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In the seminal work by G. Eilenberger, Z. Phys. 214, 195 (1968), a closed-form expression for the free
energy of inhomogeneous spin-singlet superconductor in terms of quasiclassical propagators has been suggested.
However, deriving this expression and generalizing it for superconductors or superfluids with general matrix
structure, e.g., spin-triplet correlations, has remained problematic. Starting from the Luttinger-Ward formulation,
we discuss here the general solution. Besides ordinary superconductors with various scattering mechanisms, the
obtained free-energy functional can be used for systems, such as superfluid 3He and superconducting systems
with spatially inhomogeneous exchange field or spin-orbit coupling. Using this result, we derive the simplified
expression for the free energy in the diffusive and hydrodynamic limits. As an example of using this formalism,
we show that impurity scattering restores the first-order phase transition in superconductor-ferromagnetic
insulator bilayers making this system similar to the bulk superconductor with the homogeneous built-in exchange
field.

DOI: 10.1103/PhysRevB.101.094507

I. INTRODUCTION

Quasiclassical approximation [1,2] is one of the basic tools
in the theory of Fermi systems. It is based on the separation of
scales when the characteristic wave numbers and frequencies
of interest are much smaller than the Fermi wave vector
and energy. The technique has been widely successful in the
description of many superconductor (S)/superfluid systems
and effects, including dirty superconductors [3], superfluid
3He [4–6], superconducting hybrid structures [7,8], transport
properties of mesoscopic superconducting devices [9], and
superconductors with spin-splitting fields [10].

The quasiclassical equilibrium theory is, however, par-
tially incomplete with regard to expressing the free energy
directly in terms of the quasiclassical propagators. Such an
expression has been introduced by Eilenberger [1] for the
particular case of spin-singlet superconductors where the
correlation functions have trivial spin structures. Different
forms of variational functionals yielding the quasiclassical
equations as their saddle points have also been discussed in
the framework of nonlinear σ models [11–14]. Although the
expression by Eilenberger has been used in many subsequent
works, there appears to be an open question in how it relates
to the general Luttinger-Ward free-energy functional, [4,15]
which, in its typical formulation, requires (usually numerical)
coupling constant integration [5,16]. Furthermore, its exten-
sion to systems with general matrix structures, e.g., spin-
triplet superconducting correlations, has not been discussed.
As a consequence, analytical results are available in limited
tractable special cases.

In the present paper, we resolve the above issues by
evaluating a coupling-constant integral [5,16] analytically,

and obtain a free-energy functional in terms of propagators
of general matrix structure. We demonstrate that different
versions of the free energy discussed in the previous works
[1,11,12,17] are recovered by the general Eilenberger-type
expression and, for the sake of example, show how it can
be reduced to a simpler form in the limit of a short mean
free path and in the hydrodynamic limit. Moreover, we ap-
ply the results to study the superconducting phase transi-
tion in superconductor-ferromagnetic insulator (S/FI) bilay-
ers [10,18,19] and discuss how impurity scattering changes
the order of the phase transition.

This paper is structured as follows. In Sec. II, we derive
a quasiclassical free-energy functional applicable to generic
situations. In Sec. III, we show how the functional is sim-
plified in the diffusive limit. In Sec. IV, we derive the free
energy in the hydrodynamic limit both for the spin-singlet and
for the spin-triplet pairing. In Sec. V, we discuss the S/FI
systems and how they are affected by impurity scattering.
We summarize the results in Sec. VI. Longer mathematical
derivations can be found in the Appendices.

II. GENERAL FORMULATION

A general expression for the free energy of a many-body
fermionic system has been derived by Luttinger and Ward
[15]. Later, this expression has been adopted by Serene and
Rainer [5] to describe the superfluidity of a Fermi liquid using
the expansion in small parameters determined by the ratio
of pairing energy to the Fermi energy. The same approach
works for the BCS model of superconductivity in metals.
This expansion is formulated in terms of the quasiclassical
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propagator [1],

ĝ = i

π

 
dξpτ̂3Ĝ, (1)

where Ĝ(r, p, ω) is the exact Green’s function (GF) and ξp =
p2/2m − EF is the kinetic energy of electrons relative to the
Fermi level.

The quasiclassical GF ĝ(np, r, ω) is a 4 × 4 matrix in a
combined spin and Gor’kov-Nambu space and depends on the
direction of quasiparticle momentum np = p/p, the position
in real-space r, and the Matsubara frequency ω.

Integration in (1) is implemented in the vicinity of the
Fermi sphere, and the off-shell contribution is neglected
resulting in the following expression for the free energy [5]:

� = 1

2
Tr

[
�̂ĝ − 1

π

ˆ
dξp ln

( − i�̂ − Ĝ−1
0

)] + 	[ĝ], (2)

where �̂ is the self-energy and the last term is the functional
generating the self-energy �̂ = −2δ	/δĝT . The normal- (N-)
state part has been subtracted from �, 	, ln, and �̂.

The generalized trace operator in Eq. (2) defined as Tr =
πT N0

∑
ωn

´ d�p

4π
tr contains a Matsubara sum, Nambu and

spin traces, integration over np directions, and the density of
states at the Fermi-level N0.

The superconducting pairing is determined by a con-
tribution to the generating functional in (3), 	�[ĝ] =
− Tr(�̂[ĝ]ĝ)/4, where �̂ = �̂[ĝ] is given by the self-
consistency relation for the gap function, which is a linear
functional that describes all possible types of pairings. In
addition, there are other contributions to 	, e.g., from various
scattering mechanisms, including potential impurity scatter-
ing, spin-orbital, and spin-flip relaxations [20].

The operator Ĝ−1
0 = i(ωτ̂3 + vF · ∇̂) − V̂ contains a spa-

tial derivative in the direction determined by the Fermi veloc-
ity vF = vF np and the spin-dependent potential-energy V̂ =
V̂ (r). Therefore, calculation of the logarithmic term in (2) is
rather nontrivial. One way to do this is based on the observa-
tion (cf. Ref. [16])

´
dξp∂λ Tr ln(−iλ�̂ − Ĝ−1

0 ) = π Tr �̂ĝλ

resulting in the general expression for the free-energy density
of a nonuniform superconductor or Fermi superfluid [4–6,16],

�[ĝ, �̂] = 1

2

ˆ 1

0
dλ Tr[�̂(ĝ − ĝλ)] + 	[ĝ], (3)

0 = vF · ∇̌ĝλ + [M̂λ, ĝλ], ĝ2
λ = 1. (4)

We denote M̂λ = �̂ + λ�̂ and �̂ = (ω + iV̂ )τ̂3. Here, ĝλ =
ĝλ[�̂] is the quasiclassical GF, regarded as a functional of
the variational self-energy. It satisfies the Eilenberger equation
and the normalization condition (4). The potential energy
can include a Zeeman term V̂ = σ · h with a general texture
of exchange field h = h(r) as well as spin-orbit coupling
(SOC). The latter, however, is more conveniently included
in the covariant differential operator defined as ∇̌k = ∇k −
ie[·, τ̂3Ak] − i[·,Ak], where Ak are the components of the
vector potential and Ak = Ak jσ j is the SU(2) gauge field for
the SOC.

Expression (3) can be used for any weakly coupled super-
conducting or superfluid state with arbitrary pairing interac-
tions and fields A(r), h(r), and Â(r). However, the remaining
λ integration necessitates solving Eq. (4) for the auxiliary

propagator ĝλ for many λ’s. This makes the functional (3)
less convenient for numerical work and hinders analytical
calculations except in certain limiting cases, such as, e.g., in
the dirty limit with small impurity scattering time τimp or in
the Ginzburg-Landau regime close to the critical temperature.

A simpler free-energy functional without λ integration has
been suggested by Eilenberger [1] for the particular case of
a spin-singlet superconductor and in the absence of spin-
rotating fields (i.e., collinear h and A = 0) but without a
systematical procedure for extending the result beyond this
case. Below, we discuss a way to extend it.

A. λ integration

The λ integral in (3) can be evaluated using an approach
suggested in Ref. [20]. Let us note the general relation,

Tr[�̂(ĝ − ĝλ)] = ∂λ Tr[M̂λ(ĝ − ĝλ)] + Tr[M̂λ∂λĝλ]. (5)

Here, the first term on the right-hand side is a full λ derivative
and easily integrated, but further treatment is needed for the
second term. To calculate its contribution, we note that the
variation of GF preserving the normalization condition ĝ2 = 1
can, in general, be written as δg = [δŴ , ĝ] where δŴ is a
matrix with infinitesimal coefficients. Hence, the derivative
can be represented as

∂λĝλ = [Ŵλ, ĝλ]. (6)

Using Eq. (4), the last term in Eq. (5) can be written as

Tr[M̂λ∂λĝλ] = Tr[(vF · ∇̌gλ)Ŵλ]. (7)

To proceed, let us now assume that there exists a functional
density E [ĝ] whose variation over the GF components yields
the gradient term

δ

ˆ
d3rE [ĝ] =

ˆ
d3r Tr[(vF · ∇̌ĝ)δŴ ]. (8)

Then, from Eq. (7) we getˆ
d3r Tr[M̂λ∂λĝλ] = d

dλ

ˆ
d3r E [ĝλ]. (9)

Finally, we can perform the λ integration to obtain the general
expression for the free-energy functional,

�[ĝ, �̂] = 1
2 E [ĝ1[�̂]] + 	[ĝ] + 1

2 Tr[�̂(ĝn − ĝ)]

+ 1
2 Tr [(�̂ + �̂)(ĝ − ĝ1[�̂])]. (10)

where ĝn ≡ ĝλ=0 = sgn(ω)σ̂0τ̂3 and we have chosen E [ĝn] =
0. Using Eqs. (4), (8), the saddle-point equations (δ/δĝ)� =
0, (δ/δ�̂)� = 0 can be reduced to �̂∗ = −2(δ/δĝT )	 and
ĝ∗ = ĝ1[�̂], which, indeed, correspond to the quasiclassical
equations.

