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Abstract

Ukkola, Eerik
Modeling of borophene with density-functional tight-binding
Master’s thesis
Department of Physics, University of Jyväskylä, 2020, 43 pages.

Borophene is a recently discovered two-dimensional allotrope of boron that has
shown unique electromechanical properties. In this study mechanical properties of
borophene are modeled with density-functional tight-binding (DFTB), which is a
method derived from density-functional theory (DFT). The goal of the study is to
obtain direction-dependent bending stiffness of borophene by utilizing revised periodic
boundary conditions (RPBC). The bending process can be simulated by applying
RPBC and creating copies of the initial borophene unit cell that are translated and
rotated. Difficulties arose during parametrization process of DFTB, since not all
mechanical constants matched with DFT results. The DFTB results were exotic and
indicated that one type of borophene lattice has negative bending stiffness. DFT
calculations were conflicting and showed that DFTB calculations are likely to be
inaccurate. Ultimately it was concluded that DFTB may not be a reliable method
for modeling borophene.

Keywords: borophene, DFTB, bending, DFT, electronic structure analysis, 2D
materials, RPBC
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Tiivistelmä

Ukkola, Eerik
Borofeenin mallintaminen tiheysfunktionaaliteoriaan perustuvalla tiukan sidonnan
mallilla
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2020, 43 sivua

Borofeeni on äskettäin löydetty boorin kaksiulotteinen allotrooppi. Materiaalilla
on ainutlaatuisia elektromekaanisia ominaisuuksia, mikä tekee siitä kiinnostavan
useiden eri sovellusten kannalta. Tässä tutkimuksessa borofeenia mallinnetaan ti-
heysfunktionaaliteoriaan perustuvalla tiukan sidonnan mallilla (DFTB). Tutkimuksen
tavoitteena oli laskea borofeenin suunnasta riippuva taivutusmoduuli hyödyntämällä
mukautettuja periodisia reunaehtoja (RPBC). Taivutusprosessia simuloidaan luoma-
lla alkupäisestä borofeenin yksikkökopista kopioita, jotka sopivasti aseteltuna tekevät
rakenteesta efektiivisesti taivutetun. DFTB:n parametrisoinnissa tuli kuitenkin
ongelmia, kun osa borofeenin mekaanisista vakioista ei vastannutkaan DFT:llä lasket-
tuja referenssiarvoja. Lopulliset DFTB:llä saadut tulokset olivat erikoisia, sillä erään
borofeenihilan taivutusmoduuli oli negatiivinen. Saatuja tuloksia vertailtiin DFT-
tulosten kanssa, ja vaikuttaa siltä, että DFTB ei ole kaikissa tilanteissa luotettava
metodi borofeenin mallintamissa.

Avainsanat: borofeeni, DFTB, taivutus, DFT, elektronirakenneanalyysi, 2D materi-
aalit, RPBC
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1 Introduction

Since discovery of graphene in 2004 [1], two-dimensional (2D) materials have attracted
plenty of attention. There are many existing 2D allotropes such as graphene,
borophene, germanene, phosphorene and silicene, and even a greater number of
compound materials. There are also a lot of 2D materials that have been theoretically
predicted but have not been successfully synthesized yet. [2]

What makes 2D materials interesting is their unique properties compared to
regular 3D materials. High surface-to-volume ratio enhances their capabilities for
energy storage and catalysis, and lack of dangling bonds can make them effective
semiconductors through increased charge carrier mobility [3]. Due to these properties,
typical applications for 2D materials are semiconductors and photovoltaics, although
new places for applications are constantly searched for.

Graphene is by far the most researched 2D material, since it has proven itself
useful in commercial applications and is relatively easy to synthesize. However
breakthrough of graphene raises the question whether other potent new materials
can be found, which makes researching and exploring new materials important. This
study will focus on one of the recently synthesized 2D materials, borophene.

Borophene (Figure 1) is a two-dimensional allotrope of boron, which is a met-
alloid with atomic number 5. The low number of valence electrons has interesting
consequences and gives borophene unique physical and chemical properties as a
two-dimensional material. Unlike typical two-dimensional structures, borophene does
not have a single well-defined crystal structure - instead its structure depends on the
metal substrate it is grown on. Due to interactions between formed borophene layer
and substrate, moving free-standing borophene on other surfaces is a challenge since
the stability of the lattice is affected by the substrate [4].

Borophene sheets can be thought of consisting of triangular lattice with hexagonal
vacancies. The tendency to have vacancies in the boron lattice is due to boron’s
electron structure. For completely hexagonal lattice (like graphene’s), there are
not enough electrons to fill all stabilizing sp2 and pz bonding states, which makes
that configuration unfavourable [5]. On the other hand flat triangular would have
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Figure 1. β12 and χ3 borophene lattices. β12 has vacancy concentration of 1/6
and for χ3 v = 1/5. Unit cells are marked with green.

two electrons on high-energy antibonding states, and thus triangular borophene
breaks the symmetry instead and favours buckled conformation [5]. Flat and the
most stable borophene sheets alter between two-center and three-center bonding,
since then all in-plane bonding states become filled while antibonding states remain
empty [5]. From figure 2 it can be seen that total energy per boron atom has
a minimum at vacancy concentration v = 1/9, leading to most stable borophene
structure. The minimum is relatively broad: borophene sheets v = 1/6 and v =
1/12 are approximately 10 meV/atom above the minimum as can be seen in figure
2. As vacancy concentrations grow larger the energy starts to increase quickly and
structures turn less stable (Figure 2), and thus borophene cannot form graphene-like
structures. While other borophene lattices are planar, triangular borophene lattice
with no vacancies actually consist of two square lattices located at different levels. A
study by Zhang et al. [4] predicts triangular lattice to have high energy in vacuum
but be more stable on metal substrates. This study will focus more closely on two
borophene lattices, β12 (v = 1/6) and χ3 (v = 1/5), both presented in figure 1. These
lattices are among the most stable borophene crystal structures.

