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The bulk nuclear matter produced in heavy ion collisions carries a multitude of conserved quantum
numbers: electric charge, baryon number, and strangeness. Therefore, the diffusion processes associated
with these conserved charges cannot occur independently and must be described in terms of a set of
coupled diffusion equations. This physics is implemented by replacing the traditional diffusion coefficients
for each conserved charge by a diffusion coefficient matrix, which quantifies the coupling between the
conserved quantum numbers. The diagonal coefficients of this matrix are the usual charge diffusion
coefficients, while the off-diagonal entries describe the diffusive coupling of the charge currents. In this
paper, we show how to calculate this diffusion coefficient matrix from kinetic theory and provide results for
a hadron resonance gas and a gas of partons. We further find that the off-diagonal entries can reach similar
magnitudes compared to the diagonal entries. In order to provide some insight on the influence that the
coupling between the net charge diffusion currents can have on heavy ion observables, we present first
results for the diffusive evolution of a hadronic system in a simple ð1þ 1ÞD-fluid dynamics approach, and
study different configurations of the diffusion matrix.

DOI: 10.1103/PhysRevD.101.076007

I. INTRODUCTION

The main motivation for studying nuclear collisions at
relativistic energies is to understand the properties of strongly
interactingmatter. Especially the possibility of observing the
transition from hadronic matter to quark-gluon plasma
(QGP), as predicted by quantum chromodynamics (QCD),
has been the driving force behind the active experimental
heavy-ion programs at the Brookhaven National Laboratory
(BNL) and the European Organization for Nuclear Research
(CERN). During the last couple of decades, the high-energy
nuclear collision experiments performed in the Relativistic
Heavy IonCollider (RHIC), atBNL, and in theLargeHadron

Collider (LHC), at CERN, have shown that a considerable
amount of QCD matter is produced in these collisions and
that it is possible to infer the properties of such matter from
the experimental data.
As a very prominent example several studies [1–10] have

demonstrated that QGP has one of the smallest shear
viscosity to entropy density ratios in nature. Recently,
much attention was given to the bulk viscosity of QCD
[4,11–16], a coefficient which can display novel behavior
near the deconfinement transition of nuclear matter.
Moreover, several studies on the lattice [17–19], in per-
turbative QCD (pQCD) [20–22], and effective [23–25] or
kinetic theories [26] have recently studied the electric
conductivity. This coefficient is important in magneto-
hydrodynamical simulations; see, e.g., Ref. [27].
A dissipative process that is usually neglected, is the

diffusion of conserved charges due to temperature or
density gradients. Diffusion is a dissipative process which
occurs as soon as inhomogeneities arise in a conserved
quantity. In the simplest nonrelativistic case, the diffusion
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current j⃗q of charge q is described through Fick’s first law
[28,29],

j⃗qðt; x⃗Þ ¼ −Dq∇⃗nqðt; x⃗Þ; ð1Þ

where the current is generated by gradients in net charge
density nqðt; x⃗Þ and the diffusion coefficient Dq character-
izes the reaction strength of this thermal force. In the
highest-energy nuclear collisions, the created matter has
almost zero net baryon density at midrapidity, and the
effects of diffusion are expected to be small in this region
[30]. However, diffusion is expected to play an increasingly
important role as the net baryon density increases with the
decreasing collision energy.
Recently, the Beam Energy Scan (BES) program was

initiated at RHIC. In this program, nuclear collisions were
systematically performed at lower energies in order to
investigate the phase diagram and transport properties of
nuclear matter at finite net baryon (and net electric charge)
densities [31–33]. At beam energies down to, e.g.,

ffiffiffiffiffiffiffiffi
sNN

p ¼
7.7 GeV in the RHIC BES, the baryon chemical potential
can reach values up to μB ∼ 400 MeV, which is significant
when compared to the temperatures that are reached in this
system [34,35]. Furthermore, the Facility for Antiproton
and Ion Research (FAIR) at the Gesellschaft für
Schwerionenforschung (GSI) in Darmstadt, Germany,
and the Nuclotron-based Ion Collider facility (NICA) in
Dubna, Russia, aim to generate and study compressed
hadronic matter at large baryon densities [36]. The theo-
retical description of those collisions could rely on dif-
fusion dynamics.
The constituents of strongly interacting matter carry a

multitude of conserved quantum numbers: baryon number,
strangeness, electric charge, among others. As a result, the
diffusion currents of the conserved charges must be
coupled with each other. This multicomponent nature of
diffusion in strongly interacting matter was first fully
embraced in Ref. [37], where the full matrix of diffusion
coefficients was computed, and it was subsequently found
that the diffusion coefficients, describing the cross-cou-
pling between the diffusion currents, are of the same
magnitude as the “normal” (diagonal) diffusion coeffi-
cients. The purpose of this study is to complement Ref. [37]
and provide more details on the computation of the
diffusion matrix for strongly interacting matter, as well
as to provide an initial hydrodynamic calculation that
illustrates the influence of the cross-couplings in relativistic
nuclear collisions. As we will show, a novel phenomenon
emerging from the coupling is a generation of regions of
nonzero net strangeness from initially net strangeness
neutral matter.
This work is organized in two parts. In the first part we

discuss the diffusion coefficients and in the second part we
present a first investigation with fluid dynamics. In Sec. II
we define the most important notations and expressions

used in the paper. Section III provides a short review of
diffusion in a relativistic gas with multiple conserved
charges and introduces the diffusion coefficient matrix,
which characterizes the coupling of the diffusion currents.
We present the derivation of the diffusion coefficient matrix
within a linear response approach from relativistic kinetic
theory in Sec. IV, and we further discuss its properties and
results in relaxation time approximation (RTA) in Sec. V.
The first part of this work is concluded with detailed
discussions of the results for the coefficient matrix for
a hadronic and a massless partonic system in Secs. VI
and VII. In Sec. VIII we provide a short overview of the
fluid dynamic approach used and also present our first
results for the longitudinal diffusive evolution of a hadronic
system. A summarizing conclusion and an outlook is
provided in Sec. IX. We use natural units, ℏ¼c¼kB¼1,
and greek indices run from 0 to 3.

II. FOUNDATIONS

A. Basic definitions

Throughout this paper, we will express the momentum as
kμ and the coordinates as xμ. We denote the metric as gμν

and impose the ðþ;−;−;−Þ signature. It is convenient to
express all tensors in terms of irreducible tensors regarding
the local fluid velocity, uμ ≡ uμðxÞ. Therefore, we intro-
duce the orthogonal projectors Δμ

ν ≡ gμν − uμuν and
Δμν

αβ ≡ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ. The projectors

are symmetric (Δμν ¼ Δνμ ¼ ΔðμνÞ and Δμν
αβ ¼ ΔðμνÞ

ðαβÞ) and
are orthogonal to the fluid velocity (uνΔμ

ν ¼ 0 and
uαΔμν

αβ ¼ 0). More details can be found in Refs. [38,39].

We denote the projected tensors as Ahμi ≡ Δμ
αAα and

Ahμνi ≡ Δμν
αβA

αβ. The four-derivative can then be decom-
posed into the comoving derivative D ¼ uν∂ν and the
projected derivative or gradient ∇μ ¼ Δμ

ν∂ν:

∂μ ¼ uμDþ∇μ: ð2Þ

For later use, we define the particle energy in the local rest

frame (LRF) as Ei;k ≡ uμk
μ
i , Ei;k ¼LRFk0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

i

q
,

where the index i refers to the particle’s species. The state
of the system is characterized by the single-particle
distribution function of each particle species, fiðx; pÞ. It
can be decomposed into an equilibrium part, fð0Þi;k, and

an off-equilibrium part, δfi;k, as fiðx; pÞ ¼ fð0Þi;k þ δfi;k.
We introduce the following notation for the integration
measure:

dKi ≡ d3ki
ð2πÞ3k0i

: ð3Þ

The momentum integrals over the distribution functions
will be expressed using the following notation:
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hAμ1���μlii ≡
Z

dKiAμ1���μlfi;k; ð4Þ

hAμ1���μlii;0 ≡
Z

dKiAμ1���μlfð0Þi;k; ð5Þ

hAμ1���μlii;δ ≡
Z

dKiAμ1���μlδfi;k: ð6Þ

B. Kinetic theory

The evolution of fiðx; kÞ≕ fi;k is given by the
Boltzmann equation,

kμi ∂μfi;k ¼
XNspecies

j¼1

Cijðx; kÞ; ð7Þ

where Cij is the collision term. The energy-momentum
tensor Tμν and the net charge currents Nμ

q are expressed as
the following momentum integrals of the single-particle
distribution function [38]:

Tμν ¼
XNspecies

i¼1

hkμkνii; Nμ
q ¼

XNspecies

i¼1

qihkμii

with q ∈ fB;Q; Sg; ð8Þ

and they fulfill the local conservation laws: ∂νTμν ¼ 0 and
∂μN

μ
q ¼ 0. It is convenient to decompose Tμν and Nμ

q in
terms of the fluid velocity field, uμ. Without loss of
generality, we use Landau’s definition of the fluid velocity
[40], where uμ is an eigenvector of Tμν with an eigenvalue
given by the energy density in the LRF of the fluid, ϵ. That
is, Tμνuν ¼ ϵuμ. The decompositions read

Tμν ¼ ϵuμuν−ΔμνðP0þΠÞþπμν; Nμ
q ¼ nquμþ jμq; ð9Þ

where we introduced the local isotropic equilibrium pres-
sure P0 in the LRF, the bulk viscous pressure Π in the LRF,
the shear stress tensor πμν, the net charge densities nq with
q ∈ fB;Q; Sg in the LRF, and the corresponding net charge
diffusion currents jμq. The bulk viscous pressure, the shear-
stress tensor, and the diffusion currents represent the
dissipative corrections in the energy-momentum tensor
and the four-currents of the charges. The diffusion currents
of the net charges q are the main objects of our inves-
tigation and represent the charges diffusing orthogonally to
the flow of the fluid. In this scheme, each introduced
quantity can also be expressed as a contraction of the
currents, Tμν and Nμ

q, with uμ and Δμν,

ϵ ¼ uμuνTμν; P0 þ Π ¼ −
1

3
ΔμνTμν;