The value of the functional at the saddle point gives the
free energy,

� = 1
2 E [ĝ∗] + 	[ĝ∗] + 1

2 Tr[�̂(ĝn − ĝ∗)]. (11)

The gradient functional E [ĝ] remains to be determined.

B. The functional E

In spin-diagonal systems, the gradient terms of the
expression given by Eilenberger [1] constitute E [ĝ]. In the
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presence of general spin-triplet correlations, the situation is
more complicated, and we need to find a functional satisfying
Eq. (8).

Let us first state the result,

E [ĝ] = 1
2 Tr(ĝ[τ̂t , ĝ]vF · ∇̌[τ̂t , ĝ]−1), (12)

where τ̂t is an arbitrary matrix field normalized to τ̂ 2
t =

1. In the singlet case, we can denote τ̂t = τ̂ · t where τ̂ =
(τ̂1, τ̂2, τ̂3) and t = (tx, ty, tz ) are vectors normalized as t2 = 1.
The field can be inhomogeneous in space. Indeed, using the
properties ĝ2 = 1, τ̂ 2

t = 1, and δĝ = [δŴ , ĝ], a straightfor-
ward calculation (see Appendix A) yields the variation (8) for
any texture τ̂t (r). The gradient functional is not unique.

The above functional can be found as follows: We first
express the Green’s function in terms of Riccati parameters
[21–23] a, b which are n × n matrices (n = 2 if the GF has
only Nambu + spin structure), and

ĝ =
(

(1 − ab)−1 0
0 (1 − ba)−1

)(
1 + ab 2a
−2b −1 − ba

)
.

(13)

This form automatically satisfies the normalization condition
ĝ2 = 1. Moreover, the Eilenberger equations (4) imply that
â, b̂ obey Riccati equations [21,23],

vF · ∇̌a − (2ω + a�̄)a + � = 0, (14)

vF · ∇̌b + (2ω − b�)b + �̄ = 0. (15)

It is relatively straightforward to find an Ansatz functional that
has Riccati equations as its saddle point. For example, one can
use the functional (11) with (see Appendix B and Ref. [24])

E = Tr[(a−1 − b)(vF · ∇̌)(a−1 + b)−1]. (16)

Rewriting (16) in a parametrization-independent way yields
Eq. (12) with τ̂t = τ̂3. To obtain the free energy in a form sim-
ilar to that suggested by Eilenberger, we can consider Nambu
components of the quasiclassical propagator ĝ = (g, f ; f̄ , ḡ)
where the normal g, ḡ and anomalous parts f , f̄ have similar
matrix structure as a, b. Then, the general form (12) with
τ̂t = τ̂3 yields

E = 1
2 Tr[gf (vF · ∇̌) f −1 + ḡ f̄ (vF · ∇̌) f̄ −1], (17)

which clearly reduces to Eilenberger’s result in the spin-
diagonal case.

The expression (12) is not defined at points where [τ̂t , ĝλ]
is not invertible. Such points, if they occur inside the re-
gion swept by the λ integration, produce imaginary winding
number contributions (see Appendix A). For example, in the
singlet case, E [ĝn]=̂ivF · ∇ψ (excluding the Matsubara sum
and angle average), where ψ is the polar angle of rotation
of the unit vector t around the z axis. Since the free energy
is real valued, such contributions are removed by taking the
real part. Moreover, in practice, one should choose τ̂ to avoid
singularities in E [ĝλ=1]. Close to the normal state where ĝ ≈
τ̂3, τ̂1 is a stable choice. Alternatively, given a decomposition
ĝ0(x) = U0(x)−1τ̂3U0(x) for some fixed ĝ0(x) ≈ ĝ(x), one can
choose τ̂t (x) = U0(x)−1τ̂1U0(x). This is also applicable in the
spin-diagonal problem.

Writing ĝ = Û τ̂3Û −1, we can also recognize Ŵλ =
(∂λÛ )Û −1 so thatˆ

M
dλ ds tr[∂ ĝλŴλ] =

ˆ
M

d (Esds + Eλdλ), (18)

where M = [0, 1] × [−∞,∞], Es=− tr[τ̂3Û
−1
λ ∂Ûλ], Eλ=

− tr[τ̂3Û
−1
λ ∂λÛλ], and ∂ = np · ∇̌ is the long derivative vs the

coordinate s along the quasiclassical trajectory. Hence, the
gradient term can also be expressed as a Berry/Wess-Zumino
term [25] associated with the quasiclassical Green’s function.
A kinetic term of this type was obtained in Refs. [11,12] for
the action of the ballistic σ model, which is closely related to
the present problem.

Finally, to evaluate the term in Eq. (10), we can substitute
∇̌ĝ from Eq. (4) into Eq. (12). Direct calculation gives (for
∇̌τ̂t = 0),

� = 1
2 Tr(�̂ĝ + �̂ĝn − [τ̂t , �̂ + �̂][τ̂t , ĝ1[�̂]]−1) + 	[ĝ],

(19)

whose real part is equal to Eq. (3) if integrated over space.
Comparing to Eq. (2), we, hence, found an expression for the
(subtracted) ξp-integrated logarithm, in terms of the quasiclas-
sical propagator ĝ.

III. APPLICATION: DIFFUSIVE LIMIT

The free energy can be further simplified in the dirty limit
when the impurity scattering rate τ−1

imp is the largest among
energy scales, apart from the Fermi energy. In this limit,
we can eliminate the momentum integration and express the
energy in terms of the momentum-averaged GF, which we
denote as gs = 〈g〉.

The expression which has been used [26–29] for the dirty
superconductors with spin-singlet s-wave pairing described by
the pairing constant V reads

Fs

N0
= |�|2

V
− πT

2

∑
ω

tr

{
(ωn + ih · σ)τ̂3ĝs

+ �̂ĝs − D

4
(∇̌ĝs)2

}
. (20)

The saddle point of this expression yields the Usadel equation
[3] for ĝs and the self-consistency equation for �̂, and, there-
fore, (20) is naturally considered as the free-energy candidate.
A similar expression can also be derived from diffusive non-
linear σ models [13,30]. In order to discuss this result in the
Luttinger-Ward framework, where �̂ is handled in a slightly
different way, we need to first substitute in the saddle-point
value |�|2/V = 1

4 Tr �̂ĝ,

Fs

N0
= −πT

2

∑
ω

tr

{
(ωn + ih · σ)τ̂3ĝs + 1

2
�̂ĝs − D

4
(∇̌ĝs)2

}
.

(21)

Here, we allow arbitrary coordinate dependence of exchange
field h(r), the presence of SOC and the vector potential in the
covariant gradient operator ∇̌. This expression can be directly
derived from Eq. (11) by including the impurity scattering:
The terms without gradients in (21) are obtained immediately
from the � and 	 terms in (11) by replacing the exact GF
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with ĝs. Below, we explain how to obtain the gradient terms
as well.

Within the Born approximation, the impurity scattering
can be described by the self-energy and the corresponding
contribution to the generating functional given by

�̂imp = ĝs/2τimp, 	imp = Tr
(
1̂ − ĝ2

s

)
/8τimp. (22)

To obtain the free-energy functional in the limit τimp → 0, we
expand the solution of Eq. (4) in spherical harmonics,

ĝ ≈ ĝs + np · ĝa, ĝa = −l ĝs∇̌ĝs, (23)

where l = vF τimp. The second equation above for the
anisotropic contribution ĝa follows from the Eilenberger equa-
tion (4).

We first evaluate 	imp,

	imp = Tr ĝ2
a

24τimp
= −D

8
Tr(∇̌ĝs)2, (24)

where D = vF l/3 is the diffusion constant. Here, we noted
the normalization condition ĝ2 = 1 averaged over directions
implies ĝ2

s 
 1̂ − ĝ2
a/3 where due to the 1/τimp factor in (24) it

is now important to retain the second-order term in l . The last
equality follows from l (ĝs∇̌ĝs)(ĝs∇̌ĝs) 
 −l (∇̌ĝs)2, which
holds in leading order due to the normalization condition.

A similar contribution appears from the gradient term
functional E (12). We can first observe from Eq. (12) that, for
matrices ĝs without angular dependence, E [ĝs] = 0 because
of the angular average in Tr.