There are multiple potential applications for borophene. A few of them are
briefly discussed here, starting from hydrogen storage. Hydrogen has excellent energy
density by weight, and is therefore a great candidate as an energy source for example
for vehicles. However storing hydrogen efficiently is difficult, since as a gas it has
low density and requires large stores and as a liquid it has to be heavily compressed.
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This is where borophene may prove itself helpful. While binding energy of hydrogen
to plain borophene is too low (~0.05 eV) for practical storaging, borophene decorated
with alkali metals (Figure 3) is efficient at adsorbing hydrogen molecules [6], with
binding energy up to 0.35 eV and weight percent capacity of 6.8-15.26 wt % for
different lattice types with lithium. In comparison, storage capacity of MoS2 is 4.8
wt % [7] and for silecene 6.35 wt % [8]. Graphene, on the other hand, has high
weight capacity 12.8 wt % [9], but in graphene alkali metals tend to form clusters,
making it a difficult substrate [6].

Another energy source related potential application is high power density batteries
[10]. Current rechargable lithium-ion batteries have relatively high power capacity
and life-time, but their capacity is still insufficient for power-intensive purposes, since
the required battery sizes would have to be impractically large. Borophene and other
2D materials are promising candidates for electrodes, which have a crucial role in
battery performance [10]. Zhang et al. showed in their study [10] that β12 borophene
can have theoretical storage capacity of 1984 mAh/g, which greatly surpasses that
of commercial graphite (372 mAh/g), phosphorene (433 mAh/g) and silicene (954
mAh/g). High conductance of borophene also makes it suitable for fast charging and
discharging. [11]

Since borophene has been successfully synthesized recently for the first time
(2015 [12]), it has not been extensively studied. Mechanical properties of borophene
have been studied previously by for example Singh et al. [13] and Zhang et al. [14].
This study aims to extend their research by calculating direction-dependent bending
stiffness of borophene, while they have computed it only for principal lattice directions.
The method chosen is density-functional tight-binding, which is a computationally
lighter method than the more commonly used density-functional theory.
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Figure 2. Binding energy per atom in different borophene lattices and sub-
strates. Adapted with permission from Zhang et al. [4], edited. Copyright 2015
Angewandte Chemie International Edition.

Figure 3. Illustration of how hydrogen molecules are adsorbed around alkali
metals on borophene sheet. Reprinted (adapted) with permission from Er et al.
[6]. Copyright 2009 American Chemical Society.
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2 Theoretical background

Properties of two-dimensional materials are dominated by quantum level effects,
mainly by their electronic structure. Thus modeling their mechanical properties
requires electron structure analysis. There are many methods for this, each of which
has their area where they are applicable. One of the most used methods for simulating
atom systems is density functional theory (DFT), but it comes with the drawback of
being computationally expensive, which tends to make it ineffective for large systems.
An alternative method for analysis is density functional tight binding (DFTB), which
is an approximation based on DFT.

As DFT is a quantum computational method, it essentially tries to find a
solution to the many-body problem. Foundations of DFT were created in 1964 when
Hohenberg and Kohn showed in their paper that electron density n can be used to
determine properties of an N-electron system exactly [15]. According to their work,
there’s unique potential ~Vext for each electron density nx, and correspondingly unique
ground state wave function Ψ0. In 1965 Kohn and Sham extended the work [16]
and made density functional theory more applicable by approximating interacting
electrons system by non-interacting electron system. In the approximation kinetic
energy Ts [n] and classical electrostatic energy EH have simple forms, since the
particles are non-interacting. Third term, exchange-correlation energy Exc, contains
remaining differences in energy between the fictious non-interacting system and the
true interacting system. Thus the true system can be treated as a non-interacting
system in an effective potential VKS, which has the same ground state density n as
the interacting system.

DFT is computationally expensive method, which makes simulating large systems
with it slow. A faster method, density-functional tight-binding (DFTB), can be
derived from Kohn-Sham DFT by making further approximations. By approximating
that electrons are localized at atomic sites electronic wave functions can be presented
as a linear combination of atomic orbitals, which is easy basis to use in practice. [17].

This section starts by briefly reviewing DFT. Next DFTB is derived from DFT and
the main approximations of DFTB are shown. Finally revised boundary conditions
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(RPBC) are considered, since they are crucial for modeling bending of the atom
layers. All equations are presented in atomic units.

2.1 Density-functional theory

The origin of DFT, like other quantum computational methods, is in many-body
problem. Schrödinger equation for a system of electrons in an external potential is

ĤΨ (~r1, ~r2, ...) = ĤΨ (~r) =
[
T̂ + V̂ext + Ûe

]
Ψ (~r) (1)

=
−1

2
∑
I

∇2
I + 1

2
∑
J 6=I

∑
I

1
|~rI − ~rJ |

+
∑
I

Vext (rI)
Ψ (~r) = EΨ (~r) ,

(2)

where T̂ is kinetic energy operator, V̂ext external potential from nuclei and Ûe potential
electrons express on each other.