πμν ¼ Δμν
αβT

αβ; nq ¼ uμN
μ
q; jμq ¼ Nhμi

q : ð10Þ

By specifying an equation of state, we can define the
temperature and the chemical potentials for this system
using the traditional matching conditions [40],

ϵ ¼ ϵeqðT; μB; μQ; μSÞ;
nq ¼ nq;eqðT; μB; μQ; μSÞ with q ∈ fB;Q; Sg; ð11Þ

where ϵeq and nq;eq are the energy density and net charge
densities of the system in local thermodynamic equilib-
rium, respectively. These quantities are calculated in kinetic
theory by introducing the local equilibrium distribution
function. In this work we want to restrict ourselves to
classical statistics, and therefore the equilibrium distribu-
tion is given by the Maxwell-Juettner function

fð0Þi;k ¼ gi exp ð−uμkμi =T þ μi=TÞ; ð12Þ
where μi ¼ BiμB þQiμQ þ SiμS is the chemical potential
and gi is the degeneracy of the ith species. Furthermore, the
local equilibrium pressure is determined by the temperature
and chemical potentials,

P0 ≡ P0ðT; μB; μQ; μSÞ: ð13Þ

III. NET CHARGE DIFFUSION

In order to describe diffusion processes in relativistic
fluids, a relativistic version of Fick’s law must be
employed. For a fluid with only one conserved charge,
q, the relativistic Fick’s law reads [40,41]

jμq ¼ κq∇μ

�
μq
T

�
; ð14Þ

where the diffusion current is generalized to be generated
by a gradient in the corresponding thermal potential of the
charge αq ≡ μq=T ¼ β0μq and β0 ¼ 1=T is the inverse
temperature. Note that (in flat Minkowski space) in the

local rest frame ∇μ ≡ ð0;−∇⃗Þ, and because of the sign,
diffusion currents dissipate the existing inhomogeneities
that originally generated the current. Often, instead of the
charge diffusion coefficient, κq, the corresponding charge
conductivity, σq ≡ κq=T, is used. We can relate κq to Dq

[introduced in Eq. (1)] by evaluating

jμq ¼ Dq∇μnqðβ0; μqÞ ¼ Dq

�∂nq
∂β0 ∇

μβ0 þ
∂nq
∂αq∇

μαq

�
;

ð15Þ
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and imposing that the temperature is homogeneous,
∇μβ0 ¼ 0, leading to

jμq ¼β0¼const:
Dq

∂nq
∂αq∇

μαq¼! κq∇μαq ⇒ κq ¼
∂nq
∂αqDq: ð16Þ

As already stated, there are multiple conserved charges in
nuclear matter: the baryon number, strangeness, and
electric charge. Moreover, the constituents of quark and
hadronic matter carry multiple types of these charges, e.g.,
the proton carries the baryon number and electric charge
while the hyperons carry strangeness, baryon number and
electric charge. Therefore, these constituents must react to
multiple types of gradients in charge chemical potentials, in
such a way that a gradient in baryon number does not only
generate a baryon current, but can also produce currents in
strangeness and electric charge (depending on the chem-
istry of the system). In order to account for this coupling,
we introduced the diffusion coefficient matrix in Ref. [37],
which relates the charge diffusion currents to gradients in
all thermal potentials, αq, as0

B@
jμB
jμQ
jμS

1
CA ¼

0
B@ κBB κBQ κBS

κQB κQQ κQS

κSB κSQ κSS

1
CA ·

0
B@∇μαB

∇μαQ

∇μαS

1
CA: ð17Þ

The objective of this paper is the evaluation and a first look
at the possible dynamic implications of the complete
diffusion matrix. In the first part of this work we will
present a method of computation from relativistic kinetic
theory.

IV. LINEAR RESPONSE THEORY: FIRST-ORDER
CHAPMAN-ENSKOG EXPANSION

In this chapter, we present a method of evaluating the full
diffusion coefficient matrix in relativistic kinetic theory.
Here, we follow Refs. [24,37] and consider a dilute gas
consisting of Nspecies particle species, with the ith particle
species having degeneracy gi, electric charge Qi, strange-
ness Si, and baryon number Bi. The system shall be under
the influence of spatial gradients in baryon, strangeness,
and electric chemical potentials over temperature
∇μðμq=TÞ (with q ∈ fB;Q; Sg), but no other external
forces, as assumed in Ref. [24]. The gradients are assumed

to be small, such that the distortions from (local) equilib-
rium are small and linear response theory is applicable.

A. The linearized Boltzmann equation

We consider the system to be initially in global equi-
librium. Next, we apply small gradients in the chemical
potentials that are instantly switched on and cause a
small perturbation δfip of the single-particle distribu-
tion function (of the ith particle species) from equilibrium.
This perturbation generates a diffusion current in the
corresponding charges. The aim of this section is to set
up the Boltzmann equation for this situation.
The magnitude of gradients can be quantified by

introducing the so-called Knudsen numbers, Kn, which
are constructed as ratios of the characteristic microscopic
and macroscopic length scales, Kn ¼ lmicro=lmacro. Thus,
Knudsen numbers are small if the corresponding macro-
scopic length scales, lmacro, are large in comparison to the
microscopic length scales, lmicro. The later is often taken to
be the mean-free path of a particle in the gas, and lmacro is
related to the gradients in the system. If the gradients that
generate the perturbation of the single-particle distribution
are small, it may be possible to expand the distribution in
terms of the Knudsen number and truncate such an
expansion at lower order:

fi;k ¼ fð0Þi;k þ δfi;k ¼ fð0Þi;k þ fð1Þi;k þOðKn2Þ: ð18Þ

This expansion is also referred to as Chapman-Enskog
expansion [42]. If the Knudsen number is sufficiently
small and the series defined above converges, it is possible
to neglect contributions that are of second order or higher
and the perturbed single-particle distribution function can
be approximated solely in terms of its first order terms,

δfi;k ≈ fð1Þi;k ∼OðKnÞ. Applying the Chapman-Enskog
expansion to the Boltzmann equation (7) and only retaining
the terms that are of first order in the Knudsen number leads
to the following equation:

kμi ∂μf
ð0Þ
i;k ¼

XNspecies

j¼1

Cð1Þij ½fi;k�; ð19Þ

where we introduced the linearized collision term

XNspecies

j¼1

Cð1Þij ½fi;k�≡
XNspecies

j¼1

XNspecies

a¼1

XNspecies

b¼1

γij

Z
R3

dPa

Z
R3

dP0
b

Z
R3

dK0
jð2πÞ6sσij→abðs;ΩÞδð4Þðki þ k0j − pa − p0

bÞ

× fð0Þi;kf
ð0Þ
j;k0 f̃

ð0Þ
a;pf̃

ð0Þ
b;p0

 
fð1Þa;p

fð0Þa;pf̃
ð0Þ
a;p

þ fð1Þb;p0

fð0Þb;p0 f̃
ð0Þ
b;p0

−
fð1Þi;k

fð0Þi;kf̃
ð0Þ
i;k

−
fð1Þj;k0

fð0Þj;k0 f̃
ð0Þ
j;k0

!
; ð20Þ

FOTAKIS, GREIF, GREINER, DENICOL, and NIEMI PHYS. REV. D 101, 076007 (2020)

076007-4



and σij→abðs;ΩÞ is the differential cross section for the
binary interaction of incoming particles of species i and j,
with outgoing particles of species a and b (denoted as
ij → ab), at the center of mass collision energy

ffiffiffi
s

p
in a

solid angle Ω. Further, we introduced the symmetry factor

γij ¼ 1 − 1
2
δij and the notation f̃

ð0Þ
i;k ¼ 1 − afð0Þi;k, where a ¼

1 for fermions, a ¼ −1 for bosons, or a ¼ 0 for classical
particles. In this paper, we limit our discussion to classical

statistics and therefore f̃ð0Þi;k ¼ 1, and to binary elastic
processes, where only processes ij → ij are consid-
ered (σij→ij ≡ σij).
The achieved equation is typical for perturbation theory:

the perturbed quantity on the right-hand side is determined
by unperturbed quantities on the left-hand side of the
equation. The left-hand side in the linearized Boltzmann
equation (19) can be evaluated by first decomposing the
four-derivative into a comoving time derivative and pro-
jected derivative, and then substituting the comoving time
derivatives of the primary fields ϵ, nq (or β0 ≡ 1=T and
αq ≡ μq=T correspondingly) and uμ using the explicit local
conservation laws from ideal fluid dynamics,

Dϵ¼−ðϵþP0Þθ; ðϵþP0ÞDuμ¼∇μP0; Dnq¼−nqθ:

Above, we introduced the expansion scalar θ≡∇μuμ.
Further, using the Euler relation,

s ¼ β0ðϵþ P0Þ −
X

q∈fB;Q;Sg
αqnq; ð21Þ

and the Gibbs-Duhem relation, in the form

β0∇μP0¼−s
∇μβ0
β0

þ
X

q∈fB;Q;Sg
nq

�
∇μαq−

αq
β0

∇μβ0

�
; ð22Þ

we find the following equivalent form to the momentum
conservation equation:

Duμ ¼ −
∇μβ0
β0

þ
X

q∈fB;Q;Sg

nq
ðϵþ P0Þβ0

∇μαq: ð23Þ

Following this procedure, we derive the following source
term [43] for a system with multiple conserved charges
(terms related to the shear-stress tensor and bulk viscous
pressure are omitted in the last line):

Sðx; kiÞ≡ kμi ∂μf
ð0Þ
i;k

¼ −fð0Þi;k

�
E2
i;kDβ0 − Ei;kDαi þ

1

3
ðm2

i − E2
i;kÞβ0θ þ

X
q∈fB;Q;Sg

khμii ∇μαq

�
Ei;knq
ϵþ P0

− qi

�
þ β0k

hμ
i k

νi
i σμν

�

≃ −
X

q∈fB;Q;Sg
fð0Þi;kk

hμi
i ∇μαq

�
Ei;knq
ϵþ P0

− qi

�
; ð24Þ

where we defined the shear tensor σμν ≡ ∂hμuνi. The
diffusion current is then calculated as

jμq ¼
XNspecies

i¼1

qi

Z
dKik

hμi
i fð1Þi;k: ð25Þ

Thus, the correction fð1Þi;k related to net-charge diffusion
can be calculated from the following linear equation, by
inverting the linearized collision term:

XNspecies

j¼1

Cð1Þij ½fi;k� ¼ Sðx; piÞ

¼ −
X

q∈fB;Q;Sg
fð0Þi;kk

hμi
i ∇μαq

�
Ei;knq
ϵþ P0

− qi

�
: ð26Þ

The source term can be understood as a force term that
generates the perturbation of the single-particle distribution

due to the gradients in the thermal potentials, ∇μαq, which
will eventually give rise to diffusion currents in the
conserved charges q, according to Eq. (25).