In the leading order in l , the anisotropic correction (23)
can be considered as a variation of the GF. Then, we can
calculate the value of the functional E [ĝ] by using its defining
property (8),ˆ

d3r E [ĝs + np · ĝa] =
ˆ

d3r Tr Ŵ (vF · ∇̌ĝs) + O(l2),

(25)

where the matrix Ŵ is such that

[Ŵ , ĝs] = −l ĝs(np · ∇̌)ĝs. (26)

This implies

Ŵ (vF · ∇̌)ǧs = vF l (np · ∇̌ǧs)2 + ǧsŴ ǧs∇̌ǧ,s (27)

so that, taking into account that ǧs∇̌ǧs = −∇̌ǧsǧs + O(l2), we
obtain

Tr Ŵ (vF · ∇̌)ǧs 
 vF l

2
Tr(np · ∇̌ǧs)2. (28)

Then, Eq. (8) yields the gradient term E 
 D
2 Tr(∇̌ĝs)2 so

that 1
2 E + 	imp = D

8 Tr(∇̌ĝs)2. This leads to the free-energy
functional in the diffusive limit (21).

IV. APPLICATION: GRADIENT ENERGY
IN THE HYDRODYNAMIC LIMIT

As a further example, we derive the second-order gradient
terms in the energy functional, valid both for the spin-singlet
superconductor and for the spin-triplet superfluid. This regime
is often referred to as the hydrodynamic or London approxi-
mation.

For this purpose, we can use a similar approach as in the
dirty regime Sec. III. Gradient expansion of the Eilenberger
equation gives

ĝ ≈ ĝs + np · ĝa + ĝ2s, ĝa = −vF

2S
ĝs∇̌ĝs, (29)

where ĝs = (ωτ̂3 + �̂)/S is the GF in the locally homoge-
neous approximation with �̂ = �̂(np, r) and ĝ2s is of the
second order in gradients. The free-energy � is given by
Eq. (11) with 	 = − 1

4 Tr [�̂[ĝ]ĝ].
We will consider two characteristic cases. First, the

spin-singlet states described by the order parameter �̂s =
�( 0 eiϕ

e−iϕ 0
) and S = √

ω2 + �2, where � is the real-valued

amplitude which can be anisotropic in momentum space � =
�(np, r). Second, the unitary spin-triplet states described by

the spin-dependent order parameter �̂t = (σ · d )( 0 eiϕ

e−iϕ 0
)

where S =
√

ω2 + d2 and vector d is real.
The general expression for the variation of the gra-

dient term (8) together with (29) yields in leading

order in gradients, E 
 v2
F
4 Tr[(∂ ĝs)2/S] where we de-

note ∂ = np · ∇̌. The calculation is the same as in
the previous section, substituting l �→ vF /(2S). The ĝ2s

part only contributes to the energy in the other terms
in Eq. (11): δ� 
 − 1

2 Tr{(ωτ̂3 + �̂[ĝs])(np · ga + ĝ2s) +
1
2 �̂[np · ga]np · ga}. We now assume the weak-coupling limit
and evaluate this by noting [5] that Tr[(ωτ̂3 + �̂)(np · ĝa +
ĝ2s)] = Tr[Snp · ĝsĝa + Sĝsĝ2s] = v2

F
8 Tr[(∂ ĝs)2/S] where we

have used that ĝ2 = 1, {ĝs, ĝa} = 0, and {ĝs, ĝ2s} 
 −(np ·
ĝa)2.

Then, the free energy in the hydrodynamic regime is given
by

� = 1

2
Tr

[
v2

F

8S
(∂ ĝs)2 + |ω| − ωτ3ĝs − 1

2
�̂[ĝs]ĝs

]
. (30)

Here, ĝs = (ωτ̂3 + �̂)/S is the 4 × 4 Nambu-spin matrix.
For the above two forms of the order parameter, the first

term in Eq. (30) yields the gradient terms,

�s = N0v
2
F

4

ˆ
d�p

4π
[y5/2(∂�)2 + y3/2�

2(∂ϕ)2], (31)

�t = N0v
2
F

4

ˆ
d�p

4π

[
y5/2(∂|d|)2 + y3/2d2(∂ϕ)2

+ y3/2
(d × ∂d )2

d2

]
, (32)

where we denote y5/2 = πT
∑

ω ω2/S5 and y3/2 =
πT

∑
ω 1/S3. In the isotropic case, where

´ d�p

4π
(∂ϕ)2 =

1
3 (∇ϕ)2 and similarly for �, Eq. (31) reduces to that in
Ref. [31]; (32) agrees with Ref. [5] neglecting Fermi-liquid
corrections and for weak coupling.

V. APPLICATION: S/FI BILAYER

The free energy can be used to locate first-order phase
transitions. Below, we consider a prototypical example in
the superconducting phase, the transition to the normal state
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[32–37] induced by an interaction with magnets. To be spe-
cific, we consider the problem introduced in Ref. [19], a S/FI
bilayer with specular scattering at the interface. In the clean
limit, this system does not exhibit a first-order transition, but
it is restored by processes that mix scattering trajectories [38].
In Ref. [19], the clean limit and Fermi-liquid interactions were
considered; below, we, instead, study how the transition is
restored by impurity scattering. To be more realistic, Fermi-
liquid effects and interface roughness could also be included,
but, for simplicity, we do not consider them below. Moreover,
we will consider only uniform phases ignoring possibility of
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase (which
could be included, see Ref. [39]), which likely is reasonable
in the presence of disorder [40].

We assume the FI lies in the half-space z < 0, supercon-
ductor in the layer 0 < z < d , and vacuum in z > d . The
quasiclassical description of the problem is as discussed in
the previous sections and Ref. [19] with additional boundary
conditions (b.c.s) at the FI and vacuum interfaces,

ĝ( p̂, z = 0) = Ŝp̂ĝ( p̂, z = 0)Ŝ†
p̂, nz > 0 , (33)

Ŝp̂ = e−i�(nz )μ̂·στ̂3/2, p̂ = (nx, ny,−nz ), (34)

where �( p̂) is the spin-mixing angle and μ̂ is the unit vector
in the direction of the magnetization of the FI layer. Here,
we write p̂ = (nx, ny, nz ). The vacuum interface boundary
condition at z = d is similar with � = 0 and nz < 0. We
choose τ̂t = τ̂3 in which case the boundary conditions do
not result to boundary contributions in the free energy (see
Appendix A).

A. Thin-film solution

We first need the thin-film limit d → 0 solution for ĝ,
which can be found from Ref. [19], and is as follows. First,
expand in polynomials in z:

ĝ( p̂, z) = Ĝ0( p̂) + d − z

d
Ĝ1( p̂) + · · ·. (35)

Substituting this to the Eilenberger equation gives

Ĝ1( p̂) = d

vF nz
[Mp̂, Ĝ0( p̂)]. (36)

The b.c.s imply Ĝ0( p̂) = Ĝ0( p̂), and (nz > 0),

Ĝ0( p̂) + Ĝ1( p̂) = Ŝp̂[Ĝ0( p̂) + Ĝ1( p̂)]Ŝ†
p̂. (37)

Suppose, now, Mp̂ = Mp̂. Then,

vF nz

d
[Ŝp̂ − Ŝ†

p̂, Ĝ0( p̂)] = {Ŝp̂ + Ŝ†
p̂, [Mp̂, Ĝ0( p̂)]}. (38)

Because Ŝp̂ + Ŝ†
p̂ = 2 cos(�/2) [19],

[M̃p̂, Ĝ0( p̂)] = 0, Ĝ0( p̂)2 = 1. (39)

M̃p̂ = Mp̂ + ihp̂ · στ̂3, hp̂ = μ̂
vF |nz|

2d
tan

�

2
, (40)

which is formally similar to the bulk Eilenberger equation
with an effective exchange field. For simplicity, we below
consider the case of h p̂ = h0|nz|μ̂ where the spin-mixing
angle � is constant.

In the clean limit without molecular fields, we have �̂ =
�τ̂1, and

Ĝ0( p̂) = (ω + ihp̂ · σ)τ̂3 + �τ̂1√
(ω + ihp̂ · σ )2 + �2

, (41)

with an angle-dependent spin-splitting field.
For the self-consistency relation, we consider here the

weak-coupling s-wave case of �̂[ĝ] = Bτ̂1�1[ĝ], �1[ĝ] =
λ

4N0
Tr[Bτ̂1ĝ] where B(ω) provides the BCS frequency cutoff

at ω > ωc and λ is the coupling constant. Eliminating the
cutoff as usual by adding and subtracting,

�1 = � + λ� ln
Tc0

T
+ λ

4N0
Tr

[
τ̂1ĝ1[�] − �

|ωn|
]
, (42)

where the terms are cutoff independent.
In the clean limit at T = 0, the self-consistency equation

becomes

0 = �1 − �

λ�

= ln
�0

�
+ Re arsinh

(
ih0 − 0+

�

)

+ Re
√

1 − (�/h0)2, (43)

where �0 is the order parameter at h0 = 0, T = 0. For h0 <

�, the solution is � = �0; for �0 < h0 < hc,2 = e
2�0 there

is a solution � > 0; and for h0 > e
2�0 only the normal state

exists [19].