By defining the electronic part of the Hamiltonian as

F̂ = −1
2
∑
I

∇2
I + 1

2
∑
J 6=I

∑
I

1
|~rI |

(3)

the total Hamiltonian can be written as

Ĥ = F̂ + V̂ext. (4)

Hohenberg and Kohn showed in their paper in 1964 [18] that the external potential
V̂ext is also uniquely determined by the corresponding ground state density n (~r). The
proof is simple. If V̂ext is not uniquely determined by n (~r), there must exist another
external potential V̂ ′ext with ground state Ψ′ (~r) that has corresponding ground state
density n (~r). Hamiltonian Ĥ ′ = F̂ + V ′ext for such system and its ground state
energy E ′ = 〈Ψ′| Ĥ |Ψ′〉.

Since wave functions Ψ (~r) and Ψ′ (~r) cannot be the same, Ψ′ (~r) cannot be a
ground state of Ĥ and following inequalities must apply:

〈Ψ| Ĥ |Ψ〉 = E < 〈Ψ′| Ĥ |Ψ′〉 (5)

〈Ψ′| Ĥ ′ |Ψ′〉 = E ′ < 〈Ψ′| Ĥ |Ψ′〉 . (6)
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Opening the right sides of inequalities (5) and (6) leads to expressions

〈Ψ′| Ĥ |Ψ′〉 = 〈Ψ′| Ĥ ′ |Ψ′〉+ 〈Ψ′|
(
Ĥ ′ − Ĥ

)
|Ψ′0〉

= E ′ +
∫
n (~r) (Vext (~r)− V ′ext (~r)) d3r

(7)

and

〈Ψ| Ĥ ′ |Ψ〉 = 〈Ψ| Ĥ |Ψ〉+ 〈Ψ|
(
Ĥ − Ĥ ′

)
|Ψ〉

= E −
∫
n (~r) (Vext (~r)− V ′ext (~r)) d3r.

(8)

Combining inequalities (5) and (6) with expressions (7) and (8) lead to conclusion
that E +E ′ < E +E ′, which by contradiction proofs that ground state density n (~r)
uniquely determines the external potential Vext.

Since ground state density n has a corresponding ground state Ψ with energy
E = E0, the ground state can be found by minimizing functional

E [n (~r)] = F [n (~r)] +
∫
Vext (~r)n (~r) dr, (9)

where functional F [n (~r)] is defined as

F [n (~r)] = 〈Ψ| (T̂ + Ûe) |Ψ〉 . (10)

Kohn and Sham introduced a method to rewrite the problem of interacting
electrons as a problem of fictious non-interacting electrons. This allows reducing
the wave function to three dimensions, rather that 3N-dimensions. First, functional
F [n] is split into three terms:

F [n] = Ts [n] + 1
2

∫ ∫ n (~r)n (~r′)
|~r − ~r′|

d3rd3r′ + Exc [n] , (11)

where Ts [n] is kinetic energy of non-interacting electrons and Exc [n] is the error
term known as exchange-correlation energy.

The term
EH [n (~r)] = 1

2

∫ ∫ n (~r)n (~r′) d3r d3r′

|~r − ~r′|
(12)

is known as Hartree energy EH. By definition exchange-correlation energy can then
be written as

Exc = (T − Ts) + (Eee − EH) , (13)
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where Eee is potential energy of the interacting electron system.
Using Lagrange multiplier method to limit the number of electrons as N for

density-functional (9) the variational problem can be written as

δ [F [n (~r)]] +
∫
Vext (~r)n (~r) d3r − µ

(∫
n (~r) d3r −N

)
= 0. (14)

By defining Kohn-Sham potential VKS (~r) as

VKS (~r) =
∫ n (~r′)
|~r − ~r′|

d3r′ + Vxc (~r) + Vext (~r) , (15)

where exchange-correlation potential Vxc (~r) is

Vxc (~r) = δExc [n]
δn (~r) , (16)

the variational problem (14) can be written in the form

δTs [n]
δn (~r) + VKS (~r) = µ. (17)

Equation (17) is the same equation as what would be obtained for non-interacting
particles moving in an external potential VKS (~r). Thus the initial problem of
interacting particles is mapped into a problem on non-interacting particles. One-
electron Schrödinger equations for this system are then[

−1
2∇

2 + VKS (~r)
]
ψa (~r) = εaψa (~r) , (18)

where ψa (~r) are single-particle states with energies εa.
Electron density is then

n (~r) =
∑
a

fa|ψa (~r)|2, (19)

where fa is occupation of single-particle state ψa, belonging into range [0, 2] since
electrons are fermions.

Non-interacting kinetic energy is

Ts [n] = −
∑
a

fa
2

∫
ψ∗a (~r)∇2ψa (~r) d3r. (20)

Using equations (12) and (15) the total energy of the system is

E [n (~r)] = Ts [n (~r)]+
∫
Vext (~r)n (~r) d3r+ 1

2

∫ ∫ n (~r)n (~r′) d3r d3r′

|~r − ~r′|
+Exc [n] . (21)
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2.2 From density-functional theory to density-functional tight-
binding

Density-functional tight-binding is an approximation derived from DFT. Tight-
binding is based on the assumption that electrons are localized at atomic sites and
can thus be presented as superposition of localized wave functions.

