into their characteristics and performance.

Here, we shall first review and compare the

available graph-theoretic connectivity measures in

terms of their conceptual differences. One of the

major factors leading to differences among the

measures is whether connectivity can only ‘‘prevail’’

between habitat patches or if intrapatch connectivity

is also acknowledged. For instance, what is the

connectivity for a landscape that is fully covered by

habitat? Zero or the maximum? The non-acceptance

that area within a habitat patch may contribute to

connectivity may lead to the counterintuitive outcome

that connectivity has a positive relationship with

fragmentation (Tischendorf and Fahrig 2000b; Pasc-

ual-Hortal and Saura 2006; Saura and Pascual-Hortal

2007; Matisziw andMurray 2008). The relationship of

the measure to intrapatch connectivity also largely

determines whether the measure explicitly tracks the

amount of suitable habitat in a landscape. Although

the way how the pairwise distances between patches

are determined (e.g. as Euclidean, cost-modified

distances or based on simulation) is independent of

the connectivity measure, how the connections

between patches are defined (e.g. among all pairs of

patches or not, as direct connections only or acknowl-

edging paths) can differ widely among measures with

anticipated influence on their behaviour.

In our review, we shall briefly describe a number

of graph-theoretical measures that are used in the

evaluation of landscape connectivity. We shall use

simple examples to illustrate what kind of counter-

intuitive connectivity evaluations the measure may

possibly produce and with which mechanisms. We

draw on a connectivity concept that recognises both

habitat amount and connections among and inside

patches as contributing to connectivity (the so-called

habitat availability concept described by Saura and

Pascual-Hortal 2007; and Pascual-Hortal and Saura;

2008). In contrast to the original definition of

functional connectivity by Taylor et al. (1993), this

concept acknowledges within resource patch connec-

tivity and recognises habitat amount as a critical

factor contributing to dispersal among resource

patches. The sizes of a source and a target patch

are linked with the dispersal probability between the

patch pair within a given time period (more dispers-

ing individuals with increasing donating area; grow-

ing chance of ending in a target patch with increasing

number of dispersing individuals, and with the

increasing size of a target patch). The connectivity

based on this concept may be briefly described as the

amount of habitat that is available to a species

dispersal (given its assumed dispersal ability) at the

landscape level. The concept can easily be extended

to dispersal flux if the habitat area is assumed to scale

linearly with the number of migrants. The connec-

tivity rises if (i) for a given amount of habitat, the

connection status is improved or (ii) for a given

connection status, the amount of habitat increases.

The connection status is improved when the degree of

linkage among patches increases and more so when

either the strength of connections among the patches

increases (so that proximal patches contribute more

to connectivity than distant ones) or the habitat area

that is linked increases.

In the second part of the article, we analyse

empirical data from three reserve networks located in

forested landscapes in Central Finland to illustrate

how the underlying conceptual differences in the

connectivity measures influence the connectivity

ratings at the network and patch level. At the network

level, we compare the performance of the connectiv-

ity measures in terms of how they react when the

existing forest reserve network is augmented with

small-sized woodland key habitats (WKHs). The

numerical value of a connectivity measure should, if

lined with the connectivity concept, react positively

to the addition of WKHs into the reserve network, as

both habitat area and the number (and strength) of

interpatch connections increase. At the patch level,

we compare the prioritisations obtained from differ-

ent measures.

Review of the graph-theoretic connectivity

measures

We classify the graph-theoretic connectivity mea-

sures broadly into two groups: network coherence
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measures and flux measures (which corresponds to

the division of the measures into indirect and direct

ones by Matisziw and Murray 2008). The coherence

measures provide information about some element of

network structure (in respect to coherence or frag-

mentation in reverse) taking into account species

dispersal abilities. Coherence measures usually react

strongly to the component structure of the network,

acknowledging a ‘single component’ structure as the

one maximising connectivity with a given amount of

habitat. In contrast, the flux measures summarise

interpatch connections between all pairs of patches.

The flux measures can either take into account direct

interpatch connections only (direct links) or also

allow paths, i.e. indirect links via stepping stone

patches. The flux measures mainly aim to evaluate

the rate of flow of dispersing individuals at the level

of the entire habitat network.

We have summarised in Table 1 the various

connectivity measures that have been used in land-

scape ecological connectivity analyses, and below we

shall discuss in detail the ones that are most

commonly used.

Network coherence measures

Graph diameter is the longest path between any two

habitat patches in the graph, where the path length

between the patches is itself the shortest possible path

(Bunn et al. 2000).AsFerrari et al. (2007) stated, ‘a large

graph diameter can either be positive or negative [for an

individual traversing a landscape] and needs to be

interpreted with caution’. Graph diameter is purely a

topological measure, which does not take patch areas

into account, and generally increaseswith the increasing

number of patches brought about by fragmentation.

Graph diameter is usually calculated for the largest

component, andwithin that component, it only provides

information on the connectivity between a single pair of

patches. Characteristic path length, CPL (or average

path length) is the average of the shortest path lengths

calculated between all pairs of reachable patches in a

network. According to Minor and Urban (2007a, b), ‘if

CPL is short, all patches tend to be easily reachable’. As

the measure concentrates only on reachable pairs of

patches, CPL is also short when a network is composed

of isolated, internally well-connected components

Table 1 Summary of the connectivity measures used in graph-theoretic connectivity analyses

Measure References

Network coherence measures

Characteristic path length, CPL B Minor and Urban (2007)

Coincidence probability (class/landscape, CCP/LCP) C B Pascual-Hortal and Saura (2006)

Correlation length C B Keitt et al. (1997), Rothley and Rae (2005)

Expected cluster size, ECS C B O’Brien et al. (2006), Fall et al. (2007)

Graph diameter C B Bunn et al. (2000), Bodin and Norberg (2007), Ferrari

et al. (2007), Minor and Urban (2007)

Graph-derived proportional measures, e.g.,

Ratio of graph diameter to the size of the largest component C B Minor and Urban (2007)

Ratio of the proportion of habitat in the largest patch to the

proportion of habitat in the largest cluster (F-measure)

C B Ferrari et al. (2007), Lookingbill et al. (2010)

Flux measures

(Area-weighted) flux (AW)F P Bunn et al. (2000), Urban and Keitt (2001)

Harary index, H B Jordán et al. (2003)

Habitat availability indices

Integral index of connectivity, IIC B Pascual-Hortal and Saura (2006), Pascual-Hortal and

Saura (2008)

Probability of connectivity, PC P Saura and Pascual-Hortal (2007)

Total network connectivity P Matisziw and Murray (2008)

Measures based on component approach are marked with C. Binary and probabilistic connectivity models are marked with B and P,

respectively
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(comprised possibly of few patches). Thus, fragmenta-

tion, in the form of isolated components, may lead to a

false indication of connectivity. In the case of a single

component network, CPL reaches a minimum value of

one when all patches are within one step from each

other—irrespective of the number of patches and habitat

amount involved.

Correlation length measures the average distance

an individual with a given dispersal ability can move

before reaching a barrier (Keitt et al. 1997). Corre-

lation length is calculated as an area-weighted mean

radius of gyration of all the components in a

landscape as follows (for raster data):

Cd ¼
PNC

i¼1 ni:RiPNC
i¼1 ni

;

where NC is the number of components in the

landscape, ni is the number of habitat cells (i.e.

pixels) in component i, and:

Ri ¼ 1

ni

Xni
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � xi
� �2þ yj � yi

� �2q
;

where Ri is the radius of gyration of component i, xi
and yi are the mean x and y coordinates of the habitat

cells in component i, and xj and yj are the coordinates

of the jth habitat cell in component i.

Similar to the graph diameter, there is the unde-

sired property in the correlation length that it is

positively related to increasing fragmentation. For

example, two connected patches score higher in

correlation length than one patch with the same total

area. Increasing interpatch distances (within the

dispersal ability of a species) also increase the value

of this measure, although any species would likely

benefit from the proximity of the patches. Correlation

length does not explicitly account for the total habitat

area, because the habitat area is masked by the extent

and shape of a component. Habitat area in a

component can be small, but if distributed evenly

within a component, it can still provide an opportu-

nity for high average dispersal distances.

Expected cluster size (first introduced by O’Brien

et al. 2006) represents an area-weighted mean cluster

(i.e. component) size calculated as:

ECS ¼
PNC

i¼1 a
2
i

a
;

where NC is the number of components in the

landscape, ai is the habitat area in component i and a

is the total habitat area over all components of the

graph.

ECS is the size of the component in which a point

randomly located within a habitat area is expected to

reside at a given threshold distance w. ECS carries

information on the amount of habitat within a

component, but it still does not react ecologically

meaningfully to the amount of habitat in a landscape.

For example, the value of ECS increases with the loss

of isolated patches/components with a small habitat

area, although the total habitat area in the landscape

diminishes.

Landscape coincidence probability, LCP, is the

probability that two points located randomly within a

landscape reside in the same habitat component

(Pascual-Hortal and Saura 2006). It is computed as:

LCP ¼
XNC
i¼1

ci
AL

� �2

;

where NC is the number of components in the

landscape, ci is the sum of the sizes of all the patches

belonging to component i and AL is the total

landscape area.

LCP is reactive to the amount of habitat in the

landscape and shows a decrease with increasing

fragmentation. It evaluates (like ECS) reachability

between patches as defined by the component struc-

ture only, but does not provide information about the

internal connectivity of components (discussed in

more detail in ‘Discussion’ section).

Flux measures

Flux measures can be based on a binary or a

probabilistic connection model. The probabilistic

connection model weights the links with the dispersal

probability between two habitat patches. The proba-

bility of direct dispersal between patches is deter-

mined on the basis of a chosen dispersal kernel, most

often a decreasing exponential function of the inter-

patch distance:

pij ¼ e�k�dij ;

where k is a constant and dij is the distance (Euclidean

or effective distance) between patches i and j.
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Area-weighted flux, AWF, evaluates the area-

weighted flux between all pairs of patches:

AWF ¼
Xn
i¼1

Xn
j¼1;i 6¼j

pij � ai � aj;

where n is the total number of patches, pij is the

probability of direct dispersal between patches i and j,

and ai and aj are the sizes of patches i and j.

AWF does not account for the dispersal potential

within a patch itself as it concentrates only on the flux

between patches. For this reason, it does not react

ecologically meaningfully to the amount of habitat in a

landscape; for example, it neglects the loss of an isolated

patch (pij = 0) regardless of its size. It also reacts in an

undesirable way to fragmentation as, for example, the

connectivity value increases with an increasing number

of habitat patches when the habitat area and interpatch

distances are controlled for. The connection model of

the measure does not allow for indirect interpatch

connections mediated by stepping stone patches.

Connectivity measures rooted in habitat availabil-

ity (Integral index of connectivity and Probability of

connectivity, presented below) integrate the habitat

area existing within patches with the area made

available by the interpatch connections into a single

measure (Pascual-Hortal and Saura 2006, 2008; Saura

and Pascual-Hortal 2007). If habitat patch area (or

other patch attribute) is used as a surrogate for the

number of dispersing individuals, habitat availability

measures are easily interpreted as flux measures.

Habitat availability measures avoid undesired

responses to increased fragmentation and habitat loss.

Integral index of connectivity, IIC, is a habitat

availability measure with a binary connection model

(Pascual-Hortal and Saura 2008):

IIC ¼
Pn

i¼1

Pn
j¼1

ai�aj
1þlij

A2
L

;

where n is the total number of patches, ai and aj are

the sizes of patches i and j, lij is the number of links in

the shortest path between patches i and j (and equals

zero for i = j), and AL is the total landscape area. IIC

reaches unity when the landscape is occupied by the

given habitat.

As shown by Pascual-Hortal and Saura (2006), IIC

can reliably provide information on habitat amount

and the degree of connectivity between patches, but

with the restrictions brought about by its binary view

of connectivity (Saura and Pascual-Hortal 2007). IIC

evaluates the strength of connections between patches

in a topological sense (i.e., the inverse of 1 ? the

number of links in the shortest path separating the

patches), and thus recognises the increasing topolog-

ical distances between patches as lower connectivity.

IIC favours habitat located in a single large patch (in

which the habitat area is separated by 0 links),

whereas patches with direct or indirect connections (a

path length of one link or more) are downscaled by

the increasing denominator. For example, two

directly connected patches would have lower con-

nectivity than one large patch of the same total area.

Probability of connectivity, PC, measure (Saura

and Pascual-Hortal 2007) is calculated as:

PC ¼
Pn

i¼1

Pn
j¼1 ai � aj � p�ij
A2
L

;

where n is the total number of patches, ai and aj are

the sizes of patches i and j, and AL is the total

landscape area. p�ij is defined as the maximum product

probability of all possible paths between patches i

and j. Product probability of a path is the product of

all the link weights (pij) included in the path. For

patches close enough, p�ij is reduced to the direct

dispersal probability pij, but for more distant patches

the ‘best path’ passes through stepping stone patches.

When i = j, the p�ij equals 1.
It has been recommended that PC be used as a

connectivity measure, because it is, according to Saura

and Pascual-Hortal (2007), the onlymeasure having all

the properties of an ideal connectivity measure. It

reacts meaningfully to habitat loss and network

fragmentation. PC also possesses the richest connec-

tion model of the measures in widespread use in

connectivity evaluation. PC does not, however,

account for other connections between any two patches

besides the most probable path (i.e. it does not react to

the number of connections between the patches).

Empirical comparison of the performance

of the graph-theoretic connectivity measures:

habitat network analyses in forested landscape

in Finland

With our empirical analyses, we wanted to address

the following questions: (i) How do different graph-
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theoretic connectivity measures perform when the

existing reserve network is augmented with small-

sized WKHs? (Network level), (ii) How consistently

do patch prioritisations based on different measures

value patches, and how sensitive are these prioritisa-

tions to the density of habitat patches in a landscape?

(Patch level). Patch density may have important

consequences for the ability of measures to consis-

tently value patches because network properties and

the roles of patches in sparse networks differ in an

anticipated way from those of denser networks. We

used data from three habitat networks, which were

composed of reserve patches of a given habitat type

added with WKH patches of the same habitat type.

The habitat types were herb-rich forests, spruce mires

and heath forests. The total landscape area (matrix

and habitat area included) in all the networks was ca.

500 km2. Networks varied more than 10-fold in terms

of the patch number (i.e. graph order) and density

(number of patches per landscape area); the herb-rich

forest network had 42 (17 reserves; 25 WKHs), the

spruce mire network 158 (134 reserves; 24 WKHs)

and the heath-forest network 528 (242 reserves; 286

WKHs) patches. The total habitat area in the herb-

rich forest network was 79 ha (36% of the area in

WKHs), in the spruce mire network 283 ha (10% of

the area in WKHs) and in the heath-forest network

2634 ha (6% of the area in WKHs) representing more

than 30-fold difference in habitat area. The networks

were located in Central Finland (61�260–63�370N,
24�60–26�460E); the herb-rich forest and spruce mire

networks were in the northern parts of the area, and

the heath-forest network was in the south. The

networks are described in more detail in Laita et al.

(2010).

Overall network connectivity measures were cal-

culated with a threshold distance ranging from 200 m

to 25 km. Patch importance measures were calculated

at the thresholds distances of 500 m, 1 km, 2.5 km,

5 km, 7.5 km and 10 km. Link weights were deter-

mined based on Euclidean edge-to-edge distances

between patches. For overall network connectivity

analyses, we formed two separate networks for each

habitat type: one composed of reserve patches only

and another network with WKHs added. We plotted

the connectivity of both networks to the same graph

to see how the measure reacts to the addition of

WKHs over the range of threshold distances. The

network measures used for overall network analyses

were: correlation length; expected cluster size (ECS);

landscape coincidence probability (LCP); area-

weighted flux (AWF); integral index of connectivity

(IIC) and probability of connectivity (PC). For

probabilistic measures, AWF and PC, we defined a

dispersal probability of 0.05 to correspond to the

threshold distance (i.e. the cut-off dispersal distance,

if exceeded a patch pair is not connected by a link)

used in analyses based on the binary connection

model.