B. Impurity effect

Including an impurity scattering self-energy with Ansatz
�̂imp = ∑

±
1
2 (1 ± μ̂ · σ)(�±,3τ̂3 + �±,1τ̂1) in the Eilen-

berger equation, the solution of Eq. (39) reads

Ĝ0( p̂) =
∑
±

1 ± μ̂ · σ

2

(ω± ± ih0|nz|)τ̂3 + �±τ̂1√
(ω± ± ih0|nz|)2 + �2±

, (44)

where ω± = ωn + �±,3, �± = � + �±,1. The self-
consistency equations (22) for �̂imp or, equivalently, for
ω± and �±, read

ω± = ωn ±
√

(ω± ± ih0)2 + �2± −
√

ω2± + �2±
2iτimph0

, (45)

�± = � ± �±
2iτimph0

× ln
ω± ± ih0 +

√
(ω± ± ih0)2 + �2±

ω± +
√

ω2± + �2±
. (46)

The self-consistency equation for � can be written as

0 = �1 − �

λ
= πT

∑
ωn,±

(
(�± − �)τimp − �

2|ωn|
)

+� ln
Tc0

T
. (47)

094507-5



VIRTANEN, VARGUNIN, AND SILAEV PHYSICAL REVIEW B 101, 094507 (2020)

FIG. 1. Self-consistent �(h̄) relation at T = 0 (solid lines), locus
of �(�, h̄) = 0 (dashed lines), and value of �(�, h̄) (colors), from
Eqs. (47), (51), and (60). The crossing points (dots) mark the location
of the first-order transition.

For τimph0, τimp� 
 1, the solutions to Eqs. (45) and (46) are

ω± 
 �±
�

ω̄±, �± 
 � + 1

2τimp

�√
ω̄2± + �2

, (48)

where ω̄± ≡ ωn ± ih̄ and h̄ = 1
2 h0 is the angle-averaged ex-

change field. In this limit, the resulting Ĝ0 is the same as
an isotropic bulk Green’s function with uniform spin-splitting
field h̄, and at T = 0, Eq. (47) reduces to Eq. (43) with
the last term on the right-hand side omitted. Hence, for
τimp → 0, � = �0 for 0 < h̄ < �0. Solutions to Eq. (47) for
τimp > 0 are shown in Fig. 1. They show the well-known
supercooling/heating region where the superconducting and
normal states are separated by a local free-energy maximum.

C. Thin-film condensation energy

Evaluating the condensation energy corresponding to the
above solutions is now a mechanical exercise in substitut-
ing the above expressions into Eq. (19) and evaluating the
Matsubara sum and the direction integral. We will below do
this analytically to a degree—however, one could as well
substitute self-consistent numerical solutions into Eq. (19).

The 	� functional can be rewritten using Eq. (42),

	�[ĝ1[�]] = − 1
4 Tr{�̂[ĝ1]ĝ1}, (49)


 −1

4
Tr{B�τ1ĝ1} − N0

�1 − �

λ
�, (50)

where the second line is in the leading order in λ → 0. Below,
we compute the value �∗ of the free energy at self-consistency
(�1 = �); the full functional is recovered by adding the
second term above,

� = �∗ − N0(�1 − �)�/λ (51)

see Eqs. (42) and (47). �∗ is also cutoff independent.
Considering first the clean limit, for d → 0, we can substi-

tute Eq. (41) into Eq. (19),

�∗ = 1

2
Tr

{
�τ̂1Ĝ0 + ωτ̂3ĝn − [τ̂3,�τ̂1]

[τ̂3, Ĝ0]
− 1

2
�τ̂1Ĝ0

}
(52)

= πN0

ˆ
d�p

4π
T

∑
ωn,±

(
|ωn| − 2(ωn ± ihp̂)2 + �2

2
√

(ωn ± ihp̂)2 + �2

)

(53)

= πN0T
∑
ωn,±

(
|ωn| − h0 ∓ iωn

2h0

√
(ωn ± ih0)2 + �2

)
.

(54)

The result is identical to the condensation energy of a su-
perconductor in exchange field, [34–36] averaged over the
direction dependence of the effective field. At T = 0, this
gives the condensation energy,

�∗ = − 1
2 N0�

2 + 1
3 N0h2

0 Re
[
1 − (

1 − �2h−2
0

)3/2]
. (55)

It is �∗ < 0 for all h0 if � > 0. Hence, the transition is always
of the second order as found in Ref. [19] based on a Ginzburg-
Landau expansion.

Let us then consider the effect of impurity scattering, with
	 = 	� + 	imp. From Eq. (22), we have 	imp = 1

8τimp
Tr[1 −

4τ 2
imp�̂

2
imp], Tr Ĝ0 = Tr[2τimp�̂imp], and, hence,

�∗ = 1

2
Tr

{
τimp�τ̂1�̂imp + ωτ̂3ĝn − [τ̂3,�τ̂1 + �̂imp]

[τ̂3, Ĝ0]

+ 1

4τimp
+ τimp�̂

2
imp

}
. (56)

Direct calculation and using Eqs. (44)–(46) give
ˆ

d�p

4π

[τ̂3,�τ̂1 + �̂imp]

[τ̂3, Ĝ0]
=

∑
±

1 ± μ̂ · σ

2
τ̂0Q±, (57)

Q± = τimp[�2
±,3 + �2

±,1] + τimp[�±,1� + �±,3ωn]

+ 1

2

√
(ω± + ih0)2 + �2±, (58)

and furthermore,

�∗ = πN0T
∑
ωn,±

{
|ωn| − h0 ∓ iωn

2h0

√
(ω± ± ih0)2 + �2±

+ 1

4τimp
+ ∓iωn

2h0

√
ω2± + �2±

}
(59)

= πN0T
∑
ωn,±

{
|ωn| − ωn ± i 1

2 h0

2
(D± + D−1

± )

}
, (60)

where D± = 1
±ih0

[
√

(ω± ± ih0)2 + �2
± −

√
ω2

± + �2
±]. For

τimp → 0, D± → (ωn ± ih̄)/
√

(ωn ± ih̄)2 + �2, and the re-
sult becomes the spin-split BCS condensation energy [34–36],
�∗ = −�2

2 + h̄2 − h̄ Re
√

h̄2 − �2 at T = 0. For τimp →
∞, ω± → ωn, �± → � and one finds Eq. (54). Hence, as
could be expected, strong impurity scattering restores the
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FIG. 2. Phase diagram for different τimp’s, indicating S and N
states. The supercooling/heating region in which the N/S transition
is first order is indicated by dashed lines. In the top-left panel,
the arrowhead on the y axis indicates the critical field h̄ = e

4 �0,
and in the bottom-right panel, the Chandrasekhar-Clogston field is
h̄ = �0/

√
2.

Chandrasekhar-Clogston first-order transition to the normal
state at h̄ = �0/

√
2.

The stability boundary � = 0 from Eqs. (47), (51),
and (60) is plotted in Fig. 1 for several τimp’s at T = 0
together with the self-consistent �(h̄) relations (47). The
self-consistent � is a local extremum of the computed �.
As τimp → 0, the critical field �∗[�(h̄p), h̄p] = 0 approaches
h̄p → �0/

√
2.

The phase diagram is shown in Fig. 2, indicating how
decreasing τimp gives rise to a region with first-order transition
to the normal state at low temperatures and high effective
fields. The clean/dirty crossover in the limit d → 0 shown
occurs at τimp ∼ h̄/�. The corresponding critical field h̄c at
which the N/S transition occurs is shown in Fig. 3 as a
function of the impurity scattering time at a few different
temperatures. It turns out to be nonmonotonic in τimp.

VI. SUMMARY AND DISCUSSION

We have rigorously derived the free-energy functional (10),
(12), and (19) of a superconducting system in terms of the
quasiclassical propagators. We obtained convenient expres-
sions in terms of Riccati amplitudes (16) and in the diffusive
limit (21). The functional generalizes the well-known Eilen-
berger free energy for the systems with arbitrary types of pair-
ing and interacting with spin-dependent fields. The result fills
an important gap in the theory of superconductivity between
the Eilenberger free energy and the Luttinger-Ward func-
tional. It can be used to analyze thermodynamic properties of
many superconducting systems, some of which attract intense
interest nowadays. Among them, there are exotic states in
unconventional superconductors [41–44] and various hybrid
systems [8] including those with spin-triplet superconducting

FIG. 3. Critical field h̄c for T/Tc0 = 0, 0.25, 0.5, 0.75 (top to
bottom). The dashed line indicates a first-order transition and shading
the supercooling region. The arrowheads on the y axis indicate
h̄/�0 = e/4 and 1/

√
2.

correlations produced either by the exchange field and/or
by the SOC [7,45]. Superconductor/ferromagnet systems are
studied quite intensively in view of spintronic applications
[46,47]. With the help of free-energy expressions found in
this paper it is possible to analyze complicated behavior of
competing superconducting phases, such as 0-π Josephson
junctions [8], cryptoferromagnetism [48–52], FFLO states
[53,54] modified by different geometrical factors [27,55],
and configurations with different vorticities [56,57] in such
systems using rigorous microscopic calculations.