B. Deriving the explicit expression
of the diffusion matrix

In the following sections, we derive explicit relations that
are required for the derivation of the diffusion coefficient
matrix. Following Refs. [24,37], we can approximate the
solutions fð1Þi;k of the linearized Boltzmann equation (26) by
expanding the first order perturbations in powers of energy
and truncating the power series at the truncation order M:

fð1Þi;k ¼
X

q∈fB;Q;Sg
fð0Þi;kk

hμi
i ∇μαq

XM
m¼0

λðiÞm;qEm
i;k: ð27Þ

Applying this to the linearized collision term (20) in the
classical limit and for elastic scatterings only results in
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XNspecies

j¼1

Cð1Þij ½fi;k� ¼
X

q∈fB;Q;Sg
∇μαq

XM
m¼0

XNspecies

j¼1

γij

Z
R3

dPi

Z
R3

dP0
j

Z
R3

dK0
jð2πÞ6sσijðs;ΩÞδð4Þðki þ k0j − pi − p0

jÞ

× fð0Þi;kf
ð0Þ
j;k0 ðλðiÞm;qp

hμi
i Em

i;p þ λðjÞm;qp
0hμi
j Em

j;p0 − λðiÞm;qk
hμi
i Em

i;k − λðjÞm;qk
0hμi
j Em

j;k0 Þ: ð28Þ

We can rewrite the linearized Boltzmann equation into a
matrix equation by multiplying Eq. (26) with En−1

i;k khνii and
then integrating over the momentum ki, such that we
evaluate moments of the Boltzmann equation. This

becomes even more apparent when we realize that khμii
fulfills the following orthogonality relation:Z

dKik
hμi
i khνii F ¼ Δμν

3

Z
dKik

hαi
i ki;hαiF ; ð29Þ

for arbitrary scalar functions F in energy. Furthermore,
because the gradients in the thermal potentials, ∇μαq, are

arbitrary, we can split the linearized Boltzmann equation into
separate equations for each charge q. Using the above-
mentioned evaluation of moments, the orthogonality proper-
ties of the momentum basis (29), and the separation by
charge, we arrive at the following set of linear equations [37]:

XM
m¼0

XNspecies

j¼1

ðAi
nmδ

ij þ CijnmÞλðjÞm;q ¼ biq;n; ð30Þ

where we introduced the abbreviations

Ai
nm ≡ XNspecies

l¼1

γil

Z
dKidK0

ldPidP0
lð2πÞ6sσilðs;ΩÞδð4Þðki þ k0l − pi − p0

lÞfð0Þi;kf
ð0Þ
l;k0En−1

i;k ki;hαiðEm
i;pp

hαi
i − Em

i;kk
hαi
i Þ;

Cijnm ≡ γij

Z
dKidK0

jdPidP0
jð2πÞ6sσijðs;ΩÞδð4Þðki þ k0j − pi − p0

jÞfð0Þi;kf
ð0Þ
j;k0En−1

i;k ki;hαiðEm
j;p0p0hαi

j − Em
j;k0k0hαij Þ;

biq;n ≡
Z

dKiEn−1
i;k ðm2

i − E2
i;kÞ
�
Ei;knq
ϵþ P0

− qi

�
fð0Þi;k; ð31Þ

and we used the dispersion relation ki;hαik
hαi
i ¼

Δαβkαi k
β
i ¼ m2

i − E2
i;k. Equation (30) is an ordinary matrix

equation, whereMij
nm ≡Ai

nmδ
ij þ Cijnm are the entries of an

½ðNspecies ·MÞ × ðNspecies ·MÞ�matrix, biq;n are the entries of

an ðNspecies ·MÞ-dimensional source vector, and λðjÞq;m are the
entries of an ðNspecies ·MÞ-dimensional vector of the expan-
sion coefficients fromEq. (27), which are the solutions of the
linear set of equations. In order tomakematrixM quadratic,
we set the parameter n to run from0 toM. Furthermore, there
are as many sets of such matrix equations (30) as there are
considered charge types. In this paper, we limit ourselves to
baryon number, strangeness, and electric charge, and there-
fore there are three sets of linear equations to solve.
Up until this point, all steps were done without imposing

the definition of the local rest frame. As already stated, in
this work, we use the Landau definition of the four-velocity

[40], in which all orthogonal energy-momentum flow
vanishes:

Wμ ≡ XNspecies

i¼1

hEi;kk
hμi
i ii;δ ¼! 0: ð32Þ

Applying the expansion (27) of fð1Þi;k to Eq. (32) gives us an
additional constraint for the expansion coefficients,

XNspecies

i¼1

XM
m¼0

λðiÞm;qhEmþ1
i;k ðm2

i − E2
i;kÞii;0 ¼ 0: ð33Þ

Together with the matrix equations (30), Eq. (33) forms a
set of linear equations of which the expansion coefficients

λðiÞq;m are the solutions. By applying the expansion in
Eq. (27) to the diffusion current (25) and directly compar-
ing to its Navier-Stokes form,

X
q0∈fB;Q;Sg

κqq0∇μαq0 ¼Navier−Stokesjμq ≡
X

q0∈fB;Q;Sg
∇ναq0

XNspecies

i¼1

XM
m¼0

λðiÞm;q0qi

Z
dKiEm

i;kk
hμi
i khνii fð0Þi;k

¼ 1

3

X
q0∈fB;Q;Sg

∇μαq0
XNspecies

i¼1

XM
m¼0

λðiÞm;q0qi

Z
dKiEm

i;kðm2
i − E2

i;kÞfð0Þi;k; ð34Þ
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we arrive at an explicit form for the entries of the diffusion
coefficient matrix:

κqq0 ¼
1

3

XNspecies

i¼1

qi
XM
m¼0

λðiÞm;q0

Z
dKiEm

i;kðm2
i −E2

i;kÞfð0Þi;k: ð35Þ

In Ref. [24], the quick convergence of the series in Eq. (35)
was demonstrated, and thus, we restrict the linearized
calculations to the truncation order M ¼ 1 in this paper.

V. RELAXATION TIME APPROXIMATION

In order to verify the results of the above calculations, it
is useful to compare the results with a simple, analytic

estimate. We apply the RTA, in which the collision term is
assumed to take a simple form,

XNspecies

j¼1

Cð1Þij ½fi;k� ¼ −
uμk

μ
i

τ
fð1Þi;k ¼ −

Ei;k

τ
fð1Þi;k; ð36Þ

where τ is the relaxation time. The relaxation time can be
interpreted as a global mean-free time between collisions of
particles, and is an input parameter.

A. Diffusion coefficients in RTA

Applying the RTA to the linearized Boltzmann equa-
tion (26) allows us to directly identify its analytical solution
for the perturbation

−
X

q∈fB;Q;Sg
fð0Þi;kk

hμi
i ∇μαq

�
Ei;knq
ϵþ P0

− qi

�
¼ −

Ei;k

τ
fð1Þi;k

⇒ fð1Þi;k ¼ τ
X

q∈fB;Q;Sg

khμii

Ei;k

�
Ei;knq
ϵþ P0

− qi

�
fð0Þi;k∇μαq: ð37Þ

The diffusion currents then take the form

jμq ≡
XNspecies

i¼1

qi

Z
dKik

hμi
i fð1Þi;k ¼ τ

3

X
q0∈fB;Q;Sg

∇μαq0
XNspecies

i¼1

qi

Z
dKi

1

Ei;k
ðm2

i − E2
i;kÞ
�
Ei;knq0

ϵþ P0

− q0i

�
fð0Þi;k

¼!
X

q0∈fB;Q;Sg
κqq0∇μαq0 ; ð38Þ

and by direct comparison we arrive at the RTA expression for the diffusion coefficients:

κqq0 ¼
τ

3

XNspecies

i¼1

qi

Z
dKi

1

Ei;k
ðm2

i − E2
i;kÞ
�
Ei;knq0

ϵþ P0

− q0i

�
fð0Þi;k: ð39Þ

This expression can also be written as

κqq0 ¼
τ

3

"XNspecies

i¼1

qiq0i

Z
dKi

1

Ei;k
ðE2

i;k −m2
i Þfð0Þi;k þ

XNspecies

i¼1

nq0qi
ϵþ P0

Z
dKiðm2

i − E2
i;kÞfð0Þi;k

#
; ð40Þ

where the last integral gives the partial equilibrium pressure
P0i of particle species i that, in the Boltzmann gas, can be
written as P0i ¼ niT, where ni is the total number density
of the particle species. Thus, the expression for the
diffusion coefficients becomes

κqq0 ¼
τ

3

�XNspecies

i¼1

qiq0i

Z
dKi

1

Ei;k
ðE2

i;k−m2
i Þfð0Þi;k

�
− τ

Tnq0nq
ϵþP0

:

ð41Þ

Even if derived in the RTA, this expression allows us to
identify the main features of the diffusion coefficients, in
particular, its temperature dependence. We first note that in
Eq. (41) the symmetry of κqq0 [44,45] with respect to charge
q ↔ q0 is explicit. Moreover, we note that the charge
combination qiq0i is the same for a particle and its
corresponding antiparticle, so that the first term increases
as the total density of charge carriers increases, with the
largest contribution coming from the lightest particle
species that carries both charges q and q0. The last term
is proportional to the net charge densities (particle minus
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antiparticle), and it becomes important when the net charge
densities are comparable to the total charge density.
Furthermore, the relaxation time is related to the inverse
of the scattering rate, τ ∼ 1=Γscatt: ∼ 1=ðntotσtotÞ, and thus
we deduce that the diffusion coefficients are suppressed by
the scattering rate of the charged particles, which is
strongly related to the total particle density of the medium
with which they scatter. The dependence of κqq0 on
temperature and μB is discussed below in more detail
when we show the results for hadron gas.