For patch prioritisations, we determined how

consistently the different connectivity measures value

individual patches. Patch prioritisations were calcu-

lated with a node removal analysis; each patch was

systematically removed from the network, and the

reconstructed network was compared with the

original network which included the patch (Keitt

et al. 1997). The connectivity loss caused by the

removal of a patch measures the contribution of the

patch to the network connectivity. We compared

patch prioritisations for four measures that account

for patch area, two of them binary (IIC and LCP) and

two probabilistic (AWF and PC). We analysed the

proportion of patch importance that was explained by

patch area. The proportion was given by the coeffi-

cient of determination (R2) of the regression of the

log-transformed patch prioritisation values against

the log-transformed patch area. To see how consis-

tently prioritisations derived from different measures

value patches, we calculated Pearson’s correlations

and partial correlations (controlling for patch area)

for each measure pair as a function of threshold

distance. Correlations were calculated for log-trans-

formed variables. Partial correlations show how

consistently different measures value the locations

of patches (with the assumption that the part of the

prioritisation not explained by patch area represents

its locational value in a network). We also calculated

full and partial correlations for prioritisations includ-

ing only the 20 top-ranking patches based on the IIC

values averaged over all threshold distances. IIC does

not naturally represent any standard, but being rather

widely applied it offers an interesting reference for

the performance of other measures. By concentrating

on the ‘‘top-20’’ patches, we determined whether

measures value more consistently the top patches

rather than all patches in their prioritisations as the

prioritisations are usually used for recognising the

most valuable patches.
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Graphs were analysed with Conefor Sensinode

v.2.2 (Saura and Torné 2009) (for AWF, IIC, LCP

and PC) and Spatially Explicit Landscape Event

Simulator v.3.3 SELES (Fall and Fall 2001) (for

correlation length and ECS).

Results

As expected on the basis of the review above,

connectivity evaluations of the connectivity measures

differed from each other (Fig. 1). Correlation length,

expected cluster size and LCP levelled-off when

patches occured as one component. This happened,

for example, in the spruce mire network with WKHs

when species’ dispersal ability exceeded 3 km. After

the levelling-off, these network coherence measures

did not show further changes with improving dis-

persal ability. IIC, AWF and PC, however, showed a

rise in connectivity with increasing threshold distance

even after the network is composed of one compo-

nent. It remains that IIC levelled-off after all patches

are in direct connection with each other. This

happened when the threshold distance corresponded

to the maximum distance between the pairs of

patches. Probabilistic measures (AWF and PC) react

in a similarly, despite the underlying differences in

their connection models. Both measures showed a

rise in connectivity with increasing threshold distance

until the probability of dispersal between all pairs of

patches reached 1.

Expected cluster size and correlation length did

not react in line with the connectivity concept when

adding WKHs to the network (Fig. 1). At small

threshold distances, they indicated lower connectivity

for networks with WKHs than for reserves-only

networks. At small threshold distances, the WKH

patches increased the number of components in the

landscape and, being small-sized, decreased the

average component size indicated by expected cluster

size (habitat area of component) and correlation

length (component extent). LCP, IIC, AFW and PC

all recognised that WKHs contributed to increased

connectivity, yet differently. For example, probabi-

listic measures showed a considerably smaller con-

tribution of WKHs to connectivity than binary

measures. How WKHs affected connectivity with

increasing threshold distance also differed among

measures. Binary measures showed a rather rapid rise

in connectivity at the threshold distances of ca. 200 m

to 5 km. For IIC, this rise with threshold distance was

smoother than for other binary measures, which

showed a stepwise pattern. Probabilistic measures did

not show any range of threshold distances as being

critical for connectivity, but expressed a steady rise in

connectivity with threshold distance.

Connectivity measures showed different patch

prioritisation performances in terms of how much

emphasis they put on the effect of patch configuration

versus patch size at different threshold distances

(Fig. 2). For AWF, the importance of patch size to

patch prioritisations rose steadily with increasing

threshold distance. The PC measure emphasised,

more than AWF, the value of patch size at small

threshold distances in patch prioritisations. With IIC

and LCP, the relative effect of patch size increased

pronouncedly with the threshold distance until the

patch importance values were totally determined by

patch size. In the herb-rich forest and the spruce mire

networks, however, the effect of patch size on patch

prioritisations for the two binary measures dropped at

intermediate distances (at ca. 1–2.5 km), suggesting

the importance of patch configuration at this scale.

Network density had an influence on the relative

importance of patch size over patch configuration. In

the lowest density network (herb-rich forest), patch

importance was determined to a greater extent by

patch size at small threshold distances, compared to

the other two networks of larger density. In the herb-

rich forest network, patch size explained over 60% of

patch importance values across all threshold distances

for prioritisations based on IIC, LCP and PC. In the

other two networks, patch size accounted less for

patch priority, ca. 30–60% at small threshold dis-

tances. In the herb-rich forest network, the three

measures weighted consistently the relative role of

patch size on prioritisations across threshold dis-

tances. In the spruce mire and the heath-forest

networks, the binary, IIC and LCP, and probabilistic

PC measures diverged from each other in perfor-

mance; binary measures put clearly more emphasis

on the role of patch size at threshold distances greater

than 2.5 km.

The patch prioritisations based on different mea-

sures correlated highly in the networks (Fig. 3). This

is because all of the prioritisations were to a high

degree driven by patch sizes (Fig. 2). The correla-

tions thus mainly reflected the characteristics of
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Fig. 1 Comparisons of measure performances as a function of threshold distance for the reserve network of spruce mires with and

without woodland key habitats (WKHs)
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measures in terms of how much they value patch size

in their prioritisations. When the effect of patch size

on the correlation was controlled for, the measures

showed differences in their evaluations of the influ-

ence of patch location. The two probabilistic mea-

sures, AWF and PC, evaluate consistently the

configuration component of prioritisations. LCP-val-

ued locations of patches in a different manner

compared to other measures at great threshold

distances ([5 km). There even existed negative

correlations for the prioritisations (AWF vs. LCP,

LCP vs. PC and IIC vs. LCP) indicating that

measures can value locations of patches quite incon-

sistently. IIC-valued patch locations more in accor-

dance with probabilistic measures than LCP, but

showed deviations from the probabilistic measures at

large threshold distances.

In the sparse network of herb-rich forests, the top-

patches were even more inconsistently valued in

prioritisations than all patches as a whole (Fig. 4). In

this network, binary measures valued top patches

more for their location than patches as a whole

(results not shown), which seemed to increase

differences in patch prioritisations derived from

different measures. This is especially reflected in

the increasing disparity between probabilistic and

binary measures for the top patches. The difference

was more pronounced at the intermediate threshold

distances. In contrast, in the dense network of heath

forests, different measures scored top patches with

approximately the same consistency as all patches as

a whole (Fig. 4). In that network, the binary measure

IIC valued top-patch locations in accordance with

probabilistic measures.

Fig. 2 Comparisons of

four connectivity measures

(AWF, IIC, LCP, and PC)

for the effect of patch size

on the patch prioritisation

values at different threshold

distances for three habitat

networks that vary in terms

of their graph order (GO).

The effect of patch size is

calculated by regressing

log-transformed patch

importance values against

log-transformed patch areas

and reported as a coefficient

of determination (R2)
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Discussion

According to our conceptual and empirical compar-

isons, many connectivity measures do not react to

changes in the amount and connection status of

habitat in line with the connection concept defined.

Measures that show ecologically problematic perfor-

mance at the network level (graph diameter,

Fig. 3 Pairwise

comparisons of patch

prioritizations based on

different measures (AWF,

IIC, LCP, and PC) as a

function of threshold

distance for the networks of

herb-rich and heath forests.

Comparisons are based on

Pearson’s correlations

coefficients calculated for

the log-transformed patch

importance values. Partial

correlations show the

correlations for the

importance values after the

effect of patch size is

controlled for
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correlation length, ECS) are not appropriate ‘stand-

alone’ measures of landscape connectivity, but can

nevertheless be used for descriptive purposes. Such

descriptive information accompanied with a graphical

presentation may give valuable insights into the

characteristics of a network. On the other hand,

connectivity measures responding in agreement with

the connectivity concept at the network level differ

greatly in terms of their connectivity model. Our

empirical results give important insights of the

implications of the connectivity model on the

performance of measures at the landscape and patch

Fig. 4 Pairwise

comparisons of patch

prioritizations for 20 top

patches based on different

measures (AWF, IIC, LCP,

and PC) as a function of

threshold distance in the

networks of herb-rich and

heath forests
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level—not so evident when evaluated on conceptual

grounds.

Because a small increase in dispersal ability (as

well as a change in spatial pattern) may produce a

sharp rise in connectivity, it has been suggested that

connectivity possesses a transition range (e.g. With

and Crist 1995; Keitt et al. 1997; and for the more

general context of percolation theory, see Gardner

et al. 1987; Stauffer 1987; With and King 1997).

Transition range divides the species into two groups:

those that perceive the landscape as disconnected and

those that perceive it as connected. Our connectivity

profiles (Fig. 1) indicate that the existence of the

transition range is only evident for measures using a

binary connection model. In contrast, measures that

weigh interpatch distance by dispersal probability did

not show a sudden shift in connectivity, but rather a

gradual monotonic increase with increasing dispersal

distance (as also reported by Saura and Rubio 2010).

Empirical data would be needed to evaluate whether

this transition range expressed by binary measures is

also reflected in the realised ecological processes. If

so, the binary measures may be used alongside with

probabilistic measures as they are able to provide this

additional insight to the interaction between land-

scape structure and species dispersal.

Our results show that connectivity evaluations of

coherence measures are uninformative after the

landscape consists of a single component (Fig. 1).

Measures that view components as binary structures

and do not account for their internal structure may be

ecologically unrealistic. This especially holds for

networks that show a high level of compartmental-

isation. For example, if only one link (its length near

the dispersal ability of organisms) is bridging two

compartments, the dispersal of organisms may be

restricted to within compartment rather than within

component. The potential value of this one single link

may be related to the process under focus and its

associated time frame, because the probability of rare

events increases as the time frame is extended. For

processes that operate over long time periods (e.g.

gene flow), weak connections among components

may also be valuable, whereas for a process of a

shorter time frame (e.g. population persistence in a

fragmented landscape), the value of one weak

connection is possibly only negligible. If it is

necessary to correct this dependence on one link, an

easy remedy would be to set a minimum number of

links (greater than one) that should bridge a patch in a

component, so that the component-based connectivity

would lie on a stronger basis. Connectivity measures

that are founded on the component approach (sum-

marised in Table 1) are all confined to this possibly

restrictive connectivity concept. Besides being

widely used as a conceptual basis for connectivity

measures, there has also been a growing interest in

using components as landscape ecological units of

analyses (e.g. Castellon and Sieving 2007; Minor

et al. 2009).

Patch prioritisations based on different measures

can produce inconsistent outcomes, which was evi-

dent also for the most valuable patches usually

identified for conservation purposes (Figs. 3, 4). Our

results show that the disparity between patch prior-

itisations derived from different measures may stem

from two mechanisms: the measures place a different

emphasis on patch size compared to patch location or

they differ in how they value the locations of patches.

When the results from graph analyses are interpreted,

it is important to remember that the mere choice of a

measure affects the relative importance of a patch

area versus its topological properties. If the interpre-

tation is biased in topological aspects, small patches

may score too high relative to their ecological value.

In our analysis, we interpreted the prioritisation value

of a patch to be a combined outcome of its size and

location in a network. The locational value of a patch

can be further divided into two components; a patch

can either be a flux donator/receiver in its own

pairwise connections and/or a connecting element

(i.e. a stepping stone) in the paths among other

patches (Saura and Rubio 2010). This elaborated

division may give additional insights into the behav-

iours of different measures in evaluating patches

relative to their locations.

Networks that vary in patch density (depicted by

the number of patches in a network per landscape

area) provide testing grounds for the performance of

connectivity measures. When there are more patches

spread out in a landscape, their mean interpatch

distance decreases, and the nature of their connec-

tions may also change (for example, the relative

influence of indirect patch connections may increase

in sparser networks). Dense networks may also

exhibit a greater redundancy in interpatch connec-

tions than sparse networks, so that connections

between pairs of patches are not necessarily only
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dependent on a single ‘route’. This redundancy is an

important network property that should be understood

when the results from node removal analyses are

interpreted (as shown by Bodin and Saura 2010). Of

course, a network with a small number of patches

may have them all very locally gathered, and thus,

from the point of view of configuration, show more

characteristics of a dense network than a sparse one.

This was not, however, the case in our networks,

because the average nearest neighbour (NN) distance

decreased with network density (herb-rich forests

924.97 m; spruce mires 441.51 m; heath forests

306.04 m). The average NN index (the ratio of the

observed NN distance divided by the expected one

based on random locations, calculated with ArcMap

v. 9.2), which expresses the degree of patch cluster-

ing, was also at the same level in all three networks

(herb-rich forests 0.64; spruce mire 0.59; heath

forests 0.62). In our patch prioritisation results, the

sparse network was more susceptible to inconsistent

patch prioritisations than the dense one. We see that

the conceptual differences between measures may

become more evident in the patch prioritisations of

sparse networks, but more specific mechanisms and

generalisations would require prioritisation results to

be analysed from a larger pool of networks. But

regardless of network density, we recommend the

comparison of prioritisation results from several

measures to get a broader picture of the values and

roles of patches in a network.

Keitt et al. (1997) suggested that patch configura-

tion plays the most prominent role in landscape

connectivity for species with intermediate dispersal

ability, whereas for poor or good dispersers the patch

value is more determinant. This is because poor

dispersers are mostly confined to local patches

irrespective of patch configuration, while good dis-

persers are not dispersal limited, and thus the patch

size dominates the patch location in importance.

Binary measures (IIC and LCP) and PC showed this

pattern in their patch prioritisations, although PC

valued configuration in a smoother manner than the

binary measures (Fig. 2). However, AWF was not

able to recognise the value of patch configuration at

intermediate threshold distances (Fig. 2), suggesting

that AWF cannot reliably value patch configuration

from the perspective of dispersing individuals.

The relative influence of patch size (over config-

uration) on patch prioritisations was, at small

threshold distances, greater in the sparsest network

than in the two denser networks (Fig. 2). This

indicates that individuals in sparse networks are

confined to individual patches/isolated parts of a

network. In such cases, the other patches are out of

reach to individuals irrespective of their configura-

tion, and habitat area as a currency of (intra- and

interpatch) connectivity gets relative high values.

Once again AWF deviated from the other measure of

connectivity and did not detect this enhanced value of

patch size in the sparsest network.

Our analysis showed that all connectivity mea-

sures react in their own characteristic ways (dictated

by their connectivity model) to the removal of a

patch. The mechanisms leading to evident differ-

ences in patch prioritisations among measures are

intractable based on correlations alone, but would

require additional investigation. The node removal

analysis presents different kinds of challenges to and

requirements on the connectivity measures than the

measurement of landscape-level connectivity,

because the evaluation of changes induced by patch

removal brings about elements that are not exposed

when working with intact networks. For the inter-

pretation of the results from node removal analysis,

it is important to understand how the given measure

reacts to a connectivity change induced by patch

removal. For example, the node removal analysis

based on component-based measures cannot value a

patch location unless the patch bridges otherwise

isolated components. In the ‘‘non-split’’ cases, the

prioritisation of a patch is only based on its

contribution to habitat area. Measures based on the

shortest paths (e.g. IIC and PC), on the other hand,

may react unpredictably to patch loss because the

measures also rate the possible new shortest paths

formed in a network (Bodin and Saura 2010).

Besides the patch prioritisations based on node

removal analysis, there exist also alternative meth-

ods to evaluate the connectivity contributions of

individual patches (e.g. Estrada and Bodin 2008).

These alternatives, rooted in the concept of network

centrality, operate on intact networks and have a

very different philosophical background from the

approach based on node removal analyses. As

shown by Bodin and Saura (2010), these approaches

may be used to complement each other in order to

have a more comprehensive picture of patch value

in a network.
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Probabilistic connectivity measures track the

enhancement in connectivity brought about by increas-

ing dispersal ability of a species much further than do

binary measures, which has implications for both

landscape- and patch-level connectivity evaluations.

Whether the realised connectivity tracks this enhance-

ment captured by probabilistic measures may be related

to the process under focus. As speculated by Bodin and

Saura (2010), the binary connection model offered by

IIC may be suitable for a process like gene exchange,

which may be more reactive to a few realised transmis-

sion events (and so, to a mere existence of links rather

than their strengths) than an actual transmission rate.

The probabilistic connectivity models, on the other

hand,may give a better basis for tracking quantities (e.g.

dispersal flux) moving in a network.

Borgatti (2006) showed that the selection of

optimal nodes may strongly depend on the goal. A

different set of patches is selected when the purpose

is to identify the patches whose removal would cause

the greatest network fragmentation compared with a

set that most efficiently promotes connections to

other patches. This ultimate target of patch prioriti-

sations is not usually explicitly stated or even

considered in landscape ecological applications,

although it should be inherent to the whole process

of patch prioritisation. Graph-theoretic analyses can

also be sensitive to the underlying assumptions

regarding the dispersal behaviour of individuals.