As an application to the superconductor/ferromagnet sys-
tems, we studied the superconducting phase transition in a
S/FI bilayer. In the clean noninteracting limit, this system
has a second-order phase transition as a function of effective
exchange field [19], differing from a bulk superconductor
in the homogeneous spin-splitting field [32,33]. We show
that even very small amount of impurity scattering in thin
superconducting films restores the first-order phase transition.

The interplay of SOC and external magnetic field generates
proximity-induced topological superconductivity in Majorana
nanowires [58]. The ground states of such systems taking
into account the important orbital effect and Abrikosov vortex
formation [59,60] can be found by calculating the free energy,
which can be performed using our expressions with arbitrary
impurity scattering rates.

Our results can be directly applied to study the free energy
of spin-triplet superconductors and superfluids [61], such as
superfluid 3He under various conditions [62]. Even though
the spin-triplet superfluity in 3He has been studied for many
years, the Eilenberger-type free-energy expression is derived
only in the present paper, advancing the theory of spin-
triplet paired states. This tool should be particularly useful
to study different competing and spatially inhomogeneous
phases for the confined topological superfluids [6,44,63,64],
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exotic disordered phases [65,66], and vortex states, such
as double-core vortices [67–74] and recently found half-
quantum vortices [75,76].
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APPENDIX A: DERIVATION OF EQ. (12)

We now derive Eq. (12). We assume τ̂ 2 = 1, ĝ2 =
1, ∂λĝ = [Ŵ , ĝ], and ∂λτ̂ = 0. Moreover, we denote ∂ ≡ vF

vF
·

∇̌ as the derivative operator in the Eilenberger equation.
From the above, it follows, with standard matrix calculus,

∂ (â−1) = −â−1(∂a)â−1, δ(â−1) = −â−1(δa)â−1, and, more-
over, ∂ ĝĝ = −ĝ∂ ĝ, and δĝĝ = −ĝδĝ. Denote Ẑ ≡ [τ̂ , ĝ]−1.
We can observe that Ẑ ĝ = −ĝẐ and Ẑ τ̂ = −τ̂ Ẑ .

Equipped with the above, consider then the variation vs ĝ
of Es = 1

2 tr ĝ[τ̂ , ĝ]∂[τ̂ , ĝ]−1,

2δEs = δ tr ĝ[τ̂ , ĝ]∂Z

= tr δ(ĝ[τ̂ , ĝ])∂Ẑ − tr ∂ (ĝ[τ̂ , ĝ])δẐ + tr ∂ (ĝ[τ̂ , ĝ]δẐ )

= 2 δE1 − 2 δE2 + 2 δE3. (A1)

We write δE = δE ′ + δE ′′ where δE ′ do not contain terms
∝∂τ̂ . We have

2 δE ′
1 = − tr(δĝ[τ̂ , ĝ] + ĝ[τ̂ , δĝ])Ẑ[τ̂ , ∂ ĝ]Ẑ

= − tr{δĝ[τ̂ , ∂ ĝ]Ẑ + ∂ ĝ Ẑ (τ̂ ĝ[τ̂ , δĝ] − ĝ[τ̂ , δĝ]τ̂ )Ẑ}
= − tr δĝ[τ̂ , ∂ ĝ]Ẑ − tr ∂ ĝ[τ̂ , δĝ]Ẑ

− 2 tr(∂ ĝ)Ẑĝ(δĝ − τ̂ δĝ τ̂ )Ẑ. (A2)

The term δE ′
2 is obtained by exchanging ∂ and δ in the above

expression. We then find

δE ′
1 − δE ′

2 = tr[δĝ Ẑ ĝ(∂ ĝ − τ̂ ∂ ĝ τ̂ ) − ∂ ĝ Ẑ ĝ(δĝ − τ̂ δĝ τ̂ )]Ẑ

= tr δĝ Ẑ (τ̂ ĝ∂ ĝ τ̂ − ĝτ̂ ∂ ĝ τ̂ )Ẑ

= tr δĝ∂ ĝ τ̂ Ẑ = tr[δW, ĝ]∂ ĝ τ̂ Ẑ

= tr(∂ ĝ)δW. (A3)

Moreover,

δE ′′
1 − δE ′′

2

= 1
2 tr ĝ[∂τ̂ , ĝ]Ẑ[τ̂ , δĝ]Ẑ − 1

2 tr δ(ĝ[τ̂ , ĝ])Ẑ[∂τ̂ , ĝ]Ẑ

= 1
2 tr ∂τ̂ Ẑ{[ĝ, δ(ĝ[τ̂ , ĝ])] + ĝ[τ̂ , δĝ]ĝ − [τ̂ , δĝ]}Ẑ

= 0. (A4)

We then find

δEs = tr(∂ ĝ)δW + 1
2 tr ∂ (ĝ[τ̂ , ĝ]δẐ ). (A5)

The functional (12) then, indeed, has the claimed variation in
the interior. Note that the above calculation did not assume a
specific form for the matrix τ̂ .

We can also evaluate the variation vs τ̂ ,

δτ Es = − 1
2 tr δẐ ĝ∂[τ̂ , ĝ] + 1

2 tr[δτ, ĝ]∂ (Ẑĝ)

− 1
2 tr ∂ ([δτ, ĝ]Ẑĝ)

= 1
2 tr[δτ, ĝ]Ẑ (ĝ∂[τ, ĝ] + (∂[τ, ĝ])ĝ + (∂g)[τ, ĝ])Ẑ

+ tr ∂ (δτ Ẑ ) = tr ∂ (δτ Ẑ ), (A6)

which is a full derivative.
Integrating Eq. (8) now reduces to an application of the

Stokes theorem. In particular, Eq. (A5) implies

tr ∂ ĝλWλ = ∂λEs − ∂sEλ, (A7)

where Eλ = 1
2 tr(ĝλ[τ̂ , ĝλ]∂λ[τ, ĝλ]−1) and we write

∂s tr X̂ ≡ n · ∇ tr X̂ = n · tr ∇̌X̂ = tr ∂X̂ . Hence,ˆ 1

0
dλ

ˆ
d3r Tr[vF ∂ ĝλWλ]

=
〈ˆ

d2ρ vF

ˆ
∂M

dl · E
〉

p̂,ω

=
ˆ

d3r (E [ĝ1] − E [ĝ0])

+
〈ˆ

d2ρ

ˆ 1

0
dλ vF (Eλ|s=∞ − Eλ|s=−∞)

〉
p̂,ω

, (A8)

where 〈X 〉p̂,ω = πT N0
∑

ωn

´ d�p

4π
X so that Tr X = 〈tr X 〉p̂,ω.

The line integral is over the boundary of M = [0, 1] ×
[−∞,∞] with dl = (dλ, ds) and E = (Eλ, Es). The spatial
integral is decomposed to an integral over the coordinate s
along n and the perpendicular coordinate ρ.

The last boundary term vanishes under the average over
momentum directions if vF (−p̂) = vF ( p̂). It also vanishes if
the boundary conditions for ĝλ are equal ĝλ(s = ∞) = ĝλ(s =
−∞) or if they are independent of λ (e.g., the normal state
at infinity). This also indicates the boundary term can be
neglected when studying local effects in infinite systems.

We can also consider a finite-size system residing in z > 0
with the scattering boundary condition of Eq. (33) at z = 0,

ĝ( p̂, z = 0) = Ŝp̂ĝ( p̂, z = 0)Ŝ−1
p̂ , nz > 0, (A9)

where p̂ = (nx, ny,−nz ). Here, Ŝ is the boundary scattering

matrix, independent of λ. If [Ŝ, τ̂ ] = 0, then,ˆ
nz>0

d�p

4π
Eλ[ĝλ(z = 0; p̂)] =

ˆ
nz<0

d�p

4π
Eλ[ĝλ(z = 0; p̂)].

(A10)

From this, it follows that, in the directional average of
Eq. (A8), the terms for nz < 0 (which are at the end of the tra-
jectory) cancel those for nz > 0 (at the start of the trajectory).
Hence, the hard-wall scattering boundary condition appears
only via gλ but does not generate additional terms in the free
energy, provided [τ̂ , Ŝ] = 0 at the boundary.

We need to observe that the above results assume [τ̂ , ĝ]
is invertible everywhere in M since Eq. (A7) does not apply
at the singularities where E is not defined. Such points give
additional contributions that have to be subtracted, i.e., ∂M
includes also clockwise contours C∗ (with infinitesimal inte-
rior) circling each singularity lying inside [0, 1] × [−∞,∞].
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Each gives a contribution,

˛
C∗

tr[gZ−1dZ]. (A11)

Note that because tr [ĝẐ−1[A, Ẑ]] = −2 tr[ĝA], gauge fields
do not contribute, and we replaced ∂ �→ ∂s and dZ = ∂sZ ds +
∂λZ dλ. Writing g = Uτ3U −1, Z = U (0 w

w̄ 0 )U −1 (due to
gZ + Zg = 0), we have

˛
C∗

tr[gZ−1dZ] =
˛

C∗

[
1

2
d tr(ln w̄ − ln w) − tr τ3U

−1dU

]
= iπm, (A12)

where m is an integer. Namely, the last term is regular (we
assume U is nonsingular) and gives no contribution for an
infinitesimal loop, whereas the first terms yield a winding
number. The number, and whether singularities are even
present, depends on the choice of τ̂ . As the free energy is real

valued, these contributions then can be subtracted by taking
the real part.