B. Ultrarelativistic limit

In the ultrarelativistic limit, all coefficients for fixed
chemical potentials, μq ¼ const, have the same asymptotic
limit. In order to show this, we first make use of the fact that
in the case of massless, classical particles, the thermody-
namic integrals simplify,Z

dKiEn
i;kf

ð0Þ
i;k ¼ gi

ðnþ 1Þ!
2π2

Tnþ2 expðαiÞ; ð42Þ

which leaves us with the expression for the diffusion
coefficients in the massless case in the RTA,

κqq0 ¼ −
τ

3

T3

π2
XNspecies

i¼1

giqi expðαiÞ
�
3Tnq0

ϵþ P0

− q0i

�
: ð43Þ

For fixed chemical potentials, all mass and chemical scales
can be neglected in the ultrarelativistic limit, since
mi=T → 0 and αi ¼ μi=T → 0 for all particle species.
Because all thermal potentials vanish, all net charge
densities nq also vanish in this limit. The high temperature
limit follows directly from the massless limit expression
(43) with expðαiÞ → 1, and thus reads

κqq0 ¼
τ

3

T3

π2
XNspecies

i¼1

giqiq0i: ð44Þ

The relaxation time can be related to the scattering rate as

τ ∼
1

Γscatt:
∼

C
ntotσtot

; ð45Þ

where ntot ¼
P

ihEi;kii;0 is the total particle density, σtot is
the total averaged cross section for the interaction between
the constituents of the gas, and C is a constant. For the
massless case, we can then write that

τT3 ¼ Cπ2

σtot
P

igi expðαiÞ
; ð46Þ

and in the limit introduced above, this simplifies to

τT3 ¼ Cπ2

σtot
P

igi
: ð47Þ

With this, the diffusion coefficients in the ultrarelativistic
limit read

κqq0 ¼
1

3

C
σtot
P

jgj

XNspecies

i¼1

giqiq0i; ð48Þ

which is independent of any chemical potential.
Furthermore, it becomes a constant if the total cross section,
σtot, is constant, while in the conformal limit (where the
cross section must scale with the temperature as
σtot ∼ 1=T2) κqq0=T2 becomes constant. These are proper-
ties that we also found to be true in the full linearized
numerical evaluation.
In recent publications [46,47], the authors took the

baryon diffusion coefficient of a massless QGP in RTA
to be κB ¼ CB

T nBð13 cothðαBÞ − TnB
ϵþP0

Þ, where the relaxation
time was assumed to be τ ¼ CB=T. This relation is also a
special case of Eq. (43) for the case of a massless gas with a
particle and a corresponding antiparticle species with
baryon charge B ¼ �1:

κBB ¼ð43Þ − 1

3

CB

T
T3

π2
gS

�
expðαBÞ

�
3TnB
ϵþ P0

− 1

�
− expð−αBÞ

�
3TnB
ϵþ P0

þ 1

��

¼ CB

T
2
T3

π2
gS sinhðαBÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≡nB

�
1

3
cothðαBÞ −

TnB
ϵþ P0

�
¼ CB

T
nB

�
1

3
cothðαBÞ −

TnB
ϵþ P0

�
: ð49Þ

C. Validity of the relaxation time approximation

In this section, we show that the relaxation time
approximation retains the correct scaling behavior in
temperature and baryon chemical potential for constant
cross sections. In order to investigate when the RTA is

applicable, we compute the baryon diffusion κBB for the
lightest 19 hadron species (listed in Appendix A) with a
constant isotropic cross section (10 mb), using both the
linearized collision term (later denoted as “full” in Fig. 1),
Eq. (28), and its RTA, Eq. (36). To this end, we employ the
transport relaxation time τtr [(45) with C ¼ 3

2
],
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τ−1tr ¼ ntotσtr ¼
2

3
ntotσtot: ð50Þ

This form originates from the assumption of a constant

differential cross section, dσðφ;ϑÞdφdϑ ¼ const, which is weighted
at large scattering angles:

σtr ≡
Z

2π

0

dφ
Z

π

0

dϑ sinðϑÞ sin2ðϑÞ dσðφ; ϑÞ
dφdϑ

¼ 2

3
4π

dσðφ;ϑÞ
dφdϑ

¼ 2

3
σtot; ð51Þ

where

σtot≡
Z

2π

0

dφ
Z

π

0

dϑsinðϑÞdσðφ;ϑÞ
dφdϑ

¼ 4π
dσðφ;ϑÞ
dφdϑ

: ð52Þ

The comparison is shown in Fig. 1 for several values of
baryon chemical potential μB. We note that the temperature
dependence of the full calculation is reproduced well by the
RTA evaluation. Additionally, we remark that the μB-
dependence vanishes at high temperatures and that a
(1=T2)-scaling of κBB=T2 is achieved at very high temper-
atures (which is not shown in Fig. 1), which we discussed

in the last section for the case of constant cross sections.
The full calculation deviates by a factor of 1–3 from the
RTA and improves with larger temperatures accordingly.
Finally, we conclude that the RTA becomes more reliable at
higher temperatures, but any quantitative study should
retain the full collision term as we have done, especially
if nonconstant cross sections (which in general introduce
additional dependencies on temperature and chemical
potential) are present.

VI. DIFFUSION COEFFICIENT MATRIX
OF A HADRONIC GAS

We provide results for the diffusion coefficient matrix
computed for a gas of hadrons and characterized by elastic
binary hadron-hadron collision cross sections. We model
the hadron gas using the most dominant mesons and
baryons in a hot gas close to the QGP phase transition,
that is, pions, kaons, nucleons, as well as lambda- and
sigma-baryons (for particle properties see Appendix A
Table I). From the Particle Data Group [48], we use all
available elastic, isotropic cross sections and complement
other theoretically described resonant cross section from
GiBUU [49] and SMASH [50], as shown in Fig. 2. All
missing cross sections are approximated by the constant
values taken from UrQMD [51,52], or (approximated from)
GiBUU [49], as given in Table II in Appendix A.
In the following, we present and discuss results for cal-

culations completed in this particular example of a hadronic
system, where we assumed a temperature range of T ¼
60 MeV to 180 MeVand a baryon chemical potential range
of μB ¼ 0 to 600 MeV. The electric chemical potential is set
to zero, μQ ¼ 0, for simplicity. Furthermore, in this section,
whenwe show the transport coefficientswe always set the net
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B
/T
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Full, μB =   300 MeV
Full, μB =   600 MeV
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2

3
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F
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l/R
T
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FIG. 1. Top panel: We compare the complete linearized
calculation of the baryon diffusion coefficient, κBB, from
Eq. (35) (label “Full”: full points) with assumed fixed isotropic
cross section σtot to results from the relaxation time approxima-
tion (label “RTA”: lines), Eq. (39), where τ−1tr ¼ 2

3
ntotσtot. Results

are presented for three values of baryon chemical potential
(μB ¼ 0, 300, 600 MeV) and vanishing electric and strangeness
chemical potential, μS ¼ 0 ¼ μQ. Bottom panel: The ratio of RTA
and full results.
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 [m
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FIG. 2. The isotropic resonance cross sections from the particle
data book [48], GiBUU [49], and SMASH [50] that we use for
the computation of the diffusion coefficients. All combinations of
species not listed are approximated by constant values (see
Appendix A). The grey bars denote the minimal

ffiffiffi
s

p
for the

corresponding interaction. This plot was taken from Ref. [37].
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strangeness density to be zero, nS ¼ 0 (as is expected to
occur in the initial stages of heavy-ion collisions). This
condition results in a strangeness chemical potential that
cannot be zero, but must be a function of temperature and
baryon chemical potential, μS ¼ μSðT; μBÞ. However, as we
will see later, the cross-coupling between the diffusion
currents can dynamically generate regions of nonzero net
strangeness during the (fluid) dynamical evolution, even if it
is initially zero. Therefore, in order to perform fluid dynami-
cal simulations where the diffusion is taken fully into
account, it is necessary to compute the full table of diffusion
coefficients with arbitrary combinations of temperature and
chemical potentials. Here, we show the positive baryon
chemical potential range, however, we emphasize that there
is in general no symmetry along the individual μq axes. The
coefficients are only symmetric under point reflections: if the
sign of all chemical potentials are changed simultaneously.
Further, we emphasize that there is no phase transition
included in this model because this is an evaluation from
(weakly coupled) kinetic theory.
Due to the systematic uncertainty in the cross sections,

we vary all approximated constant values in Table II in
Appendix A by multiplying them by a factor of k ¼ 0.5,
1, 2. We show this uncertainty of the diffusion coefficients
by transparent bands in Figs. 3(a)–8(a). Furthermore, in
Figs. 3(b)–8(b) we show the full T and μB dependence of
the diffusion coefficients in three-dimensional (3D) plots.
As discussed in Sec. V, the magnitude of the diffusion

coefficients depends on both the total and the net densities
of the corresponding charge carriers, as well as their
scattering rates. In turn, the scattering rate depends on
the total particle density (with the pion as the lightest
hadron giving the largest contribution) and on the scattering

cross section of the charge carriers. Many of the cross
sections show quite a strong dependence on the particle
collision energy (see Fig. 2), and this also is somewhat
reflected in the temperature dependence of the scattering
rates. Thus, the temperature and chemical potential depend-
ence of the diffusion coefficients is a result of the interplay
between the energy and hadron type dependence of the
scattering cross sections, as well as the temperature and
chemical potential dependence of the hadron densities.