Connectivity at a landscape or patch level cannot be

evaluated without a reference as to how individuals

disperse in a network (e.g. Borgatti 2005; Urban et al.

2009). The most sophisticated graph-theoretic con-

nectivity measures (IIC and PC) are based on the

concept of the shortest paths. Insights provided by

empirical connectivity data are needed to better

understand which kinds of species and processes (and

over which time frames) would possibly experience

connectivity in terms of direct connections instead of

paths. Moreover, dispersing individuals may not be

restricted to the shortest paths, but alternative paths

may also be important.

We would like to note that in many cases the

actual level (quantitative variable) of connectivity is

more important than judging whether a landscape is

in the connected or disconnected stage (binary

variable) for any given species. It is important to

keep in mind that the total landscape area remains the

same irrespective of the dispersal ability, and the

level of connectivity is conditional on the total habitat

area in a landscape. It is the network topology that

determines how the connectivity changes with

increasing dispersal ability. Conservation should

offer both elements: habitat area as well as its

appropriate configuration to allow efficient species

dispersal. Even the sparsest of networks show

levelling-off in connectivity with increasing dispersal

ability, but there is no much use of this topological

connectedness if the habitat area in a system is

minimal. There have been recent attempts to mini-

mise the total area of protected area network while

maintaining the connectivity (e.g. Rothley and Rae

2005). We are afraid that connectivity is not yet

understood thoroughly enough for this to be a safe

approach. If no certainty exists that the connectivity

measures capture the ecological process in focus,

ecologically effective conservation should preferably

address the question: How can we maximise connec-

tivity for a given amount of habitat?

Scope for the future

The network robustness is an issue often neglected in

the evaluation and design of habitat networks (see

e.g. Matisziw and Murray 2008; McRae et al. 2008).

Robust networks must contain nodes that are appar-

ently redundant at the moment, in order to be resilient

to future habitat loss or local extinctions. Robustness

stems from the system redundancy, i.e. multiple

pathways between pairs of patches. Matisziw and

Murray (2008) deal with an important part of

connectivity conservation by stating that ‘although

ensuring a desired level of connectivity in a habitat

network might be relatively easy to accomplish at the

outset, long- term management of connectivity is

much more complex’. Indeed, patch loss can impact

connectivity in different ways and patch configura-

tions differ in their robustness to the effects of patch

loss. Most network measures do not hold information

about network robustness, but only evaluate a

network in one point of time. This is definitely an

issue that needs further attention.

Graph-theoretic connectivity approaches most

often view the connection between two patches as

occurring via one link (the shortest/least-cost one),

and additionally via one path (the shortest one) if

indirect connections are also acknowledged. This is a
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problem that needs to be addressed, because in reality

multiple connections certainly increase connectivity.

This is supported by empirical evidence from a

connectivity evaluation carried out in a circuit-

theoretic framework showing that multiple connec-

tions between patches enhance gene flow (McRae and

Beier 2007). Multiple connections can occur at two

levels: between two patches that are in direct contact

and at the larger network level, so that a patch pair is

linked via more than one path. The former form of

multiple connections has already received attention

from several perspectives (e.g. Pinto and Keitt 2009;

Urban et al. 2009; Vogt et al. 2009; Lookingbill et al.

2010), and if it can be compressed into one value

depicting the isolation between two patches, it can be

easily applied to any graph-theoretic connectivity

measure. For example, circuit-theoretic resistance

distance (a measure of isolation between pairs of

patches) decreases with an increasing number of

alternative connections between patches (McRae

et al. 2008). The latter form of multiple connections,

i.e. multiple paths among patches, has not yet been

incorporated into graph-theoretic connectivity mea-

sures. Graph theory itself does not set limits, but

provides potential for acknowledgement of more

versatile connections among patches than have been

acknowledged so far.
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ABSTRACT 

Species distribution models that combine sound ecological theory and reliable 
modeling approaches can be very useful tools in devising efficient conservation 
programs for species threatened because of habitat loss. The Siberian Jay 
(Perisoreus infaustus) is a representative of the resident species of northern taiga 
forests, whose declines have been attributed to the adverse, multiple-scale 
changes in forest characteristics brought about by intensive modern forestry. 
Here, we modeled the territory and landscape level habitat associations of the 
species in two areas in southern Finland (central Finland and Karelia) within a 
Bayesian, hierarchical model setting. In the modeling, we accounted for 
imperfect detection inherent in the occurrence data, as well as spatial 
autocorrelation in the response with the Gaussian conditional autoregressive 
(CAR) approach. Multi-scale models, incorporating territory and landscape level 
variables, outperformed single-scale territory level models, which highlight the 
role of landscape context in shaping the distribution pattern of the species. For 
territory level models, the spatial autocorrelation of the missing landscape level 
variables was incorporated to the spatially structured error term, improving the 
model fit and performance for both areas. In central Finland characterized by a 
patchy species distribution pattern outside of the continuous distribution range, 
the species seemed to set stricter demands on its habitat than in Karelia that is 
connected with the continuous range in the north. In central Finland, the CAR 
modeling coupled with multi-scale approach lead to further enhancement in 
model fit and differentiation ability, which suggests the role of intrinsic factors 
shaping the species distribution pattern. The successful conservation of the 
species requires forest planning at the sufficiently large scale, and special 
emphasis should be given to the structural characteristics of forest stands.  
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INTRODUCTION 

Modern forestry has altered the dynamics and structure of the Fennoscandian 
forest ecosystems, albeit the forest land area has remained unchanged. 
Intensively managed forests are characterized by even-aged, single-storied 
stands, altered tree species composition, low amount of dead wood, the lack of 
old deciduous trees and continuity (Esseen et al. 1997, Östlund et al. 1997). At the 
landscape level the area of old-growth and mature forests has decreased, and 
become separated by younger stands and clear-cut areas (Löfman and Kouki 
2001). Forestry has affected adversely the state of forest biodiversity, for example, 
36% of threatened species in Finland are forest dwellers (Rassi et al. 2010). 
Among the species threatened by forestry are resident forest species, specialized 
in later forest successional stages that inhabit the northern boreal forests in 
Fennoscandia (Helle and Järvinen 1986, Virkkala 1987, Edenius and Elmberg 
1996). 

Species distribution models (SDMs) aim at quantifying the relationship 
between species occupancy and the environmental factors that impose control on 
it (Guisan and Zimmermann 2000). Species distribution models can be used to 
gain new insights into species habitat associations, but also their predictive 
capabilities can be widely utilized, for example in conservation planning and 
targeting of field inventories. Indeed, species distribution models that combine 
sound ecological theory and knowledge with the modeling approaches and 
methods giving justice to the properties of data and the process under focus, can 
be very useful tools in devising efficient conservation programs for species 
threatened because of habitat loss.  

Habitat selection of organisms is a hierarchical process that occurs on 
several spatial scales (Wiens 1989, Levin 1992, Cushman and McGarigal 2002). 
The environmental variables that control the distribution of a species, and their 
relative importance, change with the spatial scale (see e.g., Buler et al. 2007). 
Thus, the successful modeling of species’ distribution pattern usually calls for 
incorporating multiple spatial scales (see e.g., Naugle et al. 2000, Graf et al. 2005, 
Betts et al. 2006). Moreover, forestry affects forest characteristics and structure 
across the different spatial scales, from stand level to broad landscape level. The 
realized distribution pattern of a forest dependent species is a complex interplay 
of hierarchically assembled response of the species to its hierarchically modified 
environment.  

Absence of a species at a site is more difficult to verify than its presence. 
Occupancy data for many species are burdened by imperfect detection so that a 
detected absence may not equate to true absence but undetected presence (see 
e.g., MacKenzie et al. 2002, MacKenzie 2006). To make inference of the actual 
state variable (species occurrence) and its relationship with environmental 
covariates, it is important to explicitly account for the imperfect detection 
inherent in occupancy data (e.g., Royle et al. 2007). Ignorance of imperfect 
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detection in species-habitat modeling has been shown to bias the parameter 
estimates for habitat covariates and reduce their precisions (Tyre et al. 2003, Gu 
and Swihart 2004). 

The distribution pattern of a species is not a straightforward product of 
environmental variables, but species’ intrinsic properties (e.g., social behavior 
and dispersal) may also shape the realized pattern (Legendre 1993, Fortin and 
Dale 2005, Bahn et al. 2006). Usually this creates a more aggregated and 
autocorrelated distribution pattern that would be predicted based on the 
environmental variables alone. Along with intrinsic factors, also missing (or 
incorrectly specified) environmental (i.e., extrinsic) factors lead to autocorrelated 
residuals (Legendre 1993, Fortin and Dale 2005), and the two sources of 
autocorrelation are difficult to disentangle (see Teeffelen and Ovaskainen 2007). 
In addition to the possible predictive benefits achieved when the autocorrelated 
patterning is accounted for in distribution modeling (e.g., Miller et al. 2007), 
spatial approach also allows for making sound inference about the relationship 
between species’ distribution and environmental variables controlling it. If a 
model violates the assumption of independent errors (as usually non-spatial 
models do), it tend to produce biased parameter estimates and overestimate the 
effects of environmental covariates on controlling species distributions (e.g., 
Dormann 2007).  

Bayesian hierarchical models provide a flexible framework to model 
complicated processes, which can be viewed and modeled as an outcome of 
several conditional processes, specified via their own submodels (Wikle 2003). 
For example, in the case of imperfect detection the observational data do not 
allow direct inferences to be made on the actual process variable (i.e. species 
occurrence). Within a hierarchical framework, the process of interest can be 
conditioned on the observational data, and both (data and process) represented 
by their own submodels (Royle and Dorazio 2008). Bayesian model 
implementations becomes especially appealing or represent the only possible 
option for analysis when the modeling involves hierarchical formulation coupled 
with spatially explicit approach (see e.g., Latimer et al. 2006, Royle et al. 2007, 
Wilson et al. 2010). Moreover, the quantification of uncertainty associated with 
parameter estimations is also an evident advantage that comes along with 
Bayesian approach (see e.g., Cressie et al. 2009, Link and Barker 2010). The 
spatially explicit, hierarchical Bayesian approach offers an obvious benefit for 
species distribution modeling as it allows, along with predictive benefits, safe 
inferences to be made on the role of environmental covariates shaping the 
species distribution pattern. Thus, such modeling would provide a sound basis 
for species conservation programs. 

The Siberian Jay (Perisoreus infaustus) is a sedentary passerine species that 
inhabits the boreal regions in Eurasia. The Siberian Jay has a complex social 
behavior: it lives in territorial social groups in which the breeding pair may be 
accompanied with retained offspring and/or non-kin immigrants (see e.g., 
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Ekman et al. 1999, Ekman et al. 2002, Griesser et al. 2006). The number of Siberian 
Jay individuals in Finland declined to one third during 1940-1970, after which 
populations in southern Finland, where the species lives at the southern edge of 
its distribution range, have shown the further decline (Väisänen et al. 1998). 
Consequently, the distribution of the species has become highly patchy. The 
population decline has been attributed to the effects of intensive logging and 
forest management (e.g., Helle and Jarvinen 1986).  

In southern Finland, the Siberian Jay has been suggested to exhibit clearly 
different and more stringent habitat requirements than in the north (e.g. von 
Haartman et al. 1963-72). The Siberian Jay is traditionally considered being 
associated with old-growth coniferous forests /swamp forests (Väisänen et al. 
1998), but the species also occurs in intensively managed forests (Lillandt 2000). 
In addition to high quality breeding areas, rather large territories (up to 5 km2) of 
the species typically comprise many kinds of forest stands and land cover types 
(also open areas, young stands and mires) (Lillandt 2000). As only a rather small 
proportion (6.8 per cent on average) of the area known to be occupied by the 
Siberian Jay is located in protected areas in Southern Finland (Pihlajaniemi 2009), 
the viability of the Siberian Jay populations relies strongly on the forest practices 
carried out on commercial forests. However, to find a safe balance between 
forestry practices and species habitat requirements, more knowledge is needed 
on the key determinants of its habitat selection and breeding success. Especially, 
little is known about the habitat associations of the species at the landscape level.  

Siberian Jays show a high level of site fidelity and do not abandon their 
territories easily. Dispersal of the species is mainly restricted to short distances, 
usually near their natal territory (Lillandt 2000, Uimaniemi et al. 2000). The 
documented average dispersal distances in Southern Finland range from ca. 3 
km (Lillandt 1993) to ca. 5 km (Gienapp and Merilä 2011). In addition to the 
dominating short distance dispersals, also long distance, inter-population 
dispersals have been confirmed (Lillandt 2000). Because of the complex social 
behavior of the species and its restricted dispersal it is to be expected that, 
besides the environmental determinants, the distribution pattern of the species 
may also be shaped by intrinsic autocorrelation.  

We use here data from experimental feeding sites. The detection histories 
for intensively monitored occupied sites indicate that the probability of seeing a 
Jay in any given visit to a site is rather low. As the feeding site data obviously 
suffers from imperfect detection, we wanted to model the detection process at 
the feeding sites simultaneously with the occurrence modeling. In this study we 
address the following questions: 1) What are the territory and landscape level 
variables explaining the recent distribution pattern of the species in our study 
areas? 2) Is the distribution pattern of the species determined by territory level 
environmental variables, or is it also controlled by the forest characteristics and 
composition at the landscape level? 3) Does the accounting for spatial 
autocorrelation in the response provide a better understanding of the 
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distribution pattern of the species than a non-spatial approach? 4) How 
consistent are the habitat associations of the species in different parts of southern 
Finland? Our research provides new information on the habitat-relationship of 
the species in managed forest landscapes, so that the key elements of the Siberian 
Jay forests could be better identified and acknowledged (at a proper spatial scale) 
in managed forests.  

METHODS 

Study areas 

Study areas were located in central Finland and Karelia (Fig. 1). The study areas 
are separated by ca. 100 km in east-west direction, and the southern border of the 
study area of central Finland lies ca. 70 km southwards from that of Karelia. The 
study area in central Finland encompassed c. 21 500 km2, of which 73 % was 
covered by forested land (of which forests 77 % and scrubland 23 %), 12 % by 
waterbodies, 11 % by built-up and agricultural areas, 3 % by open mires and < 
1% by barren land. The study area in Karelia encompassed c. 18 500 km2, of 
which 75 % was covered by forested land (of which forests 72 % and scrubland 
28 %), 13 % by waterbodies, 6 % by open mires, 5 % by built-up and agricultural 
areas and < 1 % by barren land. Central Finland has a longer and more intensive 
history of land use than Karelia. In both study areas the dominant tree species 
are Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and birch (Petula 
pendula and P. pubescens). Spruce is a dominant tree species in 26 % and 19% of 
the forested land in the study area of central Finland and Karelia, respectively. 

Although the known presences of the Siberian Jay are spread throughout 
central Finland, its occurrence in the study area is very patchy. The study area of 
Karelia has higher Siberian Jay abundance than central Finland, and near the 
Eastern border this area represents a continuous distribution range that extends 
from the foothold areas of the Siberian Jay in Northern Finland (Pihlajaniemi 
2006). 

Forest data 

We used the multi-source Natural Forest Inventory (NFI9) data produced by The 
Finnish Forest Research Institute as land use and forest characteristic data. This 
dataset is a combined product of field measurements, satellite image data and 
other digital data sources (elevation models and land use maps; Tomppo 1993). 
The resolution of the data is 25 m * 25 m. In our research we used layers for 
timber volume (m3/ha) by tree species (spruce, pine, birch and other deciduous 
trees), basal area (m2/ha) and forest age. We also used a layer that distinguished 
heath forests, spruce mire forests, forested mires/bogs and open fens from each 
other. In addition to the NFI –data, we used National CORINE database of 
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Finland to distinguish human dominated areas and a digital elevation model 
(DEM) to calculate elevation and topographic variation of terrain, both having a 
resolution of 25 m*25 m. 

Raster datasets were processed in two steps. First, moving window 
analyses for the extraction of covariates (for all the covariates represented in 
Table 1) were conducted with the original data resolution (25 m * 25 m). We used 
a circular window with radius of either 750 m (territory level) or 5 km (landscape 
level). The circular window of radius 750 m corresponds in area (1.8 km2) to the 
size of the Siberian Jay territory in Southern Finland, 1-5 km2 (Lillandt 2000). The 
scale of landscape level analysis (5 km) is determined on the basis of the 
documented average dispersal distances. Second, the layers from the moving 
window analyses were resampled (using average criteria) to the resolution of 1.5 
km * 1.5 km (2.25 km2). We wanted to conduct the modeling with the resolution 
of an average territory size, because this provides an ecologically meaningful 
interpretation for autocorrelation – the possible dependence between territories 
and their occupancy status. However, the two-step extraction of covariates 
allowed us to exploit the information in the forest data more efficiently than 
straightly resampling it to the coarse resolution. We peeled our study areas by 5 
km wide buffer strips (corresponding to the scale of landscape analysis) to have 
complete data coverage also near the borders. 