The main points of the derivation for expression of energy in DFTB are shown
here. Derivation mostly follows article by Koskinen and Mäkinen [19]. The starting
point for DFTB energy is Kohn-Sham energy (21). In sum form Kohn-Sham energy
(21) is

E [n] =
∑
a

fa 〈ψa|
(
−1

2∇
2 +

∫
Vext (~r)n (~r) + 1

2

∫ n(r′)d3r′

|r′ − r|

)
|ψa〉+ Exc. (22)

Equation (22) is the accurate energy of the system, since exchange-correlation
energy Exc contains all quantum many-body effects. Energy in DFTB is derived from
equation (22) with second order expansion respect to density n(~r). The expansion is
based on the assumption that density n(~r) deviates only slightly from the density of
free and neutral atoms and can thus be approximated as

n(r) = n0(~r) + δn0(~r), (23)

where n0(r) is the density of free and neutral atoms and δn0(r) a small fluctuation.
A second order expansion of E [n] is then [19]

E [δn] ≈
∑
a

fa 〈ψa| −
1
2∇

2 + Vext + VH [n0] + Vxc [n0] |ψa〉

+ 1
2

∫ ∫ (
δ2Exc [n0]
δnδn′

+ 1
|r − r′|

)
δnδn′d3rd3r′

− 1
2

∫
VH [n0] (r)n0 (r) d3r + Exc [n0]−

∫
Vxc [n0] (r)n0 (r) d3r.

(24)

Equation 24 consists of multiple terms that are viewed separately. The first of them
is band structure energy EBS:

EBS [δn] =
∑
a

fa 〈ψa|H [n0] |ψa〉 . (25)

Second term describes Coulomb energy with a contribution from exchange-correlation
energy

Ecoul [δn] = 1
2

∫ ∫ (
δ2Exc [n0]
δnδn′

+ 1
|r − r′|

)
δnδn′d3rd3r′. (26)
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Finally what is left is so called repulsive energy, which consists of four terms

Erep = −1
2

∫ ∫ n0 (~r)n0
(
~r′
)
d3r d3r′∣∣∣~r − ~r′∣∣∣ + Exc [n0]−

∫
Vxc [n0] (~r)n0 (~r) d3r. (27)

Repulsive energy term is also considered more closely for further approximations.
The first term in equation (27), Hartree energy term, is a double integral over
electron densities. When the integration space is divided into atomic volumes νI ,
total contribution to charge from density n0 confined in the volume is practically just
the number of electrons of a free atom. The exact form of the xc-terms is unknown,
but they depend on spherically symmetric electron density and can be approximated
as a repulsive function depending on atomic distances RIJ . The approach for the
repulsive potential in DFTB is semi-experimental and it is obtained from a fitting
process. The whole repulsive energy term can then be approximated as [19]

Erep =
∑
I<J

V IJ
rep (RIJ) , (28)

where V IJ
rep is the repulsive potential. The data used for fitting can for example be

from experiments or DFT-calculations. This fitting process is described in more
detail in section 3.

The next term to be discussed is Coulomb energy (26). The term consists a
double integral that has to be converted into a sum so that it can be evaluated. This
is again achieved by dividing integration space into volumes νI corresponding to
atoms I [19]. An integral over volume νI is then approximately the charge fluctuation
of atom I

∆qI ≈
∫
νI

δn (~r) d3r (29)

and density fluctuation
δn (~r) =

∑
I

∆qIδnI (~r) , (30)

where density contribution δnI from atom I is normalized so that∫
νI

δnI (~r) d3r = 1. (31)

Since Coulomb energy (26) includes xc-contributions that are complicated, the
approach in DFTB is approximating them with more simple functions. For this
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purpose an approximation for atom energy from quantum chemistry is useful. Atom
energy as a function of charge fluctuation ∆q can be approximated as [19]

E (∆q) ≈E0 +
(
∂E

∂∆q

)
∆q + 1

2

(
∂2E

∂∆q2

)
∆q2

=E0 − χ∆q + 1
2U∆q2,

(32)

where χ is electronegativity and U is Hubbard U.
Approximate expressions for electronegativity and Hubbard U are

χ ≈1
2 (IE + EA) (33)

U ≈IE − EA, (34)

where IE is ionization energy and EA is electron affinity.
Now, Coulomb energy (26) can be divided into sums over all atom pairs IJ .

There are two kind of terms in the sum for Coulombic interaction between atoms I
and J . In the first case I = J , and the term becomes

EI = J = 1
2∆q2

I

∫
νI

∫
νI

(
δ2Exc [n0]
δnδn′

+ 1
|~r − ~r′|

)
δnIδn

′
Id

3rd3r′. (35)

By using Hubbard U from equation (32), expression (35) can be approximated as

EI = J ≈
1
2UI∆q

2
I . (36)

In the second case I 6= J , but that means xc-contributions vanish in the limit of
interatomic distances, and what is left of the term is

EI 6= J = 1
2∆qI∆qJ

∫
νI

∫
νI

1
|~r − ~r′|

δnIδn
′
Jd

3rd3r′. (37)

This is still not enough to explicitly evaluate the term, since functions δnI(~r) are
not defined. At this point they are assumed to be spherically symmetric Gaussian
distributions:

δnI(~r) = 1
(2πσ2

I )
3
2

exp
(
− r2

2σ2
I

)
, (38)

where standard deviation σI is obtained from full width at half maximum of the
Gaussian distribution:

σI = FWHMI√
8 ln 2

. (39)
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Using of Gaussian distribution is argued by Koskinen and Mäkinen in their article
[19]. Gaussian distributions are highly localized, and thus integrating over volume νI
surrounding the distribution is a valid approximation for integrating over the whole
space.