A. Baryon diffusion

First, we begin with the diffusion of the baryon number,
which concerns the diffusion coefficients κBB, κBS, and κBQ
in the coefficient matrix. They measure the response of the
baryon number due to gradients in baryon-, strangeness-,
and electric-chemical thermal potential,

jμB ¼ κBB∇μαB þ κBS∇μαS þ κBQ∇μαQ: ð53Þ

All the diffusion coefficients in the baryon sector, which
are shown in Figs. 3(a), 3(b), 4(a), 4(b), 5(a), and 5(b),
display a rather strong dependence on the temperature and
baryon chemical potential. In particular, at μB ¼ 0, the
magnitude of the coefficients increases by a factor of ∼104,
within the studied temperature range (note that the dif-
fusion coefficients are divided by T2 in the plots), and a
similar increase is observed at lowest temperatures, within
the studied μB range. In both cases, the fast increase can be
attributed to the rapid increase of the total baryon density.
With nucleons being the lightest baryon number carriers,
the baryon density is strongly suppressed by the Boltzmann
mass factor expð−m=TÞ, and the relative increase of the
baryon density with temperature is much faster than the
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FIG. 3. (a) Scaled baryon diffusion coefficient, κBB=T2, of a hadron gas with particle species and interactions listed in Appendix A and
Fig. 2, plotted in a temperature range 60 to 180 MeV and for baryon chemical potentials μB ¼ 0, 300, and 600 MeV. We show bands,
where the variation of the constant cross sections by factors of 0.5 and 2. (b) A 3D plot of the same coefficient over temperature and
baryon chemical potential. Both plots were evaluated in the case of vanishing net strangeness density, nS ¼ 0 and μQ ¼ 0, which implies
that the strangeness chemical potential is a function of μB and T.
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increase of the total particle density, which is mainly
determined by pions. Therefore, at μB ¼ 0, the increase
of baryon density clearly wins over the increase in the
scattering rate as temperature increases, and this results in
the strong temperature dependence of the diffusion coef-
ficients at low temperatures. At nonzero μB, the rapid
increase of density with temperature is tamed by the
fugacity factor expðμB=TÞ and the temperature dependence
becomes considerably milder at μB ¼ 600 MeV.
Similarly, the increase in μB mainly affects the baryon

density, with pion density being unaffected, and thus results
in the fast increase of the diffusion coefficients with
increasing μB. When μB becomes sufficiently large, the
baryon density is comparable to the total hadron density,

and thus begins to affect the scattering rate, and the
increasing scattering rate also limits the growth of the
diffusion coefficients. At the same time, the net density of
baryons also becomes comparable to the total density and
this further limits the diffusion coefficient; see Eq. (41).
All the diffusion coefficients of the baryon sector (κBB,

κBS, and κBQ) display very similar behavior. This is due to
the fact that the lightest hadron that contributes to these
coefficients are nucleons for κBB and κBQ, and hyperons for
κBS, with similar masses, and thus very similar behavior of
densities. We further note that the qualitative behavior of
κBB is very similar in the test case with a constant cross
section (see Fig. 1). In this case, the energy and hadron type
dependence of the cross sections only play a small role. The
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FIG. 4. Same plots as in Figs. 3(a) and 3(b) for the scaled diffusion coefficient κSB=T2, which measures the diffusive coupling between
strangeness and baryon number. Note that the coefficient is negative, and thus we plot −κSB. (a) Band plot for over temperature and for
different given μB. (b) A 3D plot of the same coefficient over temperature and baryon chemical potential.
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FIG. 5. Same plots as in Figs. 3(a) and 3(b) for the scaled diffusion coefficient κBQ=T2, which measures the diffusive coupling between
electric and baryon charges. (a) Coefficient plotted over temperature and for a variety of baryon chemical potentials with bands due to
the variation of the constant cross sections. (b) A 3D plot of the same coefficient over temperature and baryon chemical potential.
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most visible difference is that with a constant cross section,
κBB=T2 at μB ¼ 600 MeV actually decreases with increas-
ing temperature, whereas this does not happen with more
realistic cross sections.
In the case of the baryon diffusion coefficient, κBB, the

shown bands demonstrate that the multiplicative factor in
front of the constant cross sections changes the results more
strongly at high temperatures, where the constant cross
sections dominate the interactions in our study. Contrary to
this, in the results for κBS we see that these bands have a
large width over the whole temperature range. This is
because most of the assumed interactions of hyperons
were modeled with constant cross sections, and these are
the only charge carriers contributing to this particular
coefficient due to the charge combination. We also note
that κBS is negative due to the definition of the strangeness:
hyperons with a positive baryon number carry a negative
strangeness. This indicates a possible anticorrelation of
baryon number and strangeness in dynamic simulations.

B. Strangeness diffusion

The diffusion of strangeness is characterized by the
coefficients κSS, κSB, and κSQ via

jμS ¼ κSS∇μαS þ κSB∇μαB þ κSQ∇μαQ: ð54Þ

The κSB coefficient was already discussed because the
diffusion matrix is symmetric and κBS ¼ κSB [44,45].
For both of the remaining coefficients, κSS and κSQ, shown
in Figs. 6(a), 6(b), 7(a), and 7(b), the lightest hadron that
carries strangeness, or both strangeness and electric charge,
is the kaon. Similar to the baryons, the increase in temper-
ature leads to an increase in total strangeness density
compared to the total density determining the scattering
rate, but in this case the effect on the diffusion coefficient is

much weaker since kaons are significantly lighter than the
lightest baryons. Further, there is no significant dependence
on the baryon chemical potential since the kaons do not
carry any baryon charge. See also, i.a., Ref. [53] for a
calculation of κSS.

C. Electric diffusion

The response of electric charge due to gradients in all
thermal charge potentials, αq, is measured by the coef-
ficients κQQ, κQB, and κQS,

jμQ ¼ κQQ∇μαQ þ κQB∇μαB þ κQS∇μαS: ð55Þ

The only coefficient left to discuss is κQQ, which is shown
in the same manner as before in Figs. 8(a) and 8(b).
Contrary to κQB, κQQ again shows no significant μB-
dependence, since the most dominant charge carriers, the
pions, do not carry any baryon charge. The fact that the
lightest electric-charge carriers are also the lightest hadrons
results in the fact that the total density of charge carriers
grows at the same rate as the total hadron density, which in
turn determines the scattering rate. In this case, κQQ depends
very weakly on temperature, and the shown temperature
dependency in Fig. 8(a) is from the 1=T2 scaling.
We remark that for μB ¼ 0, the electric diffusion

coefficient, κQQ, coincides with the electric conductivity
calculated in Ref. [24], κQQðμB ¼ 0Þ ¼ TσelðμB ¼ 0Þ. The
similarity of electric conductivity and diffusion (or in the
Eckart frame [41] the heat conductivity) is the manifesta-
tion of the Wiedemann-Franz law [54]. Similar to the
electric conductivity, the electric diffusion coefficient also
decreases strongly with temperature and only shows a
mediocre dependence on μB [24]. This is because the
dominant electric charge carriers are the pions, but a
significant amount of baryonic species also contribute to
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FIG. 6. Same plots as in Figs. 3(a) and 3(b) for the scaled strangeness diffusion coefficient κSS=T2. (a) Similar to Fig. 4(a) the bands
show a large width over the entire temperature range. (b) A 3D plot of the same coefficient over temperature and baryon chemical
potential.
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the electric diffusion current. Similar to Fig. 3(a), the
bandwidths vary strongly with increasing temperatures
where the constant cross sections dominate the interactions.