Occurrence data of the Siberian Jay 

We utilized two kinds of species occurrence data: one originating from repeated 
feeding site surveys and the other from the sighting record databases governed 
by local ornithological societies. The records of the both datasets are dated to the 
years 2005-2008. We assumed constant occupancy status of the territories during 
this study period.  

The repeated feeding site surveys were conducted by ornithologists and 
two fieldworkers of Metsähallitus (one in central Finland and another in Karelia). 
The feeding site survey is not based on systematic sampling design, which poses 
challenges to the efficient use of the data set.  

The feeding site survey relies on the hoarding behavior of the Siberian Jays 
in autumn. Feeding sites are provided with a bag made of wire netting, filled 
with lard. Within jay territories, feeding sites attract individuals and facilitate the 
detection of individuals. We coded the feeding site data as a total number of 
visits to a site and a number of visits with jay detections (either sighting or 
hearing). If there were several feeding sites for one grid cell, the data entries of 
individual feeding sites were combined. If the total number of visits was not 
reported for a site, we used a median value. The median was calculated 
primarily based on the data (i.e. total number of visits per site) from the other 
feeding sites of a given observer. If that data was unavailable, the median was 
calculated from the area-survey specific data. There was a great variation in the 
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number of visits made for each site, ranging from 1-54 and 2-6 for central Finland 
and Karelia, respectively.  

Sighting record databases comprised a collection of sightings reported by 
ornithologists and public. From the records we removed the ones with inaccurate 
locations (when either the precision of coordinates was inaccurate, or location 
was reported to be unreliable).  

The two sources of species occurrence data were considered to differ in 
terms of detection process. Detection probability was modeled only for repeated 
feeding site surveys, but the sighting records were considered to represent 
perfect detection (p=1). For feeding site surveys, our dataset comprised 402 grid 
cells (of the resolution of 1.5 km* 1.5 km) for central Finland and 145 for Karelia. 
For sighting records, there were 99 grid cells for central Finland and 46 for 
Karelia. Altogether, there were 103 and 47 grid cells with detected occupancy in 
central Finland and Karelia, respectively. 

Environmental covariates and their ecological basis 

The territory (n=14) and landscape (n=5) level covariates we used in modeling 
are summarized in Table 1. The choice of the environmental covariates was 
based on the existing knowledge on the ecology of the Siberian Jay. Here, we 
provide a brief description of the ecological basis of the covariates as well as the 
details how the covariates were calculated.  

In southern Finland, the Siberian Jay has traditionally been considered to be 
associated with old, continuous, spruce-dominated forests (e.g., Väisänen et al. 
1998), but it also occurs in commercially managed forests. Spruce offers 
concealment from avian predators as well as diverse feeding and nesting 
opportunities (Edenius and Meyer 2002). On the other hand, the Siberia Jay has 
been shown to avoid open spruce-dominated forests with large diameter trees 
(Lillandt 2000). Especially in Southern Finland, the species further is considered 
to be associated with spruce mires (e.g., Väisänen et al. 1998), which possibly 
provide suitable, multi-layered forest structure (rich in low spruces) for nesting 
and hoarding. Young forests are assumed to play a negative role for a species as 
they represent rather open forest areas and forested areas unsuitable for nesting 
(i.e., regeneration sites, seedling stands and young thinning stands). 

We used three cover variables. First, forest cover (total volume >100 m3/ha) 
tested if overall availability of forests is sufficient in explaining the distribution of 
the species. Second, cover of spruce dominated forests (total volume >100 
m3/ha) was entered to test for the presumed association with spruce, and, third, 
cover of spruce dominated matured forests (total volume > 170 m3/ha) to test for 
association with older spruce forests. These three variables were highly 
correlated, and they were not allowed to enter simultaneously to models. The 
growing stock volumes of 100 m3/ha and 170 m3/ha corresponds to those of an 
average young thinning stand and advanced thinning stand, respectively 
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(Anonymous, 2009). A pixel was defined to be spruce-dominated if the growing 
stock volume of spruce exceeded that of pine or deciduous trees. As additional 
forest cover variables we calculated the extent of spruce mires (total volume > 
100m3/ha) within territory and the extent of young forests (< 40 years) at the 
territory and landscape level.  

Nesting success of the Siberian Jay has been found to be enhanced in the 
vicinity of “soft” forest edges (Sklepkovych 1997). According to Skepkovych 
(1997), forest –mire edges may be rich in food because sun exposure at the 
transitional areas increases insect activity and provides areas of earlier snowmelt. 
Forest structure in these transitional areas may also be favorable to the species. 
We calculated the total length of soft forest edge between forests with total 
timber volume > 100m3/ha and mires (mires and fens). The raster dataset was 
generalized by replacing all cell groups  6 cells (with a four neighbor criteria) 
with the values of the nearest neighbors. In addition to the length of soft edges, 
we also calculated the coverage of mires and fens, because open or sparsely 
forested areas has also been found to increase adult mortality through enhanced 
predation risk (Nystrand et al. 2010) 

The elevation above the sea level has been found to be an important broad 
scale determinant of Siberian Jay occurrences in North Finland where the jays 
had been found to favor areas with elevation above the sea level greater than 235 
m (Louhia 2001). There is no apparent causal mechanism explaining this 
association, as the elevation may, in addition to its independent effect, also be 
intertwined with many forest cover variables. We prioritized thus the cover 
related variables over elevation and terrain variables, which were entered at the 
later stage in models (Fig 2.). The variation in elevation (i.e., topographic 
variation) within a territory may also bring about environmental heterogeneity, 
which may have a positive association with the occurrence of the Siberian Jay. 

The Siberian Jay has been shown to prefer areas located further away from 
human settlement (Ekman et al. 2001, Nystrand et al. 2010). Although the 
influence of human settlement is most certainly linked with cover and terrain 
variables as well, it could also have an independent role in controlling the species 
occurrence. The negative effect of human settlement may be mediated by other 
corvid species, which thrive near human settlement and whose predation is the 
primary cause of the Siberian Jay nest failure (Eggers et al. 2005). We calculated 
the influence of human settlement as the proportion of human-dominated land 
use (including built-up and agricultural areas) of the total territory/landscape 
area.  

Forest openness within territories increases the exposure of jays and their 
nests to the visually hunting predators (Eggers et al. 2005, Griesser et al. 2007, 
Nystrand et al. 2010). We calculated tree density for spruce-dominated forests (> 
20 years) as the ratio of basal area (m2/ha) to the average height of a forest stand 
(m). We used the following formula to first calculate the average stock height: 
total timber volume (m3/ha) = shape index*basal area (m2/ha)*average stock 
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height (Auvinen 1997), using a value of 0.5 for a shape index. The density layer 
(basal area/stock height) was smoothed by moving window analysis with 
median criteria. The smoothed density layer was then resampled to a final 
resolution using either average (Densityave) or maximum (Densitymax) criteria. 
Smoothing was necessary, because timber volume and basal area layers are not 
in complete match at the pixel level, leading to some extreme density values. The 
smoothed layer gives rather conservative information on density, as it also wipes 
out information on the true extreme density values (which could be ecologically 
more important than the average ones). 

There is a SW to NE gradient in density of the Siberian Jay in Finland. The 
species occurs as patchy populations in southern Finland, and the southern edge 
of the range boundary has shifted towards north during the last decades 
(Kemppainen and Kemppainen 1991, Lillandt 2009). Further north, densities tend 
to increase towards east due to the supply of individuals from the Russian 
Karelian continuous forests (Heikkinen et al. 2000, Kouki and Väänänen 2000). 
To control for the gradient, we used x- and y-coordinates (expresessed as the 
distance from the western and southern border of the study area, respectively) as 
variables.  

The decline of the Siberian Jay in Finland has been greater than predicted 
on the basis of the decrease in the area of old-growth forests alone (Järvinen et al. 
1977, Helle and Jarvinen 1986). This indicates that, along with habitat loss, forest 
fragmentation may also be involved in the declining population trends. We used 
average patch size of spruce-dominated forests (> 170 m3/ha) at the landscape 
level, included to the models only simultaneously with the corresponding cover 
variable (i.e., cover of spruce dominated forests at the landscape level). 

For the effect of mire areas (variables Edge and Mire) as well as of young 
forests (Young), we also entered quadratic terms to allow non-linear patterns to 
be modelled. For Edge and Mire this was a priori decision, and for the variable 
Young, a posteriori decision. 

We used FRAGSTATS v. 3.3 (McGarical et al. 2002) to calculate the total 
length of edges between forests and mires/fens as well as the area-weighted 
mean patch size and GRASS v. 6.4 (GRASS Development Team 2010) for 
calculations of all other variable layers. 

Modeling procedure 

As the feeding sites were not randomly located in the two landscapes, it was to 
be expected that they do not provide a representation of an average landscape 
nor do they possibly capture the full range of variation for the environmental 
covariates. We checked this by creating 500 random points in both areas (located 
on forested land with growing stock volume >100 m3/ha) and comparing their 
distributions for territory and landscape level covariates with corresponding 
distributions of the feeding sites and sighting records. The comparisons of 
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univariate distributions showed that the survey efforts were biased towards high 
elevation- low human impact sites (results not shown). As we wanted to correct 
for this survey bias, we opted for two-step modeling procedure. The first step 
was used to create pseudo-absence points that were fed as absence data to the 
actual modeling efforts of the second step (see Zaniewski et al. 2002, Engler et al. 
2004, Chefaoui and Lobo 2008 for the description and applications of this 
methodology).  

The pseudo-absence points were produced by using environmental niche 
factor analysis, ENFA. ENFA compares, in the multidimensional space formed 
by environmental covariates, the distribution of the known presence points with 
the reference distribution of the whole landscape (i.e. global distribution) (Hirzel 
et al. 2002). ENFA extracts differences in those two distributions, in terms of their 
mean positions and variances, to uncorrelated factors. The first factor, 
marginality factor, maximizes the differentiation of the species niche from the 
global distribution, while the subsequent specialization factors maximize the 
variance ratios of the two distributions. The extracted factors allow the 
computation of the habitat suitability scores for all the cells of the study area. We 
used eight box-cox transformed territory level variables (CoverT, Edge, Elev, 
HumanT, SmireT, Spruce170_T, YoungT, Densitymax) for factor extraction, and 
retained four factors for both areas for the calculation of habitat suitability scores. 
Habitat suitability scores, ranging from 0 to 100, were calculated with median 
algorithm, with adjustment for global frequency and extreme optimum (see 
Braunisch et al. 2008). The choice of the algorithm and its parameters was based 
on the inspections of the ten-fold cross-validations results (predicted/expected 
curves and Boyce indice) (see Hirzel et al. 2006). Pseudo-absence points were 
randomly located to those forested cells that have habitat suitability (HS) scores  
10 and growing stock volume >100m3/ha. For both areas, the number of pseudo-
absence points equaled the number of the known presence sites. Cells with HS 
scores  10 covered more than half of the landscape area in both two landscapes, 
and included only c. 10% of the presence records. The ENFA results for both 
areas are represented in Appendix I. As for the sighting records, the detection 
probability for the pseudo-absence points equaled one in the modeling.  

We constructed two separate sets of candidate models for both areas; one 
comprehending only territory level covariates and another combining territory 
and landscape level covariates. Figure 2 provides a schematic chart of the order 
in which we allowed the covariates to enter the models. For landscape models, 
we were interested in the additional explanatory power of landscape level 
variables, after the territory level variables have been accounted for. We also 
tested whether the landscape level analogue of a territory level variable had a 
better explanatory power than the territory variable itself. Because the number of 
candidate models was high, we decided to make model comparisons in a 
computationally “light” manner (as opposed to computer intensive Bayesian 
methods). We used program Presence (v. 3.0) (Hines 2006) to fit a set of 
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candidate non-spatial logistic regression models, where we modeled occurrence 
probability as a function of environmental covariates, while allowing for 
imperfect detection for the feeding site records (MacKenzie 2006). The candidate 
models were compared based on the AICc values (Burnham et al. 2002), with 
effective sample size corresponding to the number of sampling units. 

For the best models based on AIC c values, we fitted Bayesian logistic 
regression counterparts as well as their spatial realizations. As the best models, 
we recognized the models whose AICc differences ( i; AICci minus AICc(Min)) 

were < 4. According to the interpretation by Burnham and Anderson (2002), 
models with i > 4 have considerably less support than the model with minimum 
AIC value.  

Bayesian analyses were conducted with OpenBugs v. 3.0 (Thomas et al. 
2006). We employed a Gaussian conditional autoregressive (CAR) modelling 
approach to account for the spatial autocorrelation in the response. CAR models 
incorporate autocorrelation in a spatial error term (Besag 1974). For the CAR 
applications in the context of species distribution modeling, see e.g., Farnsworth 
et al. 2006, Latimer et al. 2006, Carroll et al. 2010 and Ishihama et al. 2010. In CAR 
model, probability of species presence  depends, along with effect of 
environmental covariates, on a site-specific spatially-structured random effect. 
This random effect is influenced by the values of the neighboring sites. 

CAR model has the following formula: 
 

where  is the intercept;  is the coefficient for the explanatory variable xk;  is 
the spatial random effect term for the site i ; and  is the spatially non-structured 
random error. The spatial random effect term of a site i ( ) is dependent on the  
terms of the neighboring sites. We defined the neighborhood of cell i to 
encompass its eight adjacent cells. The following conditional relationship is 
assumed for the distribution of : 

 

where i+ stands for a set of neighbors of cell i; cell j belongs to the neighborhood 
of cell i (denoted by );  denotes the number of cells which are neighbours of 
cell i; and  is the variance for all cells.  

We used uninformative priors for model parameters (uniformly distributed 
unif(0,1) prior for detection probability, normally distributed dnorm (0, 1.0E-6) 
priors for the intercept and  parameters, and the prior specification used by 
Latimer et al. 2006, an inverse gamma prior, for the conditional variance in a 
spatial error term). We run the models for computational reasons with one 
MCMC chain (but for randomly selected model runs we used two chains to 
control for the convergence). We used a burn-in period of 20 000 -40 000 
iterations, followed by 20 000 iterations for parameter estimation. 
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Evaluation of the model performance 

We evaluated the fit and performance of the final Bayesian models based on their 
1) deviance values; 2) Minimal Predicted Areas; and 3) cartographic output of the 
predictions. Because many of the methods that are usually used for the 
evaluation of model performance require absolute knowledge on the site 
occupancy (i.e., area under curve (AUC), true skill statistics (TSS), mean-squared 
predictive error (MSPE)), they turn infeasible for data with imperfect detection. 
Minimal Predicted Area (MPA), first introduced by Engler et al. (2004), stand for 
the extent of the predicted surface obtained by only considering those grid cells 
whose probability value exceed the threshold value, set to exclude x % (in our 
case, 10 %) of the known presences with smallest predicted probabilities. MPA 
value thus represents the proportion (%) of the area (of the total study area) 
exceeding the threshold predicted probability value. The leading idea behind 
MPA is that a good model with a high discriminatory capacity should predict a 
potential area that is as small as possible while still comprising the most of the 
species occurrences. The logic of the MPA is closely related to that of the AUC, 
while the measure also allows for visual map interpretation (Latimer et al. 2006).  

In addition, we constructed the Moran’s I correlograms for the model 
residuals to check for the spatial autocorrelation left in different distance classes 
(bin width of 2.5 km approximately equaling to distance between a cell and its 
cardinal neigbours (2.25 km). Because the true occupancy state of the grid cell 
with imperfect detection was unknown, we only qualified those imperfectly 
detected grid cells whose predicted probability of occupancy was < 0.4 based on 
the predictions of the best-performing multi-scale CAR model of the area (L1 for 
central Finland and L2 for Karelia). 