We find Eq. (12), indeed, gives the bulk contribution to the
derivative term. It is also the only contribution relevant under
quite general conditions.

APPENDIX B: RICCATI PARAMETRIZATION

In Ricatti parametrization, the gradient functional can be
expressed as

E (ĝ) = 1
2 Tr[vF · (â∇b̂ − ∇âb̂)(âb̂)−1(1 + âb̂)(1 − âb̂)−1].

(B1)

It is straightforward to check that the variation of this expres-
sion by â and b̂ yields gradient terms in the Ricatti equations.

This expression can be written in the compact form

E (ĝ) = Tr vF · [(∇â−1 + ∇b̂)(â−1 − b̂)−1 + 1
2∇ ln(âb̂)].

(B2)

The last term is a full derivative and can be neglected.

[1] G. Eilenberger, Transformation of Gorkov’s equation for type
II superconductors into transport-like equations, Z. Phys. 214,
195 (1968).

[2] A. I. Larkin and Yu. N. Ovchinnikov, Quasiclassical method
in the theory of superconductivity, Sov. Phys. JETP 28, 1200
(1969).

[3] K. D. Usadel, Generalized Diffusion Equation for Supercon-
ducting Alloys, Phys. Rev. Lett. 25, 507 (1970).

[4] D. Rainer and J. W. Serene, Free energy of superfluid 3He,
Phys. Rev. B 13, 4745 (1976).

[5] J. W. Serene and D. Rainer, The quasiclassical approach to
superfluid 3He, Phys. Rep. 101, 221 (1983).

[6] A. B. Vorontsov and J. A. Sauls, Thermodynamic properties of
thin films of superfluid 3He -A, Phys. Rev. B 68, 064508 (2003).

[7] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Odd triplet
superconductivity and related phenomena in superconductor-
ferromagnet structures, Rev. Mod. Phys. 77, 1321 (2005).

[8] A. I. Buzdin, Proximity effects in superconductor-ferromagnet
heterostructures, Rev. Mod. Phys. 77, 935 (2005).

[9] W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D.
Zaikin, Quasiclassical green’s function approach to mesoscopic
superconductivity, Superlattices Microstruct. 25, 1251 (1999).

[10] F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkilä,
Colloquium: Nonequilibrium effects in superconductors with a
spin-splitting field, Rev. Mod. Phys. 90, 041001 (2018).

[11] B. A. Muzykantskii and D. E. Khmelnitskii, Effective action in
theory of quasi-ballistic disordered conductors, JETP Lett. 62,
76 (1995).

[12] A. V. Andreev, B. D. Simons, O. Agam, and B. L. Altshuler,
Semiclassical field theory approach to quantum chaos, Nucl.
Phys. B 482, 536 (1996).

[13] A. Altland, B. D. Simons, and D. Taras-Semchuk, Field the-
ory of mesoscopic fluctuations in superconductor-normal-metal
systems, Adv. Phys. 49, 321 (2000).

[14] D. Taras-Semchuk and A. Altland, Quantum interference and
the formation of the proximity effect in chaotic normal-

metal/superconducting structures, Phys. Rev. B 64, 014512
(2001).

[15] J. M. Luttinger and J. C. Ward, Ground-state energy of a many-
fermion system. II, Phys. Rev. 118, 1417 (1960).

[16] E. V. Thuneberg, J. Kurkijärvi, and D. Rainer, Elementary-flux-
pinning potential in type-II superconductors, Phys. Rev. B 29,
3913 (1984).

[17] H. Kusunose, Quasiclassical theory of superconducting states
under magnetic fields: Thermodynamic properties, Phys. Rev.
B 70, 054509 (2004).

[18] P. M. Tedrow, J. E. Tkaczyk, and A. Kumar, Spin-Polarized
Electron Tunneling Study of an Artificially Layered Supercon-
ductor with Internal Magnetic Field: EuO-Al, Phys. Rev. Lett.
56, 1746 (1986).

[19] T. Tokuyasu, J. A. Sauls, and D. Rainer, Proximity effect of a
ferromagnetic insulator in contact with a superconductor, Phys.
Rev. B 38, 8823 (1988).

[20] T. T. Heikkilä, M. Silaev, P. Virtanen, and F. S. Bergeret,
Thermal, electric and spin transport in superconductor/
ferromagnetic-insulator structures, Prog. Surf. Sci. 94, 100540
(2019).

[21] N. Schopohl and K. Maki, Quasiparticle spectrum around a
vortex line in a d-wave superconductor, Phys. Rev. B 52, 490
(1995); N. Schopohl, Transformation of the Eilenberger equa-
tions of superconductivity to a scalar Riccati equation, (1998),
arXiv:cond-mat/9804064.

[22] M. Eschrig, Distribution functions in nonequilibrium theory of
superconductivity and andreev spectroscopy in unconventional
superconductors, Phys. Rev. B 61, 9061 (2000).

[23] J. A. Sauls and M. Eschrig, Vortices in chiral, spin-triplet
superconductors and superfluids, New J. Phys. 11, 075008
(2009).

[24] P. Virtanen, Riccati equations and quasi-1D noninteracting
problems, (2019), arXiv:1904.02388.

[25] E. Witten, Non-Abelian bosonization in two dimensions,
Commun. Math. Phys. 92, 455 (1984).

094507-9

https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevB.13.4745
https://doi.org/10.1103/PhysRevB.13.4745
https://doi.org/10.1103/PhysRevB.13.4745
https://doi.org/10.1103/PhysRevB.13.4745
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1103/PhysRevB.68.064508
https://doi.org/10.1103/PhysRevB.68.064508
https://doi.org/10.1103/PhysRevB.68.064508
https://doi.org/10.1103/PhysRevB.68.064508
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1103/RevModPhys.90.041001
https://doi.org/10.1103/RevModPhys.90.041001
https://doi.org/10.1103/RevModPhys.90.041001
https://doi.org/10.1103/RevModPhys.90.041001
https://doi.org/10.1016/S0550-3213(96)00473-7
https://doi.org/10.1016/S0550-3213(96)00473-7
https://doi.org/10.1016/S0550-3213(96)00473-7
https://doi.org/10.1016/S0550-3213(96)00473-7
https://doi.org/10.1080/000187300243354
https://doi.org/10.1080/000187300243354
https://doi.org/10.1080/000187300243354
https://doi.org/10.1080/000187300243354
https://doi.org/10.1103/PhysRevB.64.014512
https://doi.org/10.1103/PhysRevB.64.014512
https://doi.org/10.1103/PhysRevB.64.014512
https://doi.org/10.1103/PhysRevB.64.014512
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRevB.29.3913
https://doi.org/10.1103/PhysRevB.29.3913
https://doi.org/10.1103/PhysRevB.29.3913
https://doi.org/10.1103/PhysRevB.29.3913
https://doi.org/10.1103/PhysRevB.70.054509
https://doi.org/10.1103/PhysRevB.70.054509
https://doi.org/10.1103/PhysRevB.70.054509
https://doi.org/10.1103/PhysRevB.70.054509
https://doi.org/10.1103/PhysRevLett.56.1746
https://doi.org/10.1103/PhysRevLett.56.1746
https://doi.org/10.1103/PhysRevLett.56.1746
https://doi.org/10.1103/PhysRevLett.56.1746
https://doi.org/10.1103/PhysRevB.38.8823
https://doi.org/10.1103/PhysRevB.38.8823
https://doi.org/10.1103/PhysRevB.38.8823
https://doi.org/10.1103/PhysRevB.38.8823
https://doi.org/10.1016/j.progsurf.2019.100540
https://doi.org/10.1016/j.progsurf.2019.100540
https://doi.org/10.1016/j.progsurf.2019.100540
https://doi.org/10.1016/j.progsurf.2019.100540
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
http://arxiv.org/abs/arXiv:cond-mat/9804064
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1088/1367-2630/11/7/075008
https://doi.org/10.1088/1367-2630/11/7/075008
https://doi.org/10.1088/1367-2630/11/7/075008
https://doi.org/10.1088/1367-2630/11/7/075008
http://arxiv.org/abs/arXiv:1904.02388
https://doi.org/10.1007/BF01215276
https://doi.org/10.1007/BF01215276
https://doi.org/10.1007/BF01215276
https://doi.org/10.1007/BF01215276


VIRTANEN, VARGUNIN, AND SILAEV PHYSICAL REVIEW B 101, 094507 (2020)

[26] P. Virtanen, A. Ronzani, and F. Giazotto, Spectral Character-
istics of a Fully Superconducting Squipt, Phys. Rev. Appl. 6,
054002 (2016).

[27] S. V. Mironov, D. Yu. Vodolazov, Y. Yerin, A. V. Samokhvalov,
A. S. Mel’nikov, and A. Buzdin, Temperature Controlled Fulde-
Ferrell-Larkin-Ovchinnikov Instability in Superconductor-
Ferromagnet Hybrids, Phys. Rev. Lett. 121, 077002 (2018).