VII. THE DIFFUSION MATRIX FOR QUARK
GLUON PLASMA

The computation of the hadronic diffusion coefficients
presented above can only be extended in temperature up to
T ∼ 160 MeV where the transition to QGP is expected to
happen. In order to extend the computation to higher
temperatures, we need to complement the hadronic part
by calculating the diffusion matrix also for the QGP. Here,
we consider a toy model for the QGP where it is described
as a massless gas of quarks and gluons undergoing

isotropic elastic binary collisions. To this end, we take
gluons and the three lightest quark flavors u, d, and s,
together with their antiparticles. The degeneracy factors
accounting for the spin and color degrees of freedom are
g ¼ 6 for quarks and g ¼ 16 for gluons.
The magnitude of the diffusion coefficients is then

determined by the collision cross section, which we must
specify, and we do so in a very simplistic manner in order to
get a first estimate. We can either fix the total cross section
to a constant value, e.g., σtot ¼ 10 mb, or set the shear
viscosity to entropy ratio η=s to a fixed value. The latter
choice is more suitable, since shear viscosity of the QGP is
often extracted from experiment making this assumption.
The shear viscosity is given by η ¼ 2ϵ=ð5n0σtotÞ and the
entropy density in chemical equilibrium is s ¼ 4n0 [55,56].
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FIG. 8. Same plots as in Figs. 3(a) and 3(b) for the scaled electric diffusion coefficient κQQ=T2. (a) Coefficient plotted over temperature
and for a variety of baryon chemical potentials with bands due to the variation of the constant cross sections. (b) A 3D plot of the same
coefficient over temperature and baryon chemical potential.
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FIG. 7. Same plots as in Figs. 3(a) and 3(b) for the scaled diffusion coefficient κSQ=T2, which measures the diffusive coupling between
electric and strangeness charges. (a) Temperature plot of the coefficient shown for different values of μB and the already introduced
bands in the constant cross sections. (b) A 3D plot of the same coefficient over temperature and baryon chemical potential.
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Using the theoretical minimum η=s ¼ 1=ð4πÞ [57], the
total isotropic cross section can be fixed to σtot ≈
0.716=T2 [55,56].
The quarks carry baryon number, strangeness, and

electric charge,1 and the gluons contribute to the diffusion
coefficients, mainly through the scattering rate. In the case
of s-independent, isotropic cross sections, the diffusion
coefficients scale with the total cross section σtot. As an
example, we give the massless limit of the complete
diffusion coefficient matrix at vanishing chemical potential,
μq ¼ 0 for q ∈ fB;Q; Sg, which is achieved from the
Sec. IV described Chapman-Enskog method:

0
B@ κBB κBQ κBS

κQB κQQ κQS

κSB κSQ κSS

1
CAðμq ¼ 0Þ

≈
1

σtot

0
B@ 0.0345 0.0 −0.0345

0.0 0.0063 0.0105

−0.0345 0.0105 0.1036

1
CA: ð56Þ

As discussed in Sec. V B, in the case of constant cross
sections and μi ¼ 0, the diffusion coefficients κqq0 are also
constant in the ultrarelativistic limit, and the scaled coef-
ficients κqq0=T2 therefore scale with inverse temperature
squared. Contrary to this, in the conformal limit where
η=s ¼ const and σtot ∼ T−2 the scaled coefficients are
constant over temperature. At nonzero μq, all the coeffi-
cients acquire temperature dependence through the
Boltzmann factors expðμq=TÞ in the densities. However,
at fixed μq the temperature dependence vanishes at large
temperatures.
In Fig. 9 we plot the full diffusion coefficient matrix,

where we show all acquired results for the hadronic gas
already discussed in Sec. VI and also the results for the
massless simple QGP model. We show results by fixing
μB ¼ 0, 300, and 600 MeV, the electric chemical potential
to zero, μQ ¼ 0, and also the net strangeness density to
zero, nS ¼ 0, as in the hadronic case. We then simply
compare and present our results for the two models in one
summarizing plot and switch the model at 160 MeV
temperature.2 We already note that on the QGP side there
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FIG. 9. Complete diffusion coefficient matrix plotted over temperature and for the baryon chemical potentials μB ¼ 0, 300, and
600 MeV. We show results for the assumed hadronic system in the temperature range T ¼ 50 to 160 MeVand for the simple QGP model
for fixed η=s ¼ 1=4π for temperatures above 160MeV. We compare to the holographic results achieved in Ref. [23]. This plot was taken
from Ref. [37].

1 Up quark: B ¼ þ1=3, S ¼ 0, Q ¼ þ2=3. Down: B ¼ þ1=3,
S ¼ 0, Q ¼ −1=3. Strange: B ¼ þ1=3, S ¼ −1, Q ¼ −1=3, and
corresponding antiquarks. Gluon: B ¼ 0, S ¼ 0, Q ¼ 0.

2 We again emphasize that there is no phase transition included
in this approach.
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is very little dependence on temperature and baryon
chemical potential, especially at large temperatures, as
expected.
Surprisingly, for μB ¼ 0 the coefficients for the two

different models almost match at T ¼ 160 MeV, where the
phase transition or the smooth crossover would normally
occur. The only exception seems to be the κBQ, where there
is a large discrepancy between the hadronic model and the
QGP model. In the latter case, the coefficient vanishes at
μB ¼ 0 since the generated currents of the quarks exactly
cancel out the net flow of electric charge due to symmetry.
However, we again emphasize that no cross-over or phase-
transition was included in these models and thus we cannot
draw any conclusive statements for this particular temper-
ature region.
We further compare to the holographic results for the

diagonal entries of the diffusion coefficient matrix from
Ref. [23] (grey dashed and dash-dot-dotted lines).The
holographic results approach the conformal limit at high
temperatures and only show moderate μB dependence, but
the overall shape and magnitude seem to be qualitatively
consistent with our results. However, the results for the
simple QGP model with fixed η=s ¼ 1=4π coincides with
the conformal limit at very high temperatures, as it should.
In the future more sophisticated studies for the QGP should
be undertaken with this method and be compared to other
calculations, e.g., from pQCD [58–60]. We note that the
κSB coefficient has the same magnitude as the baryon
diffusion coefficient, κBB, but is negative. We further
remark that the strangeness diffusion coefficient is the
largest coefficient in magnitude.
We found that the off-diagonal entries of the diffusion

coefficient matrix can reach similar magnitudes to the
diagonal coefficients (which are usually considered). We
therefore would expect significant corrections to the dif-
fusion currents due to the mixing of charge types compared
to approaches when parts of the diffusion coefficient matrix
are neglected. Nevertheless, the phenomenological conse-
quences are still not known. In the following, we take a first
step in this direction and investigate the influence of the full
diffusion matrix in a one-dimensional fluid dynamics
approach.

VIII. HYDRODYNAMIC EVOLUTION

In the last sections we evaluated and discussed the
diffusion coefficient matrix for a simple hadronic and
(massless) partonic system and showed that in the chosen
basis of charge definitions there are non-vanishing off-
diagonal contributions arising from the fact that hadrons
and partons can carry several different charges. The goal of
this chapter is to provide initial investigations of its
implications with the help of relativistic fluid dynamics.
After providing a short review of our framework, we
present the first results for the dynamic evolution of a
system with multiple conserved charges. Here, we assume

the same hadronic system as presented in Sec. VI as an
example. More sophisticated studies will follow in the
future.

A. Transient dissipative relativistic fluid dynamics

The foundation of fluid dynamics is the exact conserva-
tion of energy, momentum, and net quantum numbers (or
charges) q. In the same fashion as in the last sections, we
assume conserved baryon number B, strangeness S, and
electric charge Q. The local conservation equations of
energy, momentum, and net charge q can then be expressed
in general (curved) spacetime as

0 ¼ Tμν
;μ ≡ ∂μTμν þ Γμ

μαTαν þ Γν
μαTμα;

0 ¼ Nμ
q;;μ ≡ ∂μN

μ
q þ Γμ

μαNα
q; ð57Þ

where we introduced the covariant derivative, ð� � �Þ;μ, and
the Christoffel symbols of the second kind, Γμ

αβ. The central
assumption of fluid dynamics is that the evolution of the
fluid is taking place close to local equilibrium. This holds
as long as the characteristic microscopic scales of the
system—e.g., the mean-free path of the particles—are
sufficiently small compared to the (dominating) character-
istic macroscopic scales of the system. Second, the dis-
sipative corrections of the fluid dynamic tensors must be
small in comparison to the equilibrium quantities. Both
requirements are quantified by introducing the Knudsen
numbers, Kn, which are defined as the ratios of the
microscopic and macroscopic scales, and the inverse
Reynolds numbers Rn−1, which are defined as the ratios
of the magnitude of the dissipative quantities (e.g., the
diffusion currents), as well as the corresponding primary
hydrodynamic fields (e.g., the local net charge densities). It
is often argued that if both measures are small,

Kn ≪ 1; Rn−1 ≪ 1; ð58Þ

fluid dynamics is applicable. However, it was recently
shown that in some situations the applicability of fluid
dynamics extends even up to Kn ∼ 1 [61].
In order to close the set of fluid dynamic equations,

one needs to introduce additional equations of motion
for the dissipative quantities. Following the approach of
transient fluid dynamics in Denicol-Niemi-Molnár-Rischke
(DNMR) theory [62], the equations of motion for the bulk
viscous pressure, the diffusion currents, and the shear-stress
tensor are introduced. The source terms responsible for the
generation of dissipation in these equations are expanded in
orders of Knudsen numbers and inverse Reynolds numbers
under the assumption that they are sufficiently small so that
the higher order contributions can be neglected.
For these first investigations where we want to examine

the impact of the off-diagonal terms in the diffusion
coefficient matrix, we only expand the source term to first
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order in the Knudsen numbers. The transient equations of
motion then read [62]

τΠDΠþ Π ¼ −ζθ þOðKn2;Rn−2;KnRn−1Þ; ð59Þ

τqΔμ
νDjνq þ jμq ¼

X
q0
κqq0∇μαq0 þOðKn2;Rn−2;KnRn−1Þ;

ð60Þ

τπΔ
μν
αβDπαβ þ πμν ¼ 2ησμν þOðKn2;Rn−2;KnRn−1Þ;

ð61Þ

where we introduced the bulk viscosity ζ, the shear
viscosity η, and accounted for the diffusion coefficient
matrix ðκqq0 Þ. Further, DAμ1���μl ≡ uαAμ1���μl

;α is the comov-
ing time derivative. The first order source terms correspond
with the source terms from Navier-Stokes-Fourier theory
[40,41]. We note that the Navier-Stokes terms do not
contain any direct cross-couplings between the dissipative
fields. In the following, we neglect bulk and shear,
Π ¼ πμν ¼ 0, and focus on the diffusion without viscous
corrections. Thus, the only dissipative equations of motion
we consider in this work are the equations for the net
diffusion currents,

τqΔμ
νDjνq þ jμq ¼

X
q0
κqq0∇μαq0 : ð62Þ

In order to solve these fluid dynamic equations of motion,
we rewrite the set of equations in an appropriate manner
(see Appendix B) and use the numerical solver SHASTA
[63,64]. For the sake of simplicity, we only assume
longitudinal dynamics in a hyperbolic ð1þ 1ÞD-geometry
characterized by the proper time, τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

, and the
spacetime rapidity, ηs ≡ arctanhðz=tÞ. We then solve
Eqs. (A13), (A14), (A15), and (A16) numerically, and
use Eqs. (A10) and (A11) to infer the LRF quantities.
Furthermore, we solve Eq. (A12) with Newton’s secant
algorithm in order to find the velocity. Please note that all
equations in Appendix B are already given without any
viscous corrections.