RESULTS 

As a result of model selection based on AICc values, we ended up with four and 
three best models both at the territory level (Appendix II) and at the multi-scale 
level (Appendix III) for central Finland and Karelia, respectively. The variables in 
the models were not strongly correlated (r < 0.5). The parameter values for their 
spatially explicit CAR model counterparts are represented in Table 2 (for 
territory level models) and Table 3 (for multi-scale models). Parameter estimates 
and their standard deviations remained largely unchanged in the spatial models, 
compared to the values of the corresponding non-spatial models. For both areas, 
the probability of detecting at least one Siberian Jay individual (given the 
territory occupancy) in one visit was rather low, ca. 0.10, across all the candidate 
models. For the reference, the null-model AICc values (including the terms only 
for the intercept and the detection probability) were 1032.8 ( AICc=82.3) and 282.8
( AICc=43.4) for central Finland and Karelia, respectively.  
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Model selection procedure resulted in rather different set of variables being 
selected to the best-screened models for central Finland than for Karelia 
(Appendices II and III, Tables 2 and 3). The best-supported territory level models 
for central Finland suggested positive effects of the length of edges between 
forests and mires/fens, the cover of young forests, and the cover of spruce mires 
(Fig. 3a), and a negative effect of the cover of human dominated areas on the 
probability of Siberian Jay occurrence . Although the variables for the length of 
edges and human-dominated areas were not strongly correlated (r=-0.41), they 
seemed to carry overlapping information on the species habitat association 
resulting in two sets of models for the species, one with edge length (T1, T2) and 
another with the cover of human dominated areas (T3, T4) included (Appendix 
II, Table 2)  

For Karelia, the best-supported territory level models suggested positive 
effects of elevation and y-coordinate (northing) on the probability of occurrence, 
which together comprised the model with the minimum AICc value (T1). 
(Appendix II, Table 2). However, the inclusion of the variables for the cover of 
spruce-dominated forests (total volume >170m3/ha) (positive, Fig. 3b), the cover 
of mires (unimodal relationship) and the cover of young forests (positive) 
improved the MPA performance of the models (T2). The elevation variable 
dominated the models for Karelia, because terms of the other variables turned 
insignificant when occurring together with it (T2 vs. T3). Although the AICc 
difference for the model without the elevation was huge ( i=15), its MPA 
performance was highest among the territory level models for Karelia. The 
inclusion of forest density variable (positive effect) to the models was slightly 
supported by the AICc values in both areas, but the models with forest density 
variable did not lead to improved performance (based on MPA), nor were their 
terms significant in all the models (Appendix II, Table 2).  

For central Finland, the multi-scale models with the highest support 
indicated a positive landscape level effect of forest cover (total volume > 100 
m3/ha) (Fig. 3c) and a negative landscape level effect of human-dominated areas. 
The landscape level variable for human-dominated areas clearly dominated its 
territory level counterpart in explanatory power. As with the territory level 
models, the variables for edge length and cover of human-dominated areas at the 
landscape level (r=-0.39) did not either occur in a same model, or occured 
together both with insignificant terms (L2) (Table 3).  

For Karelia, the landscape level variables for the cover of young forests 
(positive effect), human-dominated areas (negative effect, Fig. 3d) and mires (and 
its quadratic term; although insignificant together with the elevation variable in 
the models) were included among the best-screened multi-scale models (Table 3). 
For both areas, multi-scale models outperformed territory-level models based on 
AICc values and MPA-performance (Appendices II and III), indicating the 
importance of landscape context in determining the distribution pattern. The 
superiority of multi-scale models was especially clear for the non-spatial models.  
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The CAR approach resulted in a remarkable improvement in model fit and 
performance compared to the non-spatial approach. The benefits of the spatial 
approach were more pronounced for the territory level than for the multi-scale 
models in both areas (cf. Appendix II with Table 2 and Appendix III with Table 
3). For central Finland, however, the spatial approach clearly outperformed the 
non-spatial approach also for multi-scale models (Appendix III and Table 3). For 
example, in multi-scale models for central Finland, the MPAs dropped from the 
level of ca. 39 % to ca. 20% of the study area when switched from the non-spatial 
to the spatial approach. The associated deviance values also decreased from the 
level of ca. 950 to ca. 870. The predictive distribution patterns based on the CAR-
approach were much more aggregated compared to the prediction produced by 
non-spatial models (Fig. 4). Instead, the fit and MPA performance of the multi-
scale non-spatial and CAR- models were approximately at the same level for 
Karelia (Appendix III and Table 3), producing similar predictions for distribution 
pattern (Fig. 5., only showing the predictive surface for the multi-scale L2 model, 
almost identical to that produced by the non-spatial counterpart). Generally, the 
CAR approach increased the uncertainty of the predictions (Fig. 4). 

For central Finland, environmental variables in the non-spatial approach 
did not seem to make large differentiation between the known presence sites and 
sites without detection (Fig. 6) (which is not a modeling goal in itself, because a 
detection failure may arise either from to real absence, or from imperfect 
detection). The CAR models, however, were able to produce a more clear 
differentiation between the sites with presence and the sites without detection. 
This indicates that those sites represent real absences, which can be powerfully 
explained while accounting for the partial autocorrelation in the response. For 
Karelia, however, even the spatial approach did not differentiate the presence 
sites from the sites without detection (Fig. 6). The differentiation between the 
known presence sites and pseudo-absence sites was expectedly high for both 
areas.  

Across all the models for both areas, residual autocorrelation remained 
significant up to a distance of 5 km. Residuals of the models showed highest 
autocorrelation, as expected, for the territory level non-spatial models (Moran’s I 
values in the first distance class ranging between 0.33- 0.36 for central Finland, 
and 0.42 -0.67 for Karelia) (results not shown). The residual autocorrelation of the 
non-spatial multi-scale models was weaker than that of the territory level models 
(fist distance class autocorrelation ranging between 0.28 - 0.30 for central Finland, 
and 0.19 – 0.24 for Karelia). For central Finland, the CAR approach was able to 
reduce the spatial autocorrelation of the model residuals, compared to the non-
spatial territory and multi-scale models (for example, Moran’s I values for multi-
scale CAR models in a first distance class ranging between 0.24-0.25). For Karelia, 
on the other hand, the switch from the non-spatial territory level models to 
multi-scale models resulted in a greater and more consistent reduction in 
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residual autocorrelation than a switch from the non-spatial approach to the 
spatial one. 

DISCUSSION 

Our results suggests that the territory and landscape level habitat selection of the 
Siberian Jay shows differences in the two study areas, the distance between 
which is only 100 km in east-west direction (Tables 2 and 3). In central Finland, 
the Siberian Jay seemed to set stricter demands on its habitat, especially in its 
association to forest cover also at the landscape level. The occurrence of the 
species in central Finland was promoted by spruce mires, the occurrence of mire-
forest mosaic (i.e., soft edges), young forests and increasing density of spruce-
dominated forests at the territory level, and by forest cover and low human 
impact at the landscape level. In Karelia, the species occurrence increased with 
elevation, towards north, with spruce-dominated forests older than an average 
advanced thinning stand and with the density of spruce-dominated forests at the 
territory level, as well as with low human impact, young forests and mire areas 
at the landscape level.  

At the territory level, variables associated with spruce cover (spruce mires 
in central Finland, and aged spruce-dominated forests in Karelia) were included 
in the best-screened models for Siberian jay occupancy. This is not surprising 
given the earlier research on the habitat associations (e.g., Väisänen et al. 1998, 
Edenius and Meyer 2002). However, our results suggest that presence of spruce 
dominated forests is not enough but the structural characteristics of spruce-
dominated forests along with other territory and landscape level factors make a 
site suitable for the species.  

In both areas, AICc based model selection gave support for the inclusion of 
the measure of the density of spruce-dominated forests (Appendices II and III). 
Forest thinning is being carried out 2-3 times during rotation period to remove 
competing, lower quality trees (Anonymous 2007). Intensive thinning results in 
rather uniform and open forest structure, compared with a forest stand managed 
with a lighter thinning. There are results showing that the female mortality rises 
with the age of the managed forest, because repeated thinning of the forest 
produces too open forest structure (Nystrand et al. 2010). Bergholm (2007) found 
out the total yearly harvest of pulpwood (instead of saw-timber) to be negatively 
associated with the Siberian Jay survival and immigration. The Siberian Jay seem 
to be a species that requires more dense forest structure than produced by the 
prevailing thinning recommendations (see e.g., Virkkala 1987, Griesser et al. 
2007). Particularly, high density of spruce understorey (spruces < 15m) has been 
linked with high-quality jay territories (Sklepkovych 1997, Ekman et al. 1999, 
Ekman et al. 2001, Eggers et al. 2005, Angervuori 2008, Eggers et al. 2008). 
Unfortunately, the multi-source NFI-data does not allow account for the density 
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of understorey separately from the prevailing (canopy) storey. This would, 
however, be important if guidelines for sustainable forestry practices within jay 
territories are to be formulated.  

Somewhat surprising, the occurrence of the species was positively 
associated with the extent of young forests in both areas (also when the extent of 
forested area, irrespective of forest age, was controlled for) (Tables 2 and 3). This 
might be due to a positive association of the Siberian jay with young thinning 
stands of the age between 20-40 years, and not so much due to association with 
open clear-cuts and sapling stands younger than 20 year. The 20-40 years old 
young forests that have not yet undergone any thinning practices might offer 
dense forest structure, and also possibly provide nutrient-rich edge zones when 
associated with older spruce-dominated forests. But as the species may show a 
lagged response to environmental changes (discussed later), it is difficult to 
conclude whether the Siberian jay occurrence pattern showed an updated 
relationship with the full extent of young forests at the territory or landscape 
level. Whatever the true relationship of the Siberian Jay occupancy to young 
forests is, our results show that the recent territories are located in intensively 
managed forest areas and landscapes.  

Our results provide only information on the territory and landscape level 
habitat selection, and not on the selection at the level finer than that. This should 
be kept in mind when the results are interpreted. The nest-site selection within 
territory is also an important level determining species occurrence patterns and 
reproductive output, but our data did not allow us to work on that level. The 
experimental feeding sites only indicate the locations of territories, but tell 
nothing about those of nesting sites.  

Our results suggest that in central Finland the length of soft edges 
(mires/fens sharing border with forests) at the territory level was in positive 
association with the occurrence of the Siberian Jay. Also earlier research has 
suggested soft forest edges beneficial for the species (Sklepkovych 1997). In 
Karelia, the species presence was promoted in landscapes rich in mire areas, and 
the mire coverage was a better predictor of the species presence than the edge 
length. Thus, the measures to promote persistence of the Siberian jay populations 
at the southern edge of its distribution should not only concentrate on the 
characteristics of forest stands, but provide protection for the peatlands 
interspersed in the forested landscapes as well.  

For both areas, it was clear that the spatial error term in territory level 
models encompasses also the spatial structure of the missing landscape level 
variables (Appendices II and III, Table 2). For this reason, the CAR approach for 
territory level models was superior to the nonspatial approach in terms of model 
fit and performance. When the landscape level variables were included into the 
models, the residual spatial autocorrelation turned to insignificant in multi-scale 
models of Karelia, and decreased for those of central Finland. For central 
Finland, the CAR approach was able to remarkably improve the model fit and 
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performance of the multi-scale models (Appendix III and Table 3), although the 
spatial autocorrelation in model residuals still extended as significant up to 5 km. 
The further removal of the residual autocorrelation would possibly require a 
neighborhood size larger than the eight adjacent cells we have used. A larger 
neighborhood size would also possibly improve model performance and allow 
more safe inference, but it comes with the cost of an increasing computational 
intensity. Our results suggest that the distribution pattern of the Siberian Jay in 
central Finland cannot be fully understood and predicted on the basis of 
environmental covariates alone, but the social system of the species possibly 
leads to intrinsically autocorrelated distribution pattern. We cannot, however, 
rule out the possibility of missing covariates leading to extrinsic autocorrelative 
pattern, but based on the ecology of the species we consider the residual spatial 
autocorrelation more probably rising from intrinsic processes. The autocorrelated 
distribution pattern has also conservation implications: conservation measures 
for the species should also be aggregated in space to support the spatially 
organized social system of the species. 

The probability of detecting the Siberian Jay in any given survey (given the 
species is present at a site) was, for both areas, c. 0.10 across all the models. This 
rather low detection probability may be also reflected to model performance (see 
MacKenzie et al. 2002, Reese et al. 2005), especially in Karelia when combined 
with a rather small sample size. We assumed that the detection probability for 
seeing at least one Siberian Jay individual in an occupied territory is constant and 
independent from the detections of previous surveys. It is likely, however, that 
detection probability varies in time, with survey effort and among surveyors but 
our data did not allow inspection of these factors. The low estimated detection 
probability also suggests that any further study on the Siberian jay distribution 
pattern should take imperfect detection into account in order not to 
underestimate the species distribution, and to come up with correct conclusions 
of its habitat associations.  

We performed the model selection procedure for nonspatial models, and 
then fitted the spatial counterparts for the best-screened models. This was a 
decision dictated by the long computation times needed to run spatial models as 
well as a lack of recommended approaches for conducting model selection on 
Bayesian models. We acknowledge that the relative importance of variables may 
change when non-spatial and spatial models are compared, and model selection 
should be ideally conducted on spatial models (see e.g., (Lichstein et al. 2002, 
Tognelli and Kelt 2004, Hoeting et al. 2006). We still not believe that there is a 
danger of having excluded important variables from the final models. It is only 
that the final models may now be too complex, including also some variables 
that might drop if the model selection would be done on spatial models only 
(Hoeting et al. 2006, Diniz-Filho et al. 2008).  

Models were fitted and their performance was measured exploiting the 
whole data set. Although this enabled us to use full content of our original 
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datasets to have as precise parameter estimates as possible, this decision also 
comes with the risk of overfitting. Cross-validation procedures would have 
provided solutions to evaluate the predictive power of the models beyond the 
data used for the model fitting, but computational intensity of these procedures 
turned this too time-consuming to carry out. MPA as a measure of model 
performance tells thus more about the classification accuracy of a model, but not 
on its predictive power in a strict sense. But as the habitat relationship of the 
Siberian jay seemed to be area-specific (based on the results from our two study 
areas), it is difficult to tell what the potential predictive range of the models is 
outside the study areas.  

In this study we used occurrence data to shed light on the habitat selection 
criteria of the jays. As Siberian Jays may abandon their territories as a response to 
adverse changes within their territories only after a time lag (i.e., Griesser et al. 
2007), the distribution pattern may give somewhat biased information on the 
habitat requirements of the species. Nesting success data would be needed to 
distinguish viable territories (sources) from occupied but unproductive ones 
(sinks), and such data would give more detailed information on the habitat 
characteristics that determine the success of the Siberian Jay in managed forests. 
There is some indication that territories producing offspring differ from the ones 
with no offspring production in terms of their landscape level forest 
characteristics (Angervuori 2008). 
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TABLE 1  The territory and landscape level variables used in the modelling. 

Variable Abbreviation Unit

Territory level, r = 750m

Average elevation Elev meters (above sea level)

Edge length shared between forests 
(>100m3/ha) and mires/fens

Edge m/ha

Forests >100m3/ha Forest100_T % of total area

Forests < 40 years Young_T % of total area

Human-dominated environment Human_T % of total area

Maximum density of spruce-dominated forests Densitymax the ratio of basal area to average 
stock height

Median density of spruce-dominated forests Densitymed the ratio of basal area to average 
stock height

Mires/fens Mire_T % of total area

Spruce mire forests >100m3/ha Smire_T % of total area

Sprude-dominated forests > 100m3/ha Spruce100_T % of total area

Spruce-dominated forests > 170m3/ha Spruce170_T % of total area

Topographic variation of the terrain Topo SD of the elevation

X-coordinate Xcoord 10 km (from the study area border)

Y-coordinate Ycoord 10 km (from the study area border)

Forests < 40 years Young_L % of total area

Forests >100m3/ha Forest100_L % of total area

Human-dominated environment Human_L % of total area

Mires/fens Mire_L % of total area

Spruce-dominated forests > 100m3/ha Spruce100_L % of total area

Spruce-dominated forests > 170m3/ha Spruce170_L % of total area

Area-weighted mean patch size of the spruce-
dominated forests > 170m3/ha 

Spruce170_awm ha

Landscape level, r = 5km



 

 

TABLE 2  The Bayesian CAR-model parameter estimates (the posterior sample mean and standard deviation) for the best-screened territory-
level models. If the 95 % confidence interval does not encompass zero, the parameters is marked with asterisk (otherwise the Bayesian 
Confidence Interval, BCI, is reported). Detection probability gives a parameter estimate for the probability of observing a Siberian jay 
during a survey given a site was occupied. Minimal Predicted Area stands for the areal proportion (%) of the study area when the 
predicted probability of species occurrence was set to exclude 10% of the most the improbable occurrences. 