[28] M. Eltschka, B. Jäck, M. Assig, O. V. Kondrashov, M. A.
Skvortsov, M. Etzkorn, C. R. Ast, and K. Kern, Superconduct-
ing scanning tunneling microscopy tips in a magnetic field:
Geometry-controlled order of the phase transition, Appl. Phys.
Lett. 107, 122601 (2015).

[29] F. Aikebaier, P. Virtanen, and T. Heikkilä, Superconductiv-
ity near a magnetic domain wall, Phys. Rev. B 99, 104504
(2019).

[30] A. Kamenev and A. Levchenko, Keldysh technique and non-
linear σ -model: Basic principles and applications, Adv. Phys.
58, 197 (2009).

[31] N. R. Werthamer, Theory of a local superconductor in a mag-
netic field, Phys. Rev. 132, 663 (1963).

[32] B. S. Chandrasekhar, A note on the maximum critical field of
high-field superconductors, Appl. Phys. Lett. 1, 7 (1962).

[33] A. M. Clogston, Upper Limit for the Critical Field in Hard
Superconductors, Phys. Rev. Lett. 9, 266 (1962).

[34] K. Maki, Pauli paramagnetism and superconducting state. II,
Prog. Theor. Phys. 32, 29 (1964).

[35] K. Maki and T. Tsuneto, Pauli paramagnetism and supercon-
ducting state, Prog. Theor. Phys. 31, 945 (1964).

[36] R. C. Bruno and B. B. Schwartz, Magnetic field splitting of the
density of states of thin superconductors, Phys. Rev. B 8, 3161
(1973).

[37] R. Meservey and P. M. Tedrow, Spin-polarized electron tunnel-
ing, Phys. Rep. 238, 173 (1994).

[38] X. Hao, J. S. Moodera, and R. Meservey, Thin-Film Supercon-
ductor in an Exchange Field, Phys. Rev. Lett. 67, 1342 (1991).

[39] H. Burkhardt and D. Rainer, Fulde-Ferrell-Larkin-Ovchinnikov
state in layered superconductors, Ann. Phys. (N.Y.) 506, 181
(1994).

[40] L. G. Aslamazov, Influence of impurities on the existence of an
inhomogeneous state in a ferromagnetic superconductor, Sov.
Phys. JETP 28, 773 (1969).

[41] P. Holmvall, A. B. Vorontsov, M. Fogelström, and T.
Löfwander, Broken translational symmetry at edges of high-
temperature superconductors, Nat. Commun. 9, 2190 (2018).

[42] A. B. Vorontsov, Broken Translational and Time-Reversal Sym-
metry in Unconventional Superconducting Films, Phys. Rev.
Lett. 102, 177001 (2009).

[43] M. Håkansson, T. Löfwander, and M. Fogelström, Sponta-
neously broken time-reversal symmetry in high-temperature
superconductors, Nat. Phys. 11, 755 (2015).

[44] A. B. Vorontsov and J. A. Sauls, Crystalline Order in Superfluid
3He Films, Phys. Rev. Lett. 98, 045301 (2007).

[45] F. S. Bergeret and I. V. Tokatly, Spin-orbit coupling as a
source of long-range triplet proximity effect in superconductor-
ferromagnet hybrid structures, Phys. Rev. B 89, 134517 (2014).

[46] J. Linder and J. W. A. Robinson, Superconducting spintronics,
Nat. Phys. 11, 307 (2015).

[47] M. Eschrig, Spin-polarized supercurrents for spintronics: A
review of current progress, Rep. Prog. Phys. 78, 104501
(2015).

[48] L. N. Bulaevskii, A. I. Buzdin, M. L. Kuli, and S. V. Panjukov,
Coexistence of superconductivity and magnetism theoretical
predictions and experimental results, Adv. Phys. 34, 175 (1985).

[49] P. W. Anderson and H. Suhl, Spin alignment in the supercon-
ducting state, Phys. Rev. 116, 898 (1959).

[50] F. S. Bergeret, K. B. Efetov, and A. I. Larkin, Nonhomoge-
neous magnetic order in superconductor-ferromagnet multilay-
ers, Phys. Rev. B 62, 11872 (2000).

[51] A. I. Buzdin and L. N. Bulaevskii, Ferromagnetic film on the
surface of a superconductor: Possible onset of inhomogeneous
magnetic order, Sov. Phys. JETP 67, 576 (1988).

[52] Yu. A. Izyumov, Yu. N. Proshin, and M. G. Khusainov, Com-
petition between superconductivity and magnetism in ferromag-
net/superconductor heterostructures, Phys. Usp. 45, 109 (2002).

[53] P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-
exchange field, Phys. Rev. 135, A550 (1964).

[54] A. I. Larkin and Yu. N. Ovchinnikov, Inhomogeneous state of
superconductors, Sov. Phys. JETP 20, 762 (1965).

[55] S. Mironov, A. Mel’nikov, and A. Buzdin, Vanishing Meiss-
ner Effect as a Hallmark of in–Plane Fulde-Ferrell-Larkin-
Ovchinnikov Instability in Superconductor–Ferromagnet Lay-
ered Systems, Phys. Rev. Lett. 109, 237002 (2012).

[56] M. Barkman, A. Samoilenka, and E. Babaev, Surface Pair-
Density-Wave Superconducting and Superfluid States, Phys.
Rev. Lett. 122, 165302 (2019).

[57] A. A. Zyuzin and A. Yu. Zyuzin, Anomalous transition tem-
perature oscillations in the Larkin-Ovchinnikov-Fulde-Ferrell
state, Phys. Rev. B 79, 174514 (2009).

[58] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105,
177002 (2010).

[59] J. D. S. Bommer, H. Zhang, O. Gül, B. Nijholt, M. Wimmer,
F. N. Rybakov, J. Garaud, D. Rodic, E. Babaev, M. Troyer,
D. Car, S. R. Plissard, E. P. A. M. Bakkers, K. Watanabe, T.
Taniguchi, and L. P. Kouwenhoven, Spin-Orbit Protection of
Induced Superconductivity in Majorana Nanowires, Phys. Rev.
Lett. 122, 187702 (2019).

[60] B. Nijholt and A. R. Akhmerov, Orbital effect of magnetic
field on the majorana phase diagram, Phys. Rev. B 93, 235434
(2016).

[61] A. P. Mackenzie and Y. Maeno, The superconductivity of
Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod.
Phys. 75, 657 (2003).

[62] D. Vollhardt and P. Wolfle, The Superfluid Phases of 3He
(Taylor and Francis, London, 1990).

[63] L. V. Levitin, R. G. Bennett, A. Casey, B. Cowan, J. Saunders,
D. Drung, T. Schurig, and J. M. Parpia, Phase diagram of
the topological superfluid 3He confined in a nanoscale slab
geometry, Science 340, 841 (2013).

[64] J. J. Wiman and J. A. Sauls, Spontaneous Helical Order of
a Chiral p-Wave Superfluid Confined in Nanoscale Channels,
Phys. Rev. Lett. 121, 045301 (2018).

[65] V. V. Dmitriev, A. A. Senin, A. A. Soldatov, and A. N. Yudin,
Polar Phase of Superfluid 3He in Anisotropic Aerogel, Phys.
Rev. Lett. 115, 165304 (2015).

[66] K. Aoyama and R. Ikeda, Pairing states of superfluid 3He in
uniaxially anisotropic aerogel, Phys. Rev. B 73, 060504(R)
(2006).

[67] M. M. Salomaa and G. E. Volovik, Vortices in rotating super-
fluid 3He, Rev. Mod. Phys. 59, 533 (1987).