B. Equation of state

In order to close the set of fluid dynamics equations, we
need to impose an equation of state, P0ðT; μB; μQ; μSÞ. In
the noninteracting hadron gas it is straightforward to
compute thermodynamic quantities as a function of T
and μq,

ϵeq≡ϵeqðT;μB;μQ;μSÞ; nq;eq≡nq;eqðT;μB;μQ;μSÞ: ð63Þ

However, in fluid dynamics the natural variables are energy
and net charge densities, and we need to invert these

relations numerically in order to obtain the pressure, the
temperature, and the chemical potentials as a function of ϵ
and nq. Here we assume the same classical hadronic system
as presented in Sec. VI, and thus the single-particle
distribution function is of Maxwell-Juettner type (12),
and the thermodynamic quantities can be expressed as

ϵeq ≡
XNspecies

i¼1

hE2
i;kii;0;

nq;eq ≡
XNspecies

i¼1

qihEi;kii;0 for q ∈ fB;Q; Sg;

P0;eq ≡ 1

3

XNspecies

i¼1

hE2
i;k −m2

i ii;0: ð64Þ

We note that the equation of state constructed in this way is
consistent with the equilibrium state in the computation of
the diffusion matrix.

C. Results

In order to obtain some understanding of the diffusive
interplay between the multiple conserved charges and the
importance of the diffusion coefficient matrix, we simulate
the dynamics of the hadronic system presented in Sec. VI.

1. Case study

For the sake of simplicity, we consider only two
conserved charges in the system, the net baryon number
and the net strangeness, by setting the electric chemical
potential to zero, μQ ¼ 0. We set simple initial conditions
and consider four different configurations of the diffusion
coefficient matrix of the system:

(i) Case 1: No diffusion; all the diffusion coefficients
are set to zero, κqq0 ¼ 0.

(ii) Case 2: Baryon diffusion only; the only nonvanish-
ing coefficient is κBB, which is taken from the above-
mentioned evaluation. This case is usually assumed
in other works [46,47,65]. κBB is computed with the
linear response method as described in the first part
of this paper in the relevant range of temperature and
chemical potentials. The only restriction implied is
that the electric chemical potential vanishes, μQ ¼ 0.

(iii) Case 3: Off-diagonal entries neglected; all the off-
diagonal entries of the coefficient matrix are artifi-
cially set to zero. Note that the only off-diagonal
coefficient is κSB ¼ 0. All the diagonal coefficients
are again taken from the above-mentioned calcu-
lation.

(iv) Case 4: Full diffusion matrix; the complete diffusion
coefficient matrix of the system is considered.

We assume simple transversally homogeneous initial con-
ditions for a heavy ion collision at small collisional
energies, which is entirely in the hadronic phase and suffers
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large longitudinal gradients in the net baryon number. In all
of the above-introduced cases, the system is initialized at
proper time τ0 ¼ 2 fm=c, with a homogeneous temperature
of 160 MeV and a double-Gaussian profile in initial net
baryon number density,

nB;ini ¼ nB;max ·

�
exp

�
−
ðηs − ηs;0Þ2

R2
0

�

þ exp

�
−
ðηs þ ηs;0Þ2

R2
0

��
; ð65Þ

where ηs;0 ¼ 1.0, nB;max ¼ 0.5 fm−3, and R0 ¼ 0.5.
Furthermore, we set the initial net strangeness density to
zero everywhere, nS ¼ 0, and as usual, the initial fluid

velocity is zero, uμ ¼ 0.3 From these specifications, the
energy density is calculated from the equation of state,
which results in a nonhomogeneous profile. This implies
that besides the diffusion, the dynamics of the system are
also determined by gradients in pressure. Therefore, even in
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FIG. 10. Longitudinal fluid dynamic evolution of the net baryon number (left plots) and net strangeness (right plots) multiplied by the
Bjorken factor τ=τ0 of a classical, hadronic system, with 19 assumed particle species (see Appendix A) for different configurations of its
diffusion matrix (see upper left corner of left plots). The state of the net densities is shown at different evolution times (various colored
and dashed lines) beginning at the initial proper time τ0 ¼ 2 fm=c (black solid curve) and plotted over the spacetime rapidity ηs. The
system is prepared at initial, homogeneous temperature T0 ¼ 160 MeV, a double-Gaussian profile in net baryon number with maxima at
ηs ¼ �1.0 with value nB;max ¼ 0.5 fm−3, and initial vanishing local net strangeness density nS.

3 Note that uμ ¼ 0 in hyperbolic coordinates corresponds to
v⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvxÞ2 þ ðvyÞ2

p
¼ 0 and vz ¼ z=t in Cartesian coordi-

nates, and therefore the perpetual longitudinal expansion is
accounted for. Moreover, nS ¼ 0 accounts for the fact that in
the collisions of nucleons there is no initial net strangeness in the
collision region. However, note that although the collision is
overall strangeness neutral, local initial fluctuations of net
strangeness (and correspondingly in the other conserved charges)
may be present [66].
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the nondiffusive case (Case 1), the baryon number is
transported with the flow of the system.

2. Description

We show our results for the evolution of the system for
each of the four assumed cases in Fig. 10 for proper times
starting at τ ¼ τ0 ¼ 2 fm=c until τ ¼ 7 fm=c. The evolu-
tions of the net baryon number (left side of the plot) and
the net strangeness density (right side of the plot) are
presented for the four cases: no diffusion (top row), full
diffusion matrix (second row), no off-diagonal entries
(third row), and baryon diffusion only (bottom row).
Various colored and dashed curves are plotted over
spacetime rapidity, ηs, representing the state at four
different proper times: initial state at τ ¼ 2 fm=c (black
solid curve), at τ ¼ 3 fm=c (blue dashed line), at τ ¼
5 fm=c (orange dotted line), and finally at τ ¼ 7 fm=c
(red mixed dashed line). We emphasize that two plots in
one row belong to the same case. We show the densities
multiplied by the Bjorken factor τ=τ0 in order to account
for the longitudinal expansion [67].
First, we note that in the nondiffusive case (Case 1), only

a small amount of the baryon number is transported toward
the mid- and outwards rapidities from the regions of high
baryon densities due to the motion of the fluid (convection
generated by pressure gradients). Furthermore, there is no
transportation of net strangeness. Accordingly, in Case 2,
there is also no extra transported net strangeness and the
distribution of net strangeness remains flat at zero.
However, in contrast to the nondiffusive case, there is
significant diffusive transport of the net baryon number. All
diffusive cases (Cases 2 to 4) show a very similar evolution
of the net baryon number, but the evolution of the net
strangeness is sensitive to the assumed configuration of the
diffusion coefficient matrix. Contrary to Case 2, a wavelike
profile in net strangeness density builds up over time in
Cases 3 and 4, while the total net strangeness is conserved
globally. This profile is more pronounced if the off-
diagonal entry is neglected. To assess the magnitude of
this effect, we compare the net strangeness density to the
total number density, ntot. For Case 3, we find ratios up to
jnS=ntotj ∼ 6%, and in the consideration of the full diffusion
matrix (Case 4), only ratios up to ∼3% are reached during
the evolution in this example. Aside from the differences in
magnitude, there are also differences in the wavelike profile
that appears, depending on the assumed case.

3. Interpretation

The reason for this separation of strangeness is that the
Navier-Stokes terms of the corresponding diffusion cur-
rents introduce a coupling between the charge currents via
the diffusion coefficient matrix [see Eq. (17)] and the
assumed equation of state.

In Case 3, the positive baryon number and positive
strangeness is transported to the mid- and outward rapidity
region. Due to charge conservation, less baryon number
and negative net strangeness stays behind in the regions of
the baryon source. From this case we see that even though
we did not assume any explicit coupling through κSB in the
fluid dynamic equations, we can still witness a correlation
between the conserved charges. The origin of this intrinsic
correlation of charges introduced by the equation of state
alone is the same as the correlation introduced by the
diffusion matrix: the particles carry a multitude of con-
served charge types. This in turn results in the fact that
chemical potentials are generally dependent on all assumed
charge densities and vice versa. Thus, this chemistry of
“mixed” charges already encodes charge correlation into
the equation of state; see, e.g., [68]. However, in order to
achieve physically correct results for the charge correlation
during the dynamic evolution, it is important to ensure that
the same chemistry is assumed for the calculation of the
diffusion matrix as well.
This is demonstrated with Case 4, where we assumed the

full diffusion coefficient matrix. We find a similar picture as
in Case 3. However, because κSB is negative (as shown in
Sec. VI), and the gradients in αq have the same sign, the
influences of both gradients on the diffusion currents
inhibit or even cancel each other out in this configuration,
which leads to a different evolution of the net strangeness in
comparison to Case 3. The exact effects of this off-diagonal
entry in the diffusion matrix clearly depend on the profiles
of temperature and chemical potentials in a complicated
manner, since the diffusion coefficients are also a function
of these quantities.

4. Summary

In this section, we presented first results which imply
that choosing an equation of state and diffusion coefficients
in an inconsistent way could make a difference in the
evolution of a system that consists of particles carrying a
multitude of conserved quantum numbers. However, these
investigations were done in a simple manner, and results
from the evolution were not transferred to particle spectra.
The question of whether the influence of the full diffusion
coefficient matrix is significant is therefore left for more
sophisticated and detailed future works.