Variable T1 T2 T3 T4 T1 T2 T3
Elev 0.007 (0.002)* 0.007 (0.002)*
Edge, linear term 0.05 (0.02)* 0.06 (0.02)*
Young_T 0.11 (0.03)* 0.13 (0.03)* 0.08 (0.03)* 0.09 (0.03)* 0.10 (0.06)2) 0.12 (0.04)*
Human_T -0.06 (0.03)* -0.06 (0.03)*
Densitymax 5.98 (3.23)3) 4.40 (2.44)6)

Densitymed 6.62 (3.11)* 5.30 (2.85)1)

Mire_T, linear term 0.15 (0.07)* 0.19 (0.05)*
Mire_T,quadratic term -0.004 (0.003)4) -0.005 (0.002)*
Smire_T 0.62 (0.18)* 0.52 (0.18)* 0.67 (0.16)* 0.63 (0.17)*
Spruce170_T 0.18 (0.10)5) 0.19 (0.08)*
Ycoord 0.34 (0.15)* 0.48 (0.21)* 0.37 (0.14)*
Detection probability 0.12 0.12 0.12 0.12 0.10 0.10 0.12
Deviance (sample mean) 871.1 865.1 865.6 870.0 239.9 231.8 251.9
Minimum Predicted Area 19.8 24.7 21.2 24.0 44.3 42.0 41.0

3) BCI [ -0.28; 12.83]      6) BCI [-0.32; 9.30]  

central Finland Karelia

1) BCI [-0.067; 11.06]     4) BCI [-0.010; 0.0003]

2) BCI [-0.02; 0.23]         5) BCI [-0.009; 0.382]

 
  



 

 

TABLE 3 The Bayesian CAR-model parameter estimates (the posterior sample mean and standard deviation) for the best-screened multi-scale 
models. If the 95 % confidence interval does not encompass zero, the parameters is marked with asterisk (otherwise the Bayesian 
Confidence Interval, BCI, is reported). Minimal Predicted Area stands for the areal proportion (%) of the study area when the 
predicted probability of species occurrence is s to exclude the 10% of the most improbable occurrences. 

Variable L1 L2 L3 L4 L1 L2 L3
Territory level

Elev 0.006 (0.002)* 0.007 (0.003)* 0.006 (0.002)*
Edge, linear term 0.04 (0.02)1) 0.04 (0.03)2)

Young_T 0.11 (0.03)* 0.12 (0.03)* 0.09 (0.03)* 0.10 (0.03)*
Densitymax 5.4 (2.8)3) 4.14 (2.81)5) 7.84 (4.03)* 8.34 (4.51)*
Smire_T 0.52 (0.17)* 0.54 (0.19)* 0.62 (0.17)* 0.62 (0.18)*
Spruce170_T 0.20 (0.10)* 0.18 (0.11)8) 0.12 (0.08)10)

Ycoord 0.40 (0.21)* 0.39 (0.27)9) 0.35 (0.17)*
Landscape level

Young_L 0.32 (0.10)* 0.35 (0.12)* 0.27 (0.09)*
Forest100_L 0.08 (0.04)* 0.09 (0.04)* 0.08 (0.04)* 0.09 (0.04)*
Human_L -0.06 (0.05)4) -0.10 (0.05)* -0.09 (0.05)6) -0.40 (0.17)* -0.46 (0.20)* -0.24 (0.12)*
Mire_L, linear term 0.22 (0.09)* 0.24 (0.09)* 0.23 (0.07)*
Mire_L, quadratic term -0.002 (0.004)7)

Detection probability 0.12 0.12 0.12 0.12 0.10 0.10 0.10
Deviance (sample mean) 867.0 871.7 868.7 872.8 227.5 225.3 227.0
Minimum Predicted Area 19.7 21.3 19.7 20.1 41.9 38.7 43.9

5) BCI [-1.30; 9.61]       10) BCI [-0.03; 0.12]

central Finland Karelia

1) BCI [-0.002; 0.088]     6) BCI [-0.184; 0.002]        

2) BCI [-0.01; 0.09]         7) BCI [-0.011; 0.005]

3) BCI [-0.06; 11.0]         8) BCI [-0.01; 0.40]

4) BCI [-0.17; 0.04]         9) BCI [-0.12; 0.96]



 

 

 

FIGURE 1  Our two study areas, one located in central Finland and the other in Karelia. 



 

 

 

FIGURE 2 The chart for the order in which the variables were allowed to enter the models. Brackets indicate a group of variables that were not 
allowed to occur simultaneously in the models. Asterisks indicate the variables for which we also tested the quadratic relationships. 
For the territory-level models, the landscape level cover covariates were omitted. 



 

 

 

FIGURE 3  Probability of the Siberian Jay occurrence in central Finland, based on the 
CAR L1 model, as a function of the covariates Smire_T (a) and Forest100_L 
(c), as well as in Karelia, based on the CAR L2 model, as a function of the 
covariates Spruce170_T (b) and Human_L (d). The other environmental 
covariates in the models were fixed to their mean values. The solid line 
represents the mean of the posterior predictions and the broken lines 
represent the 95 % confidence interval for the estimate. The observed range of 
variation for the sites with the occurrence data is represented with a strong 
solid line bounded by the circles. 
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FIGURE 4  Moran’s I values of the first eight distance classes (bin width of 2.5 km, 
ranging up to 20 km) for the three modeling methods; nonspatial (black line), 
CAR (grey line) and autologistic regression (dashed line).  



 

 

 

FIGURE 5 Predicted probabilities for the presence of the Siberian Jay (upper-most panel) 
in Karelia based on the multi-scale, spatial CAR L2 model. For each grid cell, 
predicted probability represents the mean of the posterior sample. The 
middle-panel shows the standard deviations of the samples. The lower-most 
panel shows the distribution of predicted probabilities for the known 
presence sites (n=47) involved in the modelling. 

  



 

 

 

FIGURE 6  Distributions of predictive probabilities for the presence sites, the sites 
without observations (either non-occupied sites or sites with failed detection) 
and the pseudo-absence sites based on a non-spatial and spatial CAR model 
for central Finland (multi-scale L1 model) and Karelia (multi-scale L2 model). 

  

Non-spatial CAR
a) central Finland, L1 

b) Karelia, L2



 

 

Appendix I  ENFA results for the two study areas, central Finland (a) and Karelia (b). 
Variance explained (%) by the first four factors, and coefficient values for the 
variables (sorted by their decreasing absolute values). The greater the 
absolute value of a variable on the marginality factor is, the more the habitat 
selection of the species deviates from the landscape mean (the sign indicating 
the direction of departure). The greater the absolute value of a variable on the 
specialization factor is, the narrower the species niche is compared to the 
global distribution (the sign is now arbitrary). 

1 (36 %) 2 (14 %) 3 (12 %)
Smire (0.50) Densitymax (0.89) Human_T (0.64) Spruce170_T (0.74)
Cover_T (0.46) Spruce170_T (0.25) Edge (0.41) Elev (-0.43)
Human_T (-0.39) Edge (0.25) Cover_T (0.40) Cover_T (-0.42)
Young_T (0.34) Cover_T (-0.19) Spruce170_T (-0.39) Edge (0.26)
Spruce170_T (0.34) Elev (-0.15) Young_T (0.24) Densitymax (-0.15)
Edge (0.33) Smire (-0.11) Elev (-0.15) Smire (-0.05)
Elev (0.21) Young_T (0.08) Densitymax (0.14) Human_T (0.05)
Densitymax (-0.02) Human_T (-0.01) Smire (0.03) Young_T (-0.04)

1 (25 %) 2 (21 %) 3 (8%)
Elev (0.64) Human_T (0.53) Spruce170_T (-0.70) Cover_T (-0.67)
Human_T (-0.60) Edge (0.42) Smire (0.57) Smire (0.57)
Young_T (0.36) Cover_T (0.40) Human_T (-0.35) Spruce170_T (0.34)
Spruce170_T (0.28) Young_T (0.38) Young_T (-0.15) Elev (-0.27)
Edge (0.15) Elev (0.32) Edge (-0.12) Densitymax (-0.15)
Densitymax (0.05) Spruce170_T (-0.29) Densitymax (0.11) Human_T (-0.11)
Smire (0.01) Smire (0.22) Elev (0.08) Young_T (0.04)
Cover_T (0.00) Densitymax (-0.03) Cover_T (0.06) Edge (-0.03)

Specialization factor

b) ENFA-results for the study area of Karelia

Marginality factor (26%)

a) ENFA-results for the study area of central Finland

Marginality factor  (18%)
Specialization factor



 

 

Appendix II  The Bayesian non-spatial logistic model parameter estimates (the posterior sample mean and standard deviation) for the best-
screened territory-level models. If the 95 % confidence interval does not encompass zero, the parameters is marked with asterisk 
(otherwise the BCI is reported). Minimal Predicted Area stands for the areal proportion (%) of the study area when the predicted 
probability of species occurrence thresholded to exclude the 10% of the most improbable occurrences. 

Variable T1 T2 T3 T4 T1 T2 T3
Elev 0.007 (0.001)* 0.006 (0.002)*
Edge, linear term 0.04 (0.02)* 0.05 (0.02)*
Young_T 0.11 (0.03)* 0.12 (0.03)* 0.07 (0.02)* 0.08 (0.02)* 0.09 (0.05)2) 0.11 (0.04)*
Human_T -0.05 (0.02)* -0.06 (0.02)*
Densitymax 5.21 (2.78)* 4.46 (2.19)*
Densitymed 5.16 (2.17)* 3.70 (2.15)1)

Mire_T, linear term 0.13 (0.06)* 0.17 (0.05)*
Mire_T,quadratic term -0.004 (0.002)3) -0.005 (0.002)*
Smire_T 0.61 (0.14)* 0.56 (0.15)* 0.66 (0.14)* 0.65 (0.15)*
Spruce170_T 0.15 (0.09)4) 0.17 (0.07)*
Ycoord 0.34 (0.12)* 0.45 (0.15)* 0.28 (0.10)*
Detection probability 0.11 0.11 0.11 0.11 0.10 0.10 0.12
Deviance (sample mean) 952.2 947.5 951.5 949.4 243.0 240.2 252.2
DIC 957.2 953.3 956.5 955.3 246.9 248.8 260.3
AICc 958.5 955.0 958.3 957.3 249.2 251.2 262.97
Minimum Predicted Area 43.0 40.5 47.9 47.1 50.1 47.9 46.5
1) BCI [-0.28; 8.03]

2) BCI [-0.006; 0.197]

3) BCI [-0.008; 0.0004]

4) BCI [-0.006; 0.344]

central Finland Karelia

 
  



 

 

Appendix III  The Bayesian nonspatial logistic model parameter estimates (the posterior sample mean and standard deviation) for the best-screened 
multi-scale models. If the 95 % confidence interval does not encompass zero, the parameters is marked with asterisk (otherwise the 
BCI is reported). Minimal Predicted Area stands for the areal proportion (%) of the study area when the predicted probability of 
species occurrence is thresholded to exclude the 10% of the most improbable occurrences. 

Variable L1 L2 L3 L4 L1 L2 L3
Territory level

Elev 0.006 (0.002)* 0.006 (0.002)* 0.005 (0.002)*
Edge, linear term 0.04 (0.02)* 0.03 (0.02)1)

Young_T 0.11 (0.02)* 0.11 (0.03)* 0.08 (0.02)* 0.09 (0.02)*
Human_T
Densitymax 3.80 (2.21)2) 3.19 (2.20)4) 7.57 (4.06)* 7.11 (3.83)*
Smire_T 0.54 (0.15)* 0.57 (0.17)* 0.65 (0.16)* 0.67 (0.17)*
Spruce170_T 0.20 (0.10)* 0.17 (0.09)* 0.12 (0.08)6)

Ycoord 0.41 (0.21)* 0.41 (0.19)* 0.37 (0.18)*
Landscape level

Young_L 0.31 (0.11)* 0.30 (0.10)* 0.26 (0.09)*
Forest100_L 0.07 (0.02)* 0.08 (0.03)* 0.06 (0.03)* 0.07 (0.03)*
Human_L -0.06 (0.04)3) -0.09 (0.04)* -0.09 (0.04)* -0.39 (0.17)* -0.38 (0.16)* -0.23 (0.12)*
Mire_L, linear term 0.22 (0.09)* 0.20 (0.07)* 0.22 (0.07)*
Mire_L, quadratic term -0.002 (0.004)5)

Detection Probability 0.10 0.10 0.11 0.11 0.10 0.10 0.10
Deviance (sample mean) 945.3 940.9 943.4 942.6 229.4 228.1 230.0
DIC 951.2 948.9 949.4 949.7 239.5 236.8 237.6

AICc 953.1 950.5 951.0 951.0 241.4 239.5 240.2
Minimum Predicted Area 36.9 39.2 39.2 39.8 41.7 40.8 43.8

3) BCI [-0.143; 0.015]     6) BCI [-0.02; 0.28]

central Finland Karelia

1) BCI [-0.006; 0.075]     4) BCI [-1.19; 7.57]

2) BCI [-0.57; 8.17]         5) BCI [-0.010; 0.006]

 



 
 
 

IV 
 
 

ACCOUNTING FOR SPACE IN SPECIES DISTRIBUTION 
MODELING – ALTERNATIVE ROUTES LEADING TO A SAME 

DESTINATION? 
 
 
 
 

by 
 

 
Anne Laita & Mikko Mönkkönen 

 
 

Manuscript 



1 
 

 
 

ACCOUNTING FOR SPACE IN SPECIES DISTRIBUTION 
MODELING – ALTERNATIVE ROUTES LEADING TO A SAME 
DESTINATION? 

Anne Laita & Mikko Mönkkönen 
 
Department of Biological and Environmental Science, PO Box 35 (Survontie 9), 40014 
University of Jyväskylä, Finland 

ABSTRACT 

The importance of spatially explicit approach in species distribution modeling is 
undisputed, because it allows for safe inference and enhanced predictive outcome. 
However, spatial approaches show also deficiently understood differences in their 
parameter estimations and modeling outcomes. The aim of this study was two-fold. 
First, we evaluated the inference and performance of two spatially explicit Bayesian 
modeling approaches, autologistic model and conditional autoregressive model (CAR), 
in order to see whether they end up with consistent inferences and predictive outcome. 
Second, we wanted to examine whether the broad-scale representation of space, i.e. 
landscape connectivity, could provide either an alternative spatial approach or 
additional explanatory power to spatial modeling. We used data on Siberian Jay 
(Perisoreus infaustus) occurrence in boreal forest landscapes in central Finland. 
According to our results, CAR and autologistic modeling approaches led to seemingly 
inconsistent inferences due to their different allocations between environment and 
space. They still both produced enhanced predictive performance compared to the non-
spatial approach, albeit with somewhat deviating spatially projected predictions. 
Landscape connectivity seemed to be able to improve the model fit and performance of 
the non-spatial models, but still lacked behind the spatially explicit methods. The ability 
of landscape connectivity to improve the performance of the non-spatial models gives, 
however, an indication of the intrinsic autocorrelation underlying the species 
occupancy pattern. Our results show the strong intertwining between environmental 
factors and space, which serves as a key to understand the properties and thereby rising 
outcomes of different modeling methods.  

INTRODUCTION 

Species distribution modeling aims at explaining the species occupancy state based on 
environmental factors that are either causally or indirectly involved in controlling the 
distribution (e.g., Guisan and Zimmermann, 2000; Guisan et al., 2006). Species 
distribution models (SDMs) have gained a strong methodological foothold in many 
theoretical and applied ecological questions, ranging from reserve design (e.g., Araújo 
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and Williams, 2000) to the range predictions for invasive species (e.g., Dullinger et al., 
2009).  

Species distributions usually exhibit spatial autocorrelation so that nearby 
locations resemble each other more than those further apart. The most part of this 
similarity is explained by the spatial structure in the environmental covariates that are 
controlling the occurrence patterns of a species. This part of autocorrelation can be 
simply “governed” in distribution models by identifying the correct environmental 
covariates behind species distributions, and entering them to models as explanators. 
The remaining part of the spatial autocorrelation in response values, not accounted for 
by environmental explanators (and included in model residuals), may be an outcome of 
several factors. In addition to missing or incorrectly specified environmental factors, 
biological processes may result in aggregated occurrence patterns (over the control of 
environmental covariates) (for a list of both exogenous and biological, i.e., intrinsic, 
aggregation factors, see Miller et al., 2007). These aggregating biological processes 
include, for example, social behaviors such as conspecific attraction and limited 
dispersal. 