094507-10

https://doi.org/10.1103/PhysRevApplied.6.054002
https://doi.org/10.1103/PhysRevApplied.6.054002
https://doi.org/10.1103/PhysRevApplied.6.054002
https://doi.org/10.1103/PhysRevApplied.6.054002
https://doi.org/10.1103/PhysRevLett.121.077002
https://doi.org/10.1103/PhysRevLett.121.077002
https://doi.org/10.1103/PhysRevLett.121.077002
https://doi.org/10.1103/PhysRevLett.121.077002
https://doi.org/10.1063/1.4931359
https://doi.org/10.1063/1.4931359
https://doi.org/10.1063/1.4931359
https://doi.org/10.1063/1.4931359
https://doi.org/10.1103/PhysRevB.99.104504
https://doi.org/10.1103/PhysRevB.99.104504
https://doi.org/10.1103/PhysRevB.99.104504
https://doi.org/10.1103/PhysRevB.99.104504
https://doi.org/10.1080/00018730902850504
https://doi.org/10.1080/00018730902850504
https://doi.org/10.1080/00018730902850504
https://doi.org/10.1080/00018730902850504
https://doi.org/10.1103/PhysRev.132.663
https://doi.org/10.1103/PhysRev.132.663
https://doi.org/10.1103/PhysRev.132.663
https://doi.org/10.1103/PhysRev.132.663
https://doi.org/10.1063/1.1777362
https://doi.org/10.1063/1.1777362
https://doi.org/10.1063/1.1777362
https://doi.org/10.1063/1.1777362
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1143/PTP.32.29
https://doi.org/10.1143/PTP.32.29
https://doi.org/10.1143/PTP.32.29
https://doi.org/10.1143/PTP.32.29
https://doi.org/10.1143/PTP.31.945
https://doi.org/10.1143/PTP.31.945
https://doi.org/10.1143/PTP.31.945
https://doi.org/10.1143/PTP.31.945
https://doi.org/10.1103/PhysRevB.8.3161
https://doi.org/10.1103/PhysRevB.8.3161
https://doi.org/10.1103/PhysRevB.8.3161
https://doi.org/10.1103/PhysRevB.8.3161
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1103/PhysRevLett.67.1342
https://doi.org/10.1103/PhysRevLett.67.1342
https://doi.org/10.1103/PhysRevLett.67.1342
https://doi.org/10.1103/PhysRevLett.67.1342
https://doi.org/10.1002/andp.19945060305
https://doi.org/10.1002/andp.19945060305
https://doi.org/10.1002/andp.19945060305
https://doi.org/10.1002/andp.19945060305
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1103/PhysRevLett.102.177001
https://doi.org/10.1103/PhysRevLett.102.177001
https://doi.org/10.1103/PhysRevLett.102.177001
https://doi.org/10.1103/PhysRevLett.102.177001
https://doi.org/10.1038/nphys3383
https://doi.org/10.1038/nphys3383
https://doi.org/10.1038/nphys3383
https://doi.org/10.1038/nphys3383
https://doi.org/10.1103/PhysRevLett.98.045301
https://doi.org/10.1103/PhysRevLett.98.045301
https://doi.org/10.1103/PhysRevLett.98.045301
https://doi.org/10.1103/PhysRevLett.98.045301
https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1038/nphys3242
https://doi.org/10.1038/nphys3242
https://doi.org/10.1038/nphys3242
https://doi.org/10.1038/nphys3242
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1080/00018738500101741
https://doi.org/10.1080/00018738500101741
https://doi.org/10.1080/00018738500101741
https://doi.org/10.1080/00018738500101741
https://doi.org/10.1103/PhysRev.116.898
https://doi.org/10.1103/PhysRev.116.898
https://doi.org/10.1103/PhysRev.116.898
https://doi.org/10.1103/PhysRev.116.898
https://doi.org/10.1103/PhysRevB.62.11872
https://doi.org/10.1103/PhysRevB.62.11872
https://doi.org/10.1103/PhysRevB.62.11872
https://doi.org/10.1103/PhysRevB.62.11872
https://doi.org/10.1070/PU2002v045n02ABEH001025
https://doi.org/10.1070/PU2002v045n02ABEH001025
https://doi.org/10.1070/PU2002v045n02ABEH001025
https://doi.org/10.1070/PU2002v045n02ABEH001025
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRevLett.109.237002
https://doi.org/10.1103/PhysRevLett.109.237002
https://doi.org/10.1103/PhysRevLett.109.237002
https://doi.org/10.1103/PhysRevLett.109.237002
https://doi.org/10.1103/PhysRevLett.122.165302
https://doi.org/10.1103/PhysRevLett.122.165302
https://doi.org/10.1103/PhysRevLett.122.165302
https://doi.org/10.1103/PhysRevLett.122.165302
https://doi.org/10.1103/PhysRevB.79.174514
https://doi.org/10.1103/PhysRevB.79.174514
https://doi.org/10.1103/PhysRevB.79.174514
https://doi.org/10.1103/PhysRevB.79.174514
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.122.187702
https://doi.org/10.1103/PhysRevLett.122.187702
https://doi.org/10.1103/PhysRevLett.122.187702
https://doi.org/10.1103/PhysRevLett.122.187702
https://doi.org/10.1103/PhysRevB.93.235434
https://doi.org/10.1103/PhysRevB.93.235434
https://doi.org/10.1103/PhysRevB.93.235434
https://doi.org/10.1103/PhysRevB.93.235434
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1126/science.1233621
https://doi.org/10.1126/science.1233621
https://doi.org/10.1126/science.1233621
https://doi.org/10.1126/science.1233621
https://doi.org/10.1103/PhysRevLett.121.045301
https://doi.org/10.1103/PhysRevLett.121.045301
https://doi.org/10.1103/PhysRevLett.121.045301
https://doi.org/10.1103/PhysRevLett.121.045301
https://doi.org/10.1103/PhysRevLett.115.165304
https://doi.org/10.1103/PhysRevLett.115.165304
https://doi.org/10.1103/PhysRevLett.115.165304
https://doi.org/10.1103/PhysRevLett.115.165304
https://doi.org/10.1103/PhysRevB.73.060504
https://doi.org/10.1103/PhysRevB.73.060504
https://doi.org/10.1103/PhysRevB.73.060504
https://doi.org/10.1103/PhysRevB.73.060504
https://doi.org/10.1103/RevModPhys.59.533
https://doi.org/10.1103/RevModPhys.59.533
https://doi.org/10.1103/RevModPhys.59.533
https://doi.org/10.1103/RevModPhys.59.533


QUASICLASSICAL FREE ENERGY OF … PHYSICAL REVIEW B 101, 094507 (2020)

[68] O. V. Lounasmaa and E. Thuneberg, Vortices in rotating super-
fluid 3He, Proc. Natl. Acad. Sci. USA 96, 7760 (1999).

[69] M. M. Salomaa and G. E. Volovik, Vortices with Ferromagnetic
Superfluid Core in he 3He-B, Phys. Rev. Lett. 51, 2040 (1983).

[70] E. V. Thuneberg, Identification of Vortices in Superfluid 3B,
Phys. Rev. Lett. 56, 359 (1986).

[71] E. V. Thuneberg, Ginzburg-landau theory of vortices in super-
fluid 3He-B, Phys. Rev. B 36, 3583 (1987).

[72] M. Fogelström and J. Kurkijärvi, Quasiclassical theory of vor-
tices in 3He-B, J. Low Temp. Phys. 98, 195 (1995).

[73] M. Fogelström and J. Kurkijärvi, On the local stability of the
quadrupole vortex in superfluid 3He-B, J. Low Temp. Phys.
116, 1 (1999).

[74] R. C. Regan, J. J. Wiman, and J. A. Sauls, The vortex phase
diagram of rotating superfluid 3He-B, Phys. Rev. B 101, 024517
(2020).

[75] S. Autti, V. V. Dmitriev, J. T. Mäkinen, A. A. Soldatov,
G. E. Volovik, A. N. Yudin, V. V. Zavjalov, and V. B.
Eltsov, Observation of Half-Quantum Vortices in Topo-
logical Superfluid 3He, Phys. Rev. Lett. 117, 255301
(2016).

[76] J. T. Mäkinen, V. V. Dmitriev, J. Nissinen, J. Rysti, G. E.
Volovik, A. N. Yudin, K. Zhang, and V. B. Eltsov, Half-quantum
vortices and walls bounded by strings in the polar-distorted
phases of topological superfluid 3He, Nat. Commun. 10, 237
(2019).

094507-11

https://doi.org/10.1073/pnas.96.14.7760
https://doi.org/10.1073/pnas.96.14.7760
https://doi.org/10.1073/pnas.96.14.7760
https://doi.org/10.1073/pnas.96.14.7760
https://doi.org/10.1103/PhysRevLett.51.2040
https://doi.org/10.1103/PhysRevLett.51.2040
https://doi.org/10.1103/PhysRevLett.51.2040
https://doi.org/10.1103/PhysRevLett.51.2040
https://doi.org/10.1103/PhysRevLett.56.359
https://doi.org/10.1103/PhysRevLett.56.359
https://doi.org/10.1103/PhysRevLett.56.359
https://doi.org/10.1103/PhysRevLett.56.359
https://doi.org/10.1103/PhysRevB.36.3583
https://doi.org/10.1103/PhysRevB.36.3583
https://doi.org/10.1103/PhysRevB.36.3583
https://doi.org/10.1103/PhysRevB.36.3583
https://doi.org/10.1007/BF00753614
https://doi.org/10.1007/BF00753614
https://doi.org/10.1007/BF00753614
https://doi.org/10.1007/BF00753614
https://doi.org/10.1023/A:1021870608446
https://doi.org/10.1023/A:1021870608446
https://doi.org/10.1023/A:1021870608446
https://doi.org/10.1023/A:1021870608446
https://doi.org/10.1103/PhysRevB.101.024517
https://doi.org/10.1103/PhysRevB.101.024517
https://doi.org/10.1103/PhysRevB.101.024517
https://doi.org/10.1103/PhysRevB.101.024517
https://doi.org/10.1103/PhysRevLett.117.255301
https://doi.org/10.1103/PhysRevLett.117.255301
https://doi.org/10.1103/PhysRevLett.117.255301
https://doi.org/10.1103/PhysRevLett.117.255301
https://doi.org/10.1038/s41467-018-08204-8
https://doi.org/10.1038/s41467-018-08204-8
https://doi.org/10.1038/s41467-018-08204-8
https://doi.org/10.1038/s41467-018-08204-8