Thus expression for I 6= J terms becomes∫
νI

∫
νJ

δnIδn
′

|~r − ~r′|
= erf (CIJRIJ)

RIJ

≡ γIJ (RIJ) , (40)

where CIJ is defined as

CIJ =

√√√√ 4 ln 2
FWHM2

I + FWHM2
J

. (41)

At the limit R→ 0, γ → C · 2/
√
π, which yields expression for FWHM:

FWHMI =
√

8 ln 2
π

1
UI

. (42)

Finally the coulombic energy term can be presented as

Ecoul = 1
2
∑
I

∑
J

γIJ (RIJ) ∆qI∆qJ , (43)

where γIJ depends on indices as

γIJ (RIJ) =


UI , if I = J (44)
erf (CIJRIJ)

RIJ

, if I 6= J . (45)

So far from introduced variables U and the related FWHM are parameters.
Hubbard U can be derived from equation (34) and it is found from standard tables.
The next section will introduce more essential parameters for DFTB, and how
parameters are adjusted is considered in section 3.

2.3 Tight-binding and pseudo-atoms

Next basis functions are considered more closely. Since tight-binding assumes that
electrons are located at atomic sites, single-electron wave functions ψa (~r) can be
presented in form

ψa (~r) =
∑
µ

caµϕµ (~r) , (46)

where caµ are coefficients and ϕµ localized basis functions.
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A natural choice for minimal local basis is spherical functions

ϕµ (~r) = Rµ (~r)Yµ (θ, ϕ) , (47)

where Yµ are (real) spherical harmonics. However since electrons are assumed to
be tighly bound, orbitals of free electrons are not sufficient, as they extend to
infinity. Thus the used orbitals are from pseudo-atoms, which are created by adding
an artificial confinement potential, which damps the tails of the orbitals. The
Hamiltonian for a pseudo-atom is then [19]

Hp = −1
2∇

2 − Z

r
+ VH + Vxc + Vconf, (48)

where Vconf is a damping potential that cuts the orbital after a certain range. Since
odd terms have to vanish at Vconf (~r = 0), lowest-order approximation for damping
potential is

Vconf =
(
~r

r0

)2

, (49)

where r0 is a parameter determining strength of the confinement potential. Adjusting
r0 is discussed more closely in section 3.

The orbitals ϕµ (~r) are computed once for each element pair (each confinement
potential) with LDA-DFT during parametrization [19] and are stored in tables.

Next eigenstates |ψa〉 and populations ∆qI are considered through tight-binding
approach. Tight-binding is based on the assumption that electrons are localized at
atomic sites and can thus be presented as superposition of localized wave functions.

By substituting equation (46) into expression of band-structure energy (25), it
becomes

EBS =
∑
a

fa
∑
µ

∑
ν

ca∗µ c
a
νH

0
µν , (50)

where matrix element H0
µν is defined as

H0
µν = 〈ϕµ|H0 |ϕν〉 . (51)

How integral (51) is evaluated will be discussed below after introducing overlap
integrals.

Charge fluctuations ∆q still have to be defined to be able to calculate total energy.
This can be obtained from total number of electrons by the evaluating amount of
charge within volume νI of atom I. Total number of electrons of atom I is then

qI =
∑
a

fa

∫
νI

|ψa|2d3r =
∑
a

fa
∑
µ

∑
ν

ca∗µ c
a
v

∫
νI

ϕ∗µϕvd
3r. (52)
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The last integral in equation (52) is familiar from chemistry and it is known as the
orbital overlap integral Sµν = 〈ϕµ |ϕν〉. The integral Sµν has three cases. If orbitals
µ and ν belong to atom I, the integral is δµν due to orthonormality of the orbitals.
If neither of the orbitals belong to atom I, the integral is approximately zero. The
last case is non-trivial. In the case that one of the orbitals belongs to atom I and
the other orbital belongs to another atom J , the integral is approximately half of
orbital overlap integral Sµν , since half of the overlap occurs within volume vI . [19]

Since the basis functions were defined as real spherical harmonics, orbital overlap
integral

Sµν =
∫
ϕ∗µ (~r)ϕν (~r) d3r (53)

can be calculated with their distance vector ~RIJ as the variable. Following from the
properties of spherical harmonics, Slater-Koster transformation rules apply to ~RIJ

dependence. Thus Sµν for each orbital pair can be calculated at enough dense set
of RIJ and stored in tables, from which the overlap can be computed quickly later.
Since matrix elements H0

µν also obey Slater-Koster transformation rules, they can be
evaluated similarly. [20]

With overlap integrals defined, total number of electrons within volume vI is
then

qI =
∑
a

fa
∑
µ∈I

∑
ν

(
ca∗µ c

a
v + caµc

a∗
v

)
Sµν . (54)

Charge fluctuation ∆qI is then obtained from total number of electrons qI by reducing
the number of valence electrons q0

I in neutral atom from it.
Since all variables are defined, with expressions (28), (43) and (54) combined the

total energy is

E =
∑
a

fa
∑
µ

∑
ν

ca∗µ c
a
νH

0
µν + 1

2
∑
I

∑
J

γIJ (RIJ) ∆qI∆qJ +
∑
I<J

V IJ
rep (RIJ) . (55)

In practice H0
µν , γIJ and V IJ

rep are all related to parameters that are set during
parametrization. This process is described in section 3.
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2.4 Revised periodic boundary conditions

Crystals are highly ordered solid materials that form a lattice that extend to all
directions. The smallest repeating group of particles is called the unit cell (Figure
4). The whole crystal can be thought consisting of repetitive copies of the unit
cell along its principal axes. The lengths of unit cell edges and the angles between
them are together called the lattice constants. The lattice constants define primitive
lattice vectors ~a1, ~a2 and ~a3 that span the lattice. A translation along any linear
combination of primitive vectors results in a position that looks exactly the same as
the starting position.