If the model residuals violate the key assumption that the residuals are 
independent and identically distributed, the inferences drawn from the model may be 
invalid. Violation of model assumptions may lead to inflated Type I error rate via the 
underestimation of the standard error in the parameter estimates, and additionally, 
biased parameter estimates (Cressie, 1993; Legendre, 1993; Segurado et al, 2006; 
Dormann et al., 2007; Kühn, 2007; Bini et al., 2009; Hoeting, 2009). In such cases, 
spatially explicit modeling approaches, which account for this residual non-
independence, provide a viable solution.  

Species distribution models are often based on binary presence-absence data. 
Modeling results for such data have been found to be especially sensitive to the choice 
of the spatial modeling method also (Dormann et al., 2007). Quite subtle differences in 
spatial autocovariance approaches may have major implications for the results, 
although the approaches may, at first sight, seem to have rather redundant focus (Betts 
et al., 2009). Applications of several methods to a single dataset has demonstrated that 
regression coefficients from different methods may differ in terms of their magnitude 
and level of significance (e.g, Dormann et al., 2007; Kissling and Carl, 2008; Bini et al., 
2009; Beale et al., 2010).Therefore, for robust inferences and predictions from species 
distribution modeling there is a need to evaluate and compare alternative modeling 
methods.  

Different spatial modeling methods have been usually compared in terms of 
parameter estimation, as if they are able to end up with the true, known parameter 
estimates (e.g., Carl and Kühn, 2007; Dormann et al., 2007; Dormann, 2007; Beale et al., 
2010). Species distribution models, however, have also aims beyond parameter 
estimation and inference because in many cases they are used to predict species 
distributions. The prediction of species distributions based on the combined effect of all 
model constituting terms and covariates forms another important modeling dimension 
alongside covariate-wise parameter estimation and inference. It would be important to 
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evaluate and compare the different modeling methods with respect to these both 
modeling dimensions, because the benefits associated with a spatial modeling method 
may also vary depending on the modeling target.  

The spatial modeling methods account for the correlation structure in the response 
using the neighborhood of influence and different kind of weighting schemes. This 
neighborhood, over which the neighboring sites are assumed to influence the site under 
focus, may be of various sizes. The influence of neighboring sites on the focal site can 
also be weighted, for example, by the distance separating the sites, or they can be 
assumed to exert equal influence on a focal site within a specified neighborhood. Most 
often, the size of a neighborhood and weighting scheme are probed in an explanatory 
manner so that the selection of spatial extent and weights minimizes the residual 
autocorrelation, or maximizes model performance (e.g., Bahn et al, 2006, Carroll et al., 
2010). The appropriate neighborhood size may also be informed based on the spatial 
correlogram of model residuals, see e.g. Wintle and Bardos (2006). This exploratory 
approach, however, lacks the hypothesis about the process creating the pattern. If the 
correct process were identified and more directly modeled, it would possibly lead to 
more effective reduction in the residual autocorrelation and to enhanced predictive 
power. 

Landscape connectivity has been shown (theoretically and empirically) to be 
positively associated with the probability of patch occupancy (e.g., Bauerfeind et al., 
2009; Brouwers and Newton, 2009; Ranius et al., 2010). Landscape connectivity may be 
viewed as a potential for the intrinsic biological processes (mediated by dispersal) to 
operate. The connectedness of a patch to other habitat patches allows the supply of 
individuals from the occupied patches within a species dispersal range, leading to 
enhanced colonization rate and depressed extinction rate (via rescue effect, Brown and 
Kodric-Brown, 1977). Intrinsic aggregation (and subsequent residual autocorrelation) 
may result from spatially-structured dispersal between areas, so that source 
populations supply individuals to their surroundings. The supply increases with the 
increasing size of a source patch and decreasing distance to the receiving area. This 
broad-scale landscape connectivity is seldom used in species distribution modeling, 
because the spatial effects are usually implicitly addressed via the neighborhood 
weighting of spatial methods. Landscape connectivity could, however, have a potential 
to explain and predict species distributions, and it might serve as a potential candidate 
for capturing intrinsic spatial effects for a species limited by dispersal in fragmented 
landscapes.  

Here, we first compare the modeling outcome for two different spatially explicit 
modeling approaches with Bayesian implementation: autologistic regression and 
conditional autoregressive model (CAR). We contrast their parameter estimates and 
modeling outcomes with the results from the Bayesian non-spatial logistic regression 
model. We compare the modeling approaches both in terms of their explanatory and 
predictive performance. To our knowledge, this is the first time the modeling outcomes 
of autologistic regression and CAR modeling with Bayesian implementation are being 
compared, as previous comparisons have focused on the frequentist implementations of 
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the methods (see e.g., Dormann, et al., 2007). Second, we evaluate whether the more 
process-based modeling of the aggregation would provide additional explanatory 
power to the traditionally used spatial methods with a neighborhood weighting, or 
alternatively, a new, competitive stand-alone way of removing autocorrelation and 
improving model fit. This is accomplished by directly including landscape connectivity 
as a variable into the models. Our modeling is based on the Siberian Jay (Perisoreus 
infaustus) occurrence data and data on forest characteristics at the territory and 
landscape level originating from a boreal forest landscape in Central Finland. Our study 
provides an example of a typical modeling case; complicatedly controlled species 
occurrence with no reference for the true parameter values and no full-coverage 
information for its occupancy. From practical perspective, the aim is to improve our 
ability to correctly model the distribution of this regionally endangered species. 

METHODS 

Autologistic regression model 

Autologistic regression model aims at estimating how the binomial response value of a 
site (i.e. species occupancy) is affected by the response values of surrounding sites (i.e. 
occupancy status of the neighbors). The response values of the neighbors are added as 
an additional explanatory variable to a model, and the relationship of this variable to 
the response variable is specified by the associated extra parameter, the autologistic 
coefficient (Augustin et al. 1996; Dormann et al., 2007). Autologistic regression model 
has the formula: 

 

where  is the intercept;  is the coefficient for the explanatory variable xk; is the 
autologistic coefficient;  is the response values of a site j;  is the weight give to a site 
j’s influence over site i; and  is the random effect term for a site i. The weights can be 
either binary weights (0/1) defining the neighborhood for a site i over which the 
neighbors influence its response value or follow some other weighting scheme, e.g. the 
influence of site j over i can be weighted as a function of geographical distance between 
the sites.  

It is straightforward to estimate the autologistic term when there exists rather 
complete knowledge for species occurrence (i.e. occupancy status is known for sites 
under focus and their neighbors as defined by the neighborhood scheme), for example 
in a case of full-coverage atlas data. However, when the dataset contains many missing 
values, the estimation of the autologistic term turns out to be more complicated. In 
data-limited cases the autologistic term cannot be accessed directly, but can be 
estimated via an iterative procedure (as introduced by Augustin et al., 1996, see also 
Augustin et al., 1998). In this case, the autocovariate term is estimated based on the 
predicted response values (or alternatively, the values for the predicted probability of 
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presence) rather than observed ones. This iterative procedure has been applied in 
several studies, for example in Osborne et al., 2001 and Piorecky and Prescott, 2006. The 
power of Bayesian analysis is highlighted in this kind of knowledge-limited case 
because the occupancy status of the missing sites is treated as underlying latent state 
variable, which is sampled from posterior distribution in a same manner as any other 
model parameter (see e.g., Wintle and Bardos, 2006; Royle and Dorazio, 2008). 

The autologistic regression model has been shown to lead to enhanced predictive 
performance, compared to non-spatial models (e.g., Augustin et al., 1996; Hoeting et al., 
2000; Osborne et al., 2001; Wintle and Bardos, 2006). There exists, however, rather 
contradicting evidence of the ability of autologistic regression models to correctly 
estimate model parameters. Some studies have reported autologistic regression models 
consistently underestimating the effects of environmental covariates, leading to even 
more biased parameter estimates than the ones produced by non-spatial models. The 
most convincing evidence for this underestimation comes from the simulation studies, 
where the true parameter value for a covariate is known (e.g., Dormann et al., 2007; 
Dormann, 2007a). Especially, a strong spatial structure in a covariate is found to be 
linked with biased parameter estimates (Betts et al., 2009). There exists, however, also 
support for autologistic regression models showing that non-biased parameter 
estimates have been reached with this method (e.g., Wu and Huffer, 1997; Huffer and 
Wu, 1998). 

Conditional autoregressive (CAR) models 

Conditional autoregressive (CAR) model incorporates autocorrelation in a spatially 
structured error term. In CAR model, probability of species presence depends, along 
with effect of environmental covariates, on a site-specific spatial random effect. The 
spatially structured variation in response is specified via an intrinsic Gaussian 
conditional autoregressive model (Besag, 1974). CAR model has the following formula: 

 

where  is the spatial random effect term for the site i (see the autologistic model 
formula above for the explanation of other model terms). The spatial random effect 
term of a site i ( ) is dependent on the  terms of the neighboring sites. The 
neighborhood for a site i is specified by a researcher. The influence of neighboring sites 
on the spatial random effect of site i can also be weighted by their distance, but usually 
the neighboring sites are assumed to exert equal influence (as in the definition below). 
The following conditional relationship is assumed for the distribution of : 

 

where i+ stands for a set of neighbors of site i;site j belongs to the neighborhood of site i 
(denoted by );  denotes the number of sites which are neighbors of site i; and  is 
the variance for all sites. Thus, the random effect for site i follows a normal distribution 
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with mean corresponding the average random effect value of its neighbors, and with 
variance inversely proportional to the number of neighbors.  

Bayesian CAR models in the modeling of binary occurrence data have been 
applied in a few, quite recent studies (e.g., Farnsworth et al., 2006; Latimer et al., 2006; 
Carroll et al., 2010; Ishihama et al., 2010). Beale et al. (2010) demonstrated that a 
Bayesian implementation of the conditional auto-regressive model (on data with 
normally distributed errors) performed well when it was evaluated against simulated 
data with known properties. Like autologistic regression, CAR modeling has been 
shown to possess superior predictive capability over the non-spatial modeling (e.g., 
Carroll et al., 2010).  

Comparisons of the modeling methods 

Our datasets and model selection procedure are described in detail in Laita and 
Mönkkönen (unpublished). In this earlier study we showed that CAR modeling was 
superior to non-spatial counterpart in terms of model fit and predictive performance. 
The spatial models including also landscape level variables produced better results than 
the models including only territory level variables, giving support to the importance of 
landscape context in shaping the species distribution pattern. The model we are relying 
in this study is the best-performing model from our previous study. The model includes 
three territory-level variables (T) and one landscape level variable (L). The territory 
level variables provide information of the characteristics of forests at the territory scale 
(ca. 2 km2), while the landscape level variable describes the overall availability of forests 
in the landscape within the average 5 km dispersal distance of the species (ca. 80 km2, 
see Gienapp and Merilä, 2011). In the modeling, we also controlled for the imperfect 
detection that is often inherent in the species occupancy data (MacKenzie et al., 2006). 
The modeling was conducted using a grid cell size of 1.5 km * 1.5 km. According to this 
model, the occurrence of the Siberian jay is positively associated with the cover of 
spruce mires (growing stock volume > 100 m3/ha), the cover of young forests (<40 
years), and length of edges between forests (growing stock volume >100 m3/ha) and 
mires/fens at the territory level, and positively associated with the cover of forests (all 
forest types with growing stock volume > 100 m3/ha) at the landscape level. 

For autologistic and CAR models, we defined the neighborhood of a cell to 
encompass its eight adjacent neighbors. For all model coefficients ( , and autologistic 
coefficient ) we used normally distributed non-informative priors. For variance  
in CAR models we used an inverse gamma prior, ) (see Latimer et al., 2006). 
For all three methods (non-spatial model, autologistic regression and CAR model), we 
run the model with two MCMC chains. Parameter estimates are based on the 20 000 
iterations, after the convergence of the chains. The Bayesian analyses were conducted 
with OpenBugs (v.3.1.2) (Thomas et al., 2006). 

In addition to comparing the parameter estimates produced by different methods 
(non-spatial, autologistic regression and CAR methods), we evaluated the methods on 
three grounds. These were: 1) Minimum Predicted Area (MPA); 2) Differences in the 
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final predictive values for the cell occupancy; and 3) Residual autocorrelation checks 
based on Moran’s I values. 

Minimum Predicted Area (MPA) stands for the areal proportion of the total study 
area that excludes 10 % of known presences based on the predicted probability value 
for species occurrence (for the introduction of the measure, see Engler et al., 2004 and 
also Laita and Mönkkönen, unpublished). The exclusion is based on the threshold value 
for predicted probability, corresponding the probability value of the (0.1*n)th presence 
record in the ordered set of the records (where n stands for the number of known 
presence records). The smaller the MPA value, the smaller is the area that comprises the 
90 % of the known presences. The MPA value is thus a measure of the discriminatory 
capacity of a model, and is especially well-founded for rare species like the Siberian Jay 
whose area of occupancy is expected to be quite small. 

We evaluated differences in the predictions from the three modeling methods both 
cartographically and quantitatively. The quantitative evaluation was based on three 
grounds: 1) layer correlations for the occupancy predictions from the different methods 
(to investigate to what extent the predictions from the methods are congruent); 2) sum 
and average of the absolute, pairwise differences in the predictions over all 8346 grid 
cells (to see how similar occupancy predictions the methods produce); and 3) a check on 
the distribution of the pairwise differences in the occupancy predictions (to see whether 
some of the methods systematically over-/underestimate the occupancy predictions in 
relation to the others).  

We calculated Moran’s I values with the Spatial Analysis in Macroecology (SAM) 
programme (v. 4.0) (Rangel et al., 2006) to compare the alternative modeling approaches 
in terms of their ability to account for spatial autocorrelation in the species distribution. 
Distance classes were formed using the bin width of 2.5 km (approximately equaling to 
distance between the center of a cell and its cardinal neighbors, 2.12 km). Because the 
true occupancy state of the grid cell with imperfect detection was unknown, we only 
qualified those imperfectly detected grid cells (i.e., cells without Jay observations) 
whose predicted probability of occupancy was < 0.4 based on the CAR model (as also 
done in our previous study). 

Landscape connectivity 

We calculated the variable for landscape connectivity based on the predictive 
probability surface from the non-spatial model and CAR-model. The probability surface 
as predicted by the CAR model already includes the accounting for the aggregation 
factors, while the surface based on the non-spatial model includes only the effect of 
modeled environmental covariates. We were interested to see which one of surfaces 
forms the best basis for connectivity evaluation (as evaluated by the subsequent model 
fit), and whether the connectivity evaluation carried out on non-spatially predicted 
surface and further coupled with non-spatial modeling may provide a competing 
alternative to CAR-approach. The cells with a probability value greater than 0.7 were 
considered as source habitat cells contributing to landscape connectivity. We 
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constructed the patch structure for connectivity calculation using a four-neighbor rule, 
and removed all single cell patches. Exclusion of single cell patches with the size 
corresponding to that of an average individual territory both speeded up the analyses 
as well as focused the analysis on the large-scale pattern of connectivity. Especially the 
non-spatial model yields many single-cell, scattered patches that are not very potential 
candidates for species presence due to the spatial constraints.  

We calculated cost-modified distances between all pair of patches with Spatially 
Explicit Landscape Simulator (SELES) programme v. 3.4. (Fall and Fall, 2001). Forested 
cells with growing stock volume greater than 100 m3/ha were assigned a cost distance 
value of 1, and all other cells a cost distance value of 5. The original cost layer of the 
resolution of 25 m*25 m was resampled to the resolution of 100 m *100 m with the 
majority rule. The Siberian Jay is exposed to predation in open areas. Although the open 
areas do not represent total dispersal barriers to the species, it has been documented to 
be unwilling to cross vast open areas in a landscape (von Haartman et al., 1963-1972).  

We used negative exponential dispersal kernel to calculate the probability of 
dispersal between patches, and set a dispersal distance of 5 km to correspond to 
dispersal probability of 0.5. According to the study by Gienapp and Merilä (2011), the 
average dispersal distance of the species is ca. 5 km (females=5.9 km, males=5.0 km). 
We calculated the connectivity values for our study sites (i.e., the cells that were 
sampled for Siberian jay occurrence) with Conefor Sensinode v. 2.2 (Saura and Torné, 
2009) using so called node removal analysis. In the node removal analysis, those study 
sites that were outside of the habitat patches were in turn added to the existing 
network, while the study sites included to the network were removed from the 
network. The induced change in network connectivity from adding and removing sites 
represents the connectivity contribution of the site (Keitt et al., 1997). As a connectivity 
index we used area-weighted flux, AWF, which is calculated with the following 
formula: 

AWF = j

n

i

n

jij
iij aap

1 ,1

 

,where n is the total number of patches, pij is the probability of direct dispersal between 
patches i and j , and ai and aj are the sizes of patches i and j. Because the study sites were 
all of equal size (1.5 km* 1.5 km), the connectivity values tell about their position in a 
network in relation to source habitat patches. The connectivity value of a site can be 
interpreted as a relative flux of dispersing individuals entering the site, assumed that 
the flux is controlled by the size of the donating patch and the effective distance 
separating the two patches. The connectivity value of a study site rises with increasing 
amount and closeness of habitat in the surrounding landscape (see Laita et al. 2011).  