IX. CONCLUSION AND OUTLOOK

In the first part of this paper, we introduced the diffusion
coefficient matrix in order to account for the fact that,
especially in hadronic gases, particles generally carry
multiple types of conserved quantum numbers. We find
that the mixed chemistry results in a coupling of all
diffusion currents that correspond to the conservation of
these conserved quantities. In order to describe heavy ion
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collision, we propose that this coupling must be accounted
for in dynamic simulations. We evaluated the complete
diffusion coefficient matrix for two examples: a hadron gas
and a simple model for a massless QGP, both containing
conserved baryon number, strangeness, and electric charge.
This was done by using a semianalytical linear response
approach in relativistic kinetic theory, and we compared our
results for the diagonal coefficients to Ref. [23] in the case
of the massless, conformal QGP. We find that the off-
diagonal coefficients κBQ, κSB, and κSQ, which describe the
mixing between the diffusion currents, can reach similar
magnitudes to the diagonal coefficients, κBB, κQQ, and κSS,
which are usually evaluated in other approaches, e.g.,
Refs. [23,60].
Dynamic simulations or other model descriptions of high

density heavy ion collisions in experiments like RHIC
BES, NICA, or FAIR will become increasingly important.
We used the evaluated diffusion coefficient matrix and
presented the first study of the influence of the matrix in a
simple ð1þ 1ÞD-fluid dynamic simulation of a hadronic
system. In addition, signals of strangeness separation and
significant baryon diffusion were found and discussed. The
results imply that inconsistently choosing the equation of
state and the diffusion coefficient matrix of the system
results in false dynamics of the conserved charge, which
could mislead the physical interpretation. We therefore
advise that the mixing between the diffusion currents

should not be neglected in simulations of high density
heavy ion collisions. However, the relevance of these
effects for experimental observables has not yet been
investigated. Furthermore, significant effects from, e.g.,
transverse dynamics, shear viscosity, and second order
contributions to the diffusion currents are expected, but
were neglected in this first investigation. This, as well as
other aspects remain open for more sophisticated works in
the future. Moreover, a comparison of our results to lattice
QCD, other transport models, or dynamic approaches are
also desirable for future research.
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APPENDIX A: PARTICLE PROPERTIES OF THE HADRONS AND CROSS SECTIONS

TABLE I. Properties of the particle species used in the hadronic calculation of the diffusion coefficient matrix.
Here, e denotes the elementary electric charge.

Name Mass [MeV=c2] Spin Degeneracy Baryon number Electric charge Strangeness

πþ 138 0 1 0 þe 0
π− 138 0 1 0 −e 0
π0 138 0 1 0 0 0
Kþ 496 0 1 0 þe þ1
K− 496 0 1 0 −e −1
K0 496 0 1 0 0 þ1

K̄0 496 0 1 0 0 −1
p 938 1=2 2 þ1 þe 0
p̄ 938 1=2 2 −1 −e 0
n 938 1=2 2 þ1 0 0
n̄ 938 1=2 2 −1 0 0
Λ0 1116 1=2 2 þ1 0 −1
Λ̄0 1116 1=2 2 −1 0 þ1

Σ0 1193 1=2 2 þ1 0 −1
Σ̄0 1193 1=2 2 −1 0 þ1

Σþ 1189 1=2 2 þ1 þe −1
Σ̄þ 1189 1=2 2 −1 −e þ1

Σ− 1197 1=2 2 þ1 −e −1
Σ̄− 1197 1=2 2 −1 þe þ1
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APPENDIX B: FLUID DYNAMIC EQUATIONS:
(1 + 1)-DIMENSIONAL LONGITUDINAL SYSTEM
IN HYPERBOLIC COORDINATES WITHOUT

BULK AND SHEAR VISCOSITY

The transformation law between Cartesian and hyper-
bolic coordinates ðt; x; y; zÞ ↔ ðτ; x; y; ηsÞ reads

t¼ τcoshðηsÞ; x¼ x; y¼ y; z¼ τ sinhðηsÞ; ðA1Þ

where τ is the proper time and ηs is the spacetime rapidity.
The metric in hyperbolic coordinates reads gμν¼
diagð1;−1;−1;−τ2Þ, and the only nonvanishing Christoffel
symbols of the second kind are Γτ

ηη ¼ τ and Γη
τη ¼ Γη

ητ ¼ 1
τ.

The fluid velocity simplifies to uμ ¼ γηð1; 0; 0; vηÞ, with the
Lorentz factor γη ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−τ2ðvηÞ2
p , and the four-derivative read-

ing ∂μ ¼ ð∂τ; 0; 0; ∂ηÞ. The expansion scalar can then be
expressed as

θ≡∇μuμ ¼ ∂τγη þ ∂ηðγηvηÞ þ
γη
τ
: ðA2Þ

We set all initial values of the dissipative fields to zero.
Therefore, the nonvanishing fluid dynamic fields read

Tττ ¼ ðϵþ P0Þγ2η − P0; ðA3Þ

Tτη ¼ ðTττ þ P0Þvη; ðA4Þ

Tii ¼ P0; i ∈ fx; yg; ðA5Þ

Tηη ¼ Tτηvη þ P0

τ2
; ðA6Þ

Nτ
q ¼ nqγη þ jτq; ðA7Þ

Nη
q ¼ ðNτ

q − jτqÞvη þ jηq: ðA8Þ

Due to the orthogonality of the diffusion current, jηq is the
only independent component, and therefore

jτq ¼ τ2vηjηq: ðA9Þ

Using the explicit form of the fluid dynamic tensor, we can
express local rest frame quantities in terms of the lab frame
quantities as

ϵ ¼ Tττ − Tτητ2vη; ðA10Þ

nq ¼
1

γη
ðNτ

q − jτqÞ: ðA11Þ

Further, the fluid velocity can also be connected to the lab
frame quantities,

vη ¼ Tτη

Tττ þ P0

; ðA12Þ

and is evaluated using Newton’s secant algorithm because
the components of the energy-momentum tensor are depen-
dent on the fluid velocity itself.

TABLE II. All elastic cross sections among all species. The constant cross sections are in units of millibarn (mb),
the label “res” refers to the tabulated or parametrized resonance cross sections depicted in Fig. 2. We use constant
cross sections where no resonance cross section was available from UrQMD [51,52].

πþ π− π0 Kþ K− K0 K̄0 p n p̄ n̄ Λ0 Λ̄0 Σ0 Σ̄0 Σþ Σ̄þ Σ− Σ̄−

πþ 10 res res 10 10 res 10 res 10 10 res 23.1 23.1 5 5 5 5 5 5
π− 10 res res 10 10 res res res res 10 23.1 23.1 5 5 5 5 5 5
π0 5 res 10 res res res res res res 23.1 23.1 5 5 5 5 5 5
Kþ 10 10 10 50 res 10 20 10 18.5 18.5 3 3 3 3 3 3
K− 10 50 10 res res 6 10 18.5 18.5 3 3 3 3 3 3
K0 10 50 6 6 20 20 18.5 18.5 3 3 3 3 3 3
K̄0 10 8 20 6 6 18.5 18.5 3 3 3 3 3 3
p res res res 20 34.7 34.7 10 10 10 10 10 10
n 20 res 100 34.7 34.7 10 10 10 10 10 10
p̄ 10 10 34.7 34.7 10 10 10 10 10 10
n̄ 10 34.7 34.7 10 10 10 10 10 10
Λ0 30 30 10 10 10 10 10 10
Λ̄0 30 10 10 10 10 10 10
Σ0 10 10 10 10 10 10
Σ̄0 10 10 10 10 10
Σþ 10 10 10 10
Σ̄þ 10 10 10
Σ− 10 10
Σ̄− 10
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In order to evaluate the primary fluid dynamic fields—ϵ,
nq, and vη—the lab frame quantities—Tττ, Tτη, Nτ

q, and
jηq—must be calculated by solving the fluid dynamic
equations of motion. The explicit forms of these read

∂τTττ þ ∂ηðvηTττÞ ¼ −∂ηðvηP0Þ −
1

τ
Tττ − τTηη; ðA13Þ

∂τTτη þ ∂ηðvηTτηÞ ¼ −
1

τ2
∂ηP0 −

3

τ
Tτη; ðA14Þ

∂ηNτ
q þ ∂ηðvηNτ

qÞ ¼ −
Nτ

q

τ
þ ∂ηðvηjηqÞ − ∂ηj

η
q; ðA15Þ

and the equation of motion for the diffusion current in the
ηs direction reads

ð∂τþvη∂ηÞjηq ¼−
X
q0

κqq0

τqγη

�
1

τ2
∂ηαq0 þ γ2ηvηð∂τþvη∂ηÞαq0

�

−
jηq
τqγη

−
1

τ
ðjηqþvηjτqÞ−vηðjτqDuτþ jηqDuηÞ;

ðA16Þ

and

Duτ ¼ γηð∂τγη þ vη∂ηγηÞ þ τγ2ηðvηÞ2; ðA17Þ

Duη ¼ −τ2γη½∂τðγηvηÞ þ vη∂ηðγηvηÞ� − 2τγ2ηvη: ðA18Þ

Further, we propose simple estimates for the relaxation
times motivated from Ref. [62],

τq ≡ 12κqq
ntot

: ðA19Þ

Continuity equations of the form

∂τρðτ; ηÞ þ ∂η½vηðτ; ηÞρðτ; ηÞ� ¼ Sðτ; ηÞ; ðA20Þ

where ρ is the evolving quantity and S is a source term, can
be solved by applying the numerical solving scheme
SHASTA [63]. We do so in the same manner as is done
in Ref. [64].
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