Periodicity of crystals makes them easier to simulate compared to amorphous
materials, since each unit cell in a perfect crystal is identical. That means that if
wave function can be solved inside the unit cell, it is also known everywhere. That
allows applying periodic boundary conditions when solving wave function of a crystal
by requiring that the wave function must have the same periodicity as the crystal.

Periodic boundary conditions in a crystal lead to Bloch wave. If translation T̂ is a
linear combination of primitive lattice vectors ~a1, ~a2 and ~a3, ie. the crystal is periodic
for translation T̂ , the translation will add a phase factor to the wave function:

ψa
(
~k, ~r

)
= exp

(
i~k · ~r

)
ua
(
~k, ~r

)
, (56)

where ua is a function with the same periodity as the crystal.

Figure 4. Unit cell (rectangle) of β12 borophene and primitive vectors ~a1 and
~a2.
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According to Bloch’s theorem, electrons in perfect crystal have a basis of Bloch
waves, each of which is an energy eigenstate. This means that instead of using a
basis of localized atomic orbitals, Bloch waves can be used as a basis instead for
periodic crystals. Thus basis functions ϕµ become [19]

ϕµ
(
~k, ~r

)
= 1√

N

∑
~T

exp
(
i~k · ~T

)
ϕµ
(
~r − ~T

)
, (57)

where N is the number of unit cells in the crystal, technically infinite in this case.
Koskinen and Kit present a formalism to generalize Bloch’s theorem further in

their paper [21]. Koskinen and Kit show in their paper that if potential for which
electrons are exposed is invariant for a symmetry operation Ŝ, the wavefunction of
the structure picks up a phase factor. This is essentially just revised Bloch’s theorem.

Revised periodic boundary conditions are interesting from viewpoint of atomic
simulations, since they allow simulating twisted or bent structures. Bending can be
approximated with translations and rotations of the unit cell (Figure 5) as long as
the bending curvature R is sufficiently large compared to the size of the unit cell.
Revised periodic boundary conditions offer a method to easily compute the effects of
these translations and rotations on orbitals, and thus it is an effective method for
simulation of bending.

To model bending, symmetry operations Ŝ consisting of translations and rotations
are required. For the purposes of this study, the interest is in symmetry operations
Ŝi (θi,∆zi) that involve only rotation around z-axis and translations within z-axis:

Ŝi (θi,∆zi) = R̂z (θi) T̂z (∆zi) . (58)

Constructing a bent sheet requires two symmetry operations Ŝ1 and Ŝ2 (Figure 5).
For rectangular unit cell that is aligned within z-axis, symmetry operations are

Ŝ1 = R̂z

(
−b sin (φ)

R

)
T̂z (b cos (φ)) (59)

Ŝ2 = R̂z

(
a cos (φ)

R

)
T̂z (a sin (φ)) , (60)

where a and b are unit cell constants, R is bending curvature and φ is the rotation
angle of unit cell around its normal vector (lattice angle, Figure 6).
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Figure 5. Effects of symmetry operations Ŝ1 and Ŝ2. Operation Ŝ1 corresponds
to translation of 1.62 Å and rotation of 0◦ (red) and operation Ŝ2 translation
of 2.87 Å and rotation of 8.2◦ (blue). Bending curvature R = 20 Å and lattice
angle φ = 0◦. The sheet is effectively bending around the z-axis.

Figure 6. Illustration of lattice angle φ = 40◦ from xz-plane. Bending curvature
is large (R = 200 Å) so the structure appears planar. Decreasing bending
curvature would result in the sheet bending more clearly around the z-axis.
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3 Parametrization

This section describes parametrization process, which is a significant part of the
whole study. The purpose of parametrization is to obtain parameters required for
computation of pseudo-atom orbitals and approximate mathematically complicated
repulsive energy term Erep. Orbital energies ε2s and ε2p, FWHM of density fluctu-
ations and Hubbard U are parameters that are directly obtained with DFT while
pseudo-atom confinement factor x and orbital cut-off radius Rcut are obtained by
manual iteration. The repulsive energy term is obtained by fitting derivative of
repulsion for boron-boron bonds in different structures and computing energy curve
from the derivative. Energies and bond lengths of these structures can be obtained
from DFT-calculations but they can also simply be taken from experimental results.
Parametrization has to be done individually for each element pair that have bonds
with each other in the studied material.

Band structure is responsible for majority of contribution to total energy, and
thus without correct band structure it is impossible to get other properties right
either [19]. That is why during parametrization band structure is the first thing
considered. Since this study ultimately aims to model bending of borophene sheets,
elastic constants are also used in benchmarking. Elastic constants can be obtained
simply from stretching sheets and making quadratic fit on energy curve.

Calculations are performed with Hotbit, which is an python-based open source
DFTB calculator that is designed for Atomic Simulation Environment (ASE). Most
steps of parametrization can be done with scripts readily available in Hotbit, such
as computing Slater-Koster tables and fitting the repulsive potential. Certain DFT-
calculations are required in parametrization but they are performed only once and
are saved into lookup tables.
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3.1 Repulsive energy term

In theoretic background it was concluded that repulsive energy term can be approxi-
mated as

Erep =
∑
I<J

V IJ
rep (RIJ) . (61)

The problem is now constructing an approximate repulsive potential Erep. The
general idea is finding a function for repulsive potential that, together with other
parameters, can approximately reproduce known properties. Repulsive potential is
assumed to be smooth and monotonic so that it is transferable for actual structures
of interest.