For the CAR modeling, which needs continuous surface of predictor values, we 
used inverse distance weighted interpolation method to extract the connectivity 
information from the 563 study sites to the whole study area (Fig. 1). Calculation of the 
connectivity values separately for all grid cells would be computationally too heavy 
procedure, so the interpolation offered a lightened way to end up with the connectivity 
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estimates for the whole study area. The connectivity value of an interpolated cell was 
determined based on the values of its ten closest study sites, with weight given to the 
sites decreasing inversely to distance raised to the power of two. The interpolated 
surface passed through the original values of the study sites.  

We fed the interpolated surface as a new variable to a subsequent modeling. We 
produced both non-spatial and CAR models, incorporating this new variable along 
with the original environmental covariates, to inspect whether this connectivity 
approach could either supplement the spatial approach offered by CAR, or serve as a 
competing alternative when coupled with the non-spatial modeling. The model 
evaluation was conducted based on three criteria: 1) model fit in terms of model 
deviance: 2) MPA value; and 3) capture of residual autocorrelation based on Moran’s I 
values. 

RESULTS 

The parameter estimates from the non-spatial and CAR models were quite similar in 
magnitude, whereas autologistic regression produced systematically lower parameter 
estimates for all environmental covariates (Fig. 2). The only parameter for which the 
autologistic and CAR model provided a similar estimate, differing from the one 
provided by the non-spatial model, was the detection probability. While the non-spatial 
and CAR models valuated all the model parameters as statistically significant (i.e., their 
95 % confidence interval does not cover zero), the autologistic model identified only 
two parameters for environmental covariates as significant (Fig. 2). This is contrasted 
with a statistically significant, high term for the autologistic covariate (posterior 
mean=5.0, the 95th confidence interval [3.0, 6.9]). The most notable difference in 
parameter estimate and its significance between the autologistic regression and the 
CAR methods concerned the landscape level forest cover variable. This variable 
possessed the highest degree of spatial structure of the variables included to the model. 
Confidence intervals for the parameter estimates were somewhat wider for the two 
spatial methods than for the non-spatial model (Fig. 2).  

The autologistic regression model produced strikingly more aggregated predictive 
surface for the species occupancy than did the non-spatial and CAR-model (Fig. 3). The 
degree of aggregation produced by the CAR model was intermediate with respect to 
the predicted aggregation from the non-spatial and autologistic regression model. The 
performance of the two spatial methods, evaluated based on the MPA-value, was 
roughly at the same level (CAR model = 19.7 %,; autologistic regression = 24.5 %, 
somewhat in favor of the CAR model). The two spatial methods clearly beat the non-
spatial model in model performance. For example, the MPA value of the non-spatial 
model was much higher than that of spatial models (Table 1). The autologistic 
regression seemed to capture residual spatial autocorrelation most efficiently of the 
modeling methods compared, but its superiority to CAR was not particularly striking 
(Fig. 4). In all the three methods, the residual autocorrelation was significant up to two 
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distance classes (i.e., 5 km) (based on 999 permutations, and progessive Bonferroni 
correction carried out using the method represented by Legendre and Legendre (1998)). 

The whole layer correlations for the occupancy predictions (posterior means) were 
0.918 for the non-spatial model vs. the CAR model; 0.895 for the non-spatial vs. the 
autologistic model; and 0.869 for the CAR model vs. the autologistic model, suggesting 
that the model predictions were rather well congruent. The summed absolute 
differences in the predictions (posterior means) of the methods were 599.6 for the non-
spatial vs. the CAR model; 655.6 for the non-spatial vs. the autologistic model; and 
1255.1 for the CAR model vs. the autologistic model (yielding an average cell-wise 
difference in the predicted occurrence probability of 0.07, 0.08 and 0.15, respectively). 
Thus, while the two spatially explicit methods seemed to outperform the non-spatial 
methods in model performance, the predictions from the two spatial methods were 
more inconsistent than they were in comparison with the non-spatial model. The 
distributions for the pairwise differences in model predictions show that differences 
were roughly normally distributed and centered on zero indicating that any of the 
methods did not produce systematically lower/higher predictions than the others (Fig. 
5). The grid cells with the greatest differences between the methods did not seem to 
coincide with the spatial patterning in the sampling (compare the locations of the study 
sites in Fig. 1). Still, the two spatial methods identified a similar set of hot spot areas for 
species occupancy, while those aggregated areas did not stand out so clearly from the 
predictions of the non-spatial model. So, while the predictions from the spatial methods 
were not completely matching at the cell level, they still captured the same broad 
distributions patterns. 

It clearly seemed that the predicted occupancy pattern produced by the CAR 
model (CAR-connectivity) offers a better basis for connectivity evaluation than the one 
produced by the non-spatial model (non-spatial connectivity; Table 1). Although all our 
three evaluation criteria showed that the inclusion of CAR-based landscape 
connectivity as an additional explanatory variable led to improvement in model fit 
(lower deviance), performance (slightly lower MPA) and the capture of residual 
autocorrelation (lower Moran’s I) in the non-spatial models, the model even after 
inclusion of landscape connectivity could not compete with the CAR model without 
connectivity (Table 1). In the CAR models, the incorporation of the CAR-based 
landscape connectivity only slightly increased model fit and reduced residual 
autocorrelation, but it was associated with a considerable increase in the MPA value. So, 
the evaluation criteria did not unequivocally support the modeling benefits associated 
with the coupling of landscape connectivity component with the CAR approach. 

DISCUSSION 

The CAR approach and autologistic regression produced rather differing coefficient 
estimates for the environmental covariates; the means of the posterior distributions for 
the coefficients were systematically greater for the CAR model than for the autologistic 



11 
 

 
 

regression. Carl and Kühn (2007) and Dormann (2009) have criticized the autologistic 
regression for its circularity; because the covariate is calculated as the mean of the 
predicted values in the grid neighborhood, the autocovariate is thus confusing the 
response with environmental variables. The autocovariate can thus overdominate 
parameter estimations, deflating the importance of environmental covariates. This has 
also been confirmed in several studies that have also showed that this underestimation 
can be most severe for the highly spatially structured environmental covariates (e.g., 
Betts, et al. 2009). One of the territory level covariate and the landscape level covariate 
turned out to lose their significance in our autologistic regression model (compared to 
nonspatial and CAR models). This makes sense considering the strong spatial structure 
of the landscape level variable, but our result point out also a general tendency for 
autologistic regression models to underestimate the parameter values. Based on 
autologistic modeling, it is more difficult to come up with convincing evidence for the 
importance of landscape level covariates affecting the probability of species presence 
than it is for variables with weaker spatial autocorrelation (due to the shared scale of 
variation between the landscape level covariate and the response). On the other hand, 
non-spatial models tend to exaggerate the importance of the variables with a strong 
spatial structure (see e.g. Lennon, 2000; Lichstein et al., 2002; Segurado et al., 2006).  

It has been suggested that the autologistic regression may produce more correct 
parameter estimates in the case of a notable share of missing response values rather 
than in the case of almost total coverage for the response (Dormann, 2009). The missing 
data may help the autologistic regression in parameter estimation so that its allocation 
between space and environment is tuned towards the correct environmental emphasis. 
However, there is also a lower limit for the safe share of missing response values. In the 
study of Latimer et al. (2006), the parameter estimates were stable down to the 
subsample of 5% of the full coverage data. We had altogether occupancy data for 6.7 % 
of all the grid cells. Thus, this share should be above the safe limits in terms of 
parameter estimations. On the other hand, for such a great share of missing values the 
parameter estimates produced by the autologistic regression should not be severely 
biased in favor of the space allocation.  

As opposed to autologistic regression, CAR models do not represent the 
autocorrelation effect in the form of an additional variable. CAR models incorporate a 
spatially correlated error to the random component of the model, which may help to 
keep the effect of space and environment apart. Our results showed that the CAR model 
is inevitably better in detecting the signal from the environmental factors than the 
autologistic regression, but with the field data on species distribution such as ours it is 
difficult to conclude which is the true relative magnitude of environmental vs. spatial 
effects. The indisputable interrelation of environment and space could be further break 
apart by hierarchical partitioning methods (see e.g., Cushman and McGarigal, 2002). 
However, for variables with a strong spatial structure, the variation is mainly and 
unavoidably captured by the partition for the shared variation between the 
environment and space. So, even the partitioning methods may provide only a limited 
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solution to the problem of highly spatially structured variables in controlling species 
distributions. 

If the modeling efforts aim at prediction instead of inference, a possible biased 
allocation between environmental covariates and space is not necessarily harmful. Even 
though autologistic regression underestimated the contribution of environmental 
covariates, it still performed better than the non-spatial model. However, our results 
show that this enhanced model performance of the spatial models does not come in one 
consistent form, but in terms of the predictions for cell occupancy, the two spatial 
models differed more from each other than either spatial model from the non-spatial 
model. Without more field data on species occupancy, it is impossible to rank the two 
spatial methods with respect to their ability to correctly predict the species distribution.  

Our results show that it is not so straightforward to evaluate the outcomes of 
different modeling approaches; the approaches may have different ranks depending on 
the criteria based on which they are evaluated. For example, while the autologistic 
regression seem to be more efficient than CAR modeling in removing residual 
autocorrelation, the CAR modeling has a higher discriminatory capacity (based on 
MPA) than the autologistic regression. The cartographic representation of the model 
predictions (Fig. 3) contains much information that was hardly captured by the 
quantitative evaluation criteria. The predictive surfaces of model predictions showed 
efficiently the different tendency of the methods to aggregate species occupancy (in the 
order of decreasing aggregation; the autologistic, the CAR and the nonspatial model). 
The ultimate goal of modeling should determine the evaluation criteria based on which 
the modeling outcomes are compared. 

We have compared the performance of the methods within one area, and, due to 
the high computational demands of the spatial Bayesian analysis for a large study area, 
used all the data for parameter estimation instead of splitting it up (or resubstituting) 
for within-area validation. As a measure of model performance, we have used the 
degree to which a given model can explain and predict the partly known recent 
distribution pattern (and at the same time, avoiding overprediction). So, on these 
grounds, it is impossible to conclude which one of the two spatial approaches has 
greater potential to generalize and transfer to new areas. Ability to generalize model 
results within the area and among areas (i.e., model transferability to new areas) are 
two different modeling aspirations, and we do not know whether they are 
simultaneously achievable or in conflict (but see e.g., Heikkinen et al., 2011). It might be 
that that some of the enhanced model performance of the spatial models (when 
compared to non-spatial one) comes with the risks of overcompensation for the space 
effect as found in this study and by Segurado et al. (2006) for the autologistic regression 
model. This possible overcompensation of autologistic models with an associated 
underestimation of environmental control lowers model transferability (see e.g., Carroll 
et al., 2010). Because the alternative spatial approaches came up with different inference 
concerning the effect of environmental covariates in controlling species distribution, it is 
likely that the methods may show differences in their within and among-area 
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generalisability. The relative merits and transferability of model outcomes from 
different spatial modeling methods are interesting topics for future research.  

According to our results, CAR approach was superior to the non-spatial approach 
even when complemented with the landscape connectivity component. This holds true 
even though the landscape connectivity component enhanced the performance of the 
non-spatial model. The difference in model fit and performance between the CAR 
approach and the non-spatial model with the connectivity component can be 
considered a clue to spatial signature produced by extrinsic factors. This is because 
spatial component of the CAR model incorporates autocorrelation produced both by 
extrinsic and intrinsic factors, while the landscape connectivity component emphasizes 
intrinsic factors. The difference in favor of the CAR approach, compared to non-spatial 
approach with the connectivity component, may have been even greater if we would 
have screened for an optimum neighborhood size (instead of the fixed second-order 
neighborhood).  

We used predicted probability values for species occurrence (represented by 
posterior sample means) as a fixed baseline for the evaluation of landscape connectivity, 
and fed this so-formed new covariate to the second round of the modeling. In an ideal 
case, the connectivity covariate and its associated parameter would also be evaluated in 
an iterative manner along with all the other model parameters. This approach would 
acknowledge the fact that the connectivity component is related to the probability of 
species occurrence, but it would come with a huge computational load. We think that 
the connectivity evaluations based on our two-step procedure, in addition to analytical 
simplicity, serves as a good approximation to the iteratively achieved connectivity 
evaluations.  

Our results show that space and environment are strongly interrelated (see also 
Currie, 2007). This causes problems especially for parameter estimation and inference so 
that different modeling methods have different sensitivities to allocate explanatory 
effect between environment and space. However, our results show that the methods 
may still achieve the same level of model performance via different allocations. In this 
study, we also tested the possibility of using a measure of landscape connectivity as an 
alternative and/or supplementary way (compared with the normally used 
neighborhood based connectivity measures) of handling the spatially structured 
dispersal process in distribution modeling. Even though the use of landscape 
connectivity clearly lacked behind the normal CAR approach in the modeling outcome, 
it may still provide insights to the nature and strength of intrinsic factors underlying 
species distributions. Although the different spatial methods do not obviously provide 
any standard way to cope with the effects of autocorrelation, they allow important 
insights into the controlling factors of species distributions in spatially structured 
environments where the ecological processes themselves are limited by distance. 
Species distribution modeling may gain in the form of enhanced predictive power and 
more profound understanding of distribution patterns than on pure non-spatial 
grounds. Therefore, species distribution modeling has a potential to provide a more 
solid base for species conservation. 
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TABLE 1  Comparisons of non-spatial and CAR modeling methods, either including the 
landscape connectivity component or not, in terms of model deviance, MPA 
and the Moran's I value of the first distance class. The connectivity 
component was defined based on AWF-measure (see text), and was based 
either on the occupancy pattern predicted by the non-spatial model 
(NonSpat-connectivity) or the CAR model (CAR-connectivity). 

Model Deviance MPA (%) Moran's I

NonSpat 945.3 36.9 0.279

NonSpat + CAR-connectivity 896.9 36.7 0.165

NonSpat + NonSpat-connectivity 946.4 37.6 0.281

CAR 867.0 19.7 0.242

CAR + CAR-connectivity 861.1 28.9 0.168

CAR + NonSpat-connectivity 867.3 20.4 0.252



 

 

 

FIGURE 1  Interpolated surface for the grid connectivity, i.e. relative measure for the 
degree of which a grid cell is connected to the source cells, based on the 
occupancy pattern predicted by the CAR-model. Connectivity is measured 
based on area-weighted flux – measure. Black points represent the study sites 
(i.e., grid cells with sampling, represented as centers of the cells) whose 
connectivity information is interpolated for the whole area using inverse 
distance weighted method. This interpolated layer is used as a new covariate 
in subsequent spatial modelling.  

  



 

 

 

FIGURE 2 Posterior samples for the parameters based on three modeling approaches; 
non-spatial, autologistic regression and CAR. The posterior samples represent 
two-chain runs, both thinned by ten. In total, both thinned chains comprise 
2000 iterations, sampled after the chain convergence. The middle line shows 
the median, bars the quartiles (25% and 75 %) of the distribution and 
whiskers the 2.5th and 97.5th percentiles of the distribution (i.e. they show the 
95 % confidence interval for the parameter). Smire and Young stands for the 
cover of spruce mires (> 100m3/ha) and young forests (<40 years) at the 
territory level, respectively; Edge for the length of edges shared between 
forests and mire/fens at the territory level; Cover for the cover of forest (>100 
m3/ha) at the landscape level; and Detection probability for the probability of 
seeing a Siberian Jay in a visit to an occupied site.  
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FIGURE 3 The prediction for the species presence based on the Bayesian non-spatial logistic regression, CAR model and the autologistic 
regression model. The sampling covers 6.7 % of the study area (see the cells with sampling in Fig. 1). 



 

 

 

FIGURE 4      Moran’s I values of the first eight distance classes (bin width of 2.5 km, 
ranging up to 20 km) for the three modeling methods; nonspatial (black line), 
CAR (grey line) and autologistic regression (dashed line).  
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FIGURE 5      The distributions for the differences in the predictions(represented as posterior mean values) of the models for a) the non-spatial 
model minus the CAR model; b) the non-spatial model minus the autologistic regression; c) CAR model minus the autologistic 
regression.  
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