However in practice repulsive potential is not constructed directly. Instead it is
obtained from minimizing force differences

∣∣∣~FDFT − ~FDFTB
∣∣∣ for reference structures

and thus finding derivative of repulsive potential.
For a homonuclear system (such as borophene) total force on atom I with DFTB

can be written is form

~FI = ~F 0
I +

∑
J 6=I

V ′rep (RIJ) ~RIJ (62)

= ~F 0
I +

∑
J 6=I

εIJ ~RIJ , (63)

where ~F 0
I contains all other forces than repulsion and can thus be evaluated as it is.

Data from reference structures form a set of points {Ri, V
′

rep,i } which can be used
to minimize the sum ∑

I

∣∣∣~FDFT
I − ~FI

∣∣∣. The function applied for repulsive potential in
Hotbit is smoothing spline, which yields a functional minimization problem

S
[
V ′rep (R)

]
=

M∑
i=1

(
V ′rep,i − V ′rep (Ri)

σi

)2

+ s
∫ Rcut

V ′′′rep (Ri)2 dR, (64)

where s is parameter controlling smoothness and σi are weights of points. The weights
σi are tunable parameters that can be used to alter relative weights of different
structures at different bond length, for example to have larger weight for dimer curve
at small distances. Rcut is a parameter that determines the distance where repulsion
becomes 0. It is an essential parameter since it must be small enough to only contain
the directly neighbouring atoms.

Repulsive potential Vrep (R) is then obtained from its derivative

Vrep (R) = −
∫ Rcut

R
V ′rep (r) dr. (65)
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3.2 Parametrization process and benchmarking

The purpose of benchmarking is to compare properties computed with DFTB to
known results, adjust parameters and evaluate whether the parametrization is
capable of producing reliable results. Initially most important property is to get
band structure that appears correct, since band structure energy has the largest
contribution to total energy. Only after DFTB band structure resembles that of
DFT remaining parameters can be optimized.

The most important parameter affecting band structure is pseudo-atom confine-
ment r0. Typically used starting point for r0 is twice the covalent radius of the dimer.
Usually it is the only parameter affecting band structure that has to be considered
in parametrization, although if initially obtained band structure appears unrealistic,
other parameters such as orbital energies have to be modified.

Figure 7. Fitted derivative of repulsion dVrep/dr. Data points: Computed dimer
equilibrium point (red), full dimer curve (green), hexagonal borophene (blue and
yellow), and honeycomb borophene (cyan). Size of the circle corresponds relative
weight of the data point. Curve of hexagonal borophene was cut into to parts to
reduce weight of the curve at short distances, since it differed from rest of the
points, causing instable structures.
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Figure 8. Repulsive potential Vrep obtained from its derivative (Figure 7).

Fitting the repulsive potential is less straightforward. There are multiple variables
affecting the fit: pseudo-atom confinement factor x, cut-off radius Rcut, and weights
σi given for points in fitting. Finding suitable weights may be problematic, since
point sets of different structures are sometimes scattered (Figure 7). The general
idea is to choose such values for x and Rcut so that the point set appears aligned on
the fitted curve.

There is no automatic process for full parametrization. In practice the parametriza-
tion procedure consists of numerous rounds of small changes to parameters and
computing properties used in benchmarking and repeating the procedure. It should
be noted that parameters with physical meaning cannot be chosen arbitrarily -
if optimization produces physically unrealistic values, the issue is most likely in
approximations made in the theory of DFTB.

In this work band structure, unit cell and elastic constants were considered in
benchmarking. Fitted derivative of repulsive potential is presented in figure 7, the
repulsion in figure 8 and parameters in table 1. The final set of parameters and
computed benchmarking properties is a compromise. Lattice constants different
from DFT results only slighly, but Young’s moduli had a more significant error. No
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Table 1. Final values of parameters.

Parameter
ε2s -0.345 eV
ε2p -0.137 eV

FWHM 4.101 eV−1

U 0.324 eV
rcov 1.80 Å
x 1.4 Å
Rcut 2.5 Å

combination of parameters within physical range was found to correct the error.
Poisson’s ratios were even further from DFT results. In pro gradu of Johannes
Nokelainen [22] there have been similar issues. In his pro gradu he computed
Poisson’s ratio of boron nitride monolayers with DFTB and the difference between
DFTB and DFT results was approximately 150 % - an error of the same magnitude
as here. That indicates that the source of error is most likely in approximations
made in DFTB and that boron may be a difficult element to simulate with DFTB.

Certain notes should be made about the fit. Curves of different borophene
structures do not align well into a line, which makes fitting more difficult and
increases potential error. Since lengths of bonds in β12 and χ3 sheets in this study
fall mostly into range r = 1.6− 1.8 Å, that is the most important area in fitting. At
that particular range data points are unfortunately scattered, and that forced to
search for optimal fit by trial-and-error by repeatedly computing properties used for
benchmarking (Table 2) and also adjusting parameters to find the combination of
parameters that leads to most consistent grouping of data points. In benchmarking
weighing tail of data point of hexagonal borophene lattice yielded the most consistent
results, although the same could also have been achieved by lowering Rcut (Figure 7).
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Figure 9. Band energies of β12 and χ3 borophenes. a) β12 adapted with
permission from Peng et al. [23], edited. Copyright 2017 the authors. b) χ3

adapted with permission from by Vishkayi et al. [24], edited. Copyright 2018
PCCP. c-d) Their band energy with DFTB (this work).
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Table 2. Computed unit cell, Young’s modulus C and Poisson’s ratio ν. Angle
θ is the angle between principal lattice vectors in χ3, which does not have
rectangular unit cell. DFTB results are this work and those of DFT are from
references [14] [23] used for benchmarking.

a (Å) b (Å) Cx (N/m) Cy (N/m) νx νy

β12 (DFTB) 5.09 2.93 172 199 0.44 0.40
β12 (DFT) [14] [23] 5.07 2.93 189 210 0.15 0.17
χ3 (DFTB) 4.45 4.45 127 131 0.38 0.37
χ3 (DFT) [14] [23] 4.45 4.45 196 208 0.11 0.12
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4 Bending simulations

Simulation of bending is relatively easy with Hotbit, since it offers methods that
make use of revised periodic boundary conditions. When a copy of the unit cell is
translated and twisted appropriately and the process is repeated, it effectively creates
a bent sheet. With revised periodic boundary conditions implemented, only one
unit cell has to be considered in the simulation, which makes relaxation calculations
relatively light. Thus the method is for simulating bent structures.

Obtaining bending modulus from simulations is simple. During bending, energy
density follows relation Eb = κ/(2r2), where κ is bending stiffness and r is bending
curvature. Bending stiffnesses of different borophene nanotubes have previously been
computed for principal lattice directions with DFT, for example by Zhang et al. [14]
Thus by varying bending curvature it is possible to obtain κ for that specific lattice
angle (Figure 10), curvature radii R = 30 Å in each case. By repeating this process
for varying lattice angle φ one then gets bending stiffness as a function of lattice
angle, which is the goal of this study.

4.1 Bending stiffness

Results are presented in figure 11. The χ3 sheet showed a clear minimum at φ = 40◦

with κ = 0.45 eV which quickly transitioned into a maximum of κ = 0.95 eV at
φ = 80◦. This indicates that bending stiffness is highly dependent on lattice direction.
However bending stiffness curve of β12 sheet raised more questions. Bending stiffness
of β12 sheet was negative for various angles but it also had a region of positive bending
stiffness between lattice directions 20◦ to 70◦. Such a result is either spectacular or
there’s something wrong in the computation, so this demanded more investigation.

To determine whether DFTB result of negative bending stiffness was consistent,
nanoribbons were simulated (Figure 12). Unlike infinite sheets, nanoribbons may
form curvatures freely when the structure is relaxed. Thus when a bent nanoribbon
is simulated, it should either stay non-planar or relax into planar configuration,
depending on whether bending stiffness is negative or positive. This allows testing
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Figure 10. β12 lattices with bending curvature R = 30 Å. Lattice angle φ is a)
0◦, b) 20◦, c) 40◦ and d) 70◦.

whether β12 lattice does prefer non-planar configuration, which would confirm con-
sistency of negative bending stiffness of β12. For comparison, χ3 nanoribbons were
simulated as well - they should behave the opposite way and settle to planar shape
during relaxation.

The nanoribbons with different initial curvatures were then relaxed. As can be seen
in figure 12, β12 nanoribbons indeed did start to form multi-centered curvatures. This
indicates that result of negative bending stiffness is consistent. The χ3 nanoribbons
used as reference also behaved as expected: they relaxed into planar configurations.

As DFTB calculations were self-consistent, they were compared with DFT nanorib-
bon calculations. Since DFT optimization for bent borophene sheet failed to converge,
optimization was also run for planar sheet. The DFT results were clear. DFT energy
of β12 nanoribbons is lower in planar configuration than in bent configuration, which
is conflicting with DFTB results. This unfortunately means that DFTB most likely
has a fundamental flaw when it comes to boron structures, which makes DFTB
calculations unreliable in that case.
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Figure 11. Bending stiffness as a function of the lattice angle. a) χ3, b) β12.

Figure 12. Simulation of bent β12 nanoribbon with DFTB. N is the number
of optimization steps run. Initial configuration (left) is strongly bent with one
center of curvature. Further in optimization (middle) three smaller curvatures
start to form, marked with arrows. In the optimization result (right) the centers
of curvature are clearly visible.
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5 Conclusions

This study aimed to obtain bending stiffness as a function of lattice angle for two
different types of borophene lattices, β12 and χ3. While the computations did yield
the desired curve, the results were exotic. DFTB predicted that certain lattice angles
for β12 lattice were unstable and the sheet would rather form wave-like patterns.
Comparison with DFT calculations for the same borophene lattices showed that the
results of DFTB calculations are most likely inaccurate. That result is in agreement
with problems that already rose during benchmarking, where DFTB was unable to
replicate certain mechanical constants. Especially value of Poisson’s ratio differed
drastically between DFT and DFTB, an issue that has been seen before in DFTB
calculations of boron-based structures [22].

It was nevertheless shown that DFTB is a useful method for quick structural
analysis but that it also comes with significant downsides that have to be considered.
Since DFTB is not an ab initio method but it rather relies on the assumption of
tight-binding, there are cases when the approximations made are too crude. It is
possible that boron’s electron-deficit natures plays a role invalidating assumptions
made in tight-binding, since the bonds between boron atoms differ from ideal covalent
bonds. What approximations made in DFTB that cause problems in modeling boron
is something that could be researched in the future by investigating different kind of
boron compounds.

To conclude, while this study failed to illustrate capability of DFTB, it is still
just as important to show what it is not capable of doing. All methods do have their
weaknesses and one has to be aware of them. This is why lighter and more expensive
computational methods both have their places. Sometimes the lighter method is
applicable and thus preferrable, but when this is not the case, more accurate methods
are required.
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